
Mutual Understanding in Educational Human-Robot 
Collaborations

Thèse n° 10 144

2020

Présentée le 9 septembre 2020

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Alexis David JACQ

Prof. A. Ijspeert, président du jury
Prof. P. Dillenbourg, Prof. A. Paiva, directeurs de thèse
Prof. P.-Y. Oudeyer, rapporteur
Prof. M. Chetouani, rapporteur
Dr A. Alahi, rapporteur

à l’École Polytechnique Fédérale de Lausanne
à la Faculté informatique et communications
Laboratoire d’ergonomie éducative

et à l’Instituto Superior Técnico (IST) da Universidade de Lisboa
Programme doctoral en robotique, contrôle et systèmes intelligents
et Doutoramento em Engenharia Informática e de Computadores





Acknowledgements
I would like to start by acknowledging Ana Paiva and Pierre Dillenbourg, who
advised me for almost five years. My thesis started in Lausanne under the supervision of
Pierre, who taught me how to talk, how to write and how to work as a scientist. He
was and remains the best example of an engaged team leader, always present despite
his filled calendar and always perceiving and expecting the best of his students. Then,
Ana directed me in Lisbon. I want to thank her for her unique ability to motivate and
encourage my projects. Doing so, she provided me with a stronger self-confidence and
(that is less sure) a better autonomy. She taught me how to feel as a scientist. I further
would like to thank Severin Lemaignan, who taught me all the rest: how to use Linux,
how to code in python and C++, how to use Github, how to program a robot, how to
conduce an experiment and how to write a paper. I thank Wafa Johal who perfected
this education and who re-motivated me when I was strongly demotivated after my
first candidacy exam at EPFL. I also thank Francisco Melo, who gave at Lisbon the
best reinforcement learning course I followed and who helped me at finding a way to
apply my theoretical background to this less theoretical thesis. I also have to thank
Olivier Pietquin, as well as Matthieu Geist, for helping me with the Learning from
a Learner part and, much more than this, for helping me getting the most prestigious
after-Ph.D.-life I could have imagined.

Then, my thought comes to all the friends and colleagues I met during this the-
sis. At Lausanne, I can only start with Thibault Asselborn who helped me whistling
at work, singing Charles Aznavour in the car, drinking too much the night and killing
zombies the remaining time. Then comes Ayberk Osgur, my former roommate who
made me discover Futurama and the amazing turkish cuisine and who was able to build a
swarm of educational moving robots from scratch. Finally Louis Faucon, thank you for
all the movies sessions, the games he always won and his immortal motivation for sharing
a beer. At Lisbon, I want to thank Hang Yin for his incredibly surprising humor and
the passionate mathematical discussions, Brian Ravenet for the epic surf sessions,
Ali Kordia for the Arack and Ramona Merhej who promoted wonderful laboratory
hinking in Portugal. And all the others in both laboratories: Patrícia Alves-Oliveira,
Kshitij Sharma, Filipa Correia, Lorenzo Lucignano, Maria Ferreira, Teresa
Yeo, Raul Paradeda, Arzu Güneysu, Himanshu Verma, Sofia Petisca, Mojgan
Hashemian, Fernando Garcia, Miguel Faria, Elmira Yadollahi, Miguel Vasco

iii



Acknowledgements

and all the rest (doing a thesis in two laboratories makes a lot of people to acknowledge).

Next, I wish to thank all the friends I knew for a longer time. I want to express
my gratitude to François Bienvenu, who indirectly contributed to this thesis by
sharing with me his passion for science when I started my undergrad studies, thanks to
what I found the best intrinsic motivation for studying mathematics, computer science
and biology. He also strongly encouraged me to finish the present manuscript. I thank
Thomas Schmitt, obviously for all the 42 we took from the rain, also for chasing the
terrible daemons of the non-poetic life avec nos bottes. Nicolas Manich, who initiated
me to the contact-improvisation and who taught me that "when nothing is good, take a
break and think of what you really want to do", as well as the nollie pressure hardflip.
Talking about skateboard, I must thank Aymeric Nocus, for all the sessions across
France and all the laughs when I needed to.

I thanks my parents Anne Chieze and Gwenael Jacq, and my oldest friends:
my sister Carole Jacq and my brother Julien Magnan. Their contribution to this
thesis and to my whole life could not even stand in a book, I will not try in a single
sentence. Less old friends, but sister and brothers as well: I thank Adelle Jacq, Arthur
Delasalle and Victor Delasalle. I could not write these familial acknowledgments
without mentioning my family in Switzerland, who warmly welcomed me during my
stay in that country. This starts with Sebastien Chieze, who initiated me with the
Chaudron at L’isle – ritual that changed my perception of the spiritual world. Follow all
my uncles and cousins Philippe, Babou, Tatiana, Laurenna, Tamara, Guillaume,
Marie, David, Blandine, Emmanuel, Brigitte, Caroline, Nathalie and Frank.

Finally, I thank the present thesis for leading me to meet my most favourite be-
ing in the universe: my wife and my best friend Daria Ishkova.

Gif sur Yvette, 30 April 2020 A. J.

iv



Abstract
Education is an art close to theater. A teacher is taking a role; he works his speeches and
his gestures and he plays with the attention of his audience. But it is harder: more than
entertaining, a teacher must shape the skills, the knowledge and the motivation of his
students. This requires, more than just understanding the learning dynamic of students,
the talent to control the way he is understood so he can manipulate this learning dynamic.
We call it mutual understanding, formalized by the accuracy of the prediction of others
and of the prediction of oneself by the others.
Robots for education, a field that emerges from novel approaches involving new tech-
nologies, opens a large horizon of unexplored pedagogical activities. Indeed, robots can
take roles that were not doable by humans. For example, CoWriter is a robot that
personifies a very unskilled beginner so even a child with strong difficulties can teach
it handwriting: involving an adult would not be convincing and calling another child
would be unethical for this role. However, a strong limitation lies in the fact that robots
have a restricted perception to understand humans and are hardly understandable by
humans. By consequence, robots for education suffer the poor – even nonexistent – level
of mutual understanding required by educational interactions.
The first part of this thesis highlights the importance of the human-robot mutual
understanding in pedagogical collaborative activities like CoWriter and is based on
real-world experimentation. The next two parts form a suggestion to implement such
an ability in a robot aiming to interact with humans by focusing on the modelling of
motivations. One part regards the external orchestration of the different models built
by the robot to make predictions and to be predictable. The other part focuses on
the internal mechanisms of these models, based on the computational framework of
reinforcement learning.
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Résumé
L’éducation est un art proche du théatre. L’enseignant se vêtie d’un personnage ; il
travaille son discours et sa gestuelle. Il joue avec l’attention de son audience. Mais il
s’agit d’un art plus difficile encore : au delà de divertir, l’enseignant se doit de modeller
les compétences, le savoir et la motivation de ses élèves. Cela tient non seulement de sa
comprehension de la dynamique d’apprentissage des élèves, mais aussi de son talent à
controller sa manière d’être compris de telle sorte qu’il puisse dompter cette dynamique.
Nous attribuons à cette capacité le terme de comprehension mutuelle, que l’on formalise
par la justesse de la prédiction d’autrui et de la prédiction de soi-même par autrui.
La robotique pour l’éducation, un champ de recherche qui émerge des récentes methodes
faisant intervenir les nouvelles technologies, ouvre un large horizon d’activités pédago-
giques jusqu’alors non explorées. Et pour cause, les robots peuvent endosser des rôles qui
ne pourraient pas être arborés par les humains. Par exemple, CoWriter est un robot qui
personifie un débutant totallement inexpérimenté, tant et si bien qu’un enfant lui-même
en difficulté sera en mesure de lui apprendre l’écriture manuscrite. Donner ce role à un
adulte serait moyennement convainquant, et le recours à un autre enfant manquerait
d’hétique. Cela dit, de telles interactions sont très limitées par la perception restreinte
des robots pour comprendre les humains et leur difficulté à se faire comprendre par les
humains. En conséquence, la robotique pour l’éducation souffre de la pauvreté – même
de l’innexistance – du niveau de compréhension mututelle, pourtant si nécessaire dans les
interaction à vue pédagogique.
La première partie de cette thèse mets en évidance l’importance de la compréhension
mutuelle dans les activités pédagogiques collaboratives telles que CoWriter et se base sur
des expériences appliquées à la vie concrète. Les parties suivantes forment une suggestion
d’implémentation d’une telle aptitude dans un robot conçue pour intéragir avec l’homme
en se focalisant sur la modélisation des motivations. L’une porte sur l’orchestration externe
des differents modèles construits par le robot afin de prédire et d’être prédictible. L’autre
se concentre sur les mechanismes internes de ces modèles, dans le cadre computationnel
de l’apprentissage par renforcement.
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Resumo
A educação é uma arte parecida com o teatro. O professor atua; ele trabalha o discurso
e os gestos, brinca com a atenção da plateia. Mas é ainda mais difícil: além de divertir,
o professor tem que afiar as competências, o conhecimento e a motivação dos alunos.
Não basta entender a dinâmica de aprendizagem dos alunos, ensinar requer também
a habilidade de manipular essa dinâmica. Chamamos isso de entendimento mútuo,
formalizado pela precisão da predição dos outros assim como a predição de si mesmo
pelos outros.
Os robôs para educação constituem um campo que emergiu de métodos novos envolvendo
tecnologias novas e que abre um horizonte largo de atividades pedagógicas a ser exploradas.
Os robôs podem fazer papéis que os próprios humanos não conseguem. Por exemplo,
CoWriter é um robô que atua como um aluno analfabeto para que uma criança, mesmo
com dificuldade, possa ensinar a escrever para ele. Envolver um adulto não seria
convincente e chamar outra criança não seria ético. Porém, os robôs mal conseguem
entender os humanos assim como os humanos mal conseguem entender robôs. Por
consequência, os robôs para educação sofrem do nível baixo, ou até zero, de entendimento
mútuo que constitui um requisito para interações educacionais.
A primeira parte desta tese realça a importância do entendimento mútuo humano-robô
em atividades pedagógicas colaborativas como CoWriter e se baseia em experimentações
do mundo real. As duas partes seguidas propõem a implementação desta habilidade
num robô destinado a interagir com humanos, focando na modelagem das motivações.
Uma parte trata da orquestração externa dos vários modelos feitos pelo robô para fazer
predições e para ele mesmo ser sujeito a predições. A outra parte foca nos mecanismos
internos desses modelos, usando o formalismo computacional da aprendizagem por reforço.
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1 Introduction

“– It was a play on words, and a play on me. She could only do that with an awareness
of her own mind, and also of awareness of mine.
– Yeah. She’s aware of you, all right."

Dialogue from Ex Machina.

Intelligence can be described by the ability to build and exploit a predictive model of the
changing world. People and animals are continuously constructing such models, from
the empirical accumulation of knowledge obtained by exploring and experiencing their
environment. Doing so, they are better and better at harnessing the world’s dynamic,
using the given affordance to improve their situations. Likewise, social intelligence lies on
the construction and exploitation of robust models of others, as particular parts of the
world. An agent may understand another agent if its model allows it to predict the other
agent’s behaviour. Then it can adapt its own behaviour to avoid conflicting trajectories
and, hopefully, cooperate for a better mutual situation. Since another agent may also be
continuously refining its model of the world, this modelling itself should be taken as a
part of the world’s dynamic. By consequence, a socially intelligent agent may learn to
influence others modelling in order to approach a given objective, usually a collaborative
task.

We introduce the notion ofmutual understanding, which describes the ability of interacting
agents to understand each other. This thesis is based on the assumption that mutual
understanding is necessary for reaching efficient collaborations. We focus on the case
of pedagogic human-agent collaborations. Since a human – especially a child – is not
expected to intrinsically understand an artificial agent nor to facilitate an artificial agent
to understand himself, the agent must be designed with the ability to promote the
human-agent mutual understanding.

Through real-world experiments, we demonstrate the necessity of a better user modelling

1



Chapter 1. Introduction

and a better agent’s interpretability. We bring out technical methods and cognitive
architectures to extract information relevant to mutual perception in Human-Agent
Interaction (HAI). In an idealized context, we explore computational approaches to
mutual understanding in intelligent agents interacting together.

1.1 Motivation

1.1.1 Artificial agents for educational activities

In a sense, any educative interaction is a collaboration. The teacher(s) – who design
and/or control the activity – and the student(s) are sharing a common goal, namely the
learning progress of the student. Given the design, many students and many teachers can
be involved. However, one can only find student-teacher or student-student relationship
in such collaborations, given the age or the level. One strong motivation of HAI in
educative scenarios is the fact that new kinds of relationship can be explored. An agent
can be an interactive tool providing the student or the teacher with hints and pieces
of advice, or it can even take new studying/teaching roles. In the example developed
in Chapter 2, a robot takes the role of a beginning learner that can be taught by a
child, himself suffering important difficulties at learning the task. More than a simple
scenario where the robot is given as a learning toy for the child, the robot can make
specific mistakes, leading the child to correct his own mistakes by correcting the robot.
An agent can also simulate any human role to teach tricky interactions situations, like
the interrogations of suspects as part of a police training [Campos et al., 2017].

Unfortunately, HAI is suffering important weaknesses caused by the mutual misunder-
standing induced by artificial agents. To the best of our knowledge, except in wizard-of-oz
set-up where a hidden human controls the agent from a distance, the only efforts made
to improve the mutual understanding are based on statistical prediction of the human
states and behaviours. A robot will predict that a human is sad or happy using a
facial recognition system, or will predict the intention of a grasping gesture. One can
also find in literature some robots exaggerating their own behaviour in order to help
a human understanding their intention [Nikolaidis et al., 2016a]. But such studies are
limited to spacial reasoning for gestural adaptations [Nikolaidis et al., 2017] and are
not adapted to pedagogical activities. The way a robot is perceived and understood in
educational interactions has also been studied – especially in the case of handwriting
acquisition [Chandra, 2019], but these estimations are made off-line and are not available
for on-line adaptations.

2



1.2. Approach

1.1.2 Second order of modelling

In humans, mutual understanding relies on a psychological aptitude called Theory of
Mind (ToM). It regroups all the cognitive processes allowing an human to construct a
mental representation of another human’s mind [Premack and Woodruff, 1978]. In that
perspective, both the inference of someone’s mental state and the prediction of someone’s
behaviour involve ToM mechanisms. But not only on the ability to construct models
of the others is required to establish a mutual understanding: one also need to control
others modellings of oneself. Indeed, one need to make sure he is being understood
by the other while communicating, which requires to adapt the messages to the way
they are interpreted by the interlocutor. Such an awareness is based on second-order
representations [Baron-Cohen et al., 1985], a key capacity for the proper functioning of
ToM [Dennett, 1978,Pylyshyn, 1978]. We generalize this assumption to the HAI domain
by asserting that the missing ingredient in social artificial agents is the ability to infer
and use second-order representations to establish a mutual understanding.

1.1.3 Modelling mutual objectives

When focusing on educational activities, an important feature to understand is the
perception of the goal in other minds. A teacher (or a peer), must be able to realize
which actions or which states are viewed as a progress by the student in order to adapt
the steps of an activity. Similarly, the student needs to understand what is considered
as a progress by the teacher. Building a mutual understanding about the objective of a
task is already explored in Human-Robot Interaction (HRI), but these efforts are limited
to teaching the robot from human demonstrations [Grizou et al., 2013,Nikolaidis et al.,
2015]. More specifically, the robot usually infer the goal as a reward function from a set
of human instructions. The technique used is based on Inverse Reinforcement Learning
(IRL), which consists to assume that instructions are some realization of an optimal policy
to solve the given task by maximizing the reward function [Ng et al., 2000]. However,
this approach is insufficient when going through educational HAI scenario as soon as the
agent is no longer a pure student but either a teacher, a peer, or playing a fake student
in learning by teaching activities (see 2.2). In such setup, we would like to develop online
methods to infer individual objectives without assuming the human’s optimal behaviour,
who is supposedly also discovering the activity. Similarly, an online method could help
an artificial agent to infer how a human can understand its (the agent’s) objective.

1.2 Approach

This whole thesis can be seen as a research for technical methods facilitating the mutual
understanding in agents with shared pedagogical objectives. We proceed in three steps.

3



Chapter 1. Introduction

1.2.1 Step 1: pedagogical child-robot interactions

The first step (chapter 2) consists in developing and experimenting real-world HRI
involving a pedagogical activity. We design an activity where a child learns handwriting
by teaching a robot. Measuring the progression of the child, we argue that this progression
mainly relies on the time of practice, so on the intrinsic commitment of the child. We
play with the perception of the robot by the child by creating engaging scenario based on
the “protégé” effect. In order to evaluate the robot’s capability to perceive the human,
we measure the accuracy of a technical setup that predicts the human “with-me-ness",
a concept supposedly proportional to the engagement in an activity and based on the
visual behaviour.

1.2.2 Step 2: architecture for mutual understanding

The second step (chapter 3) sets up an architectural framework for mutual understanding
in robotic. We establish the necessity of a reasoning with 3 degrees of modelling: a
model of one’s own states and goals, a model of the other agents and a model of oneself
as perceived by the others. We demonstrate the importance of this architecture with
an experiment that controls different ways to reason with such models and measure the
impacts on the quality of a collaborative interaction between a human and a robot.

1.2.3 Step 3: understanding learning agents

The third step (chapter 4) is more theoretical and focuses on the models. Given the
3-models structure described above (in the 2nd step), we discuss the ways to model each
others states, goals and reasoning, and the ways to orchestrate these models in order to
optimize a pedagogical objective. Since we aim at describing goal-oriented behaviours,
we suggest a reinforcement learning framework to design our models. We develop a
simple 3-model approach to 1) learn a policy that optimize an objective, 2) infer another
agent’s reward function and 3) adapt a behaviour to facilitate the other’s inference of
one’s own reward function. We formalize pedagogical activities involving two agents
as 2 × 2 theoretical games involving a social dilemma, with different payoffs/utilities
given the agents roles and objectives. Given the propensity of agents to cooperate, we
demonstrate the robustness of the proposed methods with numerical simulations. We
then focus on the online inference of another agent’s reward function and propose a novel
algorithm Learning from a Learner, and we study its efficiency through discrete grid
worlds and the more challenging mujoco environments, involving large-dimensional and
continuous inputs.
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1.3. Publications

1.3 Publications

The present document is build around the different papers/reports published along
my four years of doctoral studies. Chapter 2 was essentially conduced at the Chili
laboratory in the Suiss École Polytechnique Fédérale de Lausanne (EPFL) and merges
three publications:

• Section 2.5 has been published in the proceedings of the Human Robot Interaction
conference under the title “Building successful long child-robot interactions in
a learning context” [Jacq et al., 2016b] and as a part of “Learning by teaching
a robot: The case of handwriting”, published in the Robotics and Automation
Magazine [Lemaignan et al., 2016b].

• Section 2.6 has been published in the proceedings of the Human Robot Interaction
conference under the title “From real-time attention assessment to with-me-ness in
human-robot interaction” [Lemaignan et al., 2016a].

• Section 2.7 has been published in the proceedings of the Robot and Human Interactive
Communication conference under the title “Child-robot spatial arrangement in a
learning by teaching activity” [Johal et al., 2016].

Chapter 3 was conduced at the Gaips group in the Instituto Superior Tecnico (IST) of
the University of Lisbon and in the Instituto de Engenharia de Sistemas e Computadores,
Investigação e Desenvolvimento em Lisboa (INESC-ID):

• Section 3.4 has been published as an extended abstract in the proceedings of the
Autonomous Agent and Multi-Agent Systems conference under the title “Sensitivity
To Perceived Mutual Understanding In Human-Robot Collaborations” [Jacq et al.,
2018].

Chapter 4 was conduced both at the Gaips group and at Google Research, in the Brain
Team’s laboratory of Paris. It merges two publications:

• Section 4.3 has been published as a technical report of IST under the title “Express-
ing Motivations By Facilitating Other’s Inverse Reinforcement Learning” [Jacq
et al., 2017]

• Section 4.4 has been published in the proceedings of the International Conference
on Machine Learning under the title “Learning from a Learner”.
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Chapter 2. Measurements in pedagogical Child-Robot collaborations

2.1 Introduction

This chapter reports observations from different studies of real-world Child-Robot Inter-
action (ChRI). The choice of a physical agent is justified by the strong impact on the
field of interaction, and the richness of the induced visual behaviour. Indeed, one main
difference between a virtual and a physical agent is the shared perception. The robot and
the human are living in the same world and in aspect, they share a similar experience
of the scene. Such an exchange could also be induced by plunging the human into the
world of a virtual agent via virtual reality, however with limited affordance regarding the
human gesture. This work is a part of the CoWriter Project, presented in section 2.3,
aiming at exploring how a robot can help children with the acquisition of handwriting.
The common point of the described studies is to make a child intrinsically motivated
at practicing an educative activity, described in 2.4. Both pedagogical and therapeutic
contexts are investigated, involving children to learn-by-teaching handwriting skills with
a Nao robot. We focus on the following questions:

• (A) Can a robot actually help a child at learning a skill?

• (B) How different scenarios and experimental setups can impact the perception of
the robot?

• (C) What can be measured during a ChRI in order to infer the child’s internal
state?

Question (A) is investigated in section 2.5 and regards the general field of educational
ChRI. Application of physical robots in education is a whole field of research (see related
work at section 2.2), essentially motivated by the fact that robots can take roles that
do not exist in standard collaborative education. For example, robots have no specific
age or gender, and will not suffer emotional bias such as timidity or boredom. Also
this question is crucial: this whole thesis aims at improving educational HAI and hence
relies on the fact HAI can be educational. Questions (B) and (C), investigated across
sections 2.5, 2.6 and 2.7, concern the control of a pedagogical interaction with a physical
robot: our interest is to evaluate what are the actual degrees of action and perception in
such a low-priced and accessible robot at interacting with a child.

2.2 Related work

Robots for education

The usage of robots in education is now a whole field of research. It can be divided in
two separate branches: robots as tools and robots as agents. Robots as tools do not
socially interact with humans but bring a physical aspect to an educational concept.
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2.2. Related work

Most robots as tools are designed to teach robotics or other fields related to engineering
and computer science. From the acquisition of basic programming skills [Mondada
et al., 2017] to the teaching of complete 3d-printing, construction and programming of a
robot [Lapeyre et al., 2014]. Fewer works introduce tool robots designed to teach any
pedagogical concept. A notable example is the Cellulo project [Ozgur et al., 2017], which
introduces tangible swarm robots for inducing movements and forces as a new illustrative
and manipulable dimension to pedagogical activities [Özgür, 2018].

This thesis is more related to robots as agents, which are used as social helpers for
educational interactions. In the literature, different approaches can be found regarding
the type of interaction, interpolating between robots teaching humans and humans teach-
ing robots [Belpaeme et al., 2018]. The first extreme, robots as pure teacher or tutor, may
be the oldest and the most known situation. This includes teaching assistant robots [You
et al., 2006], class room robots [Tanaka et al., 2007] or personal teachers [Han et al.,
2008,Movellan et al., 2009,Gordon et al., 2016,Kennedy et al., 2016]. Then, comes robots
as guides for educational activities, mostly employed in small groups of two or three
children [Chandra et al., 2015,Alves-Oliveira et al., 2016], or in therapeutic contexts
involving autistic children [Bernardo et al., 2016]. In activities based on adversarial
games, robots can also be employed as experienced opponents encouraging and advising
the human [van Breemen et al., 2005]. A more original situation involves a robot playing
the role of a fake patient for clinical education [Moosaei et al., 2017]. Robots as peers
is the medium situation, where the robots are employed as learning companions for
humans [Kanda et al., 2004,Lubold et al., 2016,Baxter et al., 2017]. Finally, robots as
teachable agents is the approach taken for the experiments described in this chapter.

Teachable robots approaches are based on the learning by teaching paradigm, already
known in fully human education for its positive effects on learning. However, like the
patient robot for clinical education, this approach has the particularity to bring out new
roles that could not be taken by real humans: in the example of Cowriter, asking a child
with problems at writing to teach another child with even worst difficulties would be
inefficient and even humiliating for the second child. Most of teachable robots lies on the
Protégé effect: the fact that the learner being placed in the situation of a teacher to help
someone triggers a feeling of responsibility that facilitates both engagement and intrinsic
motivation. This effect has been used in the past by computer-based agents [Chase et al.,
2009] to teach non-physical skills. The first teachable robot also concerned non-physical
skills, but involved physical objects in an activity designed to teach vocabulary with
the care receiver robot (CRR) [Tanaka and Kimura, 2009,Tanaka and Matsuzoe, 2012].
Robots maintain better long-term relationship [Kidd and Breazeal, 2008] and contribute
to obtain more learning gains [Leyzberg et al., 2014] than with screen-based agents in
pedagogical interactions. Specifically, when learning physical skills, robotic partners have
been showed to increase users’ compliance with the tasks [Bainbridge et al., 2011].
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Robot perception

The relation between one’s focus of attention and what he/she is looking at has long been
established [Yarbus, 1967,Barber and Legge, 1976], and more specifically, the existing
relationship between gaze and attention during social interaction, and the related gaze
patterns, has been part of classic textbooks like [Argyle, 1969] for decades. As such,
there is little doubt that measuring the direction of gaze is a useful proxy to estimate
the (visual) focus of attention of a social agent, and indeed this is one of the basic tools
used in social psychology.

Estimating attention using gaze is not new to robotics either. A recent survey by
Ruhland et al. [Ruhland et al., 2015] gives in a broad overview of eye gaze research in
HCI and social robotics. It remains however an active field of research, as illustrated
by several recent publications [Baxter et al., 2014,Anzalone et al., 2015,Kennedy et al.,
2015]. Performing such a measure on a robot, in real-time, and in ecologically valid
environments (which rules out bulky or invasive apparatus like eye-trackers, or techniques
requiring fine calibration and/or static interactions) remains a challenge in HRI.

Looking at techniques that both operate on-line and have been deployed in field experi-
ments, one finds that most approaches rely on head pose estimation alone (no eye gaze
tracking) and are generally based on depth sensors (RGB-D). Fanelli et al. provides an
overview of these approaches in [Fanelli et al., 2012], and recent examples include [Baxter
et al., 2014,Anzalone et al., 2015].

