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Abstract
Amid a data revolution that is transforming industries around the globe, computing systems

have undergone a paradigm shift where many applications are scaled out to run on multiple

computers in a computing cluster. As the storage and processing capabilities of a single

machine are unable to keep pace with the amount of data, companies turn to distributed

solutions to organize, persist, and analyze this Big Data. These new software solutions divide

datasets into partitions that are processed in parallel on separate machines.

A common problem in current cluster computing frameworks is load imbalance and limited

parallelism due to skewed data distributions, processing times, and machine speeds. Load

imbalance occurs when a few machines have more work and take longer to finish while the

others remain idle, resulting in reduced overall performance and low resource utilization. The

underlying cause for these issues is that data locality, where machines process the data stored

locally, leads to tight coupling between a partition and the machine on which it is placed.

This dissertation proposes a novel scatter architecture for computer cluster applications that

effectively addresses the load imbalance problem and improves resource utilization. Scatter

systems abandon data locality in favor of load balance. Existing systems first target locality,

bringing computation to the data, and only then attempt to minimize load imbalance. Instead,

we disregard any locality concerns and focus solely on achieving load balance by scattering all

data across machines and bringing data to the computation as needed.

The scatter architecture disaggregates compute and storage resources and pools all resources

together across machines. We ensure storage load balance by spreading the data for each

partition in small blocks across all storage devices and allow machines to retrieve data using

an efficient, decentralized scheme. Scatter systems achieve compute load balance at runtime

by dynamically adjusting the parallelism within a partition, either through work-sharing or by

offloading background tasks to other machines.

We design and implement three cluster applications inspired by the scatter architecture: a

graph processing system that scales out using secondary storage, a general-purpose analytics

framework, and a filesystem substrate that mitigates load imbalance for existing distributed

databases. We demonstrate that each application can gracefully handle significant load

imbalance with minimal performance degradation and that these applications can perform

up to an order of magnitude faster than existing systems.

Keywords: Big Data, cluster computing, load imbalance, locality, disaggregation, resource

pooling, graph processing, analytics, distributed database, scatter.
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Résumé
En pleine révolution des données qui transforme les industries à travers le globe, les systèmes

informatiques subissent un changement de paradigme où plusieurs applications passent à

l’échelle sur plusieurs ordinateurs dans des grappes de serveurs. Les capacités de stockage

et de traitement d’une seule machine étant incapables de suivre la quantité de données, les

entreprises se tournent vers des solutions distribuées pour organiser, conserver et analyser

ces mégadonnées. Ces nouvelles solutions logicielles divisent un jeu de données en plusieurs

partitions qui sont ensuite traitées en parallèle sur des machines distinctes.

Un problème fréquent dans les infrastructures à grappes actuelles est le déséquilibre de la

charge et les limitations au parallélisme provoqués par une distribution de données, un temps

de traitement ou des perfomances asymétriques. Il y a déséquilibre de la charge lorsqu’un petit

nombre de machines a plus de travail et nécessite ainsi plus de temps pour le terminer pendant

que les autres machines restent inactives, ce qui implique de mauvaises performances globales

et une faible utilisation des ressources. La cause sous-jacente de ces problèmes est que la

localité des données, impliquant que les machines traitent les données stockées localement,

conduit à un couplage strict entre une partition et la machine sur laquelle elle est placée.

Cette thèse propose une nouvelle architecture, dite à dispersion (scatter), pour les applications

de grappes qui résout efficacement le problème de déséquilibre de la charge et améliore

l’utilisation des ressources. Les systèmes à dispersion abandonnent la localité des données au

profit de l’équilibre de la charge. Alors que les systèmes existants ciblent d’abord la localité,

apportant le calcul aux données et ne tentent par la suite que de minimiser le déséquilibre de

la charge, nous ignorons toute considération d’ordre de la localité et nous nous concentrons

uniquement sur l’amélioration de l’équilibre de la charge en dispersant les données sur toutes

les machines et en les apportant ensuite au calcul en fonction des besoins.

L’architecture à dispersion désagrège les ressources de calcul et de stockage et regroupe

toutes ces ressources à travers les machines. Nous garantissons l’équilibre du stockage en

répartissant les données de chaque partition en petits blocs sur tous les périphériques de

stockage et permettons aux machines de récupérer des données efficacement à l’aide d’une

technique décentralisée. Les systèmes à dispersion atteignent l’équilibre de la charge de calcul

lors de l’exécution en ajustant dynamiquement le parallélisme au sein d’une partition, soit

par un partage du travail, soit en déchargeant certaines tâches d’arrière-plan sur d’autres

machines.
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Résumé

Nous concevons et implémentons trois applications de grappes inspirées de l’architecture à

dispersion : un système de traitement de graphes utilisant le stockage secondaire, un cadriciel

pour l’analytique générale, ainsi qu’une couche de système de fichiers qui minimise le dés-

équilibre de la charge pour les bases de données distribuées existantes. Nous démontrons que

chaque application peut gracieusement gérer un déséquilibre de la charge important avec

une dégradation minimale des performances et que ces dernières peuvent être jusqu’à un

ordre de grandeur plus rapides que les systèmes existants.

Mots-clés : Mégadonnées, grappe de serveurs, déséquilibre de la charge, localité, désagrégation,

mise en commun des resources, traitement de graphe, analytique, base de données distribuée,

dispersion.
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Zusammenfassung
Innerhalb der Datenrevolution, welche die Industrien der ganzen Welt umgestalten, haben

Computersysteme einen Paradigma-schub erfahren, durch welche etliche Anwendungen auf

eine Anzahl von Computern ausgebreitet werden, um ein Rechnerverbund zu bilden. Da die

Speicher- und Verarbeitungskapazität eines einzelnen Gerätes nicht imstande ist, mit dem

Anfall von Daten zu halten wenden sich Unternehmen zu Lösungen um die Massendaten

organisieren und analysieren zu können. Neue Software-Lösungen verteilen Dateien auf

Rechnerverbunde, welche gleichzeitig parallel auf mehreren Computern verarbeiten.

Ein gemeinsames Problem des derzeitigen Rechnerverbundrahmens ist ein Ungleichgewicht

und beschränkter Parallelismus, wofür verzerrte Daten, Verteilung, Verarbeitungszeit und die

Gerätegeschwindigkeit verantwortlich sind. Lastungleichgewichte entstehen, wenn einige

Geräte mehr Arbeit haben und mehr Zeit brauchen, während die anderen pausieren. Dies

führt zu mangelhafter Leistung und schlechter Nutzung der Ressourcen. Die zugrunde lie-

gende Ursache für diese Probleme ist, dass die Datenlokalität, in der Maschinen die lokal

gespeicherten Daten verarbeiten, zu einer engen Kopplung zwischen einer Datenpartition

und der Maschine führt, auf der sie platziert ist.

Diese Dissertation schlägt eine neue Ausstreuungs-Architektur für Anwendungen durch Rech-

nerverbunde vor, die das Problem des Ungleichgewichts der Datenladung angehen und die

Verwendung von Ressourcen verbessern. Die Verteilung auf Datenpartitionen verlässt Da-

tenlokalität zugunsten von Lastungleichgewicht. Während die vorhandenen Systeme zuerst

auf die Lokalität abzielen, indem sie die Verarbeitung der Daten ausführen und erst dann

das Lastungleichgewicht zu vermindern, wir ignorieren die Datenlokalität und fokussieren

lediglich auf Lastungleichgewicht durch die Verteilung der Daten auf etliche Geräte und laden

die Daten nach Bedarf.

Die Ausstreungs-Architektur zieht die Verarbeitungs- und Speicherressourcen auseinander

und verteilt alle Ressourcen über sämtliche Computer. Wir ermöglichen dem Lastausgleich

des Speichers, indem wir die Daten in kleinen Blöcken über alle Datenpartitionen verteilen

und es den Maschinen ermöglichen, Daten mit hilfe eines effizienten, dezentralen Schemas

abzurufen. Ausstreuungs-Systeme bringen Lastausgleich an Computer durch Einlösung des

Parallelismus innerhalb einer Datenpartition, entweder durch Arbeitsteilung oder delegieren

Hintergrundaufgaben an andere Computer.

Wir entwerfen und implementieren drei Rechnerverbund-Anwendungen aufgrund der Aus-

streuungs-Architektur: ein Betriebssystem für Graphen unter Benutzung von Sekundärspei-
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Zusammenfassung

cher, einen Rahmen für Allzweck-Analysen, und ein Ablagesystem, welches das Ungleichge-

wicht vorhandener Datenbanken mildert. Wir zeigen auf, dass jede Anwendung imstande ist,

bedeutendes Ungleichgewicht ohne Betriebsstörung zu bewältigen, sowie dass diese Anwen-

dungen bis zu einer Grössenordnung schneller als vorhandene Systeme arbeiten können.

