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Abstract
Datacenters are the heart of our digital lives. Online applications, such as social-networking

and e-commerce, run inside datacenters under strict Service Level Objectives for their tail

latency. Tight latency SLOs are necessary for such services to remain interactive and keep

users engaged. At the same time, datacenters operate under a single administrative domain

which enables the deployment of customized network and hardware solutions based on

specific application requirements. Customization enables the design of datacenter-tailored

and SLO-aware mechanisms that are more efficient and have better performance.

In this thesis we focus on three main datacenter challenges. First, latency-critical, in-memory

datacenter applications have µs-scale services times and run on top of hardware infrastructure

which is also capable of µs-scale inter-node round-trip times. Existing operating systems,

though, were designed under completely different assumptions and are not ready for µs-scale

computing. Second, the base of datacenter communications is Remote Procedure Calls (RPCs)

that depend on a message-oriented paradigm, while TCP still remains widely-used for intra

datacenter communications. The mismatch between TCP’s bytestream-oriented abstraction

and RPCs causes several inefficiencies and deteriorates tail latency. Finally, datacenter appli-

cations follow a scale-out paradigm based on large fan-out communication schemes. In such

a scenario, tail latency becomes a critical metric due to the tail at scale problem. The two main

factors that affect tail latency is interference and scheduling/load balancing decisions.

To deal with the above challenges we advocate for a co-design of network and operating system

mechanisms targeting µs-scale tail optimisations for latency-critical datacenter applications.

Our approach investigates the potential of pushing functionality to the network leveraging

emerging in-network programmability features. Whenever existing abstractions fail to meet

the µs-scale requirements or restrict our design space, we propose new ones given the design

and deployment freedom the datacenter offers.

This thesis contributions can be split in three main parts. We, first, design and build tools

and methodologies for µs-scale latency measurements and system evaluation. Our approach

depends on a robust theoretical background in statistics and queueing theory. We, then, revisit

existing operating system and networking mechanisms for TCP-based datacenter applications.

We design an OS scheduler for µs-scale tasks, while we modify TCP to improve L4 load

balancing, and provide an SLO-aware flow control mechanism. Finally, after identifying

the problems related to TCP-based RPC services, we introduce a new transport protocol for

datacenter RPCs and in-network policy enforcement that enables us to push functionality to
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Abstract

the network. We showcase how the new protocol improves the performance and simplifies

the implementation of in-network RPC load balancing, SLO-aware RPC flow control, and

application-agnostic fault-tolerant RPCs.

Keywords: datacenters, datacenter networking, remote procedure call, in-network compute,

µs-scale computing, scheduling, load balancing, P4, state machine replication
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Résumé
Les centres de données sont au coeur de notre vie digitale. Les services en ligne tels que les

réseaux sociaux ainsi que le commerce en ligne tournent dans des centres de données sous

des objectifs de niveau de services (SLO) très strictes sur leur latence de traîne (tail latency).

Des SLOs étroites sur la latence de traîne sont nécessaires pour que de tels services restent in-

teractifs et gardent leurs utilisateurs engagés. En même temps, les centres de données opèrent

sous un seul domaine administratif, ce qui permet de déployer des solutions personnalisées

au niveau du réseau ou du matérel basé sur les besoins spécifiques de certaines applications.

La personalisation permet la conception de mechanismes qui sont adaptées au centre de

données et qui tiennent compte du SLO, permettant ainsi de meilleurs performance et plus

d’efficacité.

Dans cette thèse nous nous concentrons sur trois principaux défisdans les centre de données.

Premièrement, les applications tenant en mémoire et ayant une latence critique ont des SLO

au niveau du us et tournent sur de l’infrastructure matériel qui est aussi capable d’effectuer

des allers-retours inter-noeuds au niveau du us. Cependant, les systèmes d’exploitation ont

été conçus sous des hypothèses très différentes et ne sont pas prêts pour des calculs au niveau

du us. Deuxièment, la base de toute communication dans un centre de données est le Remote

Procedure Call (RPC) suivant un paradigme de communication orienté sur les messages,

tandis que TCP reste largement utilisé pour la communication intra-centre de données. Le

décalage entre l’abstraction d’un flot d’octets fourni par TCP et les RPCs causent plusieurs

inefficacités et détériorent la latence de traîne. Finalement, les applications dans les centres

de données suivent une architecture de mise-à-l’échelle horizontale basée sur des modèles

de communication à large fan-out. Dans un tel scénario la latence de traîne devient une

mesure critique à cause du problème de traîne à l’échelle. Deux des facteurs principaux qui

affectent la latence de traîne sont l’interférence ainsi que les décisions d’ordonnancement et

de répartition de charge.

Afin de résoudre aux défis précédents, nous proposons de co-concevoir des mechanisms au

niveau des réseaux et des systèmes d’exploitations visant les optimisations au niveau du us

pour la latence de traîne pour des applications ayant une latence de traîne critique. Notre

approche étudie le potentiel de pousser des fonctionnalités dans le réseau en tirant parti

des capacités émergeants de programmabilité du réseau. Quand les abstractions existantes

n’arrivent pas à atteindre nos exigences au niveau du us ou restreignent notre espace de

conception, alors nous en proposons des nouvelles à cause de la liberté de conception et de

déploiement offertes dans un centre de données.
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Résumé

Les contributions de cette thèse peuvent être répartis en 3 parties principales. Premièrement,

nous concevons et construisons des outils et des méthodologies pour faire des mesures de

latence et d’évaluation de systèmes au niveau du us. Notre approche dépend sur une base

robuste de statistiques et de la théorie des files d’attente. Nous revisitons ensuite des méca-

nismes existantes au niveau des systèmes d’éxploitation et du réseau pour des applications

basées sur TCP. Nous construisons un ordonnanceur pour système d’exploitation visant des

tâches au niveau du us, ainsi qu’en modifiant TCP afin d’améliorer la répartition de charge L4

et fournissons un mechanism de contrôle de flux tenant compte du SLO. Finalement, après

avoir identifié les problèmes liés au services RPC basés sur TCP, nous introduisons un nouveau

protocole de transport pour des RPC dans les centres de données ainsi qu’un mechanism de

mise en vigueur au niveau du réseau qui nous permet de pousser des fonctionalités dans le

réseau. Nous démontrons comment le nouveau protocole améliore la performance et simplifie

l’implémentation de répartition de charge des RPC dans le réseau, le contrôle de flux en tenant

compte du SLO, ainsi que des RPC ayant des tolérances aux pannes et étant agnostique à une

application spécifique.

Mots clés : centre de données, réseaux des centres de données, RPC, calcule dans le réseau,

calcul au niveau du us, ordonnancement, répartition de charge, P4, réplication de machine

d’état.
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1 Introduction

Online services play a major role in our everyday life for communication, entertainment,

socializing, e-commerce, etc.. The COVID-19 global pandemic [279] and social distancing has

made those services even more fundamental [72]. There are more than 4.5 billion people [160]

(almost 60% of the global population) that are active internet users making web-searches,

exchanging emails, watching videos, and buying products online. Google serves more than

3.5 billion queries per day [134]. Facebook has more than 1.5 billion active users [110]. There

are more that 500 hours of video uploaded on YouTube every minute [373] and more than 300

billion emails exchanged daily [97]. Amazon ships over 3 million packages a day, while the

same number for Alibaba is 12 million [318].

These online services have to support the global massive scale while being interactive. Usabil-

ity studies have shown that users are sensitive to hundreds of milliseconds delays [270, 172].

Such delays affect users’ engagement and translate to revenue loss. A delay in the order of 100

to 400 milliseconds in Google’s search results reduces the number of searches per user from of

0.2% to 0.6% on average [322]. A similar A/B testing experiment showed that users preferred

a web-search to return 10 results in 0.4 seconds rather than 30 results in 0.9 seconds. Half a

second delay caused 20% drop in traffic despite the improved quality of search [213]. Similarly,

Amazon reports that every 100ms delay causes 1% drop in sales [212]. Thus, online services

have to perform under strict latency requirements, described as Service-Level-Objectives

(SLO) and expressed as the latency for some tail percentile of the incoming requests, e.g.,

500µs at the 99-th percentile.

The heart of online services is the datacenter. Datacenters can be seen as the evolution of

mainframes. Driven by the needs for high-throughput and fault-tolerance and the economy

of scale, datacenters follow a scale-out paradigm and comprise of cheap commodity hardware

instead of expensive scale-up installments. The design, construction, and operation of a

datacenter is completely controlled by the owning company, thus allowing several degrees of

freedom in terms of customization according to the company needs. Unlike the public internet

where backwards compatibility and compatibility among different vendors is absolutely

necessary, the datacenter is a field of innovation and experimentation across the software and

1
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hardware stack.

In this thesis, we focus on latency-critical systems running inside a single datacenter. We care-

fully study their interactions, the causes that cause long tail latencies, and propose solutions

that improve µs-scale latencies by taking advantage of the freedom to deploy new software

and hardware mechanisms and novel datacenter-specific abstractions.

1.1 RPCs in the Epicenter

The basis for most intra-datacenter and inter-datacenter communications is Remote Procedure

Calls (RPCs). The idea of RPCs dates back to the early days of distributed computing [38] and

initially described code execution in the context of a remote machine. Today the term is used

to described any generic interaction between a client and a server machine. Protocols used

every day, such as HTTP, follow this scheme, while frameworks, such as gRPC [139], stay closer

to the initial definition. In this thesis we will focus in intra-datacenter RPCs.

The existing hardware infrastructure used in modern datacenter is capable of communication

latencies in the scale of µs [31]. On top of this infrastructure applications, such as key-value

stores, serve data directly off memory to reduce service time, leading to service times that

are handful of µs. Thus, the end to end communication latency for datacenter RPCs has the

potential to be in the scale ofµs. Existing operating systems and operating system mechanisms,

e.g., scheduling, were designed with an entirely different set of assumption during an era when

IO was more expensive in the ms-scale. Barroso et al. [31] quantify the overhead of the existing

software layers on top of modern hardware.

Challenge 1: Redesign existing operating systems for µs-scale computing.

TCP has emerged as the main transport protocol both for inter and intra-datacenter commu-

nications. Thus, RPCs are commonly delivered on top of TCPs reliable bytestream abstraction.

Despite the layering benefits and the separation of concerns, the abstraction mismatch be-

tween RPCs (request-response) and TCP (bidirectional bytestream) leads to several inefficien-

cies and design limitations. These limitations affect both the RPC latency, e.g., the problem of

head of line blocking at the server, and the efficiency of server resources, e.g., the problem of

bufferbloat at the servers due to increasing number of connections. The backwards compati-

bility concerns limits the deployment of new protocols in the public internet. A datacenter,

though, does not suffer from such limitations.

Challenge 2: Design new transport protocols specifically for µs-scale datacenter RPCs.

1.2 The Need for Tail-Tolerant Systems

The scale-out design of modern datacenters is not limited to hardware. It extends to software

and the way datacenter applications are deployed. Serving a client request might involve
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several datacenter machines. This high fan-out communication pattern in combination with

the inherent application service time variability leads to the problem called tail at scale [80].

The end to end latency of a client request is defined by the slowest sub-request it triggers inside

the datacenter. Large fan-out patterns increase the probability of including a slow sub-request

in almost every client request. Thus, tail phenomena become commonplace as a result of the

law of large numbers.

Mitigating long tail latency requires understanding its sources first. According to Dean et

al. [80] long tail latency might be the result of interference, garbage collection, background

tasks, etc.. Those problems can be tackled with resource isolation [231] and careful system

tuning [223]. Another reason behind long tails is persistent or transient load imbalance due to

poor load balancing or scheduling. Despite queuing theory having a clear answer on the tail-

optimal scheduling policy [366] (there is no optimal scheduling policy; First-Come-First-Serve

is optimal for low service time variability; Processor-Sharing is optimal of high service time

variability), existing state of the art datacenter operating systems, e.g., IX [33], operate with

multiple FCFS queues independently of the application.

Challenge 3: Design new tail-tolerant scheduling and load-balancing mechanisms forµs-scale

RPCs that eliminate latency SLO violations and avoid IO bottlenecks.

1.3 The Advent of In-Network Compute

The end of Moore’s law and the ever increasing need for performance and efficiency has led

researchers and datacenter operators to designing and deploying reconfigurable [53] or custom

architectures [173] for datacenter workloads. This trend also affects the datacenter networking

infrastructure with the advent of programmable switches [28, 44, 54] and NICs [241, 265, 246].

These devices offer certain level of programmability, while still running at line rate, thus

posing an interesting challenge on whether it makes sense and how to offload functionality

commonly performed at the end-host to the network.

Opportunity: Leverage in-network programmability to accelerate datacenter applications.

1.4 Thesis Statement

Above we identified three challenges and one opportunity related to latency-critical datacenter

systems. The top goal of this thesis is to drastically improve the tail latency and tail-tolerance

of µs-scale RPCs in a scale-out datacenter environment. These techniques span across op-

erating systems and networking protocols, while they aggressively push functionality to the

network leveraging in-network compute. A second-level goal of this thesis is performance

reasoning and systematic evaluation through robust and reusable experiment methodologies

and benchmarking tools.
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We, first, propose new latency measuring tools that are specifically designed for latency ex-

periments in a µs scale and an evaluation methodology that quantifies the system overheads.

Having the correct arsenal of tools, we focus on existing abstractions, specifically TCP-based

datacenter communications, and we provide solutions for intranode RPC scheduling and

cloud workload loadbalancing. We also extend existing abstractions, without breaking com-

patibility, with new features for SLO-aware tail-tolerance. Then, given the datacenter freedom,

we introduce new abstractions that are better fitted to the RPCs semantics. We show how this

change improves existing mechanisms, such as load balancing, while it enables us to push

new functionality, e.g., fault-tolerance, to the network layer.

Thesis Statement

The datacenter is a dynamic environment in which scale-out applications need to run under

strict µs-scale tail latency SLOs. Operating under a single managing authority enables and

encourages the deployment of customized hardware and software infrastructure. Co-designing

network and operating system mechanisms, pushing server functionality to the network, and

systematically approximating optimal scheduling policies significantly improves tail latency in

µs-scale RPC systems, while enabling tail and fault-tolerance guarantees.

1.5 Thesis Contributions

Specifically, this thesis makes the following contributions:

1. A novel comparative methodology for system evaluation

We propose a system evaluation methodology that depends on synthetic microben-

chamarks and system modelling with queueing theory. Our modelling with queueing

theory enables fast design exploration and bottleneck analysis. The use of synthetic

microbenmarks with configurable service times and request/reply sizes enables match-

ing the theoretic queueing results with the actual system implementation to accurately

quantify the system and communication overheads. Such an analysis is crucial espe-

cially when building systems for µs-computing.

2. Tools and a robust methodology to measure latency accurately

We introduce LANCET, a self-correcting tool designed to measure the open-loop tail la-

tency of µs-scale datacenter applications with high fan-in connection patterns. LANCET

is self-correcting as it relies on online statistical tests to determine situations in which

tail latency cannot be accurately measured from a statistical perspective. The workload

configuration, the client infrastructure, or the application itself could, under circum-

stances, prevent accurate measurement. Because of its design, LANCET is also extremely

easy to use. In fact, the user is only responsible for (i) configuring the workload pa-

rameters, i.e., the mix of requests and the size of the client connection pool, and (ii)
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setting the desired confidence interval for a particular tail latency percentile. All other

parameters, including the length of the warmup phase, the measurement duration, and

the sampling rate, are dynamically determined by the LANCET experiment coordinator.

When available, LANCET leverages NIC-based hardware timestamping to measure RPC

end-to-end latency. Otherwise, it uses an asymmetric setup with a latency-agent that

leverages busy-polling system calls to reduce the client bias.

Our evaluation shows that LANCET automatically identifies situations in which tail la-

tency cannot be determined and accurately reports the latency distribution of workloads

with single-digit µs service time. For the workloads studied, LANCET can successfully

report, with 95% confidence, the 99th percentile tail latency within an interval of ≤ 10µs.

In comparison with state-of-the-art tools such as Mutilate and Treadmill, LANCET re-

ports a latency cumulative distribution that is ∼20µs lower when the NIC timestamping

capability is available and ∼10µs lower when it is not.

We, also, introduce SLOG, a programmable load generator and latency-measuring tool

based on a programmable switch. SLOG repurposes programmable switches and enables

us to use them as a tool for latency and throughput experiments. It leverages the

programming capabilities and the fixed function units of a Tofino ASIC to generate load

and measure tail latency for both NFs and RPC services. Through a novel dataplane

implementation SLOG is able to generate a Poisson arrival distribution despite the

hardware limitations. According to our knowledge, SLOG is the only hardware-based tool

that is able to generate a randomized inter-arrival distribution, necessary for a realistic

latency experiment.

3. A tail-optimal scheduler for µs-scale tasks with moderate variability

We present ZYGOS, a system optimized forµs-scale, in-memory computing on multicore

servers. ZYGOS implements a work-conserving scheduler within a specialized operating

system designed for high request rates and a large number of network connections. It

uses a combination of shared-memory data structures, multi-queue NICs, and inter-

processor interrupts to rebalance work across cores.

For an aggressive service-level objective expressed at the 99th percentile, ZYGOS achieves

75%of the maximum possible load determined by a theoretical, zero-overhead model

(centralized queueing with FCFS) for 10µs tasks, and 88%for 25µs tasks. We evaluate

ZYGOS with a networked version of Silo, a state-of-the-art in-memory transactional

database, running TPC-C. For a service-level objective of 1000µs latency at the 99th

percentile, ZYGOS can deliver a 1.63×speedup over Linux (because of its dataplane

architecture) and a 1.26×speedup over IX, a state-of-the-art dataplane (because of its

work-conserving scheduler).

4. An L4 load balancing scheme that bypasses the load balancer on the datapath

We propose CRAB, an alternative L4 load balancing scheme that eliminates latency

overheads and scalability bottlenecks while simultaneously enabling the deployment

of complex, stateful load balancing policies. A CRAB load balancer only participates
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in the TCP connection establishment phase and stays off the connection’s datapath;

thus provisioning load balancer depends on the rate of new connections rather than

the actual connection bandwidth. CRAB depends on a new TCP option that enables

connection redirection. We provide different implementations for a CRAB load balancer

on different technologies, e.g., DPDK and eBPF, showing that a CRAB load balancer does

not require many resources to perform well. We introduce the connection redirection

option to the Linux kernel with minor modifications, so that it that can be shipped with

the VM images offered by the cloud providers. We show how the same functionality

can be achieved with a vanilla Linux kernel using a Netfilter module, while we discuss

how CRAB can work while clients and servers remain completely agnostic, based on

functionality added on the host.

Our evaluation shows that CRAB pushes the IO bottleneck from the load balancer to the

servers in cases where vanilla L4 load balancing does not scale and provides end-to-

end latencies that are close to direct communication while retaining all the scheduling

benefits of stateful L4 load balancing.

5. A novel transport protocol for datacenter RPCs that enables in-network policy en-

forcement

We identify the mismatch between streaming or datagram-based transport protocols

and RPCs that imposes overheads and limits the design flexibility. We propose R2P2, a

UDP-based transport protocol specifically designed for RPCs inside a datacenter. Our

work exposes the RPC abstraction to the endpoints and the network, making RPCs first-

class datacenter citizens. R2P2 is specifically designed for efficient in-network policy

enforcement by separating the policy enforcing mechanism from request and reply

streaming. Any RPC policy logic can be implemented either in a software middlebox

or within a P4 switch ASIC pipeline. By exposing the right abstraction and making the

network RPC-aware R2P2 is the catalyst that enables pushing server-side functionality

that is common among applications in the transport layer and the network. We use the

new protocol to implement several in-network policies such as RPC load balancing, flow

control, and fault-tolerance.

6. The Join-Bounded-Shortest-Queue RPC scheduling policy

Join-Bounded-Shortest-Queue (JBSQ) is a novel split-queue scheduling policy which

exposes the trade-off between optimal scheduling and high throughput. We implement

JBSQ as an in-network RPC policy for request level load balancing. JBSQ lowers tail

latency by centralizing pending RPCs in the router and ensures that requests are only

routed to servers with a bounded number of outstanding requests.

Our evaluation, using a range of microbenchmarks, shows that JBSQ on R2P2 is suitable

for µs-scale RPCs and that its tail latency outperforms both random selection and classic

HTTP reverse proxies. The P4-based implementation of JBSQ on a Tofino ASIC adds

less than 1µs of latency whereas the software middlebox implementation adds 5µs

latency and requires only two CPU cores to route RPCs at 10 Gbps line-rate. R2P2
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with JBSQ improves the tail latency of web index searching on a cluster of 16 workers

operating at 50% of capacity by 5.7× over NGINX. Also, it improves the throughput of the

Redis key-value store on a 4-node cluster with master/slave replication for a tail-latency

service-level objective of 200µs by more than 4.8× vs. vanilla Redis.

7. The notion of SLO-aware flow control

Tail-latency tolerance (or just simply tail-tolerance) is the ability for a system to deliver

a response with low-latency nearly all the time. It it typically expressed as a system

metric (e.g., the 99th or 99.99th percentile latency) or as a service-level objective (e.g.,

the maximum throughput so that the tail latency is below a desired threshold).

We advocate instead that modern datacenter systems should incorporate tail-tolerance

as a core systems design principle and not a metric to be observed, and that tail-tolerant

systems can be built out of large and complex applications whose individual compo-

nents may suffer from latency deviations. This is analogous to fault-tolerance, where a

fault-tolerant system can be built out of unreliable components.

The general solution is for the system to control the applied load and keep it under

the threshold that violates the latency SLO. We implement such an SLO-aware flow

control mechanism on top of TCP and R2P2. For TCP we maintain a wire-compatible

header format without introducing extra messages. We implement a proof-of-concept

userspace TCP stack on top of DPDK and we show that the new flow control mech-

anism prevents applications from violating service-level objectives in a single-server

environment by throttling the incoming requests. We demonstrate the true benefit of

the approach in a replicated, multi-server scenario, where independent clients lever-

age the flow-control signal to avoid directing requests to the overloaded servers. For

R2P2, we propose to augment RPC semantics with an architectural layer at the R2P2

middlebox that measures the observed tail latency and probabilistically rejects RPC

requests maintaining throughput under the threshold that violates the SLO. Our design

is application-independent, and does not make any assumptions about the request

service time distribution.

8. A scalable in-network accelerated protocol for fault-tolerant datacenter RPCs

We propose HovercRaft, a new way to build generic fault-tolerant RPC services by

providing fault-tolerance at the RPC layer, leveraging the exposed RPC semantics offered

by R2P2. HovercRaft deals with the replication trade-off according to which adding

nodes to a system can either increase performance at the expense of consistency, or

increase resiliency at the expense of performance. We introduce an approach by which

adding nodes increases both the resilience and the performance of general-purpose

state-machine replication. We achieve this through an extension of the Raft protocol

that carefully eliminates CPU and I/O bottlenecks and load balances requests.

Our implementation uses state-of-the-art kernel-bypass techniques, datacenter trans-

port protocols, and in-network programmability to deliver up to 1 million operations/sec-

ond for clusters of up to 9 nodes, linear speedup over unreplicated configuration for
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selected workloads, and a 4× speedup for the YCSBE-E benchmark running on Redis

over an unreplicated deployment.

1.6 Thesis Organisation

This thesis is organised as follows. In Chapter 2 we go through the necessary background on

datacenter systems and mechanisms that we modify or depend on in the rest of the thesis.

The rest of the thesis is organised in 4 parts.

1. Part 1 summarises the tools and methodologies developed and used in the course of this

thesis to measure latency and evaluate systems. Chapter 3 describes our proposed evalu-

ation methodology on synthetic microbechmarks and modelling. Chapter 4 introduces

LANCET, a self-correcting latency measuring tool that uses hardware timestamping and

its robust experiment methodology on statistical testing. Chapter 5 presents SLOG a load

generator on a programmable switch that takes advantage of the hardware implementa-

tion to achieve high throughput and measuring accuracy.

2. Part 2 includes the scheduling and load balancing contributions of the thesis for latency-

critical systems on existing abstractions, namely TCP’s bytestream. Chapter 6 describes

the ZYGOS operating system and its work-conserving scheduler for µs-scale RPCs on

top of TCP. Chapter 7 presents a L4 load balancer for internal cloud workloads that

depends on connection redirection feature introduced to TCP that removes the load

balancer from the data path, without breaking backwards compatibility. Finally, Chap-

ter 8 introduces the proposed SLO-aware flow control mechanism on top of TCP that

eliminates SLO violations and can be used to improve tail latency in a real deployment

scenario with several replicas.

3. Part 3 deals with the inefficiencies and limitations due to the abstraction mismatch

between RPCs and TCP by introducing a new transport protocol for RPCs and describes

how the new protocol enables pushing existing and new functionality in the network.

Chapter 9 presents the R2P2 protocol and describes the mechanism for in-network

policy enforcement. Chapter 10 introduces the JBSQ policy to perform request-level

load balancing. Chapter 11 describes SVEN a system that implements in-network SLO-

aware RPC flow control and provides similar guarantees to TCP’s equivalent mechanism

(Chapter 8) without requiring modifications to the networking stack. Finally, Chapter 12

identifies the potential of pushing new functionality to the transport layer and describes

HovercRaft, a system that integrates a state machine replication algorithm in R2P2 and

uses in-network compute to accelerate fault-tolerant RPCs.

4. Part 4 describes future research directions and concludes the thesis.
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2 Background and Challenges

In this chapter we describe the specific characteristics of the datacenter environment that

motivate and enable the proposed system designs in the next chapters. We discuss why existing

system and networking mechanisms fail to meet the requirements for µs-scale datacenter

services and how the unique datacenter characteristics affect the entire software and hardware

stack enabling specialized solutions.

2.1 Datacenter Infrastructure and Applications

The datacenter environment provides a challenging opportunity for system researchers be-

cause of a unique combination of physical characteristics, ease of new solution deployment,

and performance requirements. A datacenter is a physically isolated building with commodity

storage, network, and compute infrastructure that runs under the administrative domain of

one entity, namely the owning company. The administrative entity can fully control every

aspect of the datacenter from the building construction, power management, and cooling, all

the way up to the compute, network, and storage hardware, network topology, and cabling.

Despite some level of heterogeneity due to new hardware roll-out and hardware failures, a

datacenter can be seen as a homogeneous infrastructure, compared for example with the

domain of mobile computing in which the device capabilities and the quality of connectivity

can vary significantly. In many cases, depending on the business model, the administrative

entity also fully controls the software running on this infrastructure. For example, companies

such as Facebook run only company-related workloads. This combination allows for easy and

aggressive deployment of custom software across the stack that may break compatibility with

existing protocols and APIs. A step further in providing solutions specifically tailored to the

application needs is software-hardware co-design that is becoming more and more popular in

the datacenter today.

Next we focus on the hardware and software infrastructure running inside a datacenter. We

do so to understand our target deployment environment and the current state of the art. The

level of customization across the stack is a motivation for our proposed systems.

11



Chapter 2. Background and Challenges

Network Topology: The first layer of innovation and customization inside a datacenter that

is relevant to this thesis begins at the network topology. Different companies may deploy

different network topologies [320, 307] in their datacenters. All these topologies, though, share

some common characteristics that are significantly different from the public internet. The

use of commodity hardware and the constantly increasing need for high bisection bandwidth

in Pbit/s has led datacenter designers to Clos networks, usually organised in three tiers. The

two aspects that characterize a datacenter topology is multipathing and oversubscription.

A Clos topology depends on redundant paths to increase capacity, while the upper tiers are

oversubscribed to reduce the total cost of ownership.

Currently most datacenters deploy static topologies that do not change unless there are link

failure or re-cabling due to maintenance. Research efforts, though, in switching hardware

enables dynamic topology reconfigurations through optical switching. Datacenter researchers

are now exploring the opportunities of adapting the network topology to the workload needs

and dynamically change it as the workload evolves [248, 129]. Such approaches provide several

challenges for network management, routing, and application APIs, while still suffer from the

long reconfiguration latencies in the µs-scale. However, they provide an excellent example

and usecase of how new technology can be deployed fast in the datacenter and change the

way the datacenter operates, while introducing significant performance gains.

Datacenter Hardware for Networking: Since their early days datacenters have been defined

been defined by commodity technologies due to their cost benefits and the economies of

scale. This leads to scale-out architectures that depend on cheap and redundant components

that can fail. By looking at the Open Compute Project [278] that describes commonly used

datacenter equipment, one can observe that this trend characterizes the storage, compute,

and networking components of a datacenter. From a networking perspective, datacenters

deploy cut-through switches with shallow buffers that have a few hundreds of nanoseconds

of switching latency. Servers are connected to the Top Of the Rack switch (ToR) with 10G or

40G links using commodity Ethernet [320] or RoCE (RDMA over Converged Ethernet) [140],

while new devices already support even higher network bandwidth, e.g., at 400G [12, 63].

Examples of commonly used network interfaces are the Mellanox ConnectX series [247], or

Intel’s 82580 [158] and 710[159] network adapters. Based on the deployed hardware and the

underlying network topology we understand that datacenter round-trip times are just a few

µs. The worst case for a packet is six network hops on top of a 10G link.

In-Network Programmability: The end of Moore’s law and the need for better performance

and efficiency has led researchers to enhance existing commodity-based infrastructures with

custom domain-specific architectures. The datacenter is an ideal testbed for this experiment.

In the networking domain this trend takes the form of in-network programmability. Pro-

grammable devices, such as programmable switches [28, 44, 54] and smartNICs [241, 265, 246],

are becoming part of the networking path and undertake tasks traditionally performed on

the server end. Depending on the device, programmability is achieved through the use of

12



2.1. Datacenter Infrastructure and Applications

FPGAs [246], multicore network processors [265], or programmable ASICs [28]. The underlying

technology defines the programmable interface with the device. FPGA-based NICs require

writing code in RTL languages [101]. Network processors can be programmed through vendor-

specific APIs [156]. Programmable ASICs, such as Barefoot’s Tofino, are programmed through

a language specifically designed to describe network pipelines, called P4 [39]. P4 abstracts the

underlying hardware and exposes a programmable interface that depends on match-action

tables.

The advent of those new programmable devices extends the ways existing infrastructure is

deployed. For example, Microsoft Azure offloads the virtual networking functionality on an

FPGA-based smartNIC [116] and Facebook runs a L4 stateful load balancer on a P4 switch [251].

More aggressive approaches to in-network compute push functionality that has typically run

on servers to those network devices, e.g., key-value stores implemented on programmable

switches [171].

Datacenter Networking: The 3-tier clos topology, µs-scale RTTs, the introduction of pro-

grammable devices, and the single administrative domain drives the development of new net-

work protocols specifically for the datacenter. Unlike the public internet, datacenter network

control planes can be centralized [320] and must provision for multi-path routing. Deployed

solutions for multi-path routing range from simple hash-based approaches, such as Equal-

Cost Multi-Path routing (ECMP) [154], to more complicated ones [6, 130, 150, 190, 354, 380]

that also try to equally load balance across the different paths. At the transport protocol

level TCP is widely used based on the DCTCP [7] congestion control algorithm, while new

congestion control algorithms have been proposed [9, 125, 143, 23, 288, 59, 255, 252] that take

advantage of specific datacenter features. For example, low communication latencies enable

precise delay-based congestion control [252] and receiver-driven congestion control [255, 143].

Also, in-network programmability allows switches to fully describe congestion levels [13], in-

stead of using approximations based on ECN for example. Finally, the datacenter environment

and the available hardware enables features and mechanisms across the networking protocol

stack that could not be deployed in such a massive scale before, e.g., IP multicasting [317] and

source routing [225, 175].

Datacenter Operating Systems: The above hardware description shows that the datacenter is

an environment where the hardware infrastructure can support µs-scale communication la-

tencies. However, existing commodity software stacks are not designed for such timescales and

the datacenter environment, resulting in two main problems. The first one is the added over-

head due to inefficient software layers that was not a problem in the millisecond-scale. Serving

minimum-sized packets on a single CPU for a 10G network means that each packet should

be processed in less than a µs. Any added system overheads would result in underutilizing

the hardware potential. Barroso et. al [31] show that while the datacenter fabric can support

an RDMA operation in 2µs, the additional software layers result in a round-trip time around

75µs. The second problem is that existing infrastructure cannot deal with µs-scale latencies,
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unlike millisecond and nanosecond-scale ones. A hard drive read is a millisecond-scale op-

eration and operating systems can hide this latency through context switching. Similarly, a

cache access is a nanosecond-scale operation and modern architectures can hide this latency

through out of order execution. Thus existing operating systems need to be re-designed for

µs-scale computing.

The proposed datacenter operating systems eliminate most software overheads by bypassing

the traditional kernel stacks. These technologies include kernel-bypass development kits [88,

306], user-level networking stacks [167, 277, 239, 316, 167, 291, 331], stacks that bypass the

POSIX layer [142], protected dataplanes [34, 290], and microkernel-based approaches [191,

240]. These approaches bypass the kernel and rely on I/O polling to both increase throughput

and reduce latency jitter [219, 223] coming from interrupt handling. Also, such approaches

statically partition resources among different cores to eliminate inter-core communication.

However, the performance benefits of the above approaches come through sweeping sim-

plifications and by eliminating functionality that operating systems used to perform, e.g.,

software-based scheduling. For example, IX [34] a state-of-the-art dataplane operating system

for the datacenter uses RSS [308] to split incoming packets across different cores. Then, its

synchronization-free nature forces each thread to process only the packets that were directed

to it by the NIC hardware. Such a design, despite improving throughput, has a dramatic impact

on tail latency when the load is below saturation as some cores may be idle while others have

a backlog of packets to be processed. One of the challenges this thesis deals with is how to

combine the performance benefits of dataplane operating systems with more elaborate and

work-conserving scheduling policies present in commodity operating systems, but removed

for performance.

Datacenter Applications and the Tail at Scale Problem: We now describe the types of appli-

cations that run on top the above versatile and dynamic software and hardware infrastructure.

Inside a datacenter there are several different application classes with different resource re-

quirements that serve different purposes for the owning company. These applications might

range from batch jobs, such as big data analytics and machine learning training, that have high

CPU and network requirements but are not latency-critical, to latency-critical applications

with µs-scale service times that need to perform under strict Service Level Objectives (SLOs)

for their tail latency because they are user facing. In this thesis we will focus on the latter.

These latency-critical applications include in-memory key-value stores, such as Memcached [250]

and Redis [304], in-memory databases such as Silo [337], and web-search, such as Apache

Lucene [233]. The deployment of these applications follows the datacenter scale-out design,

in which there are different instances of the same application serving a different parts of

the dataset. Consequently, serving a client request to an online service, such as web-search,

requires many different machines inside the datacenter. For example, loading a Facebook page

requires on average more than 500 of those sub requests [271]. This communication pattern

in which the initial request breaks down to several sub-requests is called a fan-out/fan-in
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pattern [80]. In such fan-out patterns the top-level request is handled by the root nodes that

send sub-requests to leaf nodes. Leaves reply back to the root node and the root node replies

back to the client.

Such applications that follow large fan-out/fan-in patterns suffer from the so-called tail at

scale problem [80]. Unavoidably there is variability in the application service times that can

or cannot be attributed to the application logic itself. This variability might come due to

contention for shared resources, such as main memory, background daemons, power limits,

garbage collection, interrupt serving, OS scheduling, etc.. So, the same request might take

a different amount of time depending on the state of the server. As a result, as the fan-out

size increases, the probability of hitting a slow request increases, too. The latency of the top

request is defined by the slowest sub-request. A request that fans-out to 100 different requests

is highly likely to always observe the 99-th percentile worst end-to-end latency due to the tail

at scale problem.

There are different approaches to deal with the tail at scale problem, depending on the reasons

behind service time variability. Solutions such as request hedging, namely sending the same

request to different replicas and keeping the fastest reply, try to remain agnostic to the reasons

behind service time variability. Solutions, such as Heracles [231] focus on interference for

shared resources. In this thesis we will focus on how to deal with the tail at scale problem and

latency violations that are the result of scheduling decisions and imbalance.

Public Cloud: Another datacenter use, apart from running applications required by the own-

ing company, is the public cloud. Companies such Amazon, Microsoft, and Google offer their

infrastructure for rent through cloud services. There are different flavours of the public cloud

depending on the cloud tenant needs and how involved they want to be in the infrastructure

management. These flavours range from bare metal machines [15] to function as a service [16].

Companies as big as Netflix [18] might choose the public cloud for their services. Consequently,

the same challenges of offering high throughput and low latency services remain for cloud

providers. However, they have to do so without being able to modify the application, without

the freedom of introducing non-backwards compliant protocols, and while guaranteeing

physical and performance isolation between tenants. In this thesis we will see how we can

modify certain services offered by cloud providers leveraging the cloud deployment model in

order to make them more efficient without breaking compatibility for cloud tenants.

2.2 Datacenter Remote Procedure Calls

Datacenter services, both external and internal, are typically exposed through remote pro-

cedure calls (RPC). TCP has emerged as the main transport protocol for latency-sensitive,

intra-datacenter RPCs running on commodity hardware, as its reliable stream semantics

provide a convenient abstraction to build upon. RPCs are sent on top of TCP’s bytestream

abstraction using protocols such as HTTP, serialization approaches such as Thrift [333] and
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gRPC [139], or even application-specific binary formats, e.g., Memcache’s binary protocol.

The problem of efficiently handling incoming RPCs dates back to the original C10k prob-

lem [50] when socket scalability was the primary bottleneck. The initial approaches to building

scalable applications allocated a kernel thread or process per connection; servicing a new

request required a scheduling decision. However, despite the sophistication of modern oper-

ating system schedulers such as Completely Fair Scheduler (CFS) [55] and Borrowed Virtual

Time (BVT) [93], context switch and stack management overheads made developers move to

more performant designs to serve incoming requests.

Today, fine-tuned commodity operating systems can serve millions of requests per second

and over a million of concurrent connections on a commodity server [365, 289, 371]. These

scalable designs fall into two main event-oriented patterns: symmetrical and asymmetrical

ones. Symmetrical designs split connections onto threads, and each thread interacts with

the operating system using non-blocking system calls. This pattern is used by the popular

libevent and libuv frameworks [226, 228]. On Linux, this pattern typically relies on the

epoll system call, which has long provided a way to statically map connections to threads.

To avoid cases of load imbalance across cores because of imbalance across connections,

developers tried sharing the same connection among multiple threads. However, this led to

thundering herd problems [206]. The recent addition in Linux 4.5 of EPOLLEXCLUSIVE avoids

such problems since in most cases only one thread is woken up to serve epoll [100].

In the asymmetrical pattern, a small number of threads handle all network I/O, identify RPC

boundaries and add RPC requests to a centralized queue from which other tasks pull requests.

This pattern is used by frameworks such as gRPC [139] and applications such as recent versions

of nginx [268] and Apache Lucene [233]. While this pattern may increase the latency of an

individual request and impact throughput when the tasks are small, it provides for an elegant

separation of concerns and enables the efficient use of all worker cores.

However, using TCP for RPC workloads is quite a deviation from the original design of a

wide-area, connection-oriented protocol for both interactive (e.g., telnet) and file transfer

applications. TCP’s generality comes with a certain cost as RPC workloads usually consist of

short flows in each direction. In many cases, the requests and replies are small and can fit in a

single packet [14, 255]. Although RDMA is an alternative, it has specific hardware requirements

and can be cumbersome to program, leading to application-specific solutions [90, 181, 180].

Overall, the requirements of RPCs differ from the assumptions made by TCP in terms of failure

semantics, connection multiplexing, API scalability, and end-point buffering:

RPC semantics: Some datacenter applications choose weak consistency models [81] to lower

tail latency. These applications typically decompose the problem into a series of independent,

often idempotent, RPCs with no specific ordering guarantees. Requests and responses always

come in pairs that are semantically independent from other pairs. Thus, the reliable, in-order
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stream provided by TCP far stronger than the applications needs and comes with additional

network and system overheads.

Connection multiplexing: To amortize the setup cost of TCP flows, RPCs are typically layered

on top of persistent connections, and most higher-level protocols support multiple outstand-

ing RPCs on a flow, e.g., HTTP/2, memcache, etc. Multiplexing different RPCs on the same

flow implies ordering the requests that share a socket, even though the individual RPCs are

semantically independent. This ordering limits scheduling choices and can lead to Head-of-

Line-Blocking (HOL). HOL appears when fast requests are stuck behind a slower request and

when a single packet drop affects multiple pending requests.

Connection scalability: The high fan-in, high fan-out patterns of datacenter applications

lead to large number of connections and push commodity operating systems beyond their

efficiency point. Recent work has addressed the issue either by deviating from the POSIX socket

interface while maintaining TCP as the transport [34] or by developing custom protocols, e.g.,

to deploy memcached on a combination of connection-less UDP for RPC get and router proxy

for RPC set [271].

Endpoint bufferbloat: Prior work has addressed network-specific issues of congestion man-

agement and reliability within the network [7, 8]. Unfortunately, the use of TCP via the POSIX

socket API leads to buffering in both endpoints over which applications have little control

or visibility [197]. Applications willing to trade-off harvest vs. yield [120] would ideally never

issue RPCs with no chance of returning by the deadline due to buffering in the network stack.

2.3 Flow Control

Flow control is one of the profound examples of Salzer’s end-to-end argument [311]. Although

the notion of flow control is better understood in the context a sender and receiver where it

guarantees that the sender’s sending rate matches the receiver capacity to process incoming

data, it generalizes to other systems too. Flow control guarantees that a system has enough

capacity to serve new incoming work and creates back-pressure if that is not the case, so that

the queue at the receiver is capped.

Existing systems at any scale, single-node or distributed, implement some form of flow control.

Token bucket algorithms are one of the common ways of implementing flow control in any

kind of communication in fields such as wide-area networks [338], networks-on-chip [168],

storage [332, 368, 382, 196], and network congestion control [59]. A typical example of a flow

control mechanism, is TCP flow control based on the sliding window. TCP, as a connection-

oriented transport protocol, implements flow control per connection. The flow control mech-

anism depends on the size of the available receive socket buffer communicated between the

two endpoints with every packet exchanged. The sender uses this information in conjunction
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with the current congestion window size to decide how many bytes to send, and sends the

maximum amount allowed. Another more generic form of flow control is the way existing

operating systems limit the number of processes or connections in the system so that the

machine does not run out of available memory.

Flow control is a mechanism that depends on and controls the available memory on the

receiving end, but also affects latency, since by limiting the available memory it also limits

the size of the queue that can build up. As the offered load approaches the system saturation,

latency goes to infinity since queuing time increases. A scheduling mechanism can improve

latency and help achieve more throughput under the latency SLO, but it is not able to control

how high latency can go. Flow control, on the other hand, is there to prevent system collapse

and controls the maximum queue depth. So, it can cap the maximum latency at saturation.

However, existing flow control mechanisms are SLO-agnostic and operate at a very coarse gran-

ularity as a safety net. In this thesis we design and build SLO-aware flow control mechanisms

and show how they can provide tail-tolerance guarantees.