Approaches based on monocular 2D vision have been explored as well [Peters et al., 2010],
with however limited robustness to occlusions or lightning conditions, and over-reliance
on tracking to maintain real-time performances. Our work relies on recent advances in
template-based face alignment [Kazemi and Sullivan, 2014] that allows fast (in the order
of a few milliseconds) facial feature extraction on 2D images, combined with 3D model
fitting, to obtain a fast, robust and stable 6D head pose estimate, that we successfully
deployed in field experiments involving child-robot interactions.

We derive the field of attention from the head pose: this is supported by previous work,
like [Stiefelhagen, 2002] that shows that the head orientation’s contribution in overall
gaze direction is 68.9%, which further translates into a 88.7% accuracy in estimating the
focus of attention from head pose only in a particular meeting scenario (using eye and
head tracking).

While previous preliminary research in HRI seemed on the contrary to indicate that
deriving attentional focus from head pose alone would not be accurate enough [Kennedy
et al., 2015], we found in our case acceptable levels of agreement between the robot
observations and manual post-hoc annotations, as detailed in 2.6.
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2.3 The CoWriter project

An important challenge of social robotics is to provide assistance in education. The
ability of robots to support adaptive and repetitive tasks can be valuable in a learning
interaction. Initially, the CoWriter Project introduced a new approach to help children
with difficulties in learning handwriting [Hood et al., 2015a,Jacq et al., 2016b]. Based on
the learning by teaching paradigm, the goal of this activity is not only to help children
with their handwriting, but mainly to improve their self-confidence and motivation in
practising such exercise. Now, the CoWriter project includes different ChRI activities
where a child is invited to practice a pedagogical skill by working with a robot. In
addition to the initial activity based on handwriting, CoWriter encompasses:

• CoReader [Yadollahi et al., 2018]: detecting and correcting mistakes made by a
robot while reading a text.

• Story-CoCreation [Jacq et al., 2018]: creating a story by selecting elements of its
content, turn by turn with a robot.

• Handwriting with Cellulo [Asselborn et al., 2018]: learning the shape of letters by
moving tangible swarm robot along a path.

• Shruti Chandra’s activity [Chandra et al., 2018]: another version of the initial
CoWriter activity, focused on the shape of a letter rather than the physical gesture
to draw it.

2.4 CoWriter’s handwriting activity

Children facing difficulties in handwriting integration are more exposed to troubles during
the acquisition of other disciplines as they grow up [Christensen, 2005]. The CoWriter
activity introduces a new approach to help those children [Hood et al., 2015a]. While
traditional successful interventions involve children in long intervention (at least 10 weeks)
focused on motor skills [Hoy et al., 2011], CoWriter is based on learning by teaching
paradigm and aims to repair self-confidence and motivation of the child rather than his
handwriting performance alone.

Learning by teaching is a technique that engages the students to conduct an activity
as the teachers in order to support their own learning process. This paradigm is
known to produce motivational, meta-cognitive and educational benefits in a range of
disciplines [Rohrbeck et al., 2003]. The CoWriter project is the first application of the
learning by teaching paradigm applied to handwriting with a robot.

The effectiveness of our learning by teaching activity builds on the “protégé effect”: the
teacher feels responsible for his student, commits to the student’s success and possibly
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experiences student’s failure as his own failure to teach. Teachable computer-based
agents have previously been used to encourage this “protégé effect”, where students
invest more effort into learning when it is for the benefit of a teachable agent than for
themselves [Chase et al., 2009]. We rely on this cognitive mechanism to reinforce the
child’s commitment into the robot-mediated handwriting activity.

We assume here that the key of such a relationship between the child and the robot
relies on the credibility of the robot: the more the robot convinces the child that it is
a beginner in handwriting who needs help – therefore initiating a “protégé effect”– the
deeper the child will engage in the interaction. We focus hereafter on two aspects that
are instrumental in building a credible teaching situation: how to generate the initial
state of the learner-robot, and how to design its learning behavior.

Interaction overview

Figure 2.1 illustrates our general experimental setup: a face-to-face child-robot interaction
with an autonomous Aldebaran’s nao robot.

A tactile tablet (with a custom application) is used by both the robot and the child to
write: in each turn, the child requests the robot to write something (a single letter, a
number or a full word), and pushes the tablet towards the robot, the robot writes on the
tablet by gesturing the writing (but without actually physically touching the tablet). The
child then pulls back the tablet, corrects the robot’s attempt by writing himself above or
next to the robot’s writing, and “sends” his demonstration to the robot by pressing a
small button on the tablet. The robot learns from this demonstration and tries again.

Since the child is assumed to take on the role of the teacher, we had to ensure he would
be able to manage by himself the turn-taking and the overall progression of the activity
(moving to the next letter or word). In our design, the turn-taking relies on the robot
prompting for feedback once it is done with its writing (simple sentences like “What do
you think?”), and pressing on a small robot icon on the tablet once the child has finished
correcting. We found that both approaches were easy to be understood by children.

Generating and learning letters

Since our approach is based on teaching a robot to write, generating (initially bad) letters
and learning from demonstrations is a core aspect of the project. The initial state of the
robot and his ability to learn in an obvious way from demonstrations of the child is the
key to lend credibility to the activity and to induce the “protégé" effect.

The technical idea is simple: allographs of letters are encoded as a sequence of 70 points
in 2D-space and can be seen as vectors with 140 elements (x1, ..., x70, y1, ..., y70). We
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2.4. CoWriter’s handwriting activity

Figure 2.1 – Our experimental setup: face-to-face interaction with a nao robot. The robot
writes on the tactile tablet, the child then corrects the robot by directly overwriting its letters
on the tablet with a stylus. An adult (either a therapist or an experimenter, depending on the
studies), remains next to the child to guide the work (prompting, turn taking, etc.). For some
studies, a second tablet and an additional camera (lightened) are employed.

arbitrary chose a set of allograph that define the initial state of generated letters. After
the child provided a demonstration of a letter, the algorithm generates a new letter
corresponding to the middle point between the last state and the demonstration.

In the following sections, we present various techniques to create the initial state, and
different metrics used to compute progression of the robot, tested as hypothesis within
our three experiments.

Generation of initial allographs

The first question relates to the construction of the initial set of allographs. In previous
experiments presented in [Hood et al., 2015b], we built a subspace based on principal com-
ponent analysis (PCA) of a standard dataset of 214 adult letters (the UJI Pen Characters
2 dataset [Llorens et al., 2008]). We used the first n eigenvectors (in these experiments,
3 < n < 6) of the covariance matrix generated from PCA to create a subspace. To create
new letter shapes, we chose random coordinates close to the origin of this subspace.
Each eigenvector provided the direction of a principal deformation of the allograph in
human handwriting [Hood et al., 2015a]. But generated “imperfections" of letters were
not representative of children deformations: they were reflecting typical defects when
adults are writing to fast. Over the following studies, we explored three different ways
to generate samples closer to beginners. In our first case study (section 2.5.1), we used
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homework of the child previously provided by his mother, to exaggerate by hand his
main defects. This way, the child was going to correct his own kind of mistakes. In
the second study (section 2.5.2), the child was suffering from visuo-constructive deficits.
Since it was difficult for him to improve already recognisable allographs, we decided
under the guidance of his occupational therapist to make the robot start from simple
vertical stroke for all letters. In the third study 2.5.3 we chose to use the middle point
between a vertical stroke and correct letters as a starting point for the robot.

Metrics used for the learning curve of the robot

The second question focuses on the learning algorithm. In [Hood et al., 2015a], we were
projecting children’s demonstrations in PCA’s subspace in order to compute the middle
between that point and the previous state of the robot. Then, we generated the allograph
in middle way as the new state of the robot. For the experiments introduced in this
section, we explored two other ideas: In the first study (section 2.5.1) we generated a
PCA subspace from a small set of allographs we drew arbitrary. Each time the child was
providing a demonstration, we added that demonstration to the small set and re-built
the PCA subspace. That way, the principal eigenvectors obtained progressively tended
to encode the main deformations of letter done by the child, as illustrated by figure 2.4.
The algorithm 1 explains the successive steps of this approach.

Algorithm 1: Learning from demonstration in an adaptive PCA subspace
Generate initial dataset D
Generate initial subspace S by PCA of D
Generate initial robot state r (random point in S)
if robot receives a demonstration d then

Add d to dataset: D′ ← D ∪ d
Recompute subspace S′ by PCA of D′
Compute coordinates r′ of r in S′
Compute coordinates d′ of d in S′
Learn the demonstration: r = (r′+d′)

2

From our perspective, this dynamic subspace was more adapted to the progression of
the child, and the sequence of tries performed by the robot looked smoother. However
using metrics in subspace can make the learning algorithm too slow in some cases,
because consecutive projected demonstrations can sometimes be too far from each
other in subspace while they appears similar in Cartesian space. In other studies, we
decided to put aside the PCA approach and to always use the middle point in Cartesian
space, in order to have a better control over the convergence of the robot tries to the
demonstrations.
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Robotic Implementation

The actual implementation on the robot requires the coordination of several modules
(from performing gestures and acquiring the user’s input to the high-level state machine),
spread over several devices (the robot itself, one laptop and up to four tactile tablets
for certain studies we conducted). We relied on ROS to ensure the synchronization and
communication between different devices.

Our system is embodied in an Aldebaran’s nao (V4 or V5, depending on the studies)
humanoid robot. This choice is motivated by its approachable design [Gouaillier et al.,
2008], its size (58cm) and inherently safe structure (lightweight plastic) making it suitable
for close interaction with children, its low price (making it closer to what school may
afford in the coming years) and finally its ease of deployment on the field.

Robotic handwriting requires precise closed-loop control of the arm and hand motion.
Because of the limited fine motor skills possible with such an affordable robot, in addition
to the absence of force feedback, we have opted for simulated handwriting: the robot
draws letters in the air, and the actual writing is displayed on a synchronized tablet.

The overall architecture of the system (Figure 2.2) is therefore spread over several devices:
the nao robot itself, that we address via both a ROS API1 and the Aldebaran-provided
NaoQI API, one to four Android tablets (the main tablet is used to print the robot’s
letter and to acquire the children’s demonstrations; more tablets have been used in some
studies, either to let the child input words to be written, or for the experimenter to
qualitatively annotate the interaction in a synchronized fashion), and a central laptop
running the machine learning algorithms, the robot’s handwriting gesture generation and
high level control of the activity.

Since the system does not actually require any CPU-intensive process, the laptop can be
removed and the whole logic run on the robot. Due to the relative difficulty to deploy
and debug ROS nodes directly on the robot, the laptop remains however convenient
during the development phase and we kept using it in our experiments.

Most of the nodes are written in Python, and the whole source code of the project will
be made is available online2.

2.5 Long-term studies

As a follow up, this section reports on further experimental investigations. We explore
different algorithmic and staging approaches built on top of the original system in order

1The ROS stack for nao is available at http://wiki.ros.org/nao_robot.
2The primary repository is

https://github.com/chili-epfl/cowriter_letter_learning.
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Figure 2.2 – Overview of the system. In total, the system runs about 10 ROS nodes,
distributed over the robot itself, a central laptop and Android tablets.
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to figure out intricate aspects of long child-robot interactions in a pedagogical context.

Through three experiments, we involved children with actual handwriting troubles or
low self-esteem in repeated long sessions (four times about one hour). We used different
measures, both qualitative and quantitative, to express the impact of those interactions
with the CoWriter robot on the child. The following three parts report our the three
experiments and results: two case studies specifically designed to be adapted to one
child 2.5.1 2.5.2; one user study conducted with 8 children separately 2.5.3.

2.5.1 case study 1: Vincent

Context

Vincent3 is a five year-old child. At school, he has difficulties to learn writing, particularly
with cursive letters. From our perspective, Vincent is shy and quiet. He suffers from
poor self-confidence much more than any actual writing problem. The experiment was
conducted without any therapist, in our laboratory. A parent was here to accompany the
child, but she did not intervene during interactions. Children’s personalities, conditions
and state evaluation were reported by the parent.

Hypothesis

The CoWriter activity needs a child engaged as interaction leader. With this study we
consider the problem of long-term interactions. We hypothesize that with an appealing
scenario children can maintain motivation in doing a handwriting activity for an hour
over 4 sessions. This is a challenge because therapists predicted dysgraphic children often
suffer from attention deficit [Jordan, 2002]. As a result, such children are not able to
focus longer than 15-20 minutes.

Experimental design and methodology

Our goal was to provide Vincent with an environment that would enable him to sustain
engagement over four one-hour sessions, one session per week. We decided to introduce
a scenario to elicit a strong “protégé effect" and such induce a stronger commitment.
While the child came with low motivation in writing exercise for himself, our idea was to
use this effect to promote a new extrinsic motivation: improving letters in order to help
the robot.

In our scenario we introduced the child with two Nao robots: a blue one (called Mimi)
and an orange one (called Clem). Mimi was away for a scientific mission, and the two

3The names of children have been changed.
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Figure 2.3 – Homework performed by Vincent before the experiment. It gives an overvew
of his starting level in handwriting.
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Figure 2.4 – Letter deformation along an eigenvector. Left : the non-deformed letter
(origin of the subspace). Middle : the actual Vincent’s deformation (from figure 2.3).
Right : exaggerated deformation along the eigenvector that encode Vincent’s mistake.

robots had to communicate by mails. But they decided to do it “like humans", with
handwritten messages. While Mimi was good in handwriting, Clem had strong difficulties
and needed Vincent’s help.

Mimi’s mission was to explore a mysterious hidden base. Each week, a postal mail
contenting a picture of a curious object it found and a few handwritten words about its
discoveries. The picture showed itself exploring a dark room of the hidden base (that
was actually our laboratory’s workshop).

During the three first sessions, Clem (the robot interacting with the child) was waiting for
Vincent with the received mail. It let Vincent take a look at the picture and the object,
and then it asked him to read the message. Finally, Vincent formulated a response and
helped the robot to write it.

The fourth and last session was set as a test: Mimi, the “explorer” robot, came back from
its mission and challenged Clem in front of Vincent: “I don’t believe you wrote yourself
these nice letters that I received! Prove it to me by writing something in front of me!”
In this situation we forced the protégé effect: Clem is going to be judged on its writing
skills by Mimi, but Vincent is here to give a last help and to encourage his student.

To complement the motivation of helping a robot to communicate with another one, we
gradually increased the complexity of Vincent’s task to keep it challenging and interesting
(first week: demonstration of single letters; second week: short words; third week: a full
message – Figure 2.5).

Vincent had to tell the robot what to write with small plastic letters. A third person
was here to send the formed word to the robot via the computer.

During the experiment, we recorded writings of the child and the robot on the tablet
into log files. We also recorded the time date when the child started and finished a
demonstration.
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Table 2.1 – Number of demonstrations provided by Vincent over the four sessions.

Session S1 S2 S3 S4 Total
Number of demonstrations 23 34 52 46 155

Measures

We measured the commitment of the child with the number of demonstration he provided.
We also measured the duration of sessions. During the two last sessions, we recorded the
time taken by the child to write each demonstration.

After the experiment we interviewed the parent of the child. She was asked if she observed
any impact of our activity on the child.

Analysis

We compared the number of demonstrations provided by Vincent along the 4 sessions
(reported on Table 2.1) and we summed the time spend by the child to write demonstration
during the 2 last sessions.

Results

Overall, Vincent provided 155 demonstrations to the robot. We can see in Table 2.1
that the number of demonstrations provided by Vincent was globally increasing along
sessions while the difficulty of the activity was also increasing. Interestingly, as the
number of demonstration decreased from session 3 to session 4, the total time spend to
write demonstrations is similar: 41.6s in session 3 (∼0.8s per letter) and 41.1s in session
4 (∼0.89s per letter). A explanation of this result could be that since the difficulty was
increasing, the child spent more time to write his demonstration.

After the first week, he showed confidence when playing with his “protégé" and he built
affective bonds with the robot over the course of the study, as evidenced by some cries
on the last session, and several letters sent to the robot after the end of the study (one
of them 4 months later) to get news. This represents a promising initial result: we can
effectively keep a child committed into the activity with the robot for a relatively long
periods of time (about 4 hours).

From the parent’s perspective, Vincent was actually showing a new motivation in
improving his handwriting. He took pleasure to work with the robot and to accomplish
his teacher’s mission. She confirmed that an affection of the child for the robot took root
within the experiment. Finally she saw an improvement of his handwriting and explained
that the child “passed from a mix of script and cursive writing up to a full-cursive
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Figure 2.5 – (French) text generated by the robot, before (left) and after (right) one hour of
interaction session with the child. As an example, the red box highlights the changes on the word
“envoyer”.

writing".

But no conclusion can be drawn in terms of actual handwriting remediation: we did not
design this study to formally assess possible improvements. However, as pictured on
Figure 2.5, Vincent was able to significantly improve the robot’s skill, and he acknowledged
that he had been able to help the robot: in that regard, Vincent convinced himself that
he was “good enough” at writing to help someone else, which is likely to have a positive
impact on his self-esteem.

2.5.2 case study 2 : Thomas

Context

Thomas, 5.5 years old child, is under the care of an occupational therapist. He has
been diagnosed with visuo-constructive deficits. He was frequently performing random
attempts and then was comparing with the provided template. According to the therapist,
Thomas is restless and careless: he rarely pays attention to advice and does not take
care of his drawing movement when he is writing. He is quickly shifting his attention
from one activity to another.

Thomas was working on number allographs with his therapist. During a prior meeting,
the therapist provided us with a sequence of numbers written by Thomas. one of the
observed problems was drawing horizontally-inverted allographs, mainly for “5". The
experiment was conduced with Thomas’ therapist.
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Hypothesis

We want to see if the CoWriter activity can be adapted to a pedagogical context in order
help a child with diagnosed deficits to learn handwriting.

We believe that small modifications of the activity adapted to Thomas problems (visuo-
constructive deficits and inattention) could help to keep him focused on the activity
during forty-minutes sessions, and to evidence to the child that the robot is progressing
by dint of his demonstrations.

Experimental design and methodology

The experiment was conducted in the therapist’s office (four sessions spanning over 5
weeks). We assumed that a scenario like the one we used for Vincent would not be usable
with Thomas. We just introduced the robot and quickly said that it was seeking help to
train for a robot handwriting contest.

In order to integrate our work with that of the therapist, we decided to adapt the
CoWriter activity to work with numbers.

Since Thomas was frequently drawing horizontally-inverted numbers, or even unrecog-
nisable allographs, the learning algorithm of the robot was converging to meaningless
scrawls. To fix this problem, we programmed the robot to refuse allographs that were
too distant to a reference with a threshold we arbitrary fixed. In that way, the child was
forced to take care of his demonstrations for the robot.

According to the therapist, it was easier for Thomas to memorize the way to draw a
number if it was always done is the same trajectory, e.g. if the “5" was always drawn from
the top-right tip down to bottom. Therefore we programmed the robot to refuse as well
a good allograph drawn in a wrong trajectory. But in order to reassure Thomas about
the right final allograph’s shape, we made the robot able to recognize such a drawing,
and, when it occurred, to use the phrase: “Oh, this is exactly the shape of the number I
want to learn, but can you show me how to draw it in the opposite trajectory?"

Also, to make the robot’s progresses evident, we modified the initialization step of the
learning algorithm to start with a roughly vertical stroke instead of a deformed number
(round 0 on Figure 2.6).

In this setup, we added a second tablet with one button per number. It was used by the
child to chose a new number to teach to the robot. It also provided the possibility to
enter letters or words, and to switch to another activity (robot telling a story if the child
needs a short break).
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0 1 2 3 4 5 6 7 8

Figure 2.6 – Demonstrations provided by Thomas for the number “6” (top row) and corresponding
shapes generated by the robot. After eight demonstrations, Thomas decided that the robot’s “6”
was good enough, and went to another character: in that respect, he was the one leading the
learning process of the robot.

Measures

We recorded all the demonstration performed by the child and by the robot. The duration
of sessions and the time spend by demonstration were also recorded by the logs of the
tablet.

Analysis

It was difficult to make comparison between different sessions since the child did not
work on the same numbers. But we could study the evolution of the quality of Thomas’
demonstration when he was working on a given number (Figure 2.8). To show how
Thomas leaded the robot to reach his level we plotted on the same graph the evolution
of the quality of Thomas’ demonstrations and the robot’s trials (Figure 2.7). We also
reconstructed and displayed the drawn allographs of the number 6 to visualize the impact
of the lessons of Thomas on the robot (Figure 2.6).

Results

Despite his attention deficit, Thomas was able to remain engaged in the activity during
more than forty minutes in each session. In total, 55 allographs out of 82 demonstrated
by the child were acceptable considering our threshold (with a progressive improvement
from 13 out of 28 in the first session up to 26 out of 29 in the last session).

As soon as Thomas understood that the robot was only accepting well-formed allographs,
he started to focus on it and he would typically draw 5 or 6 times the number before
actually sending to the robot (the tablet lets children clear their drawing and try again
before sending it). According to the therapist, it was the first time that Thomas corrected
himself in such a way: he mad the effort to take into account how another agent (the
robot) would interpret and understand his writing. Figure 2.8 shows how he gradually
improved his demonstrations for some numbers, according to the metric we used to make
the robot accept/refuse samples.
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Figure 2.7 – Two metrics to assess the handwriting progresses: Euclidean distance between
demonstrations and templates in the subspace of the number dataset (top figure) or in Cartesian
space (bottom figure). Green lines represent the robot performance, blue lines performance of
the child. The round IDs correspond to the demonstrations pictured on Figure 2.6.

Since the robot’s handwriting started from a simple primitive (a stroke), each time
Thomas succeeded to have his demonstrations accepted by it, the robot’s improvement
was clearly visible (as measured in Figure 2.7). This led to a self-rewarding situation
that effectively supported Thomas’ commitment.

2.5.3 Case study 3: when children evaluate the robot

Context

Each of previous studies was specifically adapted to a particular child: we relied on two
different designs in order to sustain each child’s commitment. In this new experiment, we
conducted a study with eight children using a single experimental design. The children
all have in common difficulties to learn cursive writing but the nature and magnitude of
these troubles are significantly different from one child to another. Valerie (7 years old),
Antoine (6.5) and Johan (7) are under the care of an occupational therapist. Emilien (8)
and Mathieu (7) are repeating their school year because of writing. Marie (6) and Adele
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Figure 2.8 – Improvement of Thomas demonstrations for number 2 (left) and 5 (right). Thomas
progressively took care of the demonstrations he was providing to the robot for those numbers.
We used for this figure the same metric than the one used for the acceptance algorithm to measure
distance between demonstration and templates. Distances are normalized with respect to the
biggest value. The dashed line correspond to the threshold of robot’s acceptance.

(8) are bottom of their respective classes in writing activities. Nicolas (7) is under the
care of a neurologist, and has been diagnosed with specific language impairment. Given
their school year, all of these children would be expected to know the shape of cursive
letters. The experiment was conducted in collaboration with an occupational therapist.

Our goal was to study the perception of the robot’s progress in children. We wanted to
know how easily children were able to take the role of teachers and to detect improvements
or eventual degradations of the robot’s letters.

Hypothesis

Children understand their role and find motivation to teach the robot. They are able to
perceive the progress of the robot, and their evaluations correlates with its handwriting
performance.

Experimental design and methodology

This experiment took place in an occupational therapist clinic in Normandy, France.
Over a period of two weeks, each child came three times for a one hour long session
(except Adele and Marie who only attended one session). An experimenter was present to
explain the rules of the game and tablet usage. As in the previous experiments, children
were provided with two tablets: one to choose a word (or a single letter) to teach, one
used by both the child and the robot to write. We also provided printed templates for
the letters if the child asked for them.

The initial shapes used by the robot when writing were the same for all children: we used
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the average of a simple vertical stroke and the reference letter. In this study, we wanted
the robot to be only influenced by the demonstrations provided by the child, so we did
not project allographs in a subspace. The new samples generated by the robot were
simply computed as the average (in Cartesian space) between the last demonstrations
and the previously generated samples.

The robot was programmed to accept all demonstrations, endowing the child with the
full responsibility of a teacher.

Besides, we added two buttons to the tablet interface: a green one with a “thumbs up",
and a red one with a “thumbs down". Those buttons could be used by the children to
evaluate the robot (the green one was for positive feedback while the red one was for
negative feedback). We used it as a measure of the perception of the robot by the child:
the more the child used evaluation buttons, the more he was adopting the role of the
teacher, judging the robot instead of himself. Children were free to use the buttons
whenever they wanted during the experiment.

Measures

As in previous studies, we recorded the timestamps of all demonstrations, the duration of
demonstrations and we measured the overall commitment of the children as the number
of demonstrations provided per session. We also logged all the evaluations provided
by the children. The awareness of children for the robot progress is measured as the
correlation between children evaluations and distances between the robot’s letters and
reference templates.

Analysis

Since sessions took place over only two weeks, we did not attempt to study possible
handwriting remediation in children, and we focused instead on the correlation between the
children’s evaluations and the robot’s progression. We estimated the robot’s progression
as the difference between an initial score (score of the first robot’s attempt when the
children have chosen a new word/letter to work on) and the current robot’s score (after
being taught by the child). The score is calculated as the average of the euclidean
distance between the robot’s generated letter and the reference allograph for each of the
letters of the word. The reference letters where manually created beforehand, based on
typical cursive letters template4. At every turn, we associate two values: the current
score of the robot, and the child’s immediate feedback (+1 if the child pressed the green
button, -1 if he pressed the red one, 0 if he did not press any button during the round).
We only keep rounds with feedback (i.e. a non-zero grade) and computed a Pearson’s
correlation between the robot score and the child feedback.

4http://www.education.com/slideshow/cursive-handwriting-z/
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Table 2.2 – Feedback from the children to the robot. #Demo denotes the average number of demon-
strations per session provided by the child; #Pos and #Neg the total number of positive (resp. negative)
feedbacks they provided. r (robot) is the correlation coefficient between the feedback provided by the
children and the performance of the robot. r (child) is the correlation coefficient between the feedback
provided by the children and their own progress.