Schlüsselwörter: Massendaten, Rechnerverbund, Lastungleichgewicht, Datenlokalität, Aus-

einanderlegen, Ressourcenzusammenlegung, Graphverarbeitung, Analysen, verteilte Daten-

bank, Ausstreuung.
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1 Introduction

The past decade has witnessed unprecedented growth in the amount of data produced world-

wide. Data has begun to fundamentally transform many industries, from high-energy particle

physics to social networks, including media, payments, finance, travel, gene sequencing, and

the internet of things [115]. By 2025, 463 exabytes of data will be created every day glob-

ally [141]. As more human activities become data-driven, many organizations are forced to

scale out storage and processing of this Big Data to distributed computing infrastructure.

Today, thousands of software utilities designed to store and process large-scale datasets on

a cluster of many computers are available. General-purpose cluster computing frameworks

such as Google MapReduce [73], and Apache Hadoop [93] have paved the way for a myriad

of improved solutions, including Apache Spark [160], Naiad [119], Apache Storm [10], and

Apache Flink [18]. In turn, specialized systems have become mainstream, allowing for eas-

ier development of machine learning [37, 116, 135], graph processing [1, 89, 111], and data

mining [118, 161] applications. New data storage paradigms have also emerged, enabling

horizontally-scalable, distributed databases such as Google’s BigTable [63], Amazon’s Dy-

namoDB [75], and MongoDB [19]. Most of these systems aim to maximize throughput while

accessing and processing a large amount of data and thus do not have tight latency require-

ments. They generally operate in a similar fashion, splitting large datasets into partitions

across machines, and then querying or processing each partition in parallel [19, 73, 111].

A frequent performance issue in cluster computing systems is load imbalance, where different

machines take different amounts of time to finish their assigned tasks, wasting resources

and limiting parallelism as the other machines remain idle [43]. Consequently, improving

load balance is a key concern for developers and cluster operators as more balanced systems

generally benefit from higher performance, faster job completion times, and better overall

resource utilization1. Load imbalance takes various forms and has many possibles causes,

including skewed data partitioning [106, 140], variance in generated intermediate state [77],

1In high-availability systems, load balancing also plays an important role to increase reliability by distributing
the load across redundant components and ensuring proper failover in the event a component fails. This particular
application area is not a primary concern in this thesis.
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data-dependent processing times or filtering [88], irregular memory accesses [144], hardware

heterogeneity or failures [40, 162], and interference from background tasks [51].

Achieving load balance in existing systems is hard because of data locality. Many current

cluster computing systems statically partition data and assign work upfront before starting

execution. They generally do not change assignments or increase the degree of parallelism

within a partition once the input is split and partitions are assigned to machines. Several

solutions have been proposed to improve load balance statically before execution starts, for

example, using estimates of the necessary resources per partition [98, 152], sampling the

input, or over-decomposition [129]. Unfortunately, these approaches introduce overhead, can

be imprecise, and require significant programmer involvement. Other proposals attempt to

correct load imbalance at runtime using speculative execution [74] or dynamic rebalancing

of data across partitions [36, 101, 102]. These techniques also introduce overheads and

unnecessarily increase the load on already overloaded machines [53, 54].

This dissertation proposes scatter computing, a novel architecture for distributed systems that

successfully addresses load imbalance and improves resource utilization. This architecture

builds on the observation that data locality, where each partition is stored and processed

entirely on a machine, is often of little help in high-throughput cluster environments. Scatter

systems disaggregate compute from storage and pool compute and storage resources on all

machines together to spread the load of all partitions evenly without locality considerations.

In the scatter architecture, all machines are collectively responsible for storing and processing

the data in every partition. As a result, machines with a “heavy” load can leverage additional

resources on other machines, and the system achieves better load balance.

Figure 1.1 illustrates the high-level architecture of a scatter system. Scatter systems scale

storage by pooling all storage devices together and spreading data uniformly in fine-grained

blocks (typically 1 MB) across all machines. They scale compute by dynamically adjusting the

degree of parallelism within a partition, leveraging spare CPU resources on other machines to

process a part of the partition. In the scatter architecture, any data block for any partition can,

in principle, be processed by any machine.

The scatter architecture separates partitioning from work assignment. A partition does not

belong to a machine; rather it is potentially shared among multiple machines at runtime. The

system provides a second, storage-level sharding mechanism that redistributes the data in

each partition in a balanced manner. Data blocks in a partition are accessed from different ma-

chines using a fast, decentralized scheme. This scheme makes it efficient to exploit parallelism

at the data block-level rather than at the partition-level. The scatter architecture leverages this

two-layer sharding mechanism and decentralized block access to achieve high performance

compared to single-layer partitioning based on over-decomposition, which creates a large

number of fine-grained partitions [129]. In scatter systems, partitioning remains very sim-

ple as partitions need not be balanced and can remain relatively large, avoiding significant

scheduling, serialization, and processing overhead [150].
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Figure 1.1 – The scatter architecture. Computation and storage are disaggregated, either logically (as
shown in the figure) or physically by using separate, dedicated machines. The processing and storage
resources of all machines are then pooled together. Each partition (represented in black/gray/white) is
striped in small blocks and uniformly distributed across all storage devices.

The scatter architecture presents several benefits compared to current systems. First, it

improves overall resource utilization in the presence of load imbalance by better balancing

CPU usage and I/O load across machines. Second, it makes systems more adaptive to changing

load conditions, as they can dynamically shift resources to help process “heavy” partitions.

Third, it removes the need for complex partitioning as it is no longer necessary to optimize

data placement, load balance, and locality. Finally, scatter systems achieve performance that

is often an order of magnitude better than existing systems in the presence of load imbalance.

We implement the scatter architecture in three different distributed computing applications:

graph processing using secondary storage, large-scale general-purpose analytics, and dis-

tributed LSM-based databases. We show how this new architecture improves scalability,

load balance, and utilization, and present the specific design decisions in each case. For

each application, we evaluate and compare the performance with best-in-class systems, and

demonstrate that our implementations provide significant performance improvements.

Thesis statement By disaggregating compute and storage and spreading the load evenly across

pooled resources, forgoing data locality, we achieve load balance in cluster computing applica-

tions, specifically graph processing, general-purpose analytics, and distributed databases.

In the remainder of this chapter, we survey the load imbalance problem in more detail and

motivate the need for new solutions, present the scatter architecture and three use cases, and

summarize the main results of this dissertation.
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1.1 Background & Motivation

In distributed systems, load imbalance is a problem wherein the utilization of resources

(compute, storage, network) across machines is unevenly distributed. Since all machines work

together in parallel, the presence of load imbalance is undesirable because machines with

higher resource usage will likely become a bottleneck. Load imbalance, therefore, decreases

performance for the entire system and leads to reduced resource utilization.

Figure 1.2 illustrates the load imbalance problem for iterative graph processing using the

widely-used GraphX [90] system that runs on top of Apache Spark [160]. We execute a Breadth-

First Search (BFS) algorithm on the Twitter graph [2] using 32 machines and measure the total

runtime for each machine. Runtimes exhibit high variance: while the mean runtime is 322s,

the shortest is 217s, and the longest is 948s. The result is significant resource under-utilization

as the application only terminates when the last machine is done, and therefore 31 machines

remain largely idle for ∼66% of the time. In this experiment, load imbalance is caused primarily

by two factors: data imbalance due to imperfect partitioning of the graph and compute

imbalance due to the characteristics of the BFS algorithm, which triggers computation on

different vertices in each iteration.

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20  25  30

R
u
n
ti
m

e
 (

s
)

Machine ID

Figure 1.2 – Illustrating the load imbalance problem. Individual runtimes for each of 32 machines
executing a parallel BFS computation on the Twitter graph using GraphX.

We next survey why load imbalance appears in distributed systems, what existing systems do

to address it, and the drawbacks of these solutions.

Skew induces resource imbalance Skew can take many forms [113]. Many real-world datasets

exhibit skew in the distribution of their features [106, 140]. For example, more people have

names starting with B than Z, stars and politicians have millions of followers on social net-

works, half of the world’s wealth is now in the hands of 1% of the population, etc. Even when

the distribution is uniform, data-dependent processing times, filtering, and irregular memory

accesses are hard to predict and can introduce skew in the processing of data records [88, 144].

Finally, processing the same data records may take different times on different machines due

to, e.g., heterogeneous hardware, hardware failure, accessing data from disk rather than main

memory, or interference from background tasks [40, 51, 162].
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Balanced partitioning is challenging To achieve scalability, distributed systems divide the

data into partitions (sometimes also called shards, fragments, or vnodes) and place these

partitions on different machines. Partitioning aims to balance the load to maximize parallelism

and to achieve locality to minimize data movement. Real-world data often exhibit complex

shape or skewed data distribution, making it difficult to partition in a balanced way [106, 140].