2.4 Replication

The scale-out sharded pattern where each node serves a different part of the dataset and

operates independently has certain limitations in terms of scalability and fault-tolerance. One

replica might not be enough to serve all incoming load, while losing this replica can lead

to data loss. Replication is widely deployed in the datacenter to tackle the scalability and

fault-tolerance problems.

2.4.1 Replication for Fault-Tolerance

There is a wide-spread need for fault-tolerant datacenter systems. Systems such as Chubby [48],

Zookeeper [157], and etcd [105] manage the hard, centralized state at the core of large-scale

distributed services. For example, Kubernetes [57] and RamCloud [281] use etcd/Raft [276]

for state management; Azure Storage [51], Borg and Omega [47], Ceph [362], and GFS [128]

all have a built-in Paxos [174, 274, 207, 208, 209, 210] implementation to manage storage

metadata and cluster state.

At the core of all fault-tolerant systems is a variant of a consensus algorithm that is used

to implement distributed state-machine replication(SMR) [314]. State machine replication

guarantees linearizability, namely all replicas receive and apply the updates to the state

machine in the same order. Consequently, all replicas in the same group behave as a single

machine. This field has been the subject of extensive academic and industrial research both

from a theoretical [314, 207, 117] and systems [209, 48, 157, 276] point of view.

Most consensus algorithms can be split into two phases: the leader-election phase, where

the participating nodes vote to elect a leader node; and the normal operation. Once a leader
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Client

Leader

Follower 1

Follower 2

Figure 2.1 – Basic communication pattern to execute a client request in a fault-tolerant group
of 3 servers. Solid arrows refer to messages from and to the client based on the service-specific
API, while dotted arrows refer to SMR messages.

is elected, the leader is in charge of selecting one of the client requests to be executed and

notifies the rest of the nodes about its choice. Once the majority of nodes are aware of this

choice, the leader can commit and announce the committed decision, and the request can be

executed.

Although the terminology (e.g., acceptors and learners in Paxos vs. followers in Raft) and the

specific semantics change across different implementations, the key point is that consensus

algorithms generally operate in a 2-roundtrip communication scheme. In the first round-trip

the leader announces the intention to execute an operation, and in the second it announces

that the operation is committed, given the necessary majority.

In this thesis we will focus on Raft [276] and use Raft terminology. Raft is a consensus algorithm

that depends on a strong leader and exposes the abstraction of a replicated log. The leader

receives client requests, puts them in its log, thus guaranteeing a total order, and replicates

those to the follower through an append_entries request. The followers append them to

their logs and notify the leader. Then, the leader can execute the operation and reply to the

client. The above interaction is summarized in Figure 2.1. The leader notifies the followers for

its committed log index in the next communication round. The choice of Raft is crucial for

HovercRaft’s design (Section 12.3).

2.4.2 Replication for Scalability

Data replication, either in the form of caching or load balancing between replicated servers, is

used to improve the latency and throughput of data accesses. Replication, though, improves

scalability by trading off either availability or consistency, as the CAP theorem suggests [42, 81].

In such replicated systems, concurrent accesses and component failures lead to anomalies

that must be handled either at the application layer or by the end-user herself [81].

Replication is therefore the fundamental mechanism used to offer either scalability or fault-

tolerance, but not both at the same time. Replication for scalability requires compromises in

the consistency model and can at best offer high-availability [24].
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2.5 Internode Load Balancing

Having several replicas serving the same data introduces the problem of spreading out incom-

ing load across those replicas. Load balancers encapsulate a set of servers behind a single

virtual IP address and improve the availability and capacity of applications. Load balanc-

ing decisions, however, can severely affect throughput and tail-latency; thus, a significant

amount of infrastructure is dedicated to load balancing [251, 96]. Load balancers can be

implemented either in software [266, 96, 275] or in hardware [4, 108, 65, 251] and fall into two

broad categories: layer-4 and layer-7 load balancers.

Layer-4 (“network”) load balancers that use the 5-tuple information of the TCP or UDP flow

to select a destination server. The assignment is done at a flow-level granularity and it can

be static for stateful L4 load balancers or dynamic based on certain policies when the load

balancer can maintain per connection state. Section 7.2 makes a deep dive to L4 load balancing

to motivate our CRAB load balancing scheme.

Layer-7 (“application”) load balancers come in the form of HTTP reverse proxies as well as

protocol-specific routers implemented in software middleboxes [271] or SDN switches [62, 41].

These load balancers terminate the client TCP connections, use dynamic policies to select a

target per request, and reissue the request to the server on a different connection. Layer-7

load balancers support many policies to decide the eventual RPC target, including random,

power-of-two [253], round-robin, Join-Shortest-Queue (JSQ), and Join-Idle-Queue (JIQ) [232].

Layer-7 load balancers are ubiquitous at the web tier and can theoretically mitigate tail-latency

better, due to their dynamic policies. However, they are less commonly deployed within tiers

of applications to support µs-scale RPCs. The reasons for this are (i) the increased latency

due to the extra hop (ii) the scalability issues introduced when all requests and responses

flow through a proxy. Section 10.2 performs a queuing theoretic analysis on the different

request-level load balancing policies, while Section 10.3 introduces JBSQ that deals with the

above challenges.
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3 Thesis Methodology

Before getting into the system contributions, we describe the methodology used throughout

this thesis to identify research problems, compare design solutions, and evaluate the existing

and proposed systems. Our methodology is not specific to µs-scale datacenter systems and

can be reused whenever the research problem is related to scheduling, system overhead elimi-

nation, and CPU and IO bottleneck identification. After initially describing our methodology

in Zygos [299], elements of this methodology have been used by other researchers [178, 74].

3.1 System Modelling

Queuing theory has the beauty of abstracting away all the deployment and system-specific

details and describes any scheduling problem as a mix of queues and workers. Queues

implement different abstract policies, e.g., Fist-Come-First-Serve or Shortest-Job-First, while

workers can run each individual task to completion or use processor sharing. Requests

arrive based on a specific inter-arrival distribution and task service time follows another

random distribution. We use Kendall’s notation to describe the models, where in the following

expression A/S/n/K, A is the inter-arrival distribution, S is the service time distribution, n is

the number of workers and K is the policy implemented, i.e., first-come-first-serve (FCFS) or

processor sharing (PS). Thus, based on this notation a system can be fully described.

Then, through closed forms or discrete event simulation we can estimate metrics such as the

average or tail latency, the number of elements in the queue, the time spend in each queue,

etc., independent of how complex the initial system is. So, modelling through queueing theory

can help identify design flaws in existing solutions, compare different designs, and estimate

the potential benefit for a proposed system before actually implementing it.

The process of modelling an existing system through queueing theory gets rid of system and

communication overheads and the analysis operates on an idealized view of the system. For

example, scheduling a new process in an operating system involves a timer interrupt, the

scheduler logic that will decide the next process to run, the scheduler bookkeeping, and the
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Figure 3.1 – Comparison between a 16xM/D/1/FCFS and an M/D/16/FCFS queueing model.

context switch logic. Depending on the implementation these can take a few µs. A scheduling

decision in a queuing model has zero system overhead. Similarly, the communication between

two end-points includes the transmission and propagation delays of the messages, unlike a

model where messages can be exchanged without communication delays. So, the results of

the queueing analysis can serve as an upper bound of the performance of the analyzed system,

since they are overhead free.

Figure 3.1 plots the 99-th percentile latency for two basic queueing models. We consider a

system with 16 workers that process one request at a time to completion. A multicore system

16 cores, a distributed system with 16 servers, or a super market with 16 cashiers would have

exactly the same model. Requests arrive with as a Poisson process and have a fixed service time.

There are two ways to split requests across workers. In the one case each worker has its own

queue and incoming requests are randomly assigned to workers (16xM/D/1). Alternatively,

there is only one queue where all requests wait for a worker to be available (M/D/16). We

observe that single queue systems have better tail latency behaviour. Thus, theoretically it is

better to design systems that depend on a single queue.

There is one main caveat in the use of modelling through queueing theory in the design

of new systems. Despite being able to identify a superior model or scheduling policy, this

model might incur severe system and communication overheads when implemented that

mask its design benefits. Instead, a theoretically inferior model can perform better due to a

simpler implementation. Identifying a model that performs better and does not suffer from

implementation overheads can be challenging and requires considering several trade-offs.

The performance difference between a model and the actual system implementation is crucial

for µs-scale computing where system inefficiencies become apparent.

In this thesis, we used modelling both to understand and evaluate the existing state of the

art, and to propose new scheduling policies. In Section 6.2 we model how servers can serve

incoming requests and in Section 6.3 we see how those models map to state of the art sys-

tems. This analysis led to the design of ZYGOS (Section 6.4). In Section 10.3 we model how

requests can be load balanced across different replicas using existing load balancing tech-

niques and identify the benefits of our proposed Join-Bounded-Shortest-Queue policy through

simulation before implementing the system. In Subsection 7.2.2 showcase the impact of

distributed versus centralized load balancing decisions on tail latency that motivated the
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design of CRAB (Section 7.3).

3.2 Synthetic Microbenchmarks with Known Boundaries

To evaluate the existing or newly proposed systems we extensively used synthetic microbench-

marks, except for real applications. In a synthetic microbenchmark the server does not

perform an actual task, but instead spins for a certain amount of time before returning a reply.

Using this approach we can independently control and parametrize the request size sent by

the clients, the request service time, and the reply size sent by the server. The values for these

parameters come from idealized probabilistic distributions described in closed forms, e.g., a

Poisson process in which the gaps between requests follow an exponential distribution.

Using synthetic micro-benchmarks improves experiment reproducibility, while it helps study-

ing each system bottlenecks independently. When using a real application for system evalua-

tion, the benchmark results highly depend on how the application is configured. Configuring

datacenter applications according to production workloads can be challenging [14], while

resource isolation is a research topic on its own [231]. Also, interference for shared resources ,

e.g., memory interference, while not relevant for the specific benchmark, can affect the final

results. A synthetic microbenchmark, on the other hand, is only described by three indepen-

dent distributions: the request size, the service time, and the reply size, while it eliminates

interference at the application layer, since it only uses a busy loop on the CPU. This enables

us to focus on independent bottlenecks and evaluate them separately while knowing what

the upper bound for each benchmark is. Thus, we can identify how far from ideal the system

is. For example, for a CPU-bound application we configure a microbenchmark with small

requests and replies that have a fixed size, e.g., 8 bytes, and only control the service time. With

an average service time of 10µs on a single core system, we know that the maximum achieved

throughput is 100k requests/sec. Failing to reach this throughput can only be attributed to

system overheads that need to be fixed or at least justified. Similarly, for an IO-bottlenecked

application, we configure small requests and service times, but large replies. For example,

having an average reply size of 6kB on a server connected with 10G NIC can only scale to 200

kRPS.

Despite that the use of synthetic service-time microbenchmarks is not novel and already

widely used, e.g., [220, 232], our proposed methodology uses them in combination with their

equivalent queueing models. Synthetic microbenchmarks and queueing models use the same

level of abstraction: well-known inter-arrival and service time distributions. Thus, we can

simulate a queueing model and then run the equivalent synthetic microbenchamrk on the

actual system and compare the results. Plotting the model and the microbenchmark results

on the same latency versus throughput graph reveals two things: i) how well or bad does the

model track the system; ii) how much worse does the actual system perform compared to

the model due to unmodelled overheads. In a proper modelling analysis the model and the

system should have the same curve shape. The vertical and horizontal difference between the
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Figure 3.2 – Combining and comparing queueing models with synthetic microbechmarks

two curves exactly quantifies the cost of the system overheads.

We showcase the above analysis with an experiment. We run a CPU-bound synthetic mi-

crobenchmark with a fixed service time of 10 µs and Poisson arrivals, on Linux and on IX [33].

On Linux, we use two modes, one in which each connection is associated with a single

core, and one where any core can server any connection. The first mode corresponds to

an 16xM/D/1 model, while the second corresponds to a M/D/16 one. IX is equivalent to an

16xM/G/1 model due to static partitioning of resources.

Figure 3.2 plots the experiment results, as well as the two model curves from the previous

figure. We make three main observations that showcase the benefits of the methodology

• The models captures the equivalent system behaviour as it can be seen by the shape of

the curves. The M/G/16 curve has the same shape with the Linux (floating connections)

system configuration, while the 16xM/G/1 model tracks well the Linux (partitioned

connections) and IX as expected.

• There is a performance difference between Linux (partitioned connections) and IX

despite following the same model. This performance difference is quantified by the

distance between the system curves and the model curve. IX that is more efficient and

has less system overheads performs closed to the model.

• The figure showcases the aforementioned caveat. Linux (floating connections) despite

following a superior model performs worse than IX due to system overheads, proving

the point that better design does not always perform better on the actual system. Note

that if we increase the service time the impact of system overheads diminishes and the

system and model curves converge.
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4.1 Introduction

Today’s webscale datacenter applications such as search, social networking, and e-commerce

all rely extensively on the decomposition of online, data-intensive queries into smaller sub-

queries that process data directly from the memory of hundreds or thousands of tightly-

interconnected servers to ensure service-level objectives, scalability and availability [223, 80,

81, 14, 219]. The combined advancements in hardware technology (e.g., 10-100Gbps NICs,

cut-through switches, NVMe), system software (e.g., dataplanes [290, 34]), and data man-

agement systems (e.g., in-memory databases and key-value stores [337, 281, 90, 271]) now

allow µs-scale interactions between application components [31]. The increased number

of components involved in a single query and the extensive use of high fan-in, high fan-out

patterns have shifted the performance focus to tail-latency considerations [80].

This emerging µs-scale computing era is characterized by new key performance metrics such

as the tail-latency service-level objective (SLO), e.g., 99th per centi l e ≤ 500µs [188, 34]. To put

this into perspective, 500µs is one order of magnitude longer than an in-memory relational

database processing TPC-C [337] and two-to-three orders of magnitude longer than basic

operations on a key-value store [90, 229, 281]. Yet, it is shorter than an operating system quan-

tum, a TCP retransmission timeout, or the DVFS governor’s reaction time [230]. This requires

complete rethinking of traditional assumptions about systems, stacks, protocols, and applica-

tions [31, 309, 281, 90]. A large body of research focuses on the systematic characterization

and reduction of tail latency effects [188, 230, 85, 84, 223, 182, 187, 155, 34, 299].

While throughput can easily be measured, tail latency is harder to capture and characterize in

a statistically meaningful manner, as it depends on a number of factors beyond the workload

itself. These factors include the choice of a tool with overheads and biases, its precise configu-

ration, and the experimental methodology. The literature describes many pitfalls specific to

latency, e.g., Treadmill [379] discusses situations in which: (i) the inter-arrival request distri-

bution does not match the production environment; (ii) the measuring methodology silently

masks some tail behaviors; (iii) the measuring tool affects the measured end-to-end latency
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because the measuring granularity is too coarse-grained or because the clients are overloaded.

This matches our own experience in building and evaluating multiple research systems for µs-

scale computing [34, 299, 300, 202], which used either modified versions of Mutilate [219] or

home-grown latency-measurement and load-generation tools. While these tools measured the

tail latency of our systems as a function of the load, we were required to unscientifically tweak

a large number of workload and system parameters in an ad-hoc manner by: (i) repeatedly

increasing the number of load-generating clients until stability; (ii) repeatedly increasing the

number of outstanding requests (e.g., number of connections) until the tail-latency diverges

at saturation, as expected in an open-loop process; (iii) and last, but not least, running each

experiment “longer” with the hope of reducing result jitter.

This chapter introduces LANCET, a self-correcting latency measurement tool designed to

measure, in a statistically sound manner, the end-to-end tail latency of remote procedure

calls in a testing environment. LANCET is self-correcting as it relies on on-line statistical

tests to determine situations in which tail latency cannot be accurately measured. This

includes situations when (i) the workload configuration, and in particular the number of client

connections, leads to closed-loop behavior; (ii) the infrastructure (e.g., number of machines)

cannot generate the desired load without introducing client bias; (iii) the service time of the

workload itself is heavy-tailed distributed.

Because it relies on statistical methods within its control system, LANCET is also easier to use

than existing tools. While the scientist specifies the infrastructure used for an experiment (e.g.,

number of client machines), and the workload itself (e.g., mix reads and writes, distribution of

keys and values, number of client connections, maximum number of outstanding requests per

connection etc.), LANCET then automatically determines, using statistical tests, what can be

measured and at which confidence interval. LANCET’s control system internally sets additional

experimental parameters such as the duration of the experiment and its warmup phase.

Finally, LANCET relies on state-of-the-art, hardware-based measurement techniques that com-

bine NIC timestamping in hardware and userlevel matching of packets to RPCs. This approach

noticeably eliminates the client bias, and increases the accuracy of individual measurements

without creating a long-term dependency on immature kernel-bypass protocols stacks and

libraries.

This chapter describes the methodology, design, and implementation of LANCET, with the

following novel features:

• LANCET measures the open-loop tail latency of a workload using only two user-provided

parameters: the target load level and the desired confidence interval at the target tail

percentile. For this, it relies on proven statistical methods such as hypothesis testing to

configure the experiment methodology parameters.

• LANCET is self-correcting and reports “N/A” when no statistically-sound tail latency
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can be measured. This can be due to limitations in workload specification, client

infrastructure, or because the service time distribution has high variability.

• LANCET clearly separates (i) the methodological considerations, implemented by the

LANCET controller, (ii) the measurement tool, implemented by a combination of agents,

and (iii) the workloads and application-level protocol support, implemented in an

extensible manner by the LANCET agent’s internal API.

• LANCET is designed with stability and production deployment in mind, with a focus

on Ethernet-based protocols. It therefore uses exclusively the standard Linux kernel-

based implementations of networking protocols. For applicable NICs, LANCET supports

hardware-based timestamping to measure TCP-based RPC latencies for improved mea-

surement accuracy. Our work demonstrates that kernel-bypass is not necessary to

achieve precise µs-scale client-side measurements.

Our evaluation of LANCET with workloads with synthetic service times demonstrates that it

(i) automatically identifies the right number of samples necessary for the target experiment

accuracy and result convergence; (ii) accurately reports the latency distributions for workloads

with service time as short as S̄ = 1µs; and (iii) provides substantially more accurate results

than Treadmill [379] and Mutilate [219], state-of-the-art tail latency measurement tools.

LANCET is open-source and can be found at https://github.com/epfl-dcsl/lancet-tool.

4.2 Background

The accurate measurement of the latency of any software application serving RPCs requires

the appropriate combination of metrics, tools, workloads and experimental methodology: (i)

the metrics determine which type of latency is being measured for a certain load, whether

mean, median, tail (e.g., 99th percentile), or the empirical cumulative distribution function

(ECDF); (ii) the choice of tool determines the precision of the benchmark; (iii) the choice of

workload determines the degree of realism, generality, and relevance of the experiment; (iv)

the choice of methodology determines the overall soundness of the results, their accuracy,

and reproducibility.

The high-level process is straightforward: the tool acts as an RPC client which generates

requests for the system(s) under test. The tool timestamps requests and corresponding replies

to determine the end-to-end latency. The requests themselves are determined in a workload-

specific manner (e.g., a mix of get and set with a specific distribution of keys). The individual

request inter-arrival time typically follows a Poisson process for a given rate λ. For a fixed rate

λ, scientists typically report the full ECDF or the complementary cumulative distribution or tail

distribution (CCDF), often on a log scale, to highlight the tail latency levels (99th , 999th , etc.).
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To study the impact of load on latency, scientists repeat the fixed-rate experiment for different

λ and report the tail latency as a function of the load [219, 299, 34, 85, 188, 231, 138, 379, 188].

Finally, for dynamic experiments that mimic daily datacenter patterns, the tool dynamically

adjusts λ according to a diurnal (or accelerated) time pattern [34, 300, 14, 340].

4.2.1 Taxonomy of tools

We attempt to make a taxonomy of the existing tools for generating load and measuring latency,

the techniques used and the main design decision.

Packet vs. RPC generators: At the highest level, latency measuring tools can be easily clas-

sified into packet generators, which measure a network device or a network function, and

application RPC generators, which measure a server.

Packet generators use stateless network packets to measure the throughput and the latency

of datacenter network equipment such as switches and routers as defined in RFCs [236, 40].

These tools can be implemented to achieve different levels of precision in software. For

example, MoonGen [98], TRex [64], and netperf [264], rely on hardware timestamping facilities

in modern NICs (e.g., MoonGen) or use custom hardware appliances such as Spirent [323] or

IXIA [163].

Application RPC generators measure the latency of client-server interactions using protocols

such as http or memcached’s binary protocol, typically implemented on top of TCP or RDMA

connections. These tools provide advanced workload-generation capabilities. For example,

Mutilate [219, 261] can model Facebook’s various uses of key-value stores [14], YCSB [70, 372]

can generate a Zipfian distribution of keys, and CloudSuite [114, 68] offers a mix of applications.

For the rest of the chapter, we will focus on RPC generators.

Open-loop vs. Closed loop: There are two main ways to control the flow of requests to the

target. An open-loop system models n =∞ clients that send requests to the target according

to a rate λ and an inter-arrival distribution, e.g., Poisson process. A closed-loop system bounds

the maximum number of possible outstanding requests at any given time. The distinction

between an open and a closed loop system is a property of a specific deployment and the

same system can be deployed under different scenarios, e.g., a key-value store may serve only

a few blocking clients (i.e., closed-loop) or thousands of application servers, which is best

modelled as open-loop. Testing for the right scenario is crucial because open-loop systems

can lead to large queuing, and thus longer tail latencies, whereas closed-loop tail latencies are

typically bounded by the number of possible outstanding requests. Tools such as Treadmill

and Mutilate are open-loop systems, while others such as YCSB are closed-loop systems.

Generating the necessary load: Precise tools are typically used to evaluate the benefit of

innovations in new hardware, protocol designs, kernel bypass architectures, networking
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stacks, operating system configurations, or applications. Leading research systems today can

deliver high-throughput solutions that easily scale to millions of requests per second, even on

commodity hardware. As a consequence, the load-generation and latency-measuring tools,

which typically run on reference vanilla Linux infrastructure, must be distributed on multiple

client machines to saturate a single server [219, 34, 299].

Multi-machine setups follow two basic design patterns. First, in symmetric generators, all

client machines generate load and measure latency. Then, an external agent accumulates

and processes the collected results to report the aggregated verdict. This category includes

YCSB [70], Treadmill [379], CloudSuite [114], memaslap [249], etc. Unfortunately the open-

source versions of these tools provide no coordinator or aggregator script to run them in a

distributed fashion.

Second, the asymmetric design splits the client machines between load-generating and

latency-measuring. The bulk of the load is generated by client machines that generate requests

according to a specific inter-arrival distribution, e.g., Poisson arrival, in an open-loop manner

without measuring latency, while a separate, dedicated client machine makes closed-loop

requests to the same server and measures its latency. By reducing the system load on the

latency-generating thread, such tools reduce client bias in the measurement. Mutilate [219] is

the most well-known tool in that category.

Point of measurement: Latency can be measured at different points in the system resulting

in different levels of accuracy. This includes the actual wire, the NIC, the Ethernet driver, the

in-kernel socket layer, or the application itself. The point of measurement has a large impact

on precision. According to Primorac et al. [301], (i) the packet generators using hardware-

based NIC timestamping such as MoonGen can accurately measure the latency of stateless

network functions up to the 99.99th percentile whereas (ii) the best software solution relying

on kernel bypass can only measure up to the 99th percentile, and (iii) the solutions relying on

the traditional networking stack should not be used at all for µs-scale latency measurements.

NIC-based timestamping is available on mainstream NICs. Intel NICs, such as 10Gbe 82599

and x54, or 40Gbe x710, implement hardware timestamping only to support IEEE 1588 Preci-

sion Time Protocol [95]. This restricts the type and amount of packets that can be hardware-

timestamped. The MoonGen packet generator takes advantage of this precise, yet restrictive

mechanism. The Mellanox NICs, e.g., ConnectX-4 [247] or newer, offer general-purpose

hardware timestamping support to all incoming and outgoing packets. The Linux kernel

provides support for hardware timestamping via the Linux socket interface, yet deriving RPC

timestamps from packet timestamps is challenging, as later described.

Another way to increase precision and reduce jitter is to leverage kernel bypass and NIC

polling at the client. Tools such as MoonGen and T-Rex use the DPDK [88] toolkit for better

performance and precision. Unfortunately, kernel bypass limits application and protocol

support, and requires using less-proven protocol stacks as part of the experiment.
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Figure 4.1 – 99th percentile latency for memcached USR measure with Mutilate with 144 and
320 connections with 1 outstanding request per connection.

Reporting results: From a methodology perspective, most tools depend on histograms to

compute latency percentiles, thus avoiding keeping all the recorded latency samples. His-

tograms with fixed bucket sizes, as used by Mutilate, can affect the reported results by masking

tail phenomena, if not configured properly. Some tools such as Treadmill [379] propose a

user-defined calibration phase to determine the bucket allocation. Other tools, such as Tail-

Bench [188], use dynamic histograms, whose bucket sizes change over the execution of the

experiment. Finally, few tools, e.g., Mutilate, allow collecting all latency samples and save

them in a file to be used for plotting the ECDF.

4.2.2 Configuration burden

Load generators put the methodological burden on the scientist who configures it. For ex-

ample, a scientist using Mutilate must first determine the time for each load experiments

(default=5s), which must be long enough to be statistically sound; then specify the number of

machines, threads and overall number connections for the load-generating agents, and the

maximum number of outstanding requests per connection; and finally specify the configura-

tion of the latency-measurement agent, which operates as a closed-loop with one outstanding

request a time.

This configuration setup has subtle implications as (i) increasing the number of machines

reduces client bias [379]; (ii) increasing the number of open sockets reduces the throughput of

the server because of operating system overheads [34]; (iii) increasing the maximum number

of outstanding requests per socket allows for batching and increases throughput; (iv) the

product of the number of connections × the number of outstanding requests must be larger

than the bandwidth-delay product of the workload if the scientist wishes to measure the

open-loop tail latency of the service.

Figure 4.1 illustrates the challenge via the study of an out-of-the-box memcached/Linux

deployment with Mutilate configured with 320 and 144 connections with one outstanding

request each. We report the 99th tail latency as a function of the load. The orange curve (144

Connections) operates as a closed-loop, with the clients unable to generate the target rate,

and without ever saturating the server. The lower reported tail latency is merely a reflection of
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Latency Experiment Concerns
Workload Methodology Measuring Tool

transport protocol connection balance system stability workload-compliant
application protocol open/closed queueing unbiased result processing methodology-compliant
request types and ratio outstanding reqs/conns result convergence measuring bias free
connection count inter-arrival distribution distribution coverage

Table 4.1 – Classification of concerns related to running a latency experiment into workload,
methodology, and measuring tool-specific components. We advocate that the Workload
column has to be user defined, while Methodology and Measuring Tool columns have to be
handled systematically by the measuring framework.

the limited number of outstanding requests. This experiment can lead to false conclusions,

e.g., on the maximum throughput that meets a SLO (e.g., ≤ 300µs).

4.2.3 Statistics Background

This section provides the sufficient background to understand our use of statistical methods

in LANCET.

Hypothesis testing: Statistical testing follows a specific thought process. Initially, the statisti-

cian formulates a null hypothesis implying that there is no relation between two populations

and the observations are the results of pure chance. She then identifies a test statistic that can

assess the truth of the null hypothesis and computes the p-value. p-value gives the probability

of the given test statistic resulting in the observed value if the null hypothesis is true. The

smaller the p-value, the stronger the evidence against the null hypothesis. Finally, she com-

pares the p-value to the α value, which corresponds to the level of confidence. If the p-value

is less than α, she rejects the hypothesis and therefore conclude that the effect she observed

was not due to random chance.

LANCET uses the following tests. First, the Anderson-Darling test checks whether a group

of samples comes from a certain probability distribution and was chosen because it is less

sensitive to outliers compared to similar tests, e.g., the Kolmogorov-Smirnov test [214]. We use

that to validate the inter-arrival request distribution. Second, the Augmented Dickey Fuller

test [86] checks a series of samples for stationarity. We use the ADF test to determine the

duration of the warm-up phase and whether the experiment results change over time. Finally,

we use the Spearman rank correlation coefficient and the associated p-value to check if a

series of samples is autocorrelated when checking for iid-data.

IID-data: Most types of hypothesis testing or general statistical processing, such as the calcu-

lation of confidence intervals, require samples that are independent and identically distributed

(iid). When running a latency experiment, latency samples are naturally identically distributed

since they come from the same target server. Sample independence, though, is challenging to
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meet because of queuing effects. The end-to-end latencies of two requests that are queued

back-to-back are dependent because the latency of the latter request includes the service

time of the prior. While independence cannot be taken for granted, it can be tested, with

autocorrelation being the standard way to check independence for a series of samples.

Confidence Intervals: We focus here on the confidence intervals for tail latency of a single

execution, assuming that the system environment remains identical and stable during the

entire experiment. The confidence intervals for a distribution’s percentiles can be computed

in closed form when the data are iid. The formula identifies, with a certain level of confidence,

two threshold values that belong to the collected samples, between which the value for the

specific percentile is expected to be found. Formulas 4.1, 4.2 give the indices of those two

threshold values in the sorted of collection of samples [214] for a certain confidence level γ.

j ≈ bnp −η
√

np(1−p)c (4.1)

k ≈ dnp +η
√

np(1−p)e+1 (4.2)

where n is the number of samples, p is the percentile, and η is defined as N0,1 = 1+γ
2 . For

example, for 10,000 iid samples (n = 10000), the confidence interval for the 99-th percentile

with 95% confidence (γ= 0.95, so η= 1.96) will be between the values with indices j = 9880

and k = 9921.

Note that determining confidence across different executions of the same experiment is

challenging as the system’s boot-time and application initialization can have a persistent

effect on performance, leading to the hysteresis problem described in Treadmill [379].

4.3 Experiment Decomposition

Our goal is to build a latency-measuring tool that is precise and simplifies the configuration

burden discussed in Subsection 4.2.2, with the explicit objective to identify situations in which

the configuration cannot lead to a statistically meaningful result.

Table 4.1 classifies concerns related to a latency experiment into three main categories: work-

load, methodology, and measuring tool. These concerns often correspond to user-defined

parameters in most of the existing tools and can be easily misconfigured. This decompo-

sition will guide the design of modular, self-correcting latency-measuring tools. We claim

that the workload-specific parameters have to be user defined, otherwise the experiment

is insufficiently described. The methodology and measuring tool concerns have to be sys-

tematically managed by the measuring framework to reduce the pitfalls induced by the user

misconfiguration.
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Workload: The first aspect of a latency experiment is the actual workload and a large set of

the configuration parameters refer to the workload specification. The experiment workload

is both application- and deployment-specific, meaning that the same application should be

tested differently if the deployment environment is also different. The workload includes

the application specific parameters (e.g., get:set ratio, request size distributions, TPC-C

request mix, etc.), the application-level protocol (e.g., HTTP, binary memcached, etc.) and the

network-level protocol (e.g., UDP vs. TCP). The definition of the workload also includes the

client assumptions, i.e., the number of expected client connections, the maximum number of

outstanding requests per connection, and whether clients operate in an open- or a closed-loop

system.

Critically, the specification of the workload is independent of the measuring tool , but affects

the results, which could lead to unrealistic or wrong conclusions. For example, one cannot

meaningfully report the open-loop tail latency of a workload with an insufficient number of

connections, or insufficient outstanding requests per connection.

Measuring methodology: The second aspect of a latency experiment is the methodology,

which describes how the latency samples are collected and processed. Examples of config-

uration parameters that are relevant to the methodology are the experiment duration, the

number of collected samples, and the number and size of the histogram buckets. Reducing

the number of configuration parameters related to methodology is a major goal of our design.

Regarding the latency sample collection, a good methodology should first ensure that the

system under test is in a steady state to avoid measuring transient phenomena. Then it

should ensure that the collected results converge and that all desired tail behaviors are cov-

ered. Finally, during the result processing, it should avoid adding statistical bias, e.g., by the

misconfiguration of histograms.

Measuring tool: Finally, the last part of a latency experiment is the actual client software used

to collect the latency samples. Examples of parameters related to the tool are the number of

client machines or threads used in the experiment, and whether hardware or software times-

tamping is used. The tool should be able to implement the specific methodology, generate the

target workload accurately, and measure latency without adding too much client bias.

4.4 Design

4.4.1 LANCET infrastructure

Figure 4.2 shows the basic LANCET overview, which splits the methodology from the actual

measuring tool and workload generator according to Section 4.3. LANCET is a by-design dis-

tributed tool that consists of a coordinator (C) and various measuring agents. The coordinator

is in charge of the experiment methodology (see Subsection 4.4.3) and communicates with

35



Chapter 4. Lancet: A self-correcting Latency Measuring Tool
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Figure 4.2 – Lancet’s architecture depicting a coordinator (C), throughput agents (TA), latency
agents (LA), symmetric agents (SA), and the target server under test. The dashed arrows
correspond to the LANCET API while the solid ones are application RPCs

Table 4.2 – The LANCET coordi-
nator API with the information
returned by the agents on each
call. For the get_throughput
and get_latency requests, the
agents also reply information re-
lated to the Inter-Arrival distribu-
tion (IA), the latency Confidence
Intervals (CI), and whether the
collected samples are stationary
and iid. If they are not iid, the re-
ply contains the target sampling
rate necessary to get iid data.

Request Type Request Params Reply

start_load load (rps) ACK

start_measure
#samples

sampling rate(sr)
ACK

get_throughput None
Throughput (rps)

Correct IA (T/F)

get_latency None

Latency CI

Stationary (T/F)

IID (T/F, sr)

exit None ACK

the agents over the LANCET API (Table 4.2). The measuring agents drive the workload via

application RPCs generated based on application-specific random distributions. The agents

also measure latency precisely, identify cases of workload violations, and run statistical tests.

Figure 4.3 describes a typical agent state transitions triggered by the coordinator via the API

for a fixed-load experiment. From an idle state (Idle), the agent transitions into the loading

phase (Load), where it attempts to issue l requests per second to the server. During that period

the agent does not record latency. The agent eventually transitions into the measurement

phase (Measure) specified by a sampling rate (sr ) and a number of latency samples to collect

(s). The agent can stay in that state while the sr and s parameters can change. Finally, the

coordinator decides to terminate the experiment (Terminate) via an exit message. At any

point in time, while the agent is in the Load or Measure phase the coordinator can ask for the

current throughput and latency.

4.4.2 Measurement options

Figure 4.2 shows that LANCET implements three agent types, selected to match the capabilities

of the available hardware, the measuring methodology and the target experiment granularity.

This way LANCET can support both symmetrical and asymmetrical deployments described in
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Figure 4.3 – Lancet agent’s state transition. Arrows represent messages from the coordinator.
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Figure 4.4 – LANCET’s experiment methodology implemented by the coordinator. Dark grey
boxes correspond to messages from the coordinator to the agents. Light grey boxes show the
experiment end.

§ 4.2.1.

LANCET uses the asymmetrical model when the latencies are captured in software. This model

reduces jitter by dedicating cores and even machines to only measure latency. The drawback

is that the experiment collects fewer samples per time period. Furthermore, special care must

be taken to ensure that the collected samples are representatives of the workload. For example,

a latency agent should open multiple connections (i.e., emulate multiple clients) to ensure

that a server configured with an RSS NIC will use all cores.

LANCET uses the symmetrical model when the NIC offers the capability to timestamp all

incoming and outgoing Ethernet frames and the Linux operating system exposes the informa-

tion to userspace (v4.14+ kernels). LANCET associates the hardware timestamping of packets to

the end-to-end latency of RPCs. This is not straightforward because of the inherent mismatch

between the stream-oriented TCP protocol and the message-oriented RPCs. Implementation

details follow in Section 4.5.

4.4.3 LANCET’s self-correcting methodology

LANCET’s primary contribution is its novel, self-correcting methodology which follows the

experiment decomposition and split of concerns described in Table 4.1, and tries to systemati-

cally and based on statistics, identify: (i) when the server is in a stable state to start measuring
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latency (managed by the user-defined warm-up time in other tools); (ii) if the collected la-

tency samples converge and whether tail phenomena are fully covered (controlled by the

user-defined experiment duration in other tools); (iii) how to process the collected samples

and report latency without introducing statistical bias (histograms are mainly used for that

purpose in other tools); (iv) the confidence intervals of the latency results (unlike most tools

which simply report latency percentiles).

Figure 4.4 illustrates the state machine transitions of the coordinator when measuring the

open-loop tail-latency of a server under a certain load. To run such an experiment, the scientist

needs to provide, apart from the necessary workload specification (first column in Table 4.1),

the following:

• the target load (l).

• the target confidence interval for a specific latency percentile, e.g., 10µs interval for the

99th percentile with 95% confidence.

The output of such an experiment will be either the tail-latency percentiles with the corre-

sponding confidence intervals or an indication that the specific experiment cannot be exe-

cuted because some of the assumptions are violated, e.g., the target load cannot be reached,

the service time has high variability and the computed latency confidence interval is wider

than the target, the client does not respect the workload specifications, etc.

System Stability: Initially, the methodology ensures that the target load can actually be

reached before starting measuring latency, thus eliminating transient phenomena. Then,

the methodology ensures that agents load the server while respecting the workload’s specified

inter-arrival distribution. This second confirmation is essential to avoid reporting misleading

latencies. For this, every agent records the inter-transmission intervals of requests by record-

ing request transmissions, ideally in hardware, but if necessary at the socket interface. Every

agent runs an Anderson-Darling test to check whether the inter-transmission intervals follow

the target inter-arrival distribution, e.g., exponential in the case of Poisson inter-arrival. The

controller exits the system stability step only when the load is reached according to the correct

inter-arrival distribution.

Unbiased Result Processing: Each agent collects, according to the parameters (s, sr ) set by

the controller, s samples, each randomly sampled among the RPCs at rate of sr , e.g., collecting

10,000 samples with a 1:20 sampling rate would require ∼200K RPCs. Sampling is necessary

because the collected samples need to be iid to compute the confidence interval correctly.

Computing confidence intervals on non-iid data will underestimate their size.

The iid-ness is confirmed or rejected by computing the autocorrelation of the collected latency

samples sorted by their transmission time. To do so, latency-measuring agents compute the

Spearman correlation of the collected latency samples shifted over time. We leverage the
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associated p-value to determine whether the correlation is significant or not. This correlation

being significant implies that data that are close in time depend on each other, which is the

result of them being queued back to back in the servers queue.

A way to reduce the autocorrelation is to decrease the sampling rate. The LANCET built-in

parameters initialize the measuring phase with 10,000 collected samples with a first sampling

rate of 1:5. If the autocorrelation is non-significant, the latency measuring agents report

that the samples are iid. Otherwise, they report how much to reduce the sampling rate to

achieve non-significant correlation. The latency measuring agents report the Spearman

correlation co-efficient back to the coordinator as part of their latency results. To do so,

the agents compute the autocorrelation for different lags and report the one that leads to a

non-significant correlation. Based on the agents’ replies, the coordinator decides whether to

proceed to the next state or reduce the sampling rate accordingly if it fails to confirm iid-ness.

Result Stationarity: The methodology needs to identify whether the number of samples

collected is sufficient for the results to converge to a stable distribution of latencies that does

not change over time. To ensure stationarity, the methodology leverages an Augmented Dickey

Fuller test [86]. Each latency-measuring agent sorts the collected latency results based on

their transmission timestamp and runs the test. Again, the latency measuring agents report

the result of the test to the coordinator. In cases where lack of stationarity is detected, the

coordinator decides to increase the number of samples by 10,000 and retry. Otherwise it

proceeds with the next check.

Determine the confidence interval: Finally, the methodology has to check if the results con-

verge within the target confidence interval size. For that, we use the Formulas 4.1 and 4.2. Each

latency measuring agent reports the confidence intervals for the latency percentiles to the co-

ordinator. The coordinator ensures that the intervals from different agents are overlapping and

computes their average. If the final confidence interval is wider than the user-selected target,

the coordinator increases the number of samples by 10,000 and continues the experiment.

Termination: If the target confidence is reached, the coordinator finishes the experiment and

reports the final latency percentiles with the equivalent confidence intervals. If the coordinator

cannot reach the target confidence after a fixed number of failed retries, or if the experiment

duration is above a certain threshold, it terminates the experiment, and reports that the

specific experiment is not conclusive, the reasons why, along with the collected results so far.

4.5 Implementation

In addition to the design goals of Section 4.4, LANCET was implemented with robustness and

long-term relevance in mind. LANCET is therefore built purely on functionality provided by

the Linux kernel, using built-in drivers and protocol stacks. During development we identified
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Figure 4.5 – The structure of a LANCET agent. The grey part corresponds to the Python control
plane, while the white part corresponds to the C dataplane communicating over shared
memory (SHM).

some inconsistencies regarding hardware timestamping in the Linux kernel; our patch was

merged in Linux kernel 4.19.4 [235].

The LANCET coordinator (Figure 4.2) is in charge of deploying the agents, communicating with

them over sockets, driving their state machine according to Figure 4.3, and implementing the

methodology of Figure 4.4. The coordinator is implemented in Golang. It relies on goroutines

for easy distributed coordination and failure management, and consists of ∼1000 lines of code.

From those lines, ∼300 of them implement the methodology described in § 4.4.3 and the

rest implemented the LANCET API to communicate with the agents, manage collected results,

etc. Thus, implementing a new coordinator logic for different experiment methodologies is

relatively easy.

We implemented three different agents that can be used according to the available hardware,

the measuring methodology, and the necessary experiment granularity. Our agents can

achieve better measuring granularity compared to previous tools and can be used in both a

symmetrical and asymmetrical deployment, independently of the available hardware. The

agents are implemented in a combination of C and Python, and can be easily extended with

new transport and application protocols.

Figure 4.5 depicts the structure of a multi-threaded LANCET agent. Each agent is split be-

tween a Python control plane and a C data plane communicating over shared memory. The

Python control plane is in charge of communicating with the coordinator and performing

the statistical computations. The choice of Python allowed us to take advantage of the rich

Python ecosystem using libraries such as NumPy and SciPy. The choice of C for dataplane

gave us direct access to low level socket APIs and reduced the client overhead. LANCET lancet

currently supports TCP, UDP, and R2P2 [202] as transports, and Memcached, Redis, and HTTP

as application protocols.

Throughput Agent: This agent leverages epoll_wait to manage connections and is in charge

of loading the server without measuring latencies. It is used only in asymmetrical deployments

in cooperation with one of the two following agents that can measure RPC latency.

Latency SW-timestamping Agent: This agent depends on software timestamping and does

not have any hardware dependencies. It improves the measuring precision over other software-
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based tools, though, by leveraging the busy polling functionality introduced in Linux 3.11.

Specifically, the SO_BUSY_POLL socket option allows blocking system calls to poll the NIC

instead of depending on interrupts. While still dependent on userspace timestamping, this

agent reduces client bias and measures latency with similar accuracy to kernel-bypass ap-

proaches. The blocking nature of this agent limits the load and the inter-arrival distribution

of requests the agent can achieve. Consequently, this agent can only be used in asymmetric

setups in conjunction with throughput agents that generate the necessary target system load

according to the expected inter-arrival distribution.