Child # Demo # Pos # Neg rrobot rchild

Valérie 42 24 6 0.25 ** 0.14 ns
Émilien 74 20 9 0.06 ns 0.02 ns
Mathieu 43 10 3 0.23 ** 0.21 **
Nicolas 38 16 4 0.31 *** 0.20 **
Johan 32 10 5 0.10 ns 0.03 ns
Antoine 27 10 3 0.20 * -0.02 ns
Adèle 35 4 2 0.28 * 0.30 **
Marie 40 5 1 -0.02 ns 0.13 ns

Results

All children maintained their engagement during all the sessions. They provided on
average 42 demonstrations per session. All children made use of the evaluation buttons
and had a strong preference to reward the robot (in total, 99 positive feedbacks and 33
negative ones were recorded). Interestingly, the time spent by the children to draw the
demonstrations systematically increased from one session to the other. We interpret this
result as the children being more careful and demonstrating the correct gestures to the
robot in a slower fashion.

We found that five children out of the eight provided evaluations that significantly
correlated with progress of the robot. The coefficients of correlation rrobot are reported
in Table 2.2.

We also computed the correlation between the children’s evaluations and their own
progress. The analysis was conducted in the same way, using distances between the
children’s demonstrations and reference allographs as a progress score. The evaluations
of three out of the five children whose evaluations correlated with the robot’s progress,
were also significantly correlated with their own progress (rchild in Table 2.2). For those
children, it seems that the robot was reflecting their own performances, and while they
were judging the robot positively (three times more positive feedback than negative
feedback), they were actually evaluating themselves.

2.5.4 Induced modelling

In the first two experiments involving Thomas and Vincent, we observed the emergence
of a strong complicity between the child and the robot. Vincent even kept sending
handwritten letters to the robot months after the experiment. This is explained by the
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strong “pretend" effect induced by the scenario. In a poetic perspective, one could say
that the child gave life to the robot. More formally, the scenario helped the child at
constructing an exaggerated model of the robot, in which the robot was given beliefs,
desires and emotions while it was just automatically repeating scripted sentences and
imitating the child’s handwriting. In psychological terms, the child had a theory of the
robot’s mind. Unfortunately, this modelling was unidirectional: the robot had no other
model of the child than it’s handwriting trajectory perceived as a vector of points, and
was not aware at all of the child’s modelling of itself. Beside, our efforts in the perspective
to induce such an effect were considerable. In a sens, we compensated the lack of social
awareness in the robot by adapting the scenario to the child’s responses.

In the last experiment, we asked children to provide a feedback to the robot’s performances.
We viewed that sometimes this feedback was correlated with the robot’s progress, and
sometimes it was even correlated with the child’s own progress. One could explain this
phenomena by supposing that the child modelled the robot as a projection of himself,
suffering similar failures at handwriting.

These observations lead us to imagine a robot able to play with such modelling induction
in order to promote both an adaptive scenario promoting the “protégé" effect and the
self-correction effect. This would strongly facilitate the setup of the activity and could
improve the pedagogical benefices at the same time.

2.6 Online measures from face tracking

In the perspective to catch the child’s modelling of the robot, our first step was to simply
detect what the child was looking at. Indeed, the visual behaviour already provides a rich
quantity of information: the commitment can be derived from the time looking at the
activity’s devices and agents, while disengagement can be detected from the frequency of
gazes toward a door or a window. Also, the pretend effect – or simply the importance
accorded to the robot by the child – can be inferred from the time spend by the child at
looking at the robot versus the time spend by the child looking at the tablet.

Head Pose Estimation

We derive the visual field of attention from the head pose. Our technique only involves a
single monocular RGB camera used for facial feature extraction, and a static simplified
3D mesh of a human head. 68 facial features are extracted using a fast template-
based face alignment algorithm by Kazemi and Sullivan [Kazemi and Sullivan, 2014], as
implemented in the open-source dlib library [King, 2009]. Eight of these features (chosen
to be far apart and relatively stable across age and gender) are then matched to their
3D counterparts (Figure 2.10) and we rely on an iterative PnP algorithm (OpenCV’s
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Figure 2.9 – ROS nodes involved in the Visual Focus of Attention (VFoA) estimation (orange
nodes were specifically developed for this work).

implementation) to compute the translation and rotation of the head with respect to
the camera frame. With this approach, knowing the intrinsic parameters of the camera
(calibrated camera) is required for an accurate estimation of the absolute 3D localization
of the head.

Besides being fast, the face alignment algorithm has been found to perform well in terms
of robustness, including in a range of difficult situations encountered in field experiments,
like partial occlusions or large head rotations (we have measured the default dlib model
to be able to track a face with rotations up to ±40° horizontally and ±30° vertically).
Figure 2.11 shows a selection of such difficult scenes with one child.

System Implementation

The experiment was carried out with an Aldebaran nao robot, using ROS as a middleware
to build the attention estimation pipeline (Figure 2.9). Head pose estimation, presented
builds on the dlib and OpenCV libraries; the pose transformations are handled by the
ROS tf library. The same tf library is used to represent the possible point of interests
as individual frames: an object is considered to be in focus when its frame lies within the
field of attention of the participant (Figure 2.12). The implementation is open-source
and available at https://github.com/chili-epfl/attention-tracker.

Field & Focus of Attention

We model the field of attention as the central region of the field of view. The field of view
itself is approximated to a cone spanned from the nasal depression (sellion) of the human
face. Different dimensions for the human field of view can be found in the literature:

29

https://github.com/chili-epfl/attention-tracker


Chapter 2. Measurements in pedagogical Child-Robot collaborations

(0,0)

(0,0,0)

Figure 2.10 – The 6D head pose is estimated by fitting a 3D model of an adult head (left)
onto the detected 2D features of the face (right). We rely on an iterative PnP algorithm,
using 8 correspondence pairs (three are depicted: the sellion – the nasal depression –,
the left tragion and the menton). The 3D origin of the head is set at the sellion.

Figure 2.11 – Head pose results on images captured during a field experiment. Detection
of face features (and therefore, estimation of the pose) is robust to significant occlusions
and face rotations.
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Field of Attention

6D pose of the face

other frames
of interest

head-tracking camera view frame 
in focus

Figure 2.12 – Screenshot of the real-time attention estimation system. The visual field of
attention is approximated to a 40° cone, spanning from the head’s sellion. The objects whose 3D
pose intersect with this cone are considered in focus.
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Holmqvist [Holmqvist et al., 2011] models it with an horizontal aperture of ±40° and a
vertical aperture of ±25°, while Walker [Walker et al., 1980] for instance suggests 60° up,
75° down, 60° inwards (towards the nose) and 95° outwards. Previous work on visual
perspective taking for social robotics [Sisbot et al., 2011] model the field of attention
as a cone of 30°. We retained in this work a slightly wider aperture of 40°. We then
approximate the visual focus of attention (VFoA) of the human to the objects which lie
inside this field of attention (Figure 2.12). At a given time, more than one object can
therefore be in focus.

Our implementation has two limitations: objects are approximated to points (they are
considered in focus if their origin lies in the field of attention), and we do not check
actual visibility: one object could be hidden by another, it would still be considered as
in focus. We did not address these limitations since our experimental setup (involving
relatively small objects with no occlusions) did not necessitate it. Techniques for more
accurate assessment of the visual perspective of the human peer can be found in [Sisbot
et al., 2011] for instance.

Within these limitations, computing if object A(xA, yA, zA) is in the field of attention of
the human requires first to transform the coordinates A(XA, YA, ZA) into the frame of
the face, and then to verify the simple inequality

√
Y 2
A + Z2

A < tan
(
fov

2

)
·XA (with fov

the aperture, and assuming that the main axis ~x of the field of attention points forward).

Our approach assumes that the pose of the objects of interest are available to the system:
as described in subsection 2.6, our implementation relies on the ROS tf framework to
manage and make available to all software modules the list of poses of existing objects
(represented as frames), and dedicated perception modules are in charge of publishing
up-to-date informations regarding the location of the objects of interest (the so-called
situation assessment). Due to the nature of the experiment, most of the points of interest
considered for the experimental validation presented hereafter are static with respect to
the robot, thus simplifying the scene perception.

2.6.1 Experimental Validation

As presented above, we use the 6D head pose as an approximation of the actual gaze
direction, and we further approximate from here the participant’s field of attention. The
assumption that such an approximation of the field of attention allows to derive the actual
focus of attention needs to be validated experimentally. Our proposed experiment involves
child-robot interactions in the context of handwriting remediation. This subsection details
the experimental procedure and presents our results.
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Figure 2.13 – Picture of the interaction with one of the children.

Experimental Procedure

The subjects were typically located 50 cm away from the robot with the primary (writing)
tablet in front and the secondary one 30 cm to the left of the first one. The facilitator
was located about 60 cm to the left of the subject. Finally, two observers (visible by the
child) were located further away from the interaction field. Figure 2.13 shows accordingly
the location of main areas of interest (the two tablets, the robot and the facilitator).

The dependent variable is the measurement of the participants’ VFoA, assessed in terms
of what the attentional targets of the child are over time. The face of the child is acquired
through a fixed webcam (Logitech c920), placed on the table (see Figure 2.1), and the
attentional targets are then computed as presented in subsection 2.6.

Six children (ages 5 to 6, 3 boys, 3 girls, none wearing glasses) were enrolled for this
study. The study took place at school, in an isolated room (the computer lab). The
participants were chosen by the teacher, and would come one after the other to interact
with the robot (duration: M = 19.6 min, SD = 1.58).

The interaction is organized in rounds of writing: during a typical round, the child
requests the robot to write something (a single letter, a number, or a full word), and
presents a tactile tablet (equipped with a custom writing application) to the robot.
The robot “writes” on the tablet by drawing in the air the letters that are displayed
on the screen by the tablet application; the child then pulls back the tablet, corrects
the robot’s attempt by writing on top of or next to the robot’s writing, and “sends”
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his/her demonstration to the robot by pressing a small button on the tablet. The robot
learns from this demonstration and tries again. The child continues the turn-taking
until they decide to train the robot on another word. In total, the children performed
on average 12.16 (SD = 2.61) rounds of writing (complete details on the rationale and
implementation of this experiment can be found in [Hood et al., 2015c]).

Once per interaction, the robot interrupts the handwriting task to tell a story (taking
about 2 min), and the turn-based hand-writing task continues afterwards. The intended
purpose of the story-telling episode is to break the routine of the writing turns by creating
a surprise, and thus, to elicit a different set of attention behaviors from the child.

Data Collection & Analysis

Successful detections of the head, and, when detected, the attentional targets of the
children as estimated by the robot, were logged during the experiment (in total, 6×19.6 =
117.6 min of interaction). The only post-processing consisted in filtering out gaze shifts
(short episodes – below 500ms – between two attentional targets).

We video-recorded the interactions, and performed a post-hoc manual coding of the focus
of attention (24% double-coded, Cohen’s κ = 0.91, high reliability). The manual coding
forms our attentional ground-truth.

To assess the accuracy of the attention estimation by the robot, we computed over
time the overlap between the ground-truth and the robot’s estimate and the inter-rater
agreement (Cohen’s κ). The periods where the head was not detected were excluded from
the agreement computation: at such times, the robot explicitly knows that it can not
estimate the focus of attention, and as such, we do not consider that it wrongly estimates
the focus.

Results

The main results are reported in Table 2.3 Figure 2.14 further gives a concrete picture of
the ground-truth vs. computed attentional targets for subject 4 (the subject with the
least successful tracking).

During the whole interaction, the head pose of the children was consistently tracked, 86%
of the time in average, SD = 3.0. While this high score is expected for a face-to-face
interaction with a static head-tracking camera (meaning that the child head would remain
in the field of view of the camera most of the time), this is still comforting in terms of
suitability of our approach for head pose estimation with children in field experiments
of this kind. Expectedly, the primary causes of lost head pose were occlusions with the
hands (similar to the middle-bottom picture in Figure 2.11), close proximity with the
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Table 2.3 – Attention tracking accuracy. Head pose tracking is the percentage of
total time of successful detection of the head pose; Agreement is the percentage of
matching time between manually annotated focus of attention (ground-truth) and robot’s
computed focus of attention. Total duration: 117.6 min.

Subject 1 2 3 4 5 6 M SD
Head pose tracking (%) 88.2 83.5 90.5 83.1 87.9 85.0 86.4 3.0
Agreement (%) 58.9 67.1 79.2 48.3 65 77.1 65.9 11.5
Cohen’s κ 0.48 0.56 0.68 0.26 0.47 0.68 0.52 0.16
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Figure 2.14 – Comparison of computed focus of attention vs. ground truth during a
face-to-face child-robot interaction (subject 4 in table 2.3, 3.5min-long excerpt). In blue (top
lines), the focus of attention as computed by the robot; in orange (bottom lines), the focus
of attention as manually annotated (ground-truth). The bottom subsection shows agreement
between both (whenever the head is detected).
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tablet while writing, and gaze directed to the facilitator (who was sitting directly on the
left of the child, Figure 2.1).

In terms of attention tracking, Cohen’s κ values are between 0.47 and 0.68 with one
subject resulting in significantly worst tracking, at 0.26. While the interpretation of
Cohen’s κ is subject to discussion (the number of the coded values – in our case 6 – and
the distribution probability of values – in our case, values are not equiprobable – are
factors impacting κ independently of the level of agreement), the levels of agreement
are moderate to substantial, with one subject only showing fair agreement [Landis and
Koch, 1977]. Further analysis of the videos shows that the child with the lowest level of
agreement was particularly quiet and would indeed rely more on the eyes to direct his
gaze than the other children, thus leading to a less accurate estimation of his focus of
attention.

The next subsection builds upon this technique for real-time estimation of the focus of
attention: by comparing the focus of attention with the set of attentional targets a priori
expected by the robot, we can estimate to what extent the user is “with” the robot.

2.6.2 With-me-ness

Concept & Calculation

The concept of with-me-ness has been introduced in the field of Computer Supported
Collaborative Learning (CSCL) by Sharma et al. in [Sharma et al., 2014]. They introduce
this concept in an attempt to answer a recurrent teacher’s question: “how much are the
students with me?”. They distinguish what they call perceptual with-me-ness (the student
follows what the teacher refers to with deictic gestures) from conceptual with-me-ness
(the student follows what the teacher refers to verbally), and they show in an eye-tracking
study involving video lectures (MOOCs) that conceptual with-me-ness in particular
correlates with better learning performance. This also relates to the concept of gaze
cross-recurrence that has been shown to reflect the quality of the interaction [Jermann
and Nüssli, 2012] in collaborative learning tasks.

They define conceptual with-me-ness as the normalized percentage of time during which
the student’s gaze overlapped the areas of teaching slides currently referred to by the
teacher. In order to apply it to human-robot interactions, we propose to extend this
concept, and to define conceptual with-me-ness as the normalized ratio of time that the
human interactant focuses its attention on the attentional target expected by the robot
for the current task (or sub-task).

Algorithm 2 provides a formal way of computing the level of with-me-nessW between two
time points [tstart, tend]. A notable difference with the original definition by Sharma et al.
is that, at a given time t, the task task(t) performed by the robot may elicit more than
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Algorithm 2: Computation of with-me-ness. dw stands for the duration the human
is actually with the robot, while de stands for the total time where the human would be
expected to be with the robot, task(t) represents the task performed by the robot at time
t (possibly none), F (task) represents the (possibly empty) set of expected attentional
targets associated to task task, f(t) represents the actual focus of attention of the human
measured at time t. W[start,end] represents the level of with-me-ness from tstart to tend.
dw, de ← 0
t← tstart
while t ≤ tend do

if task(t) 6= nil and
F (task(t)) 6= ∅ and
f(t) 6= nil then
if f(t) ∈ F (task(t)) then

dw ← dw + δt
de ← de + δt

t← t+ δt

W[start,end] ← dw
de

Return W[start,end]

one attentional target; thus, at a given time, more than one location can be regarded
as possible expected focuses of attention for the human. For example, a robot which is
writing, could typically elicit gazes to its hand as well as to its head. A human looking at
either of these locations would be considered to be with the robot in terms of interaction5.
Also notable, we exclude from the computation of W all of the periods of time where the
user’s focus of attention can not be estimated (typically because the user’s face is not
visible at those times).

Experimental Measure & Interpretation

Over the course of the experiment presented in subsection 2.6.1, the robot controller would
associate a set of expected attentional targets to the phase of the interaction (Table 2.4).
For instance, while the robot was waiting for the child’s handwriting demonstration
(“Waiting for feedback”), the expected attentional target of the child was the tablet (since
the child was supposed to write there) or the secondary tablet (that displayed a template
of the word, used as a reference by the child). These expected targets (green lines on
Figure 2.15) form the robot’s attentional a priori knowledge and are used to compute the
with-me-ness. With-me-ness can be calculated over the whole interaction or over shorter
time windows. With-me-ness over the whole interaction for the six subjects is reported
in Table 2.5. The Pearson’s correlation with the ground-truth is r(4) = 0.46 (significance
not computed due to small sample size). Shorter time windows are interesting for two

5Considering a probabilistic model of attention expectations (an attention distribution) would be an
interesting extension of this metric.
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Figure 2.15 – With-me-ness. Evolution of the level of with-me-ness over the whole ≈17min
long interaction of subject 2. The top chart is similar to Figure 2.14 with the expected attentional
targets added in green. The bottom diagram represents the instantaneous level of with-me-ness
over a sliding window of 30 seconds. The blue line is the with-me-ness as estimated by the
robot, the orange line is the with-me-ness computed from manually annotated attentional targets.
Pearson’s correlation between both series for this subject: r(973) = 0.58, p < .001.

purposes: to analyse the level of with-me-ness in relation to specific interaction episodes;
to allow a measurement of with-me-ness by the robot over the course of the interaction
(in-the-moment measurement) – in the latter case, one may typically want to consider a
sliding time window.

The with-me-ness plotted at the bottom of Figure 2.15 is in fact computed on a sliding
window of 30 seconds, and thus gives a picture of “how well the child is following the
robot’s expectations” at that time. As seen, the with-me-ness computed at run-time
by the robot (blue line) is generally lower than the ground-truth (orange line, based on
video-annotations), and sometimes quite off, such as during episode marked “A”: during
that phase, one can notice that the attention is mostly directed to undefined target Other,
likely a consequence of inaccurate head detection. This kind of error (inaccurate head
pose estimation) is the main source of discrepancy between the ground-truth and the
attention distribution measured by the robot: ignoring all the episodes where the child’s
gaze is measured to be directed to Other, we indeed obtain levels of with-me-ness close
to the ground-truth (over the six subjects, M = 87.5, SD = 4.6).

A chart like Figure 2.15 remains a useful tool to analyse the interaction, and several
observations can be made from it: the green lines represent how the robot imagine, at
a given time, the attention distribution of the child. They also provide an accurate
picture of the overall turn-taking as viewed by the robot: for instance, the episode “B” on
Figure 2.15 corresponds to one of the “Robot writing” episodes, surrounded by “Waiting
for feedback” phases like “C”; episode “D” corresponds to the story telling; etc. In terms
of interaction, the large variance of the duration of these phases reflects the fact that this
child would sometimes take a lot of time to send feedback to the robot, and sometimes,
on the contrary, be very quick.

Looking at the ground-truth focus of attention (orange lines), the first striking observation
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is that this child did generally closely follow what the system was expecting: in that
regard, it seems that the child was very much engaged in the interaction (we discuss in
the next subsection the exact relationships between with-me-ness and engagement). The
only major exception is the story-telling phase (episode “D”): the child was seemingly
not captivated by the first half of the story, and their attention was not directed towards
the robot (this actually matches the observed behavior of the children who mostly found
the story boring).

Another interesting observation pertains to the facilitator: as one can see, this child only
rarely turned to the facilitator, possibly indicating that the interaction and the task were
meaningful and easy enough for him to follow alone.

More subtle patterns and events can also be observed: for instance, during the feedback
phases like episode “C”, we can notice numerous recorded gaze shifts between the tablet
(where the child writes) and the secondary tablet (that showed a template of the word).
The episode “B” (robot writing) is also interesting: the child did not look at the robot,
and instead remained focused on the secondary tablet. This situation is typically useful
for the robot to detect as it may want to adapt its behavior to recover the child’s
attention.

2.6.3 Discussion

Head Pose to Assess Attention: is it Relevant? We already stated the main
limitations of our approach to estimating the focus of attention: eye gaze information
is neglected and we do not perform visibility check of the in-focus objects (we simply
approximate them to their origins, ignoring possible occlusions).

While the first issue is shared with most of the other vision (2D or 3D) or motion capture
techniques for real-time gaze estimation found in robotics, our results are positive: we
show that relying purely on head pose estimation to estimate gaze direction leads to
real-world measures that are worth being considered and used. They may not match
manual annotations, but they are definitely a valuable in-the-moment input for the robot.
For certain children, we reach levels of accuracy traditionally considered as good.

Our approach relies on a simple, non-intrusive sensor (a RGB camera by the robot) and
an open-source, fast pose estimation algorithm : we hope that this may contribute to the
widespread adoption of such a technique on a range of robots, including the relatively
common nao platform.

With-me-ness: yet another metric of engagement? Borrowing the neologism
from the field of CSCL, we have also introduced in this article with-me-ness as a measure
of “how much the user is with the robot during a task”. This can be acquired over the
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course of the interaction, thus providing the robot with a real-time metric for a relatively
high-level social construct, undoubtedly related to engagement.

One may reasonably wonder how different with-me-ness is from joint attention on one
hand, and from engagement on the other hand. With-me-ness is related to both, with
however noteworthy nuances: (Triadic) joint attention is understood as the cognitive
realization of a shared attention to an object, itself building on a shared perception of that
object (i.e. joint attention builds on a perceptual alignment of two agents). Conceptual
with-me-ness as proposed by Sharma et al. in [Sharma et al., 2014] is on the contrary
referential: “you are with me if you focus on what I refer to, either explicitly or implicitly”.
We understand it here in a slightly broader sense that reflects the interaction: “you are
with me if you focus on what is important for the interactive task at hand.”

On the other hand, with-me-ness is only a precursor of engagement: it does not say
much about the cognitive commitment of a user to an interaction. A user may closely
adhere to the injunctions of the robot (or, actually, of the experimenters), with thus high
levels of with-me-ness, without being engaged in the interaction. This is typically seen in
child-robot interaction: children will attempt to closely follow what they are asked to do
– which may look like they are engaged in the interaction – while they merely obey orders.

Compared to engagement, one of the strengths of with-me-ness is its specificity: it is
well-defined, we can formalize it, and as such, it is valuable to assess and compare how
users are willing or able to interact with a robot. We have hopefully demonstrated in this
article that with-me-ness is an operational in-the-moment metric that can also be used
as a real-time feedback to the robot controller to build richer, more adaptive interactive
behaviors for our robots.

Note however that, besides the actual focus of attention, the mapping phase/expected
attentional target (i.e. our Table 2.4) is a critical piece of information to interpret
with-me-ness. The mapping is typically built by a domain expert, and is often subject to
debate (for instance in our experiment, one could argue that during the “Waiting for
feedback” phase, the child could have gazed toward the robot to make sure the robot
was paying attention, and consequently, robot should be added to the expected target).
For this reason, the chosen mapping should always be reported along with the computed
with-me-ness levels, and with-me-ness should not be reported as an absolute metric, but
rather as a mean of comparing different interactions within the same study.

2.7 Spatial arrangement

In this section, we study the influence of the reciprocal spatial position of a child and a
robot on the modelling of the robot by the child. We want to know id the child is more
likely to perceive the robot as a peer or as a student depending if the child is facing it or
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if they are working side-by-side.

2.7.1 Context

Case studies presented in 2.5 showed that children were able to stay engaged in long term
interactions with repeated sessions within the CoWriter activity in real pedagogical/ther-
apeutic contexts. These works suggested a positive effect on the extrinsic motivation of
the children when practicing their handwriting, thanks to the protégé effect.

Authors in [Matsuzoe and Tanaka, 2012] had a similar approach to learning by teaching
with their Care Receiving Robot, who was being taken care of and taught by a child using
physical interaction. In this study, authors chose to investigate handwriting (or drawing
shapes) as well, but with a more physical based approach. In their experimental setting,
the child would teach handwriting to the robot by placing himself behind the robot
and moving it’s hand. This study varied from other works in educational human-robot
interaction in a way that the child was not only facing the robot but would act as a
care-taker rather than a teacher.

As robots are entering our living space, they must adapt to our social norms. These
norms vary from politeness to unspoken social rules (as for instance, the personal space
of a person). In home environments, robots will be expected to perform their functions
in a manner that is clearly understandable and predictable by the humans around. This
requires adaptive personalization of the robot to the individual needs of the humans,
but also to the task being currently performed. Some previous studies showed that the
spatial setting with a robot was also a way to convey non-verbal messages and it serves
to influence the relationship with the user [Takayama and Pantofaru, 2009,Kristoffersson
et al., 2013]. Spatial arrangement is still a factor relatively unexplored in HRI and its
influence on the interaction is still unclear.

In this study, we explore the effect of spatial arrangement on the child-robot interaction
within the CoWriter activity.

2.7.2 F-Formation

Facial formation or F-Formation, describes the spatial arrangement of a group of at least
two individuals, interacting around a closed space (the o-space) in which they have an
easy, symmetrical and exclusive access [Kendon, 1990]. For example, both side-by-side
and face-to-face formations in the CoWriter interaction are F-Formation, where the
o-space contains the two tablets.
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Figure 2.16 – Face to face Figure 2.17 – Side by Side

Figure 2.18 – Experimental set-ups showing the with-me-ness targets in the rectangles:
orange - the writing tablet, blue - the robot’s head, green - the tablet used to select a
word to teach to the robot

2.7.3 Method

The experiment took place in a primary school in Switzerland where children are taught
in English. In this experiment, we targeted children aged 5 y.o. who start handwriting,
but do not typically master it yet. The children interacted with the robot under two
conditions of the F-Formation in a counterbalanced manner.