For example, graphs are notoriously hard to partition due to skewed vertex degree distribution.

Balanced graph partitioning is not only NP-hard but cannot even be approximated within a

finite factor [45]. Even partitioning tuples and documents can prove challenging, and sampling

may be necessary to determine the data distribution. As a result, partitioning is usually an

expensive processing step. In multistage or iterative applications, the amount of intermediate

state generated may differ by several orders of magnitude across machines [77], requiring

repartitioning. Uneven data distribution can also lead to storage capacity problems if the

data does not fit on a single machine or cause network link congestion as machines exchange

data [47, 71]. In summary, since partitioning is done upfront, it is challenging to guarantee

load balance during execution, especially for long-running distributed applications.

Heuristics are imprecise and expensive Once partitions are computed, a scheduler or re-

source manager [58, 60, 152, 153] assigns them to worker processes running on the machines

that are part of the distributed system. Workers then process the data, copying it locally, if

necessary, or service requests for their partitions. Unfortunately, optimally scheduling tasks to

machines in a cluster subject to various constraints, such as load balance, locality, priority,

and fast job completion time, is NP-hard [151]. Cluster schedulers must, therefore, rely on

heuristics to estimate task resource usage and balance load across machines, which is often

imprecise and expensive. Recent research suggests tuning the partitioning function to create a

large number of fine-grained partitions to facilitate balanced task placement [129]. Although

over-decomposition is a well-known technique to help mitigate the impact of stragglers, it

introduces significant overheads to process all these tiny tasks [150]. Finally, a common

scheduling technique that only addresses slow machines relies on speculatively executing

copies of slow tasks on different machines [74].

“One partition = one worker” inevitably leads to hotspots In general, schedulers attempt to

minimize network traffic by executing workers on the same machines as the partitions they are

assigned to maximize data locality. A key limitation in many existing distributed systems is the

fact that partitions are indivisible units of work to be processed by a single worker. Imbalanced

partitions cause hotspots, where one or a few machines do most of the processing work or

service a large fraction of requests. Some distributed systems attempt to rebalance parti-

tions by migrating data to machines with less load. In distributed databases, this is typically

achieved by changing the sharding key [36, 101]. In cluster computing frameworks, recent

work proposes to identify slow tasks and split them across multiple machines [102]. Finally, in

systems employing replication such as distributed databases, it is also possible to improve

load balance by addressing a portion of requests for a popular shard to its replicas. However,

this comes at the expense of synchronization overheads to keep the replicas synchronized.
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All these solutions can successfully mitigate imbalance in some cases but cause significant

data movement to/from a single machine, which can overwhelm resources if that machine is

already overloaded, and often come too late to be effective [53].

In summary, existing solutions to overcome load imbalance in distributed systems fail to

properly address its root cause: tight coupling between a data partition and the machine

responsible for processing it. This coupling stems from data locality, where distributed systems

always strive to have computation execute close to the data, ideally on the same machine.

Partitioning, sampling, and heuristics proactively seek to avoid load imbalance but operate

in a model constrained by data locality. Task splitting and partition rebalancing attempt to

correct load imbalance at runtime by moving data and/or compute on less loaded machines.

In fine, these reactive approaches fight against locality but do nothing to change the model.

Although data locality may be beneficial in some systems, e.g., real-time or transaction pro-

cessing, it is often harmful to distributed systems that deal with Big Data as it increases the risk

of creating load imbalance. Indeed, for many of these systems, data accesses are large, and

throughput, not latency, is the key performance metric. Therefore, locality should no longer

be a primary concern for the design of these systems.

A fundamental assumption allowing us to depart from data locality is that the network is not

a critical bottleneck in the system. In that case, data can be accessed from a remote device

at the same rate as from a local device. This assumption holds for clusters of modest size, in

which machines, even with state-of-the-art SSDs, are connected by a high-speed commodity

network. Recent work on datacenter networks suggests that this assumption also holds on a

larger scale [46, 91, 124, 126].

1.2 Contributions

This dissertation introduces the scatter architecture, a novel architecture that enables dis-

tributed systems to achieve load balance across machines. The insight behind our approach is

that addressing load imbalance in high-throughput systems requires abandoning data locality.

Therefore, scatter systems do not attempt to achieve locality and disaggregate compute and

storage resources. The scatter architecture goes beyond disaggregation by pooling the storage

and compute resources of all machines together and moving to a collaborative paradigm

where storage and compute loads, respectively, are each spread evenly across pooled storage

and pooled computation. We reverse the data locality paradigm in existing systems that

executes computation close to the data. In essence, in scatter systems, the computation can

run anywhere and only needs to pull the necessary data from remote, pooled storage. We

take a proactive approach towards storage load balance by placing data evenly everywhere,

and a reactive approach towards compute load balance by running computation where there

are spare processing resources. This design enables efficient, balanced data storage and

processing in the presence of arbitrary load imbalance.
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Machines in scatter systems share a common distributed storage layer that pools together all

their storage devices. This storage layer distributes all data uniformly in fine-grained blocks

(typically 1 MB) across all storage devices, disregarding locality concerns. We leverage our stor-

age layer to design an efficient, decentralized data access scheme based on oversubscription.

This storage design removes single-machine storage capacity bottlenecks and ensures I/O

load balance and high storage utilization even in the presence of imbalance across machines.

It also addresses storage load peaks on single machines caused by temporary I/O bursts as

each machine can efficiently access the available aggregate storage bandwidth.

All machines in a scatter architecture share responsibility for processing the data in every par-

tition through dynamic work sharing. Scatter systems balance the processing by dynamically

adjusting the parallelism within a single partition, allowing machines with spare compute

resources to assist an overloaded machine by processing a part of its partition. Scatter systems

solve synchronization issues due to concurrent data accesses to the same partition in an

application-specific manner. In this thesis, we introduce a generic work-sharing solution for

unordered data based on a bag abstraction that supports concurrently accessing the data

in a partition in a coordination-free manner. We also demonstrate how to leverage specific

characteristics of distributed databases by offloading background tasks to another machine.

We design three cluster computing applications based on the scatter architecture. These

applications include both new systems designed from scratch and existing systems augmented

with scatter capabilities. We now provide an overview of each application.

Graph processing Executing graph algorithms is one of the most popular and studied cluster

computing applications in the past decade for which many specialized systems have been

built [1, 64, 89, 90, 108, 111]. Graphs are a natural way to encode information and relationships,

and the challenges involved in their processing have garnered much interest in the systems

community due to their unpredictable access patterns, growing scale, and the power-law

vertex degree distribution of many real-world graphs. We build Chaos, a scale-out graph

processing system using secondary storage, and demonstrate that the system scales to trillions

of edges using only a few machines.

General-purpose batch analytics We propose Hurricane, a cluster computing system to

implement large-scale analytics algorithms. Cluster computing systems often perform poorly

on applications that exhibit significant load imbalance [17, 102, 120]. Hurricane offers similar

capabilities and expressiveness as Hadoop [93] and Spark [160], while ensuring skew resilience

and high resource utilization. Hurricane includes primitives for filtering, transforming, sorting,

counting, sketches [84], and supports multistage batch applications such as word counting and

click log [54], as well as iterative-style applications such as sparse matrix-vector multiplication

and graph processing.
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Distributed LSM-based databases Distributed databases [19, 20, 21, 22, 23, 44, 63, 69, 75,

154] organize large amounts of data in a structured or semi-structured manner, and provide

the ability to update and retrieve information. Distributed databases often face throughput

and latency issues due to load imbalance across machines and background task interference.

Unlike the previous two applications where a new system was built from scratch, this example

shows how existing distributed systems can use the scatter architecture. We build Hailstorm, a

filesystem designed based on the scatter architecture, and ran mostly unmodified databases

on this filesystem layer that improves throughput, latency, and utilization and interface it with

MongoDB [19] over MongoRocks [24] and TiDB [25], two existing distributed databases built

using Log-Structured Merge-tree (LSM) storage engines.

1.3 Main Results

We have implemented the scatter architecture in three open-source systems, which we com-

pare against state-of-the-art systems. Our evaluation focuses mainly on performance, espe-

cially for applications and datasets, showing significant load imbalance. We show that scatter

systems generally exhibit performance close to a perfectly balanced workload despite data

partitioning skew, compute imbalance, and interference from background operations. We also

demonstrate that scatter systems incur a negligible overhead in the absence of load imbalance.
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Figure 1.3 – Summary of main results.
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Figure 1.3 presents a summary of the main results in this thesis. For graph processing, we

compare Chaos with Apache Giraph [1], an open-source graph processing framework inspired

by Pregel [111], for the BFS and PageRank algorithms on an RMAT-27 graph [62] whose de-

gree distribution follows a power-law. For general analytics, we compare Hurricane with

Spark [160], a popular general-purpose cluster computing framework, using two typical ap-

plications on skewed inputs. Finally, for distributed databases, we augment the widely-used

MongoDB [19] with Hailstorm and compare it with a pure MongoDB baseline using a Zipfian

request distribution and four workloads: read-only, write-only, read+write, and scans. Overall,

scatter systems provide significantly better performance than the state-of-the-art systems

because they achieve better load balance, as shown in the next chapters.