Symmetric HW-timestamping Agent: Finally, we implemented a symmetric agent that lever-

ages hardware timestamping to measure RPC end-to-end latency. This agent depends on the

Linux kernel functionality for hardware timestamping added in kernel 4.14 for TCP. It also

requires a NIC that timestamps all the incoming and outgoing packets, e.g., the Mellanox

ConnectX-4 [247]. The preferred deployment is based on symmetric HW-timestamping agents,

as they improve on the latency agent in terms of precision and they can scale throughput while

the coordinator can symmetrically collect results from all client machines, thus increasing the

experiment accuracy.

The most challenging part of the implementation was the attribution of RPC latencies when

requests and replies are layered on top of the stream-based TCP protocol, as used in the

popular protocols, such as Memcached.

For TX timestamps, the Linux kernel provides an asynchronous API to collect timestamps,

returning asynchronously one timestamp for each sendmsg system call. The notification is

propagated to the userspace through an EPOLLERR for the equivalent socket that is handled

by epoll_wait. Along with the timestamp, the kernel also returns the number of the last

transmitted byte this timestamp corresponds to. For example, if the first request has a size

of 20 bytes, the notification will mention that this timestamp is associated with byte 20. For

the second request of the same size, the notification will mention byte 40, etc. The same

information is maintained by LANCET in userspace for validation purposes, and to deal with

cases of coalescing or resubmissions.

The kernel provides a synchronous API to retrieve the RX timestamp: the RX timestamp is part

of the metadata to the recvmsg system call, and corresponds to the receive timestamp of the

frame that carried the last byte returned by the system call. The LANCET application-parsing

logic leverages this information to associate timestamps to replies of variable sizes: if the

content returned by recvmsg consists of an incomplete reply, that timestamp is ignored; if

the content contains the replies to multiple requests (which is possible because of TCP’s

streaming nature and coalescing in the socket layer), LANCET only considers the timestamp

for the last reply returned in that call. The Linux kernel coalesces sk_buffs internally and

keeps a single timestamp per sk_buff corresponding to the last arrival. Consequently, earlier

received responses might appear to have later receive timestamps.
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Figure 4.6 – Latency ECDF for an M/D/1 model and three deterministic workloads at 20%
load.

Our contribution to the kernel 4.19.4 [235] guarantees that each recvmsg system call will

return the hardware timestamp that corresponds to the last byte read. Previously, this was

only the case for software in-kernel timestamping.

4.6 Evaluation

Our evaluation aims to answer three fundamental questions: (i) how does LANCET compare

with existing RPC load-generating tools such as Mutilate and Treadmill (ii) how does LANCET’s

self-correcting methodology work in practice (iii) how LANCET performs in characterizing a

server’s behavior across different loads.

We answer these questions using a methodology in which the server’s execution time is explic-

itly controlled. Doing so enables comparing the client-side measurements made by the tools

to an idealized queueing theoretic model. We leverage an RPC server with synthetic service

times following well-known distributions. Specifically, we tried a fixed, an exponential, and a

bimodal distribution where 10% of the requests take ∼10× longer to execute. To further reduce

server-side overheads, our server uses the open-source IX operating system [34] configured

with 1 CPU and adaptive batching disabled. The operating system overhead is ∼1µs of CPU

execution time per request, which includes driver and network processing overheads. As

baselines we use the opensource versions of Mutilate [1] and Treadmill [3]. For Treadmill, we

had to make changes in order to build it for our setup.

To be able to compare with other tools, our synthetic server uses the ascii-memcached
protocol. Clients submit get requests with for a 19-byte key (similarly to Facebook’s USR [14]),

the server spins for a configurable amount of time, and replies that that key was not found.

We chose ascii-memcached because it is the only protocol supported by both Treadmill and

Mutilate.

The idealized models correspond to the expected latency distribution, as determined by a dis-

crete event simulation, assuming zero operating system overheads, zero network propagation
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delays, and zero client-side measurement overheads.

For all of our experiments, we configure each client machine with 15 threads and 4 connections

per thread with 1 outstanding request per connection. Also, we consider a Poisson inter-arrival

distribution of requests.

4.6.1 Experimental setup

Our experimental setup uses 5 clients and one server machine connected by a Quanta/Cumu-

lus 48x10GbE switch with a Broadcom Trident+ ASIC. The client machines are equipped with

a Xeon E5-2637 @ 3.5 GHz and a Mellanox Connect-X4 NIC. The machines run an Ubuntu LTS

16.04 distribution running Linux kernel version 4.19.4. The systems are tuned to reduce jitter:

all power management features, including CPU frequency governors and TurboBoost, and

support for transparent huge pages, are disabled. The server is a Xeon E5-2665 @ 2.4 GHz with

an Intel x520 NIC running the IX operating system.

4.6.2 Benefits of hardware timestamping

First, we compare the measuring granularity of LANCET with the measuring granularity

achieved by Mutilate and Treadmill. For LANCET we consider both the hardware timestamping,

symmetrical setup and the asymmetrical one based on the busy-polling agent. LANCET and

Mutilate provide a way to run an experiment based on multiple machines, but for Treadmill

there is no opensource coordinator script. Thus, we run one Treadmill instance on each client

that contributes 1/5 of the load. Also, we modified Treadmill to save the collected latencies at

the end of the experiment.

From a methodology perspective, we plot the latency CCDF for a deterministic service time

distribution with different average service times. The load is set at 20% of the theoretical

saturation, we range the average service time from S̄ = 1µs to S̄ = 100µs. We collected 1M

samples for each tool.

Figure 4.6 summarizes the experiment results. We observe that LANCET, for both configurations

and in all three experiments, achieves lower measuring granularities when compared to

the other tools because it reduces the client measuring overheads. Specifically, for S̄ = 1µs

hardware timestamping measures a 99th percentile tail of 14.1µs and the LANCET polling agent

one of 27.3µs. Mutilate measures 40µs and Treadmill reports 63µs. Figure 4.6a also shows that

Mutilate’s line is not smooth because of theµs reported granularity, as opposed to nanoseconds

reported by the other tools. Also, we see that LANCET aligns better with the theoretic results.

For example, with S̄ = 10µs, the blue line nicely tracks the model; the offset between the two

(∼10µs) is essentially due to the operating system overhead and the propagation delay. Finally,

Figure 4.6c shows that the tools make a difference even for coarser grain tasks (S̄ = 100), where

the operating system and propagation delay overheads are comparatively small.
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Figure 4.7 – Dynamics of LANCET’s self-correcting methodology based on load for three service
time distributions with S̄ = 10µs

For the rest of our evaluation we will focus on the symmetric hardware-timestamping agent as

it reports the most accurate results.

4.6.3 LANCET self-controlling dynamics

In the next series of benchmarks, we want to identify the impact of the self-correcting method-

ology and how the coordinator controls the experiment parameters based on the different

service time distributions and the system load. To do so, we run the three different service

time distributions across a variety of loads and we collect the necessary level of sampling to

achieve iid-ness, and the number of samples necessary for a target confidence interval size of

10µs.

Figure 4.7a shows the sampling rate that is necessary to the unbiased processing of the results

caused by queuing effects. We observe that high-dispersion workloads (e.g., bimodal) and

higher load levels require lower sampling rates. This is expected as increasing either service

time dispersion or load level leads to more queuing, thus more dependent samples.

In Figure 4.7b, we set the size of the target confidence interval for the 99th percentile latency to

be 10µs with 95% confidence. The figure shows the number of collected samples, as decided

by the coordinator, that are required to satisfy the result target. We observe that more samples

are necessary to fulfill the constraint as the load increases, since higher system load leads to

higher latency variability.

The bimodal distribution shows an interesting behavior of the tool: With load > 70%, execution

stops after the maximum number iterations (N = 10) but the target CI expectations can not

be met. Our experiment logs showed that the collected 99th percentile latency at 75% load is

411.333µs [-5.87µs, 7.56µs ] at 95% confidence; this interval is > 10µs.

We also tested LANCET’s self-correcting behavior with the lognormal distribution, which is

a heavy tailed distribution. LANCET terminates without ever being able to confirm results

convergence(CI < 10µs for the 99-th percentile latency), even at a low load of 20%. Thus,
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Figure 4.9 – Latency vs throughput graphs for a 5-client experiment with average service time
of S̄ = 1 and S̄ = 10

LANCET is effective in detecting heavy-tailed service time distributions.

4.6.4 Inter-Arrival distribution Impact

In the following experiment we try to showcase the impact of the inter-arrival distribution

on the latency results and how LANCET identifies cases of inter-arrival distribution violations.

We use the fixed synthetic time distribution with S̄ = 10µs and we run a latency experiment

across a variety of loads with different number of connections. We disable LANCET’s checks

for inter-arrival distribution and we only report whether there is a workload violation. To

eliminate any system interference we configure LANCET with one connection per thread, and

add connections by adding client machines.

Figure 4.8 shows the 99-th percentile latency as a function of throughput for the different

connection count configurations. The vertical lines correspond to the load level that the

equivalent configuration started violating the inter-arrival distribution. We observe that once

LANCET reports a violation the curves start deviating. This experiment shows that cases as the

one described in Figure 4.1 can be avoided by LANCET’s self-correcting methodology.
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4.6.5 Server characterization

Figure 4.9 shows the 99th-percentile tail latency as a function of the load for three workloads.

We compare LANCET with Mutilate as well as the idealized, zero-overhead theoretical model.

Both tools use 5 machines – necessary to achieve the high loads required. For LANCET, we

additionally report the confidence interval of each measurement. This experiment does not

include Treadmill as Treadmill’s open-source distribution does not support multi-machine

deployments. Note that because of system overheads, the IX server cannot get close to the

expected maximum load for Figure 4.9a which would be 1M RPS, thus we do not plot the

theoretic curve.

We observe that LANCET reports latencies that closely match the idealized model across the

entire load spectrum, to the point that it accurately reflects the two inflection points of the

binomial distribution. We also observe how the size of the confidence intervals change across

different distributions and system loads. For low loads and low service time dispersion, the

interval is shorter than the maximum configured (10µs). For the bimodal distribution, the

reported confidence interval is at its maximum configuration even for low loads.

4.7 Related Work

LANCET is one of the many contributions towards enabling reproducibility and accurate

experimentation in systems research [238, 169].

µs-scale computing: Recent research focuses on µs-scale computing [31] both in operating

systems and networking and either aim to optimize [34, 290, 229, 299, 178], or attribute the

sources of tail-latency [301, 223, 188, 379, 219]. LANCET does not attempt to attribute the

sources of the jitter. Instead, it provides a tool to measure µs tail latency precisely on an

end-to-end basis to be used in similar research efforts.

Precise measurements: RPC generators [379, 219, 114, 70, 249] use software timestamping.

However, researchers need more accurate tools to evaluate system’s latency, e.g., ZygOS used a

modified version of Mutilate based on DPDK [88], and MICA [229] used a custom version of

YCSB on DPDK. Software-based packet generators [64, 98, 264] also used DPDK for increased

precision [301]. Hardware-based packet generators [323, 163] provide sub µs-scale precision

with little jitter [301]. Some tools repurposed the IEEE PTP feature of standard NICs to measure

packet latencies [98, 252, 215]. LANCET is the first tool that leverages hardware-based NIC

timestamping for capturing latency for RPCs over TCP with even higher precision. In addition,

LANCET uses the standard Linux networking stack for all experiments, proving a more realistic

simulation environment. While we used Mellanox ConnectX-4 NICs in our experiments,

hardware timestamping of all packets is also available on Solarflare NICs [2].
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Methodology: Although tail-latency is a widely used system metric, there is no widely ac-

cepted experiment methodology for measuring it, and usually tools are bounded to specific

methodologies. LANCET attempts to split the methodology from the actual tool and reason

about them separately. Measurement bias from non-determinism can be avoided via setup

randomization [245, 127, 379]. Repeated runs eliminate hysteresis effects in systems [379].

Distributed benchmarking tools seek to minimize client side queuing bias by reducing the

client load, in asymmetric e.g., Mutilate [219], or symmetric setups [379]. LANCET’s use of hard-

ware timestamping eliminates client bias in the point of measurement. Treadmill [379] avoids

issues of imbalance by leveraging a symmetric measurement model, and bias from outliers by

computing interested metrics on individual instances and combining them using aggregation

functions. LANCET also supports the symmetric setup to detect imbalance across client ma-

chines. Most tools use histograms to capture latencies. Treadmill determines bucket ranges

during a calibration phase. YCBS [70] and Tailbench [188] have dynamic range histograms.

LANCET relies on on-line sampling but keeps all sampled results to determine both the CCDF

and the confidence intervals. Confidence intervals can also be used to determine statistical

convergence of results [245, 127]. LANCET’s self-correcting controller relies on statistical tests

to ensure stability and results convergence similarly to [238].

4.8 Capter Summary

LANCET is a new latency-measuring tool designed with the explicit goal to accurately measure

µs-scale tail-latencies while reducing methodological pitfalls in a principled manner. Its

self-correcting methodology uses proven statistical methods to detect situations where appli-

cation tail latency cannot be reliably measured. LANCET’s agents uniquely leverage NIC-based

timestamping to measure the end-to-end latency of TCP-based applications, completely elim-

inating client bias. LANCET measures latency distributions with more accuracy than popular

tools such as Mutilate and Treadmill. Our evaluation with µs-scale workloads shows that it

robustly self-corrects as a function of the load for workloads with challenging service time

distributions.
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5 Switch LOad Generation (SLOG)

5.1 Introduction

Today’s webscale datacenter applications such as search, social networking, and e-commerce,

communicate using Remote Procedure Calls (RPCs) in complex fan-in and fan-out patterns

under strictµs-scale tail latency Service Level Objectives (SLOs). To support those applications,

software and hardware-based Network Functions (NFs), such as Google’s Maglev [96] need to

process millions of packets per second.

Accurate and efficient load generators and latency measuring tools are crucial in designing

high-performance datacenter applications and NFs. Those tools need to satisfy three main re-

quirements: i) measuring latency accurately in a µs scale, without being part of the measuring

loop. ii) generating load at a very high throughput to stress highly scalable applications, e.g.,

based on kernel-bypassing. iii) accurately emulate deployment conditions be generating load

with a realistic inter-arrival distribution, e.g., Poisson arrival.

There is a plethora of load generators and latency measuring tools that target either NFs or RPC

services. Those tools can be implemented in software and depend on software timestamping

such as Mutilate [219], and YCSB [70]. Others, such as Lancet [201], and Moongen [98] are

implemented in software but depend on hardware timestamping capabilities that can be

found in modern NICs. Finally, there are tools that use custom hardware appliances, e.g.,

FPGAs, such as Spirent [323] or IXIA to generate load and measure latency. There is a obvious

trade-off between the accuracy and performance of hardware solutions, versus the flexibility

and ease of use of the software ones. Software tools that depend on hardware timestamping

try to balance this trade-off but they are still limited by the CPU processing capabilities and

NIC line rates.

Emerging programmable switches, such as Barefoot Tofino [28], constitute a very appealing

building block as they provide an adequate level of programmability in languages such as

P4 [283] without compromising line rate performance. Such appliances change the way we

design systems and allow pushing functionality, traditionally implemented at the end-hosts,
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to the network. To do so they depend on a configurable set of match-action tables, dataplane

registers that outlive packets, and a series of fixed function units.

In this work we propose SLOG (Switch LOad Generator), a programmable load generator and

latency-measuring tool based on a programmable Tofino ASIC. SLOG leverages the program-

ming capabilities and the fixed function units of Tofino to generate load and measure tail

latency for both NFs and RPC services, while being able to generate a Poisson inter-arrival

distribution. According to our knowledge, SLOG is the only hardware-based tool that is able

to generate a randomized inter-arrival distribution, which is crucial for a realistic latency

experiment.

5.2 Design

We design and build SLOG on top of a Barefoot Tofino ASIC, splitting the functionality between

the control and the dataplane. In our design we had to answer five basic questions: i) How to

use a programmable switch to generate and timestamp packets? ii) How to match the request

with the reply timestamps? iii) How to maintain the latency distribution? iv) How to generate

a Poisson arrival distribution? v) How can a user configure SLOG without knowing P4? We

further describe our solution to each of these design questions.

Switch packet generation and timestamping: Tofino ASICs are equipped with a packet gener-

ation engine as a fixed function unit. The engine can be configured to generate packets either

on specific types of events, or periodically based on a predefined packet format. It can send

packets individually or in batches, up to 100Gbps per pipe. Generated packets are injected

into the packet processing pipeline, allowing them to be processed and forwarded like regular

incoming packets. We use the packet generation engine to generate packets and the pipeline

logic to parametrize them.

The Tofino ASIC is also equipped with timestamping capabilities with ns-scale granularity

both in the ingress and the egress pipeline. We collect the Tx timestamps in the egress pipeline,

to avoid the queuing time in the switch buffers, and the Rx timestamps in the ingress pipeline.

Matching timestamps: To compute the end-to-end latency SLOG has to match Tx timestamps

of outgoing packets with the Rx timestamps of packets coming from the device under test.

Due to the limited dataplane memory Tx timestamps cannot be stored in the dataplane while

waiting for Rx timestamp. Also, we don’t want to keep the Tx timestamp in the packet payload,

since the payload might need to be specific to the application under test. Thus, we decided

to put the Tx timestamp in packet fields that are returned to the switch. Specifically, we can

use the transport (UDP/TCP) source port to store 16 bits of the Tx timestamp. This field is

returned as a destination port in the reply. Other fields that can be used to store the rest of

Tx timestamp is the source IP, following a similar logic. Considering that the switch serves a

hypothetical /16 subnet we can leverage the lower 16 bits of the source IP to store part of the
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Figure 5.1 – Approximation of a 2MPPS Poisson process with different packet sizes observed at
1/8 target servers

Tx timestamp. There are also application specific fields that can be used for such purpose. For

example, for DNS experiments we can use the transaction id to store another 16 bits of the Tx

timestamp.

Latency distribution: After collecting the Tx and Rx timestamps for a specific request, the

dataplane has to keep the latency sample till the end of the experiment to identify the latency

distribution. However, maintaining all the latency samples in the dataplane is not feasible. So,

we resort to histograms. We leverage table counters to implement histograms in the dataplane.

Counters count the number of hits that each table entry gets. They are automatically updated

in the dataplane every time there is a table hit as part of the match-action pipeline. Counters

are only read in the control plane. At the beginning of each experiment, we statically generate

a table that stores a sorted set of numbers at a target granularity, that correspond to the

histogram bucket boundaries. After computing a latency sample, the dataplane tries to range

match the value to the bucket table with a nop action. A successful match corresponds to an

increase to the equivalent bucket. At the end of the experiment, the control plane dumps the

content of the buckets to generate the latency histogram.

Inter-arrival distribution: Unfortunately, the packet generation engine can only generate

packets either at a fixed rate or after a specific dataplane event. None of the above, though,

fits our needs to generate a Poisson arrival distribution. Instead, we emulate this behavior by

devising a mechanism to control the traffic rate in the dataplane. Rather than applying any

inter-packet gap at the packet generator, we let it generate packets as fast as possible, and the

dataplane transmits only a subset of the generated packets while dropping the rest.

Identifying the number of packets to be dropped is crucial for the inter-arrival distribution

since it is translated to the inter-packet time interval. For a specific packet size, we compute

the time the packet generator takes to generate a packet and inject it in the pipeline. This

duration,∆τ, is out granularity of control. At the beginning of the experiment the control plane

generates a set of random inter-packet gaps according to the target inter-arrival distribution,

transforms them to multiples of∆τ, and stores them in a table to be accessible by the dataplane.
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Challenge Solution
Packet generation Use Tofino’s packet generation engine fixed unit
Packet timestamping Use egress timestamp for Tx and ingress timestamp for Rx
Timestamp matching Include Tx timestamp as part of the echoed packet headers
Latency statistics Maintain a latency histogram in the P4 dataplane
Inter-arrival distribution Generate packets at line rate and drop in the dataplane
User configuration Configure the P4 dataplane using a YAML cfg file

Table 5.1 – Challenges and how we approach them in SLOG

Once the experiment starts, the dataplane randomly selects a number from this table, and

drop the following N generated packets. To generate a random number in the dataplane

we hash the current timestamp. Figure 5.1 shows how SLOG approximates a Poisson arrival

distribution under different packet sizes for a target load of 2M PPS.

User configuration: Users can use SLOG without changes to the P4 dataplane. We provide a

convenient way to describe a test setup, by writing a configuration file. The configuration file

is then read by the control plane application to set up and run SLOG. The format used is YAML

and the configuration consists mainly of key-value options and lists of such options. Examples

of configuration parameters are: the target host IP and port, the number of packets to be sent,

the target rate, and the inter-arrival distribution.

Table 5.1 summarises the above challenges and the solutions given by SLOG. Figure 5.2 depicts

the SLOG P4 dataplane. In blue boxes you can see Tofino’s fixed function units, the Packet

Generation Engine, and the Packet Replication Engine. Once the packet enters the pipeline,

the dataplane classifies it as an outgoing or an incoming packet based on the packet’s intrinsic

metadata. If the packet comes from the Packet Generation Engine, namely it is an outgoing

packet, it follows the top path. It is replicated if necessay and forwarded to the egress pipeline.

In the egress pipeline, the dataplane gets the current timestamp and puts it in the packet

headers. Then it identifies whether the packet should be dropped according to the target

inter-packet gap, and if so it drops the packet. Otherwise, it sends the packet out. If the

packet is classified as incoming packet in ingress, the dataplane gets the current timestamp,

computes the latency based on the Tx timestamp found in the packet headers, matches the

latency on the histogram table to increment the bucket counter, and drops the packet.
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6 Zygos: Achieving Low Tail Latency for
Microsecond-scale Networked Tasks

6.1 Introduction

To meet service-level objectives (SLO), web-scale online data-intensive applications such as

search, e-commerce, and social applications rely on the scale-out architectures of modern,

warehouse-scale datacenters [29]. In such deployments, a single application can comprise of

hundreds of software components, deployed on thousands of servers organized in multiple

tiers and interconnected by commodity Ethernet switches. Such applications must support

high concurrent connection counts and operate with user-facing SLO, often defined in terms

of tail latency to meet business objectives [14, 80, 271]. To meet these objectives, most such ap-

plications distribute all critical data (e.g., the social graph) in the memory of hundreds of data

services, such as memory-resident transactional databases [337, 325, 358, 122, 361], NoSQL

databases [304, 254], key-value stores [90, 229, 250, 376], or specialized graph stores [45].

These in-memory data services typically service requests from hundreds of application servers

(high fan-in). Because each user request often involves hundreds of data services (high fan-

out) and must wait for the laggard for completion, the SLO of the data services must consider

the long tail of the latency distributions of requests [80]. Individual task sizes often require only

a handful of µs of user-level execution each. These services would therefore ideally execute

at the highest throughput, efficiently use all system resources (CPU, NIC, and memory), and

deliver a tail-latency SLO that is only a small multiple of the typical task service time [31].

This hunt for the killer microseconds [31] requires researchers to revisit assumptions across

the network and compute stacks, whose policies and implementations play a significant role

in exacerbating the problem [219].

Our work focuses on the efficient scheduling on multicore systems of these very fine-grain

in-memory services. The theoretical answer is well understood: (a) single-queue, multiple-

processor models deliver lower tail latency than parallel single-queue, single-processor models

and (b) FCFS delivers the best tail latency for low-dispersion tasks while processor sharing

delivers superior results in high dispersion service time distributions [366].
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The systems answer is, unfortunately, a lot less obvious, in particular when considering high

request rates consisting of short messages and small processing times. In such situations, the

state-of-the-art uses multi-queue NICs (e.g., RSS [308]) to scale the networking stack across

the multiple cores of the system. Current designs force users to choose between conventional

operating systems (i.e., typically Linux), and more specialized kernel-bypass approaches. The

former can efficiently schedule the resources of a multi-core server and prioritize latency-

sensitive tasks [55] but suffers from high overheads for µs-scale tasks. The latter improves

throughput substantially (by up to 6× for key-value stores [34]) through sweeping simplifica-

tions such as separation of control from the dataplane execution, polling, run-to-completion,

and synchronization-free, flow-consistent mapping of requests to cores [34, 290, 229, 167, 239,

183].

These sweeping simplifications lead to two related forms of inefficiencies: (a) the dataplane

is not a work conserving scheduler, i.e., a core may be idle while there are pending requests;

and (b) the dataplane suffers from head-of-line blocking, i.e., a request may be blocked

until the previous tasks complete execution. While these limitations might be acceptable to

workloads with near-deterministic task execution time and relatively loose SLO (e.g., some

widely-studied memcached workloads [250, 14] with an SLO at > 100× the mean service

time [34]), such assumptions break down when considering more complex workloads, e.g.,

in-memory transaction processing with a TPC-C-like mix of requests or with more aggressive

SLO targets.

We present ZYGOS1, a new approach to system software optimized for µs-scale, in-memory

computing. ZYGOS implements a work-conserving scheduler free of any head-of-line blocking.

While the design decisions voluntarily deviate from dataplane principles, ZYGOS retains the

bulk of their performance advantages. The design, implementation, and evaluation of ZYGOS

makes the following contributions:

(1) The design of ZYGOS, which leverages many conventional operating system building blocks

such as the use of symmetric multiprocessing networking stacks, alternate use of polling and

interrupts, inter-processor interrupts (IPI), and task stealing with the overall goal of delivering

a work-conserving schedule. ZYGOS is architected into three distinct layers: (a) a lower

networking layer, which runs in strict isolation on each core, (b) a middle shuffle layer which

allows idle cores to aggressively steal pending events, and (c) an upper execution layer, which

exposes a commutative API to applications for scalability [67]. The shuffle layer eliminates

head-of-line-blocking while also offering strong ordering semantics of events associated with

the same connection.

(2) The implementation of ZYGOS, which includes an idle loop logic designed to aggres-

sively identify task stealing opportunities throughout the operating system and down to the

NIC hardware queues. Our implementation leverages hardware virtualization and the Dune

1The Greek word for balancing scales.
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framework [32] and handles IPIs in an exit-less manner similar to ELI [135].

(3) A methodology using microbenchmarks with synthetic service times to identify system

overheads as a function of task size and distribution. This methodology allows us to identify

both design limitations and implementation overheads. We apply this approach to Linux

for event-driven execution models (using both partitioned and floating connections among

threads), IX and ZYGOS and show that all converge as the task granularity increases, but at

noticeably different rates, to distinct, well-understood models. For an SLO of 10× the mean

service time at the 99th percentile, ZYGOS achieves 75%of the maximum possible theoretical

load for 10µs tasks, and 88%of the equivalent load for 25µs tasks (Subsection 6.6.1).

(4) We compare ZYGOS to IX, a state-of-the-art dataplane with strict run-to-completion that

partitions flows onto cores [34]. While ZYGOS’s scheduler introduces some necessary buffering,

communication and synchronization (which are measurable for extremely small tasks), it

eliminates head-of-line blocking and clearly outperforms IX for tasks ≥10µs (Subsection 6.6.1).

IX does outperform ZYGOS for workloads with very small task sizes such as memcached.

The difference is primarily due to IX’s adaptive bounded batching, which is not currently

supported in ZYGOS. (Subsection 6.6.2)

(5) Last but not least, we evaluate the benefits of ZYGOS for an in-memory, transactional

database running the TPC-C workload. Our setup uses Silo [337], a state-of-the-art, in-memory

transactional database prototype. As Silo is only a library, we added client/server support to

Silo, ported it to Linux, IX, and ZYGOS, and benchmarked it using an open-loop load generator

for an SLO of 1000µs at the 99th percentile tail latency. ZYGOS can deliver a 1.63×speedup

over Linux and a 1.26×speedup over IX. The speedup over Linux is explained by the use of

many dataplane implementation principles in ZYGOS. The speedup over IX is explained by

ZYGOS’s work-conserving scheduler, which rebalances tasks to deliver consistently low tail

latency nearly up to the point of saturation (Subsection 6.6.3).

The source code of ZYGOS, along with benchmarks, scripts and simulation models, is available

in open source [384].

6.2 Queueing Analysis

There are at least three distinct forms of imbalance which impact tail latency that can be

observed in systems:

1. Persistent imbalance occurs when different NIC queues observe different packet arrival

rates over long intervals. Unless the system can share the load dynamically, some cores

will be busier than others. This situation can occur if there is connection skew when

some clients request substantially more data than the average, or if there is data access

skew (e.g., the CREW protocol in MICA balances reads but not writes across cores [229]).
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Figure 6.1 – Queuing models for n = 2 processors.

2. Arrival bursts cause temporary queuing even when the system is not saturated. The

well-known Poisson arrival process has such bursts which cause the gradual increase in

tail latency as a function of load, even if the time to process each request is fixed. In a

multi-queue system, the Poisson arrival process generates bursts on different cores at

different points in time. This creates a form of temporary imbalance that also impacts

tail latency.

3. Service time variability will also create backlog and head-of-line blocking. A long request

can occupy the processor for a long time, thus leading to a backlog of pending requests

and a severe increase in tail latency.

We use four open-loop queuing models to build an intuition for the impact of arrival bursts

and service time variability on tail latency. We use Kendall’s notation to describe the models,

where in the following expression A/S/n/K, A is the inter-arrival distribution, S is the service

time distribution, n is the number of workers and K is the policy implemented, i.e., first-

come-first-serve (FCFS) or processor sharing (PS). For simplicity of the analysis, all models

assume a Poisson arrival of requests (A=M). This is expected of many open-queuing models

and representative of datacenter traffic with high fan-in connection counts. The Poisson

process will generate arrival bursts and temporary imbalance in the multi-queue models, but

no persistent imbalance.

Figure 6.1 illustrates the four different modes. Each delivers the same maximum throughput

at saturation (λ= n/S̄), but with different tail latencies due to different scheduling policies.

• The centralized-FCFS model (formally M/G/n/FCFS) idealizes event-driven applications

that process events from a single queue or that float connections across cores (e.g., using

the epoll exclusive flag).

• The partitioned-FCFS model (formally n×M/G/1/FCFS) idealizes event-driven applica-

tions that partition connections among cores (e.g., libevent-based applications) and
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Figure 6.2 – Simulation results for the 99th percentile tail latency for four service time distribu-
tions with S̄ = 1.

associate each core with its own private work queue. This model can be deployed on

conventional operating systems or shared-nothing dataplanes

• M/G/n/PS idealizes the thread-oriented pattern (1 thread per connection) deployed on

time-sharing operating systems. In practice, the task size granularity must be a multiple

of the operating system time quantum.

• n×M/G/1/PS similarly idealizes the thread-oriented pattern when the operating system

does not rebalance threads among cores.

Figure 6.2 illustrates simulation results for these idealized queueing models for a system with

n = 16 processors. The figure shows the result for four well-known distributions [232]:

• deterministic P [X = S̄] = 1

• exponential with mean service time S̄

• bimodal-1:P [X = S̄/2] = .9;P [X = 5.5× S̄] = .1

• bimodal-2:P [X = S̄/2] = .999;P [X = 500.5× S̄] = .001

For each distribution, Figure 6.2 shows the tail request latency (queuing delay + service time)

at the 99th percentile as a function of the load. Intuitively we understand that as the system

load increases and approaches the system’s limits, the number of requests in the queues

also increases. That leads to an increase in the queueing time and tail latency. As expected,

the minimum 99th-percentile latency is 1 for the deterministic distribution and 4.6 for the

exponential distribution. As for the two bimodal distribution, b1 has a minimum tail latency

of 5.5, which corresponds to the slow requests and b2 has a minimum tail latency of 0.5, which

corresponds to its fast requests.

61



Chapter 6. Zygos: Achieving Low Tail Latency for Microsecond-scale Networked Tasks

M/G/16/FCFS 16xM/G/1/FCFS Linux (floating connections) IX Linux (partitioned connections)

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

L
o
a
d

(a) Deterministic

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Exponential

0 50 100 150 200

Service time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Bimodal-1

Figure 6.3 – Maximum load that meets the SLO as a function of the mean service time S̄. The
SLO is set at ≤ (10× S̄) at the 99th percentile. The grey lines correspond to the ideal upper
bounds determined by the centralized-FCFS and partitioned-FCFS models.

We make two observations that inform our system design:

Observation 1: Single-queue systems (i.e., M/G/n/*) perform better compared to systems

with multiple queues (i.e., n×M/G/1/*): Systems with multiple queues, even with random

assignment of events to queues, suffer from temporary load imbalance. This imbalance

can create a backlog on some processors while other queues are empty. The lack of work

conservation in such models limits performance. In contrast, single-queue models with a

work-conserving scheduler (whether FCFS or PS) can immediately schedule the next task on

any available processor.

Observation 2: FCFS performs better in regards to tail latency for distributions with low

dispersion: This result has also been theoretically analyzed by Wierman et al. [366]. In Fig-

ure 6.2, FCFS outperforms PS for the deterministic, exponential and bimodal-1 distribution.

PS only outperforms FCFS when the variance in service times increases, as in the case for

bimodal-2. Note that partitioned-FCFS performs that poorly in bimodal-2 that is not obvious

in these axis scales.

6.3 Experimental Methodology

We now describe the experimental methodology used to evaluate existing low-latency sys-

tems. The challenge is to define metrics that help determine (a) the inherent design tradeoffs

by comparing real-life systems with the idealized models of Section 6.2; and (b) the sweet

spot, in terms of mean service time and distribution, of each system. We use synthetic mi-

crobenchmarks to compare analytical results with experimental baseline results for three OS
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configurations.

6.3.1 Approach and metrics

We rely on microbenchmarks with synthetic execution times to systematically compare dif-

ferent systems approaches for different task granularities. From the perspective of user-level

execution, the applications are trivial: for each request, the application spins for an amount of

time randomly selected to match both service time (S̄) and distribution. From a systems per-

spective, the application follows the event-driven model to accept remote procedure calls sent

over TCP/IP socket by client machines. The clients approximate an open-loop load-generator

where incoming requests follow a Poisson arrival on randomly-selected connections [315].

All throughputs (requests per second) and 99th percentile tail latencies are measured on the

client-side.

We use two metrics to compare systems: (a) the conventional "tail latency vs. throughput" is

used to compare the efficiency of different systems for a given task granularity and distribution;

(b) the "maximum load @ SLO" is used to compare the efficiency across timescales, for a given

SLO expressed as a multiple of the mean service time.

This second metric is used to determine how fast different systems converge (or not) to

the expected behavior of their idealized model, as the service time increases. For example,

consider an SLO that requires 99% of requests to complete within ≤ 10× S̄. Queuing theory

predicts a maximum load for each configuration, e.g., for the exponential distribution a load

of 53.7%for the partitioned-FCFS model and of 96.3%for centralized-FCFS.

6.3.2 Experimental Environment

Our experimental setup consists of a cluster of 11 clients and one server connected by a

Quanta/Cumulus 48x10GbE switch with a Broadcom Trident+ ASIC. The client machines are a

mix of Xeon E5-2637 @ 3.5 GHz and Xeon E5-2650 @ 2.6 GHz. The server is a Xeon E5-2665 @

2.4 GHz with 8 cores (16 hyperthreads) and 256 GB of DRAM. All machines are configured with

Intel x520 10GbE NICs (82599EB chipset). We connect the clients and the server to the switch

through a single NIC port each. The client machines run mutilate [219] as a load generator:

10 machines generate load and the 11th one measures latency. The machines connect to the

server over a total of 2752 TCP/IP connections. To minimize client latencies, we modified the

latency-measurement agent of mutilate to use a DPDK-based, simple TCP/IP stack.

The machines run an Ubuntu LTS 16.04 distribution running Linux kernel version 4.11. Sys-

tems are tuned to reduce jitter: all power management features, including CPU frequency

governors and TurboBoost, and support for transparent huge pages, are disabled.
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6.3.3 Evaluated Systems

The synthetic microbenchmark models an event-oriented, scalable RPC server. During the

setup phase, it accepts all connections from the client machines. During the benchmark, it

simply receives request messages from the open connections, spins during the requested

amount of time and returns a response. The server is setup as a 16-way multi-threaded

application that uses all cores (and hyperthreads) and memory of the CPU socket connected

to the NIC. We deliberately leave the other socket unused to eliminate the potential impact of

NUMA policies in this study. We compare three configurations designed to support a large

number of incoming connections:

• Linux-partitioned: This mode minimizes communication and application logic at the

expense of load-imbalance: each thread accepts its set of connections (as directed

by the RSS in the NIC [308]) and then polls on that same set during the benchmark.

Partitioned-FCFS models the performance upper bound.

• Linux-floating: In this mode, all open connections are put into a single pool from which

all threads may poll. Our implementation uses a simple locking protocol to serialize

access to the same socket. Centralized-FCFS models the upper bound of performance.

• IX: The application uses the native dataplane ABI to receive socket events and respond

correspondingly. This is also modeled as Partitioned-FCFS.

Linux configuration: The Linux systems were tuned to minimize latency and maximize

throughput, by settling them on a configuration that limits the number of returned events

by epoll to 1. We did observe that some of these settings had a surprisingly small, or even

negative impact on either latency or throughput (e.g., the EPOLLEXCLUSIVE commit evaluated

the impact on thundering herds on a 250-thread setup whereas we only use one per core [100]).

We attribute this to the fact that we pinned each application thread to a distinct core, thereby

avoiding many of the subtle interactions associated with CPU scheduling.

IX configuration: IX can process bounded batches of packets to completion, which improves

throughput only for very small task sizes. Unless when explicitly mentioned, we disabled it in

our experiments as disabling batching noticeably improves tail latency. We also disabled the

control plane and configured IX to use all 16 hardware threads of the socket and use the CPU

at its nominal frequency of 2.4GHz.

6.3.4 Baseline results

Figure 6.3 shows the maximum load that meets the SLO of the 99th percentile ≤ 10× S̄ for

three baseline operating system configurations described in Subsection 6.3.3. We include

in greyscale two horizontal lines that correspond to the upper bound in performance, as
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predicted by the partitioned-FCFS and centralized-FCFS, respectively. These upper bounds

assume zero operating system overheads, no scheduling overheads, no propagation delays,

no head-of-line blocking, no interrupt delays, etc. In addition, the centralized model assumes

a perfect, global FCFS order of the allocation of requests to idle processors.

Figure 6.3 shows the result for three of the four distributions studied analytically in Figure 6.2.

We omit the bimodal-2 results as the analysis of Section 6.2 showed that multi-queue systems

have pathological tail latency with an FCFS scheduler. The figure shows clearly that:

(a) IX and Linux-partitioned both converge asymptotically to the expected 16×M/G/1 level

of performance. Intuitively, we understand that as the service time increases, the overhead of

the operating system becomes less prevalent. IX, which is optimized for small tasks, reaches

90% efficiency with tasks ≥25µs, ≥25µs, and ≥60µs for the deterministic, exponential, and

bimodal-1 distributions. Larger tasks are required for Linux-partitioned to reach the same

level of efficiency, i.e., ≥120µs, ≥120µs, and ≥90µs, respectively.

(b) Yet, Linux-floating actually provides the best performance for larger tasks and slowly

converges to the upper bound predicted by the centralized-FCFS model. The ability to rebal-

ance tasks across cores allows it to outperform IX for tasks that are ≥50µs, ≥20µs, and ≥14µs

for the deterministic, exponential and bimodal-1 distributions.

6.4 Design

6.4.1 Requirements

The theoretical analysis suggests, and in fact proves, that synchronization-free dataplane

approaches cannot provide a robust solution to the tail latency problem, in particular when

the service time distribution has a high dispersion. Yet, synchronization-free dataplanes
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provide substantial throughput improvements over conventional operating systems.

We design ZYGOS, a single-address space operating system for the latency-sensitive data

services, components of large-scale, online, data-intensive applications. Our design does not

make any client-side assumptions or require any changes to the network protocol stack. We

set the following hard requirements for our system design:

(1) Designed for current-generation datacenter architectures: Xeon multicore processors,

10GbE+ NICs with stateless offloads, Ethernet connectivity.

(2) Build a robust, multi-core, work-conserving scheduler free of head-of-line blocking for

event-driven applications.

(3) Provide clean, ordering semantics of task-stealing operations to multi-threaded applica-

tions when handling back-to-back events for the same socket.

(4) Minimally degrade the throughput of short tasks when compared with state-of-the-art,

shared-nothing dataplanes.

These hard requirements constrain the design space. While commodity operating systems

such as Linux meet requirements #1 and #2, they provide only partial support for #3, which

we will discuss in Subsection 6.4.3. As discussed in Section 6.3, the strict run-to-completion

approach of dataplanes and their shared-nothing design is not an appropriate architectural

foundation. We also rule out asymmetrical approaches which dedicate some cores to specific

purposes (such as network processing) as the partitioning of resources is highly sensitive to

assumptions on task granularities.

6.4.2 ZYGOS High-level Design

ZYGOS shares a number of architectural and implementation building blocks with IX [34]:

each ZYGOS instance runs a single application in a single address space, and accesses the

network through its dedicated NIC (physical or virtual function) with a dedicated IP address;

each ZYGOS instance runs on top of the Dune framework [32]; a separate control plane can

adjust resource allocations among instances.

Despite the lineage, ZYGOS is designed with radically different scheduling and communi-

cation principles than IX: IX is designed around a coherency-free execution model, i.e., no

cache-coherence traffic among cores is necessary, in the common case, to receive packets,

open connections, or execute application tasks; ZYGOS is optimized for task stealing which

has intrinsic communication requirements. IX achieves high throughput through adaptive

batching, an approach that ensures that a batch of packets is first carried through the net-

working stack and then —without further buffering— processed by the application; ZYGOS

uses intermediate buffering to enable stealing. Finally, IX is also designed around a run-to-

completion model where it alternates execution between network processing and application
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execution, which cannot be interrupted; ZYGOS relies on intermediate buffering and IPIs to

eliminate head-of-line blocking.

ZYGOS achieves work-conservation with minimal throughput impact by architecturally sepa-

rating the execution stack into three distinct layers, illustrated in Figure 6.4:

(1) the lower networking layer executes independently on each core, in a coherency-free

manner. This includes the hardware/software driver layer, which relies on RSS to dispatch

flow-consistent traffic to one receive queue per core. This also includes the layer-4 TCP/IP

and UDP/IP layer, all of their associated data structures, intermingled queues, and timers.

This design eliminates the need for any locking within the networking stack and ensures good

cache locality.

(2) the intermediate shuffle layer introduces a new data structure per core: the shuffle queue

is a single-producer, multiple-consumer queue which contains the list of ready connections

originating from a given core. Connections in the shuffle queue contain at least one outstand-

ing event and can be consumed by the core that produced it —the home core—, or atomically

stolen by another remote core.

(3) the application execution layer manages the interactions between the kernel and the

application through event conditions and batched system calls [321]. Each core has its own

data structures and also operates in a coherency-free execution manner within that layer.

Obviously, the application itself may have synchronization or shared-memory communication

between cores and does not, in the general case, execute in a coherency-free manner.