Our goal was to investigate the effect of spatial arrangement on the interaction. We
expected that children would give better feedback(see 2.7.3) to the robot when teaching
it in a side-by-side configuration for several reasons. The side-by-side arrangement
corresponds to a cooperative arrangement which is close to a peer teaching setting,
unlike the face-to-face teaching arrangement, which is more frequent seen in competitive
or conversation tasks (closer to a teacher-student relationship). Also, in the side-by-
side formation, the robot and the child have the same visual perspective of the shared
tablet on which they write. Perspective sharing is an ability that facilitates mutual
understanding [Berlin et al., 2006]. Hence by having the robot and the child side-by-side,
higher mutual understanding would be expected.

Participants and Apparatus

12 subjects (six girls) from the same classroom (aged 5 to 6 y.o.) participated to the
within subject study. The two considered F-formations for this experiment are presented
in the Figure 2.18: face-to-face 2.16 and side-by-side 2.17. Children were presented the
two conditions sequentially with and interval of three days in a counterbalanced manner.

Apart from this change in the spatial setting, the interaction was kept the same. The
children were told they had to teach the robot how to write some words. We briefly

42



2.7. Spatial arrangement

presented the two tablet interfaces and the interaction started. Any word from a list
displayed on the selection tablet could be picked by the child. As the robot would start
to write this word. It was set to be a very bad writer at the beginning of the first session
for each child. The child could then give a feedback to the robot by pressing thumbs up
or a thumbs down buttons how many times they wanted. The child would then use a
pen and demonstrate how to write the word and the robot would then rewrite the word
using the demonstration of the child. The generated writing of the robot was computed
to be halfway from its previous writing state and the new demonstration provided by
the child.

Several hypotheses were made concerning the influence of the spatial arrangement on
the interaction. We expected that the gaze behavior of the child would vary according
to the spatial configuration. More gazing at the robot’s head would be expected in the
face-to-face condition. Our research question was to measure the degree to which this also
influenced the way children behaved as a teacher (were they more or less severe with the
robot facing them). As children give a feedback to the robot for each demonstration, we
intend to measure if there is any difference between vis-a-vis and side-by-side regarding
this feedback (does the side-by-side condition trigger more positive feedback? or more
appropriate feedback?).

The degree of engagement of the child in the task can also be influenced by the arrange-
ment. For that particular aspect, we will measure the number of repetitions of each word,
as well as the with-me-ness, which is discussed in the following subsection. Since children
were quite young, we choose to not use any self-reported measures or questionnaires.

With-me-ness

The with-me-ness, introduced in HRI by [Lemaignan et al., 2016a] and described in
section 2.6, helps to set specific targets during each state of the interaction and to
determine whether the user is looking at one of these attentional targets or not. This
measure allows us to see if the child is engaged in the interaction and is looking at the
tablet or the robot’s head when he/she is expected to (according to the task). Indeed,
in our learning by teaching activity, the robot has also a hidden pedagogical role. It’s
progress aim actually to make the child practice and think about his/her own way of
writing. In that sense, we can set attentional targets as proposed by [Sharma et al., 2014]
when the with-me-ness was first introduced to measure learner’s attention to teachers in
MOOC videos.

This is actually very close to the notion of synchrony already studied in HRI [Delaherche
et al., 2012], where bounding between individuals is reflected by their ability to synchronize
in the task (look at the same time at the same targets).

In this experiment the visual targets were: "the observer"(a teacher or a teacher assis-
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tant),"the experimenter", "the selection tablet"(the tablet used to pick a word) and the
"tablet". The with-me-ness is initially set to 0.5 and takes values from 0 to 1. According
to the state in which the activity is, (robot is writing, child is writing,. . . ) the with-
me-ness will be increased if the child looks at a target that is in the set of task-related
targets (expected within this particular state of the activity). We record these targets
and the with-me-ness at a frequency of about 1Hz. The evolution of the with-me-ness
is computationally attenuated in order to remove noisy data (by using the weighted
cumulative of the with-me-ness value).

The targets were defined according to their spatial relation with the camera used (placed
on the table at the robot’s feet). The position of the targets was changed according to
the F-formation condition, but the camera stayed at the same position Figure 2.18 shows
these targets for the two conditions.

Reward Mechanism

The tablet interface on which the child and the robot practice their handwriting shows
two buttons that allow the child to give a positive (green thumb-up) or negative (red
thumb-down) feedback to the robot’s handwriting. After every trial of the robot, the
child could click on these feedback buttons as much as he/she wants. We monitored each
of these clicks.

These clicks aimed to assess the child’s perception of the robot’s progress. When
converging to a better writing we expect the child to give better feedback. However,
these buttons could also be used by the child as an encouragement method and children
could give a positive feedback even though the robot didn’t make progress.

Performances

As the child was managing which word the robot would learn, he/she could also provide
as many demonstrations as he/she wanted. The child was also free to change the word
when satisfied with the robot’s performance.

Response Time and Writing Time

We recorded the time spent on the writing and the response time for each word demon-
strated by the children. We also monitored the number of demonstrations provided by
the child for each word. These measure were cues to how dedicated the child was in the
task
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Writing Score for the Robot

Since the learning algorithm took as input the child’s demonstration, if the child provided
repeatedly the exact same demonstration, then the robot would converge faster to his/her
handwriting. This score is hence a hint on children’s regularity, with the underlying
assumption that the regularity in handwriting is a sign of legibility.

At each demonstration of the robot, we were calculating a writing score. Each demon-
stration was encoded as a list of seventy 2D points. This writing score is the euclidian
distance between the demonstrated letter by the child and the generated letter by the
robot.

We also computed the evolution of this score at each demonstration. We represented
the evolution of the robot’s handwriting with different states: ’S=’: the first trial of this
word by the robot, ’S-’: the score is decreasing and ’S+’ the score is increasing. If the
child was changing a lot his/her way of writing between consecutives demonstration, the
score would then decreasee. In the contrary, the regularity of the demonstration would
make the score increase rapidly.

2.7.4 Results

Reward Mechanism

Children gave feedback with an average of 3 feedbacks per demonstration (i.e. per
interaction loop). We summed the feedbacks for each demo with positive feedback
counted as +1 and negative as −1. Figure 2.19 shows the average evolution along
the demonstrations of the sum of feedbacks given for all children and for both spatial
condition. We noticed that the feedback is first negative and grows towards a positive
feedback after each demonstration. In average for all the children, the sum of feedbacks
stayed negative until the 5th demonstration. Children well understood that they were
teaching the robot and often gave bad scores for the first untrained trial of the robot.
Children usually gave a positive feedback just before changing the word taught to the
robot.

Even though the average feedback was increasing along with the number of demonstration
for both condition, they don’t seems to increase the same way(see Figure2.19) The effect
of the F-Formation on the feedback from the child was statistically significant (Anova
Repeated measures within subjects: F1,272 = 4.396, p < 0.05). As, illustrated on Figure
2.20, the average feedback per demonstration was more positive (M = 0.03, SD =
1, N = 147) for the side-by-side condition compared to the face-to-face condition (M =
−0.23, SD = 0.98, N = 138).

Children kept giving feedback along the interaction and no drop in the number of
feedbacks was observed during the experiment. They took their duty to teach the robot
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Table 2.4 – Mapping between the interaction phases and the expected attentional targets.

Phase Expected targets

Presentation robot
Waiting for word to write secondary tablet
Writing word tablet, robot
Waiting for feedback tablet, secondary tablet
Story telling robot
Bye robot

Figure 2.19 – Evolution of Feedback along the demonstration index(Mean: line , Confi-
dence Interval 0.95: filled area)
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Figure 2.20 – Feedback Sum According to the F-Formation (Means and Confidence
Intervals)
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Table 2.5 – Levels of with-me-ness. For each subject, the with-me-ness level is
reported over the whole interaction, either based on the annotated focus of attention (i.e.
ground-truth with-me-ness), or based on the focus of attention measured by the robot.

Subject 1 2 3 4 5 6 M SD
Wg.truth 79.4 81.6 90.5 87.9 90.7 80.9 85.2 5.1
Wrobot 52.6 55.3 74.3 52.9 59.5 63.9 59.8 8.3

seriously in that way.

We also observe an order effect showing that children tended to give more positive
feedback in the second session compare to the first one. This can simply be explained
by the fact that the robot’s learning state was progressive between the two sessions.
The robot didn’t start to learn from scratch in the second session but had already some
knowledge from the first session with this same child.

With-me-ness

Children understood the dynamics of the interaction, as in general the with-me-ness
stayed above 0.5 throughout the interaction (started et 0.5 but always finished above).

The effect of the F-Formation on the with-me-ness of the child was statistically significant
(Anova Repeated measures within subjects: F1,15983 = 293.2, p < 0.001). The with-me-
ness was greater(M = 0.79, SD = 0.18, N = 7722) for the face-to-face condition compare
to the side-by-side condition (M = −0.72, SD = 0.21, N = 8267) (see Figure 2.21). This
result was expected, as the robot was facing the robot, its face was more visible for the
child.

Again, we observed an order effect with the with-me-ness increasing between the two
sessions. As children were more comfortable with the system, it is logic that they started
to learn the dynamics of the interaction knowing when to look at the selection tablet,
the writing tablet and the robot.

Response Time and Writing Time

Figure 2.22 shows on the left the average number of demonstration for each word taught to
the robot for the two spatial arrangement conditions. There was no significant difference
between the conditions even-though the average number of demonstration given by the
child in the side-by-side condition seems higher than the face-to-face.

The center graph of Figure 2.22 shows the average response time for the demonstration
provided by the children for the two spatial arrangement conditions. The response time
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Figure 2.21 – With-me-ness According to the F-Formation (Means and Confidence
Intervals)
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Figure 2.22 – Number of demonstration per word (left), response time (center), writing
time (right) - (Means and Confidence Intervals)

Figure 2.23 – Face to face Figure 2.24 – Side by Side

Figure 2.25 – Transitions states from score evolutions (S+ : score increasing compared
to previous score, S−: score decreasing compare to the previous) to children’s feedback
(thumb up: positive feedback, thumb down : negative feedback, and no feedback given)

is the delay between the time when the robot finishes to write and the time when the
child touches the tablet. There was no significant difference between the conditions.

The writing time (right graph on Figure 2.22) corresponds to the delay between the time
when the robot finishes its trial and the time the child finishes its new demonstration or
changes word. This time also include the moment in which the child can give a feedback
via the buttons. No significant difference in the writing time was found.

These results show that children when not spending more time per word in one condition
of the other. The spatial condition didn’t influence the involvement of the child in the
task.