We also demonstrate that scatter systems can process very large datasets using relatively few

resources. Using Chaos, we execute the BFS algorithm on a synthetic RMAT [62] graph with 16

trillion edges and 1 trillion vertices in 10 hours on a cluster of 20 commodity servers. Chaos

currently holds the third position for BFS in the Graph500 benchmark ranking for capacity [3],

a ranking consisting mainly of supercomputers.

1.4 Publications

The contributions and results presented in Sections 1.2 and 1.3 were first introduced in the

following publications:

• Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. Chaos:

Scale-out Graph Processing from Secondary Storage. In Proceedings of the 25th Sympo-

sium on Operating Systems Principles, SOSP ’15, pages 410–424. ACM, 20152.

• Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin Goel, and Willy

Zwaenepoel. Rock You Like a Hurricane: Taming Skew in Large Scale Analytics. In

Proceedings of the 13th EuroSys Conference, EuroSys ’18, pages 1–15. ACM, 2018.

• Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. Hailstorm: Disaggregated

Compute and Storage for Distributed LSM-based Databases. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’20, pages 301–316. ACM, 2020.

2The Chaos graph-processing system was designed and implemented in conjunction with Amitabha Roy.
Very-large-scale extensions to Chaos (Ragnarok) were designed and implemented solely by the author.
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1.5 Outline

This dissertation is organized as follows.

Chapter 2 introduces the scatter architecture, its key ideas, and components.

Chapter 3 proposes Chaos, a scatter system that enables processing graphs containing trillions

of edges using secondary storage on small commodity clusters.

Chapter 4 presents Hurricane, a general-purpose cluster computing framework based on the

scatter architecture that automatically handles load imbalance throughout execution.

Chapter 5 demonstrates the benefits of scatter computing for existing distributed LSM-based

databases by introducing Hailstorm, a filesystem substrate that improves throughput and

latency for skewed queries.

Chapter 6 surveys and compares the relevant literature.

Finally, we conclude and discuss possible research directions for future work in Chapter 7.
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2 The Scatter Architecture

In this chapter, we describe the scatter architecture that helps distributed systems achieve

load balance. The scatter architecture has two properties:

1. Compute-Storage Disaggregation. Separating processing from storage resources (logi-

cally or physically) allows each resource to scale independently. This property is nec-

essary to address load imbalance properly because it enables the system to size each

resource individually based on the requirements of a given task rather than adding

entire machines.

2. Resource Pooling and Load Scattering. Combining the resources of all machines and

dividing partitions into fine-grained units of data and work makes it possible to spread

data evenly across pooled storage and to spread its processing evenly across pooled

computation. In this collaborative paradigm, each machine is responsible for storing

and processing all tasks. This property is sufficient to ensure good load balance because

it allows the system to reassign spare resources available on a machine to process or

store a “heavier” partition on another machine.

The scatter architecture forgoes data locality in an attempt to improve load balance. By

dissociating compute from storage, we move away from the traditional model that executes

computation close to the data. However, disaggregation alone does not guarantee load balance

because it is still possible that most (if not all) data for a partition be placed on the same storage

machine. We remove any locality considerations from the system by pooling resources and

spreading the load evenly across them.

We first present the design of the scatter storage architecture. We then discuss the compute

architecture. Finally, we discuss fault tolerance, and the scalability limitations of the scatter

architecture.
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2.1 Storage Architecture

2.1.1 Overview

Storage is not only the first place where imbalance generally appears due to partitioning

skew, but it is also often slower than compute, and therefore likely to become a bottleneck in

distributed systems. Scatter systems have three requirements for storage: I/O load balance,

uniform data placement, and high storage utilization.

The scatter storage design relies on the following techniques to achieve these three goals:

1. Storage pooling. Scatter systems pool together storage devices to mitigate storage

hotspots and relieve machines with taxed storage resources by sharing the I/O load

across multiple machines.

2. Uniform, fine-grained sharding. Scatter systems split all data into fine-granularity

blocks (typically 1 MB) and distribute these blocks uniformly across all storage devices,

disregarding data locality. This approach removes single-machine storage capacity

issues and spreads the I/O load uniformly.

3. Decentralized access and oversubscription. Scatter systems allow data access to any

block of data from any machine. They leverage this decentralized access to avoid having

storage devices un- or under-utilized by relying on a batch sampling technique where

each storage device always has outstanding requests to service.

Figure 2.1 presents the scatter storage architecture. In the rest of this chapter, we describe

each technique and explain how they help improve storage load balance and utilization. Next,

we demonstrate how our storage architecture makes it possible to implement a fine-grained

data sharing abstraction to support dynamic work sharing.

2.1.2 Storage Pooling

Figure 2.1 illustrates the architecture of a scatter storage service that pools storage from all

machines using a client-server approach. Each compute node in the system runs a storage

client, which exposes a filesystem interface that can be used to store and access data on

the storage nodes. Each client divides files into blocks and places them on storage nodes.

Each storage node runs a storage server that mediates access to the local storage devices and

services client requests. Applications run as processes on the compute nodes and use their

co-located client to perform storage operations.

This client-server architecture effectively decouples logical from physical storage, as clients

store application data on remote storage servers. This decoupling enables logical disaggrega-

tion between compute and storage resources on a machine. Physical disaggregation is also

possible by using separate, dedicated machines for computation and storage.
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Figure 2.1 – The scatter storage architecture.

Our distributed storage service helps improve I/O load balance and avoids storage bottlenecks

by pooling all storage devices in the cluster. As a result, clients can access multiple storage

devices to spread the I/O load and benefit from fast data access. Another important conse-

quence of this design is that storage disaggregation can help improve availability. Indeed,

in the event of a compute node crash, we can easily spawn a new application process on a

different machine to handle requests or process the data in a partition.

Clients identify files by a universally unique identifier (UUID) and store them in a flat names-

pace across servers. By default, clients can only see and modify their files, not the files created

by other clients. Clients also keep all other metadata (file path, size, timestamps, permission,

etc.) locally, since a file is typically accessed by a single client at a time. When file sharing across

clients is necessary, sharing UUIDs and metadata is sufficient to provide access. Implementing

synchronization for shared files is left to the application developer.

2.1.3 Uniform, Fine-Grained Sharding

As shown in Figure 2.1, a storage client splits all files into small blocks (typically 1 MB) and

spreads blocks uniformly in a pseudorandom cyclic order across all storage servers, disregard-

ing any locality concerns. This scheme alleviates the need for complex data placement and

makes it easy to locate any block of data within a file. Given a file F , block size B , the number

of servers N , and a pseudorandom mapping function locF : {0...N −1} → {0...N −1}, the byte

at offset I in F is on server locF (b I
B c mod N ) in block number b I

B N c.
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The scatter storage architecture is designed to support dynamically spreading the computation

load within a single partition by adaptively adjusting the degree of parallelism. This allows

multiple workers to collectively process the same partition by each processing a subset of the

data. Adjusting the parallelism at runtime requires careful data placement, or else storage can

become a bottleneck. For instance, placing all data on the machine that was assigned the parti-

tion will likely cause that machine to experience additional pressure due to data redistribution.

Fine-grained storage-level sharding automatically distributes file blocks uniformly across all

storage servers, ensuring that data placement is uniform, which, in turn, helps balance I/O

load evenly. Uniform storage block placement also has an essential consequence for capacity:

small and large partitions can cohabit without requiring additional provisioning or expensive

rebalancing.

Since blocks are the unit of data storage and access, choosing a suitable block size is essential.

In general, the size of a block is chosen to be large enough so that access to storage appears

sequential, but small enough so that they can serve as units of distribution to achieve random

uniform distribution across servers. Blocks are also the smallest amount of work that can be

dynamically redistributed. Therefore, to achieve load balance, they need to be relatively small.

When servers use magnetic disks for storage, we find that block sizes of 1 to 16 MB incur

minimal impact from random accesses to the disk. When using SSDs, we typically opt for a

block size of 1 MB. Our sensitivity analysis indicates that block sizes ranging from 100 KB to

4 MB provide similar performance for most workloads. 1 MB provides a good balance between

performance and remote access latency, incurs minimal impact from random accesses to

the disk. Finally, if data is accessed at a finer-granularity than 1 MB and response latency is

important, we find that block sizes of 32 KB or 64 KB are an excellent choice, even though they

incur additional overhead from the network and the larger number of blocks causes more

transitions to kernel mode.