Figure 6.4 shows the typical flow of events. Events numbered (1) – (5) occur when the packet is

processed on its home core (i.e., when no stealing occurs): (1) the driver dequeues packets

from the hardware ring into a software queue; (2) the TCP/IP stack processes a batch of packets

and enqueues ready connections into the shuffle queue; (3) the application execution layer

dequeues the top entry, generates corresponding event conditions for the application and

transfers execution to it. This, in turn, generates batched, system calls; (4) some system calls

may call back into the network stack leading to execution of timers and/or (5) packet transmits.

While the control flow resembles that of IX, the data flow is distinct as the shuffle queue breaks

the run-to-completion assumptions as data is asynchronously produced into it and consumed

from it.

Figure 6.4 also shows the interactions during a steal as the steps (a)-(b) in red. Consider

the case where the remote core has no pending packets in the hardware queue, no pending

packets in the software queue and no pending events in its shuffle queue. In step (a), it can

then steal from another shuffle queue, which leads to the normal execution of the events in

userspace, as step (3). The resulting batched system calls that relate to the networking stack are

then enqueued for processing back at the home core in a multiple-producer, single-consumer

queue, shown in step (b). Similar to the TCP input path, the TCP output path therefore also
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executes in a coherency-free manner on the home core.

Figure 6.4 is only a high-level illustration of the system. In ZYGOS, each core is the home core

of a set of flow-groups, as defined by the NIC RSS configuration and can act as the remote

core for any other flow whenever it is idle. We now describe the ordering semantics that

enable stealing (Subsection 6.4.3) and the data structures of the shuffle queue that eliminates

head-of-line blocking (Subsection 6.4.4).

6.4.3 Ordering semantics in multi-threaded applications

When TCP sockets are statically assigned to threads, applications can rely on intuitive ordering

and concurrency semantics [218]. The situation changes dramatically when sockets can

float across cores as the read system call is not commutative when two threads access the

same socket. Even though the Linux system call epoll allows it, and was even recently

optimized for this use case [100], the implications on applications are far from trivial. Consider

the case of back-to-back messages sent to the same socket (e.g., two distinct RPC of the

memcached protocol) for a multi-threaded application that uses the Linux-floating model of

Subsection 6.3.3. Unless the application takes additional steps at user-level to synchronize

across requests, race conditions lead to broken parsing of requests, out-of-order responses, or

worse, intermingled responses on the wire. As a practical manner, applications or frameworks

must, therefore, build their own synchronization and locking layer to eliminate these system

races. This is sufficiently non-trivial that no known popular applications have done it to date,

to the best of our knowledge. A related approach is the recent KCM kernel patch that provides

a multiplexing layer of messages to TCP connections [192, 193].

With its goal to ensure very fine-grain work-stealing, we designed ZYGOS to free the application

layer from the burden of synchronizing access to connection-oriented TCP/IP sockets. In this

case, ZYGOS has an ownership model that ensures the events that relate to the same socket

are implicitly ordered without the need for synchronization: whenever the home core or a

remote core grabs an event for processing at the application layer, it grabs the exclusive access

to the socket until the event execution has completed, including sending the replies on the

TCP socket.

6.4.4 Eliminating Head-of-Line Blocking

The ordering semantics of Subsection 6.4.3 introduce a substantial complication to the design

of the shuffle queue. ZYGOS eliminates head-of-line blocking by grouping events in the home

core by socket. The shuffle queue has the ordered subset of sockets that are (a) not currently

being processed on a core and (b) have pending data. The event queues are held in the per-

socket protocol control block (PCB). While it offers strong ordering semantics to applications,

this pre-sorting step does have an implication on the global order of packets, which is no

longer guaranteed to be FCFS.
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Figure 6.5 – Connection state machine transi-
tions for the general case where an event is ex-
ecuted on a remote core (in blue). The con-
nection is present in the shuffle queue exactly
once when it is in the “ready” state, and never
otherwise.
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Figure 6.5 shows the state machine diagram that controls the decisions for each socket.

Changes to the state machine and to the shuffle queue are atomic.

• idle: Sockets in this state have no pending incoming events, events currently processed

by the application, or outgoing batched system calls.

• ready: The socket has pending incoming events, but is not currently being processed by

the application and has no pending system calls.

• busy: The socket is associated with an execution core, which is either the home or

remote core.

The execution core dequeues the first ready connection and creates the event conditions for

the application. As previously discussed, system calls are returned back to the home core for

processing. System calls may each generate asynchronous responses for that socket. After the

execution of all system calls, the socket transitions either into the idle state if there is nothing

further to process or into the ready state otherwise. In the latter case, the PCB is once-again

enqueued into the shuffle queue.

6.4.5 Inter-processor Interrupts

The design in Subsection 6.4.4 eliminates head-of-line blocking concerns from the shuffle

queue itself. In a purely cooperative implementation of ZYGOS, the cores poll on each other’s

data structures, which causes head-of-line blocking situations both before network processing

as well as after application execution, since network processing explicitly takes place in the

home core.

First, consider the case where packets are available for network processing in the hardware NIC

queue but the shuffle queue is empty. This is the queue shown around step (1) in Figure 6.4.

69



Chapter 6. Zygos: Achieving Low Tail Latency for Microsecond-scale Networked Tasks

As long as that core is executing application code, no remote core can steal the task. Idle cores

poll both software and hardware remote packets queues. If pending packets exist, it sends an

IPI to the remote core can force the execution of the networking stack, which replenishes the

shuffle queue.

Second, remote batched system calls are enqueued by the remote core for execution on the

home core (shown as step (b) of Fig 6.4). In a cooperative model, these system calls are only

executed after the completion of application code, which unfortunately directly impacts RPC

latency as some of these system calls write responses on the socket. Here also, an IPI ensures

the timely execution of these remote system calls.

The shared IPI handler, therefore, performs two simple tasks when interrupting user-level

execution: (1) process incoming packets if the shuffle queue is empty and (2) execute all remote

system calls and transmit outgoing packets on the wire. The IPI interrupts only user-level

execution since kernel processing is short and bounded. The kernel executes with interrupts

disabled, thus avoiding starvation or reentrancy issues in the TCP/IP stack.

6.5 Implementation

The system architecture of ZYGOS is derived from the IX open-source release v1.0 [298]: it

relies on hardware virtualization and the Dune framework [32] to host a protected operating

system with direct access to VMX non-root mode ring 0 in the x86-64 architecture [339]. The

kernel links in with DPDK [88] for NIC drivers and lwIP for TCP/IP [94]. The modifications

to the application libraries are minor, but the kernel changes are extensive. Specifically, we

modified ∼2000 LOC of the IX kernel and ∼200 LOC of Dune. While we retain the tight code

base of IX, we revisit many of its fundamental design assumptions and principles.

The shuffle layer: We chose a simple implementation to ensure the atomic transitions de-

scribed in Subsection 6.4.4. There is one spinlock per core which protects the shuffle queue

of that core as well as the state machine transitions for sockets that call that core home. The

lightweight nature of the operations that access it makes such a coarse-grain approach possi-

ble. Remote cores rely on trylock for their steal attempts to further reduce contention. Each

PCB maintains a distinct event queue of pending events. This is a single-producer (the home

core) and single consumer (the execution core) queue, implemented with one spinlock per

PCB. The transitions from the busy state must test whether the PCB queue is empty and must

first grab that lock.

Idle loop polling logic: The core design principle of ZYGOS is to ensure that an idle core will

aggressively identify pending work. A core is idle when its shuffle queue, remote batch system

call queue, and software raw packet queue are all empty. When it enters its idle mode, it starts

to poll a sequence of memory locations, all of which are reads from cacheable locations. These

locations include, in order of priority (a) the head of its own NIC hardware descriptor ring, (b)

70



6.6. Evaluation

the shuffle queue of all other cores, (c) the head of all unprocessed software packet queues of

all other cores, and (d) the head of the NIC hardware descriptor of all other cores. For steps (b-c-

d), the order of access is randomized. While heuristics could tradeoff a reduction of interrupts

for a slight degree of non-work conservation, our current implementation aggressively sends

interrupts as soon as a remote core detects a pending packet in the hardware queue and the

home core is executing at user-level.

Exit-less Inter-processor Interrupts: ZYGOS relies on inter-processor interrupts to force a

home core to process pending packets identified in steps (c) and (d) of the idle loop and to

execute remote system calls back on the home core. Using an approach similar to ELI [135],

we added support in Dune for exit-less interrupts in non-root mode, based on the assumption

that ZYGOS kernel’s interrupt handler will redirect to the Linux host operating system the

interrupts that are destined to it. There is, however, no guarantee that the destination CPU

will be VMX non-root mode when it receives the interrupt. We use interrupt 242, which is also

used by KVM [195]. Interrupts received in root-mode are simply ignored by the KVM handler.

As interrupts are used exclusively as hints, the unreliability of delivery impacts tail latency, but

not correctness.

Control plane interactions: The IX control plane implement energy proportionality or work-

load consolidation by dynamically adjusting processor frequency and core allocation [300].

It operates in conjunction with the IX dataplane, which reprograms the NIC RSS settings.

In principle, ZYGOS is compatible with these RSS settings changes, although policies and

mechanisms would have to be adjusted as ZYGOS introduces new forms of buffering. We

leave the evaluation of these interactions to future work.

6.6 Evaluation

We use the same experimental setup explained in Section 6.3 to evaluate ZYGOS in a series of

microbenchmarks, use memcached [250] to evaluate overheads on tiny tasks, and with a real

application running TPC-C [336].

6.6.1 Synthetic micro-benchmarks

Figure 6.6 shows the latency vs. throughput of the three synthetic micro-benchmarks of

Section 6.3. We compare ZYGOS with existing systems (IX and Linux) as well as the theoretical

performance of a zero-overhead M/G/16/FCFS model for two granularities of interest, namely

10µs and 25µs. We observe that:

• ZYGOS and Linux-floating both approximate the theoretical model, with ZYGOS

substantially reducing tail latency over IX;
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Figure 6.6 – 99th percentile tail latency according to throughput for three distributions, each
with 10µs and 25µs mean task granularity. The horizontal line corresponds to the SLO of
≤ 10× S̄.
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Figure 6.7 – Maximum load that meets the SLO of the 99th percentile ≤ 10× S̄. The grey
lines correspond to the ideal upper bounds of the two theoretical, zero-overheads, models
(centralized-FCFS and partitioned-FCFS).
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Figure 6.8 – Normalized rate of stealing vs throughput for exponential service time with mean
25 µs

• ZYGOS and IX have comparable throughput, even for tasks as small as 10µs; both clearly

outperform Linux;

• for the exponential distribution, ZYGOS achieves 75%throughput efficiency at the SLO

at 10× S̄ for S̄ = 10µs (Figure 6.6b) and 88%for S̄ = 25µs (Figure 6.6e);

• interrupts are necessary to eliminate head-of-line blocking with medium and high

dispersion workloads, and the cooperative model of Zygos-no-interrupts, which is

typical of pure user-level application, visibly impacts tail latency.

Efficiency for the 10×S̄ tail latency SLO: Figure 6.7 reports the efficiency (in terms of max load

at SLO) as a function of task size. We compare ZYGOS with the baseline shown in Figure 6.3. We

note the reduced X-axis truncated to 50µs for visibility; efficiency is stable beyond that point.

ZYGOS clearly outperforms IX and Linux for any tasks sizes ≥5 µs and all three distributions

for such a tight SLO. ZYGOS reaches 90% of the maximum possible load as determined by

the zero-overhead centralized-FCFS theoretical model for tasks ≥30µs for the deterministic

distribution, ≥40µs for exponential and ≥40µs for bimodal-1.

How much task stealing occurs?: Figure 6.8 provides an insight into the rate of stealing events

as a function of load. The results are for the exponential distribution of Figure 6.6e but are

remarkably similar for other distributions and timescales. As expected, there are few steals

at low loads as more cores are near idle, and no steals at saturation as all cores are busy

processing their own queue.

Without interrupts, temporary imbalances lead to a steal rate that peaks at ∼33%. This rate is

consistent with the peak of ∼35% measured in a discrete event simulator that emulates the

shuffle queue in a cooperative model without interrupts. Interrupts, —which are necessary

to eliminate head-of-line blocking—, substantially increase the steal rate. At the peak, which

corresponds to 77% of saturation, steals, and therefore interrupts are very frequent. Stealing
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Figure 6.9 – 99th percentile tail latency vs. throughput for two memcached workloads for
Linux, IX and, ZYGOS.
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Figure 6.10 – Silo running the TPC-C benchmark.

opportunities become less frequent as the load further increases.

6.6.2 Overheads of ZYGOS on tiny tasks: memcached

We compare the overheads of ZYGOS to IX for tiny tasks with the goal of identifying the

task granularity where the sweeping simplifications of shared-nothing dataplanes such as IX

noticeably improve throughput. We use memcached as an application (< 2µs mean task size),

and use the methodology and reproduce the results from IX [34]. We consider memcached a

near worst case for ZYGOS as the application has very small task size with a small dispersion

best approximated by a deterministic distribution.

Figure 6.9 shows the latency vs. throughput for the USR and ETC workloads, [14], as modelled

by mutilate [219]. We compare Linux, ZYGOS, and IX. For IX, we choose two configurations:

with adaptive batching disabled (B=1) and with adaptive batching enabled with the default

setting (B=64).
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First, we observe that ZYGOS and IX both clearly outperform Linux. We then note that for this

particular SLO (500 µs), ZYGOS outperforms IX with batching disabled but lags behind IX with

adaptive bounded batching. IX implements a strict run-to-completion model bounded by the

batch size (B). ZYGOS currently implements adaptive bounded batching only on the receive

path. It then processes events individually, interleaving between user and kernel code. While

this hurts cache locality, it avoids head-of-line blocking. Similarly, it eagerly sends packets

through the TX TCP/IP path and the NIC, also to avoid head-of-line blocking.

Of note, ZYGOS has a differently shaped latency vs throughput curve for this workload. As

described in Subsection 6.4.3 and Subsection 6.4.4, ZYGOS does not respect strict FIFO order-

ing on servicing packets across different connections. For this workload configuration, up to

four distinct memcached requests can be pipelined onto the same connection. The resulting

reordering leads to a form of implicit batching of events, but only for those corresponding to

the same flow. This implicit batching improves throughput but at an increase in tail latency.

Such a behaviour is hard to restrict since ZYGOS doesn’t know the boundaries of the requests in

the TCP byte stream. Linux applications which use KCM sockets [192] can potentially handle

this situation.

6.6.3 A real application: Silo running TPC-C

We validate the tail latency benefits of ZYGOS using Silo [337], a state-of-the-art in-memory

database optimized for multicore scalability.

Application setup

Silo was originally implemented and evaluated as a library linked in with the benchmark. In

the original evaluation, each thread runs as a closed loop issuing transaction requests, and in

particular the TPC-C mix.

We ported Silo to run as a networked server accepting requests over sockets. We replaced

the main loop of Silo with an event loop, which we used to run the workload on top of

Linux, IX, and ZYGOS. The workload uses mutilate [219] with the same setup described in

Subsection 6.3.2 to initiate transactions that then execute totally within the database server.

Each remote procedure call generates one transaction from the TPC-C mix of requests.

We did not attempt to implement a marshalling of the full SQL queries and their responses,

e.g., over a JDBC-like protocol, as this falls outside the scope of the research question. We

also note that Silo has a garbage-collection phase tied to its epoch-based commit protocol,

which introduces a periodic barrier for all threads, with transaction latencies exceeding 1ms.

We disabled garbage collection for our measurements as it adds experimental variability,

especially at the 99th percentile, depending on the experiment (and that taming the tail

latency impact of Silo’s GC also falls clearly outside the scope of this work)
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System Max load@SLO Speedup Tail Lat.@50% Tail Lat.@75% Tail Lat.@90%
Linux 211 1.00× 310µs (1.5×) @111 335µs (1.6×)@156 356µs (1.8×) @189
IX 267 1.26× 379µs (1.9×) @133 530µs (2.6×)@200 774µs (3.8×) @256
Zygos 344 1.63× 265µs (1.3×) @178 279µs (1.4×)@266 323µs (1.6×) @311

Table 6.1 – Maximum throughput under the SLO of 1000 µs and respective latencies at approx-
imately 50%, 75%, and 90% of that load for each Silo running the TPC-C benchmark. Load is
in KTPS. The number in the parentheses is the ratio of the 99th percentile end-to-end latency
to Silo’s 99th percentile service time (203µs).

Results

Figure 6.10a shows the complementary cumulative distribution of service time for the TPC-C

benchmark for each of the five transaction types of the benchmark as well as the mix. The

results were computed using Silo’s master branch [319], with Silo locally driving the TPC-C

benchmark. There is, therefore, no network activity, and indeed nearly no operating system

activity. We run with GC disabled across all 16 hardware threads of a single CPU socket. The

Figure reports the service time rather than that the end-to-end latency (i.e., it excludes any

queueing delays).

In this setup, the achieved transaction rate was 460 KTPS, which corresponds to the maximal

throughput of the application, excluding any SLO and operating system overheads. Note that

this TPS is consistent with the reported results in [337], given the differences in thread counts

and processors. For the full mix, the average service time is 33µs, the median is 20µs, and the

99th percentile is 203µs. The figure clearly shows that Silo’s service time distribution is overall

multi-modal with small task granularity in the µs-scale.

Figure 6.10b shows the tail latency at the 99th percentile for Silo as a function of the load. To

compare maximum loads, we selected a stringent SLO of 1000µs, which corresponds to ∼33×
the average and ∼5× the 99th percentile tail latency. We observe:

• ZYGOS can support 344 KTPSwithout violating the SLO; this corresponds to a speedup

of 1.63×over Linux. This demonstrates the benefits of our approach for real-life in-

memory applications. The achieved transaction rate corresponds to 75% of the ideal,

zero-overhead load with no SLO restrictions.

• This rate also corresponds to a speedup of 1.26×over IX. ZYGOS’s work-conserving

scheduler and its ability to rebalance requests across cores avoids SLO violations until

the system becomes CPU bound on all cores.

Table 6.1 further quantifies the benefits of ZYGOS in terms of throughput at SLO and tail

latency at a specific fraction of their respective maximum load. ZYGOS and Linux both deliver

low end-to-end tail latencies for up to 90% of their respective capacity: 1.6×the 99th percentile

service time for ZYGOS and 1.8×for Linux. This is anticipated by the centralized-FCFS model.
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Figure 6.11 – Comparison of IX (batch size 1 and 64) and ZYGOS for a deterministic service
time of 10 µs and 2 different SLOs.

In contrast, as anticipated by the partitioned-FCFS model, IX delivers substantially higher

tail latencies, e.g., 1.9×when operating at half capacity, 2.6×at 75% capacity, and 3.8×at 90%

capacity.

6.7 Discussion

6.7.1 The impact of SLO on systems

The choice of an SLO is driven by application requirements and scale, with the intuitive

understanding that a more stringent SLO reduces the delivery capacity of the system. We show

that the choice of an SLO also informs on the choice of the underlying operating system and

scheduling strategy.

Figure 6.11 illustrates the tradeoff through the latency vs. throughput curves for the synthetic

benchmark of Subsection 6.6.1 with an exponential service time of S̄ =10 µs. Figure 6.11a

and 6.11b actually show the results of the same experiment but on two different Y-axis cor-

responding to two different SLO. ZYGOS consistently shines on the more stringent SLO of

100µs (Figure 6.11a, 10× S̄) as the work-conserving scheduler tames the tail latency, followed

by IX with batching disabled. For this SLO, IX (with batching enabled) consistently delivers

the highest tail latency and violates the SLO with the lowest throughput.

However, for a more lenient SLO (Figure 6.11b, 100 × S̄), IX’s adaptive batching delivers

marginally higher throughput than ZYGOS before violating the SLO.

6.7.2 Using Application Hints

ZYGOS and systems that came after it, e.g., Shinjuku [178], operate in a completely agnostic

manner to the applications. All tasks have the same priority and their duration is unknown
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before they start executing, thus they are treated equally. Consequently, both ZYGOS and

Shinjuku have to make reactive scheduling decisions that depend on interrupts. ZYGOS

uses interrupts to make sure that requests can be stolen from other cores after network

processing, while Shinjuku uses interrupts to drive scheduling. IPIs though, complicate the

system implementation, add extra overhead, and limit the environments where such systems

could be deployed.

In this subsection we investigate the idea of using application-level knowledge to drive the

scheduling decisions aiming to avoid preemptive scheduling, while still getting similar or even

better tail latency results. The scheduling policies that take advantage of application-level

information include Shortest-Job-First (SJF), Earliest-Deadline-Firs (EDF), and Cycle Stealing

Central Queue (CSCQ) [149]. In SJF the request service time is known before the request

starts executing. So, a SJF scheduler maintains a single ordered queue based on the request

duration giving priority to short requests. SJF is optimal for average completion time and it is

widely used in packet scheduling and congestion control algorithms, such as Homa [255], and

pFabric [9] aiming to reduce the flow completion time. In EDF each request is accompanied

by a deadline set by the client. The EDF scheduler also maintains an ordered central queue

but this time the queue is ordered based on the request deadlines. Finally, CSCQ, unlike the

previous policies that are work-conserving, is not a work-conserving policy. A CSCQ scheduler

splits requests into groups based on their a priori known service time. For simplicity let’s

assume there are only two request types, fast and slow requests. For each request type CSCQ

dedicates a set of cores, slow and fast cores. Fast cores only serve fast requests, while slow cores

can serve both fast and slow requests, but prioritize slow ones. It becomes clear that there are

cases where fast cores are idle while there is a backlog of slow requests to be processed by the

slow cores, hence CSCQ is not conserving. This design choice though reduces head of line

blocking since a long request cannot block a short one. The opposite can happen but does not

significantly affect tail-latency.

We use our discrete event simulator to compare the above scheduling policies. We specifically

consider the case of the two bimodal distributions in which there is a clear separation between

the different request types. We compare the application-aware policies with the single queue

FCFS and PS schedulers that are optimal for tail-latency in different scenarios: FCFS in low

service time dispersion and PS in high service time dispersion. For the EDF scheduler we

consider a deadline that is five times the request service time. For the CSCQ scheduler we split

the cores according to the CPU needs of each request category considering cycle stealing, thus

flooring the number of workers for fast requests and ceiling them for slow requests, resulting

in 7 workers for fast requests and 9 workers for the slow ones.

Figure 6.12 summarises the simulation results for a 16-worker scenario. The case of Bimodal-1

is not that interesting and the application-aware policies perform close to the optimal FCFS.

In Bimodal-2, though, we observe that application aware policies perform much better than

the non-preemptive FCFS and approach PS which is optimal in this configuration but requires

preemption. CSCQ specifically provides the best results since its non-work-conserving design

78



6.8. Related Work

M/G/16/FCFS EDF SJF CSCQ M/G/16/PS

0.2 0.4 0.6 0.8 1.0

Load

0

5

10

15
9
9
-l
a
te

n
c
y

(a) Bimodal-1

0.2 0.4 0.6 0.8 1.0

Load

0

5

10

15

9
9
-l
a
te

n
c
y

(b) Bimodal-2

Figure 6.12 – Comparison between the FCFS and PS policies with policies that take advantage
of application-level information: Earliest-Deadline-First(EDF), Shortest-Job-First(SJF), and
Cycle Stealing Central Queue (CSCQ)

eliminates head of line blocking without requiring preemption.

Despite not evaluating these policies in ZYGOS because of our design requirements to remain

application agnostic, we acknowledge the potential of using application-aware scheduling.

Such approaches will require the introduction of new non-POSIX APIs so that the scheduler is

aware of the different request types, but they are expected to significantly simplify the system

implementation since they do not require preemption, thus removing the interrupt handling

overhead and enabling the deployment of such latency-critical systems in other non-bare

metal environments.

6.8 Related Work

Traditional event-driven models: This is the de-facto standard approach for online data-

intensive services with high connection fan-in. On Linux, the use of the epoll has substan-

tially improved system scalability. While epoll can be used in a floating model, and the

recent epoll-exclusive eliminates thundering herds [100], applications must still rely on

additional, complex synchronization to take advantage of the feature. ZYGOS delivers built-in,

ordered semantics that guarantee that the replies from back-to-back remote procedure calls

on the same socket will be returned in order. However, unlike the case of Affinity-accept [289]

where each connection remains local to the core that accepted it, ZYGOS enables a connection

to be served by any available core. Hanford et al. [144] investigated the impact of affinity on

application throughput and proposed to distribute packet processing tasks across multiple

CPU cores to improve CPU cache hit ratio. Although our work does not consider cache effects,

we also conclude that strict request affinity can harm performance.

Traditional multi-threading model: Operating systems pre-emptive schedulers such as CFS [55],

BVT [93] favor latency-sensitive tasks. Applications can benefit from multithreading to lower

tail latency of completion of tasks when the granularity is a multiple of the scheduling quantum
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and the distribution has a high dispersion.

Shared-nothing dataplanes architectures: Systems such as Arrakis [290], IX [34], mTCP [167],

MICA [229], Seastar [316] and Sandstorm [239] bypass the kernel(via frameworks such as

DPDK [88] or netmap [306]) and rely on NIC RSS to partition flows among cores. These shared-

nothing architectures (at the system-level) with run-to-completion approaches completely

eliminate the need to make scheduling decisions. These sweeping simplifications noticeably

increase throughput but are oblivious to temporary imbalances across cores. MICA uses a

client-side randomizing protocol (CREW or CRCW) to eliminate some causes for persistent

imbalances among cores but does not address temporary imbalances. Decibel [262] and

Reflex [196] are designed for storage disaggregation, depend on the shared-nothing assump-

tion and similarly do not handle imbalance. ZYGOS is designed to eliminate such cases of

imbalance though work-stealing. RAMcloud clients leverage RDMA hardware to bypass the

kernel and communicate with a cluster of RAMcloud servers, with an asymmetric, push-based

approach to task scheduling [281]. ZYGOS works with commodity Ethernet NICs and handles

I/O and protocol processing symmetrically on all cores, with a pull-based, work-stealing

scheme for task execution.

Work-stealing within applications: This commonly-used technique that has been mostly

implemented either within the application or in a userspace run-time that runs on top of the

operating system. Run-times such as Intel’s Cilk++, Intel’s C++ Threading Building Blocks

(TBB), Java’s Fork/Join Framework and OpenMP implement work-stealing schemes. Optimiz-

ing or building such run-times has also been studied intensely academically, e.g., [58, 69, 87].

Statically mapping connections to cores can result in load imbalance in event-based pro-

grams and requires a solution at the library level [126, 375]. Recent focus on work stealing for

latency-critical applications is at coarser timescales. [220, 370, 148]. The prior work largely

targets applications with millisecond-scale task granularities that are easily accommodated

by conventional operating systems. ZYGOS implements work-stealing within the operat-

ing system itself for network-driven to eliminate both persistent and temporary imbalances

and is suitable for µs-scale tasks. As an operating system, ZYGOS’s use of IPIs eliminates all

cooperative multitasking assumptions between the threads.

Cluster-level work-stealing: Finally, load imbalance has been extensively studied at cluster-

scale. Lu et al. [232] proposed a 2-level load balancing scheme based on the power of two

to load balance traffic towards the front-end of cloud services. Sparrow [282] also relies on

power-of-two choices for batch job scheduling. Google’s Maglev [96] is a generic distributed

network load balancer that leverages consistent hashing to load balance packets across the

corresponding services.
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6.9 Chapter Summary

We presented ZYGOS, a work-conserving operating system designed for latency-critical, in-

memory applications with high connection fan-in, high requests rates, and short individ-

ual task execution times. ZYGOS applies some well-proven work-stealing ideas within the

framework of an execution environment but avoids the fundamental limitations of dataplane

designs with static partitioning of connections. We validate our ideas on a series of synthetic

microbenchmarks (with known theoretical bounds) and with a state-of-the-art, in-memory

transactional database. ZYGOS demonstrates that it is possible to schedule µs-scale tasks on

multicore systems to deliver high throughout together with low tail latency, nearly up to the

point of saturation.

81





7 CRAB: Bypassing the Load Balancer
Without Regrets

7.1 Introduction

Load balancing is ubiquitous: nearly all applications today running in datacenters, public

clouds, at the edge, or as core internet services rely on some form of load-balancing for

both availability and scalability. Load balancing can have different forms, e.g., L4, L7, DNS-

based etc., and can be implemented in hardware or in software. There has been considerable

research on load balancing [275, 11, 96, 189, 286, 27, 251, 124, 292, 242] both from academia

and industry due to not only the demands for mass deployments, high throughput, and low

latency variability, but also the demands to lower provider resources specifically dedicated to

it. For instance, Google reports that software-based load balancing can take up to 3-4% of a

datacenter’s resources [96].

This chapter focuses on internal load balancers, which are deployed between clients and

servers within the same datacenter or public cloud. Internal load balancers can have a

significant impact on the end-to-end latency both due to their load balancing decisions

and the intermediate hop, while also constituting a major part of the infrastructure costs

for cloud tenants. A common pattern includes the deployment of an internal cloud service,

Browsers

Datacenter

LB LB

Web 1

Web 2

Back 1

Back 2

Back 3

Figure 7.1 – Sample 2-tier cloud application. Web servers handle web traffic coming from
users’ browsers and act as clients for the back-end servers that run the application logic and
communicate with a managed database. The light green octagon is an external load balancer
while the dark green one is an internal load balancer.
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placed behind an internal load balancer, that spawns new service instances according to load

requirements and registers them with the load balancer, leading to seamless scalability and

elasticity.

Figure 7.1 illustrates sample cloud-based, two-tier application. Users using their browsers

hit the public IP of the external load balancer and their requests end up being served by the

two web servers. Those servers act as internal clients for the backend-servers that are behind

the internal load balancer and communicate with a managed database service. This design

pattern allows the web tier and the back-end tier to scale independently and remain agnostic

to each other due to the use of the two load balancers. Similar examples of such design

patterns for services (or microservices) include ML inference to create recommendations,

a user authentication microservice [123], generic application servers, and any workload

orchestrated in containers such as Kubernetes[205].

Internal load balancers must be able to handle high-throughput, low-latency RPCs, typically

implemented on protocols such as gRPC [139], Thrift [333], HTTP, or even custom protocols

on top of TCP, e.g., Redis, Memcache. The technical challenge is to spread the load as evenly

as possible by leveraging rich, stateful scheduling policies while rapidly adjusting to changes

in the service set, adding minimum latency overhead to the application, not creating I/O

bottlenecks, and avoiding broken connections. State-of-the-art internal load balancers have

benefited from recent innovation in protocol design specifically aimed at improving their scal-

ability, including transport protocols other than TCP [179, 202, 255]. Such approaches though,

break backwards compatibility with existing applications, while TCP still remains prevalent

both for datacenter [7] and cloud communications. We note that this problem statement is

different from that of external load balancers, who must accept and filter standards-based

traffic from the Internet, mostly deal with HTTP(S) traffic and might also implement TLS

termination.

Our approach bypasses the load balancer without regret. Specifically, we remove the load

balancer from the critical path as much as possible and offer close to direct communication

latencies. At the same time, our design allows for elaborate load balancing policies that

improve tail-latency and quickly react to changes in the service set.

We design CRAB, a Connection Redirect LoAd Balancer. CRAB depends on a new TCP option

included in the SYN and SYN-ACK packets that enables traffic redirection. This allows CRAB to

only deal with SYN packets and stay off the connection datapath, thus tremendously reducing

the load balancing load, while still being able to implement complex load balancing policies

that otherwise would require a stateful load balancer implementation.

Our implementation shows that CRAB’s datapath can be easily implemented using standard

kernel-bypass mechanisms if running bare-metal, or as an eBPF filter when hosted in a VM for

multi-tenancy purposes as a virtualized network function (VNF). The CRAB implementation in

clients and servers requires a modest change; this can be implemented in a kernel module

that has no measurable impact on performance or as direct kernel modifications offered as
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Direct Load Balanced
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Figure 7.2 – Connection-Request-Response (CRR) and Request-Response RR latency bench-
marks on Azure with accelerated networking with and without an Azure internal load balancer

pre-built images to cloud tenants.

Our evaluation demonstrates that CRAB outperforms L4-based load-balancers in terms of

added latency overhead, connection throughput, and load balancing policies while being

implemented on top of a simple stateless design.

Our contributions are:

• The design of a backward-compatible extension to RFC 791 [295] that enables TCP connec-

tion redirection

• The design of a CRAB load balancer that depends on the new connection redirect feature of

TCP and supports flexible scheduling policies.

• The implementation of the TCP connection redirection option in the Linux kernel for

both clients and servers. Three implementations of the load balancer using DPDK, eBPF and

Netfilter, respectively.

• A discussion on the caveats, assumptions, and opportunities for CRAB in the public cloud

and for the integration of CRAB for Kubernetes NodePort load balancing.

7.2 Motivation and Background

In this section, we first showcase the problem we aim to solve and quantify the potential

benefits CRAB can achieve. Then, we provide a comparative description of the state-of-the-art

in load balancing that drives our design.

To begin, we run a simple experiment on the public cloud which mimics a scenario that many

applications encounter today. We deploy two VMs on Microsoft Azure [19], one acting as a

client and the other as a server both configured with accelerated networking [20]. Further,

we place the server VM behind an Azure internal load balancer. In this setup, the client VM

corresponds to the web tier and the server VM corresponds to the back-end tier from Figure 7.1.

As benchmarks, we run a custom implementation of Netperf’s CRR and RR benchmarks [348].

The CRR (Connect-Request-Response) benchmark measures the latency to open a connection,
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Figure 7.3 – Commonly used load balancing schemes for cloud services based on VMs or
containers.

send an 8-byte payload, and wait for the server to echo the same payload. On receiving

the response, the client closes the connection and starts over. In the RR (Request-Response)

benchmark clients establish connections once and then use the same connection to send all

their requests. RR measures the time between sending an 8-byte request and receiving the

echoed back 8-byte response. Both experiments operate in a closed loop with one connection

and one outstanding request at a time. Both the client and the server applications run on the

vanilla kernel-based networking stack.

Figure 7.2 illustrates the 99th percentile observed latency for the CRR and RR experiments

with and without the load balancer. Naturally, the latency for direct communication is lower

than the load-balanced scenario. However, the latency overhead introduced by the load

balancer is significant for both the RR and the CRR benchmarks. The load balancer adds ap-

proximately 1ms and 2ms respectively for the RR and CRR benchmarks; such a large overhead

can overshadow the cost of non-balanced RPC.

Given this significant latency overhead associated with internal cloud load balancing, our

goal is to minimize it as much as possible to achieve latencies that are close to direct commu-

nication. To do so, we need to understand the underlying load balancing mechanisms and

policies.

7.2.1 Load Balancing Flavors

In this section, we categorize and compare the state-of-the-art approaches to load balancing

for internal cloud workloads running on top of VMs or containers. Our comparison is based

on the following criteria:

• Load Balancing Policy: Centralized policies leverage a global view that includes every

back-end server while distributed policies make scheduling decisions based only on local

state.

• Persistent-Connection-Consistency (PCC) Violations: Can the load-balancer route all

packets from the same connection to the same back-end server in the presence of server

arrivals and failures?

86



7.2. Motivation and Background

• Expected Load: What is the load balancer load in terms of the packets it has to process for

each connection?

• Latency Overhead: How much overhead does the load balancer add?

• Updates: How quickly does the load balancer take into account scale-up (server-arrival)

and scale-down (server-removal) events?

Layer 4 Load Balancing: L4 load balancers operate at the transport layer (TCP/UDP) of

the networking stack and remain agnostic to the upper application layers. All public cloud

providers offer some form of L4 load balancing, examples include Microsoft’s Azure Load

Balancer [22], which was used for the experiment in Figure 7.2, and Amazon’s AWS Network

Load Balancer [17]

Figure 7.3a describes the communication between the client, load balancer, and back-end

servers for an L4 load balancer. The load balancer listens to a virtual IP (VIP) and the client

uses this IP to talk to the service. The service is run on back-end servers that listen to some

direct IP (DIP). The load balancer assigns each connection to a particular back-end server

and performs address translation. It modifies the destination IP (to the DIP) for packets sent

by the client and the source IP (to the VIP) for packets sent by the server. This requires all

packets to go through the load balancer adding a latency overhead of 1 RTT to the end-to-end

client-server communication and reducing the I/O scalability of the load balancer.

An optimization to the above approach is Direct Server Return (DSR). In this scheme, packets

originating at the server can be sent directly to the client without being routed through the

load balancer. Servers are aware that they are being load balanced and modify the source IP

of outgoing packets to the VIP using address rewriting mechanisms such as tc [349]. DSR

reduces the load balancer’s load since it now only processes client packets and reduces the

latency overhead to 0.5 RTT. Figure 7.3b illustrates an L4 load balancer with DSR enabled.

There has been significant research [275, 275, 11, 96, 189, 27, 286, 251, 124, 292, 242] on L4

load balancers. All these approaches can be split into two main categories depending on

whether or not they store per-connection state.

Stateless load balancers [275, 11] typically depend on some form of consistent hashing [186]

and daisy chaining to ensure that packets with the same 5-tuple will always be forwarded to

the same DIP. Relying on hashing to distribute load enables them to eschew per-connection

state leading to better performance and scalability. However, this approach has two main

caveats. First, load balancing policies are limited to hashing, namely random load balancing;

this leads to load imbalances especially when connections are skewed. Second, despite the

use of daisy chaining there remain corner cases during server arrival and removal that lead to

PCC violations [27].

Stateful load balancers maintain per connection state to correctly route each packet they
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Method\Property Policy PCC violations Expected load Latency overhead Updates

L4 Central Possible* every packet 1 RTT for every RTT Fast

L4 w/ DSR Central Possible* one way packets 1/2 RTT for every RTT Fast
L7 Central None every packet 1 RTT for every RTT Fast

DNS Central None
1 RPC every
few connections

up to 1RTT
per connection

Slow

Local Agent Distributed None every packet none Slow

CRAB Central None SYN packets
1/2 RTT for every
new connection

Fast

* In stateless L4 load balancers

Table 7.1 – Feature comparison between different deployed load balancing schemes and CRAB.

receive from the client. Further, such load balancers can also maintain state about each

back-end server, in order to support more elaborate load balancing policies such as Join-

Shortest-Queue or Power of two [253]. Such policies cannot be implemented on a stateless

load balancer. While per-connection state eliminates PCC violations, the state lookups can

become a bottleneck when the number of active connections is large.

L7 Load Balancing: L7 load balancers or reverse-proxies operate at the application layer.

These load balancers terminate client connections and open new connections to the back-end

servers. Figure 7.3a could also describe a L7 load balancing scheme since all the received and

transmitted packets have to go through the load balancer. However, for L7 load balancing

arrows (1),(4) and (2),(3) would belong to different TCP connections. Popular open-source

L7 load balancers include NGINX [269] and HAProxy [146]. Cloud providers also offer such

services, e.g., Amazon’s AWS ALB [17].

L7 load balancers are typically centralized. Terminating client connections and establishing

new ones with back-ends servers, enables them to avoid PCC violations. Further, operating at

the application layer allows such load balancers to understand L7 protocols, e.g., HTTP; this

enables them to perform fine-grained request-level load balancing as opposed to the more

coarse-grained connection level load balancing. However, this results in them depending on

complicated software that typically run in userspace. This has the corresponding performance

implications, in particular a considerable increase in the latency overhead (we illustrate this

in Subsection 7.5.2).

DNS Load Balancing: Another form of load balancing used both in the public internet as well

as by container orchestrators such as Docker Swarm [328], and Mesos [152], depends on DNS.

DNS load balancing relies on the fact that most clients use the first IP address they receive

for a domain after DNS resolution. Typically, the DNS server sends the list of IP addresses in

a different order each time it responds to a new client, using the round-robin method. As a

result, different clients direct their requests to different servers, effectively distributing the load

across the server group. Figure 7.3c describes the client, server, and DNS server interactions

for a DNS load balancing scheme. Steps (a)-(b) can be performed once for several connections
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(1)-(2).

DNS load balancing, while centralized, is extremely coarse grained, since it only balances the

load at a per-client granularity. Further, to avoid the repeated overhead of DNS resolution and

reduce the load on the DNS server, clients cache DNS entries; once an entry is in the cache,

clients and servers talk directly. Despite its performance benefits, caching can cause severe

load imbalance issues. Since clients use the same target IP until the cached entry expires, the

system cannot mitigate load imbalances during this period. Also, removing servers from the

back-end pool becomes challenging and slow, since administrators have to wait until every

possible TTL for the associated entries has expired. DNS load balancing though does not

suffer from PCC violations since clients and servers communicate directly.

Local Load-balancing Agent: This load balancing scheme is used in Kubernetes [205]. In

a Kubernetes cluster, every node that runs networked containers also runs a local agent

responsible for the network configuration. This agent maintains a consistent view of the

network by subscribing to state changes in the configuration service (etcd [105]). Each service

that runs multiple containers and requires load balancing is associated with a specific ClusterIP.

The local agent keeps track of the container IPs that run the specific service. Every time a client

uses the ClusterIP, the local agent picks one of the target containers and performs address

translation for each transmitted and received packet. Thus, while the client believes it is

communicating with the ClusterIP, it is actually communicating with a container running the

service. Figure 7.3d describes the above load balancing scheme and the interactions between

the client, the server and the local agent.

The main benefit of a local agent is the ease of deployment, since it is integrated into the

orchestrator rather than an external service. Placement and scaling decisions automatically

update the load balancing decisions performed by this local agent, through pub-sub [107].

However, this approach suffers from three main problems: (1) load balancing decisions are

performed in a distributed manner on every server, masking the benefits of smart placement,

(2) packet rewriting is on the critical path for every packet sent and received, leading to an

increase latency and CPU utilization (3) changes to the pool of target containers take longer to

propagate through the use of pub-sub since all machines in the cluster have to receive the

update; unlike the case in systems where the load balancing service is standalone and clients

and servers are agnostic to it.

Table 7.1 summarises the above comparison and position CRAB in the design space among the

same axis.

7.2.2 Load Balancing Policies

So far, we have categorized the different load balancing policies used in the above load

balancing schemes based on two criteria: (1) whether they are implemented centrally (e.g.,

L4 load balancers) or in a distributed manner (e.g., load balancing based on a local agent);
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Figure 7.4 – Simulation result for tail latency to compare centralized and distributed policies.

(2) whether the policy is random (e.g., hashing in stateless L4 load balancers), or richer (e.g.,

round-robin on stateful L4 load balancers). The performance implications of these policies on

application tail latency, though, remains unclear.

To answer the above question, we leverage queuing-theory models and run a discrete event

simulation for load balancing policies from each category. Our setup models 16 clients that

communicate with 16 servers. Among stateful policies we choose the simplest non-random

policy, which is Round-Robin. We simulate both the centralized and distributed versions

of this policy. The centralized policy can be thought of as being implemented by a stateful

L4 load balancers and the distributed policy as being implemented by Kubernetes-like local

agents. Since stateless load balancing is equivalent to a random assignment of connections

to servers, we simulate both centralized and distributed versions of the random policy. We

exclude the case of the DNS-based load balancing due to the big impact of TTL both on the

required DNS server resources, and the end-to-end latency.