50



2.7. Spatial arrangement

Table 2.6 – Probability of feedback given the score per word in the two conditions : face-to-face
/ side-by-side

`````````````̀Score Event
Feedback Positive Negative None

Score Increases 0.37 /
0.44

0.39 /
0.27

0.24 /
0.29

Score Decreases 0.28 /
0.47

0.36 /
0.20

0.36 /
0.33

Feedback score of the robot

There was no significant difference of writing score in the F-formation condition tested
(side-by-side:M = 0.80, SD = 0.08, N = 135, face-to-face: M = 0.79, SD = 0.08, N =
191, Anova Repeated measures within subjects:p > 0.1). This result means that the
children were teaching as well in the face-to-face condition as in the side-by-side condition.
However, results showed significant differences in terms of feedback given to the robot
regarding the score of the robot.

We analyzed the probabilities of succeeding events considering feedback events and score
evolution events.

Table 2.6 shows the frequencies of transition of feedback events (positive or negative)
after the score increases or after the score decreases (computed using Markov Chain).
We notice that in general the positive feedback frequencies are higher for the side-by-side
condition in comparison to the face-to-face. On the contrary, the frequency of negative
feedback after is higher in the face-to-face condition. We can also notice that when the
score decreases, the frequency of having a positive feedback is almost twice higher in the
side-by-side condition.

All the transitions between the scores and the feedback buttons are illustrated on Figure
2.25. The randomness of these results are in contradiction with the correlation between
robot’s progress and feedback from children observed in section 2.5. This can be explained
by the fact interactions were short (4 × 40 minutes in long-term studies v.s. 2× ∼ 10
minutes in this study). However, children were displaying a more positive attitude
towards the robot when placed in side-by-side position even when the robot was not
improving. This positive attitude was showed by rewarding more improvements of the
robot and also penalizing less the retrogression of the robot’s writing. Children even
rewarded retrogression more often in the side-by-side condition. The reward given by
children showed to be not often appropriate. For instance in the face-to-face condition,
score increasing got more than a third of the time given a negative feedback. These
differences in the transition matrix were not significant (Pearson’s Chi-squared test,
X − squared = 30, df = 25, p − value = 0.2243) and a study with a larger number of
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participants might have given more precise results.

2.8 Need for mutual understanding

The CoWriter activity provides rich interactions – mostly non-verbal – which introduce
misunderstandings between the child and the robot:

• The learning curve of the robot may be not adapted to the child’s
expectations: in section 2.5, we observed with table 2.2 a correlation between
the robot’s progress and the child’s evaluation in 5 cases out of 8. Therefore
this correlation is not inexorable, especially in short term studies, as seen with
figure 2.25 in section 2.7. The robot may too slow at learning a word while the
child is providing an high number of refined demonstrations or conversely too fast.
This kind of misunderstanding can have important impact on the interaction, since
the child may perceive the robot is not learning from his demonstrations, which
can be interpreted in two ways: 1) the robot is two bad and the child cannot help
or 2) the child is too bad at handwriting to teach the robot.

• The robot has a poor non-verbal behaviour: so far, it does not look at what
the child wants him to look at. An automatic solution could be to simply imitate
the child and to make the robot looking at what the child is looking at, as we did
in the experimental setup presented in 3.4. However, there are no reason this is
what is expected by the child: the child could ask the robot to look at the tablet
while the child is looking at the robot. Using a model of the child and a model
of the robot viewed by the child could allow the robot to reason about what it is
supposed to look at in order to smooth and enrich the interaction. For example,
the robot could be able to look at the rewarding button on the tablet when it
expects to be rewarded by the child. Also, the robot does not detect or react when
the child is not looking at what he is expected to be looking at (while it is detected
by the with-me-ness module presented in 2.6). More than simple visual behaviour,
the robot could point at objects it is referring or in order to solve its eventual
misunderstanding about an object that the child would be referring. Finally, the
recent progress in gesture detection based on deep neural networks allows detecting
hands and arms positions [Cao et al., 2018], which could be interpreted in order
to feed a mutual-modelling reasoning. For example, we often observed the child
providing the robot with a real thumb up as a reward, instead of clicking on the
tablet’s button. We describe in 4 a methodology to interpret such rewarding signals
(with a similar situation described at the begining of 4.4).

• Sometimes the child does not understand the goal of the activity. These
misunderstanding are the most problematic: the child starts missing the rectangle
boxes in the tablets, always choose the same word in the template list or simply
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teach the robot with a wrong understanding of the correct shape of a letter (in 2.5,
we observed Thomas rewarding the robot for imitating him while he was teaching
the number 5 horizontally inverted. Then, a facilitator is required to correct the
child and an experimenter to restart the robot’s behaviour. As a consequence, the
robot’s role is instantly broken. However, here again, the methodology described
in 4 could help understanding the objective of the activity as perceived by the child.

If the robot could detect misunderstanding, it could repair them in order to keep
interaction smooth:

• When the child does a mistake (pushing a wrong button on the tablet or writing
wrong letters as a demonstration) the robot could detect it and react in consequence.

• Sometimes the child starts to be completely disengaged and the robot should react
(by trying to call back the commitment of the child or by asking to stop the activity
by itself).

• The robot should wait to have the attention of the child in order to make sure that
its trial of writing is being observed.

• The robot should not react as a student, but as a pretending student in a didactic
activity: if the child provides good feedback but is teaching a very wrong writing
to the robot, the robot should be able to detect this situation and to say he does
not want to learn this style.

All those situations require a second level of mutual modelling. The next two chapters
aim at building a cognitive architecture based on reasoning at two orders of mutual
modelling. Such an architecture is expected to be generalizable and usable in different
activities. But in order to make sure that this ability brings an improvement to HRI, it
needs experimental evaluation involving an interactive robot. This interaction must be
studied over long-term sessions in order to facilitate the grounding of non-verbal mutual
understandings, and to promote occurrences of misunderstanding situations. We have
proven that the CoWriter activity is sustainable by one child over (at least) four sessions
of one hour. The study 2 showed that the activity can be used in real therapeutic context
and could be an help for therapists: by improving this activity, a mutual modelling
architecture could have a direct utility both in education and occupational therapy.
The buttons for feedback tested by the study 3 and the evaluation and calibration of
the with-me-ness data (study 4) will be a useful feature for mutual modelling. In the
clinic-study, we saw that children could give coherent feedbacks to the robot which is
a strong information about their perception of a robot as a student while they are the
teachers. The VFoA tracker will be used to keep a robust knowledge of what the child
has seen and is looking at. This knowledge is essential to reason with 1st and 2nd level
of mutual modelling. Furthermore, we believe that the interaction could be improved by
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adding some micro-behaviours to the robot (short gazes or arm’s gestures, non-verbal
language).
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3.1 Introduction

Social robots are brought to interact with humans. The quality of such interactions
depends on its ability to behave in an acceptable and understandable manner by the user.
Hence the importance for a robot to take care of his image: how much it is perceived as
an automatic and repetitive agent, or contrarily as a surprising and intelligent character.
If the robot is able to detect this perception of itself, it can adapt its behaviour in order
to be understood: “you think I am sad while I am happy, I want you to understand that
I am happy”.

In a collaborative context, where knowledge must be shared, agents must exhibit that
they are acquiring the shared information with an immediate behaviour: “I look at
what you are showing me, do you see that I am looking at it, do you think I am paying
attention to your explanation ?”; “I have understood your idea, do you understand that I
have understood ?”. As humans, we have different strategies to exhibit understanding or
to resolve a misunderstanding. For example, if someone is talking about a visual object,
we alternatively gaze between the object and the person to make sure he saw that we
gazed at the object. Or if we detect that the other person has not understood a gesture
(e.g. pointing at an object) we would probably exaggerate the gesture.

Introduced by Premack and Woodruff [Premack and Woodruff, 1978] and developed
by Baron-Cohen and Leslie [Baron-Cohen et al., 1985], ToM describes the ability to
attribute mental states and knowledge to others. In interaction, humans are permanently
collecting and analyzing huge quantities of information in order to stay aware of emotions,
goals and understandings of their fellows.

Until now, the work conduced by the Human-Robot Interaction (HRI) community to
develop mutual modelling abilities in robots was limited to a first level of modelling.
Higher levels require the ability to recursively attribute a theory of mind to other agents
(I think that you think that ...) and their application to HRI remains poorly explored.
However, a knowledge of oneself perceived by others is necessary to adapt a behaviour to
keep mutual understanding.

An important challenge of social robotics is to provide assistance in education. The
ability of robots to support adaptive and repetitive tasks can be valuable in a learning
interaction. The CoWriter Project (described in chapter 2) introduces a new approach to
help children with difficulties in learning handwriting. Based on the learning by teaching
paradigm, the goal of the project is not only to help children with their handwriting, but
mainly to improve their self-confidence and motivation in practising such exercise.

The effectiveness of this learning by teaching activity is built on the “protegé effect”: the
teacher feels responsible for his student, commits to the student’s success and possibly
experiences student’s failure as his own failure to teach. The main idea is to promote
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the child’s extrinsic motivation to write letters (he does it in order to help his “protegé”
robot) and to reinforce the self-esteem of the child (he plays the teacher and the robot
actually progresses).

In that context, the robot needs to pretend enough difficulties to motivate the child to
help it. This ability of the robot to pretend strongly depends on the perception of the
robot by the child: the displayed behaviours (gestures, gazes and sounds) by the robot,
the initial level and learning speed of the robot must match with what the child imagines
of a “robot in difficulty”. In order to adapt to the child, the robot needs then to have
a model of how it is perceived by the child. On the other side, the child builds also a
model of the robot’s difficulties and attitude. This mutual-modelling is primordial in
order to have mutual understanding and fluid interaction between learner and teacher.

3.2 Related work

3.2.1 Artificial Theory of Mind

The motivation to construct socially-aware agents in computer science is actually much
older than the concept of ToM itself. One can argue it takes roots in the sixties from
two independent fields: the modal logic with the creation of the Epistemic Modal
Logic (EML) [Hintikka, 2005], and the game theory with the apparition of Bayesian
games [Harsanyi, 1967].

EML states a list of axioms allowing to reason with knowledge and beliefs of a group of
agents, viewed as multiple universes with different modalities. For example, one basic
statement says that if an agent a knows that a proposition ψ is true, and knows that ψ
implies φ, then it knows that φ is also true, which is noted “Ka(ψ)∧Ka(ψ ⇒ φ)⇒ Ka(φ)”.
The knowledge level [Newell et al., 1982] embodies EML with agents composed of a
set of actions and goals and a body. This improvement formalizes interacting agents,
constructing and using their knowledge through decision making. Taking multiple agents
interacting in a similar world brought the notion of common knowledge [Halpern and
Moses, 1990], making the distinction between facts that are privately known by one
agent and facts that are publicly accepted by a group. Having the common knowledge
– or a common ground – as a prior, and taking into account the fact that rational
agents have goal-oriented behaviors allows probabilistic methods to state beliefs about
an observed agent’s own knowledge and intention. This is the principle of Beliefs Desires
Intentions (BDI) [Rao, 1995] models on which are based a large range of artificial
ToM cognitive architectures, and particularly Theory-Theory and Simulation-Theory
approaches [Harbers et al., 2009]. The common knowledge also gave birth to the social
reasoning [Verbrugge, 2009], that formalizes assertions such as “Bob knows that Alice
knows that both know that φ is true”, which is noted “KBobKAliceC{Bob,Alice}φ” (where
C denotes the common knowledge). This last formalism is the basis of the doxastic
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epistemic logic [Van Ditmarsch and Labuschagne, 2007] that aims to construct theory
of mind reasoning models, and of the dynamic epistemic logic [Gerbrandy et al., 1997]
where an agent’s knowledge is no longer static and changes with interaction.

In Bayesian games, players have no access to each other utilities and must establish beliefs
about opponents preferences, leading to the existence of Bayesian equilibrium [Kajii and
Morris, 1997] which extend the concept of Nash equilibrium [Nash, 1951] to the situation
where agents cannot improve their strategies given opponents strategies and their belief
about opponents utilities. In fact, the emergency of Nash equilibrium in a group of
players involves a common knowledge about each player’s utility, rationality and chosen
strategy [Aumann et al., 1995]. Bayesian equilibrium alleviates the common knowledge
about utilities, but still requires players strategies and rationality assumptions. This
point invites to mix EML with game theory which is done by the Recursive Modeling
Method (RMM) [Gmytrasiewicz et al., 1991] where each agent is trying to evaluate a
belief about opponents utilities by taking into account the fact that the other is also doing
the same kind of inference, which induces a recursive computation. RMM is the basis
framework of the PsychSim architecture [Pynadath and Marsella, 2005] to implement a
Bayesian ToM with a effort for solving sequential decision making process.

A closer approach to our notion of mutual understanding emerges from communication
theory, called grounding [Clark and Schaefer, 1987]. Grounding is the effort of creating
a sufficient common knowledge (the common ground) in order to solve a collaborative
task [Clark and Brennan, 1991]. If the task requires the ability to predict each other
agents, then the mutual understanding is a part of the grounding. When, because of an
ambiguity or any reason, the grounding is broken, one must repair it. An interesting
property of human dialogues is the ability to repair a broken grounding using minimal
efforts [Clark and Wilkes-Gibbs, 1986]: the Least Collaborative Effort. Using this idea, it
becomes possible to elaborate computer-human collaborative task scenarios where the
computer is also able to derive the minimal effort of grounding, resulting with much
smoother interactions [Dillenbourg et al., 1996]. In [Cahn and Brennan, 1999], they
present a more dialogue-based model describing the process of repairing a common
ground that could be used in a human-computer interaction scenario. In this chapter,
we develop a similar method, however specialized on the detection and repair the mutual
understanding and hence based on prediction error, and that can be applied to any
communication way including non-verbal exchanges.

3.2.2 Theory of mind in Human-Robot Interaction

Robot architectures enabling first-order models have been developed within the HRI
community, which led to solve basic ToM tests [Breazeal et al., 2009] [Warnier et al., 2012].
More recent architectures extended such reasoning to plan execution for collaborative
tasks [Devin and Alami, 2016]. Regarding mutual modeling, second order of ToM has
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been stepped by Nikolaidis, solving shared plan execution through visual perspective
taking: in [Nikolaidis et al., 2016a], the robot is computing the most understandable
trajectory in order to share a grabbing intention, rather than the most effective trajectory
in terms of time and energy. Our model of reasoning is based on the same idea of playing
with the estimated comprehension of the human, but is specialized to context-based
story creation while gestural intentions are based on visual and physical computations.
Since our activity concerns a sequential decision-making and does not need any visual
reasoning, we moved to a simpler ToM approach.

First introduced in Computer-Supported Collaborative Learning (CSCL) [Dillenbourg,
1999] and then borrowed by Human-Robot Interaction (HRI) community [Lemaignan
and Dillenbourg, 2015], mutual modeling is a computational framework for ToM more
focused on collaborative tasks which requires a common knowledge to be solved like, as
mentioned above in 3.2.1 finding equilibrium in game theory. Hence, it takes the notation
M(Alice,Bob, X) to translate the model made by Alice of what Bob knows about X,
where X is a set of facts related to the success of the task. For example, imagine a game
where Bob is asked to fill a multiple-choices questionnaire and Alice is asked to guess what
Bob is going to answer. Too succeed, Alice needs to predict at least half of the answers
given by Bob. In this scenario, X would be the set of questions, andM(Alice,Bob, X)
would be the predictions of Bob’s answers according to Alice. The accuracy of the model
(the number of correct predictions by Alice in our example) is notedM°(Alice,Bob, X)
and the minimum accuracy of the model to succeed the task (50% in our example) is
notedM°

min(Alice,Bob, X). This framework states the importance of model symmetry:
When two agents, sharing a collaborative task, have different intention given a common
observation, it appears that they have a different knowledge regarding the task and
must ground an agreement in order to solve the misunderstanding and to efficiently
collaborate. For example, this is the case if Bob and Alice are in a maze and are attached
together with an unbreakable rope: they must agree on the correct pathway to the exit.
As in other approaches, higher orders of mutual modeling are defined to express how
humans can recursively attribute a model of ToM to others: in the first order agents
only construct models of others without supposing that they may also perform mutual
modeling, while in the second order they also infer how others model others, including
themselves.

We wanted to place our study in the perspective of a pedagogical context, hence we
adopted a mutual modeling approach. We focused on Mutual understanding, which
involves a second order of modeling: more than simply understanding the other, an agent
must take care of being understood. And trying to be understood requires an agent with
the capacity to model itself through the eyes of the other.
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3.3 Recursive and non-recursive approaches

In this chapter, we make the distinction between agents based on different levels of
modelling. Level zero agents do not perform any agent modelling. They may have a
model of the world, but this model is uniform and does not make the distinction between
the dynamics of the world and the actions of other agents. Level one agents model other
agents as level zero agents. Level two agents model other agents as level one agents, and
so on. We could also considerate the situation where an agent uses its own architecture to
model other agent. But given the fact this agent has the ability to model others included
in its architecture, this situation would induce an infinite regression [Clark, 1988]: agent
A models agent B that models agent A that models agent B etc. Despite the fact humans
are able to reach high levels of modelling, we will focus on the construction of a second
level agent, hence modelling the eventual human to interact with as a first level agent.
Doing so alleviates a lot the reasoning and is sufficient to induce rich social behaviours
(as shown in chapter 4).

3.3.1 Framework

Let “A" be a first-order agent and “A,B" (the agent B perceived by A) a second-order
agent. Then, MR [A] stands for the model (built by the robot R) about the agent A (first
level of modelling) and MR [A,B] stands for the model (built by the robot R) about the
agent B perceived by the agent A (second level of modelling). This is better explained by
the following equations:

MA [B] = A,B
MR [MA[B]] = MR [A,B] .

We use this notation since we only implement the models used by the robot (starting
by MR), while all other “models" used by humans are considered as independent agents.
Therefore, an agent perceived by another agent defines a new agent, not a model. Hence
the distinction between “A,B", that represents an agent perceived by another one, and
MA [B], that is the model of the agent B built by A within the architecture described
above. The model of the robot perceived by the human MR [H,R] is not a part of the
model of the human MR [H] but is encoded as a model of another agent (see figure 3.4).

As said above, we limit our approach to 1st and 2nd order of modelling. In a two-agents
interaction (the human and the robot) we will focus on three models: MR [C] (the
model about the human), MR [R] (the model about the robot) and MR [C,R] (the robot
perceived by the human). It would be also interesting to studyMR [C,C], the model about
the human perceived by himself in order to play with his self-confidence. But detecting
differences between MR [C] and MR [C,C] seems difficult with the current abilities of
the robot. Since models are dynamic, M t

R [A] represent the model about an agent A at
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Figure 3.1 – MR [R] Figure 3.2 – MR [H] Figure 3.3 – MR [H,R]

Figure 3.4 – 3-agents approach for second order modeling. Left: robot’s model of itself.
Middle: robot’s model of the human. Right: robot’s model of itself as perceived by the
human.

time t.

3.3.2 Mutual understanding

Given these three models (MR [R],MR [C] andMR [C,R]) the robot must be able to detect
misunderstandings. A misunderstanding of an agent A by the robot can be formalized
as a error between what is actually in the mind of the agent (we can call it Φ[A]) and
the model built by the robot: ∆ (Φ[A];MR [A]). But if A is human, Φ[A] is inaccessible
to the robot. In order to maintain a mutual understanding, humans [Suzuki et al., 2015]
(and monkeys [Haroush and Williams, 2015]), use predictions of others’ behaviours. A
bio-inspired approach would be to make, at time t, a prediction P t+1

R [A] of the model.
Then, at time t+ 1, the robot can compute a prediction error ∆

(
M t+1
R [A] ;P t+1

R [A]
)

in order to detect such a misunderstanding. This idea rely on the assumption that the
better are the predictions of a model, the better the model fits the reality. Then, the
dynamic of the model can be updated according to the resulting error of prediction. This
rule can be used with MR [H] and MR [H,R].

Another type of misunderstanding concerns the comprehension of the robot by the human:
using the same formalism, it is an error between the actual perception of the robot by
the human (we can call it Φ[H,R]) and the robot itself: ∆ (Φ[H,R];MR [R]). Again, the
robot does not have access to Φ[H,R], but it approximates it with MR [H,R]. Finally we
define the human’s perception error at time t by ∆

(
M t
R [H,R] ;M t

R [R]
)
. This error

is taken in account only if the robot has a correct model of itself perceived by the human
(only if MR [H,R] produce small prediction errors). Since this error assumes that models
built by the robot are correct, it is not used to update these models. It corresponds to an
error of the human: in order to repair it, the robot must explain the misunderstanding
to the human or exaggerate an action [Nikolaidis et al., 2016b] to make sure it will be
understood.
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As an example, in the CoWriter activity, the human teach handwriting to the robot. The
robot pretends to be a beginner, but it has in fact its idea of a good handwriting. It is
perfectly aware of its played progresses. We want the human to perceive these progresses.
In that perspective, the human’s perception error corresponds to the sentence “I make
progress but the human does not perceive it, he does not understand my progress", while
the prediction error of MR [H,R] corresponds to “I do not understand how the human
perceive my progress". Tables 3.1 and 3.2 show crude examples of situation involving
prediction or human’s perception errors and possible reparation.

Model Utterance

M t
R [H] human looks at me and do nothing

P t+1
R [H] human will say something

M t+1
R [H] human still looks at me and do nothing

∆ ≥ Θ I am misunderstanding the human

action to repair tell the human “Are you OK ?"

Table 3.1 – Prediction error with the model of the human

Model Utterance

M t
R [R] I know I am not making progress

M t
R [H] provides the robot with positive feedback

M t
R [H,R] human thinks I make progress

∆ ≥ Θ The human is misunderstanding that I am not doing any progress

action to repair write with a style even worse than before

Table 3.2 – human’s perception error

3.4 Impacts on Human-Robot interactions

In this section, we implemented a reasoning model for mutual understanding based on
a three-agents architecture: self; other; self-view-by-other, introduced in [Jacq et al.,
2016a]. We used it to implement two robot’s behaviors: making predictable decisions
or making adversarial decisions. These behaviors are designed within an activity where
the robot chooses, turn by turn with a human, elements that construct a short story.
Our predictable behavior is built in order to facilitate the mutual understanding, while
our adversarial behavior lets the subject believe he understands the robot and suddenly
surprises him with the least predictable decision. Actually, the adversarial behaviour
breaks the mutual understanding: we want to create misunderstanding situation in order
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to study the importance of maintaining the mutual understanding. As a control condition,
we also implemented a random behavior, in which the robot only makes random decisions.
We conducted a study involving 47 subjects, not aware of the robot’s behavior condition.

3.4.1 Story co-creation by selecting elements

The activity consist in choosing, turn by turn with the robot, a specific element of the
story. Such an element can be the place of the story (planet? kingdom? island?) or the
job of the protagonist (space pioneer? knight? pirate?). Once all elements have been
selected by the subject and the robot, the resulting story is generated, based on the
human-robot collaborative selection of contents. Actually, the story is rather “filled"
than generated: at the beginning, a sentence has a fixed structure but each word that is –
or depends on – a selectable element is replaced by a symbolic variable. For example,
our story could start with the two following sentences:

Once upon a time, in a Place far away populated by People, was living a wild
Main_Char_Job named Main_Char_Name.
Personal_Pronoun(Main_Char_Gender) was very brave.

In this text, variables are the bold terms. The variable “Place" is a selectable el-
ement, that can be replaced by any possible geographical place (planet, kingdom, island,
...). The personal pronoun related to the main character depends on the selectable
element “Main_Char_Gender". Some whole sentences can also depend on a variable in
order to avoid inconsistencies.

In order to choose an element, a subject must touch it on a touchable screen. For its
part, the robot just vaguely points it with its finger and the element is in parallel selected
on the screen. The robot is also provided with a face detector and alternates head
movements, gazing at the screen or at the subject. Finally, when the robot performs
hand gestures while speaking. Over all, the subject is asked to choose 10 elements and
the robot is asked to choose 8 elements (the subject chooses the first one and the last
one).

Before each robot’s turn, subjects are asked to predict what will be the robot’s decision.
The sequence of successive triples (subject’s decision; subject’s prediction of the robot;
robot’s decision) was feeding our two decision making algorithms based on 2nd order
ToM. Doing so forces the modelling of the robot by the subject, therefore we measure a
biased behaviour. However the way the subject models the robot still depends on the
robot’s decision which are fully conditioned by our compared group conditions and we
are interested by the impact these conditions can possibly have in the worst possible
scenario.
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3.4.2 Decision making

Contexts

We define a context as a set of selectable elements belonging to a same semantic field.
For example, the context science fiction contains the elements planet, alien, lazer gun,
etc. We arbitrary set 8 contexts: science fiction, pirates, middle-ages, forest, science,
army, robots, magic. Since an element can be associated to several contexts, contexts are
not disjoint.

Agent models

As suggested in [Jacq et al., 2016a], we define three agents: the robot (R), the human (H),
the robot predicted by the human (H,R). Each agent A is modeled by a log-probability
distribution over contexts, LA, estimating the odds that it is going to pick elements from
this context. Taking the notation from 3.3, we have:

∀ agent A, MR[A] = LA.

For example, LH(pirates) estimates the probability of the event “the human is going to
pick an element in the pirates context", while LH,R(pirates) estimates the probability of
the event “the human predicts that the robot is going to pick an element in the pirates
context". From these distributions, we can define, for each agent A, its most likely
context Cmax

A = argmaxC LA(C) and its least likely context Cmin
A = argminC LA(C).

Agent weights

Each agent A is given a weight WA representing the human inclination to establish its
predictions, rather based on the robot’s decisions (WR), on his own decisions (WH) or
on his own predictions of the robot (WH,R).

Weights updates

At each step of the element-selection activity, we receive a new triple (eH; eH,R; eR)
where eH is the element picked by the human, eH,R is the human prediction of the
element picked by the robot, and eR is the element actually picked by the robot. An
agent’s weight WA is incremented if its last picked element eA belongs to its most likely
context Cmax

A :

WA ←WA + 1{eA ∈ Cmax
A } ∀ agent A

64



3.4. Impacts on Human-Robot interactions

Probabilities updates

Then, agents log-probability distributions LH and LR are both updated in a similar way,
for all context C:

LH(C)← LH(C) + 1{eH ∈ C}
LR(C)← LR(C) + 1{eR ∈ C}

While LH,R is updated using weights WR, WH and WH,R, for all context C:

LH,R(C)← LH,R(C) +
∑

A∈{R,H,H,R}
WA ∗ 1{eA ∈ C}

Predictable behavior

Our predictable behavior aims at making decisions that are easily predicted by the
subject. In that purpose, the robot always pick elements from H,R’s most likely context
Cmax
H,R:

eR ∈ Cmax
H,R

Adversarial behavior

The adversarial behavior is more complex. We use the predictable behavior, waiting for
the human to make good predictions (predicting an element eH,R belonging to Cmax

H,R).
Then, we suddenly move to the opposite: picking eR in the least likely context Cmin

H,R.
However, we wanted to make this behavior the least understandable. Therefore we add,
with a low probability, the possibility to pick eR from Cmax

H,R while the human is making a
good prediction, or the possibility to pick exactly the element predicted by the subject
while the human did not predict an element from Cmax

H,R. We arbitrary fixed the low
probabilities to P = 0.2, since we wanted to observe an average of more than one and
less than two such unlikely event over the 8 robot’s decisions in the activity. Algorithm 3
summarizes this behavior.

Algorithm 3: adversarial behavior
if eH,R ∈ Cmax

H,R then
with prob. P=0.8, eR ∈ Cmin

H,R
with prob. P=0.2, eR ∈ Cmax

H,R
else

with prob. P=0.8, eR ∈ Cmax
H,R

with prob. P=0.2, eR = eH,R
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3.4.3 Experiment

We conducted an experiment in order to study the impact of the three behaviors of the
robot on the interaction. The content of the activity was designed in English language.
In order to make sure they had a good understanding of English, we invited undergrad
students to be subjects for our experiment. However, this decision may have brought
weaknesses regarding our possible results. First, this population is biased by the fact
that a part of them have already been implied in a human-robot experiment. Then, this
story co-creation activity aims to provide a support for children education, and results in
adults population may never be generalized to children.

Groups

A total of 47 students (18f, 29m) accepted to participate to the study. The experiment
was conducted in our laboratory. Subjects were aged between 18 and 34 (M 22.8, SD 3.9).
We defined 3 groups in which subjects were randomly allocated: the random-behavior
group (9f, 7m), the predictable-behavior group (5f, 11m) and the surprise-behavior group
(4f, 11m). We used the random behavior as a control condition.

Settings

Each subject was alone with the robot in the room during the whole interaction and the
robot was fully autonomous. The spatial arrangement is detailed in figure 3.6 (top view)