2.1.4 Decentralized Access and Oversubscription

The scatter storage service has a fully decentralized data plane that allows fast data access

from any storage client without relying on a centralized entity that maintains a directory

of files, metadata, and block locations. Since data placement is deterministic, clients can

independently request any block in a file from any server, and they can add, replace, or remove

blocks at any server. Therefore, clients locate blocks on their own and communicate directly

with the corresponding servers. This decentralized approach reduces latency as it avoids the

need for a centralized data directory.

In the absence of data locality and with storage blocks spread uniformly across all machines,

using a centralized directory that would place data blocks and coordinate access based on the

load metrics of each machine is both unnecessary and undesirable. Not only would it increase

block access latency, but it would also introduce a single point of failure, and it could quickly

become a bottleneck due to a large number of fine-granularity storage blocks to manage.
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However, this decentralized data plane can lead to load imbalance at storage servers in the

absence of any coordination between clients accessing different servers. Since block requests

generally involve random servers due to pseudorandom block placement, several clients may

address their request to the same server, leaving other servers idle.

Scatter storage uses oversubscription to ensure high storage utilization. To keep all servers

busy with high probability, we rely on a batch sampling technique inspired by [117, 132] where

each client keeps multiple requests to different servers outstanding. Figure 2.1 illustrates this

for the storage client in compute node 0. The number of such outstanding requests, called

the batch factor K , is chosen to be the smallest number that with high probability keeps all

servers busy all the time. The proper batch factor is derived as follows.

If a client has K requests outstanding, then only some fraction are being processed by the

storage sub-system. The other requests are in transit. To ensure there are K outstanding

requests at the servers, the clients use a larger request window ΦK . Φ is necessary to account

for network delays and message processing (serialization, etc.). This amplification factor Φ

can easily be computed by repeated application of Little’s law [107]:

K =λDstor ag e

ΦK =λ(Dstor ag e +Dnet wor k )

where λ is the throughput of the server in terms of requests per unit time, Dstor ag e is the

time for storage to service one request and Dnet wor k is the application-level round trip time.

Solving we have the required amplification Φ:

Φ= 1+ Dnet wor k

Dstor ag e
(2.1)

With this choice of Φ, we end up with K outstanding requests from each of M clients dis-

tributed at random across the N storage servers.

We can derive the utilization of a particular server as follows. The probability that a server is

un-utilized is equal to the probability that no client picks it for any of its K requests:

(
C N−1

K

C N
K

)M

= (1− K

N
)M

The utilization of the server is therefore the probability that at least one client picks it, a

function of the number of servers N and the batch-factor K :
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Figure 2.2 – Theoretical utilization for different number of storage nodes as a function of the batch
factor K .

U (M , N ,K ) = 1− (1− K

N
)M (2.2)

Figure 2.2 shows the utilization as a function of the number of storage servers and for various

values of K . For a fixed value of K , the utilization reduces with an increasing number of servers

due to a greater probability of servers being left idle but is asymptotic to a lower bound. The

lower bound is simply:

lim
M→∞,N→∞

U (M , N ,K ) = 1− 1

eK
(2.3)

Therefore, it suffices to pick a value for K large enough to approach 100% utilization regardless

of the number of storage servers. For example, using K = 5 means that the utilization cannot

drop below 99.3%.

Clients ensure that they each have at most ΦK concurrent requests in progress. This also

serves as a simple flow control scheme to avoid overwhelming storage nodes.

Prefetching The above description assumes that at any point in time, a client knows which

next blocks to access and can issue more outstanding requests. However, that may not always

be the case for each file and application, and as a result, storage utilization may be lower than

expected. Scatter applications are, therefore, particularly well-suited for sequential access

workloads where the client can automatically prefetch several blocks.
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2.1.5 Fine-Grained Data Sharing with Bags

To dynamically adjust the degree of parallelism within a partition, separate processes running

on different compute nodes must be able to access disjoint subsets of the data in that partition

concurrently. In Subsection 2.1.2, we argued that data sharing between clients generally

requires programmers to implement custom solutions. In this section, we describe how our

storage architecture makes it easy to support a bag abstraction that enables fine-grained data

sharing across multiple clients in a coordination-free manner.

A bag is an unordered collection of chunks. Chunks contain data records used by the appli-

cation and are similar to blocks. However, unlike blocks, a single data record cannot span

multiple chunks, i.e., each chunk contains an integral number of data records. Bags allow

concurrent accesses, but only support a subset of operations:

• insert(chunk): Inserts (append) a chunk into the bag.

• remove(): Removes (read) a chunk from the bag and returns it to the caller. The

removed chunk is chosen at random. If the bag has no more blocks, this operation fails,

indicating that the contents of the bag have been fully consumed.

The bag abstraction guarantees that each chunk in the bag is returned exactly once. Ensuring

that chunks are not lost and that the same chunk is not processed multiple times is usually

required to guarantee correct semantics for the application when sharing a bag across multiple

compute nodes.

Bags are implemented as files in our distributed storage service but do not rely on the locF

mapping to find specific blocks. This is because bags are unordered and, therefore, inserts and

remove can be performed at any storage server. However, clients still use the pseudorandom

mapping l ocF as a cyclic permutation of servers to determine the next server to pick for each

operation to maintain I/O load balance and high utilization. The bag abstraction provides

a prefetching-friendly workload and, therefore, works well with oversubscription (§2.1.4)

because applications generally remove chunks from a bag until it becomes empty.

A chunk insert request simply appends the chunk to the file associated with the bag by sending

a request to the next server in the cyclic permutation. The append operation is atomic,

ensuring that concurrent inserts are performed correctly. Insert operations are performed

in a FIFO order. Similarly, a remove operation is implemented by reading a block from the

file sequentially on the next server in the permutation, which increments the file pointer and

ensures that the same block is never returned again. An end-of-file indicates that all blocks

have been removed from this server. To determine that a bag is empty, a client must get an

end-of-file from each server.
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2.2 Compute Architecture

2.2.1 Overview

Once storage load is balanced in a distributed system (§2.1), CPU is the next likely resource

to suffer from imbalance and potentially become a bottleneck. Scatter systems adopt a

collaborative paradigm where all compute nodes share responsibility for processing the data

in every partition. These systems improve the CPU load balance by dynamically adjusting the

parallelism within a single partition.

In this dissertation, we explore two ways to adjust parallelism dynamically:

1. Dynamic work sharing enables machines with spare processing resources to assist an

overloaded machine by processing a part of its partition.

2. Background task offloading aims to alleviate some CPU pressure on overloaded ma-

chines by allowing them to outsource non-critical background tasks to less utilized

machines.

Both approaches would not make sense in a system with data locality. Executing computation

on machines that do not have the necessary data locally would first require moving that data to

the computation. In the scatter architecture, it does not matter where the data is, and therefore

it is possible to execute the computation anywhere. Workers running on any compute node

can simply pull the necessary data at a fine granularity from pooled storage.

In the following section, we describe each technique in more detail.

2.2.2 Dynamic Work Sharing

Ideally, we would like to leverage parallelism to speed-up the processing of a heavy partition by

having multiple compute nodes process a part of the partition in parallel. The scatter storage

architecture supports fine-grained data sharing within a single partition, in turn allowing

fine-grained dynamic work sharing across compute nodes by having storage clients on each

compute node pull blocks from the same partition. Since the data for every partition is spread

in blocks across storage nodes, we need not worry about overloading an already overloaded

machine by asking it to relinquish part of its partition and migrate the corresponding data.

Instead, the overloaded compute node can share the data for its partition by transmitting the

UUIDs of its associated files (§2.1.2) to clients running on separate compute nodes, allowing

other worker processes to access the data and share in the processing work directly. However,

this potentially requires clients accessing data in the same partition concurrently to coordinate.

Each application must, therefore, implement its solution to this problem.

The bag abstraction described in Subsection 2.1.5 is one such example of a solution that

supports concurrent accesses to the same dataset by multiple clients in a coordination-free
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manner. Based on CPU load metrics, systems can easily adjust the number of worker processes

processing a single bag to achieve compute load balance. Upon detecting a CPU bottleneck

on a compute node, the system simply spawns a new worker process on a different compute

node to assist processing the data in the bag. Over time, this simple scheme redistributes

compute resources more evenly across compute nodes. Spawning a new worker is not always

free, as there may be overhead associated with combining multiple partial results for the same

partition in a single consistent output. We explore a simple solution to this problem based on

programming-model support for partial output merging and heuristics that balance the cost

of merging outputs with the benefits of increased parallelism.