Figure 7.4 summarizes the simulation results for each policy for a fixed service time distribu-

tion and Poisson arrivals. We observed that the centralized and distributed versions of the

random policy displayed identical performance, hence we show them as one. In terms of

application tail-latency, the random load balancing has the worst performance. Further, there

is a difference between the D-RR (Distributed Round-Robin) policy and the C-RR (Centralized

Round-Robin) policies. Due to the randomness of the Poisson process, performing Round-

Robin on each node leads to worse tail latency, since centralized Round-Robin manages to

always pick the least loaded server in this fixed service time experiment. We draw two conclu-

sions from the above results: (1) Decentralized policies are worse at distributing the load than

their centralized counterparts leading to worse tail latencies. (2) Rich policies can significantly

outperform random load balancing.

However, the choice of load balancing policy is not independent of the load balancer design.

For instance, richer policies require stateful implementations that do not scale well, while

scalable stateless designs cannot support policies beyond random. This reveals a design

trade-off between the scalability of stateless designs and richer load balancing policies of

stateful designs.

Our goal is to design a load balancer that combines the best aspects of each design discussed so
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Figure 7.5 – A load balanced TCP handshake with and without connection redirection. Blue
boxes correspond to IP headers, red boxes correspond to TCP headers.

far, namely: (1) the performance characteristics of DNS-based load balancing (expected load

independent of flow size and close to direct communication latencies) (2) the load balancing

capabilities of centralized, stateful L4 load balancers and (3) the scalability, flexibility, and PCC

violation elimination of stateless L4 load balancers.

7.3 Design

CRAB is designed to satisfy the following requirements: (1) The load balancer must be able

to implement centralized, stateful policies that offer better tail-latency, easier management,

and faster updates. (2) The load balancer must not become an I/O and scalability bottleneck.

(3) The load balancer must incur the minimal possible latency overhead by eliminating un-

necessary network hops. (4) The load balancer must be backwards compatible with existing

connection-based transport protocols (specifically TCP). (5) The load balancer must eliminate

PCC violations.

The core insight behind CRAB is simple: Implementing a centralized, stateful load balancing

policy at a connection granularity requires the load balancer’s involvement only during connec-

tion setup, following which the client and server can communicate directly. Said differently,

the load balancer need only map a connection to a back-end server when the connection is

being setup, after which it only performs address translations, thus it can be taken off the data

path. This eliminates all network hops through the load balancer in the data exchange phase,

minimizing the latency overhead and avoiding scenarios where the load balancer becomes

the I/O bottleneck, while it completely eliminates the risk of PCC violations. Note, this insight

is specific to scenarios in which clients and servers can directly talk to each other and the load

balancer is not required to conceal internal infrastructure. This assumption holds for internal

load balancers in the public cloud (which is our target deployment) but does not generally

hold for load balancers in the public internet.
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CRAB realizes the above insight for TCP, by extending the traditional 3-way handshake. Fig-

ure 7.5a illustrates this handshake between a client and a server with an L4 DSR-enabled load

balancer in the middle for a vanilla TCP implementation. This handshake requires 5 packets

to be exchanged. The client first sends a TCP SYN packet to the load balancer’s VIP 1 . The

load balancer assigns this connection to a particular back-end server and forwards the SYN
packet to its DIP 2 . Since DSR is enabled, the server replies directly to the client with a

SYN-ACK packet having VIP as the source IP 3 . Finally, the client sends the load balancer

an ACKpacket 4 , which the load balancer forwards to the back-end server 5 to finish the

connection establishment.

To remove the load balancer from the data path, CRAB leverages what we call Connection Redi-

rection (CR). As the name suggests, CR enables redirecting the connection being established to

a target IP address that is different from the one initially contacted by the client. To enable CR,

we added a new TCP option called Connection Redirect. While clients would ordinarily

discard SYN-ACK packets sent from an IP address they did not send a SYN packet to, they now

conditionally accept such packets as long as they have the new TCP option. The Connection
Redirect option includes a 4-byte field that carries the initial destination IP that the client

sent the SYN packet to. This enables the client to validate that the received SYN-ACK is indeed

a part of the handshake it initiated and also to find the associated struct sock. When a

client receives a SYN-ACK with a valid Connection Redirect option, it changes its internal

connection-related data structures and updates them with the new destination IP. Then, it

sends the ACK to the new destination to finalize the connection establishment. Once this is

done, the original destination IP is ignored and the two end-points communicate directly.

Figure 7.5b describes the TCP handshake, the associated packets, their IP and TCP headers,

and other key fields in the case of connection redirection. As in the vanilla TCP case, the

client first sends a TCP SYN packet to the load balancer 1 . This TCP SYN now also indicates

whether or not the client supports CR; in this case, we assume it does. The load balancer

assigns this connection to a particular back-end server and forwards the SYN packet to its DIP

2 . In addition, it uses the Connection Redirect option to include its VIP in the packet

and inform the back-end server that this is a redirected connection. The server then sends the

SYN-ACK packet directly to the client, with the source IP set to its own, and also echoes the

Connection Redirect option with load balancer VIP 3 . Finally, the client processes the

new TCP option and redirects the connection, resulting in it sending the ACK packet directly

to the back-end server and bypassing the load balancer 4 .

Figure 7.6 illustrates the complete CRAB load balancing architecture. Steps a − c correspond

to the first 3 packets from Figure 7.5b. All further packets are directly exchanged between

the client and the server, completely bypassing the load balancer. The only packets that the

CRAB load balancer needs to handle are the TCP SYN packets. Once it directs the packet to a

particular back-end server (load-balances the connection), it is eliminated from the data path.

A direct consequence of this is that CRAB significantly reduces the resources necessary for load

balancing. Since a CRAB load balancer handles only new connections, it can be provisioned
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Figure 7.6 – Load Balancing over CRAB using the Connection Redirect TCP option. Dashed
lines indicate connection establishment. Solid lines indicate data exchange.

according to the rate of new connection establishment, as opposed to being provisioned

according to the receive and transmit throughput of those connections.

In cases where the client’s SYN packet does indicate support for connection redirection, the

load balancer can fall back to stateless hash-based load balancing, thus remaining compatible

with non-CRAB-compliant clients. The load balancer check if the back-end servers are CRAB-

compliant through the health probes already sent to make sure servers are up and running.

So, CRAB achieves its design goals as follows: (1) All SYN packets continue to be routed via

the load balancer, allowing it to implement the centralized policy of its choice without the

limitations of stateless load balancers. (2) Dealing with only SYN packets and not the actual

connection payload, ensures that the load balancer is no longer the I/O bottleneck. (3)

Removing the load balancer from the data path eliminates all intermediate network hops to it

once connection establishment is complete. (4) CRAB is backwards compatible with existing

network stacks and falls back to stateless load balancing if the Connection Redirect TCP

option is not supported. (5) After connection establishment clients talk directly with servers,

thus completely eliminating PCC violations.

7.4 Implementation

CRAB depends on a custom load balancing middlebox and requires changes to the client

and the server endpoints. These three components can be implemented using different

technologies based on deployment requirements, yet can inter-operate independent of the

implementation. In this section, we describe the implementations in our current proto-

type. We discuss alternatives for both implementation and placement of this functionality in

Section 7.6.

The deployment target for CRAB is a public cloud IaaS provider such as Amazon AWS, Microsoft

Azure, or Google Compute Platform. We assume that the provider fully controls the physical

infrastructure, but can also control the VM images that cloud tenants use. Unlike other

deployment scenarios in which modifying the client endpoints is not feasible, e.g., the internet,

clients running on cloud infrastructure can easily integrate new features by running VM

images offered by the cloud provider. This approach of specially modified could VM images is
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not new and already used extensively, e.g., in Azure accelerated networking [21].

7.4.1 Load Balancing Middlebox

We implement the CRAB middlebox in three different ways keeping in mind the infrastructure

IaaS providers use today and the fact that they might need to run several load balancer

instances per tenant. Consequently, we avoided an implementation based on programmable

switches [28] and P4 [39] despite the fact that it provides the lowest latency and highest

throughput. Instead, we built CRAB middleboxes that rely on DPDK [88], eBPF [344], and

Netfilter modules [347] respectively.

Our DPDK-based CRAB implementation depends on a custom, simple networking stack and

the load balancer implementation consists of ∼100 lines of C code. Our eBPF-based load

balancer leverages XDP [353] and runs natively in the driver context, thus avoiding an extra

softIRQ. It processes the incoming packets and sends them out again through the same inter-

face without letting them enter the Linux kernel, while also being able to easily communicate

with the userspace through the use of eBPF maps that define the set of DIPs. The eBPF-based

implementation consists of ∼250 lines of C code. Finally, our Netfilter implementation runs

in the context of a NF_INET_PRE_ROUTING hook. It is loaded as a kernel module and can

communicate with userspace through a character driver to configure the target DIPs and the

load balancing policy. The Netfilter implementation is ∼200 lines of C code.

Our prototype implementations support two push-based load balancing policies namely

random selection and Round-Robin. All implementations currently assume that clients and

servers are CRAB compliant; they handle only TCP SYN packets and drop all other packets.

7.4.2 Connection Redirection

Server-side: To enable Conection Redirection, the server must include Connection Redirect
option with the load balancer’s VIP in the header of the SYN-ACK packet it sends to the client.

This can be implemented either inside the kernel TCP stack or as part of a header rewriting

mechanism before the packet is sent. We provide two implementations for this functionality

that display similar performance characteristics. The first is based on a patch to the Linux

kernel. It parses the TCP options in the received SYN packet and if the Connection Redirect
option is set, echoes it in the SYN-ACK packet. The second implementation leverages Net-

filter modules and hooks onto the NF_INET_LOCAL_OUT hook. This Netfilter hook modifies

the outgoing SYN-ACK packets that match a certain source IP and port number and adds the

Connection Redirect option with a predefined load balancer VIP. The Netfilter implementa-

tion totals ∼200 lines of C. Given that the server-side implementation of CRAB does not require

any kernel data structure modifications it can also be implemented in an eBPF program.

94



7.5. Evaluation

CRAB-dpdk CRAB-ebpf CRAB-nf

0 50 100 150 200 250

99-th Latency (us)

CRR

RR

Figure 7.7 – Unloaded tail latency latency measured for the CRR and RR benchmarks for each
CRAB load balancer implementation.

Client-side: The client-side of CRAB is the most intrusive since clients need to modify kernel

data structures associated with the connection being redirected. We provide two solutions,

one based on patching the kernel and another based on Netfilter modules; both display similar

performance. Both implementations use the IP address found in the Connection Redirect
option to locate the original connection and overwrite the connection’s destination IP with

the source IP of the received SYN-ACK. The Netfilter module totals ∼150 lines of C and uses a

NF_INET_PRE_ROUTING hook to modify the socket structure before the SYN-ACK reaches the

TCP stack which otherwise would drop the packet due to the source IP being unknown. The

kernel patch supporting CRAB is based on Linux 4.19.114 and adds ∼200 lines of code.

7.5 Evaluation

Our evaluation answers the following questions: (1) How do the different implementations of

the CRAB load balancer perform? (2) How does the latency overhead of CRAB compare against

existing baselines? (3) How does system throughput scale with CRAB? (4) Can CRAB implement

complex scheduling policies that improve the end-to-end application tail latency?

We evaluated CRAB on our infrastructure, rather than the public cloud due to limitations

imposed by IaaS providers (e.g., the inability to spoof IPs) which are necessary for the CRAB

load balancer. Doing so enables us to be in full control and understand the infrastructure to

better reason about the observed performance.

Our experimental setup consists of 10 machines connected by a Quanta/Cumulus 48x10GbE

switch with a Broadcom Trident+ ASIC. The machines are a mix of Xeon E5-2637 @ 3.5 GHz

with 8 cores (16 hyper-threads), and Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyper-threads).

All machines are configured with Intel x520 10GbE NICs (82599EB chipset). The machines

configured as clients or servers run either our CRAB-enabled modified Linux kernel or the

CRAB client and server Netfilter modules since we did not observe any performance difference

between the two implementations.
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Figure 7.8 – Maximum throughput (new connections per second) achieved by each CRAB load
balancer implementation.

7.5.1 CRAB Load Balancer Implementations

In this section, we evaluate the different CRAB load balancer implementations based on DPDK,

eBPF, and Netfilter modules respectively, in terms of their latency overhead and through-

put they can sustain. The goal is not to compare the performance of the three frameworks

(DPDK vs eBPF vs Netfilter) but rather to provide information on the raw performance each

implementation can achieve.

To evaluate latency, we run the same echo benchmarks as in Figure 7.2 with an 8-byte mes-

sage size. In the CRR (Connection-Request-Response) benchmark, the client opens a new

connection, sends a request, and waits for the response. On receiving the response, it closes

the connection. We measure the end-to-end latency from connection establishment until the

reply. In the RR (Request-Response) benchmark the client uses a pre-established connection

to send requests and get back replies. We measure the end-to-end latency from when the

client sends the request until the reply. Both experiments run in a closed loop with one client

and one server thread, one connection, and one request at a time.

Figure 7.7 plots the 99-th percentile latency for the CRR and RR benchmarks for each imple-

mentation. As expected, we only observe a difference in the CRR experiment since the RR

experiment uses a pre-established connection and the load balancer is off the data path. In

the CRR experiment, the DPDK based implementation has the best performance since the

load balancer works in a polling mode. The eBPF load balancer operates in native mode in

the driver context, thus it performs better than the Netfilter module that runs in the softIRQ

context and uses the kernel networking stack.

To evaluate throughput, we need to identify how many SYN packets can each implementation

sustain since this is the only traffic that the CRAB load balancer deals with. Unfortunately, we

do not possess the resources to run a full setup with TCP clients and servers such that the load

balancer is the bottleneck. Instead, we created a DPDK-based client program that bombards

the load balancer with SYN packets to stress test the different CRAB implementations. We

configured the load balancers to redirect those SYN packets back to the same IP as if the client

IP is one of the server DIPs. This enables the client to measure the throughput in terms of SYN

packets per second, that each load balancer implementation can sustain. We configure the

three load balancers to use only one core for packet processing. For the DPDK implementation,
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Figure 7.9 – Unloaded tail latency for the CRR and RR benchmarks for setups with no load
balancer (Direct), a DPDK-based L4 load balancer with DSR, and the CRAB implementation on
DPDK.
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Figure 7.10 – Comparing Max goodput achieved in the CRR (dashed) and RR (solid) bench-
marks for CRAB and a DPDK based L4 LB with DSR. I/O capacity of both LBs = 10G. I/O capacity
of servers = 30G.

we run a single thread, while for the kernel-based implementations we redirected all NIC

interrupts to one core, so packet processing would only take place on that core.

Figure 7.8 summarizes the results and plots the maximum achieved throughput in terms of

SYN packets per second. CRAB-DPDK saturates a 10G NIC (∼14M SYN packets per second)

with a single core. CRAB-EBPF can serve 6.8M SYN/sec, while CRAB-Netfilter can serve 1.5M

SYN/sec. As for latency, the performance difference is explained by the different interrupt

contexts.

Given these results, we use only the DPDK-based implementation of CRAB from here onwards.

7.5.2 Latency Overhead

We now compare the latency overhead imposed by CRAB against existing load balancer imple-

mentations using the same unloaded latency benchmarks. We use the following baselines:

(1) A direct configuration where clients and servers communicate directly without a load

balancer. This represents the lower bound on latency. (2) NGINX configured as a TCP reverse

proxy. This represents an L7 load balancer and (3) An implementation of a stateless L4 load

balancer based on the Toeplitz hash [352] which runs on DPDK and is configured with DSR

(LBL4-DSR).
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Figure 7.9 plots the observed 99th percentile unloaded latency over 100000 samples for the

direct, LBL4-DSR and CRAB load balancers. The NGINX configuration added ∼250µs on top of

direct for CRR, and ∼50µs for RR and hence is not shown in the graph for visibility reasons. In

the CRR benchmark, the DPDK implementation of CRAB adds ∼6µs on top of Direct which

corresponds to the half RTT overhead incurred when the SYN packet is routed through the

load balancer. In comparison, the LBL4-DSR configuration adds double the overhead (∼12µs)

since both the SYN and the request packet from the client are routed through the load balancer.

In the RR benchmark, CRAB performs the same as Direct, since the load balancer is off the data

path. In contrast, the LBL4-DSR load balancer adds 6µs since the request packet from the

client is routed through the load balancer.

7.5.3 Throughput Scaling

Here, we illustrate how CRAB’s design enables the applications to bypass load balancer bottle-

necks and scale their throughput to the I/O capacity of the back-end servers. As mentioned in

Section 7.2, while DSR alleviates these bottlenecks for applications that are Tx heavy, CRAB

seeks to eliminate this bottleneck for a broader range of applications. In this experiment, we

target internal cloud services that have a symmetric throughput profile (e.g., storage services,

authentication/prediction microservices etc.).

To illustrate how CRAB enables throughput scaling, we run the same closed-loop echo bench-

mark in CRR and RR mode with different message sizes, but measure the maximum goodput

(bytes of application payload per unit time) as opposed to the unloaded latency. We use

three client and three server machines, and one machine serving as a load balancer, each

machine configured with a 10G NIC. We compare CRAB against LBL4-DSR. Both load balancers

implement the random load balancing policy.

Figure 7.10 illustrates the results. For both the RR and CRR workloads, the setup with L4LB-

DSR is only able to achieve a maximum goodput of 10G since it is bottlenecked by the single

machine that runs the load balancer. On the other hand, we see that CRAB can scale throughput

beyond the capacity of the load balancer. In the RR experiment, it can achieve the goodput

equal to the I/O capacity of the 3 backend servers (3x10 = 30G) at a payload size of 4096B. In

the CRR experiment CRAB and LBL4-DSR perform similarly until a payload size of 8192B; this

is due to the experiment being bottlenecked by the cost of new connection establishments.

Past 8192B however, LBL4-DSR hits the 10G limit, while CRAB continues to scale.

7.5.4 Load Balancing Policies

So far, we’ve shown how CRAB, by redirecting connections and bypassing the load balancer

incurs a lower latency overhead and enables better throughput scaling. We now evaluate

whether CRAB supports elaborate load balancing policies that can significantly improve appli-

cation tail latency, while still not maintaining per-connection state. Note that CRAB does not
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Figure 7.11 – Load Balancing 48 single-core servers running a synthetic service time application
with S̄ = 1ms
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Figure 7.12 – Load Balancing 48 NGINX servers serving an 8 kB static file.

propose any new scheduling policies, but must support policies beyond stateless (random)

load balancing. For now, we only evaluate push-based policies in which there is no explicit

communication between the servers and the load balancer that could help the load balancing

decisions. We leave more complicated policies to future work.

To run this experiment on our infrastructure but with a setup that resembles the public cloud,

we use 3 servers and configure 16 virtual functions on each server for a total of 48 independent

endpoints. We configure each VF with a unique DIP and equally rate limit the VFs so that

they take a fair share of the 10G I/O bandwidth of the server. We evaluate the load balancing

capabilities of CRAB for two classes of applications — CPU-intensive and I/O-intensive. The

CPU bottlenecked application is a synthetic service time server with a fixed service time of 1ms.

For the I/O-bottlenecked application, we use NGINX that serves a static file of 8kB over HTTP.

For both applications, each request is sent over a new TCP connection. We use Lancet [201] as

the load generator. Note, that in both experiments the load balancer is not the bottleneck.

We measure the tail latency as a function of application load for three load balancing policies:

(1) Random load balancing with DSR — this represents policies supported by stateless L4

load balancers today (2) A CRAB implementation of random load balancing and (3) A CRAB

implementation of Round-Robin load balancing — this represents richer load balancing poli-

cies that can only be implemented on stateful load balancers. CRAB, though, can implement

Round-Robin without keeping per-connection state at the load balancer. The goal of the

experiment is to validate if CRAB can realize the benefits of the elaborate policies as shown in

Subsection 7.2.2.
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Figures 7.11, 7.12 plot the tail latency vs throughput curves for the CPU bound and I/O

bound applications respectively. We observe that for both application classes, despite all

three policies achieving the same throughput, CRAB Round-Robin achieves significantly lower

tail-latency. For application profiles with low service time dispersion, the Round-Robin load

balancing policy picks the least loaded server and forward requests to it without requiring

explicit communication between the load balancer and the server. Thus, CRAB in addition to

eliminating I/O bottlenecks and reducing communication latencies, supports elaborate load

balancing policies, truly achieving the best of all worlds.

7.6 Discussion

Mechanism placement: We implemented connection redirection as part of the Linux kernel

assuming the following deployment models: (1) In the case the kernel patch goes upstream,

newer kernel version will support it (2) If not, cloud providers can offer VM images with

the modified kernel which cloud tenants can leverage to benefit from CRAB. However, these

assumptions are not fundamental to CRAB. We now discuss how CRAB’s advantages can be

retained with alternative placements of connection redirection that the client and server

kernels remain agnostic to.

Cloud providers implement engines either in software [240, 75, 115], or in hardware [116] that

accelerate their virtual networking infrastructure. These engines apply address translation

rules and encapsulate and decapsulate packets. Connection redirection can be supported

by those engines, instead of the guest kernels. On the client side receiving a SYN-ACK with

the Connection Redirect option will create two new rules that will perform Source Net-

work Address Translation (SNAT) for the received packets and Destination Network Address

Translation (DNAT) for transmitted packets respectively. The engine will overwrite the DIP

with the VIP in the received option for incoming packets, and vice-versa for the transmitted

packets. The server-side implementation will create a short-lived rule that on receiving a

SYN packet with the redirection option to echoes the option in the outgoing SYN-ACK. The

downside of such an implementation is that it involves packet modifications on the critical

path that can incur performance overheads in a software-based stack. Despite the similarities

with the agent-based load balancing in Section 7.2, supporting CRAB on the host infrastructure

still enables guests to benefit from the centralized load balancing policies and easy and fast

updates to the server pool.

Alternative Transports: While we focus only on TCP, here, we discuss how the core ideas

behind CRAB apply to other connection-oriented transport protocols, in particular QUIC.

QUIC [211] is a low-latency transport protocol designed originally for HTTPS traffic.

While QUIC runs over UDP, it still retains the notion of a connection that is established between

a client and a server after a handshake. QUIC also allows a 0-RTT connection establishment
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for endpoints that have already communicated in the past. After the initial handshake, the

connection is associated with a ConnectionID that defines the connection. Load balancers

use this ConnectionID to forward packets from the same connection to the correct back-send

server [211]. ConnectionIDs also enable seamless connectivity during endpoint migrations

(address changes).

We believe CRAB naturally extends to QUIC. Our proposed connection redirect TCP option is,

in fact, a subset of QUIC’s connection migration functionality. In a CRAB-enabled QUIC, the

1-RTT handshake has to be performed over the load balancer, since no migration is allowed

during connection establishment. Then the server initiates a migration to its DIP instead of

the VIP by leveraging the ConnectionID. Following 0-RTT connection establishments can use

the DIP directly, thus bypassing the load balancer.

Caveats: Unlike L7 load balancing and DNS-based load balancing that can be deployed by

both cloud providers and cloud tenants, L4 load balancing and CRAB require IP spoofing,

namely the ability to send an IP packet with a source IP that is different from the local IP. CRAB

relies on the load balancer sending packets to the back-end servers with the client IP as source

IP. However, IP spoofing is not available for cloud tenants. Thus, CRAB can only be deployed by

cloud providers, substituting or complementing their existing L4 load balancing offerings.

CRAB and our proposed connection redirect feature can affect existing mechanisms that

perform connection tracking. Such mechanisms can be either implemented in software,

such as conntrack [342] and Receive Flow Steering (RFS) [351], or in hardware, such as Intel’s

Application Targeting Routing (ATR) [345]. The goal of such mechanisms is either performance

optimization (e.g., interrupt steering for locality) or monitoring (e.g., conntrack-tools). In

our current implementation, we do not handle such potential violations. In our unloaded

latency experiments, we steered all NIC interrupts to the core running the client application

while in our throughput experiments all cores were constantly busy. Thus, we did not observe

any performance degradation due to hindering of connection tracking mechanisms and

specifically ATR.

CRAB for Kubernetes NodePort: We only showed the benefits of using connection redirection

in load balancing with CRAB when using the central CRAB middlebox. However, connection

redirection can have other use cases in a cloud setup, too. One such use-case arises from the

Kubernetes ecosystem and the use of NodePort [346].

The NodePort configuration exposes a service running on a Kubernetes cluster on every cluster

node independent of whether pods are running this service on the specific node. This way a

service can be placed behind an L4 load balancer having all cluster nodes in its server pool. In

cases when a node receives traffic for a service that does not run locally, it forwards this traffic to

a node that does using kube-proxy. A downside of this approach is that all traffic flows through

this intermediate hop, deteriorating the client’s perceived latency. To deal with the increased

101



Chapter 7. CRAB: Bypassing the Load Balancer Without Regrets

latency, administrators can configure Kubernetes with externalTrafficPolicy=Local, so

that new connections get rejected if there are no local service instances. This, however, is only

a remedy rather than a solution.

Connection redirect can reduce the latency overhead in the above scenario as follows: The

initial server that is assigned the load balancer but does not run the service can add the redirect

TCP option before forwarding the SYN packet to the node running the service. That node will

then echo back the option as usual, but instead of the client, this option will be intercepted

by the stateful load balancer which will then update the target for future packets from this

specific connection.

7.7 Related work

Load balancing is performed at different layers of the networking stack. Below L4 load bal-

ancers and completely orthogonal and complementary to our work is network load balancing.

Hash-based approaches such as ECMP [330, 320], or more complex approaches such as

Conga [6] and alternatives [130, 150, 190, 354, 380] make sure that the multiple paths inside

3-tier datacenter clos topology are equally loaded, thus reducing queuing at the datacenter

switches.

CRAB can be thought of as a lightweight L4 load balancer that bypasses the typical L4 load

balancing limitations. There are numerous load balancer implementations in software [275, 11,

96, 189, 286], and hardware [27, 251, 124, 292, 242] with stateful or stateless designs. Stateful

designs suffer from scalability limits, while stateless designs suffer from suboptimal load

balancing policies. To overcome the space limitations in stateful load balancers Kablan et

al. [177] suggested using external stores for the load balancing state. CRAB achieves the best of

both worlds since it can implement complex load balancing policies and avoid PCC violations

while remaining stateless.

The works most closely related to ours, though, are the following. Duchene et al. [92] target

a specific to Multi-path TCP (MPTCP) [118] problem and ensure that the different TCP con-

nections within a single MPTCP connection are routed to the same server, using a similar

mechanism to connection redirect, in which the back-end server advertises its IP to the client

during connection setup. R2P2 [202] similarly to CRAB enables load balancer bypass both on

the transmit and receive path from the client perspective, but does so by employing a novel

transport layer that exposes individual RPCs. Cheetah [27] exposes an identifier to the clients

that is used by the load balancer for forwarding, thus achieving policies equivalent to a stateful

load balancer without keeping state at the load balancer. However, cheetah’s load balancer is

always on the critical path, unlike CRAB. Finally, QUIC’s connection migration feature [350]

serves as a subset of the proposed connection redirect option.

The above solutions can only be deployed by cloud providers and offered as services to the

cloud tenants. Tenants that want to have more control over their infrastructure and how load
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balancing is performed can deploy L7 or DNS-based load balancing. Examples of open-source

software that provides such services is NGINX [269], varnish [355], haproxy [146], envoy [99]

etc. for L7 and bind [341] and dnsmasq [343] for DNS. L7 load balancers can implement more

elaborate load balancing policies than CRAB since they can also do request-level load balancing

but incur more significant costs since they run in userspace. DNS-based load balancing can

display similar performance to CRAB but suffers from the problems associated with caching.

Cloud providers use cluster schedulers such as Borg [356], Kubernetes [205, 47], Mesos [152],

Docker Swarm [328] to provision virtual resources for container or VM workloads aiming

to maximize utilization without violating customer SLOs. CRAB can be used as part of the

above solutions helping their elasticity. CRAB dramatically reduces the resources necessary for

load balancing, thus leaving more available resources for the above schedulers to run client

workloads on.

7.8 Chapter Summary

CRAB is a novel design for internal load balancers in the public cloud. It depends on a new

TCP option that enables connection redirection; thus, the load balancer participates only in

the connection establishment. Unlike traditional L4 load balancers, CRAB does not impact

the latency or bandwidth of established connections. CRAB can support the same rich load

balancing policies as traditional load balancers, but without keeping per connection state

within the load balancer. CRAB is backward compatible with TCP, and easily deployable on the

public cloud with minor kernel modifications.
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8 SLO-Aware TCP Flow Control

8.1 Introduction

The “cloud era” is built on top of at least two nearly ubiquitous paradigms: TCP/IP and

remote procedure calls (RPC) [38]. Both paradigms are used to connect to mega-datacenters

(e.g., https) as well as within datacenters, where they connect multiple tiers of servers with

wide fan-in/fan-out flow patterns and strict tail-latency service level objectives (SLO) [31, 80].

TCP has emerged as the main transport protocol on top of commodity Ethernet for latency-

critical RPCs. The reliable, ordered byte stream provided by TCP serves as the basis for other

higher-level, application abstractions and guarantees, such as exactly-once RPC semantics.

Non-commodity alternatives, e.g., RDMA over Infiniband and RDMA over Lossless Ethernet

(RoCE) have specific hardware requirements or expose alternative APIs, that limits their wide

adoption, despite potentially reduced round-trip times (RTT).

A datacenter, though, differs radically from the assumptions considered during the initial

TCP design [66]. Specifically, modern datacenters are uniformly designed and built upon low-

latency Ethernet fabrics in Clos topologies. Those fabrics comprise of commodity cut-through

switches with shallow buffers that have a few hundreds of nanoseconds of switching latency.

Such a design guarantees unloaded RTTs in the scale of µs and a few Pbps of bisection band-

width [320]. Despite TCP’s extensive use within a datacenter, most of its mechanisms remain

as originally designed, such as the sliding window. TCP’s sliding window is managed by both

the congestion and flow control logic. We make the distinction between congestion control

algorithms focusing on in-network congestion, while flow control focusing on queueing on

the end-hosts. Improvements throughout the networking stack, though, have mostly focused

on the in-network congestion. Approaches such as [7, 8, 6] reduced congestion and buffer

utilisation, nearly eliminated packet drops, improved fabric utilisation, and reduced latency

jitter.

In contrast, the endpoints have received less consideration. In particular, the core flow-control

mechanism of TCP is used today primarily to prevent packet loss at the end-hosts, but without

any particular consideration for end-to-end latency. The initial purpose of flow control is
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to avoid overwhelming the receiver, which can lead to packet drop. This was a significant

concern during the initial design of TCP due to the limited amount of DRAM in computers

of a few decades ago. Modern servers nowadays have abundant DRAM, and can potentially

accommodate a large number of packets. Applications with strict tail-latency SLOs, though,

require minimal queueing on the server side. For a datacenter RPC server that handles µs-

level requests from multiple sockets (fan-in), the queuing on the server side will account

for a significant proportion of the client end-to-end latency, given that the service time and

the RTT combined account for a few µs. Latency-critical RPCs, such as key-value stores,

usually depend on short requests and responses of a few bytes [14]. So, an in-memory, latency-

sensitive RPC server will violate a strict SLO after queuing only a few dozens of short messages,

which collectively require only a tiny fraction of the server’s memory.

This chapter suggests to revisit the notion of flow-control specifically for latency-sensitive, µs-

scale, kernel-bypassed RPC services on top of TCP. According to our proposal, the destination

signals its availability back to the source in an application-independent manner, as with

TCP’s standard flow control. Unlike the standard approach, though, the signal is based on

the expected wait and service times of the server and takes into consideration the specific

application-level tail-latency SLOs (rather than available memory).

Figure 8.1 – Replicated RPC experiment setup

Our flow-control mechanism uses a token

bucket per connection to control the incom-

ing request rate and maintain it at a level so

that the application SLOs are not violated.

The clients self-pace their requests based on

available tokens. The server controls the size

and the fill-rate of the bucket based on (a)

the trailing estimate of the service time dis-

tribution of RPCs, (b) the SLO, and (c) the

number of connections.

We implement a proof-of-concept TCP stack with a latency-aware flow control mechanism by

simply re-purposing the TCP sliding window. The new mechanism requires no changes to the

TCP header format or additional messages. Our implementation on top of Intel’s DPDK [88] is

suitable to evaluate the effectiveness of the approach for µs-scale tasks. Our evaluation of the

mechanism in a series of synthetic microbenchmarks with different service time distributions

shows that it can accurately identify the load that will violate the latency SLO and maintain

the throughput at that level. Moreover, we show the benefits of using this mechanism in cases

of replicated services in order to avoid overloaded servers.

8.2 Motivation and Background

In a latency-aware flow control mechanism, the two ends, client and server, communicate, so

that the client adjusts their offered load after the server’s directives, based on how the server
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performs and the agreed SLO. In a scenario with replicated RPC-servers, this mechanism

can be used to dynamically adjust the incoming load to the servers, so that the application

tail-latency SLOs are not violated. Figure 8.1 provides a motivating example that applies the

end-to-end argument for replicated RPC services: 8K clients are split into two groups, where

the first group can interchangeably select between server 1 (S1) and server 2 (S2), but the

second group (for some reason) can only use S2. The relative arrival rate of requests from

the two groups is unknown and varying, and the service time to process each request is also

unknown. By incorporating tail-latency awareness into flow control, each client should be

able to independently determine when and where to send requests so that the SLO is never

violated.

8.2.1 Existing TCP Flow Control

TCP, as a connection-oriented transport protocol, implements flow control per connection.

The flow control mechanism depends on the size of the available receive socket buffer com-

municated between the two endpoints with every packet exchanged. The sender uses this

information in conjunction with the current congestion window size to decide how many

bytes to send, and sends the maximum amount allowed.

From an implementation perspective, flow control is implemented via a 16-bit header field,

with window-scale option exchanged during the 3-way handshake [165]. On each endpoint

the size of the receive buffer can be configured per connection during runtime through a

setsockopt() call. However, it can not be configured to less than 4kB. A server with a high

client count (high fan-in) must therefore accept potentially multiple RPCs from each client,

before the existing flow control starts throttling each client independently.

Figure 8.2a summarises the existing TCP flow control mechanism. It shows a connection

between a server and a client. The server also has second connection to another client. There

are buffers on both ends of the connection that are partially occupied. TCP’s existing flow

control mechanism signals back the available per connection buffer space (B) as part of the

packets exchanged.

8.2.2 TCP Flow Control in KBNets

Kernel-bypass networking introduces additional issues related to the implied semantics of

flow-control. TCP’s flow control accounts for the bytes processed by the TCP stack but not

processed by the application. Thus, it assumes certain asynchrony between network and

application processing. This assumption is invalid for kernel-bypass implementations with a

symmetric, run-to-completion design inspired by middlebox dataplanes[34, 290]. Because of

the tight coupling of network and application processing, there are no buffered data between

the two stages. Thus, the semantics of TCP’s flow control become vague. It appears as if

receiver buffers are never filled up, despite incoming packets being queued or dropped before
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(a) TCP Flow Control
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(b) Latency-Aware Flow Control

Figure 8.2 – One-way Flow Control FeedBack Loop. Ci indicates a connection, dark grey
indicates occupied buffer space, light grey indicates the sliding window, B is the available
receive buffer space.

TCP and application processing. The alternative approach dedicates threads to network

processing, other threads to application processing, and the two groups communicate over

interprocess communication, e.g., shared memory [167]. Here, the TCP flow control semantics

remain unchanged.

8.3 Design

Our goal is to reduce and control buffering on the path of an RPC on top of TCP. To do so, we

design a latency-aware flow control mechanism for TCP, specifically targeting latency-critical

RPC services.

Figure 8.2b summarises the proposed design. On the RPC-client side, buffering is limited to

the sliding window, which ensures that requests can be sent without delay to the server. On

the server side, we change the semantics of the flow control signal to take into consideration

the total amount of connections on the server, and the application SLOs and service time. The

flow-control logic on the server should be able to predict the overall incoming load that will

violate the latency SLO and maintain throughput below that level across all connections. We

set the following design requirements: (a) There should not be extra messages specifically for

flow control. (b) The TCP header format should remain intact. (c) The mechanism should be

agnostic to the service time distribution.

Predicting the SLO-violating load: Since we want to leverage flow control, a throughput-

oriented mechanism, to control the end-to-end request latency, we need to understand

and approximate the correlation between the incoming rate of requests and the end-to-end

latency of each request. To do so, we use some basic queueing theory. Although TCP is a

connection-oriented transport protocol, we focus on RPC services and abstract the basic

system functionality. Thus, a system can be described by its service time distribution, the

incoming distribution of requests, and the number of workers and queues. We use Kendall’s

notation to describe queuing models, where in the following expression A/S/n, A is the inter-

arrival distribution, S is the service time distribution, and n is the number of workers. The

scheduling policy implied is first-come-first-served (FCFS). The end-to-end request latency
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is the sum of the propagation delay, the wait time in the queue, and the service time. The

propagation delay depends on the request size and the network characteristics. The service

time distribution depends on the application. Thus, we focus on how to control the wait time

and provide wait time SLOs (WSLOs), namely an upper limit on the time each request might

wait to be served.

According to queuing theory, the average wait time in an M/G/1 system can be expressed in a

closed form that depends on the system load, and the average and standard deviation of the

service time. This implies that in any system with a Poisson arrival distribution and a single

worker, we can control the average wait time by controlling the system load, independently of

the service time distribution. Equation 8.1 expresses the average wait time (Tw ), as a function

of the system load (ρ), and the service time standard deviation (σTs ) and average (Ts) [214].

Tw = 1/2
ρTs

1−ρ
[1+ (

σTs

Ts
)2] (8.1)

SLOs, though, are expressed at some percentile. Since there is no closed form that expresses

the wait time percentiles, we will use the central limit theorem for heavy traffic queueing

systems [194] to approximate them. According to that, in any G/G/N queuing system under

heavy traffic load, the wait time distribution could be approximated by an exponential distri-

bution. Based on that we can approximate any percentile of the wait time distribution, since

we know the distribution to be exponential and its average from Equation 8.1. Vice versa, we

can set an upper limit in the wait time for a certain percentile, and predict the system load

that will violate this WSLO. To do so, first we need to estimate the average wait time T wt ar g et

at the SLO. Equation 8.2 computes the average of an exponential distribution whose value

at the p-percentile is T wsl o . β is the scale parameter of the exponential distribution. If we

substitute T w with T wt ar g et in Equation 8.1, and solve for ρ, we get the load that will violate

the WSLO. For example, for a fixed service time distribution (σTs = 0) with Ts = 10, and a 99-th

percentile WSLO of 100(T wsl o = 100 and p = 0.99), we predict that the WSLO will be violated

when ρ = 0.81

Pr [X ≤ T wsl o] = p (8.2)

1−e−
T wslo

β = p

T wt ar g et =β=− T wsl o

ln(1−p)

Flow-control Mechanism: We incorporate the above result in the existing TCP’s flow control

infrastructure. The operator should only define the WSLO as the amount of wait time allowed

109



Chapter 8. SLO-Aware TCP Flow Control

at a certain percentile and the system should adjust accordingly. Although TCP connections

are symmetric, in the following explanation we focus on the case of an RPC server (receiver)

that needs to apply flow control to the incoming requests from different clients (senders).

We first describe the functionality of the receiver running a single RPC service. For simplicity,

we consider a single-threaded RCP server and we analyse the multi-threaded case at the end

of the section. The receiver calculates the maximum allowed incoming rate according to the

WSLO, based on the formulas in Section 8.3, and prevents the clients from sending faster than

this rate. To estimate the average and standard deviation of the service time, every receiver

maintains a global moving average of the application service time per request. Moreover, to

avoid unnecessary client throttling, every receiver maintains a moving average of the request

inter-arrival time across all connections, and throttles only when the overall load is close to

the maximum allowed one.

The throttling mechanism depends on a per-connection token bucket algorithm controlled by

the receiver. Every token corresponds to a request. If the incoming rate is lower than a certain

percentage of the maximum allowed load, the receiver allocates a fixed number of tokens

per connection. For our experiments we set the threshold at 80% of the maximum allowed

load. After that threshold throttling is necessary. The receiver distributes the maximum

allowed load across all connections. Load distribution can consider any connection priority

scheme depending on the application logic. The receiver translates the per connection load

to a number of tokens per connection that periodically replenishes, and communicates the

amount of available tokens to the receiver through the TCP header. If there are no tokens

available, the sender should remain silent till the new replenishment. To do so without the

need of extra messages, the receiver notifies the sender about the duration it should remain

silent, again through the TCP header.

Unlike the existing TCP semantics that depend on the socket API with intermediate buffering

on the send path, we assume a zero-sized send buffer other than the sliding window. If there is

a request to be sent, the sender immediately sends it as long as there are available tokens (one

token per request). If not the send fails. Thus, the application can decide whether it should

drop the request, buffer it in the application space and wait, or try using another connection,

if any. Compared to the existing TCP implementation, sends will fail more often. A failed

send, though, now implies that if this request was actually send, it would probably be an SLO

violation. The sender can send again either after a token replenishment, or at the end of the

idle period as defined by the receiver.

A multi-threaded server would operate on a similar rational. We assume that every thread

serves incoming requests independently from the others, and there is a static mapping of

connections to threads. Every thread runs a run-to-completion loop. This is a popular design

adopted by latency critical applications, such as NGINX [266] and memcached [250], and

operating systems, such as IX [34]. In this design, every thread maintains its own moving

averages for service time and inter-arrival distribution that correspond to the connections it is
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responsible for, and implements flow control based on the load it individually receives.

Assumptions and Limitations: The use of closed forms in the above design depends on the

two following assumptions: (1) the RPC inter-arrival distribution is exponential (Poisson

process); (2) the system is modelled as M/G/1, namely each core operates as a standalone

entity and there is no connection sharing across cores. If either of the two assumptions is

violated, we can still use heuristics to correlate the incoming load with the queueing delay as

part of a training phase, and then use the same mechanism to keep the incoming load below

the threshold that emerged after the training phase.

Finally, note that our latency-aware flow control logic is integrated within TCP without using

any extra packets, but is in fact independent of the actual transport used. For example, it

could trivially be implemented on top of RDMA by using either extra control messages from

the server back to the clients, or by having the clients read the load from the server using

one-sided remote read operations.

8.4 Implementation

We implemented the above design in a userspace TCP/IP stack and used it in a sample RPC

client and server that are built on top of Intel’s DPDK [88]. The TCP/IP stack does not make any

assumption about the kernel-bypass paradigm, namely, how to split network and application

processing across threads, and can be used both in a symmetric and an asymmetric setup. We

built the client and server applications after the symmetric paradigm, where every thread runs

both network and application processing.

Since we specifically target latency-critical RPC services, we didn’t expose a POSIX-like API

for our proof of concept TCP stack. Instead, we implemented an event-based API similar to

IX [34]. In this API, the application has direct access to the packets received. Whenever there is

an incoming packet, the application gets notified and receives a pointer and the length of the

received payload. Similarly, whenever the application wants to send a packet, writes directly

to the mbuf to avoid extra copies. Before sending, every sender explicitly asks for a new mbuf
to put the data to be sent at the right offset. Finally, we implemented two extra function calls

to collect the per RPC application processing time. The application calls these two functions

at the beginning and end of processing each individual RPC, equivalently.