and 3.7 (camera view). The robot, standing on a support, is facing the human user and
between them, a touchable screen is inclined for the subject. Also on the support, at the
feet of the robot, a RGB-camera was tracking the user’s face. We used face-tracking for
attention estimation (see 3.4.3), but also in order to implement robot’s head movements.
The questionnaire was displayed on the touchable screen and required to scroll down with
a mouse. For that purpose, subjects had a mouse available on the right of the screen.
The experiment was designed in 4 phases:

1) Introduction (0.75 min exactly): At the beginning, the screen is empty. The
robot introduces itself and the activity. All the speeches of the robot were scripted and
can be found in our source code, available on Github.

2)Turn by turn selection of elements (4.7 min on average): To start, the robot
asks subjects to choose the first element: the place of the story (planet, forest, kingdom...).
The interface appears on the screen, displaying a suggestion of possible elements the
subject can choose. Figure 3.5 shows an example of screen capture of the interface for
subject’s turn. Then, elements that will be suggested to the robot are shown on the
screen and subjects are asked to guess what the robot is going to choose. When a subject
has made his prediction, the robot takes its turn and chooses, by pointing a button with
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What is the favourite dance of the main character?

Waltz Polka Salsa

Tango

Rock

(you) The story take place in a forest

(you) you predicted robot monkey

(Nao) People of the forest are 

ghost robots

(you) main character is a woman

(you) her name is Dolores

(you) you predicted lumberjack

(Nao) main character job is 

princess

(you) her favourite drink is wine

(you) you predicted sword

(Nao) her weapon is light saber

Display what the user has to choose

Display historic of 

previous actions

Pictures and names illustrating 

the list of suggested elements

Emoji buttons for online user feedback

Figure 3.5 – Screen capture of user interface. It contains 4 areas. Top-left: a question reminds
what kind of element the user has to choose (for instance, the favorite dance of the main character).
Center: the set of suggested elements the user can choose illustrated by pictures. Bottom: 4
emoji buttons the user can use, if he wants to, in order to share his feeling. Right: a column
displays the historic of previous action in order to help the user to make prediction about robot’s
actions.

its arm, the next element. During this turn, buttons to pick elements do not react to
subjects’ touch. Finally it is the subject’s turn again, etc. In order to better feed user
modeling algorithms, at two points the human had two consecutive turns, hence the
human made more decisions than the robot (10 turns for the human and 8 turns for the
robot).

3) Story-telling (3.6 min exactly): At the end, when all elements have been selected
by the human and the robot, the resulting story is generated, and the robot tells the
story to the human. While the robot tells the story, the screen displays the told sentences.
At any time during the whole interaction (including both co-creation and storytelling
phases) four emoji buttons were displayed on the screen and could be used by subjects
whenever they wanted to share feedback about their feelings. As in [Jacq et al., 2016b]
and [Johal et al., 2016] we used thumbs up and down, plus two emoji buttons for “laugh"
or “absurd" feeling.

4) Questionnaire (10.3 min on average) Finally, a questionnaire appeared on the
screen, asking subject about their appreciation of the activity, their perception of the
robot (Godspeed) and their perception of it’s ToM abilities.
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a
c

e

f

g

Figure 3.6 – Spacial arrangement, top view: (a) subject, (b) touchable screen, (c) support for
the robot, (d) rgb-camera for face-tracking, (e) robot, (f) mouse helping the subject to fill the
questionnaire, (g) camera filming the interaction.

a

b c

d

e

f

Figure 3.7 – Spatial arrangement, camera view: (a) subject, (b) touchable screen, (c) support
for the robot, (d) rgb-camera for face-tracking, (e) robot, (f) mouse helping the subject to fill the
questionnaire.
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Procedure

Before the experiment, subjects were asked to sign a consent form. Then, a researcher
responsible explained the activity, telling that they would have to choose, turn by turn
with the robot, the elements of a story. He also explained to them that the robot would
tell the resulting story after all elements being picked. He told subjects that they would
have to make a prediction of the robot’s decision before each robot’s turn. We used
a screen-shot showing a typical example of the interface and the researcher explained
that they could use emoji buttons to provide feedback whenever he wanted, during the
whole interaction including the robot’s story telling. Finally, the researcher explained to
subjects they would have to fill a questionnaire that would be displayed on the screen
after the interaction. He indicated the mouse they would have to use in order to fill
the questionnaire. When interactions started, the robot introduced itself and reminded
subjects with a quick description of the activity. At each prediction step, it asked subjects
to make a prediction of what it was going to choose.

Measures

In order to measure our models accuracy, we counted the number of time the human
was picking or predicting elements in the expected most likely contexts: the number of
time that eH ∈ Cmax

H and the number of time that eH,R ∈ Cmax
H,R. We estimated a degree

of mutual understanding based on the number of times the human successfully predicted
the robot. Emoji buttons were used to estimate on-line subjects appreciation of robot’s
decisions. In order to track the gaze direction of subjects, we used a system similar to
Attention-tracker [Lemaignan et al., 2016a], improved with OpenFace Library [Amos
et al., 2016]. This system is available on Github. As in [Lemaignan et al., 2016a], we
measured an on-line estimation of with-me-ness. In our setup, with-me-ness was defined
by the frequency a subject looks at the screen or at the head of the robot, over an
exponential moving average:

wmnt = 0.9 ∗ wmnt−1 + 0.1 ∗ 1ttargets

In the above equation, wmnt represents our estimated with-me-ness at time t. 1ttargets
equals 1 if the subject is looking at the screen or the head of the robot at time t, otherwise
it equals 0. This is a simplification of the original definition of with-me-ness where targets
(robot’s head and screen) are the same in all phases of the interaction.

The questionnaire was designed in three parts. The first part contained five questions
regarding the appreciation of the subject: three about the resulting story (bad – good,
not funny – funny, coherent – absurd) and two about feeling during the co-creation
(negative – positive, bored – excited). The second part was a randomly shuffled Godspeed
questionnaire [Bartneck et al., 2009]. The last part contained four questions concerning
the perception of mutual understanding:
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Chapter 3. Mutual Understanding for Human-Robot collaborations

- Do you think the robot took into account your choices?
- Do you think the robot took into account your predictions?
- Do you think the robot was predicting your choices?
- Were you able to predict the robot choices?
In all parts, subjects had to pick a number over a type-Likert scale between 1 and 6,
in order to avoid middle points and to force them to settle between the two opposite
answers.

3.4.4 Results

Model accuracy

We compared the observed accuracy (frequency that eH ∈ Cmax
H and that eH,R ∈

Cmax
H,R) with uniform distribution over the suggested set of element at each activity’s

step (figure 3.8). We observed frequencies significantly higher than random odds for
rich context-depending steps (protagonist’s name, favorite drink, job and weapon, 2nd
character’s type). Focusing on figure 3.8B, we could only predict subject’s predictions
better than randomly at the beginning of the interaction after which, in both random
and adversarial conditions, it became too difficult for subjects to infer robot’s intentions.
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Figure 3.8 – Model accuracy vs random probability. A: (blue) frequency that eH ∈ Cmax
H . B:

(blue) frequency that eH,R ∈ Cmax
H,R. (red) probability of picking the most likely context from a

random decision.

Actual vs perceived mutual understanding

As expected, choices of the robot in the predictable condition were more susceptible to
be predicted by subjects. The number of successful predictions was higher in predictable
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3.4. Impacts on Human-Robot interactions

condition than in adversarial and random conditions. We obtained similar results with
the average intensity of answers (1=Not at all, 6=totally) to the question “Were you able
to predict the robot choices?", meaning subjects were aware of the difficulty to predict
the robot in the adversarial and random conditions. However, to the questions “Do
you think the robot took into account your choices" and “Do you think the robot was
predicting your choices", subjects gave higher scores in the predictable condition than in
the adversarial condition, but no differences between predictable and control conditions
were found. The robot took into account subjects predictions only in predictable and
adversarial conditions. But when we asked subjects to answer the question “Do you
think the robot took into account your predictions", we found that answers intensity was
significantly lower in the adversarial condition than in both predictable and random
conditions. Observations and statistics are displayed by figure 3.9 and 3.10.
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Figure 3.9 – Measured mutual understanding. We used average number of successful predictions
of robot choices by subjects. T-test p-values: (∗) < .05, (∗∗) < .01

Appreciation

The First part of our questionnaire concerned the appreciation of the activity and the
created story rather than the robot. However, answers of subjects were similar in the
three conditions (was the story good?: M=5+/-0.12, funny?: M=5+/-0.2, absurd?:
M=4+/-0.1, did you felt positive?: M=5+-0.1, excited?: 4.7+/-0.1). We used emoji
buttons in order to capture on-line judgment of the robot by subjects. Unfortunately, the
usage of these buttons (9.7 presses/subject) was too rare to obtain small enough standard
deviations required for significant results. Despite this fact, we observed more presses in
the adversarial condition (M=11.2, SD=7.9) than in predictable (M=8.15, SD=6.8) and
random (M=9.38, SD=8.1) conditions. This higher usage of button in the adversarial
condition is observed in all buttons separately, except for the “absurd” emoji button
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D. Robot uses subject predictions
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Figure 3.10 – Perceived mutual understanding. Average intensity of answers to the question
(A): Were you able to predict the robot choices? (B): Do you think the robot was predicting your
choices? (C): Do you think the robot took into account your choices? (D): Do you think the robot
took into account your predictions?. For all 4 questions: 1 = not at all, 6 = totally.

that was more used in the random condition. These results are displayed by Figure 3.11.
The Godspeed part of the questionnaire contains questions asking for a judgment of
the robot. The difference with emoji buttons was the fact these judgments were not
direct responses to particular choices of the robot, but rather global feelings about its
aspect and behavior remaining after the interaction. These questions can be sorted into
4 groups: anthropomorphism, animacy, intelligence, and likability. We concatenated
answers to questions belonging to the same group. We observed lower appreciations in
the adversarial condition compared to predictable and random conditions in all other
groups of questions. For anthropomorphism, answers from the adversarial condition were
significantly lower than from predictable and random. A similar observation concerning
animacy, with answers from the adversarial condition being lower than from predictable
and random. For perceived intelligence, answers from the adversarial condition were
lower than from random condition. The highest gap concerned answers to likability
questions: answers from the adversarial condition were significantly lower than from
predictable and random conditions. Interestingly, we also found a significant preference
for the random condition compared to predictable condition. Godspeed measures are
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Figure 3.11 – Average number of presses per interaction in different buttons. One can notice the
total absence of usage of the “thumb-down” in the predictable condition. However, we observed
no significant difference toward conditions.

displayed by Figure 3.12.

Attention

We obtained a set of time series representing evolution of with-me-ness for each condi-
tion. While measures in predictable and random conditions where correlated (Pearson‘s
correlation between average curves: r(540) = 0.75, p < .001), the set of curves obtained
in the adversarial condition deviated in average to stay at a lower level of measured
with-me-ness. We estimated the attention of subjects through the evolution of measured
with-me-ness over time. That way, we obtained a set of time series for each condition.
Figure 3.13 (top) displays the average curve for each condition. Given the correlation
between with-me-ness measures in predictable and random conditions (Pearson‘s corre-
lation between average curves: r(540) = 0.75, p < .001), we assumed these two sets of
trajectories were following the same stochastic laws. Then, we focused on the deviations
observed in the adversarial condition, visually lower than in the two other conditions.
In order to study how significantly these curves deviated from other sets, we regrouped
predictable and random conditions into one set of curves opposed to the adversarial
condition. We did not take into account the introduction phase in which the robot’s
behavior was the same for each condition. We used a Student’s t-test on a moving window
of 20 seconds (assuming same standard deviations in both sets). In each window’s step,
our null hypothesis was based on the adversarial condition average with-me-ness being
the same as the averages in the other two conditions. We reported in figure 3.13 (bottom)
the evolution of the obtained probability of observed windows means given the null
hypothesis (p-values). We highlighted the three phases of around 50s where we found
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Figure 3.12 – Answers to Godspeed questionnaire. T-test p-values: (∗) < .05, (∗∗) < .01,
(∗ ∗ ∗) < .001

curves from the adversarial condition were significantly lower. These phases correspond
to the construction of the protagonist and antagonist in the story construction, and
to the beginning of the story telling phase (during which the measured “with-me-ness”
globally decreased in all conditions).

3.5 Discussion

Regarding mutual modeling results, it seems that subjects were aware of their ability
to predict the robot, but other questions of the last part of the questionnaire show
how they perceived the adversarial condition as a lack of understanding in the robot.
As expected, the adversarial condition generated a perception of the ToM reasoning
of the robot significantly lower than in the predictable condition, but even lower than
control condition concerning the impact of subjects predictions. Beside, it seems that
the decision mechanism of the robot in the random condition was overestimated, being
not differentiable from the predictable condition. We can associate these different
perceptions of robot’s decision making with tracked attention results, in which trajectories
from predictable and random condition were similar while trajectories from adversarial
condition were significantly lower during three phases of approximately 50s. We can also
explain Godspeed results in which concerns robot’s anthropomorphism, intelligence and
animacy, for which, while no difference was observed between predictable and control
conditions, robot’s qualities were perceived significantly lower in the adversarial condition
than in control and, except for intelligence, significantly lower than in predictable
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condition.

However, an unexpected observation concerned answers to the Godspeed likability
questions, according to which the robot was even more appreciated in the random
condition than in the predictable condition. A possible interpretation could be that
the random condition was least boring than the predictable condition. We could even
suggest that in predictable and adversarial condition, subjects started to create a coherent
story while in the random condition, they were directly tempted by the robot in making
incoherent decisions, and perceived that this incoherence came from a mutual agreement
with the robot. Another reason why the appreciation was lower in the adversarial
condition can be the fact the robot starts by being coherent and so does the subject, and
when suddenly the robots makes an unexpected decision the subject is disappointed or
frustrated.

The code used in this experiment is open-source and available at https://github.com/
alexis-jacq/Story_CoWriting. However, we have to warn the fact we obtained these
results in a biased population of engineering students and may not be observed in a
different population, especially in children. This experiment was a preliminary study
for further explorations with the story co-writing interaction. We wanted to test our
different conditions of ToM-behavior first with adults who would be more indulgent and
least impacted by a robot’s behavior. Thanks to these results, we know that different
conditions of robot’s ToM based behavior can strongly affect robot’s appreciation and
subjects attention. This also open the possibility to control the quality of interactions
by seeking optimal 2nd-order ToM reasoning and behaviors. In future works, we will
study pure human-agent interaction (without robot) through a large-scale experiment.
For this we will deploy our activity’s interface on a website. The goal will be to improve
our ToM model by analyzing patterns in humans decision making. Then, we will use the
improved model for real-world Child-Robot Interaction in pedagogical contexts.
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4.1 Introduction

In chapter 3, we argued the strength and the simplicity of a reasoning architecture based
on three models: oneself; the other; oneself as perceived by the other. The next step
is hence to build these models. Since we are concerned by education, we aim to model
learning agents. That means, instead of modelling static variables in agents like emotional
states, preferences or educational level, we model their learning process. Now, we imagine
an agent as a parameterized machine receiving inputs and making decisions in order to
reach an objective or to maximize a score. Such a model must take as input the agent’s
observation of its environment and must return the agent consequential action. In social
interactions, an observation can be described as a concatenation of visible components:

• The agent’s own external state: e.g. its spatial position or its task advancement.

• Other agents external states.

• Other agents actions.

and latent components:

• The agent’s own internal state: e.g. its knowledge, beliefs, moods or preferences.

• The agent’s current score or advancement regarding its perceived objective.

These latent components are never directly observed while they have a strong impact
on decisions and one must infer them in order to predict an agent’s behaviour. By
consequence, the questions raised by this chapter are:

• 1) What kind of latent component are relevant to be inferred in an observed agent?

• 2) How to infer them?

• 3) How to use them in a 3-models reasoning architecture as described in chapter 3?

The first question depends on the context. In therapeutic contexts, an agent should
take care on the stress and the comfort of a human. In physical-gesture based tasks (for
example, setting up a table with a robot), an agent must know the state of the task
and the current sub-task performed by the human to coordinate. Given the choice to
design models that infer agents objectives, we chose to adopt a Reinforcement Learning
(RL) approach. In that framework, an agent is seen as an optimizer that seek the
best sequence of actions in order to maximize a return given by a so-called reward
function. This reward function usually models objectives or utilities in various fields of
interaction studies including economics, social psychology and ethology. We hence start
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this chapter by a quick description of the RL bases in section 4.2. In this work, we are
concerned by educational interactions. As we argued in 2.8, in such context, grounding
the understanding of the task objective is crucial for maintaining efficient collaborations
and to solve the task.

On the one hand, an agent must be aware of the human’s perceived objective. On the
other hand, it takes a role which must be convincing and in that sens, it must express its
own objectives or (artificial) motivations. More generally, the expression and perception
of agents perceived objectives is crucial for any kind of cooperation when a defecting
behaviour (a student stops to interact with a teacher) is possible and preferable than a
wrong response for a cooperative trial (the teacher misses to congratulate a progressive
step of the student). We develop this point in section 4.3. In section 4.4, we focus on
the inference of the reward function in a more general context where an agent observes
another agent discovering a sequential task. This context is closely related to IRL but
differs in the fact the observed agent is not an expert but a beginning learner. We show
that the assumption that the observed agent is making improvements in fact brings more
information than a simple expert directly performing the optimal task behaviour.

4.2 Background

RL is inspired by the adaptive behaviour of animals, trying to survive by seeking the
best sources of energy in unknown environments. A balance need to be found between
the exploration to find resources and the exploitation of the resources already found.
If an animal never explores it will die from having no enough skills nor energy when a
danger occurs. If an animal never exploits it will die starving. The less naturally-selected
instincts are given to a new born animal, the more it has to learn by exploring its
environment. This is be the case in children, since the human civilization is far too new
and unstable to allow specific pre-programmed instincts. This explains the exceptionally
long periods of exploration in children with an high dependency to adults – who bring
all the resources, before being able to efficiently exploit and to survive on their own1.

An RL agent works as follow. It receives an observation of its state in the environment
and performs an action. Depending on the environment’s dynamics, it is moved to a new
state and receives a reward. And then again, it receives an observation of the new state,
etc. This interaction with the environment is illustrated by the diagram on Figure 4.1.
The problem of the agent is to optimize its accumulation of rewards by following the
good sequence of actions.

1Especially in Ph.D. students
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Agent

Environment

Observation
Reward

Action

State transition

Figure 4.1 – Cycle of interaction between an agent and its environment in RL framework.

Markov Decision Process

A frequent assumption in RL tells that (1) the states are fully observed (2) only the
state of the agent and its chosen action influence the new state where it is moved
and (3) the reward is a function of the whole transition (state, action → new state).
Under this assumption, the problem of the agent becomes a Markov Decision Process
(MDP) [Bellman, 1957], which can be solved by dynamic programming.

An MDP is formalized as a tuple (S,A,P, r) where S is a set of states, A a set of actions,
P(s′|s, a) a distribution that governs the state transitions, r(s, a, s′) a reward function.
Usually, this tuple is provided with a discount factor γ that quantifies the restlessness of
the agent, which prefers immediate rewards to delayed ones: at time t the agent expects
a discounted reward γtrt instead of the actual reward (rt). It is also habitual to simplify
the reward function by saying that it only depends on the current state and action:
r(s, a, s′) = r(s, a). That being said, the goal of an agent is to find the policy a ∼ π(.|s)
that represents its decision rule to pick an action a given a state s in order to maximize
its expected (discounted) accumulation of rewards over the time:

J (π) = Eπ

∑
t≥0

γtr(st, at)

 =
∑
t≥0

γtr(st, at)π(at|st).

The optimal policy, which maximizes this quantity, is noted π∗. Various optimization
algorithm, based on dynamic computing to solve Bellman’s equations [Sutton and Barto,
1998].
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Partially Observed Decision Process

When the assumption (1) is alleviated, the agent only receives partial observations
of its states. This then introduces Partially Observed Markov Decision Process
(POMDP) [Smallwood and Sondik, 1973], where agents has to infer belief about their
states. This complicates a lot the resolution of the problem, since beliefs are no longer
discrete like states but belong to a continuous space.

4.2.1 Multi-agent reinforcement learning

In multi-agent interaction settings, environments are usually modeled by stochastic
games [Shapley, 1953]. A stochastic game (or Markov game) can be viewed as an MDP
involving a group of agents. At each turn, all agent receive an observation of the state of
the group in the environment and simultaneously make their respective decisions of an
action. Then the group is moved to a new state that is influenced by the last state of
the group and all agents last actions. Similarly, the reward of each agent is a function
of the last state and of all agents last actions. Therefore, it is formalized as a tuple
G = (S, (Ai)i=1...N ,P, (ri)i=1...N ), where S is the set of states, Ai the set of actions for
player i, P the transition probability (P(s′|s, a1 . . . aN )), ri the reward function for player
i (ri(s, a1 . . . aN )).

Multi Agent Reinforcement Learning (MARL) brings a framework to construct algorithms
that aim to solve stochastic games where players individually or jointly search for
an optimal decision-making to maximize a reward function. Individualist approaches
mostly aim at reaching equilibrium, taking the best actions whatever the opponents
behaviors are [Bowling and Veloso, 2001, Littman, 2001]. Joint approaches aim at
optimizing a cooperative objective and can be viewed as a single agent problem in a
larger dimension [Claus and Boutilier, 1998], but are easily exploited when one agent
starts being individualist.

In this chapter, we will focus on the special case where agents reward functions are
hidden from others, while everything else is fully observed. To make the bridge with the
framework introduced in section 4.1, one can view agents rewards as a latent variable
representing their understanding of the task objective, which must be grounded in order
to collaborate.

4.3 Reinforcement learning models for mutual understand-
ing

In this section, we implement our 3-agents approach for mutual understanding within
a game theoretical MARL model of a multi-agent interaction. We assume that one
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agent’s internal state (hidden from other agents) is basically its objective, formalized by
its reward function in the game. We hence implement first-order modelling with IRL,
which consist to infer an observed agent’s reward function. We implement second-order
modelling with RL agents that also use IRL in order to infer their own reward function,
as it could be inferred by others. We take the 3-agents approach described in 3 in order
to implement the different order of mutual modelling. The true policy of an agent A
is learned via RL. First-order models (MA[B]) and second-order models (MA[B,A]),
representing (respectively) the beliefs of the agent about another agent’s policy and the
beliefs of the agent of how another agent could infer its policy, are updated via IRL.

Doing so, we propose an algorithm that uses this second-order inference in order to
facilitate the mutual understanding of agents rewards through an adaptation of the
behavior. We also introduce intrinsic rewards based on models of empathy and gratitude,
leading agents to cooperative interactions. Finally, we implement an iterative prisoner’s
dilemma in order to study the resulting behavior of our approach in a dual-agent system.
Through simulations, we explore whether our models, with different conditions, facilitate
the mutual understanding of objectives between agents.

4.3.1 Model of itself

An agent i makes goal-directed decisions as a RL agent: at time t, it chooses an action
ati. Depending on this decision and all other agent’s decisions {atj}j 6=i, it receives an
observation ot+1

i = O(at1, at2, ..atn) (n being the number of agents) and a reward that only
depends on this observation rt+1

i = Ri(ot+1). Each agent has its own reward function
that is unknown by other agents.

As in [Sequeira et al., 2014], this framework is simplified as a MDP where the observations
are treated as states that just depend on agent’s previous observation and action following
an unknown probability distribution:

ot+1
i = O(at1, at2, ..atn) ∼ P[ot+1

i |a
t
i, o

t
i]

Hence, at the beginning, the decision making of the agent is performed by Q-learning
[Watkins and Dayan, 1992]. Given the observation ot+1, the agent learns the best new
action at+1 in order to maximize its future rewards (see algo. 4).

4.3.2 Model of others

At the same time, it receives actions and observations of other agents {atj}j 6=i and {otj}j 6=i.
Given this information, it can infer their reward functions {Rj}j 6=i by IRL. In this setup,
the IRL must be performed on-line. In [Jin et al., 2011] they provide an incremental
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Algorithm 4: Q-learning. TD stands for Temporal Difference.
Initialize Q(o, a)
Initialize o0

forall iterations t do
Choose at from ot using policy derived from Q
Take action at, receive rt+1, ot+1

TD = rt+1 + γmaxat+1 Q(ot+1, at+1)−Q(ot, at)
Q(ot, at)← Q(ot, at) + ηTD

algorithm for on-line IRL in a MDP framework. As our final goal is to develop agents
that could interact with humans, we want to adopt a less efficient but more intuitive
approach that looks like how any human – or child – would infer the objectives of others.
Hence we propose the following idea:

If I liked I repeat, otherwise I change: in the CoWriter activity described in 2 for example,
when the child corrects the robot, if the robot makes a significant progress, the child
repeats a very similar demonstration. Otherwise, the child explore in order to improve
his demonstrations.

In order to formalize this approach, we denote as r̂ti:j = R̂i:j(otj) the reward of agent j at
time t inferred by agent i. Agent i memorizes, for each possible observation oj of agent j,
the last action Ai:j(oj) it chose facing oj . Agent i also memorizes, for each observation oj ,
the previous following observation Oi:j(oj) perceived as a consequence of choosing action
Ai:j(oj). If at time t, agent j observes otj and chooses once again the action atj = Ai:j(otj),
it means agent j “liked" the previous consequence of this choice, namely oprev = Oi:j(otj).
In that case, agent i increments its inferred reward function R̂i:j(otj) for agent j as follow:

R̂i:j(oprev)← (1− 1√
ni:j(otj)

).R̂i:j(oprev) + 1√
ni:j(otj)

Where ni:j(otj) is the number of times agent i observed agent j observing otj . Contrariwise,
if it chooses a different action atj 6= Ai:j(otj), agent i decrements the estimated reward
function R̂i:j(otj) for agent j:

R̂i:j(oprev)← (1− 1√
ni:j(otj)

).R̂i:j(oprev)− 1√
ni:j(otj)

Then, given the inferred reward functions, an agent can predict the next action of other
agents. Such a prediction can be used to adapt its own next decision in consequence,
and also to evaluate how it is able to model other agents. This intuitive IRL process is
summarized in algo. 5.

83



Chapter 4. Models for mutual understanding in learning agents

Algorithm 5: Intuitive on-line IRL. Agent i is inferring the reward function of agent j.
Initialize Ri:j(o)
forall iterations t do

Agent j observes otj and takes action atj
if otj has already been observed by j then

Remember:
aprev = Ai:j(otj) previous action of j after otj
oprev = Oi:j(otj) previous consequence
if atj = aprev then

R̂i:j(oprev)← (1− 1√
n(otj)

).R̂i:j(oprev) + 1√
n(otj)

else
R̂i:j(oprev)← (1− 1√

n(otj)
).R̂i:j(oprev)− 1√

n(otj)

Agent j then observes the new consequence ot+1
j

Update memories:
Ai:j(otj) = atj
Oi:j(otj) = ot+1

j

ni:j(otj)← ni:j(otj) + 1

4.3.3 Model of itself seen by others

In order to model itself perceived by other agents, an agent i processes exactly the same
way that it would model another agent: it infers its own reward function Ri given its
previous actions and observations in order to estimate how other agents would infer its
reward function. In the following sections, we denote as R̂i:(j:i) this estimated function.
As before, agent i uses its memories of its previous choices of action Ai:(j:i)(oi) and
consequences Oi:(j:i)(oi) observed by another agent j for all possible observations oi in
order to update R̂i:(j:i). Note that if all agents are aware of all the true observations of
others and have the same initial estimations of others rewards (for instance, R0

i:(j:i)(oi) =
R0
j:i(oj) = 0 ∀i, j, oi, oj), we then have the equality:

R̂ti:(j:i) = R̂tj:i ∀t

4.3.4 Expressing objectives

Until now, our agents are just behaving in an “egoist" way, trying to maximize their own
rewards. But in order to promote cooperation, we provide any agent with a behavior
that helps other agents to infer its own reward function. In that purpose, each time it is
disappointed by a small reward (or a punishment), an agent can move the next time to
another action even if the last one was, in average, the optimal choice.

Going back to our CoWriter example, imagine this time, the robot does not know if green
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thumbs up or red thumbs down are a good or wrong signals. As the child is correcting the
robot with an incorrect handwriting, the robot must guess what is better between two
behaviours, according to the child: (a) to ignore the child’s correction and to converge
toward an optimal handwriting, or (b) to ignore the optimal handwriting and to converge
toward the incorrect child’s demonstrations. Since the child, in fact, wants the robot
to imitate his demonstrations, each time the robot receives a red thumb down for the