We first use the bag abstraction in Chapter 3 to support work stealing in large-scale graph

processing. In Chapter 4, we further explore this abstraction and use it as a first-class citizen

in the Hurricane cluster computing framework.

2.2.3 Offloading Background Tasks

In addition to dynamic work sharing, or when assisting a compute node with part of its task is

not supported or possible, CPU load can be balanced by offloading background tasks from an

overloaded node.

Background tasks are not directly related to a system’s primary operations but are in gen-

eral necessary for its correct functioning. Examples of background tasks include, e.g., asyn-

chronous data replication [148], logging, flushing in-memory buffers, garbage collection, or

compaction in Log-Structured Merge-tree-based databases [133].

Some background tasks can be particularly expensive and consume significant resources to

run. Whenever possible, scatter applications should strive to offload “heavy” background tasks

to compute nodes with low resource utilization. In doing so, compute nodes experiencing high

load from processing their main task or servicing requests can reclaim some much-needed

resources.

In this dissertation, we explore background task offloading in Chapter 5, where we design

a mechanism to offload compaction tasks in Log-Structured Merge-tree-based distributed

databases.

2.3 Fault Tolerance

We briefly discuss fault tolerance concerns for the scatter architecture. In the event of a crash,

we primarily rely upon the failure recovery mechanisms implemented in the application.

We present the details of these mechanisms, which are application-specific, in the following

chapters. Similarly, applications should implement their own replication (if needed) as it is

an application-level concern that cannot easily be implemented in a generic way and with

insufficient visibility.
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A consequence of our architecture is that all persistent state is placed on storage nodes, while

clients and processes generally only contain soft state. This allows applications to implement

simpler recovery mechanisms in case of compute crashes. In some cases, this architecture

also enables easier failover if a process or machine crashes by starting a new process elsewhere

that accesses the same data.

When pooling storage, a single disk failure or machine crash may cause all partitions to become

unavailable since the data for each shard is spread uniformly. We mitigate single-disk failures

using standard techniques to ensure redundancy, e.g., RAID [136]. We also support optional

primary-backup replication at the block level to further protect data durability and filesystem

availability. File metadata is persisted locally and replicated.

2.4 Scalability Limitations

Since scatter systems spread data across all storage nodes, without considerations for locality,

an underlying assumption in our design is that machine-to-machine network bandwidth

exceeds the bandwidth of a storage device and that network switch bandwidth exceeds the

aggregate bandwidth of all storage devices in the cluster. Under this assumption, the network

is never the bottleneck.

This requirement is met by many workloads and deployments today. Recent work has shown

that for many analytics workloads, the network is not the bottleneck, and its effect is mostly

irrelevant to overall performance [55]. This is because much less data is sent over the network

than is accessed from disk [130]. Our storage system is designed to optimize the latter bot-

tleneck. While our approach increases network communication, network interface speeds

today are easily able to keep up with storage bandwidth. A 10 GigE interface can easily support

modern disks as well as fast SSDs, and 40 GigE networks are becoming more common. Thus,

we expect that network endpoints will not be a bottleneck in our deployments. Similarly,

high-bisection bandwidth is available at rack scale today, and many clusters are deployed at

these scales. For example, in 2011, Cloudera reported a median cluster size of 30 and a mean

of 200 nodes [9]. Similarly, many Hadoop clusters have 100-200 nodes [11]. For larger installa-

tions, data-center scale full bisection bandwidth networks are being actively researched and

deployed [46, 91, 124, 126].

Although not explored in-depth in this work, scatter systems could define the granularity at

which resources are pooled based on the availability of high bisection bandwidth. For example,

if sufficient bandwidth is available within a rack but not across racks, the system could only

pool resources within each rack, while using a standard architecture across racks.
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3 Graph Analytics with Chaos1

In this chapter, we consider a first distributed system based on the scatter architecture: Chaos,

a system that scales out graph processing from secondary storage.

3.1 Introduction

Processing large graphs is an application area that has attracted significant interest in the

research community [64, 89, 90, 94, 99, 103, 111, 122, 123, 125, 137, 144, 155, 163].

Triggered by the availability of graph-structured data in domains ranging from social networks

to national security, researchers are exploring ways to mine useful information from such

graphs. A serious impediment to this effort is the fact that many graph algorithms exhibit

irregular access patterns [109]. As a consequence, most graph processing systems require

that the graphs fit entirely in memory, necessitating either a supercomputer or a very large

cluster [89, 90, 122, 123].

Systems such as GraphChi [103], GridGraph [163] and X-Stream [144] have demonstrated

that it is possible to process graphs with edges in the order of billions on a single machine,

by relying on secondary storage. This approach considerably reduces the entry barrier to

processing large graphs. Such problems no longer require the resources of very large clusters

or supercomputers. Unfortunately, the amount of storage that can be attached to a single

machine is limited, while graphs of interest continue to grow [137]. Furthermore, the perfor-

mance of a graph processing system based on secondary storage attached to a single machine

is limited by its bandwidth to secondary storage [112].

We investigate how to scale out graph processing systems based on secondary storage to

multiple machines, with the dual goals of increasing the size of graphs they can handle to

1This chapter is based on the following publication: Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic,
and Willy Zwaenepoel. Chaos: Scale-out Graph Processing from Secondary Storage. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, pages 410–424. ACM, 2015. The author of this dissertation
designed and implemented this system in collaboration with Amitabha Roy, and led the experimental evaluation
jointly with Jasmina Malicevic. After publication, the author developed the very-large-scale extensions described
in Section 3.11, and maintains the software to this day.
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the order of a trillion edges and improving load balance to enhance their performance, by

accessing secondary storage on different machines in parallel.

The conventional approach for scaling graph processing to multiple machines is first to

partition the graph statically, and then to place each partition on a separate machine, where

the graph computation for that partition takes place. Partitioning aims to achieve load balance

to maximize parallelism and locality to minimize network communication. Achieving high-

quality partitions that meet these two goals can be time-consuming, especially for out-of-core

graphs. Optimal partitioning is NP-hard [85], and even approximate algorithms may take

considerable running time. Also, static partitioning cannot cope with later changes to the

graph structure or variations in access patterns throughout the computation.

Chaos takes a fundamentally different approach to scale out graph processing on secondary

storage. This approach is grounded on the principles of the scatter architecture and, therefore,

parts with locality as a first principle. First, rather than performing an elaborate partitioning

step to achieve load balance and locality, Chaos performs a very simple initial partitioning to

achieve sequential storage access. It does this by using a variant of the streaming partitions

introduced by X-Stream [144]. Second, rather than locating the data for each partition on a

single machine, Chaos spreads all graph data (vertices, edges, and intermediate data, known

as updates) uniformly randomly over all secondary storage devices to balance I/O load across

machines. Data is stored in large enough chunks to maintain sequential storage access. This

approach assumes that network bandwidth is sufficient and, therefore, network is not a

bottleneck. Third, since different streaming partitions can have very different numbers of

edges and updates, and, therefore, require very different amounts of work, Chaos increases

the degree of parallelism by allowing more than one machine to work on the same streaming

partition, using a form of work stealing [56] for balancing the compute load between machines.

We evaluate Chaos on a cluster of 32 machines with ample secondary storage and connected

by a high-speed network. We can scale up the problem size by a factor of 32, going from

1 to 32 machines, with on average only a 1.61× increase in runtime. Similarly, for a given

graph size, we achieve speedups of 10 to 22 on 32 machines. The aggregated storage also lets

us handle a graph with 16 trillion edges. This result represents a new milestone for graph

processing systems on small commodity clusters. In terms of capacity it rivals those from the

high performance computing community [4] and very large organizations [5] that place the

graph on supercomputers or in main memory on large clusters. Therefore, Chaos enables the

processing of very large graphs on rather modest hardware.

We also examine the conditions under which good scaling occurs. We find that sufficient

network bandwidth is critical, as it underlies the assumption that locality has little effect.

When sufficient network bandwidth is available, performance improves more or less linearly

with available storage bandwidth. The number of cores per processor has little or no effect, as

long as enough cores are available to sustain high network bandwidth.
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The main contributions of this work are:

• We build the first efficient scale-out graph processing system from secondary storage

(§3.2).

• We use a very cheap partitioning scheme to achieve sequential access to secondary

storage rather than expensive partitioning for locality and load balance (§3.3).

• We allow multiple machines to work on the same partition to achieve compute load

balance through randomized work stealing (§3.5).

• We forgo locality in storage access, and we achieve I/O load balance by uniformly

spreading and accessing data at random (§3.6).

• We demonstrate that Chaos achieves high capacity and performance, as well as good

load balance on a cluster of 32 machines (§3.9).

3.2 Programming Model

Chaos adopts an edge-centric and somewhat simplified GAS (Gather-Apply-Scatter) model [64,

89, 144].