We implemented the proposed flow-control mechanism by leveraging the existing 16-bit

receive window without introducing any extra messages or changing the TCP header. Unlike

the existing semantics though, where this field carries a number of bytes, we need to overload

it with dual semantics, since it can represent either a number of tokens or the duration

of idle time. We use the most significant of the 16 bits as a mode switch. If not set, the

lower 15 bits encode the number of available tokens. If set, they carry the number of µs for

which this particular connection should remain idle. By configuring the token replenishment
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Figure 8.3 – 99th percentile tail latency versus throughput for the three service time distri-
butions with 10µs mean service time and the two flow control mechanisms, TCP and the
proposed latency-aware (LA-fc).
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Figure 8.4 – Drop rate as a function of the offered throughput in the case of LA-fc for the 3
service time distributions.

rate equivalently, 15 bits are enough to carry the available tokens per connection. In our

experiments we replenished each connection’s tokens every 500 µs. For the idle time, we

assume that no connection should remain idle for more than 32 ms, which is approximately

the maximum duration in µs encoded in 15 bits. If for any reason, the 15 bits are not enough,

we can employ the existing window scaling mechanism.

We didn’t implement any congestion control in our proof-of-concept TCP stack, since our

experiments are application-throttled. Existing window-based congestion control schemes

are not effective for this particular type of workload consisting of very small messages [14]

that fit in a single packet, across a large number of connections, in an environment with µs

RTTs. Congestion control for such workloads is an open research problem [59, 252, 383, 43]

with recent research proposals [263] suggesting a generic congestion control agent that can be

used in kernel-bypass networking stacks. Such an approach is a good fit for our networking

stack, but we leave this for future work.
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8.5 Evaluation

To evaluate our design we implemented a synthetic RPC service based on our experimental

TCP stack. We use fixed-size requests and responses of 8 bytes. Each request encodes the

amount of processing time required by the server. Once the server receives the request, spins

for the amount of time specified and echoes the received value back. This way we can emulate

any service time distribution and evaluate whether our system can adjust accordingly.

Our experimental setup consists of a cluster of 4 client and 2 server machines connected by

a Quanta/Cumulus 48x10GbE switch with a Broadcom Trident+ ASIC. The client machines

are Xeon E5-2637 @ 3.5 GHz with 8 cores (16 hyperthreads), and the server machines are

Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyperthreads). All machines are configured with

Intel x520 10GbE NICs (82599EB chipset). We connect the clients and the server to the switch

through a single NIC port each. On both clients and servers we use only the one NUMA node.

We run two types of experiments. In the first type we emulate multiple independent clients

having a single connection to the RPC server and we show how the system can identify the

load that will violate WSLO, and maintain the incoming request rate lower than that level. In

the second type of experiment, we show how this mechanism can be used in a replicated RPC

service, so that clients avoid overloaded replicas, and thus achieving better tail-latency.

Single-node RPC service: In this experiment we use 4 client machines and 1 server machine.

Each client machine opens 1024 connections spread across 8 threads. Every client thread

generates requests with a Poisson arrival distribution, randomly chooses one of the available

connections, and sends the request to the server. This workload is equivalent to 4096 indepen-

dent clients generating requests with a Poisson arrival against the RPC server. If flow control

allows it, the client sends the request to the server. Otherwise, the request is dropped. Note,

that this is an extreme case that will help us evaluate the maximum throughput loss because

of the new flow control mechanism. In a more realistic scenario, the client could decide to

wait for a certain amount of time for the connection to become available before dropping the

request depending on the application SLOs.

We use three different service time distributions with the same average of 10µs, but different

dispersion. We consider a fixed, an exponential and a bimodal distribution where 90% of the

requests require 5 µs of processing time and the rest 10% requires 55 µs. We run the client

and the server both with the standard TCP flow control mechanism and with the proposed

latency-aware flow control mechanism, and we set a WSLO of 100µs at the 99-th percentile.

Figure 8.3 shows the 99-th percentile end-to-end latency in µs measured at the client as a

function of the achieved throughput in million requests per seconds for the two flow control

mechanisms, TCP and latency-aware. The server runs on 16 cores, so with an average service

time of 10µs, the theoretically maximum possible throughput is 1.6 million requests per

second. We limit the y-axis at 300 µs. The red dashed line is the WSLO defined as 100 µs above
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Figure 8.5 – GroupA (gA) throughput against server1 (s1) and server2 (s2), and 99th percentile
tail latency for the two flow control mchanisms, TCP and the proposed latency-aware (LA-fc)

the unloaded latency. Firstly, we observe that in the case of TCP flow control, latency can

increase beyond the SLO. TCP is agnostic to the application SLO and and there are multiple

clients with outstanding requests. In the case of latency-aware flow control, the system

manages to throttle the incoming rate according to the WSLO. Moreover, we can see that the

maximum allowed load changes according to the service time distribution. This load increases

as the service time dispersion decreases.

In this experiment we traded the drop rate for better tail-latency, since clients instantly drop

their request if the connection is not available. Figure 8.4 shows the drop rate as a function of

the offered request rate for the same three distributions of service time. In this plot, it becomes

obvious that our mechanism can decide when to start throttling based on the different service

times. Clients start dropping requests at different request rates across the three service time

distributions. As expected, as the service time dispersion increases, client start dropping

requests earlier.

Multi-node RPC service: This experiment addresses the motivating example of Figure 8.1

by showing how the mechanism can be used by clients of a replicated RPC service to avoid

the overloaded replicas. We assume a replicated RPC service across two servers where the

two servers, S1 and S1, can be used interchangeably. We split the client machines into two

groups. GroupA emulates 4096 independent clients that have one connection to each server

and generate requests with a Poisson arrival (λA). According to the client logic, each client

randomly chooses between the two connections. If the chosen connection can be immediately

used for sending, they send their request. Otherwise they try their other connection. If this one

is available, they use this to send the request, else they drop it. GroupA generates a constant

load of 800 kQPS with a 10-µs exponential service time against the two servers. The second

group of clients, groupB, again consists of 4096 independent clients but they can only use S2.

GroupB clients generate a constant load of 800 kQPS with a 10-µs exponential service time

starting at t0 = 20 for 10 seconds and then they stop. We measure and plot the throughput and

latency achieved by groupA for the two flow control mechanisms, TCP and latency-aware.

Figure 8.5a shows the achieved throughput for groupA, and how it is distributed across the

two servers. In the case of TCP, groupA selects both S1 and S2 with the same likelihood,
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independently of groupB’s behaviour. However, in the case of the latency-aware flow control

mechanism, groupA starts showing preference to S1 at t0 = 20. After groupB starts loading, S2

operates beyond its WLSO, so it starts throttling. As a result groupA’s connection to S2 can not

support the same load as before. Thus, S1 is chosen more often. GroupA’s request rate to S1

increases, and the rate to S2 decreases, while the aggregate throughput remains the same. The

drop rate for groupA is close to zero. Regarding groupB throughput, although not shown in

the graph, it is 800 kQPS in the case of TCP, while it drops to around 660 kQPS in the case of

latency-aware flow control. This is in accordance with the results in Figure 8.3b for S2, since 1

MQPS (330 kQPS from groupA and 660 kQPS from groupB)is approximately the maximum

allowed load for the exponential distribution with a WSLO of 100 µs. We could avoid dropping

groupB’s throughput by choosing a different load allocation policy in S2 that favours groupB

connections.

Figure 8.5b shows the end-to-end tail-latency as it is measured by the groupA clients, by

choosing either S1 or S2 according to the client logic. The red dashed line is the WSLO for the

exponential distribution as shown in Figure 8.3b. As expected, groupA tail-latency increases

when groupB starts loading server2. In the case of TCP, though, the WSLO is violated since S2

is still selected with the same likelihood. As a result, S2 serves approximately 1.2 MQPS (800

kQPS from groupB and 400 kQPS from groupA) resulting in a 99-th percentile latency around

230 µs. This result is in accordance with the TCP result in Figure 8.3b. The latency-aware flow

control mechanism manages to adjust the S2 throughput so that the WSLO is not violated,

given that groupA’s 99-th percentile latency is kept below 160 µs.

8.6 Related Work

Several kernel-bypass systems implement TCP/IP stacks [167, 34, 94, 290, 239, 273, 277, 316,

89, 227], and remain fully compatible with the exact TCP semantics. Similarly to TCP, protocols

such as QUIC [211] and HTTP2 [35], also, implement flow control mechanisms based on buffer

occupancy, and remain agnostic to latency SLOs.

Token bucket algorithms are the canonical way of implementing flow control in any kind

of communication in fields such as wide-area networks [338], networks-on-chip [168], stor-

age [332, 368, 382, 196], and network congestion control [59].

There are several research proposals on changing the semantics or implementation of TCP,

according to application needs, such as sharing the congestion window [161] for faster conver-

gence, advertising the send buffer occupancy for better load balancing and network utiliza-

tion [5], or adaptively changing the send buffer size for streaming [133].

Finally, there a several research proposals dealing with selecting servers in a replicated service

and reducing tail-latency because of strugglers [80, 326, 145, 253, 369, 10]
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8.7 Chapter Summary

We presented a latency-aware flow control mechanism specifically for latency-critical RPCs

that use TCP. We introduced the notion of wait time SLO and we showed how our flow control

mechanism prevents applications from violating their WSLOs. Finally, we showed how this

mechanism can benefit clients of replicated services to avoid overloaded replicas, and thus

reduce the end-to-end tail-latency.
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9 Request Response Pair Protocol
(R2P2)

9.1 Introduction

Web-scale online data-intensive applications such as search, e-commerce, and social appli-

cations rely on the scale-out architectures of modern, warehouse-scale datacenters to meet

service-level objectives (SLO) [29, 80]. In such deployments, a single application can comprise

hundreds of software components, deployed on thousands of servers organized in multi-

ple tiers and connected by commodity Ethernet switches. The typical pattern for web-scale

applications distributes the critical data (e.g., the social graph) in the memory of hundreds

of data services, such as memory-resident transactional databases [337, 325, 358, 122, 361],

NoSQL databases [304, 254], key-value stores [90, 229, 250, 376, 271], or specialized graph

stores [45]. Consequently, online data-intensive (OLDI) applications are deployed as 2-tier

applications with root servers handling end-user queries and leaf servers holding replicated,

sharded data [244, 30]. This leads to a high fan-in, high fan-out connection graph between

the tiers of an application that internally communicates using RPCs [38]. Each client must (a)

fan-out an RPC to the different shards and (b) within each shard, choose a server from among

the replica set. Moreover, each individual task can require from only few microseconds (µs) of

user-level execution time for simple key-value requests [229] to a handful of milliseconds for

search applications [148].

To communicate between the tiers, applications most commonly layer RPCs on top of TCP,

either through RPC frameworks (e.g., gRPC [139] and Thrift [333]) or through application-

specific protocols (e.g., Memcached [250]). This leads to a mismatch between TCP, which is

a byte-oriented, streaming transport protocol, and message-oriented RPCs. This mismatch

introduces several challenges regarding RPC load balancing, RPC flow control, etc..

We propose a new transport protocol for datacenter RPCS called Request-Response Pair Proto-

col (R2P2). R2P2 exposes RPCs as first-class citizens of the datacenter not only at the client

and server endpoints, but also in the network. Endpoints have direct control over RPC se-

mantics, do not suffer from head-of-line blocking because of connection multiplexing, and

can limit buffering at the endpoints. The design also enables RPC-level processing capabili-
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Figure 9.1 – The R2P2 protocol for a request-reply exchange. Each message is carried within
a UDP packet. Single arrows represent a single packet whereas double arrows represent a
stream of datagrams.

ties for in-network software or hardware middleboxes, including scheduling, load-balancing,

straggler-mitigation, consensus and in-network aggregation. R2P2 breaks the point-to-point

RPC communication assumptions, and separates RPC policy enforcement from message

streaming.

In this chapter we describe the design and implementation of the R2P2 protocol, while in the

next chapters(Chapter 10, Chapter 11, Chapter 12) we see how we can use the new protocol

to implement different RPC policies in the network. The R2P2 source code is available at

https://github.com/epfl-dcsl/r2p2.

9.2 R2P2: A transport protocol for RPCs

We propose R2P2 (Request-Response Pair Protocol), a UDP-based transport protocol specif-

ically targeting latency-critical RPCs within a distributed infrastructure, i.e., a datacenter.

R2P2 exposes the RPC abstraction to the network, thus allowing for efficient in-network

request-level load balancing.

R2P2 is a connectionless transport protocol capable of supporting higher-level protocols

such as HTTP without protocol-level modifications. Unlike traditional multiplexing of the

RPC onto a reliable byte-oriented connection, R2P2 is an inherently request/reply-oriented

protocol that maintains no state across requests. The R2P2 request-response pair is initiated

by the client and is uniquely identified by a triplet of < sr c_I P, sr c_por t ,r eq_i d >. This

design choice decouples the request destination (set by the client) from the actual server that

will reply, thus breaking the point-to-point RPC communication semantics and enabling the

implementation of any request-level load balancing policy.

Figure 9.1 describes the interactions and the packets exchanged in sending and receiving an

RPC within a distributed infrastructure that uses a request router to load balance requests
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across the servers. We illustrate the general case of a multi-packet request and a multi-packet

response.

1. A REQ0 message opens the RPC interaction, uniquely defined by the combination of

source IP, UDP port, and an RPC sequence number. The datagram may contain the

beginning of the RPC request itself.

2. The router identifies a suitable target server and directs the message to it. If there is no

available server, requests can temporarily queue up in the router.

3. If the RPC request exceeds the size of data in the REQ0 payload, then the server uses a

REQready message to inform the client that it has been selected and that it will process

the request.

4. Following (3), the client directly sends the remainder of the request as REQn messages.

5. The server replies directly to the client with a stream of REPLY messages.

6. The servers send R2P2-FEEDBACK messages to the router to signal idleness, availability,

or health, depending on the load balancing policies.

We note a few obvious consequences and benefits of the design: (i) Given that an RPC is

identified by the triplet, responses can arrive from a different machine than the original

destination. Responses are sent directly to the client, bypassing the router; (ii) there is no

head-of-line blocking resulting from multiplexing RPCs on a socket, since there are no sockets

and each request-response pair is treated independently; (iii) there are no ordering guarantees

across RPCs; (iv) the protocol is suited for both short and long RPCs. By avoiding the router for

REQn message and replies, the router capacity is only limited by its hardware packet processing

rate, not by the overall amount of size of the messages.

Unlike protocols that blindly provide reliable message delivery, R2P2 exposes failures and

delays to the application. R2P2 follows the end-to-end argument in systems design [311]. A

client application initiates a request-response pair and determines the failure policy of each

RPC according to its specific needs and SLOs. By propagating failures to the application,

the developer is free to choose between at-least-once and at-most-once semantics by re-

issuing the same request that failed. Unlike TCP, failures affect only the RPC in question,

not other requests. This is useful in cases with fan-out replicated requests, where R2P2 can

provide system support for the implementation of tail-mitigation techniques, such as hedged

requests [80].

While novel in the context of µs-scale, in-memory computing, the connection “pair” is similar

in spirit to the “exchange” that is the core of the SCSI/Fibre Channel protocol (FCP [111]). For

example, a single-packet-request-multi-packet-response RPC over R2P2 would be similar

to SCSI read within a single fibre channel exchange. Equivalently, an R2P2 multi-packet-

request-single-packet-response would be similar to a SCSI write.
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Figure 9.2 – R2P2 Header Format

Message Description
REQUEST A message carrying an RPC request
REPLY A message carrying an RPC reply
REQRDY Sent by the server to the client to ack the REQ0 of a multi-packet

request
R2P2-FEEDBACK Sent by the server to the router
DROP Sent by the router or the server to a client to explicitly drop a request
SACK Sent by the client or the server to ask for missing packets

Table 9.1 – The R2P2 message types

9.2.1 Transport considerations

Figure 9.2 describes a proposed R2P2 header, while Table 9.1 includes the different R2P2

messages. All R2P2 messages are UDP datagrams. R2P2 supports a 16-bit request id whose

scope is local to the (src_ip, src_port) pair. As such, each client ((src_ip, src_port)
pair) can have up to 65536 outstanding RPCs, well beyond any practical limitations. The R2P2

header also includes a 16-bit packet id meaning that each R2P2 message can consist of up

to 65536 MTU-sized packets. The above two fields can be extended, if necessary, without

changing the protocol semantics. Currently R2P2 uses two flags (F, L) to denote the first and

last packet of a request.

Finally, the R2P2 header contains a Policy field, which allows client applications to directly

specify certain policies to the router, or any other intermediate middlebox, for this specific RPC.

Currently, the only implemented policies are unrestricted, which allows the router to direct

REQ0 packet to any worker in the set, and sticky, which forces the router to direct the message

to the master worker among the set. This mechanism is central to our implementation of a tail-

tolerant Redis, based on a master/slave architecture. It is used to direct writes to the master,

but balances reads according to the load balancing policy. Additional policies, e.g., session-

stickiness, or policies implementing different consistency models, can be implemented in

R2P2 middleboxes and will be identified by this header field, thus showcasing the benefits of

R2P2’s in-network RPC awareness.

Deployment assumptions: We assume that R2P2 is deployed within a datacenter, i.e., the

clients, router and servers are connected by a high-bandwidth, low-latency Ethernet fabric. We

make no assumptions about the core network that can depend either on ECMP flow hashing or
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packet spraying [255, 125, 143]. R2P2 tolerates packet reordering within the same message and

reconstructs the message at the end-point. By design, though, there is no ordering guarantee

across RPCs, even if they are sent by the same client.

Timer management: Given that the assumed deployment model allows for packet reordering,

packet loss detection depends on timers. There is one retransmission timeout RTO timer

used for multi-packet requests or responses. It is in the order of milliseconds and triggers the

transmission of a SACK message request for the missing packets. Servers garbage collect RPCs

with failed multi-packet requests or multi-packet replies after a few RTOs. On the client side

there is a timer set by the client application when sending the request. This timer is disarmed

when the whole reply is received, and can be as aggressive as the application SLO. Based on

this timer applications can implement tail-mitigation techniques [80] or early drop requests

based on their importance.

Congestion management: R2P2 focuses on in-network policy enforcement for RPCs; we do

not make any explicit contribution in congestion control. Instead, R2P2 can utilize existing

solutions for congestion control, including (1) Homa [255], whose message semantics easily

map to R2P2’s request-response semantics and (2) ECN-based schemes such as DCTCP [7]

and DCQCN [383]. Congestion control will be necessary only for multi-packet requests and

replies (REQN and REPLY), and is independent of the interactions described in Fig 9.1. We

explored the possibility of an R2P2-specific congestion control scheme that takes advantage

of the asymmetry between requests and responses in the context of a master thesis [297]. A

system implementation and evaluation of the proposed scheme is left for future work.

Flow Control: R2P2 implements two levels of flow control, one between the client and the

middlebox and one between the middlebox and the servers. R2P2 middleboxes can drop

individual requests, either randomly or based on certain priority policies, if they become

congested, without affecting other requests, thus implementing the first level of flow control.

Based on the functionality and the policy, the middlebox is in charge of implementing the

second level of flow control to the servers. In the JBSQ case, JBSQ limits the number of

outstanding requests on each server, thus servers can not be overwhelmed.

9.2.2 API

R2P2 exposes a non-POSIX API specifically designed for RPC workloads. Making RPCs first

class citizens and exposing the request-response abstraction through the networking stack

significantly simplifies writing client-server applications. Application code that traditionally

implements the RPC logic on top of a byte stream abstraction is now part of the R2P2 layer of

the networking stack.

Table 9.2 summarizes the corresponding application calls and callbacks for the client and
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Application Calls
Type Description

r2p2_poll Poll for new req/resp
r2p2_send_req Send a request
r2p2_send_response Send a response
r2p2_message_done Deallocate a message

Callbacks
Type Description

req_recv Received a new request
req_success Request was successful
req_timeout Timer expired
req_error Error condition

Table 9.2 – The r2p2-lib API

server application. The API has an asynchronous design that allows applications to easily

send and receive independent RPCs. When calling r2p2_send_req the client application sets

the timer timeout and callback functions independently for each RPC request. The client

and server applications are notified only when the entire response or request messages have

arrived through the req_success and req_recv callbacks, equivalently.

9.3 Implementation

We implement r2p2-lib as userspace Linux library on top of either UDP sockets or DPDK [88].

The library links into both client and server application code. It exposes the previously

described API and abstracts the differences between the Linux socket and the DPDK-based

implementations. The current implementation is non-blocking and rpc_poll is typically

called in a spin loop. To do so, we depend on epoll for Linux, while for DPDK we implemented

a thin ARP, IP, and UDP layer on top of DPDK’s polling mode driver, and exposed that to

r2p2-lib. Our C implementation of r2p2-lib consists of 1300 SLOC.

R2P2 does not impose any threading model. Given the callback-based design, threads in

charge of sending or receiving RPCs operate in a polling loop mode. The library supports

symmetric models, where threads are in charge of both network and application processing,

by having each thread manage and expose a distinct worker queue through a specific UDP

destination port. The DPDK implementation further manages a distinct Tx and Rx queue per

thread, and uses Flow Director [112] to steer traffic based on the UDP destination port. In

an asymmetric model, a single dispatcher thread links with r2p2-lib, and the other worker

threads are in charge of application processing only. This model exposes one worker queue

via one UDP destination port.

9.4 Related work

RPCs can be transported by different IP-based protocols including HTTP2 [35], QUIC [211],

SCTP [324], DCCP [204], or similar research approaches [119, 9, 255, 125, 143] that identify

the TCP limitations and optimize for flow-completion time. Libraries such as gRPC [139] and

Thrift [333] abstract away the underlying transport stream into request-reply pairs. Approaches

such as eRPC [179] aim at end-host system optimizations and are orthogonal to R2P2.
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R2P2 adheres and encourages the in-network compute research path by increasing the net-

work visibility to application logic and implementing in-network scheduling. Approaches

leveraging in-network compute include caching [171, 224], replicated storage [170], network

sequencing [222, 221], DNN training [312, 313], and database acceleration [217].

9.5 Chapter Summary

We revisit the requirements to support µs-scale RPCs across tiers of web-scale applications

and propose to solve the problem in the network by making RPCs true first-class citizens of

the datacenter. We design, implement and evaluate a proof-of-concept transport protocol

developed specifically for µs-scale RPCs that exposes the RPC abstraction to the network

and at the endpoints. In the next chapters we we showcase the benefits of the new design by

implementing mechanisms for tail-tolerant and fault-tolerant µs-scale RPCs in the network.
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10 In-network RPC Load Balancing with
JBSQ

10.1 Introduction

In Section 2.5 we described how to distribute request load among different backend-servers. In

one approach, clients communicate with the servers through a L4-load balancer. This, though,

leads load imbalance and head-of-line blocking, thus bad tail latency. Another connection-

oriented approach and similar in terms of tail-latency is to use direct connections and con-

nection pools. In this scheme, clients randomly select a connection from the connection pool.

Both of these approaches are equivalent to random load balancing. A theoretically better

approach uses a L7 load balancer or reverse proxy [108, 4, 65] to select among replicas on a per

request basis, e.g., using a Round-Robin or Join-Shortest-Queue (JSQ) algorithm. Such load

balancing policies improve upon random selection, but they do not eliminate head-of-line

blocking, while the load balancer can become a scalability bottleneck.

As a first use case for R2P2, we show how to use our network protocol to implement efficient,

scalable, tail-tolerant, high-throughput routing of RPCs by introducing Join-Bounded-Shortest-

Queue (JBSQ(n)), a new RPC scheduling policy that splits queues between the router and the

servers, allowing only a bounded number of outstanding requests per server, which signif-

icantly improves tail-latency. Our design includes an RPC router that can be implemented

efficiently either in software or within a programmable switch ASIC such as P4 [39].

In this chapter we describe the following:

• The design of JBSQ(n), a split-queue scheduling policy that utilizes a single in-network

queue and bounded server queues and improves tail-latency even for µs-scale tasks.

• The implementation of the R2P2 router on a software middlebox that adds only 5µs to

end-to-end unloaded latency and is capable of load balancing incoming RPCs at line

rate using only 2 cores.

• The implementation of the R2P2 router within a P4-programmable Tofino dataplane

ASIC, which eliminates the I/O bottlenecks of a software middlebox and reduces latency
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overhead to 1µs.

Our evaluation, using a range of microbenchmarks, shows that the protocol is suitable for

µs-scale RPCs and that its tail latency outperforms both random selection and classic HTTP
reverse proxies. The P4-based implementation of R2P2 on a Tofino ASIC adds less than 1µs of

latency whereas the software middlebox implementation adds 5µs latency and requires only

two CPU cores to route RPCs at 10 Gbps line-rate. R2P2 improves the tail latency of web index

searching on a cluster of 16 workers operating at 50% of capacity by 5.7× over NGINX. R2P2

improves the throughput of the Redis key-value store on a 4-node cluster with master/slave

replication for a tail-latency service-level objective of 200µs by more than 4.8× vs. vanilla

Redis.

10.2 Queueing Analysis

We approach the problem of RPC load balancing from a theoretical point of view by abstracting

away system aspects using basic queuing theory. The request-level load balancing policies

described in Section 2.5 can be split in two main categories: push-based and pull-based

policies. In push-based policies there is no queue at the load balancer and for every incoming

request the load balancer picks a destination and forwards the request. In pull-based policies

all incoming requests are queued up in the load balancer before a server asks for a new request.

We show the benefits of rich request-level load balancing policies over random-selection

among distributed queues (which is equivalent to L4 load balancing) in improving tail-latency

through discrete event simulations.

Fortunately, the theoretical answers are clear: single-queue, multi-worker models (i.e., M/G/k
according to Kendall’s notation) perform better than distributed multi-queue models (i.e.,

k×M/G/1, with one queue per worker) because they are work-conserving and guarantee that

requests are processed in order [214, 366].

Between those two extremes, there are other models that improve upon random selection

and are practically implementable through L7 load balancing. Power-of-two [253] (PL(2)),

or similar schemes, are still in the realm of randomized load balancing, but perform better

than a blind random selection. JSQ performs close to a single queue model for low-variability

service times [232].

Figure 10.1 quantifies the tail-latency benefit, at the 99th percentile, for these queuing models

observed in a discrete event simulation. We evaluate a configuration with a Poisson arrival

process, k = 16 workers, and three well-known distributions with the same service time S̄ = 1.

These distributions are: deterministic, exponential and bimodal-1 (where 90% of requests

execute in .5 and 10% in 5.5 units) [232].

From the simulation results, we conclude that: (1) there is a dramatic gap in performance

between the random, multi-queue model and the single-queue approach, which is optimal
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Figure 10.1 – Simulation results for the 99th percentile latency across 3 service time distribu-
tions with S = 1

among FCFS queuing systems. (There is no universally optimal scheduling strategy for tail-

latency [366].) (2) PL(2) improves upon random selection, but these benefits diminish as

service time variability increases. JSQ performs close to the optimal for low service time

variability.

10.3 The Join-Bounded-Shortest-Queue Policy

We define Join-Bounded-Shortest-Queue JBSQ(n) as a policy that can achieve some of the

benefits of pull-based policies and reduce head of line blocking without the need for such

high coupling. JBSQ splits queues between a centralized component with an unbounded

queue and distributed bounded queues of maximum depth n for each worker (including

the task currently processed). Once a new request arrives at the load balancer, if there are

available slots in some of the server queues, there are less than n outstanding requests, the

load balancer picks the queue with the least requests and sends the new request. If all queues

are full, the request is queued in a central queue in the load balancer waiting for a queue

slot to open. So, JBSQ reduces the chances of a short request being blocked behind a long

request since there can only be n-1 delayed requests per queue. Also, JBSQ, unlike the other

policies, it can be parametrized according to the application needs, the communication delays

in the deployment environment, and the application service time. The single-queue model is

equivalent to JBSQ(1) whereas JSQ is approximately equivalent to JBSQ(∞).

In Figure 10.1 we also plot JBSQ(2). We observe that JBSQ(2), although it deviates from the

single queue model, outperforms JSQ under high load as the service time variability increases.

As we increase n the JBSQ(n) curve deviates more from single queue.

These results are purely theoretical and in particular assume perfect global knowledge by the

scheduler or load balancer. This global view would be the result of communication between

the workers and the load balancer in a real deployment. Any practical system must consider

I/O bottlenecks and additional scheduling delays because of this communication. In this

chapter, we make the claim that JBSQ(n) can be implemented in a practical system and can
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deliver maximal throughput with small values of n even for µs-scale tasks, thus minimizing

tail latency and head-of-line blocking.

10.4 JBSQ router design considerations

R2P2 exposes the request-response abstraction to the network as a first-class citizen. It is

expected that a software or hardware middlebox will manipulate client requests to implement

a certain policy, e.g., scheduling, load balancing, admission control, or even application logic,

e.g., routing requests to the right server in a distributed hash table. In this section, we discuss

the design choices regarding an R2P2 request router implementing the JBSQ scheduling policy.

Similar ideas can be applied to other middleboxes with alternative functionality.

The choice of JBSQ: As seen in Figure 10.1 JSQ and JBSQ perform closer to the optimal single

queue model. JBSQ though offers several practical benefits over JSQ. It implements router-

servers flow control and can be implemented within a Tofino ASIC. JSQ requires finding the

minimum among a number of values, which is hard to implement in a hardware dataplane.

Also, JBSQ achieves better latency under high load and service time dispersion. That is because

JSQ uses the queue size as a proxy for queuing time, which can be misleading in the presence

of service-time dispersion.

R2P2-FEEDBACK messages: To implement the JBSQ(n) policy we leverage the R2P2-FEEDBACK
messages provided by the R2P2 specification. These messages, sent by the servers back to

the router after completing the service of a request, specify: (i) The maximum number of

outstanding RPCs the server is willing to serve (the “n” in JBSQ(n)). By sending the current

“n” in every R2P2-FEEDBACK message, servers can dynamically change the number of out-

standing requests based on the application SLOs. (ii) The number of requests this server has

served including the last request. The router uses this information to track the current number

of outstanding requests in the server’s bounded queue. This field makes the message itself

idempotent and the protocol robust to R2P2-FEEDBACK drops.

We note that this approach puts each server in charge of controlling its own lifecycle by sending

unsolicited R2P2-FEEDBACK messages, e.g., to join a load balancing group, leave it, adjust its

bounded queue size based on its idle time, or to periodically signal its idleness.

Direct client request - direct server return: R2P2 implements direct server return (DSR) [267,

147] since the replies do not go through the router. This is a widely-used technique in L4

load balancers with static policies [267]. R2P2 uses DSR while implementing request-level

load balancing. In addition, R2P2 implements direct client request, where the router handles

only the first packet of a multi-packet request, while the rest is streamed directly to the

corresponding server, thus avoiding router IO bottlenecks.
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Deployment: A software R2P2 router is deployed as a middlebox and traffic is directed to its IP

address. The hardware R2P2 router is also deployed as an IP-addressed middlebox. The same

hardware can also be a Top-of-Rack switch serving traffic to servers within the rack, following

a “rack-scale” deployment pattern. In such a pattern, the router has full visibility on the RPC

traffic to the rack and all packets go through the ToR switch. This could enable simplifications

to the packet exchange, e.g., using R2P2-FEEDBACK messages only for changing the depth of

the bounded queues; the ToR can estimate their current size by tracking the traffic.

Router high availability: The router itself is nearly stateless and a highly-available implemen-

tation of the router is relatively trivial. Upon a router failure, only soft state regarding the

routing policy is lost, including the current size of the per-worker bounded queue and the

queue of pending RPCs. Clients simply failover to the backup router using a virtual IP address

and reissue RPCs upon timeout, using the exact same mechanism used to handle a REQ0
packet loss. Servers reconstruct the relationship with the router with their R2P2-FEEDBACK
message to the new router.

Server membership: Servers behind the R2P2 router can fail and new servers can join the

load balancing group. R2P2-FEEDBACK messages implicitly confirm to the router that a server

is alive. In case of a failure, the lack of R2P2-FEEDBACK messages will prevent the router from

sending requests to the failed server, and the bounded nature of JBSQ(n) limits the number

of affected RPCs. Similarly, newly-added servers can send R2P2-FEEDBACK messages to the

router informing about their availability to serve requests.

The choice of JBSQ(n): The choice of n in JBSQ is crucial. A small n will behave closer to

a single-queue model, but will restrict throughput. The rationale behind the choice of n is

similar to the Bandwidth Delay Product. On each queue there should be enough outstanding

requests so that the server does not stay idle during the server-router communication. For

example, for a communication delay of around 15 µs and a fixed service time of 10 µs, n=3 is

enough to achieve full throughput. Shorter service times will require higher n values. High

service time dispersion and batching on the server will also require higher values than what

predicted by the heuristic. Servers can even dynamically adjust the value of n based on their

processing rate and minimal idle time between requests.

10.5 Implementation

We provide two implementations for the JBSQ policy on the R2P2 router: one based on soft-

ware R2P2 of DPDK (Subsection 10.5.1) and one using the P414 programming language [283]

to run within a Barefoot Tofino ASIC [28] (Subsection 10.5.2). We also implement other simpler

RPC-level load balancing policies that we use as a baseline in our evaluation.
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10.5.1 Router - software implementation

We implemented a Random, a Round-Robin, a JSQ and a JBSQ(n) policy on the software router.

The main implementation requirements for the router are (1) it should add the minimum

possible latency overhead, and (2) it should be able to process short REQ0 and R2P2-FEEDBACK
messages at line rate. While the router processes only those two types of packets, the order in

which it processes them matters. Specifically for JBSQ, the ideal design separates REQ0 from

R2P2-FEEDBACK messages into two distinct ingress queues and processes R2P2-FEEDBACKs

with higher priority to ensure that the server state information is up-to-date and minimize

queuing delays.

Our DPDK implementation uses two different UDP ports, one for each message type, using

Flow Director for queue separation. Given the strict priority of control messages and the focus

on scalability, we chose a multi-threaded router implementation with split roles for REQ0
threads and R2P2-FEEDBACK threads, with each thread having its own Rx and Tx queues.

JBSQ(n) requires a counter per worker queue that counts the outstanding requests. To

minimize cache-coherency traffic, the router maintains two single-writer arrays, one updated

on every REQ0 and the other on every R2P2-FEEDBACK, with one entry per worker.

The implementation of the R2P2-FEEDBACK thread is computationally very cheap and em-

barrassingly scalable. Processing REQ0 messages requires further optimizations to reduce

cache-coherency traffic, e.g., maintain the list of known idle workers, cache the current queue

sizes, etc. Our implementation relies on adaptive bounded batching [34] to amortize the cost

of PCIe I/O operations, as well as that of the cache-coherency traffic (the counters are read

once per iteration). We limit the batch size to 64 packets.

Finally, we implement a tweak to the JBSQ(n) policy with n ≥ 2: when no idle workers are

present, up to 32 packets are held back for a bounded amount of time on the optimistic

view that an R2P2-ACK message may announce the next idle worker. This optimization helps

absorb instantaneous congestion and approximate the single-queue semantics in medium

load situations.

10.5.2 P4/Tofino implementation

We built a proof-of-concept P4 implementations of R2P2 router for Tofino [28] using P414 [283].

Similar to the software implementation, the switch only processes REQ0 and R2P2-FEEDBACK
messages and leverages P4 registers to keep soft state. P4 registers are locations in the ASIC

SRAM, which can be read and updated from both the control and dataplane.

We focus our description on the implementation of JBSQ(n) for the Tofino dataplane, as

the others are trivial in comparison. It consists of 480 lines of P4 source, including header

descriptions. Unlike the software implementation that can easily buffer the outstanding REQ0
messages if there is no available server queue, high-performance pipelined architectures,
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such as Tofino, do not allow buffering in the dataplane. Thus, our P4 logic executes as part

of the ingress pipeline of the switch and relies heavily on the ability to recirculate packets

through the dataplane via a virtual port. The implementation leverages an additional header

that is added to the packet to carry metadata through the various recirculation rounds and is

removed before forwarding the packet to the target server.

The logic for REQ0 tries to find a server with ≤ i outstanding packets in round i . There is one

register instance corresponding to each server, holding the number of outstanding requests.

If a suitable server is found, the register value is increased by one, the packet destination is

changed to the address of the equivalent server, and the packet is directed to the egress port.

We start with i = 0 and we increase till i = n from JBSQ(n). When i reaches n and there is

still no available server, we keep recirculating the packet without increasing i further. As an

optimization to reduce the number of recirculations, the dataplane keeps the i for the last

forwarded request and starts from that.

To overcome the Tofino limitation of only being able to compare a limited number of registers

in one pass, we also leverage recirculation to inspect the outstanding requests of each bounded

queue in each round. Register instances that correspond to different queues are organized

in groups that can be checked in one pass. If no available queue is found in the first group,

the packet is recirculated (without increasing i) and the second group of queues is checked,

etc. When a REQ0 arrives, it is initially assigned to a group in a round-robin fashion to further

reduce the amount of recirculations.

The logic for R2P2-FEEDBACK decrements the outstanding count for the specific server based

on the packet source and consumes the packet without forwarding it.

The use of recirculation has two side-effects: (1) the order of RPCs cannot be guaranteed as

one packet may be recirculated while another one is not; (2) the atomicity of the full set of

comparisons is not guaranteed as R2P2-FEEDACK packet may be processed while an REQ0
packet is being recirculated. Non-optimal decisions may occur as the result of this race

condition.

10.6 Evaluation

To evaluate the performance and the efficacy of the R2P2 protocol, the two implementations

of the router, as well as the trade-offs in using JBSQ(n) over other routing policies, we run

a series of synthetic microbenchmarks and two real applications in a distributed setup with

multiple servers. The microbenchmarks depend on an RPC service with configurable service

time and response size. All our experiments are open-loop [315] and clients generate requests

with a Poisson inter-arrival time. We use two baselines and compare them against different

configurations for R2P2 with and without the router: (1) vanilla NGINX [269] serving as reverse

proxy for HTTP requests; and (2) ZygOS [299], a state-of-the-art work-conserving multicore

scheduler. As a load generator we use an early version of Lancet [201].
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Figure 10.2 – Achieved Goodput as a function of the response size for the JBSQ policy on
the software router managing 4 servers connected with 10GbE NICs compared to NGINX
configured as HTTP reverse proxy loadbalancing the same 4 servers using a JSQ policy.

Our experimental setup consists of cluster of 17 machines connected by a Quanta/Cumulus

48x10GbE switch with a Broadcom Trident+ ASIC. The machines are a mix of Xeon E5-2637

@ 3.5 GHz with 8 cores (16 hyperthreads), and Xeon E5-2650 @ 2.6 GHz with 16 cores (32

hyperthreads). All machines are configured with Intel x520 10GbE NICs (82599EB chipset).

To reduce latency and jitter, we configured the machine that measures latency to direct all

UDP packets to the same NIC queue via Flow Director. The Barefoot Tofino ASIC runs within a

Edgecore Wedge100BF-32X. The Edgecore is directly connected to the Quanta switch via a

40Gbps link and therefore operates as a 1-port router.

10.6.1 Router characterization

We use the synthetic RPC service to evaluate the latency overhead of the router, the maximal

throughput and the optimal request load balancing policy. We configure a setup of 4 servers

with 16 threads (64 independent workers), running the synthetic RPC service over DPDK.

Throughput: We first evaluate the sustainable throughput of the software router. We run a

synthetic RPC service with 8-byte requests and we configure the size of the response.

Figure 10.2 shows the achieved goodput as a function of the response size, and compares a

configuration with R2P2 messages handled by a JBSQ load balancing policy, with a NGINX

configured as reverse proxy for HTTP messages. For small response sizes, the router is bottle-

necked by the router’s NIC’s packets per second (PPS), or the number of outstanding requests

in each queue, n in JBSQ(n). JBSQ(3) was enough to achieve maximum throughput. As the

response size increases though, the application goodput converges to 4×10GbE, the NIC

bottleneck of the 4 servers with payloads as small as 2048. Obviously, this is made possible by

the protocol itself, which bypasses the router for all REPLY messages. Note that because R2P2

leverages both Direct Server Return and Direct Client Request, even in cases of large requests

the router would not be the bottleneck, unlike traditional L4 DSR-enabled load balancing. In

contrast, the NGINX I/O bottleneck limits goodput to the load balancer’s 10Gbps NIC.
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Figure 10.4 – Evaluation of different load balancing policies for an exponential service time
workload with S̄ = 25µs.

Latency overheads and saturation: Figure 10.3 uses a zero-cost (“echo”) RPC service with

8-byte requests and responses, to measure the 99th percentile tail latency as a function of the

load for the software middlebox and the Tofino router with the JBSQ policy. As a baseline, we

use a DIRECT configuration where clients bypass the router and send requests directly to the

servers after a random choice. The figure shows that the latency added by the router is 5µs for

the software middlebox and 1µs for the Tofino solution. The software latency is consistent with

the characteristics of one-way forwarding performance of the Intel x520 chipset using DPDK.

The hardware latency is consistent with the behavior of an ASIC solution that processes and

rewrites packet headers in the dataplane. Figure 10.3 also shows the point of saturation, which

corresponds to 7 MRPS for the software middlebox. Given that for every request forwarded the

router receives one R2P2-FEEDBACK message, the router handles more than 14M PPS, which

is the hardware limit. We were unable to characterize the maximal per-port capability of the

Tofino ASIC running the R2P2 logic beyond >8 MRPPS with tiny requests and replies, simply

for lack of available client machines. We also observe that the hardware implementation, as

expected, requires a smaller n for JBSQ(n). In the figure we show the smallest value of n that

achieved maximum throughput.

Comparison of scheduling policies: Figure 10.4 uses a synthetic S̄ = 25µs workload to eval-

uate the different request load balancing policies, implemented on the software router. We
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evaluate the following policies: DIRECT, where clients bypass the router by making a random

server selection, RANDOM where clients talk to the router and the router makes a random

selection among the servers, RR where the router selects a target server in a round-robin

manner, SW-JBSQ(n) which is the software implementation for the bounded shortest queue

with n outstanding requests, and JSQ which is the R2P2 router’s implementation of the join-

shortest-queue policy. We also compare R2P2 with using NGINX as an HTTP reverse proxy

implementing a JSQ policy, which is a vanilla, widely-used deployment for request-level load

balancing.

We make the following observations: (i) NGINX overheads prevent throughput scalability; (ii)

DIRECT and RAND configurations perform similarly for R2P2, which is the result of a random

choice (in the client or the router equivalently); (iii) RR performs better than random choice,

but worse than JBSQ, given the service time dispersion; (iv) JBSQ(n ≥ 3) achieves maximum

throughput. Given that the communication time between the server and the router is ∼ 15µs

and the exponential service time dispersion, this is on par with our analysis in § 10.4. (v) JSQ
performs similarly to JBSQ(3) for this service time.