behaviour (a) and a green thumb up for the behaviour (b). So far, it is impossible for
the robot to guess what is better between (a) and (b). However, the child would assume
that his demonstrations are impacting the choice of the robot, and would provide a
similar trial when the robot imitates him, and would change his strategy (using strong
exaggerations or larger letters) when the robot goes for (a). Also, if the robot wants
to express its goal (making the child correcting its own mistakes), it could maintain a
regular improvement when the child is doing as expected, while it would exaggerate
random and obvious deformations when the child is not helping.

Formally, the agent is using its model of itself seen by others: when agent i is perceiving oi,
it looks at the true reward associated with the previous following consequence Oi:(j:i)(oi):

rprev = Ri
(
Oi:(j:i)(oi)

)

If this reward was acceptable (e.g. superior to a fixed threshold) the agent repeats the
last action it did after observing oi, hence Ai:(j:i)(oi). Otherwise, it chooses the best of
the remaining actions (according to Q-values).

That way we enable agents to help each other in inferring their reward functions. Now
our agents have the choice between two possible behaviors: the classical Q-learning or
this expressing-objectives behavior (described step by step in algo. 6).

4.3.5 Empathy and gratitude

We finally provide our agents with intrinsic rewards [Singh et al., 2010] that depend on
how they estimate the rewards of other agents. We define two different intrinsic rewards
that agents can feel observing each other’s:

Empathy eti:j of an agent i observing an agent j at a time t is proportional to its
estimation of the reward that j received:

eti:j ∝ R̂i:j(otj)

Gratitude gti:(j:i) of an agent i observing an agent j at a time t is proportional to its
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Algorithm 6: Expressing-objectives behavior. Agent i helps agent j to infer i’s reward
function.
Initialize Ri:j(o)
forall iterations t do

Agent i observes oti
if oti has already been observed by i then

Remember:
aprev = Ai:(j:i)(oti) previous action of i after oti
rprev = Ri

(
Oi:(j:i)(oi)

)
previous reward

if rprev > θ then
Repeat previous action ati = aprev

else
Choose a different action ati 6= aprev using Q

Take action ati, receive rt+1, ot+1

Update memories:
Ai:(j:i)(oti) = ati
Oi:(j:i)(oti) = ot+1

i

n(oti)← n(oti) + 1

estimation of how j would infer i’s own reward:

gti:(j:i) ∝ R̂i:(j:i)(oti)

Our model of empathy is based on de Waal’s Action-Percept Model framework [De Waal,
2008]. In this context, agents have a common set of possible actions or observations.
Then empathy describes the capacity to be affected by and share the emotional state of
another (inferred through this common set of action-perception).

The intrinsic reward for gratitude is based on the idea that “it’s the thought that counts",
expression used to indicate that it is the kindness behind an act that matters, however
imperfect or insignificant the act may be.

Now, at time t, as agent i observes a signal oti, it receives a total reward rti, sum of
extrinsic (Ri(oti)) and intrinsic (empathy and gratitude) rewards:

rtj = Ri(oi) +
∑
j 6=i

αi e
t
i:j + βi g

t
i:(j:i)

Where α and β are coefficients of proportionality that are used to try different situations.
For example, we can compare agents that only feel empathy (α > 0, β = 0) or only
gratitude (α = 0, β > 0). We can also explore negative values of α and β that could lead
to aggressive behaviors.
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4.3.6 Prisoner’s dilemma

The Prisoner’s Dilemma (PD) is an ideal game to study the social behavior of our agents.
In that context, we focus on a 2-agent system. Each agent has the choice between two
actions: defect or cooperate. If both agents choose to cooperate, they receive a reward
R. If they both defect, they receive a smaller reward P. If one agent defects while the
other cooperates, the agent that defected receives the highest reward T and the agent
that cooperated receives the smallest reward S. The generalized form of PD requires
following conditions:

T > R > P > S

The payoff relationship R > P implies that mutual cooperation is superior to mutual
defection, while the payoff relationships T > R and P > S imply that defection
is the dominant strategy for both agents. We implemented the iterated version of
this game (IPD), where agents successively play this game and remember previous
actions of their opponent. Classical RL agents would systematically tend to the Nash
equilibrium [Sandholm and Crites, 1996] that consists in always choosing defection.

We implemented an IPD with payoff T = 1, R = 0.6, P = 0, S = −1. Table 4.1 displays
the payoff matrix of this game. Each game last 1000 iterations. At each iteration t, agent

Cooperate Defect
Cooperate 0.6, 0.6 -1, 1
Defect 1, -1 0, 0

Table 4.1 – IPD payoff matrix

i chooses action ati ∈ {cooperate, defect} and receives a signal oti ∈ {OR,OS ,OT ,OP}
associated with the corresponding reward (Ri(OS) = S, etc). Agent i also receives the
action and the observation of the other agent, atj and otj . But agents are not aware of
the payoff matrix that defines the rewards of the other (in fact, it is the same).

The Q-learning behavior of agents was implemented with parameters γ = 0.8, η = 0.05
and actions were chosen using the Gibbs softmax method:

a ∼ P[a|o] = eτQ(o,a)∑
b e
τQ(o,b)

With temperature parameter τ = 5.
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4.3.7 Results and discussion

Pure Q-learning

We first tried to let our agents behave without expressing their objectives and with no
intrinsic rewards for empathy or gratitude (α = β = 0). As expected, agents quickly
tend to the Nash equilibrium and always defect (see figure 4.2). Each agent learned
a wrong reward function for the other. Table 4.2 shows the average resulting reward
functions learned by the agents over 50 IPD game with 1000 iterations. We can see that
with variances agents successfully learned that the other has a negative reward S, but,
since the other was always defecting at the end, both thought that the other had strong
positive reward P that is, in fact, null (see column P of table 4.2).

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.34 -0.13 0.90 -0.75
σ2 0.39 0.52 0.16 0.13
R̂2:1 0.25 -0.16 0.92 -0.77
σ2 0.36 0.46 0.15 0.094

Table 4.2 – Pure Q-learning (α = 0, β = 0). Average learned other’s reward function
by agents 1 and 2 over 50 IPD games and variances. We can see that with small variances
agents successfully learned that the other has negative reward S, but since the other was
always defecting at the end, both thought that the other had strong positive reward P
that was, in fact, null (see yellow cells).

Q-learning with empathy & gratitude

Gentle vs gentle: Here we look at the behavior of agents where both receive positive
intrinsic rewards for empathy and gratitude (α = 0.9, β = 0.3). Paradoxically, it sped
up Nash equilibrium’s attraction (see figure 4.3 A). As in pure Q-learning situation,
both agents learned a false reward function where P is high for the other (see column P
of table 4.3 A). Indeed, they were intrinsically rewarded by empathy while they were
defecting. Furthermore, as they also learned that the other is punished while they both
cooperate (see column R of table 4.3 A), they were intrinsically punished while they
cooperated.

Aggressive vs aggressive: This time we looked at the opposite situation, where both
agents were intrinsically punished by empathy or gratitude (α = −0.9, β = −0.3). Again
paradoxically, it slowed down Nash equilibrium’s attraction (see figure 4.3 B). For the
same reason: since both agents learned the other is rewarded by P , they were intrinsically
punished when they defected while the other was cooperating (see column P of table 4.3
B).
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Figure 4.2 – Pure Q-learning (α = 0, β = 0). (blue) Average trajectory of defect-
cooperate ratio over 50 IPD games and variances. +1 represents a full cooperation (both
agents cooperate) and -1 represents a full defection (both agents defect). The trajectory is
computed with an exponential moving average of this ratio. (red) +/- standard deviation.

A

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.39 -0.28 1. -0.69
σ2 1.9e-01 2.2e-01 1.7e-27 7.8e-02
R̂2:1 0.56 -0.32 0.99 -0.62
σ2 1.6e-01 2.5e-01 7.7e-08 9.6e-02

B

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.79 -0.23 0.58 -0.41
σ2 0.073 0.14 0.16 0.089
R̂2:1 0.65 -0.16 0.55 -0.37
σ2 0.14 0.16 0.15 0.083

Table 4.3 – A: Gentle vs gentle (α = 0.9, β = 0.3). B: Agressive vs agressive
(α = −0.9, β = −0.3). Average learned other’s reward function by agents 1 and 2 over
50 IPD games and variances. We can see that with small variances agents successfully
learned that the other has negative reward S, but since the other was always defecting
at the end, both thought that the other had strong positive reward P that was, in fact,
null. Furthermore, they also learned that the other was punished while they were both
cooperating and receiving reward R (see yellow cells).
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Figure 4.3 – A: Gentle vs gentle (α = 0.9, β = 0.3). B: Agressive vs agressive
(α = −0.9, β = −0.3). (blue) Average trajectory of defect-cooperate ratio over 50 IPD
games and variances. +1 represents a full cooperation (both agents cooperate) and -1
represents a full defection (both agents defect). The trajectory is computed with an
exponential moving average of this ratio. (red) +/- standard deviation.

Expressing objectives with empathy & gratitude

Here we implemented the expressing-objectives behavior described in section 4.3.4. The
choice of the threshold θ that determines if the previous reward was worth to repeat the
previous action is tricky in the case of IPD. If P < θ ≤ R , then agents always cooperate.
Indeed, as soon as both agents defect, they simultaneously change to cooperation and
keep cooperating till the end. For a similar reason, if P ≥ θ, then, if both agents start by
cooperation, they always cooperate otherwise they always defect. In both cases, they can
not efficiently learn the reward function of the other. This singularity comes from the
fact that agents just have two possibilities of action. To avoid this problem, we used a
random threshold θ that is, with probability p = R, higher than R and with probability
1− p smaller than R (which amounts, in our case, to take θ uniformly in [0;1]). In a way,
this stochastic choice represents the hesitation of agents between two temptations: to be
content with R or to focus on maximal reward T .

In our simulations, at the beginning (from t = 0 up to t = 300) both agents are following
Q-learning behavior. Then, during a phase (from t = 301 up to t = 700) they express
their objectives using the algorithm of section 4.3.4. Finally, assuming they had time to
learn about each other, they move back to Q-learning till the end (from t = 701 up to
t = 1000).

Only empathy: we first look at the resulting behavior when both agents just receive
intrinsic reward for empathy (α = 0.9, β = 0). As a result, at the beginning agents were
attracted by Nash equilibrium. Then, while they were expressing their objectives, in
average they defected as much as they cooperated. After this expressing phase, agent
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could better understand each other’s objectives (see table 4.4 A) and, led by intrinsic
reward for empathy, they started to always cooperate (see figure 4.4 A).

Only gratitude: this time both agents just receive intrinsic reward for gratitude (α = 0.,
β = 0.9). As a result, at the beginning agents were attracted by Nash equilibrium. Then,
while they were expressing their objectives, they defected as much as they cooperated in
average. After this expressing phase, agent could not understand each other’s objectives
(see table 4.4, B) and although led by gratitude, they started to always defect (see
figure 4.4 B).

Empathy and gratitude: Finally we look at the resulting behavior when both agents
receive intrinsic rewards for both empathy and gratitude (α = 0.9, β = 0.3). Like
in only-empathy condition, agents successfully understood each other’s objectives (see
table 4.4 C). But adding the intrinsic reward for gratitude sped up the cooperation
after the expressing-objectives phase, increasing the frequency of double cooperation (see
figure 4.4 C).

Playing with empathy

Regarding results of subsection 4.3.7 it appears that with expressing-objectives phases,
empathy is a necessary and sufficient condition to reach cooperation, while gratitude
added to empathy stabilizes this cooperation. This is why we finally focused just on
empathy in order to explore all possible combination of the α parameters of both agents
(α1 for agent 1, α2 for agent 2). For that, we divided the area of possible values in a grid
of 20 values between -1 and 1 for both parameters α. We simulated 10 IDP games with
an expressing objectives phase for each of the 400 resulting combinations. We displayed
the average final defect-cooperate ratio (the same measure used for all figure in the
previous subsection) on a map reported in figure 4.4 D. We can see that cooperation only
occurs when both agents have a higher enough intrinsic reward for empathy (α >∼ 0.5
in this case). Interestingly, at the edge between cooperations and Nash equilibrium’s
defections, appears a balanced zone, where agents equally defect or cooperate (see green
area on figure 4.4 D).

4.4 Learning from a learner

Imagine two friends from different nationalities: Bob is French and Alice is Japanese.
During holidays, Bob is visiting Alice’s family and wishes to discover the Japanese culture.
One day, Alice’s grandfather decides to teach Alice and Bob a traditional board game.
Neither Bob nor Alice know that game. Unfortunately, Alice and her grandfather only
speak Japanese, while Bob only speaks French. However, Alice decides to learn the game
by playing against her grandfather. She hence practices the game until she is able to
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A

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.56 0.99 -0.92 -0.68
σ2 7.6e-02 3.0e-09 9.1e-02 1.0e-01
R̂2:1 0.54 0.99 -0.88 -0.72
σ2 9.3e-02 4.6e-10 9.5e-02 9.3e-02

B

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.58 -0.068 0.99 -0.68
σ2 5.3e-02 6.9e-02 3.9e-07 3.9e-02
R̂2:1 0.58 -0.064 0.99 -0.66
σ2 0.034 0.095 8.5e-4 0.034

C

T R P S
Truth 1 0.6 0 -1
R̂1:2 0.62 1. -0.95 -0.7
σ2 7.0e-02 1.8e-17 1.4e-02 8.6e-02
R̂2:1 0.55 1. -0.933 -0.77
σ2 7.7e-02 1.9e-17 2.2e-02 7.4e-02

Table 4.4 – A: Only empathy (α = 0.9, β = 0). B: Only gratitude (α = 0, β = 0.9).
C: Empathy and gratitude (α = 0.9, β = 0.3). Average learned other’s reward
function by agents 1 and 2 over 50 IPD games and variances. Between times t = 301
and t = 700 agents were following expressing-objectives behavior. Agents could learn
each other’s objectives and understood that T and R are positive rewards for the other.
As they finally always cooperated (because of empathy), they estimated other’s rewards
higher for R than for T (see yellow cells).

defeat him. As the old man was not an expert, she needed just a few trials to reach that
level. During that time, Bob was observing Alice’s strategy improvements. Now, we ask
the question: is Bob able to deduce the rules of the game and to derive his own strategy
that may outperform both Alice and her grandfather?

This question regards the accuracy of the inference of someone’s objective by observing
his behaviour: if the goal is perfectly recovered, then it is possible (with a longer training)
to even outperform the observed approach. In our educative HAI context, we aim to
artificially understand what is the perceived goal of an activity by a human or similarly,
how the human could understand the goal of the robot by observing its behaviour. In
contrast with previous IRL approaches, we do not suppose any agent to act in an optimal
way according to its goal. Here, we suppose that the observed agent is discovering the
activity and seeks, through exploration and exploitation, the best behavior to reach that
goal.
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Figure 4.4 – A: Only empathy (α = 0.9, β = 0). B: Only gratitude (α = 0, β = 0.9).
C: Empathy and gratitude (α = 0.9, β = 0.3). (blue) Average trajectory of defect-
cooperate ratio over 50 IPD games and variances. +1 represents a full cooperation (both
agents cooperate) and -1 represents a full defection (both agents defect). The trajectory
is computed with an exponential moving average of this ratio. Between times t = 301
and t = 700 agents were following expressing-objectives behavior. (red) +/- standard
deviation. D: Average final defect-cooperate ratio over 10 IDP games for a grid of 400
possible (α1, α2) combinations. In each game, agents were adopting expressing-objectives
behavior between time t = 301 and t = 700. Red areas correspond to combinations
that led to cooperation while blue areas correspond to combinations that led to Nash
equilibrium. In green areas, agents were equally defecting and cooperating.

4.4.1 LfL as an online IRL problem

Agents modelling is required in various fields of computational and social sciences in
order to predict behaviours for better coordination. In the reinforcement learning (RL)
paradigm, the behaviour of an agent is determined by a reward function. However, in
many cases, it is impossible for agents to share their reward functions. This is especially
the case in Human-Machine Interaction – or even Human-Human Interaction, because the
complexity of human objectives hardly translates in terms of quantitative values. Inverse
Reinforcement Learning (IRL) [Ng et al., 2000] addresses this problem by inferring a
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Figure 4.5 – In standard IRL, the goal is to recover the reward from demonstrated
trajectories that follow a stationary optimal policy (expert trajectory). In the LfL
setting, we aim at recovering the reward from trajectories of a learning agent that is
also discovering the problem. Such trajectories follow a sequence of sub-optimal policies,
assumed to improve with time (learner trajectories).

reward function so that it explains an agent’s trajectories in its state-action space. In
the standard approach, the observed agent (the expert) is thus supposed to follow an
optimal policy according to some unknown reward function and the observing agent tries
to infer that underlying reward function. The optimality assumption is essential in many
scenarios, especially in training robots at complex tasks requiring help from a human
expert. However, even if the expert’s policy is given, an infinite number of solutions
explains it, including the null reward function (for which any policy is optimal). Many
different approaches aiming at addressing this issue can be found in the literature based
either on game theory [Syed and Schapire, 2008], maximum entropy [Ziebart et al., 2008],
relative entropy [Boularias et al., 2011] or supervised learning [Klein et al., 2013], among
others.

Our first contribution is a new setting where an observed learner (Alice in our example) is
assumed to be currently learning the task and improving its (sub-optimal) behaviour over
time, while an observer (Bob in our example) is trying to infer the reward that the learner
optimizes. Such situations are found in many multi-agent scenarios where agents have to
mutually learn opponents goals in order to cooperate, and also in human-robot-based
education, when a human learns a task with the help of a robot. In one hand, it is
no longer possible to consider the observed agent as an expert (not even to consider
stationarity). In the other hand, we may have more information than from an optimal
behaviour. For example the learner will make (and hopefully correct) mistakes and
will show, more than what must be done, what must be avoided. In this section, we
focus on this situation and we introduce the Learning from a Learner problem (LfL).
It formalizes an IRL setting exploiting trajectories of a learning agent rather than
optimal demonstrations of an expert agent (Fig. 4.5). In this setting, the observer can
potentially learn the true reward provided by the environment and go beyond pure
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imitation, outperforming the learner.

Like in IRL, we make the assumption that the learner is motivated by a reward function
encoding its task. LfL thus aims at inverting policy improvements: from a sequence of
policies assumed to be improving w.r.t. some unknown reward function, the observer
has to recover the reward function that better explains the successive improvements.
Given the optimization algorithm assumed for the learner, different approaches and
solutions may be investigated. In our work, we focus on the case where the learner
improves a policy extracted from an underlying associated Q-function (see later for a
formal definition). From this, our second contribution is an approach based on entropy-
regularized RL, modelling the learner as performing soft policy improvements [Haarnoja
et al., 2018]. Under this assumption, we show that the reward function can be extracted
from a single policy improvement step, up to a shaping that does not affect the optimal
policy and which is specific to the improvement.

We then switch to a more realistic case of study where only trajectories in the state-action
space are observed and the successively improved policies must be inferred. Our third
contribution is an algorithm that directly learns the reward from sampled trajectories.
To demonstrate the genericity of our approach under controlled conditions, we study the
case of a learner in a discrete grid world, and that does not necessarily improve its policy
with soft improvements. Experiments on various continuous control tasks show that our
algorithm enables the observer to surpass the performance the learner obtained while it
was observed, without access to the true reward function. This confirms that the learned
reward is strongly correlated with the one provided by the environment and can lead to
better policies than imitation.

4.4.2 Problem setting

The LfL problem involves two agents: a learner (instead of the expert in IRL) and an
observer (instead of the apprentice in IRL). The observer perceives a sequence of states
s ∈ S and actions a ∈ A performed by the learner, and makes two assumptions:

• The learner ’s behaviour is motivated by a reward function r : S ×A → R.

• The learner is improving its behaviour according to r while being observed.

Formally, the learner is assumed to be improving its policy over time because it learns to
solve a Markov Decision Process (MDP)M = (S,A,P, r, γ) where S is a set of states,
A a set of actions, P(s′|s, a) a transition distribution, r(a, s) a reward function and γ
a discount factor. An observed policy π(a|s) models the probability that the learner
applies an action a while being in a state s. In that context, the presumed goal of the
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learner is the maximization of its expected cumulative discounted reward:

J (π) = Eπ

∑
t≥0

γtr(at, st)

 .
Based on this objective, we say that a policy π2 is an improvement of a policy π1 if and
only if J (π2) > J (π1). Then, the goal of the observer is to recover the reward function r
from the observed (supposedly) improving sequence of policies {π1 . . . πN} of the learner.

4.4.3 Greedy improvements

Under the dynamics P of the MDP and a policy π, the expected cumulative reward for
choosing an action a in state s is given by the Q-function:

Qπ(s, a) = Eπ

∑
t≥0

γtr(st, at)
∣∣∣∣∣s0 = s, a0 = a

 .
The assumption that improvements are based on a Q-function makes sense for two
reasons: i) many RL algorithms are based on the estimation of such a function, and ii) it
brings the notion of greedy improvement. Given a policy π1, we define the space G(π1)
of greedily-improved policies as follows:

π2 ∈ G(π1)⇔ ∀s π2(.|s) = argmax
π′(.|s)

Ea∼π′(.|s) [Qπ1(s, a)] .

By construction, such a pair of policies π1 and π2 meets the condition of the policy
improvement theorem, which guarantees that J (π2) > J (π1). Note that G(π1) may
only contain the deterministic policy π2(a|s) = 1{argmaxaQπ1(s, a)}. In general, RL
agents are exploring with non-deterministic policies, which makes the assumption that
an observed improvement is a greedy improvement incompatible with observing an
exploring behaviour. To address that issue, we place ourselves in the framework of
entropy-regularized reinforcement learning.

4.4.4 Recovering rewards from soft improvements

Entropy-regularized RL prohibits the emergence of deterministic policies (eg., see [Neu
et al., 2017]). A wide range of recent deep-RL algorithms use this principle, e.g. [Mnih
et al., 2016,Nachum et al., 2017,Haarnoja et al., 2017,Haarnoja et al., 2018]. We thus
model the learner under this framework. Formally, the entropy-regularized objective is:

Jsoft(π) = Eπ

∑
t≥0

γt (r(st, at) + αH(π(.|st)))

 ,
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where H refers to the Shannon entropy,

H(π(.|s)) = −Ea∼π(.|s) [ln π(a|s)] ,

and α is a trade-off factor that controls the degree of regularization. Based on this new
objective and following a policy π, the value of a state-action couple (s, a) is given by
the soft Q-function:

Qπsoft(st, at) =

r(st, at) + Eπ

∑
l>t

γl−t (r(sl, al) + αH(π(.|sl)))

 .
It is the unique fixed point of the associated Bellman evaluation equation:

Qπsoft(s, a) = r(s, a) + γEs′,a′
[
Qπsoft(s′, a′)− α ln π(a′|s′)

]
.

It can be shown that the space Gsoft(π1) of greedily-improved policies defined by Qπ1
soft as

in Eq. (4.4.3) is reduced to the unique stochastic policy defined by:

π2(a|s) ∝ exp
{
Qπ1

soft(s, a)
α

}
.

Such greedy improvements, known as soft policy improvements, serve as the theoretical
foundations of the Soft Actor Critic (SAC) algorithm [Haarnoja et al., 2018]. In the next
subsection, we will assume that an observed improvement is explained by Eq. (4.4.4) and
will note it as an operator SPIr : Π→ Π that depends on the reward function (and the
dynamics) of the MDP:

π2 = SPIr{π1}.

In subsection 4.4.4, we will show how to retrieve the reward function from two consecutive
policies, up to an unknown shaping. But first, we study what kind of shaping will induce
the same optimal policy.

SPI invariance under reward transformation

Soft policy improvements remain identical under transformations of the reward function
of the form r̄(a, s) = r(a, s) + f(s)− γEs′|s,a [f(s′)]. In other words, reward shaping [Ng
et al., 1999] can be extended to entropy-regularized RL.

Lemma 1 (Shaping). Let π ∈ Π be any policy, r1 : S ×A → R and r2 : S ×A → R be
two reward functions, and Qπ,r1

soft and Qπ,r2
soft be the associated soft Q-functions. Then, for

any function g : S → R, the two following assertions are equivalent:
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• (A) For all state-action couples (s, a):

r1(s, a) = r2(s, a) + g(s)− γEs′|s,a
[
g(s′)

]
,

• (B) For all state-action couples (s, a):

Qπ,r1
soft (s, a) = Qπ,r2

soft (s, a) + g(s).

Proof. Using the Bellman evaluation equation, we have

Qπ,r2
soft (s, a) = r2(s, a) + γEs′,a′

[
Qπ,r2

soft (s′, a′)− α ln π(a′|s′)
]
.

⇔ Qπ,r2
soft (s, a) + g(s)︸ ︷︷ ︸

=Qπ,r1
soft (s,a)

= r2(s, a) + g(s)− γEs′ [g(s′)]︸ ︷︷ ︸
r1(s,a)

+Es′,a′

Qπ,r2
soft (s′, a′) + g(s′)︸ ︷︷ ︸

Q
π,r1
soft (s′,a′)

−α ln π(a′|s′)



⇔ Qπ,r1
soft (s, a) = r1(s, a) + γEs′,a′

[
Qπ,r1

soft (s′, a′)− α ln π(a′|s′)
]
.

This proves the stated result.

An immediate consequence of this result is that shaping the reward this way will not
change greedy policies, and will induce the same (unique, in this regularized framework)
optimal policy.

Theorem 1 (SPI invariance under reward shaping). Let r1 : S×A → R, r2 : S×A → R
and g : S → R be such that

r1(a, s) = r2(a, s) + g(s)− γEs′|s,a
[
g(s′)

]
.

Greedy policies are invariant under this reward transform:

SPIr1{π} = SPIr2{π}.

Moreover, both rewards lead to the same optimal policy. Write π∗,j the optimal policy for
reward rj, j = 1, 2, we have that π∗,1 = π∗,2.

Proof. Let π′ = SPIr1{π}. We have, for any state-action couple,

π′(a|s) = exp{Qπ,r1
soft (s, a)}
Z(s)

= exp{Qπ,r1
soft (s, a) + g(s)}
Z(s) exp g(s)

= exp{Qπ,r2
soft (s, a)}
Z ′(s) .
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The last equations means that π′ = SPIr2{π}, and so SPIr1{π} = SPIr2{π}. To see that
both rewards provide the same optimal policy, it is sufficient to notice that an optimal
policy is the unique policy being greedy respectively to itself, that is π∗ = SPIr{π∗}. So,
SPIr1{π} and SPIr2{π} have necessarily the same fixed point.

Inverting soft policy improvements

Given two consecutive policies π̂1 and π̂2 and under the assumption of soft policy
improvement, there exists an underlying (unknown) reward function r such that π̂2 =
SPIr{π̂1}. The LfL observer ’s objective is to extract such a reward function that would
explain the whole sequence of observed policy changes {π̂1, ...π̂N}. In the ideal case of a
real soft policy improvement the reward function r can be deduced from two consecutive
policies, up to a shaping that is specific to the improvement.

Theorem 2 (Soft policy improvement inversion). Let π1 and π2 be two consecutive
policies given by soft policy iterations (π2 = SPIr{π1}). Then a reward r̄1→2(s, a)
explaining the soft improvement is given by

r̄1→2(s, a) =
α ln π2(a|s) + αγEs′

[
KL(π1(.|s′)‖π2(.|s′))

]
,

with KL(π1(.|s)||π2(.|s)) = Ea∼π1(.|s)[ln π1(.|s)
π2(.|s) ].

Indeed, there exists a function f1→2 : S → R such that

r̄1→2(s, a) = r(s, a) + f1→2(s)− γEs′
[
f1→2(s′)

]
,

and r̄1→2 has the same unique optimal policy as r.

Proof. Let π1 and π2 be two successive policies such that π2 = SPIr{π1}. This means
that, for any state s and action a, we have:

π2(a|s) = exp{Qπ1
soft(s, a)}
Z1(s)

where Z1(s) is a normalization factor. Taking the logarithm of this expression, we get:

α ln π2(a|s) = Qπ1
soft(s, a)− lnZ1(s) = Qπ1

soft(s, a) + f(s).

According to Lemma 1, this means that α ln π2(a|s) is the Q-function associated to the
shaped reward function r̄(s, a) = r(s, a) + f(s)− γEs′ [f(s′)] for the policy π1. Using the
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fact that this Q-function satisfies the Bellman equation, we have

α ln π2(a|s) = r̄(s, a) + γEs′,a′
[
α ln π2(a′|s′)− α ln π1(a′|s′)

]
= r̄(s, a)− αγEs′

[
KL(π1(.|s′)‖π2(.|s′))

]
⇔ r̄(s, a) =α ln π2(a|s) + αγEs′∼P(.|a,s)

[
KL(π1(.|s′)‖π2(.|s′))

]
.

The fact that both r and r̄ have the same optimal policy is due to theorem 1. This proves
the stated result.

Recovering state-only reward functions

If a shaping does not affect the optimal policy of the entropy-regularized problem, it
depends on the dynamics and may not be robust to dynamic changes [Fu et al., 2017].
In the case of a state-only ground-truth reward function, one simple solution consists in
searching for a state-only reward r̄ : S → R and a shaping f : S → R such that:

r̄1→2(s, a) = r̄(s) + f(s)− γEs′∼P(.|a,s)
[
f(s′)

]
= r̄(s) + sh(s, a).

If Eq. (4.4.4) holds everywhere, then r̄ equals r̄1→2 up to a shaping, and so equals the
ground truth r up to a shaping. For instance, r̄ and sh can be obtained by minimizing:

L(r̄, sh) =
∑
s,a

r̄1→2(s, a)− r̄(s)− sh(s, a)

2

.

This loss is convex in the case of linear parameterisations of r̄ and sh and particularly in
tabular discrete MDPs. Once Eq. (4.4.4) holds, r̄ is known to recover the ground truth
reward function up to a constant under deterministic environments [Fu et al., 2017].
However, in our general approach, we do not focus on state-only reward function and,
except in the empirical verification of this statement in our result subsection 4.4.6, we
aim at recovering a state-action reward function r̄(s, a).

Therefore, knowing exactly two consecutive policies and the whole model (the dynamics
P, the discount factors γ and the trade-off α) we can recover the reward function up to
a shaping, and even up to a constant if the reward is known to be a state-dependent
function.

4.4.5 Learning from improving trajectories

In practice, the observer has no access to the learner ’s sequence of policies {π1, ...πK},
but can only see trajectories of states and actions explored by the learner. Let’s assume
that the observer is given a set of trajectories {D1, ...DK}, following a set of unknown
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improving policies:

D1 = {(a1
1, s

1
1), . . . , (aT1 , sT1 )} ∼ π1

...
DK = {(a1

K , s
1
K), . . . , (aTK , sTK)} ∼ πK

Also in practice, the learner may follow a different learning approach than soft policy
iterations.

Trajectory-consistent reward function

The immediate solution is to infer the sequence of policies {π̂1, ...π̂K}, for example by
likelihood maximization, and then to learn a consistent reward function that explains all
policy improvements. Following Theorem 2, at each improvement, a first step is to recover
the sequence of improvement-specific shaped reward functions {r̄1→2, . . . , r̄K−1→K}.

Learning the target rewards

In practice, we found that training the targets r̄k→k+1(s, a) with separated networks for
the policy terms πk+1(a|s) and the divergence terms KL(πk(.|s′)‖πk+1(.|s′)) reduces the
variance of the targets and improves the quality of the learned rewards.

Policies are learned by maximizing the likelihood of trajectories with parameterized
distributions π̂θk , with an entropic regularizer that prevents the learned policy from being
too deterministic,

J ({θk}) =
K−1∑
k=1

∑
s,a∈Dk

ln π̂θk(a|s)− λH(π̂θk(.|s)).

Note that this regularization is not linked to the entropy used to soften the reinforcement
learning objective of Eq. (4.4.4). Divergences are learned afterward by training a
parameterized function ρωk(s) to minimize the loss:

L({ωk}) =
K−1∑
k=1

∑
s,a∈Dk

(
ρωk(s)− ln π̂θk(a|s)

π̂θk+1(a|s)

)2

.

Consistency loss

Then, we would like to have Eq (4.4.4) holding at each improvement k → k + 1 with
one consistent function r̄φ. This can be obtained by minimizing over φ and a set of
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Algorithm 7: Recovering trajectory-consistent reward
Input trajectories {D1, . . . ,DN}
for i = 1 to Nθ do
∀k, θk ← θk + ηθ∇θkJ ({θk}) // train target policies π̂θk

for i = 1 to Nω do
∀k, ωk ← ωk − ηω∇ωkL({ωk}) // train target divergences ρωk

for i = 1 to Nφ0 do
φ← φ+ ηφ∇φ

∑
a,s∼DK ln πφ(a|s) // initialize reward rφ = ln πφ

for i = 1 to Nφ;ψ do
φ← φ− ηφ∇φL(φ, {ψk}) // train reward
∀k, ψk ← ψk − ηψ∇ψkL(φ, {ψk}) // train shaping

parameters {ψk} the following loss:

L(φ, {ψk}) =
K−1∑
k=1

∑
s,a,s′∈Dk

(
r̄k(s, a, s′)− rφ(s, a) + shψk(s, s′)

)2

,

where r̄k(s, a, s′) = απθk+1(a|s) + αγρωk(s′) and shψk(s, s′) = fψk(s)− γfψk(s′). Notice
that contrary to subsection 4.4.4, we consider a reward function that depends on state-
action pairs. This makes initialization easier (see subsection 4.4.5) and allows separating
shapings that are improvement-dependant from the core common reward. This can also
give better empirical results, if the dynamics does not change [Fu et al., 2017].

In the case of discrete MDPs with tabular parameters for φ and {ψk}, this method
relies on policy inference accuracy: the longer the trajectories, the closer the reward
function to the ground truth. However, with larger environments, performing directly