The state of the computation is stored in the value field of each vertex. The computation takes

the form of a loop, each iteration consisting of a scatter2, gather and apply phase. During the

scatter phase, updates are sent over edges. During the gather phase, updates arriving at a

vertex are collected in that vertex’s accumulator. During the apply phase these accumulators

are applied to produce a new vertex value. The precise nature of the computation in each

of these phases is specified by three user-defined functions, Gather, Apply, and Scatter,

which are called by the Chaos runtime as necessary.

Listing 3.1 provides pseudo-code for the overall computation. During the scatter phase, for

each edge, the Scatter function is called, taking as argument the vertex value of the source

vertex of the edge, and returning the value of an update sent to the destination vertex of the

edge. During the gather phase, for each update, the Gather function is called, updating the

accumulator value of the destination vertex of the update using the value supplied with the

update. Finally, during the apply phase, for each vertex, the Apply function is called, applying

the value of the accumulator to compute the new vertex value.

1 while not done
2 // Scatter
3 for all e in Edges
4 u = new update
5 u.dst = e.dst
6 u.value = Scatter(e.src.value)

2The scatter phase, one of the three phases in the GAS model, should not be confused with the scatter architec-
ture introduced in this dissertation.
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7 // Gather
8 for all u in Updates
9 u.dst.accum = Gather(u.dst.accum, u.value)

10 // Apply
11 for all v in Vertices
12 Apply(v.value, v.accum)

Listing 3.1 – GAS Sequential Computation Model.

Listing 3.2 shows, for example, how the PageRank algorithm [134] is implemented in the

GAS model. When executing on multiple machines, vertices may be replicated to achieve

parallelism. For each replicated vertex there is a master. Edges or updates are never replicated.

During the scatter phase, parallelism is achieved by processing edges (and producing updates)

on different machines. The update phase is distributed by each replica of a vertex gathering a

subset of the updates for that vertex in its local accumulator. The apply phase then consists of

applying all these accumulators to the vertex value (see Listing 3.3).

1 // Scatter
2 function Scatter(value val)
3 return val.rank / val.degree
4

5 // Gather
6 function Gather(accum a, value val)
7 return a + val
8

9 // Apply
10 function Apply(value val, accum a)
11 val.rank = 0.15 + 0.85 * a

Listing 3.2 – PageRank using Chaos.

1 // Apply
2 for all v in Vertices
3 for all replicas v’ of v
4 Apply(v.value, v’.accum)

Listing 3.3 – Apply in Distributed Computation Model.

The edge-centric nature of the programming model is evidenced by the iteration over edges

and updates in the scatter and gather phases, unlike the vertex-centric model [111], in which

the scatter and gather loops iterate over vertices. This model is inherited from X-Stream,

and has been demonstrated to provide superior performance for graph processing from

secondary storage [144]. The GAS model was introduced by PowerGraph, and naturally

expresses distributed graph processing, in which vertices may be replicated [89]. Finally,

Chaos follows the simplifications of the GAS model introduced by PowerLyra [64], scattering

updates only over outgoing edges and gathering updates only for incoming edges.
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As in other uses of the GAS model, Chaos expects the final result of multiple applications

of any of the user-supplied functions Scatter, Gather and Apply to be independent of the

order in which they are applied in the scatter, gather and apply loops respectively. Chaos takes

advantage of this order-independence to achieve an efficient solution. In practice, all our

algorithms satisfy this requirement, and so we do not find it to be a limitation.

3.3 Streaming Partitions

Chaos uses a variation of X-Stream’s [144] streaming partitions to achieve efficient sequential

secondary storage access. A streaming partition of a graph consists of a set of vertices that fits

in memory, all of their outgoing edges and all of their incoming updates.

Executing the scatter and gather phases one streaming partition at a time allows sequential

access to the edges and updates while keeping all (random) accesses to the vertices in memory.

In X-Stream the size of the vertex set of a streaming partition is – allowing for various auxiliary

data structures – equal to the size of main memory. This choice optimizes sequential access

to edges and updates while keeping all accesses to the vertex set in memory. In a distributed

setting, other considerations play a role in the proper choice for the size of the vertex set.

Main memory size remains an upper bound to guarantee in-memory access to the vertex set,

and large sizes facilitate sequential access to edges and updates. However, smaller sizes are

desirable, as they lead to easier load balancing.

Therefore, we choose the number of partitions to be the smallest multiple of the number of

machines such that the vertex set of each partition fits into memory. We simply partition the

vertex set in ranges of consecutive vertex identifiers. Edges are partitioned such that an edge

belongs to the partition of its source vertex.

This partitioning is the only pre-processing done in Chaos. It requires one pass over the edge

set and a negligible amount of computation per edge. Furthermore, it can easily be parallelized

by splitting the input edge list evenly across machines. This low-cost pre-processing stands in

stark contrast to the elaborate partitioning algorithms that are typically used in distributed

graph processing systems. These complex partitioning strategies aim for static load balance

and locality [89]. Chaos dispenses with locality entirely and achieves load balance at runtime.

3.4 Design Overview

Chaos follows the scatter architecture described in Chapter 2 and consists of a computation

subsystem and a storage subsystem. The two subsystems are logically separated and commu-

nicate using a client-server model. In the following, we assume that each machine runs both a

compute node and a storage node, but it is also possible to run them on separate, dedicated

machines.
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The storage subsystem consists of a storage node on each machine. The storage node runs

a storage server that supplies vertices, edges, and updates of different partitions to the com-

putation subsystem. The vertices, edges, and updates of a partition are uniformly randomly

spread over the pooled storage servers.

The computation subsystem consists of a compute node on each machine, running a compu-

tation engine. Each computation engine bundles a storage client that performs all I/O on the

storage subsystem on its behalf. The computation engines collectively implement the GAS

model. Unlike the conceptual model described in Section 3.2, the actual implementation of

the model in Chaos has only two phases per iteration, a scatter and a gather phase. The apply

phase is incorporated into the gather phase, for reasons of efficiency. There is a barrier after

each scatter phase and after each gather phase. The Apply function is executed as needed

during the gather phase and does not imply any global synchronization.

The Chaos design supports dynamic work sharing (§2.2.2) through work stealing, allowing

multiple computation engines to work on a single partition at the same time, to achieve

computational load balance. When this is the case, each engine must read a disjoint set of

edges (during the scatter phase) or updates (during the gather phase). This responsibility rests

with the storage servers. This division of labor allows multiple computation engines to work

on the same partition without synchronization between them.

Chaos ensures that all storage devices are kept busy all the time, thereby achieving maximum

utilization of the bottleneck resource, namely the bandwidth of the storage devices.

3.5 Computation Subsystem

The number of streaming partitions is a multiple k of the number of computation engines.

Therefore, each computation engine is initially assigned k partitions. This engine is the master

for all vertices of those partitions, or, for short, the master of those partitions.

We start by describing the computation in the absence of work stealing. This aspect of Chaos

is similar to X-Stream, but is repeated here for completeness. Later, we show how Chaos imple-

ments work stealing between computation engines. The complete pseudo-code description

of the computation engine (including stealing) is shown in Listing 3.4.

1 // Scatter for partition P
2 function exec_scatter(P)
3 for each unprocessed e in Edges(P)
4 u = new update
5 u.dst = e.dst
6 u.value = Scatter(e.src.value)
7 add u to Updates(partition(u.dst))
8

9 // Gather for partition P
10 function exec_gather(P)
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11 for each unprocessed u in Updates(P)
12 u.dst.accum = Gather(u.dst.accum, u.value)
13

14 /////// Chaos compute engine
15

16 // Pre-processing
17 for each input edge e
18 add e to Edges(partition(e.src))
19

20 // Main loop
21 while not done
22

23 // Scatter phase
24 for each of my partitions P
25 load Vertices(P)
26 exec_scatter(P)
27

28 // When done with my partitions, steal from others
29 for every partition P_Stolen not belonging to me
30 if need_help(Master(P_Stolen))
31 load Vertices(P_Stolen)
32 exec_scatter(P_Stolen)
33 global_barrier()
34

35 // Gather Phase
36 for each of my partitions P
37 load Vertices(P)
38 exec_gather(P)
39

40 // Apply Phase
41 for all stealers s
42 accumulators = get_accums(s)
43 for all v in Vertices(P)
44 Apply(v.value, accumulators(v))
45 delete Updates(P)
46

47 // When done with my partitions, steal from others
48 for every partition P_Stolen not belonging to me
49 if need_help(Master(P_Stolen))
50 load Vertices(P_Stolen)
51 exec_gather(P_Stolen)
52 wait for get_accums(P_Stolen)
53 global_barrier()

Listing 3.4 – Chaos Computation Engine.
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3.5.1 Scatter Phase

Each computation engine works on its assigned partitions, one at a time, moving from one of

its assigned partition to the next (lines 23–33) without any global synchronization between

compute nodes. The vertex set of the partition is read into memory, and then the edge set is

streamed into a large main memory buffer. As edges are processed, updates may be produced.