10.6.2 Synthetic Time Microbenchmarks

Figure 10.5 evaluates JBSQ(n) performance with an aggressive S̄ = 10µs mean service time

and three different service time distributions: Fixed, Exponential and Bimodal where 10%

of the request are 10x slower than the rest [232]. We present results for both the software

and Tofino implementation, for JBSQ(1) and the optimal n choice for each configuration.

Requests and the responses are 8 bytes. We observe:

• For all experiments, all JBSQ(n) variants approximate the optimal single-queue ap-

proach (M/G/64) until the saturation point for JBSQ(1).

• Beyond the saturation point of JBSQ(1), an increase in the tail latency as the system

configuration trades off higher throughput (i.e., JBSQ(n > 1)) against the use of a

theoretically-optimal approach.

• A comparison between the software and hardware implementation shows that more

outstanding requests are required for the software implementation; this is because the

communication latency between the server and the hardware router is ∼5µs faster.

• JBSQ achieves the optimal performance, as predicted by the M/G/64 model, both for the

software and the hardware implementation within the 150µs SLO.

• Reducing n can have a considerable impact on tail-latency especially in cases with high

service time dispersion, as it can be seen in Figure 10.5c (SW-JBSQ(5) vs. P4-JBSQ(3))
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Figure 10.5 – Synthetic Service Time Microbenchmarks. Service time S̄ = 10µs.

10.6.3 Multi-packet Requests Microbenchmark

R2P2 implements the following logic in splitting requests to packets. If the request fits in a

single packet, the whole request payload is transferred with REQ0. In the case of a multi-packet

request, REQ0 is a 64-byte packet, carrying only the first part of the request and the rest of the

payload is transferred with the REQN packets directly to the server. This way the router does

not become a throughput bottleneck in the case of large requests, while the extra round-trip is

avoided in the case of small requests.

To evaluate the extra round-trip that R2P2 introduces in the case of multi-packet requests

with the distinction between REQ0 and REQN, we ran a synthetic microbenchmark with larger

requests. Based on the above logic, a 1464-byte request is the biggest request that fits in

a single packet given the size of protocol headers. Equivalently, a 1465-byte request is the

smallest request that requires 2 packets, and consequently an extra round-trip. We run the

synthetic service time RPC server with the bimodal service time distribution of S̄ = 10 and the

2 different request sizes. We compare the DIRECT deployment with one using the router with

the JBSQ policy.

Figure 10.6 summarizes the result of the experiment. We observe that there is a fixed gap of

around 15µs between DIRECT-1464 and DIRECT-1465 curves that corresponds to the extra

round-trip between the client and the server. We, also, run the multi-packet request scenario

while using the P4 router with the JBSQ policy. We show that despite the extra round-trip, the

intermediate hop, and the increased number of packets to process, the 99th percentile latency

is close to the single-packet scenario in the DIRECT case, which justifies our design decision to

pay an extra round-trip to achieve better scheduling.

10.6.4 Using R2P2 for server work conservation

We now demonstrate how the use of network-based load balancing, e.g., using R2P2, can

increase the efficiency of a single server scheduling tasks. For this, we compare R2P2 with

JBSQ with the performance of ZygOS [299], a state-of-the-art system optimized for µs-scale,
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Figure 10.7 – Comparison of R2P2 with the ZygOS [299] work-conserving scheduler: Exponen-
tial workload with S̄ = 10µs.

multicore computing that includes a work-conserving scheduler within a specialized operating

system. ZygOS relies on work-stealing across idle cores and makes heavy use of inter-processor

interrupts. Both ZygOS and JBSQ(n) offer a work-conserving solution to dispatch requests

across the multiple cores of a server: ZygOS does it within the server in a protocol-agnostic

manner, whereas R2P2 implements the policy in the network.

Figure 10.7 compares ZygOS with the Tofino implementation of JBSQ(3) for the 10µs exponentially-

distributed service time workload using a single Xeon server. As in the previous configurations,

for the R2P2 implementation each of the 16 Xeon cores, is exposed as a worker with a distinct

queue to the router, listening to a different UDP port. In this experiment, the theoretical lower

bound is therefore determined by M/M/16. We observe that JBSQ(3) exceeds the throughput

performance of ZygOS, with no visible impact on tail latency despite the additional hop and

that JBSQ(3) is sufficient to achieves the maximum throughput. For a service-level objective

set at 150µs, R2P2 with JBSQ(3) outperforms ZygOS by 1.26×. The explanation is that the

R2P2 server operates on a set of cores in parallel without synchronization or cache misses,

whereas ZygOS has higher overheads due to protocol processing, boundary crossings, task

stealing, and inter-processor interrupts.

10.6.5 Lucene++

Web search is a replicated, read-only workload with variability in the service time coming from

the different query types, thus it is an ideal use-case for R2P2-JBSQ. For our experiments we
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Figure 10.8 – Lucene++ running on 16 16-threaded workers

TCP-DIRECT RANDOM SW-JBSQ(20)

0.0 0.5 1.0 1.5 2.0 2.5

Load (MRPS)

0

100

200

300

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

(a) Standard USR workload [14] (0.2% writes)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Load (MRPS)

0

100

200

300

(b) Modified USR with 2% writes

Figure 10.9 – 99th percentile latency vs. throughput for Redis in a 4-node master/slave config-
uration.

used Lucene++ [233], which is a search library ported to serve queries via either HTTP or R2P2.

A single I/O thread dispatches one request at a time to 16 Lucene++ worker threads, each

of them searching part of the dataset. The experimental setup relies on 16 disjoint indices

created from the English Wikipedia page articles dump [367], yielding an aggregated index

size of 3.5MB. All indices are loaded in memory at the beginning of the execution to avoid disk

accesses. The experimental workload is a subset of the Lucene nightly regression query list,

with 10K queries that comprise of simple term, Boolean combinations of terms, proximity, and

wildcard queries [234]. The median query service time is 750µs, with short requests taking

less than 450µs and long ones over 10ms.

Figure 10.8 summarizes the experiment results for running Lucene++ on a 16-server cluster,

each using 16 threads. The NGINX-JSQ and HTTP-DIRECT experiments rely on 1568 persis-

tent TCP client connections. First, we observe that HTTP-DIRECT over TCP and RANDOM over

R2P2 which are multi-queue models, have higher tail-latency. Then, we see that NGINX-JSQ
and SW-JBSQ(1) on R2P2 deliver the same throughput; system and network protocol over-

heads are irrelevant for such coarse-grain workload. Also, n = 1 is enough to get maximum

throughput, given the longer average service time. SW-JBSQ(1) delivers that throughput via

the optimal single-queue implementation, with a significant impact on tail latency. As a result,

R2P2 lowers the 99th percentile latency by 5.7× at 50% system load over nginx.
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10.6.6 Redis

Redis [304] supports a master/slave replication scheme with read-only slaves. We ported

Redis on R2P2 and ran it on DPDK for the Facebook USR workload [14]. We used the sticky
R2P2 policy (see Section 9.2) to direct writes to the master node and we load balance reads

across the master and slave nodes, based on the RANDOM and the JBSQ policy. Redis has sub-µs

service times. Thus, to achieve maximum throughput we had to increase the number of tokens

to 20 per worker (SW-JBSQ(20)), for the software router. For the vanilla Redis over TCP clients

randomly select one of the servers for read requests, while they only send write requests to the

master.

Figure 10.9a shows that R2P2, for an SLO of 200µs at the 99th percentile, achieves 5.30× better

throughput for the USR workload over vanilla Redis over TCP (TCP-DIRECT) because of re-

duced protocol and system overheads, while SW-JBSQ(20) achieves slightly better throughput

than RANDOM for the same SLO. Figure 10.9b increases the write percentage of the workload

from 0.2% to 2%, which increases service time variability: R2P2 RANDOM has 4.09× better

throughput than TCP-DIRECT. SW-JBSQ(20) further improves throughput by 18%, for a total

speedup of 4.8×, as a result of better load balancing decisions.

10.7 Related work

Load dispatching, direct or through load balancers, typically pushes requests to workers, re-

quiring tail-mitigation techniques [80, 145]. Load balancers proxy RPC protocols such as HTTP

in software [269, 96, 275] or in hardware [4, 108, 65, 251]. In Join-Idle-Queue [232], workers

pull requests whenever they are idle. R2P2 exposes the RPC abstraction to the network to

achieve better RPC scheduling, and to the application to hide the complexity of the underlying

transport. R2P2 additionally supports JBSQ(n), which exposes the tradeoff between maximal

throughput and minimal tail latency explicitly.

Task scheduling in distributed big data systems is largely aimed at taming tail-latency and

sometimes depends on split-queue designs [374, 282, 185, 303, 82, 83, 296], typically operating

with millisecond-scale or larger tasks. R2P2 provides the foundation for scheduling of µs-scale

tasks.

Multi-core servers are themselves distributed systems with scheduling and load balancing

requirements. This is done by distributing flows using NIC mechanisms [308] in combina-

tion with operating systems [289, 100] or dataplane [34, 290, 166] support. Zygos [299] and

Shinjuku [178] are an intra-server, work-conserving schedulers for short tasks that rely on task

stealing and inter-processor interrupts. R2P2 eliminates the need for complex task stealing

strategies by centralizing the logic in the router.

Recent work has focused on key-value stores [281, 250, 304, 229]. MICA provide concurrent-

read/exclusive-access (CREW) within a server [229] by offloading the routing decisions to
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the client, while hardware and software middleboxes [171, 224, 271] or SDN switches [62, 41]

enhance the performance and functionality of key-value stores in-network. RackOut extended

the notion of CREW to rack-scale systems [272]. R2P2 supports general-purpose RPCs not

limited to key-value stores, together with a mechanisms for steering policies which can be

used to implement CREW both within a single server and across the datacenter.

10.8 Chapter Summary

We showcase the benefits of the R2P2 protocol by implementing efficient, tail-tolerant µs-scale

RPC load-balancing based on a software router or a programmable P4 ASIC. Our in-network

RPC lod balancing approach outperforms standard load balancing proxies by an order of

magnitude in throughput and latency, achieves close to the theoretical optimal behavior

for 10µs tasks, reduces the tail latency of websearch by 5.7× at 50% load, and increases the

scalability of Redis in a master-slave configuration by more than 4.8×.
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11.1 Introduction

Datacenter applications, such as web-search, e-commerce, social-networking, etc. need

to operate under strict Service-Level-Objectives (SLO) for their tail-latency. Complying or

violating those SLOs instantly reflects on user satisfaction and engagement. Thus, there is a

tremendous on-going effort both in academia and industry in building low-latency systems

for microsecond-scale computing [31].

Single-digit round-trip times inside a datacenter are considered commonplace with recent

advancements in hardware and software. Dataplane operating systems, such as IX [34], and

Arrakis [290] and kernel-bypassing techniques have reduced the system overheads present in

commodity operating systems. µs-scale schedulers such as ZygOS [299], and Shinjuku [178]

managed to reduce tail-latency even further compared to dataplanes, with smarter schedul-

ing. Systems such as Shenango [280] brought efficiency while maintaining the performance

benefits. On the networking side, datacenter-specific congestion control algorithms, such as

Homa [255], deal with tail behaviours coming from in-network delays by almost eliminating

in-network queueing. However, all of the previous efforts approach tail-tolerance as a met-

ric, and report the achieved throughput at a specific latency SLO in steady state when the

offered load is below the system capacity, ignoring the system behaviour under more realistic

unpredictable conditions with load bursts.

A tail-tolerant system, on the other hand, is designed to operate according to a specific

latency SLO and minimizes the SLO violations under any conditions, trading throughput for

predictable behaviour. In this paper we advocate that tail-tolerance should be approached as

a system design principle instead of a best-effort metric.

We draw inspiration from research on fault-tolerant systems. The latency of a complex fan-

out request is defined by the slowest sub-request [80]. Similarly the mean time to failure

of a complex system was defined by the mean time to failure of its most failure-prone sub-

component before the advancement in fault-tolerance research. However, reasoning about
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fault-tolerance is a ubiquitous part of the system design process today. System designers,

leveraging the appropriate form of redundancy, provision for their systems according to

the expected risk of failure and can provide explicit availability guarantees. For example,

a primary backup [46] system can tolerate f failures out of f + 1 replicas, state machine

replication [207, 276] f out of 2 f +1, while and tandem processes [137] one out of two, etc.

There is no similar systematic approach to reason about tail behaviours, though.

As a first step towards systematically tail-tolerant systems, we design SVEN (SLO Violations

ElimiNator), a system to control the tail behaviour of latency critical services. SVEN operates

at the remote procedure call (RPC) level and is part of the RPC transport or library, thus

remaining application agnostic. It is orthogonal to any existing scheduling or flow control

mechanisms, and can be used at any level inside a fan-out/fan-in application, namely at the

aggregator nodes or the leaves. SVEN performs dynamic RPC admission control based on the

currently observed latency distribution aiming to keep the incoming load below the threshold

that violates the target latency SLO.

We implemented an initial SVEN proof of concept on top of R2P2 [202] that runs on a Barefoot

Tofino ASIC [28]. Our evaluation shows that SVEN can identify the load level that violates

the latency SLO across a variety of service time distributions without any application-specific

configuration, and maintain throughput below that level, even in cases where the in-coming

load was above the system capacity. SVEN splits its functionality between the programmable

switch’s control and dataplane and does not consume any server resources.

11.2 Motivation

Certain datacenter applications can trade-off harvest for yield [120], according to the specific

latency SLOs they need to provide. Namely, latency-critical applications might be willing

to ignore some of the slow sub-RPCs, and thus reduce the harvest and the quality of their

response, in order to reply sooner back to the client. Consider for example web-search: a fast

result is more useful than a complete result.

Mechanisms that trade-off harvest for yield can be implemented either proactively or reac-

tively. Previously proposed systems, such as Zeta [151], terminate requests that exceed their

given service time, and return partial answers to the client. Such reactive designs are steps

towards tail-tolerance, but suffer from two main pitfalls. First, they are application specific —

cancelling a request and removing transient state requires application knowledge. Second,

they waste resources serving requests that are not used in the final answer instead of serv-

ing new requests. Instead, a proactive design, that avoids performing sub-RPCs rather than

cancelling them, would reduce the need for application awareness and use resources more

efficiently.
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Figure 11.1 – SVEN’s dataplane sample implementation running in Tofino’s ingress pipeline.

11.3 Design

SVEN is a system designed to reduce the latency SLO violations for RPC services that run

inside the datacenter by proactively controlling the incoming load based on an estimation of

the current end-to-end latency distribution of the RPC service. Reducing the offered load will

reduce queueing and as a result the end-to-end request latency.

We set the following requirements while designing SVEN: i) our solution should be application-

agnostic and it should work for different service time distributions without need for re-

configuration; ii) it should be independent of and complementary to any scheduling mech-

anism or policy both at the leaf or the aggregator nodes in a fan-out/fan-in application; iii)

it should be implementable on programmable network devices, e.g., P4 switches, to avoid

adding any CPU overhead to the RPC servers or latency to the end-to-end result.

We design SVEN as an R2P2 middlebox (Figure 9.1) that can do SLO-aware RPC admission

control for several servers. R2P2 [202] revealed the benefits of implementing an in-network

RPC scheduling policy that come from the global view of the infrastructure. We place SVEN

before the scheduling logic on the same middlebox so that the scheduler deals only with the

requests to be executed and not with the ones that got rejected due to admission control. We

split SVEN’s functionality between a control and a dataplane.

11.3.1 SVEN Dataplane

SVEN’s dataplane deals with the REQ0 packets from the clients and the FEEDBACK messages

from the servers. It is in charge of dropping incoming requests based on a drop rate defined

by the control plane, and it also needs to measure RPC latencies so that the control plane can

estimate the current RPC latency distribution.

The dataplane probabilistically decides whether to forward REQ0 to one of the servers, or drop

it, based on the drop rate set by the control plane. In case of a drop, the dataplane sends a

DROP_MSG back to the client to avoid request timeouts. This way the client early on knows that

the request will not be executed and it should not wait for it.
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Incoming requests can be dropped uniformly or there can be different drop rates for different

request types. If there are different request types, the control plane can set different drop

rates per type. R2P2’s header defines a message type field, as well as a policy field, that can be

used to encode different request types in an application-agnostic manner, so that the control

plane can apply the equivalent drop rate. Based on this mechanism each application can

set different priorities for its requests corresponding to different drop rates. Also, this way

an application can define requests that should not be dropped, e.g., non read-only requests,

acknowledging the risk of violating the latency SLO, though.

For the latency estimation, SVEN’s dataplane takes timestamps when receiving REQ0s from

clients, and FEEDBACKs from servers that signal a request completion. The difference between

the FEEDBACK and the REQ0 timestamps for the same request can be used as a proxy for the

latency perceived by the RPC client. SVEN keeps the up-to-date latency distribution in the

programmable switch dataplane through a histogram implemented as counters to a match-

action table whose cells correspond to the latency histogram buckets. The dataplane can

maintain different latency histograms for different request types. In the simplest case, SVEN

needs one table, assuming one request type, and two buckets, for requests under and above

the SLO.

There are different ways to match the REQ0 and FEEDBACK timestamps to get the latency of

a specific request. One approach is to add the REQ0 timestamp in the REQ0 packet itself and

require the R2P2 stack to echo the timestamp back with the FEEDBACK message, similarly to

TCP’s timestamp option used for RTT estimation. The alternative is to keep the REQ0 times-

tamp in the dataplane indexed with R2P2’s 3-way tuple of (src_ip, src_port, req_id)
and include the same tuple in the FEEDBACK message to do the matching. In our imple-

mentation we used the latter approach, because it required fewer changes to the R2P2 code

base.

The current design assumes that servers send a FEEDBACK message for each request. However,

this number can be reduced if it affects the server scalability. The middlebox may sample the

timestamped RPCs using a specific request type, e.g., timestamped request, so that the server

only sends back a FEEDBACK message for certain requests.

Figure 11.1 describes the dataplane processing processing pipeline and its interactions with the

control plane. Once a packet arrives, the dataplane first take a timestamp to avoid measuring

any time spent in the middlebox. Then, there are different paths based on the packet type

(REQ0 or FEEDBACK). In the case of REQ0, SVEN is completely independent and runs before

the application specific scheduling logic, e.g., JBSQ or random server selection.

11.3.2 Control plane

SVEN’s control plane runs a control loop that computes the RPC drop rate to be applied based

on the current latency distribution. The only configuration parameter for this control loop
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is the target latency SLO at a specific latency percentile, e.g., 300µs at the 99-th percentile.

The input to the control loop is the current estimation for the latency at the current latency

percentile, coming from the dataplane. The output of the control loop is the drop-rate that

the middlebox needs to apply to the incoming requests in order to reduce latency violations.

There are different ways to design this control plane, such as simple heuristics, control theory,

or even online learning. The design and implementation of this control plane is orthogonal

to the design of SVEN. In our proof-of-concept implementation we used a simple additive-

increase-additive-decrease control over an exponentially weighted average estimation of the

target-percentile latency. Listing 11.1 describes the control loop logic and the dataplane-

control plane interaction. We acknowledge that this is not an optimal control plane design

and it makes many sweeping simplifications, such as ignoring hysterisis, but its sole purpose

is to showcase the usability of our design.

1 STEP = 0.01

2 SLEEP_INTERVAL = 20 # in mill iseconds

3 dr = 0 # drop rate

4 TARGET_P = 99 # p e r c e n t i l e

5 while True :

6 cntr = dataplane . readCounters ( )

7 # Estimate p e r c e n t i l e @ t a r g e t SLO

8 p = estimate_p ( cntr )

9 # e . g . below 99% f o r SLO@99−th

10 i f p < TARGET_P :

11 dr = min( 0 . 9 9 , dr + STEP)

12 else
13 dr = max( 0 , dr − STEP)

14 dataplane . apply_drop_rate ( dr )

15 sleep (SLEEP_INTERVAL)

Listing 11.1 – SVEN’s control loop logic

11.3.3 Client and server applications

SVEN is completely transparent to the client and server applications as it is implemented

entirely in the transport protocol. SVEN depends on the clients’ ability to deal with request

rejections and request classification for different drop rates. R2P2’s API already requires clients

to define an error callaback function that deals with early rejections. Also, R2P2’s API allows

clients to define different request policies. Those policies can be used to apply different

request rates or mark requests as non-droppable if they are critical. The above classification is

non-SVEN specific, it can be used by other policy enforcing mechanisms, and it is already

supported by the existing R2P2 API.

SVEN’s proactive drop mechanism guarantees that requests reaching the server will be ex-

ecuted, thus avoiding the need for an application-specific cancellation mechanism as in
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Figure 11.2 – 99-th Latency for different service time distributions with S̄ = 10µs without SVEN.
The red line shows the latency SLO@300µs. The vertical grey line shows the throughput that
violates that SLO and it is shown with the same colour in Figure 11.3.

Zeta [151]. From the server perspective the transmission of FEEDBACK messages are internal

to the R2P2 stack and the application should not take special care.

11.4 Evaluation

To evaluate the effectiveness of SVEN in transforming a generic low latency RPC service

to a tail-tolerant system we implemented the above design on a Tofino [28] programmable

switch, splitting the functionality between the P4 dataplane and a Python control plane. We

run a series of synthetic microbenchmarks in which we control the service time distribu-

tion to investigate how SVEN performs across service times without application-specific

configurations.

We used the open-source DPDK-based version of R2P2 [131], modified it as described in

Section 8.3, and deployed it on a 16-core Xeon E5-2650 server connected with an Intel x520

10GbE NIC. Each core exposes its own Tx and Rx queues for a total of 16 independent workers.

We ran the middlebox that implements the dataplane described in Figure 11.1 in a Barefoot

Tofino v1 Edgecore Wedge100BF-32X.

In our experiments we use three different service time distributions with the same average

service time of S̄ = 10µs: a fixed, an exponential, and a bimodal distribution in which 10% of

the requests are 10 times slower than the rest, similar to the evaluation performed in R2P2 [202].

We consider an SLO at 300 µs for the 99-th percentile latency, and we use a random FIFO

scheduling policy, meaning that incoming requests are randomly assigned to queues by the

switch and are executed in order by each core. The scheduling policy is implemented by the

app-specific scheduling logic of the middlebox in Figure 11.1 and it is orthogonal to the SVEN

design. We chose this policy for simplicity. On the client side we use the Lancet [201] load

generator.

In our first experiment we run the server without SVEN to understand the system behaviour

across different loads and identify the load level that will violate the latency SLO for each

service time distribution. Figure 10.5 shows the 99-th percentile latency as a function of the
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Figure 11.3 – Throughput (MRPS) and 99-th Latency (µs) over time for a step load pattern
and the same 3 service time distributions. The difference between the orange and the blue
throughput lines corresponds to SVEN’s drop rate. The red line shows the latency SLO@300µs.

achieved throughput for the three service time distributions. We also plot the 99-th percentile

latency SLO at 300 µs in red, and the throughput that violates the SLO in dashed grey. We

observe that different service time distributions violate the SLO at different load levels: 1.54

MRPS for fixed, 1.39 MRPS for exponential, and 1.22 MRPS for bimodal. SVEN’s purpose is to

keep the offered throughput below those levels.

In the second experiment, we evaluate how SVEN performs as the offered request load changes.

We change the offered load every 20 seconds starting from 1 MRPS up to 1.8 MRPS which is

beyond the system capacity. Note that the system capacity is 1.6 MRPS — 16 cores and average

service time of S̄ = 10µs. We measure the achieved throughput and latency every second and

plot the results in Figure 11.3.

In the throughput plots we include the offered load, the achieved throughput, the system

capacity, and the throughput that violates the SLO as identified in the previous experiment.

The difference between the orange (offered load) and blue (achieved throughput) lines cor-

respond to the drop rate as identified by the control plane. We observe that SVEN manages

to approximately identify the load that will violate the latency SLO (light grey line) for each

distribution and maintain throughput (blue line) close to that threshold even when the offered

load was much higher and despite the simplicity of the control loop. We, also, see that SVEN

does not waste throughput to achieve tail-tolerance. When SVEN drops requests the achieved

throughput stays close to the throughput that violates the SLO.
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The latency plots, in the same figure, show the 99-th percentile latency as a function of time

and the latency SLO of 300µs for the same experiment. We observe that the tail latency stays

close to the target SLO, even when the offered load is above the system capacity (when the

orange line is above the dark grey line in the throughput graphs). In such cases of extremely

high loads beyond capacity, latency would be arbitrarily high without SVEN.

The latency oscillation is explained by the AIAD control policy that requires a latency violation

to control the drop rate. Note that different service times lead to different oscillations. This is

explained by the slope of the latency versus throughput curve at the point of the SLO violation.

A drop rate misconfiguration can lead to a more significant SLO violation in the case of the

fixed service time distribution where the slope is steeper compared to the bimodal case. We

expect that a more robust and carefully tuned control loop will reduce the observed latency

oscillation.

11.5 Discussion and Future Work

Layering and Placement: The current SVEN implementation runs in the network on P4

switches, already used for RPC scheduling in R2P2, is placed before the scheduling logic,

and servers multiple servers. However, our design is not limited to programmable switches.

An alternative would be to implement SVEN’s control and dataplane within servers. Such

a deployment assumes the server is able to accurately estimate the time a request spends

waiting and being processed. This would require the server to timestamp the first packet of a

request once it enters the system before any queueing time and the last last reply packet. To do

so, servers should depend either on hardware timestamping at the NIC or on an asymmetric

design with a dispatcher, similar to RamCloud [281] or Shinjuku [178]. Note though, that

this approach uses CPU resources that could be used for RPC serving. To avoid CPU usage,

SVEN could also run on a smartNIC on the serverside. The smartNIC has full visibility to

incoming requests and outgoing replies and can easily estimate the time a request spends on

the server by tracking the request reception and the reply transmission time. A server-based

SVEN should not be combined with an in-network scheduler though, since the scheduler

would waste resources to schedule requests that are eventually dropped at the server.

SVEN, being an in-network solution, poses an interesting deployment question regarding its

placement inside a complex RPC service. In our evaluation we only looked at a single-level

application and placed SVEN before the RPC server. However, in a more complicated fan-

out/fan-in application SVEN can be employed both for the leaf and the aggregator nodes.

Although it depends on the application type and whether it can leverage the latency vs com-

pleteness trade-off, we suggest employing tail-tolerant mechanisms at the higher levels of the

application, e.g., the aggregator nodes, letting other mechanisms, e.g., scheduling to deal with

the leaf nodes. This way SVEN can better capture the user perceived latency, as opposed to

the latency of a leaf service.
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Control plane: SVEN currently depends on a very simplistic control plane and it treats equally

all requests. As future work we would like to look at different alternatives for the control loop

design and investigate their impact on latency oscillation. Also, future control loops should

consider different request types and compute different drop rates for each request type, as

those are defined by the R2P2 request type or policy. The control loop can depend on either

more complicated heuristics [300], control theory [284], or online learning [132]. Given the

separation between the control and the dataplane and the fact that the control loop only

identifies the drop rate, thus not being on the critical path, the duration of the control loop

could be in the order of 100s of µs. This can open up the design and implementation space for

more accurate but slower implementations.

Dropped vs degraded requests: In our experiments we assumed that clients can leverage the

latency vs completeness trade-off and did not re-issue the dropped requests. However, this will

not always be the case. Depending on the deployment clients can have different options. First,

we described that clients could prioritize requests or mark them as non-droppable based on

existing R2P2 mechanisms. Also, in case of a replicated service clients can re-issue a dropped

request to another server. The early rejection notification enables a more informed and less

wasteful version of tied requests [80].

SVEN depends on explicit request drops to control latency in order to eliminate the need for

server modification. Another approach that requires server support and cooperation, though,

is one that marks requests as degraded instead of dropping them completely. So, as tail latency

approaches the SLO SVEN changes the request type to degraded-request before forwarding

them to the server based on the same probabilistic logic. A server would provide a reply of less

quality back to the client, e.g., an image with lower resolution, for a degraded request. Similar

ideas have already been explored in previous works [121], and in different domains, e.g., in the

NDP congestion control scheme [143] that forwards only packet headers and drops the packet

payload instead of dropping the entire packet.

Stricter Guarantees: SVEN is only the first step towards tail-tolerant systems and does not pro-

vide any strong guarantees at the moment, while it depends on the assumption that requests

can be dropped. We believe that providing stronger tail-tolerance guarantees is viable but

will require more complicated application analysis, such as such performance contracts [164].

Also, avoiding dropped or degraded requests can be achieved through redundancy similar to

fault-tolerance. Combining performance verification, redundancy, and in-network control

loops on top of the right abstractions can lead to by construction tail-tolerant systems.

11.6 Related Work

The idea of dynamic admission control has been explored in different contexts [357, 91, 364,

363]. These approaches were either application specific or targeting different deployment en-
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vironments. SVEN is a transport layer mechanism, thus application agnostic, and can provide

guarantees in µs-scale for datacenter applications based on in-network programmability. In

the storage domain, Reflex [196] controls application latency through achieved throughput,

while Mittos [145] leverages early rejections for fast request re-issue. Nebula [327] implements

dynamic RPC admission control in hardware. Prior work that is closest to SVEN is our previ-

ously proposed SLO-aware flow control for TCP [197]. SVEN does not use complex queueing

formulas to identify the right rate and depends on a better-fitted request abstraction.

11.7 Chapter Summary

We advocate for tail-tolerance as a system design principle instead of a best-effort system

metric. As a first step in this direction, we propose SVEN, an application-agnostic system

for in-network SLO-aware RPC admission control implemented as part of the R2P2 transport

protocol.
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12 HovercRaft: Scalability and Fault-
tolerance for µs-scale Services

12.1 Introduction

Warehouse-scale datacenters operate at an impressive degree of availability and information

consistency despite constant component failures at all layers of the network, hardware and

software stacks [29], constrained by the well-known theoretical tradeoffs between consistency,

availability, and partition-tolerance [42]. This is the result of the careful decomposition of

modern applications into components that each exhibit well-defined consistency, scalability,

and availability guarantees. Each component is further configured to match specific service-

level objectives, often expressed in terms of tail latency [80, 81].

Replication plays a key role in achieving these goals across the entire spectrum of tradeoffs.

First, scalability is commonly achieved by managing replicas with relaxed consistency and

ordering requirements [81, 42]. This is commonly deployed as a combination of caching

layers, data replication, and data sharding [81]. Second, replication is also the foundation for

fault-tolerance, whether achieved through fault-tolerant hardware and process pairs [137] or

more commonly in datacenters through distributed consensus protocols of the Paxos and Raft

families [276, 174, 274, 207, 208, 209, 210]. Such protocols ensure fault-tolerance through state
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Figure 12.1 – Eliminating bottlenecks of SRM. Illustration on a 3-node cluster.
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machine replication (SMR) [314], in which a distributed system with n nodes can offer both

safety and liveness guarantees in the presence of up to f node failures as long as n ≥ 2× f +1

(under some network assumptions [117]).

Scalability and fault-tolerance are classically opposed, even though both rely on the same

design principle of replication. Adding nodes can improve scalability with relaxed consistency

and can lead to very large deployments within and across datacenters (e.g., content delivery

networks). On the flip side, adding nodes to a consensus system can improve fault tolerance

but harm performance. In practice, most deployments of SMR are limited to small cluster

sizes, e.g., three or five replicas [71, 48, 157] as deployments of SMR with more than a handful

of nodes reduce performance and are considered too expensive [36, 157].

12.1a shows the leader node bottlenecks for a classic SMR deployment using Raft: (1) the

leader acts as the RPC server for all clients; (2) the leader must communicate individually

with each follower to replicate messages and ensure their ordering. 12.1a also illustrates that

a user-defined application that operates on the state machine must be modified to accept

messages delivered by Raft (rather than use a more conventional RPC API transport).

In this work we focus on stateful datacenter applications that require fault-tolerance, low-

latency, and scalability. We ask two main questions: (1) Can we build fault-tolerant services in

an application-agnostic, reusable manner, i.e., take an existing application (with deterministic

behavior) and have it transparently utilize a SMR protocol? (2) Can we take advantage of the

replication present for fault-tolerance to also improve the performance of the application?

12.1b illustrates the key contributions of our system, HovercRaft, and its optional extension

(HovercRaft++). We answer the first question primarily by integrating the Raft protocol [276]

directly within R2P2 [202], a transport protocol specifically designed for in-network policy

enforcement over remote procedure calls (RPC) inside a datacenter.

We answer the second question by first extending Raft to separate request replication from

ordering and using IP multicast and in-network accelerators (e.g., a P4 ASIC) to convert leader-

to-multipoint interactions into point-to-point interactions. These enhancements reduce the

performance degradation associated with larger clusters. We complete the answer to the

second question by using R2P2’s fundamental mechanism for in-network operations, which

allows the destination IP address of an RPC request (as set by the client) to differ from the

source IP of the reply. This allows the load balancing of client replies, as well as of the execution

of read-only, totally-ordered requests. These changes reduce the I/O and CPU bottlenecks and

allow HovercRaft to deliver even superior performance to an unreplicated (and therefore not

fault-tolerant) deployment of the same application.

We make the following contributions:

• We integrate Raft [276], a widely used consensus algorithm, with R2P2 [202], a transport
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protocol specifically designed for datacenter RPCs, to offer fault-tolerance transparently to

applications.

• We propose HovercRaft, a set of Raft protocol extensions that leverage the built-in features

of R2P2 to systematically eliminate I/O and CPU bottlenecks associated with SMR, without

changing the core of the algorithm, thus its liveness and safety guarantees.

• We further take advantage of in-network accelerators now commonly found in datacenter

switches to statelessly offload low-level message processing, thus eliminating scalability

bottlenecks due to cluster size.

Our implementation of Raft relies on kernel-bypass to deliver up to 1M ordered operations

per second in a series of microbenchmarks on a 3-node cluster, which corresponds to a 4×
improvement over the state-of-the-art [103, 222, 293]. Our implementation of HovercRaft++

delivers 1M ordered operations for clusters of up to 9 nodes. The careful elimination of

CPU and IO bottlenecks allows almost linear speedup over the unreplicated configuration

for selected workloads. Our evaluation of Redis running YCSB-E shows that HovercRaft can

deliver up to 142k YCSB-E operations per second on a 7-node cluster in ≤ 500µs at the 99th

percentile, a 4× performance increase over the unreplicated case.

The HovercRaft codebase is opensource and can be found here 1.

12.2 Motivation

SMR Bottlenecks

We first focus on the normal case of operation for the Raft algorithm as described in Figure 2.1.

We identify bottlenecks that might arise based on the interactions between the clients and the

fault-tolerant group of servers, as well as the consensus communication pattern inside the

fault-tolerant group.

Leader IO bottleneck for request replication: The leader is in charge of replicating requests

to the followers. Once those requests start increasing in size or the number of followers

increases, the transmission bandwidth of the leader’s NIC will become the bottleneck, thus

limiting throughput.

Leader IO bottleneck for client replies: The leader must also reply to all clients. Depending on

the reply sizes, the leader transmission bandwidth can again become a bottleneck, especially

in combination with the replication traffic.

1https://github.com/epfl-dcsl/hovercraft
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Figure 12.2 – HovercRaft proposal in terms of layering compared to existing approaches.

Leader CPU bottleneck for running requests: Since the leader is expected to reply to the

client, it must run all client requests, even read-only ones. However, this can lead to a CPU

bottleneck in the leader if the read-only operations are expensive. This, for example, can be

the case in systems supporting mixed OLTP and OLAP workloads [302].

Leader packet processing rate: The leader must send requests and receive replies from the

majority of the followers in order to make forward progress. Increasing quorum sizes increases

the packet processing requirements at the leader. This can both limit the throughput of

committed client requests if the IOPS becomes a bottleneck, and increase latency before

hitting the IOPS bottleneck.

12.3 Design

Our goal is to provide a systematic and application-agnostic way of building fault-tolerant,

µs-scale, datacenter services, with similar or better performance to the unreplicated ones. We

achieve this by integrating the consensus directly within the RPC layer (Subsection 12.3.1)

and through a set of extensions to the Raft consensus protocol that do not modify the core

algorithm, but only go after its CPU and IO bottlenecks. We call the Raft version with the

performance extensions HovercRaft. 12.1b summarizes our design, and in the rest of the

section we analyze each design choice.

12.3.1 SMR-aware RPC layer

Clients interact with stateful servers through RPCs to change or query the internal server state,

making RPCs the natural place to implement a systematic, application-agnostic mechanism

for fault-tolerance. In a standard design of a fault-tolerant service, clients interact with the

nodes of a cluster through a standard RPC library that is oblivious to SMR. For example, etcd
uses gRPC [139] for this interaction. This protocol layering requires the SMR leader, which

receives the initial client RPC, to decode it, re-encode it within the SMR protocol for insertion

into the consensus log, and finally forward it to the followers. The selection of the endpoint for

the client RPC can be done via a stateless load balancer which hides the internal IP addresses

of the cluster but does not improve performance since all client requests have to go through

the leader, e.g., the etcd gateway [106].
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We advocate, instead, to incorporate consensus directly within an RPC library or a transport

protocol, which has RPC semantics (e.g., gRPC [139] or R2P2 [202]) and to provide fault-

tolerance at the RPC granularity. Specifically, the SMR layer becomes part of the RPC layer

which forwards RPC requests to the application layer only after those requests have been

totally ordered and committed by the leader. Doing so can transform any existing RPC service

with deterministic behavior into a fault-tolerant one with no code modifications.

We chose to work with R2P2 [202] and incorporate Raft [276] within the RPC processing logic.

We chose R2P2 as it is a transport protocol specifically designed for datacenter RPCs that

targets in-network policy enforcement and decouples the initial request target from the replier.

This design choice in R2P2 is crucial for RPC-level load balancing implemented at its core.

Figure 12.2 describes the proposed design in terms of layering. Unlike previous approaches

that incorporate SRM libraries at the application layer, HovercRaft incorporates SMR within

the same transport protocol that also exposes request-response pair semantics, making the

solution application agnostic.

Our choice of Raft, instead of a Paxos variant, is driven by Raft’s strong leader, and the in-order

commit mechanism. In the original Paxos algorithm [207] there can be a different leader

in each consensus round, thus limiting the potential for optimization due to centralized

choice. Unlike Paxos, Raft is a consensus algorithm that depends on a strong leader in charge

of ordering and replicating client requests across all followers, with a global view of all the

nodes participating in the fault-tolerant group. Our goal is to take advantage of the global

cluster view at the Raft leader in conjunction with R2P2’s load balancing capabilities to go after

the SMR bottlenecks. Although the above requirement is also satisfied by Multi-Paxos [208],

Raft’s in-order commit logic significantly simplifies the design of in-network acceleration for

HovercRaft. We specifically target scalability bottlenecks, and we note that our design does

not improve upon Raft’s two network roundtrip approach, unlike 1-roundtrip proposals [222].

12.3.2 Separating RPC Replication from Ordering

The first Raft bottleneck of Section 12.2 is the leader IO transmission bottleneck due to request

replication. With n nodes in the cluster, a mean RPC request size of Sr eq , and a link capacity

of C , Raft cannot serve more than C /((n −1)∗Sr eq ) requests per second.

HovercRaft achieves fixed-cost SMR independent of the RPC request size. We solve the bot-

tleneck by separating replication from ordering and leverage IP multicast to replicate the

requests to all nodes. Instead of targeting a specific server, clients inside the datacenter send

requests to a multicast group that includes the leader and the followers, or a middlebox that is

in charge of assigning the correct multicast IP. All nodes in the group receive client requests

without the leader having to send them individually to each of the follower nodes.

Obviously, IP-multicast does not guarantee ordering or delivery. As with Raft, the leader

decides the order of client requests. R2P2 provides a way to uniquely identify an RPC based
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on a 3-tuple (req_id, src_port, src_ip) and HovercRaft relies on this metadata built into the

protocol. Upon reception of an RPC request, the leader immediately adds it to its log, while

followers insert the RPC into a set of unordered requests. The leader then communicates

fixed-size request metadata to the followers. Followers retrieve the RPC requests from the

unordered set based on the request metadata and add them in their log. Therefore, in the

common case, when no packet loss occurs, the leader is only in charge of ordering requests

and not data replication.

12.3.3 Load balancing replies

The second bottleneck mentioned in Section 12.2 refers to the cost of replying to clients from

the leader. We observe that replying to the client can be load balanced between the leader and

the followers as long as the followers keep up with the request execution. By doing so, the I/O

bottleneck due to client replies could expand from C /Sr epl y RPS to almost n ∗C /Sr epl y RPS,

where C is again the link capacity and Sr epl y is the reply size. For example, a server with a 10G

NIC can serve up to approximately 400k requests per second, when the replies are 2 MTUs (we

assume an MTU of 1500 bytes). Load balancing those replies among 3 replicas can improve

application throughput by 3×. It also reduces the leader CPU load due to network protocol

processing.

The leader can decide which node replies to the client for which request, given its global view

of the cluster. According to the semantics of the vanilla Raft algorithm, a leader sends an

append_entries message to the followers that includes the client requests and the leader

commit index, so that followers can update their own commit index. There is no explicit

commit message per log entry. As a result, the leader has to designate the replier when

announcing the request order to the followers, and not after committing them.

HovercRaft extends the information stored in the Raft log with a replier field. The leader

sets the replier field immutably for each entry before sending the particular entry to any

follower for the first time. When a log entry is later committed, each Raft node can run the

RPC, but only the one with the matching replier identifier replies to the client. For this, we use

a built-in feature of R2P2 that allows the source IP address of the RPC reply to differ from the

destination IP address of the request.

The load balancing of replies creates a window of uncertainty between the append_entries
request that communicates the designated replier, and the commit point, during which

the designated replier can fail, and as a result the client will not receive a reply. Note that

introducing this window does not affect the correctness of the SMR algorithm, as it is consistent

with Raft’s semantics that do not guarantee exactly-once execution, and can lead to missed

replies. Note also that clients may receive their replies in a different order than in the log; this

is not, however, different than Raft.
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Figure 12.3 – A view of the leader log. Each log entry includes the term, the designated replier,
a pointer to the client request, and whether it is read-only. The replier is set only for the entries
up until the announced_idx.

12.3.4 Bounded Queues

We rely on another design idea introduced in R2P2, bounded queues, to minimize the potential

visible impact of a particular node failure to clients to at most B lost replies. R2P2’s Join-

Bounded-Shortest-Queue was designed as a load balancing policy to mitigate tail latency

across stateless servers [202].

Join-Bounded-Shortest-Queue splits queueing between a large centralized queue and dis-

tributed bounded queues, one per server. The rational behind this policy is to delay delegating

requests to a specific server queue in anticipation of better scheduling, approaching the per-

formance of the optimal single queue. HovercRaft delays the reply node assignment to bound

the number of lost replies in the case of node failure.

Specifically, HovercRaft caps the quantity of announced entries from the leader’s log relatively

to the applied index, thus bounding the amount of assigned but not applied operations. Fig-

ure 12.3 describes the different indices on the log: (1) the leader inserts entries at log_idx, the

head of the log without determining yet which node will send the reply; (2) the leader selects

the node in charge of replying to the client and updates the announced_idx accordingly;

(3) the commit_idx represents the point upon which consensus has been reached; (4) the

applied_idx represents the point upon which operations have been applied to the state ma-

chine. Each follower also has its own set of applied_idx, commit_idx, and log_idx indices

on its local log. Announced_idx is relevant only for the leader. Followers communicate their

applied_idx to the leader as part of the append_entries reply.