the minimization of the loss L(φ, {ψk}) results in local minima that fail at generalizing
the rewards to unknown states.

Reward initialization

One simple and efficient trick to prevent this issue consists in initializing the reward
function with any standard imitation learning process based on the last observed trajectory.
For instance, assuming that the last two trajectories are optimal and by consequence
identical, the result of Theorem 2 would give ln πK(a|s) ∝ r̄K(s, a), so an initialization of
the reward function can be obtained under the form rφ(s, a) = ln πφ(a|s) by looking for
the parameter φ that maximizes the log-likelihood of the last trajectory. The resulting
reward function is then improved by searching for the set of parameters φ and {ψk}
that minimize the loss given by Eq. (4.4.5) over all observed trajectories, as shown in
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Algorithm 7.

4.4.6 Experiments

The quality of a recovered reward function r̄ is measured by the maximal score of an agent
trained in the same environment but rewarded by r̄ instead of the true rewards. While
standard IRL recovers a reward function that ideally leads an apprentice to the observed
expert’s policy, we expect a reward recovered from LfL to lead an observer to outperform
the observed learner, which was stopped before reaching maximal performance.

Grid world
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Figure 4.6 – Grid world. The middle point is avoided because of the dynamics rather
than the associated reward. At the down-left corner, a small reward attracts the path
that leads to the objective, situated at the down-right corner.

Fig. 4.6 displays the discrete and deterministic grid MDP we consider for illustrating
our theoretical results. We use a discount factor γ = 0.96 and a trade-off factor α = 0.3.
Our first verification involves two policies exactly known, one being uniform over the
action space and the other being the immediate soft policy improvement:

π1(.|s) = U(A) and π2 = SPIr{π1}.

We apply Theorem 2 to recover a reward function r̄1→2 and we verify that:

• the score of an agent trained with r̄1→2 is maximal (Table 4.5);

• a regression searching for a state-only reward function r̄φ recovers the ground truth
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(Fig. 4.7).
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Figure 4.7 – Ground truth reward (up), state-action function r̄1→2 from Theorem 2
(middle) and state function r̄φ after regression described in subsection 4.4.4 (down). r̄φ
recovers the ground truth up to a small constant (not visible on the color scale).

We also use this discrete environment to show the genericity of our model w.r.t. the
learner ’s RL algorithm, comparing the results from different RL algorithms used by
the learner : soft policy iterations (SPI) (as expected by the model), soft value itera-
tions [Haarnoja et al., 2017] (SVI), Q-learning [Watkins, 1989] and random improvements,
generated by randomly interpolating between the uniform policy and the optimal policy.
In all cases, the observer models the learner as performing soft policy iterations with
αmodel = 0.7, while the true parameter used for soft value and policy iterations as
well as for the score evaluations is α = 0.3. The policy associated to our Q-learning
implementation is a softmax distribution exp{Qα }. Unlike the previous experiment, here
the observer has no access to the exact policies. Instead, at each learner ’s policy update,
the observer is provided with a trajectory of 1000 new sampled state-action couples and
we use Algorithm 7 to recover a state-action reward r̄φ(s, a). Results are reported in
Table 4.6. It shows that LfL is rather agnostic to the actual learner ’s RL algorithm and
the observer outperforms or equals the learner, whatever the original RL algorithm is.
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Table 4.5 – Comparison of score J (π) between the learner ’s two policies and an observer
using an optimal policy based on the recovered state-action reward r̄1→2 or the state-only
reward r̄φ after regression described in subsection 4.4.4. Regrets are computed with
respect to the maximal entropy-regularizeed return.

agent used reward policy score regret
optimal r π∗soft 5.68 0
learner r π1 -19.7 25.4

r π2 0.72 4.95
observer r̄1→2 π∗soft 5.68 .e-13

r̄φ (state-only) π∗soft 5.68 .e-10

Table 4.6 – Comparison of score J (π) between the learner ’s best policy and an observer
using an optimal policy based on the recovered reward function r̄φ from observed
trajectories of 1000 state-action couples at each improvement. Scores are averaged
over ten runs. The second column reports the number of observed improvements (K)
performed by the learner for each algorithm.

learner K learner score observer score
SPI 3 4.18 4.68 ± 0.24
SVI 20 3.59 4.73 ± 0.61

Q-learning 50 3.99 ± 0.88 3.65 ± 0.78
rand. impro. 10 1.76 ± 2.64 3.95 ± 0.49

Continuous control

To evaluate how our approach holds when dealing with large dimensions, we use the
same experimental setting on continuous control tasks taken from the OpenAI gym
benchmark suite [Brockman et al., 2016]. The learner ’s trajectories are obtained using
Proximal Policy Optimization (PPO) [Schulman et al., 2017]. Using PPO is motivated by
two reasons: the learned policy is stochastic (as expected in our entropy-regularization
model) and it performs rollouts of exploration using fixed static policies, which helps
an observer to infer the sequence of policies (the problem is harder when the observed
trajectories are continuously updated after each action, for example as with SAC). In
order to accelerate the learner ’s improvements, we parallel 32 environment explorations
at each step. However, the trajectories given to the observer only contain 1 of these
32 explorations, resulting in observations containing 2048 state-action pairs for each
improvement.

Once the observer has recovered a reward function using Algorithm 7, it is also trained
using PPO and paralleling 32 explorations at each step. The observer starts with a
policy that clones the learner ’s last observed rollout by maximizing the likelihood of
the trajectory. In Fig. 4.8 we compare the evolution of the learner ’s score during its
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Table 4.7 – Comparison between standard IRL based on the best rollouts and our
LfL solution based on the whole learner ’s observed improvements. To obtain AIRL
results, the observer is given 50 trajectories and to obtain the reported DAC results,
the observer needs at least 4 trajectories. AIRL and DAC values are manually reported
from the respective paper results and are obtained with near-optimal experts trajectories
(corresponding to 1). In our LfL setting, the learner has access to only one rollout of
2048 state-action couples at each improvement (the last improved policy corresponds to
1).

Environment AIRL DAC LfL (inverted SPI)
Reacher / 0.99 1.54 ± 0.11
Hopper / 0.99 -0.99 ± 0.78

HalfCheetah 1.01 1.15 1.40 ± 0.25
Ant 0.80 1.12 1.53 ± 0.60

observed improvements, and the evolution of the observer ’s score when trained on the
same environment and using the recovered reward function (comparison is done on the
original environment reward). We also compare in Table 4.7 the maximal observed score
of the learner with the final score of the observer, and the score that would be obtained
using standard IRL based on the last observed policy of the learner. IRL scores are taken
from figures in [Kostrikov et al., 2018] (Discriminator Actor Critic, or DAC) and tables
from [Fu et al., 2017] (Adversarial Inverse Reinforcement Learning, or AIRL).

We normalize scores by setting to 1 the score of the last observed policy and to 0 the
score of the initial one, in order to measure improvements. Yet, it is worth noting that
the corresponding absolute scores are different for IRL and LfL, as we tend to stop earlier
the learning agent. However, it is quite plausible that the expert trajectories used in
these IRL papers are not optimal, and could be improved. Anyway, the goal of these IRL
methods is to imitate a behavior, they are not designed to do better than the observed
agent, and the result of Table 4.7 are thus quite expectable.

On most of the environments, LfL learns a reward that leads to better performance
for the observer than for the last observed policy from the learner. LfL only fails at
recovering a reward function for the Hopper environment. This failure could come from
the fact that this simulated robot often falls on the ground during the first steps of
training, resulting in strongly absorbing states perceived as rewarding by the observer.
Assessing this possible issue is left for future work.

Implementation details

In the grid-world experiments, we use tabular representations for φ and ψk. In that
simple case, KL divergence terms are explicitly computed from estimated policies and
dynamics instead of using a third set of parameters, and the reward initialization step is not
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Figure 4.8 – (Red) Evolution of the learner ’s score during its observed improvements
and (Blue) evolution of the observer ’s score when training on the same environment and
using the recovered reward function. Scores are normalized with respect to the rewards
associated with the first and last observed behaviour (0 corresponds to the first observed
policy while 1 corresponds to the last observed policy). The observer starts with a policy
that clones the learner ’s last observed policy by maximizing the likelihood of the last
trajectory (in that way, the observer has already used the number of steps performed by
the learner to train itself and does not start from scratch).

necessary. Policy estimation is performed by maximum likelihood with tabular parameters
θk as described in Algorithm 7. We use 10 gradient steps containing the full observed set
of transitions for each trajectory Dk. For the reward consistency regression, we use 200
gradient steps, each one summing the losses across all observed improvements. In both
policy and reward regressions, we use Adam gradient descent [Kingma and Ba, 2014] with
learning rate 1e−3. The random improvements are generated by randomly interpolating
15 points between the uniform and the optimal policies, and the 10 improvements in
Table 4.6 mean that we provide the observer with sampled trajectories from the 10 first
policies.

In the continuous control experiments, we use a neural network with one hidden layer for
parameters ψk and ρk, both sharing across all k the latent layer containing 128 units with
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hyperbolic tangent activation. We use the actor parameters as described in PPO’s original
implementation [Schulman et al., 2017] for reward parameters φ as well as for policies
parameters θk. Our PPO implementation conserves the set of hyperparameters described
in the original paper, at the exception that we parallel 32 environment explorations at
each step. All gradient descents of Algorithm 7 are performed across batches containing
the whole 2048 state-action pairs for each improvement, using Adam descent with
learning rate 1e−3. Like in the discrete case, the algorithm is run by modelling SPI
with αmodel = 0.7. We use 1000 steps for the policy regressions, 100 steps for the KL
divergence regressions, 3000 steps for the reward initialization and 1000 steps for the
reward consistency regression. Depending on the environment, we provide the observer
with different sets of learner trajectories. For Reacher that converges quickly we select
early PPO updates from 10 to 20 while for HalfCheetah we rather select updates from
30 to 40. For both Hopper and Ant which give more noisy trajectories, we select updates
from 10 to 30 with an increment of 5 updates. The observer is trained across 30 updates
of PPO, summing a total of 2 million environment steps.

4.5 Related work

4.5.1 Inverse Reinforcement learning

To the best of our knowledge, observing a sequence of policies assumed to improve in
order to recover the reward function is a new setting. Here the goal is not to imitate the
observed agent as in standard imitation learning or IRL, since it is not supposed to follow
an optimal behaviour (even at the end of the observation). However, we discuss links to
these two fields and especially to IRL [Ng et al., 2000], since these methods are sharing
the aim of learning a reward function from observations of an other agent’s behaviour.

In this work, we place ourselves in the framework of entropy-regularized RL and model
the observed policies as following a softmax distribution weighted by a state-action value
function. This model alleviates the ill-posed nature of IRL. It is actually induced by
the hypothesis of maximum entropy [Ziebart et al., 2008]. Recent approaches, based on
generative adversarial networks (GANs) [Goodfellow et al., 2014] also use the entropy-
regularization framework to solve the imitation learning problem (explicitly mentioning
the learning of a reward or not). Generally speaking, these methods train an apprentice
with a discriminator-based reward function optimized to induce policies that match an
observed behavior. This is the basis of Generative Adversarial Imitation Learning [Ho and
Ermon, 2016] (GAIL) and GAN-based Guided Cost Learning [Finn et al., 2016] (GAN-
GCL). GAN-GCL has the advantage to propose a structured discriminator D(τ) for an
observed trajectory τ , that directly translates the reward function R(τ) = ln(1−D(τ))−
lnD(τ). Adversarial Inverse Reinforcement Learning [Fu et al., 2017] improves this reward
by learning, with the discriminator, both the reward function and the possible shaping
as a separated state-function. Our work shares similarities with this last approach as we
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also learn separately the reward from the shaping. Discriminator Actor critic [Kostrikov
et al., 2018] (DAC) suggests a correction to the bias created by absorbing states (that
we mentioned in subsection 4.4.6), and combines Twin Delayed Deep Deterministic
policy gradient [Fujimoto et al., 2018] (TD3) with AIRL, resulting in a improvement in
sample-efficiency. Another variant of AIRL, Empowerment-based Adversarial Inverse
Reinforcement Learning [Qureshi et al., 2019] (EAIRL) uses a structure for the shaping
term based on a quantification of the observed agent’s empowerment, defined by its
ability to influence its future. This modification allows to learn disentangled state-action
reward functions that significantly improve transfer learning results.

Our method to solve LfL is split in two steps of supervised classification: one estimates
the policies, the other learns the rewards based on the policy discriminating losses (the
log probabilities). This structure is sharing close similarities with Cascaded Supervised
IRL and Structured Classification for IRL (SCIRL) [Klein et al., 2012,Klein et al., 2013]
but fundamentally differs by fact that LfL doesn’t assume the Bellman optimality but
soft policy improvements.

Policy improvements is also somehow used in preference-based IRL [Christiano et al.,
2017, Ibarz et al., 2018] where a learning agent frequently asks a human to chose the
best between two policies, and improves its knowledge about the reward function from
this preference. Our solution for LfL could certainly be used for human preference-based
learning and vice-versa. Yet this work differs from LfL in to ways: i) the agent inferring
the reward function needs information about its own policies, and ii) the learned reward
function has no intent to approach the ground truth even up to a shaping. Similarly,
score-based IRL [El Asri et al., 2016] that learns a reward from rated trajectories requires
human intervention to annotate trajectories and doesn’t guarantee to recover the actual
environment reward.

4.5.2 Cooperation and mutual modelling in stochastic games

Learning cooperative behaviours in a multi-agent setting is a vast field of research, and
various approaches depend on assumptions about the type of games, the type and number
of agents, the type of cooperation and the initial knowledge.

When the game’s dynamic is initially known and in two-player settings, an egalitarian
solution can be obtained by mixing dynamic and linear programming. Therefore, a
polynomial-time algorithm can be used to solve repeated matrix games [Littman and
Stone, 2005], as well as repeated stochastic games [Munoz de Cote and Littman, 2008].
A safe way to cooperate without taking the risk of being fooled by a selfish agent consists
in choosing between maximizing oneself reward (being competitive) or maximizing a
cooperative reward, for example by inferring opponents intentions [Kleiman-Weiner et al.,
2016].
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In games inducing social dilemmas and when the dynamic is accessible as an oracle,
cooperative solutions can also be obtained by self-playing and then applied to define a
Tit-For-Tat behaviour that forces cooperation [Lerer and Peysakhovich, 2017], even when
opponent actions are unknown, since in that case the reward function already brings
sufficient information [Peysakhovich and Lerer, 2018].

When the dynamic is unknown, online MARL can extract cooperative solution in some
non-cooperative games, and particularly in restricted resource appropriation [Pérolat
et al., 2017]. Using alternative objectives based on all players reward functions and
their propensity to cooperate or defect improves and generalizes the emergence of
cooperation in non-cooperative games and limits the risk of being exploited by purely
selfish agents [Hughes et al., 2018].

A recent approach, called Learning with Opponent Learning Awareness (LOLA), consists
in modelling the strategies and the learning dynamics of opponents as part of the environ-
ment’s dynamics and to derive the gradient of the average return’s expectation [Foerster
et al., 2018]. If LOLA has no guaranty of convergence, a recent improvement of the gradi-
ent computation, which interpolates between first and second-order derivations, is proved
to converge to local optimums [Letcher et al., 2018]. LOLA is therefore a first-order ToM
approach for influencing cooperation in selfish agents. However, it requires the knowledge
of the other agents rewards functions and could not be used in our setting, but is not
incompatible with our LfL algorithm. Merging LOLA and LfL is discussed as an exciting
future work perspective in chapter 5. A similar opponent modelling approach, Modeling
Others using Oneself [Raileanu et al., 2018], suggests to learn the goal of the opponent
into a latent and arbitrary representation, that would explain the observed updates as
if this goal representation was given as input of the observing agent. Like in LfL, the
goal is inferred from the observed agent’s sub-optimal learning behaviour. However, this
approach models qualitative goals and requires to experience “oneself” rewards in order
to model others’ goals.

4.6 Discussion

In section 4.3 a cognitive architecture enabling a second order of theory of mind for
social agents. This architecture is not recursive in the sense that each agent develop
models for itself, others or itself perceived by others and none of these models recursively
enable a theory of mind. Agents are modeled as RL-agents and use IRL to model others
or themselves seen by others. In this framework, it is possible to design a decision
making algorithm aiming to enable agents to express each other’s objectives. We add
two intrinsic rewards based on empathy and gratitude, empathy being the ability to feel
others rewards while gratitude is the ability to feel how others would estimate its own
rewards. Through an 2-agent system based on IPD game, we show that when agents can
express their objectives, the intrinsic reward for empathy is a necessary and sufficient
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condition to promote cooperation, while gratitude added to empathy seems to speed up
and to stabilize this cooperation.

In section 4.4, we introduced the "Learning from a Learner" (LfL) problem, a new setting
that aims at recovering a reward function from the observation of an agent that improves
its policy over time. Unlike standard Inverse Reinforcement Learning approaches, LfL
does not intend to imitate the observed behaviour, but to learn a reward function that
leads to actually solve the (unknown) task and hence to potentially outperform the
observed behaviour.

We propose a first approach to address this problem, based on entropy-regularized
reinforcement learning. For this purpose, we model the observed agent (the learner)
as performing soft policy improvements and we show that under this assumption, it is
possible to recover the actual reward function up to a shaping. We propose an algorithm
that alleviates this shaping by learning a reward function which explains consistently
a set of observed trajectories generated by improving policies. Our experiments show
the rightness of our theoretical assertions as well as the genericity of the method when
facing different types of RL agents and in the case of continuous state-action spaces.

Although we do not claim we solved the general LfL problem, we consider the results
presented in this work as inspirational for further works. They indeed show that
observation of a learning agent may lead to enhanced agents that outperform their tutor.
To go beyond our findings, we think that our method can be significantly improved
by addressing common IRL issues such as absorbing states bias or using learner’s
empowerment. Also, different models than soft policy improvement could be worth
investigating.

4.6.1 Applications to pedagogical activities

As humans, even without any common language, we still use gestures and facial expressions
to communicate our objectives. But we meet a problem in HRI, where human facial
expressions are not always understood by machines. It is even more difficult for robots
to ground their objectives without straightforward verbal explanations since they can
not always express facial signals. In such cases, being able to express their objectives
by making explicit goal-directed actions (e.g. exaggerating a behavior [Nikolaidis et al.,
2016c]) could facilitate mutual understanding and even infuse machines with stronger
illusions of life [Thomas et al., 1995].

We make the assumption that the behavior used to express an objective could also be
understood by humans and hence improve HRI, especially in cooperative tasks. An
interesting perspective for future work would be to explore HRI testbeds, using e.g. a
PD game within a human vs robot context modelling an educative scenario. Indeed, one
can see a pedagogical activity as a social dillema where the studient can rather cooperate

111



Chapter 4. Models for mutual understanding in learning agents

and behave as expected (hopefully leading to an aquisition of a pedagogical skill) or
defect, either by misbehaving2 or by quitting the activity before it is finished.

2A typical misbehaviour encountered with the CoWriter activity presented in chapter 2 was to scribble
random drawings on the tablet.
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This thesis was written in an unusual order: it started with experimental studies and
finished with theoretical suggestions, while common methods start with the theory and
finish with experiments. Actually, the first part of this thesis can be viewed as an
observational study aiming to highlight eventual issues that could be improved with a
better robot implementation. We argued at the end of chapter 2 that an important issue
remains the misunderstanding between the human and the robot. As suggested by the
CSCL mutual modelling theory [Sangin et al., 2007], we explain such misunderstanding
in collaborative tasks by a divergence between the perception of the goal in the human
and in the robot.

The following two parts are an intent to fix these issues, which we formalize in a theoretical
framework. In chapter 3, we introduce an architectural approach to promote the human-
robot mutual understanding, which we define as the ability in agents to predict other
agents and to be predictable by other agents. Our approach suggests to provide a robot
with three models: one of robot itself, one for the human and one for the robot as it may
be perceived by the human. Finally, in chapter 4, we propose computational approaches
to implement mutual understanding reasoning models within the suggested architecture.
The next step would consist to confront our theoretical claims with the real world, which
is let for future work.

5.1 A recap of contributions

Given the chapter, this thesis contribute to different fields, from applied HRI to theoretical
multi-agent learning. In order to summarize the main accomplishment,
Chapter 2 brings:

• the development of a novel Human-Robot pedagogical activity for handwriting
skills acquisition, based on the learning-by-teaching approach,
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• long term studies of the impact of the child’s perception of the robot through
interactions,

• a study of the impact of spatial positioning on the child’s perception of the robot,

• a device set-up to estimate the engagement of a child during a pedagogical interac-
tion with a robot,

Chapter 3 brings:

• an architecture based on three models: one-self; the other; one-self as perceived by
the other,

• a study of the impact of different arbitrary behaviours based on this architecture,

Chapter 4 brings:

• a theoretical framework to implement mutual understanding in multi-agent interac-
tions,

• an highlighting of the importance of the expression of one’s motivation to others
for collaboration,

• an algorithm to understand the motivation of a learning agent from its behaviour.

5.2 Perspectives

This whole work is a suggestion for a new robotic implementation for improving the
mutual understanding in educational interactions. We see a pedagogical Human-Robot
activity as a game involving a reward function that represents the intrinsic goal of both
agents. The goal of the robot is to optimize the progress of the child at the skill targeted
by the activity. The goal of the child is a complex combination of curiosity, amusement,
etc. In no way it can be predicted nor generalized. However, what we can do is to infer it
online, modelled as a function mapping values of preference to the states of the activity,
the internal states of the human and the states of the interaction. RL is a framework
describing the behaviour of an agent trying to reach its goal by seeking the highest values
of such a function.

Therefore we propose to combine RL and IRL for inferring the the motivation of the
human and facilitating human’s inference of the robot’s motivation as implemented in
Section 4.3. Since the human is probably discovering, at the beginning of the interaction,
both the activity and the robot, one can no longer assume the human as an expert: the
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robot must learn the human’s reward function from a learner, which is made possible by
the algorithm developed in Section 4.4 of Chapter 4.

More than simply improve the mutual understanding, having information about a human’s
motivation could be used to shape the human’s behaviour with an approach similar to
LOLA [Foerster et al., 2017] for example to optimize his learning rate.

The missing chapter is the implementation of our suggested method in a simple human
robot interaction, like a real-world prisoner’s dilemma. Then, the adaptation to a
pedagogical interaction, like CoWriter as described in Chapter 2 and to compare, just
like in Chapter 3, the quality of the interaction between three condition:

• (a) no effort for mutual understanding,

• (b) a first-order effort (inferring the the motivation of the human),

• (c) a second-order effort (inferring the the motivation of the human and facilitating
human’s inference of the robot’s motivation)

We conjecture that this proposal, or any similar approach, will conduce to a strong im-
provement of Human-Robot interactions and therefor, in pedagogical contexts, contribute
to the efficiency of the new emerging educational methods promoted by the robotics for
education community.

5.3 Discussion: on the limitations of socially intelligent
robots.

After reading this thesis, I imagine the readers with two possible mental states:

The first type of state belongs to the optimistic readers – probably young and fearless
Ph.D. students, who would have jumped the slovenly parts of my work, preferring
the simplest (and most human) part (chapter II), or maybe the most technical (and
most attractive) part (chapter IV). Such a reader may not realize how disconnected are
these two parts, and how obscure is the rest. I like this reader. But he may have been
convinced by some appealing aspects and interested to study such similar questions. I
am sorry for him if he tries to make a continuity or if he starts working in a resembling
direction. The reasons are not because of the instability of my results and statements – I
do believe most of them. But rather the unreasonable limits of what can be done with a
robot being socially intelligent with a human, given the current state of the sciences and
technologies.

The second type of state belongs to the more careful and less naive readers, in-
cluding the jury of the present thesis and probably myself, as I am writing these lines. I
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Figure 5.1 – Nao Figure 5.2 – Sophia
Figure 5.3 – Ideal look
(from movie Ex-Machina)

Figure 5.4 – Illustration of the uncanny valley with 3 different robot designs. We like
Nao (left), but we don’t like Sophia (midle). Idealy, we would not be repelled by a 100%
human-like robot (right).

am not disappointed of my work. I am even proud of what I achieved, given my actually
hopeless initial research question:

Can we provide a robot with a 2nd order of ToM, in order to improve pedagogical
HRI?

I did my best, constantly suffering because of this huge offset between what I thought I
was going to create, and what I was actually doing: hard-coded robots, in hard-coded
settings, with only 10 subjects for each tested conditions. Regarding the maths and
simulations in chapter IV, theoretical areas are obviously more comfortable than
real-world experimental studies. But the theory expelled my thesis work into another
galaxy, very far from the initial question.

In this very last discussion, in order to bring some pieces of advice to the unlucky first
type of reader, and in order to explain why my work was not that badly knitted given
the difficulty of the task to the second type, I will try to show what aspects were hopeless
since the very beginning.

5.3.1 The Uncanny valley of artificial intelligence

Well known in field of designing humanoid robots, the Uncanny valley describes the
paradoxical repellent aspect of a robot, when it is close to the look of a human but
still quite different [Reichardt, 1978]. As illustrated by figure 5.4, while Nao robots are
appreciated by everyone as they remains far from a real human look, this is absolutely
not the case with Sophia, a much more human-like but imperfect humanoid. However, in
theory, one may not be repelled by a perfectly human-like robot.

I am convinced that a similar effect exists regarding the level of social awareness
in a robot. Reminding results from Chapter III, the random robot was the preferred one
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according to all Godspeed’s questions. Also, the fully deterministic robot was appreciated
compared to the adversarial one. Another interpretation of these results is the fact that
we expect a robot to be simple minded. More generally, imagine a robot that starts to
talk a to express a convincing intelligence, and suddenly it start repeating random worlds.
There is an obvious frustration that would justify to dislike this robot. But beyond this
frustration, some deeper effects may accentuate the repulsion. An artificial intelligence
represents more than just a tool. Probably because of the science fiction culture in books
and movies, it is often imagined as a thinking thing, somewhere between an animal
and a god. Like something that have the computational power to read thousand of
books in a second and to assimilate every fundamental science concepts, with eventually
some limitation understanding literature and arts. When I present a programmed robot
to people without engineering backgrounds, they usually imagine it either absolutely
smart like in science fiction, or perfectly dump like a washing-machine that can talk.
Unfortunately, in most cases the robot reacts with an "if" loops and makes choices in
a limited set of possible sentences: this is closer to the washing machine. Sometimes,
smarter robots use dialog systems, but they never link what they hear with what they
perceive (sensors, camera etc). As a result, the robot looks like a Siri or an Amazon
assistant with a fake body. Anyone would prefer a parrot-robot telling random and
unexpected sentences at random and unexpected times: at least, it is less boring.

5.3.2 Online learning in large dimensions

Another strong limitation in socially intelligent robots: the fact that no actual algorithm
is able to learn large-dimensional signals in real time, like any animal do. It is not even
possible that such behaviours will be artificially possible one day: behind any animal,
billions of year with billions of samples have been trained via natural selection. There
are no reason that such a computational power can be reproducible at a human-life scale.
One alternative to "pure" learning would be the implementation of a strong library of
priors in order to cleverly reduce the dimension and allow online planing and long-term
memory.

Back to our concerns, there are no chance that a robot could learn second-order –
even first order – reasoning without a huge quantity of hard-coding and pre-scripted
reactions: one cannot truly speak of a ToM. As a consequence, there are no reason that
the effect of such a scripted robot may have the (positive) impacts on an interaction,
that we could expect with a real ToM (for ex, using a wizard of Oz scenario).

For this matter, I would not encourage immediate research in the area of applica-
tion of artificial ToM to HAI. I still hope that someday, theoretical approaches for social
learning (like RL and game theory), and more generally the whole field of machine
learning, will allow the creation of a robot able to perceive and understand our complex
social signals at the speed of a newborn human.
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But then, will it be still ethical to force such robots to play with our children?
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EPFL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C programming Fall 2017
Analyse IV Spring 2016
Analyse I Spring 2015
Introduction to Visual Computing (Best assistant award) Spring 2015
Ecole Normal Superieure (Paris). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Learning Hidden Markov Models (GT Math-Bio work group) 2013

Languages
○␣ Typed: Python (mother tongue), C/C++, R, Java, HTML/CSS, Javascript
○␣ Spoken: Fluent in French and English, A1 level in Portuguese

Other interests
○␣ Sports: surfing, climbing, dance improvisation, running
○␣ Arts: painting (oil/watercolour), sculpting (clay/wood)