For every node there is a bounded queue of reply assignments to that node between its

applied_idx and the leader’s announced_idx. The leader respects the invariant of the

bounded queue at node selection time, i.e., when moving announce_idx: nodes with too

many operations left to apply are not eligible for receiving additional work. This obviously

includes the case when the node has failed and its applied_idx does not progress. Thus,

choosing nodes based on the bounded queues minimizes the risk of selecting a failed node

and eventually losing client replies.

We note that respecting the bounded queue invariant never affects liveness. When no node is

eligible for designated replier, the leader simply waits either for the application in the leader
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Figure 12.4 – The communication patterns in our design resulting from separating replication
from ordering and using in-network fan-in/fan-out. Solid arrows refer to application requests
and replies. Dotted arrows refer to SMR messages.

node to make progress and selects itself as a replier, or an append_entries reply from a

follower that will make this follower eligible to reply.

12.3.5 Load balancing Read-only Operations

The third bottleneck of Section 12.2 is the leader CPU bottleneck. We observe that many RPCs

only query the state machine but do not modify it. Such read-only requests still need to be

placed in the Raft log and ordered to guarantee strong consistency, but do not need to be

executed by all nodes. The load balancing design of Subsection 12.3.3 therefore naturally

extends to the CPU for read-only operations, and can increase the global CPU capacity of the

system. Clients tag their requests as read-only as part of the metadata of the R2P2 RPC. This

information is also kept in the Raft log and propagated to the followers (see Figure 12.3). It

follows that all requests remain totally ordered by Raft, but only the designated replier node

executes a read-only query.

Read leases [136], which are an alternative solution for read-only requests, were initially

proposed for Paxos [56] and also used in Chubby [48] and Spanner [71]. In this approach,

read-only operations run on the leader without running consensus for them. However, this

increases the CPU load and traffic on the leader. Megastore [25] grants leases to every replica

for different read operations, but requires communicating with every replica to perform a

write request. Quorum leases [257] also load balance read-only requests among different

nodes, but assume an application-specific way of detecting read-write dependencies and

do not match our application agnostic requirements. Finally, there is also the choice of not

ordering read operations, acknowledging the risk of returning stale replies [104]

12.3.6 Join-Bounded-Shortest-Queue

Bounded queues are necessary to limit the lost client replies up to the queue bound, but can

also help improve the end-to-end request latency, especially in cases where read-only requests
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have high service time variability. Once the leader decides to announce more log entries,

identifies the eligible followers, and has to select which follower will reply to the client. One

option is random choice among eligible nodes. Another one is to leverage R2P2’s Join-Bounded

Shortest Queue (JBSQ) policy [202].

In HovercRaft, the leader maintains the queue depth of requests to be executed on each node.

This counter is increased every time the leader assigns a request and decremented when

followers reply to the leader. The JBSQ policy load balances the requests based on the known

queue depths, as this is known to improve tail-latency compared to a random selection [202],

by choosing the shortest among the bounded queues. The queue of a follower that is assigned

to run a long read-only request will fill up while the node is busy serving the request and

that will prevent the leader from assigning more work to that node. Preferring the other less

loaded nodes is expected to improve the tail-latency in cases of high service-time variability,

compared to the naive random assignment policy.

12.3.7 Communication in HovercRaft

12.4a summarizes the logic and the communication pattern described in the above design. A

client sends requests to a pre-defined multicast group. Requests get replicated to all nodes

based on multicast functionality existing in commodity switches. The leader orders requests

and sends append_entries with request metadata to followers, identifying the request type

(read-only or read-write) and delegating client replies; in this particular case follower 1 will

reply. The followers reply to the leader and the leader commits the request. At the next

append_entries request the followers are notified about the leader’s current commit index,

execute the client request, and follower 1 replies to the client. The above communication pat-

tern increases latency in the unloaded case (2.5 RTTs), but can lead to significant throughput

benefits.

12.4 HovercRaft++

The last bottleneck of § 12.2 is the packet processing overhead at the leader that becomes

worse as the number of followers increases. The leader has to send append_entries requests

to each follower independently and receive replies for each request. Communication delays

inside the datacenter, though, are short and usually predictable, so it is likely that all followers

make progress at the same pace. Based on that observation, we tackle the packet processing

bottleneck using in-network programmability. Specifically, we design and implement an

in-network aggregator, based on a P4-enabled programmable switch, that will handle the

fan-out and fan-in of the append_entries requests and replies. This in-network accelerator

should be viewed as part of the leader. A P4 switch runs the aggregation logic at line rate.

So, we offload some of the leader’s packet processing duties, thus reducing the leader’s CPU

pressure, on a hardware appliance specifically designed for packet IO. Our goal is to achieve

fixed-cost SMR in the non-failure case independently of the number of followers for small
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MSGs\System Raft HovercRaft HovercRaft++
Rx msgs 1+(N-1) 1+(N-1) 1+1
Tx msgs (N-1)+1 (N-1) + 1/N 1+1/N

Table 12.1 – Comparison of Rx and Tx message overheads for the leader in Raft, HovercRaft,
and HovercRaft++ for the non-failure case. N is the number of nodes.

cluster sizes.

12.4b describes our proposed design. Similarly, to HovercRaft’s communication pattern

( 12.4a), a client sends a request to the multicast group and this request gets replicated to all

nodes. However, in the case of in-network acceleration (HovercRaft++), the leader, instead of

communicating with each individual follower, sends only one append_entries request to

the network aggregator. This request includes the metadata to implement the aforementioned

load balancing logic. The network aggregator then forwards this request to the equivalent

multicast group excluding the leader. The followers reply back to the aggregator and the

aggregator keeps track of the per-follower replies, without forwarding them to the leader.

Once the majority of the followers have successfully replied, the aggregator multicasts an

AGG_COMMIT to all the nodes in the group, announcing the new commit index. Based on that

message, the delegate follower (follower 1) replies back to the client.

Table 12.1 summarizes the communication complexity at the leader in Tx and Rx messages

for the different approaches for a cluster with N nodes (N-1 followers and a leader). In the

case of Raft, the leader receives the client request, sends N-1 append_entries requests to the

followers, receives N-1 append_entries replies, and sends the reply to the client. In the case

of HovercRaft, the leader receives the client request, sends N-1 append_entries requests

(smaller than in the previous case) to the followers, receives N-1 append_entries replies,

and approximately sends only 1/N replies to the client because of replies load balancing.

Finally, in the case of HovercRaft++, the leader receives the client request, sends only one

append_entries request to the aggregator that multicasts it to the followers, the aggregator

collects the quorum and sends one append_entries reply to the leader. Similarly with the

previous case, the leader approximately sends only 1/N replies to the client.

12.5 HovercRaft vs Raft

HovercRaft does not modify the core of the Raft algorithm but instead goes after its bottlenecks

and implements optimizations to bypass them. Those optimizations are only in effect in the

non-failure mode of operation. HovercRaft falls back to vanilla Raft whenever a failure, e.g.,

failed leader, is detected. As a result, HovercRaft provides exactly the same linearizability

guarantees as Raft. It assumes the same failure mode, and guarantees safety and liveness with

2 f +1 nodes, where up to f nodes can fail.

Raft’s correctness depends heavily on the strong leader and its election process. HovercRaft’s
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modifications to the Raft logic only affect the normal operation after a leader is elected. As a

result, the correctness of the leader election is not challenged.

The rest of this session discusses the modifications introduced by HovercRaft, how they affect

the consensus logic, and how HovercRaft handles failures.

Separating replication and ordering: In HovercRaft, all nodes receive client requests through

the multicast group and the leader is in charge of ordering. Client requests are placed in

the Raft log as they are received only in the leader. Followers keep those requests in a list of

un-ordered requests waiting for an append_entries request.

Followers index unordered requests based on R2P2 unique 3-tuple (req_id, src_ip, src_port).

Clients are responsible to ensure the uniqueness of the metadata identifiers. This is not a

problem in practice given the large R2P2 metadata namespace. The leader can also include

a hash of the request body to avoid cases of metadata collision. Therefore, there is a unique

mapping between metadata in the append_entries message and the requests in the followers

unordered list.

HovercRaft does not assume reliable multicast [153, 287]. Consequently, there might be

cases in which client requests do not reach all the nodes. Followers detect such cases when

processing an append_entries message and do not find the equivalent client request in their

unordered set. We introduced a new recovery_request message type. Followers use this

request to ask for a missing client request from the leader or any other follower that might have

potentially received it. Once a follower retrieves a missing request, it adds it to the unordered

set, waiting for the next append_entries request from the leader to order it properly.

The inverse case, in which the followers received a client request but the leader did not, does

not require changes to the algorithm. The followers periodically garbage collect client requests

in their unordered set that linger, based on a specific timeout. Early garbage collection does not

affect the correctness of the algorithm and will unnecessarily trigger the recover mechanism

described above.

Bounded Queues: Bounding the amount of committed but unapplied requests does not affect

the number of lost client requests in case of a leader failure. Followers have also received the

client requests already placed in the failed leader log, but not yet announced. When a leader

fails, the new leader will remove the received client requests from its unordered set, add them

to its log in some order and start sending append_entries announcing their order.

Load Balancing Client Replies: Raft does not guarantee exactly-once RPC semantics but

instead only at-most-once RPC semantics [329]. It only guarantees linearizability of operations,

leaving the client outside the algorithmic logic. Consequently, the client reply can be lost or the

leader can crash after committing a log entry and before replying to the client. Guaranteeing

exactly-once RPC semantics is outside the scope of Raft and projects like RIFL [216] solve
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the problem of implementing exactly-once semantics on top of infrastructures providing

at-most-once RPC semantics.

HovercRaft’s ability to load balance replies introduces this window of uncertainty between

the point of replier choice by the leader and the actual client reply. This is consistent with

Raft’s at-most-once RPC semantics, does not affect correctness, and should be considered

equivalent to the cases of missing replies in vanilla Raft.

Load Balancing Read-Only Operations: Read-only operations do not modify the state ma-

chine but still need to be ordered to guarantee strong consistency. It is safe to execute them

only in the designated replier, only after they have been committed. The application (client-

side or server-side) is responsible to correctly identify which operations are read-only, as to

avoid a catastrophic inconsistency.

In-network Aggregation: The aggregator should be viewed as part of the leader that under-

takes leader tasks in the non-failure case. In HovercRaft++, followers reply to the aggregator

only when append_entries requests succeed. When an append_entries fails, e.g., due to

wrong previous entry, followers talk directly to the leader, bypassing the aggregator. When

the leader receives a failure reply for an append_entries request, it uses point-to-point com-

munication with this follower until it recovers. In the meantime, this follower receives the

multicast append_entries requests from the aggregator and keeps them in order to identify

when to stop the recovery process with the leader, and continue with using the messages from

the aggregator instead.

If the in-network aggregator fails, the followers stop receiving requests from the leader. This

will trigger a new election process, in which the aggregator does not participate. Once a new

leader is elected based on the vanilla Raft election process, the new leader has to identify

whether to use the in-network aggregator or not. The leader switches to HovercRaft++ once it

has confirmed the liveness of the in-network aggregator. The state in the aggregator is flushed

after every new leader election.

Model-checking the correctness of HovercRaft++ using TLA+ [334] is left for future work.

12.6 Implementation

We implemented HovercRaft and HovercRaft++ based on the open-source version of R2P2 [131],

and a production-grade, open-source implementation of Raft [49], which is thoroughly tested

for correctness, and used in Intel’s distributed object store [79]. We built the network aggrega-

tor in P414 and ran it in a Tofino ASIC [28].

To guarantee timely replies, we dedicate a thread to network processing and a thread to run

the application logic. The networking thread is in charge of receiving client requests and

164



12.6. Implementation

running the R2P2 and consensus logic. The application thread is in charge of running the

application and replying to the client if necessary. In our implementation on top of DPDK [88],

we configure 1 RX queue for the networking thread and 2 TX queues, one for each thread. The

networking thread polls the RX queue, while the application thread polls for changes in the

commit_idx and applies the newly committed entries.

12.6.1 R2P2 protocol extensions

We extended R2P2 to integrate consensus in its RPC processing logic. R2P2’s RPC-tailored

semantics and its RPC-aware design choice are a perfect fit to achieve our goal.

The R2P2 header includes two relevant fields for our implementation. The first one is the

POLICY field, initially used to define load balancing policies. We extended the semantics of this

field with two new policies. Clients use those fields to tag requests that must be totally ordered

for strong consistency. Specifically, requests that read and modify the state machine should be

marked with REPLICATED_REQ, and requests that only read with REPLICATED_REQ_R. Mark-

ing requests that require strong consistency allow servers in the fault-tolerance group to serve

also other requests that are not replicated, with the probability of stale data, similarly to

etcd [105]. Those non-replicated requests can also be load balanced based on the techniques

described in [202].

The second relevant field is the message type. Given that Raft itself depends on RPCs, Raft

RPCs are also on top of R2P2. We added two more message types, one for Raft requests and one

for Raft responses, as to separate them from the client ones since they have to be handled by

the consensus logic in R2P2. These fields are also used by the network aggregator to specially

handle Raft requests and replies.

12.6.2 Raft extensions

We added minimal modifications to the Raft implementation initially for high throughput

and low-latency and then to support HovercRaft. Specifically, we switched from the periodic

application of the log, to eager application the moment the entries are committed. Then,

we extended the log entry with two new fields to include the replier identifier and the en-

try’s type (read-only/read-write). Finally, without modifying the Raft code, we extended

the append_entries reply to include the applied index, necessary for the bounded queues

(Subsection 12.3.4) and load balancing.

12.6.3 Multicast Flow Control and Recovery

Raft and HovercRaft differ noticeably in one particular area. In vanilla Raft, the leader is the

only one receiving client requests and is in charge of both ordering and replicating them; it is

the only bottleneck in the system. Therefore, dropping client requests at the leader is a form of
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Figure 12.5 – The in-network aggregator pipeline handling append_entries requests and
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implicit flow control. HovercRaft, however, leverages multicasting to replicate client requests,

which implies that, under high load, different requests will be dropped for the leader and the

followers.

As a consequence, HovercRaft has to implement flow control to guarantee forward progress

under high load or bursts of load that lead to dropped multicast client messages. One way of

dealing with the problem is to let the leader and the followers drop requests independently

under high load, and rely on the recovery mechanism to create back-pressure. However, this

would lead to poor performance.

Instead, we leverage the R2P2’s FEEDBACK mechanism, that is designed to be repurposed

according to the application needs, to limit the number of outstanding client requests in the

system. For example, the R2P2 request router used FEEDBACK messages to implement the

JBSQ scheduling policy. HovercRaft and HovercRaft++ use FEEDBACK messages to implement

a coarse-grained flow control mechanism for multicast traffic.

Specifically, instead of letting clients send requests to a multicast IP, we use a middlebox,

e.g., a programmable switch, that counts the number of requests in the system and switches

the destination IP to the multicast IP of the fault-tolerance group. Every time a node sends

back a reply to the client, it also sends a FEEDBACK message to the flow-control middlebox,

to decrement the counter of requests. When the number of requests in the system reaches a

certain threshold, instead of multicasting, the middlebox sends a NACK back to the client for

every new client request arriving, thus preventing throughput collapse in the system.

12.6.4 Aggregator implementation

Our in-network aggregator is implemented as part of a Tofino programmable switch, but it is

an IP connected device that can be placed anywhere inside the data center. The aggregator

maintains only soft state that is flushed on every new leader election.

The aggregator needs to keep per-follower state and the current commit index. For this

purpose, we use P4 registers that can be read and modified in the dataplane. For each node

the aggregator keeps its current log index and the number of completed requests necessary for

load balancing. The current log index information in the aggregator is effectively the match

index kept in the Raft leader, thus the aggregator should be seen as an extension of the leader
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and not as a standalone entity. Our implementation uses two P4 registers for each follower,

and each follower is handled in a different Tofino pipeline stage.

Figure 12.5 illustrates our implementation with the Tofino’s ingress and egress pipelines. When

receiving append_entries requests, the aggregator only has to forward the packet with a

modified destination IP address set to the appropriate multicast group. That multicast group

includes all nodes except for the sender. The aggregator keeps track of the current term.

Receiving an append_entries request with a higher term will lead to the aggregator flushing

its internal state.

Processing append_entries replies is more challenging since the aggregator needs to decide

whether the log should be committed up until a certain point and multicast the AGG_COMMIT
message to all the nodes. The AGG_COMMIT message should include the committed index

and the number of completed requests per node. To achieve this in one pass through the

dataplane, we keep the match_idx registers in the ingress pipeline and the completed_count

registers in the egress pipeline. When an append_entries reply arrives at the aggregator, the

aggregator updates the match index of the sender node, counts the number of nodes that have

received up until this log index to determine whether it should commit or not, and sets its

decision in per packet metadata. All replies go through egress processing, to at least update the

register holding the completed requests. If the aggregator decides in ingress that the commit

index is increased, it compiles an AGG_COMMIT reply that includes the completed requests of

the followers and multicasts it to all nodes. Otherwise, it drops the reply in egress.

There are cases where the leader announces up to the same log index, which is already

committed, in its append_entries request. This might happen either because there are no

new client requests, or because a message between the aggregator and the leader was lost.

In this case, the aggregator needs to forward the request to the followers to prevent a new

leader election and send an AGG_COMMIT for an already committed log index. If the aggregator

detects the same log index as in a previous append_entries request, it keeps track of it, and

sends an AGG_COMMIT for the next append_entries reply it receives, even if the commit index

is not increased. (check_log_idx, set_pending and check_pending stages)

The aggregator does not participate in the leader election, but it should be able to notify the

new leader that it is up and ready to serve requests. Thus, the new leader, after being elected,

contacts the aggregator sending a vote_request message. If the aggregator is up, it replies

with a vote_reply. Note that this vote_reply does not count for the leader election.

Finally, Figure 12.5 illustrates the logic split between the ingress and egress pipelines required

to meet the timing restriction of the ASIC: each stage of the pipeline can access only one

register. With the Tofino v1 ASIC , HovercRaft++ can accommodate up to 9 nodes, with full

line-rate processing, and without requiring any packet recirculation.
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12.7 Evaluation

We evaluate HovercRaft and HovercRaft++ with the primary goal of showing the benefits of

load balancing and in-network aggregation for datacenter SMR.

Our infrastructure is a of a mix of Xeon E5-2637 @ 3.5 GHz with 8 cores (16 hyperthreads), and

Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyperthreads), connected by a Quanta/Cumulus

48x10GbE switch with a Broadcom Trident+ ASIC. All machines are configured with Intel x520

10GbE NICs (82599EB chipset).

All experiments use the Lancet open-source load generator, which generates an open-loop

Poisson arrival process, relies on hardware timestamping for accurate RPC measurements,

and reports accurately the 99th percentile tail latency [201]. Lancet supports R2P2.

Our experiments compare four different system setups, all on top of DPDK:

(1) the unreplicated service (UnRep) is not fault-tolerant as the state-machine is not replicated.

Clients interact with that single server using R2P2. This setup is expected to have the lowest

latency, but it is not fault-tolerant.

(2) Our port of the vanilla Raft algorithm [49] on R2P2 and DPDK (VanillaRaft), which

directly integrates the SMR layer within the RPC layer. This setup incorporates our design

contributions from Subsection 12.3.1, but no protocol contributions.

(3) HovercRaft (HovercRaft), which incorporates protocol extensions to separate request

replication from ordering (Subsection 12.3.2), and the ability to load-balance replies (Subsec-

tion 12.3.3) and read-only operations (Subsection 12.3.5).

(4) HovercRaft++ (HovercRaft++), which leverages in-network aggregation to offload protocol

processing (Section 12.4). This last configuration leverages, in addition to the hardware above,

a Barefoot Tofino ASIC that runs within an Edgecore Wedge100BF-32X accelerator connected

to the Quanta switch via a 40Gbps link. We use the same Barefoot switch as a flow-control

middlebox.

We use a combination of synthetic micro-benchmarks and a real-world application. Synthetic

microbenchmarks depend on a synthetic service with configurable CPU service execution

time, request, and reply sizes. Requests to this service can be either read-only or read-write.

This methodology is used to determine protocol overheads in the presence of known upper

bounds in terms of either CPU or I/O, and therefore to exercise the bottlenecks independently.

For example, we run most experiments with a service time S = 1µs, which obviously limits

the throughput to ≤ 1000K RPS. Similarly, we run some experiments with 6KB replies, which

limits throughput to ∼≤ 200K RPS per 10GbE link.

The evaluation answers the following questions and quantifies the benefits of our design

decisions:
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Figure 12.6 – Tail latency vs. throughput for a fixed service time S = 1µs workload with 24-byte
requests and 8-byte replies on N=3 node cluster.

1. what is the overhead of turning an RPC service into a fault-tolerant one with SMR

implemented directly within the RPC layer in a 3-node cluster? (Subsection 12.7.1)

2. how is HovercRaft’s and HovercRaft++’s performance affected by the client request size?

(Subsection 12.7.1)

3. how do HovercRaft and HovercRaft++ scale with an increased number of nodes? (Sub-

section 12.7.2)

4. how does HovercRaft load balance replies and optimize read-only operations? (Subsec-

tion 12.7.3)

5. how does HovercRaft behave in the presence of failures? (Subsection 12.7.4)

6. how well does HovercRaft perform in practice with a production-grade application

(Redis) and an industry-standard benchmark (YCSB-E)? (Subsection 12.7.5)

12.7.1 One million SMR operations per second

We first characterize all four setups on a 3-node cluster using a microbenchmark with a tiny

service time (S = 1µs), minimum request size (24B) and minimum reply size (8B). There are

no read-only operations to be load balanced. For this baseline experiment, we also explicitly

disable the load balancing of client replies offered by HovercRaft, as to focus on protocol

overheads.

Figure 12.6 shows the latency versus throughput curve for the four setups. We observe that

there is a latency offset between the fault-tolerant configurations and the unreplicated case

that comes from the extra round-trip required to achieve consensus. Nevertheless, that offset

remains small and never exceeds 68µs, even for throughputs as high as 950K RPS. Also, note

that our experiment infrastructure depends on rather old hardware. Newer hardware, such as

in [179], is expected to reduce this offset.

Figure 12.6 also shows that all four setups achieve close to the maximum possible throughput

(1M RPS) under the 500µs SLO. This is a significant result as it outperforms other software-

based, state-of-the-art approaches that either depend on kernel networking, such as NOPaxos [222]
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Figure 12.7 – Achieved throughput under a 500µs SLO for a fixed service time service workload
with S = 1µs, 8-byte replies and different request sizes.
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Figure 12.8 – Achieved throughput under a 500µs SLO for a workload with fixed service time of
S = 1µs, 24-byte requests and 8-byte replies for different cluster sizes.

(by a factor of 4×), implement consensus inside the kernel, such as Kernel Paxos [103] (by a

factor of 5×), or depend on RDMA [293] (by a factor of 4×). The difference is explained by our

kernel-bypassed DPDK-based implementation and the leaner RPC protocol (R2P2) with its

direct Raft integration.

Figure 12.7 adjusts the first experiment by setting the request size to 64B and 512B (compared

to 24B in the first experiment) and reports the achieved client throughput in requests per

second under the 500µs SLO. We observe that HovercRaft and HovercRaft++ are unaffected by

the request size as they rely on multicast for request replication. However, the VanillaRaft
configuration is sensitive to request size, with the throughput under SLO reduced by 2% and

48% for 64B and 512B sized-requests, respectively, vs 24B requests for the baseline experiment.

12.7.2 Scaling Cluster Sizes Without Regret

We now scale the cluster size to 5, 7, and 9 nodes i.e., clusters that can tolerate 2, 3, and 4

failures, for the same experiment as the baseline in Subsection 12.7.1.

Figure 12.8 shows the achieved throughput under the 500µs SLO. In the 3-node cluster the

three configurations are equivalent. The differences become obvious with larger clusters,

with VanillaRaft most severely affected (−43% for 9 nodes). HovercRaft is unaffected up

to 5 nodes, but shows a reduction with 7 and 9 nodes as the leader has to communicate

independently with every follower. HovercRaft++ benefits from in-network aggregation and its

performance is independent of the cluster size: the communication overhead at the leader is
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always the same for any number of nodes, since the replication and aggregation are performed

at the P4 switch, which operates at line rate.

12.7.3 Scaling to Improve Performance

In the previous experiments, we showed how HovercRaft++ outperforms the other configura-

tions even without considering its load balancing benefits. We now enable the load balancing

mechanism of HovercRaft with bounded queues of up to 128 pending requests and increase

the reply size to 6KB; all other parameters remain the same as the baseline. All SMR operations

execute on all nodes.

Figure 12.9 plots the latency as a function of the achieved throughput for the unreplicated

case and HovercRaft++ with 3 and 5 nodes. As expected, the unreplicated setup hits an IO-

bottlenecked at ∼200K RPS, which corresponds to a fully utilized 10G link. Running on 3 and 5

nodes, increases the capacity of the system by almost 3× and 5×, since it is an IO-bottlenecked

workload and all followers reply to clients.

We now study specifically the CPU load balancing mechanisms in our design. The purpose of

this experiment is to study the impact of service time variability and scheduling disciplines on

performance. For this, we assume that 75% of operations are read-only. We use the baseline

configuration for request and reply sizes (which is free of I/O bottlenecks), and increase the

CPU service time to an average of S = 10µs. We switch from the fixed service time distribution

to a bimodal distribution, in which 10% of the requests are 10x longer than the rest. Based

on these parameters, the unreplicated service is expected to reach close to 100k RPS, while

HovercRaft++ on a 3-node cluster will be close to 200k RPS if perfect load balancing is achieved.

Figure 12.10 shows the 99th percentile tail-latency as a function of the achieved throughput

for the unreplicated and replicated cases. For HovercRaft++, we consider two load balancing

policies, RANDOM and JBSQ, with bounded queues of 32, due to the longer service time. We

observe that load balancing the read-only operations increases the CPU capacity of the system

for a 57% throughput improvement under the 500µs SLO. Also, the benefit of JBSQ over RANDOM
becomes obvious. JBSQ allows HovercRaft++ to deliver lower latency, and therefore higher

throughput under SLO, since it load balances read-only requests better by avoiding overloaded

followers. We expect the gap between the 2 curves to increase with the number of nodes in the

cluster given the more opportunities for careful load balancing.

12.7.4 Loadbalancing in the presence of failures

HovercRaft and HovercRaft++ enable pushing the achieved throughput load beyond the

capacity of a single node by leveraging the existing redundancy. In the presence of failures,

though, the capacity of the fault-tolerant system reduces. In such cases, HovercRaft and

HovercRaft++ should manage the failure and gracefully degrade their performance.
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Figure 12.9 – Latency versus throughput for S = 1µs fixed service time, 24-byte requests, and
6kB replies for different cluster sizes.
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Figure 12.10 – Latency versus throughput for a S = 10µs service time with bimodal distribution
on a 3-node cluster. Requests are 24-bytes, replies are 8-bytes, and 75% of operations are
read-only.

In the next experiment we study how HovercRaft++ behaves when the leader fails. We use

the same setup as in the previous experiment with the bimodal distribution of S̄ = 10µs and

75% read-only operations. Note that the capacity of the system with this request mix is 200k

RPS with 3 nodes, but drops to 160k RPS with 2 nodes. We load the system with a fixed load

of 165 kRPS which is below maximum capacity for the 3-node case, but above the maximum

capacity for the 2-node setup. We configure flow control to allow up to 1000 client requests in

the system. We measure the latency and throughput every second. At some point in time we

kill the leader and we study how the system behaves.

Figure 12.11 plots the 99-th percentile latency and throughput as a function of time. We

observe that before the leader failure the system serves 165k RPS under low latency. When the

leader fails, one of the followers takes over and the system operates with 2 nodes. Because

of bounded queues the new leader does not assign work to old leader. Throughput drops to

the system capacity of 160k RPS. The flow control mechanism drops approximately 5k RPS

maintaining the number of requests in the system below 1000, leading to increased latency,

but avoiding collapse.

12.7.5 YCSB-E on Redis

Finally, we evaluate our design on a real-world application that requires generic SMR func-

tionality for fault-tolerance. We run Redis [304] with the YCSB-E [70] workload.
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Figure 12.11 – 99-th percentile latency and throughput as a function of time in the presence
of failures a leader failure for a HovercRaft++ 3-node cluster and a bimodal distribution of
S̄ = 10µs with 75% read-only operations.

YCSB-E is a cloud workload that consists of SCAN and INSERT operations, in a 95:5 ratio,

modelling threaded conversations. It assumes 1kB records, with 10 fields of 100 bytes each.

INSERT requests add a new record and they have to be ordered since they are parts of a

conversation. SCAN requests query the last posts in a conversation, and they also need to be

ordered for correctness, but they are read-only operations, thus they can be load balanced.

We set the maximum number of elements to be returned in a SCAN request to 10.

Redis is an in-memory data store that supports basic data-structures and operations on them,

such as lists, hashmaps, and sets. We chose Redis because it can be easily extended through

user-defined modules [305]. Through Redis modules, users can define their own operations

that manipulate Redis data-structures. We leverage the feature to implement the SCAN and

INSERT operations of YCSB-E as single Redis operations that are guaranteed to execute within

an isolated transaction. Given the support for arbitrary SMR operations, turning Redis to fault-

tolerant requires an application agnostic approach similar to HovercRaft and HovercRaft++.

We ported Redis to use R2P2 instead of TCP for client operations. Beyond this protocol change,

running the fault-tolerant version of Redis via VanillaRaft, HovercRaft, or HovercRaft++

required no code modifications, showing the benefits of transport layer support for SMR.

Figure 12.12 plots the 99th percentile latency as a function of the achieved throughput for

the unreplicated case and the cluster configurations for HovercRaft++ with 3, 5, and 7 nodes.

YCSB-E on Redis is a CPU-bound. read-mostly workload. We observe that SMR has only a

very moderate negative impact on tail latency at low loads (up to 10K RPS), but that Hov-

ercRaft++’s ability to leverage data replication present in SMR substantially increases the

achieved throughput under the 500µs SLO. In the 7-node cluster, Redis can execute 142k

YCSB-E operations per second under SLO, while guaranteeing full state machine replication

and ordering of all operations, for a speedup of 4× over the unreplicated case. This speedup

of 4× is consistent with the upper bound predicted by Amdahl’s law given the relative cost of

SCAN and INSERT, and the fact that only SCANs can be load balanced.
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Figure 12.12 – Latency vs throughput for YCSB-E(95% SCAN 5% INSERT) on Redis with our
custom module to support YCSBE-E operations.

12.8 Discussion

Programmable Switches and Consistency: HovercRaft++ is not the first system to leverage

programmable switches for state machine replication. However, the use of programmable

switches in HovercRaft++ differs when compared to the previous work, and we believe our

proposal could be used in other distributed systems mechanisms, such as byzantine fault

tolerance and primary backup.

We split the proposals of using programmable switches in SMR in three main categories.

The first category includes systems that use P4 switches as sequencers. NOPaxos [222] and

Harmonia [381] take advantage of in-network compute to assign sequence numbers to client

requests under very low latency and high throughput. Despite its simplicity, one drawback in

this approach is handling switch failures. After a sequencer failure, the new sequencer has to

make sure that it respects the request order from the previous sequencer. Thus, these systems

depend on a second fault-tolerant group at the level of the network controller that maintains

an epoch number, that increases at every sequencer failure, and is used to bootstrap the new

sequencer.

The second category includes systems that fully offload the implementation of an SMR al-

gorithm on a programmable switch. For example, Paxos made switch-y [76] runs a Paxos

coordinator and acceptor inside the P4 dataplane. Although such proposals can significantly

improve performance, they suffer from the P4 dataplane limitations, such using fixed-size

small values.

HovercRaft++ partially offloads leader duties to the programmable switch by using it as a very

efficient packet processor. The programmable switch deals with Raft’s fan-out and the fan-in

communication patterns, while maintaining only soft state. If a switch fails, a new switch can

take over starting from an empty state, thus bypassing the problems in the first category. Also,

using a software-based leader running in a server offers a lot of flexibility to the system, unlike

the proposals from the second category.

HovercRaft and High Speed Networks: HovercRaft and HovercRaft++ go after both IO and
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CPU bottlenecks in SRM. Although the IO bottlenecks might become less important with

the advent of faster networks, e.g., 40G and 100G, the read-only operation load balancing

and in-network fan-out/fan-in management employed in HovercRaft++ focus only on CPU

bottlenecks and remain relevant despite bandwidth abundance. Especially, HovercRaft++ will

become much more beneficial in those high speed networks since it offloads packet IO to the

programmable switch and exposes a fixed overhead to the leader independent of the cluster

size.

12.9 Related work

SMR: Consensus and state machine replication have been widely studied both from a theo-

retic [276, 174, 274, 207, 208, 209, 210], and a systems point of view. Systems such as Span-

ner [71], Zookeeper [157], Chubby [48], etcd [105] depend on those algorithms and are widely

deployed serving millions of users. Researchers have optimized consensus systems to of-

fer SMR in a WAN environment [256, 237], inside the datacenter [222, 294], implemented

within the kernel [103], using RDMA fabrics [359, 293], or on top of FPGAs [162]. Similar

to NOPaxos [222] and Speculative Paxos [294], HovercRaft focuses on fault tolerance inside

the datacenter assuming lossy Ethernet fabrics (rather than RDMA). Despite leaderless ap-

proaches such as Mencious [237] and EPaxos [256] deal with leader bottlenecks, they lack a

global cluster view, unlike HovercRaft, thus reducing the load balancing potentials.

Scaling read-only operations: Read leases [136] proposed to optimize for read-only opera-

tions in SMR and have been used either in the form of master leases in Spanner [71], and

Chubby [48], or in the form of read quorums [257]. Those approaches either overload the

leader or assume application-specific knowledge. HovercRaft implements load balancing of

linearizable, read-only operations in an application-agnostic manner.

µs-scale computing: Exposing the hardware potential of µs-scale interactions within a data-

center to applications requires a new approach. This approach includes datacenter-specific

operating systems [34, 290, 299, 377, 178, 280], user-level networking stacks [191, 167, 179],

and transport protocols [202, 255]. HovercRaft builds on the R2P2 paradigm of pushing

support for RPC to the transport layer [202] by extending it to offer fault-tolerance.

Networking protocol design and implementation: The separation of request data and meta-

data for ordering is also used in previous systems [37, 26, 113, 176]. UDP has been proposed to

increase scalability of datacenter RPCs [271]. Bounded batching has been proposed to increase

throughput [34] and reduce tail latency [202]. In-network programmability and programmable

switches have been used for fault-tolerance, for sequencing in NOPaxos [222], to accelerate

Vertical Paxos in NetChain [170], or implementing the entire Paxos algorithm [76, 78, 335].

Such approaches either do not assume switch failures, or rely on another fault-tolerant group
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for state management. HovercRaft incorporates these ideas into the domain of SMR, and only

stores soft-state in the network, which is recreated at every leader election.

Alternative fault-tolerance models: Fault-tolerance can be offered at the system call layer

(Crane [73]), at the level of memory operations [77], in transactional databases [378, 221, 258],

key-value stores [285], or for multi-threaded applications (Rex [141] and Eve [184]). HovercRaft

provides fault-tolerance at the RPC layer in an application-agnostic manner and without code

modifications.

12.10 Chapter Summary

We showed that replication can simultaneously improve both fault-tolerance and performance.

Through the careful implementation of HovercRaft using modern kernel-bypass techniques

and appropriate datacenter transport protocols, we first show that SMR is suitable for µs-

scale computing, delivering 1 million ordered operations per second. Through the additional

use of multicast, in-network accelerators, and load balancing, we tackle SMR’s CPU and

I/O bottlenecks and enable the deployment of fault-tolerant applications in an application-

agnostic manner.
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13 Future Directions

13.1 Latency vs Flow Completion Time

This thesis took a first step towards co-designing operating system and network mechanisms

to improve µs-scale tail latency. However, the two communities (operating systems and

networking) remain distinct and focus on different metrics and different bottlenecks. The

networking community focuses on flow completion time and tries to minimize this through

the extensive line of research on congestion control and packet scheduling. The operating

systems community, on the other hand, focuses on end-to-end RPC latency and tries to

optimise it through careful scheduling and system overhead elimination.

Given that flow completion time is part of the end-to-end RPC latency there is a significant

potential in enhancing the design of congestion control and packet scheduling mechanisms

with operating system and end-host metrics. We argue that blindly optimising for flow com-

pletion time using complicated congestion control algorithms does not make sense if the

major part of end-to-end latency comes from queuing in the end-host and vice-versa. The

common understanding in the network community is that Shortest-Remain-Processing-Time

is the optimal policy for flow completion time [260] and recent state of the art approaches

focus on that, e.g., Homa [255]. A step closer to our proposed direction is coflow scheduling

that schedules flows belonging to the same task and aims to optimize the total flow completion

time [60, 61]. We believe that network and compute resources for RPCs can be modelled and

scheduled in a similar way. A link can be viewed as a single-core CPU that can run to comple-

tion or with processor sharing, while a flow is a task. Thus, an RPC can be seen as a chain of

three processors, the ingress link, the actual CPU, and the egress link. After modelling RPCs

like this we can use the same queuing theory findings and system techniques to yield better

end-to-end latency and tail-latency results, thus unifying existing scheduling and congestion

control mechanisms along with the two research communities.

Another step the two communities have to make together is towards system support for ultra

high speed (100G/400G) and reconfigurable networks. New hardware support is expected to

entirely shift the existing bottlenecks. While 1-2 cores are enough to process minimum sized
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packets on a 10G network, driving such high speed NICs will requires much more CPU power.

The networking community is making steps towards this direction studying the impact of

high speed [243] and reconfiguration [259] on existing networking mechanisms. The systems

community should catch-up and try answering similar questions, e.g., how to build an OS

scheduler for an application running on an optical circuit-switched network that periodically

schedules different flows. The goal should be to identify whether existing operating systems

can remain oblivious to the network changes and how such networking design decisions

should affect operating system design.

13.2 Looking Up the Stack

This thesis focuses on operating systems and network mechanisms without interfering with

the programming language and the application logic itself. We believe that there is potential

in designing applications specifically for predictable low latency latency. For example, state

of the art latency-critical applications, such as MICA [229], focus on efficiency rather than

predictability. An application that guarantees that any request type will finish in a predictable

and capped amount of time would be much easier to schedule. Zygos [299] and Shinjuku [178]

are complicated systems that tackle application-level unpredictability. IX [34], on the other

hand, has a very simple design that leads to better performance but suffers when application

service times vary. Designing applications assuming that the underlying operating system

mechanisms are very efficient but simplistic can lead to an interesting separation of concerns.

Figure 6.12 shows the potential of applications hinting operating system mechanisms and it is

a step towards this direction.

Similarly, existing programming languages do not offer abstractions or mechanisms that can

used to provide latency or scheduling guarantees. We believe there is work to be done in this

domain. A first step towards this direction was Martin Weber’s semester project [360]. In this

work we extend Clang with automatic coroutine scheduling capabilities. Specifically, inspired

by the Erlang scheduler [102] we created an LLVM pass that automatically yields execution

to the coroutine scheduler by counting the number of executions in a loop and the function

calls. Such a design is expected to remove the need for complex preemption-based operating

system approaches, such as the ones introduced in Zygos [299] or Shinjuju [178]. We envision

language support that through static analysis and dynamic instrumentation reduces service

time variability and enhances scheduling, thus improving tail latency.

13.3 Distrusting the Datacenter

Throughout the thesis we make the assumption that the datacenter is a trusted environment

in which there are no malicious components, e.g., eavesdroppers. This is a fundamental argu-

ment behind R2P2’s unencrypted communication or HovercRaft’s non-byzantine agreement.

Raising this assumption poses new challenges for latency-critical datacenter systems.
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More and more companies deploy encrypted datacenter communication schemes [109] both

for internal and external workloads. Encryption is a CPU-intensive task that has to be per-

formed on the critical path. Extending RPC transport protocols, e.g., R2P2 and eRPC [179], with

support for encrypted RPCs without losing the existing performance benefits is challenging

and might require significant redesign. Doing so on top of a 400G network will require several

changes across all the software layers and the hardware infrastructure.

Similarly, datacenter operators start requiring support for low latency byzantine agreements.

This needs stems either from new cloud products, e.g., multiparty computation such as

Microsoft’s CCF [310], or due to non fail-stop bugs that are a subset of byzantine failures. We

believe the techniques we developed in HovercRaft and the use of emerging programmable

network hardware can improve the throughput and latency of byzantine agreements while

keeping the same provably correct algorithms, e.g., PBFT [52].
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14 Conclusion

In this thesis we specifically focused on latency-critical µs-scale datacenter systems and

proposed ways to better evaluate and reason about the performance of these systems, ways to

optimise the existing abstractions while remaining backwards compatible, and we showed

how introducing new abstractions can improve performance by taking advantage of new

programmable hardware.

Initially, we introduced our system evaluation methodology on microbenchmarks and discrete

event simulations that enables us to isolate system bottlenecks and quantify system overheads.

Then, we proposed LANCET and SLOG that are tools for latency experiments that generate high

throughput load and measure latency accurately based on a robust experiment methodology

and hardware timestamping.

Having the necessary tools at our disposal for analysis and testing, we focused on existing

abstractions, namely serving RPCs on top of TCP. We proposed ZYGOS, a work-conserving

scheduler for µs-scale RPCs on a multicore system that imitates the behaviour of a single-

queue system through light-weight work stealing. We then looked at replicated cloud services

and we proposed CRAB, which is an L4 load balancer able to implement rich scheduling

policies, while participating only in the connection establishment phase and remaining off

the datapath till the flow completion. CRAB introduced a backwards compatible modification

to TCP that enables connection redirection. During our work with TCP, we identified that its

flow control mechanism, despite strong, is inefficient and agnostic to end to end latency, thus

we proposed an SLO-aware flow control mechanism for TCP that minimizes the latency SLO

violations.

In the last part of the thesis, we proposed R2P2, a new transport protocol for datacenter

RPCs and in-network policy enforcement, driven by the mismatch between TCPs bytestream

abstraction and the message-oriented nature of RPCs. R2P2 enabled us to offload server func-

tionality to the network and leverage in-network programmability on P4 switches. We used the

new abstraction to implement in-network RPC scheduling based on a novel scheduling policy

JBSQ that can load balance RPCs across machines while achieving maximum throughput
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and eliminating head of line blocking. We implemented a similar to TCP SLO-aware flow

control mechanism as an R2P2 policy with SVEN. Finally, we showed how the new abstraction

of request-response pairs allows pushing new functionality to the network. We introduced

application-agnostic fault-tolerant µs-scale RPCs with HovercRaft. HovercRaft eliminates the

bottlenecks of state machine replication through careful load balancing, multicasting, and

in-network fan-out/fan-in management.
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