These updates are binned according to the partition of their target vertex and buffered in

memory. When a buffer is full, it is written to storage. Multiple buffers are used, both for

reading edges and writing updates, to overlap computation and I/O.

3.5.2 Gather Phase

Each computation engine works on its assigned partitions, one at a time, moving from one of

its assigned partition to the next (lines 35–45) without any global synchronization between

compute nodes. The vertex set of the partition is read into memory, and then the update set

is streamed into a large main memory buffer. As updates are processed, the accumulator of

the destination vertex is updated. Multiple buffers are used for reading updates to overlap

computation and I/O.

3.5.3 Work Stealing

The number of edges or updates to be processed may differ significantly between partitions,

and therefore between computation engines, causing CPU load imbalance. Chaos uses work

stealing to even out the load, as described next.

When computation engine i completes the work for its assigned partitions (lines 23–26 for

scatter and lines 35–38 for gather), it goes through every partition p (for which it is not the

master) and sends a proposal to help out with p to its master j (line 30 for scatter and line

49 for gather). Depending on how far along j is with that partition, it accepts or rejects the

proposal, and sends a response to i accordingly. In the case of a negative answer, engine i

continues to iterate through the other partitions, each time proposing to help. It does so until

it receives a positive response or until it has determined that no help is needed for any of the

partitions. In the latter case, its work for the current scatter or gather phase is finished, and it

waits at a barrier (line 33 for scatter and line 53 for gather).

When engine i receives a positive response to help out with partition p, it reads the vertex set

of that partition from storage into its memory and starts working on it. When two or more

engines work on the same partition, it is essential that they work on a disjoint set of edges

(during scatter) or updates (during gather). Chaos puts this responsibility with the storage

system: it makes sure that in a particular iteration, an edge or an update is processed only

once, independent of how many computation engines work on the partition to which that

edge or update belongs. This is easy to do in the storage system and avoids the need for

synchronization between the computation engines involved in stealing.
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For stealing during scatter, a computation engine proceeds exactly as it does for its partitions.

Using the user-supplied Scatter function, the stealer produces updates into in-memory

buffers and streams them to storage when the buffers become full.

Stealing during gather is more involved. As before, a computation engine reads updates from

storage and uses the user-supplied Gather function to update the accumulator of the desti-

nation vertex of the update. There are now, however, multiple instances of the accumulator

for this vertex, and their values need to be combined before completing the gather phase. To

this end, the master of the partition keeps track of which other computation engines have

stolen work from it for this partition. When the master completes its part of the gather for this

partition, it sends a request to all those computation engines and waits for an answer. When a

stealer completes its part of the gather, it waits to receive a request for its accumulator from the

master, and eventually sends it to the master (line 52). The master then uses the user-supplied

Apply function to compute the new vertex values from these different accumulators, and

writes the vertex set back to storage.

The order in which the master and the stealers complete their work is unpredictable. When a

stealer completes its work before the master, it waits until the master requests its accumulator

values before it does anything else (line 52). When the master completes its work before one

or more of the stealers, it waits until those stealers return their accumulator (line 42). On

the plus side, this approach guarantees that all accumulators are in memory at the time the

master performs the apply. On the minus side, there may be some amount of time during

which a computation engine remains idle. An alternative would have been for an engine that

has completed its work on a partition to write its accumulators to storage, from where the

master could later retrieve them. This strategy would allow an engine to start work on another

partition immediately. The idle time in our approach is, however, very short, because all

computation engines that work on the same partition read from the same set of updates, and

therefore all finish within a very short time of one another. Therefore, we prefer this efficient

and straightforward in-memory approach over more complicated ones, such as writing the

accumulators to storage or interrupting the master to incorporate the accumulators from

stealers.

3.5.4 To Steal or Not To Steal

Stealing is helpful if the cost, the time for the stealer to read in the vertex set, is smaller than

the benefit, the reduction in processing time for the edges or updates still to be processed at

the time the stealer joins in the work. Since Chaos is I/O-bound, this decrease in processing

time can be estimated by the decrease in I/O time caused by the stealer.

This estimate is made by considering the following quantities: B is the bandwidth to storage

seen by each computation engine, D is the amount of edge or update data remaining to be

read for processing the partition, H is the number of computation engines currently working

on the partition (including the master), and V is the size of the vertex state of the partition.
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If the master declines the stealing proposal, the remaining time to process this partition is
D

B H . If the master accepts the proposal, then V
B time is required to read the vertex set of size V .

Since we assume that bandwidth is limited by the storage servers and not by the network, an

additional helper increases the bandwidth from B H to B(H +1), and decreases the remaining

processing time from D
B H to D

B(H+1) . The master accepts the proposal if and only if:

V

B
+ D

B(H +1)
< D

B H
(3.1)

=⇒V + D

(H +1)
< D

H
(3.2)

The master knows the size of the vertex set V , and keeps track of the number of stealers H . It

estimates the value of D by sampling the amount of edge or update data still to be processed

on one storage server and multiplying it by the number of storage servers. Since the data is

evenly spread across storage servers, this estimate is accurate and makes the decision process

local to the master. This stealing criterion is incorporated in need_help() on lines 30 and 49

of the pseudo-code in Listing 3.4.

3.6 Storage Subsystem

For an out-of-core graph processing system such as Chaos, computation is only one half of

the system. The other half consists of the storage subsystem that supplies the I/O bandwidth

necessary to move graph data between storage and main memory.

3.6.1 Stored Data Structures and Their Access Patterns

For each partition, Chaos records three data structures on storage: the vertex set, the edge

set, and the update set. The accumulators are temporary structures and are never written to

storage.

The access patterns of the three data structures are quite different. Edge sets are created

during pre-processing and are read during scatter3. Update sets are created and written to

storage during scatter and read during gather. After the end of a gather phase, they are deleted.

Vertex sets are initialized during pre-processing, and always read in their entirety, both during

scatter and gather. Read and write operations to edges and updates may be performed by the

master or by any stealers. In contrast, read operations to the vertex state may be performed by

the master or any stealers, but only the master updates the vertex values during apply and

writes them back to storage.

These three data structures are implemented using the scatter storage architecture as follows.

3In an extended version of the model, edges may also be rewritten during the computation.
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3.6.2 Edge and Update Sets

Since the order in which edges and updates for the same partition are processed is irrelevant,

Chaos stores each partition of edges and update sets in a bag (§2.1.5). Each bag consists

of chunks containing edges or updates that are spread uniformly across all storage nodes.

Computation engines rely on storage clients to retrieve chunks for their partitions and process

them accordingly until the bag is empty. Bags guarantee only once delivery of each chunk

during an iteration, ensuring correct semantics for the graph algorithm. Bags also support

dynamic work sharing, ensuring that multiple computation engines process disjoint data

during work stealing (§3.5.3).

3.6.3 Vertex Sets

Unlike edges and update sets, vertex sets are always accessed in their entirety and the order in

which the blocks are stored and accessed matters. Therefore, each vertex set is stored as a file

whose blocks are also spread uniformly across all storage servers.

3.6.4 Achieving High Storage Utilization

Chaos relies on oversubscription to ensure throughput and storage utilization remain high the

execution. Each compute engine maintains a fixed number of outstanding requests for blocks

and chunks to storage servers through its storage client (§2.1.4). The bag abstraction used for

edge and update sets supports prefetching, and since vertex sets are always read sequentially

and in full, clients can use prefetching when requesting blocks from storage servers.

3.6.5 Fault Tolerance

The fact that all graph computation state is stored in the vertex values, combined with the

synchronous nature of the computation, allows Chaos to tolerate transient machine failures

simply and efficiently. At every barrier at the end of a scatter or gather phase, the vertex

values are checkpointed using a 2-phase protocol [82] that makes sure that the new values are

completely stored before the old values are removed.

Chaos minimizes the chances of storage failures by employing RAID [136] or similar redun-

dancy techniques. The system can also support recovery from storage failures by replicating

the files containing vertex sets as described in Section 2.3.

3.7 Implementation

Chaos is written in C++ and amounts to approximately 15’000 lines of code. Figure 3.1 shows

the high-level architecture and typical deployment of Chaos.
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Figure 3.1 – Chaos Architecture. Compute engines run multiple threads on each compute node.
Streaming partitions (SP) consisting of vertex, edge, and update sets are stored across all storage
servers.

In its capacity as a scatter system, Chaos disaggregates computation and storage but runs the

computation engine, the storage client, and the storage server on each machine in separate

threads within the same process. We use ;MQ [6] on top of TCP sockets for message-oriented

communication between storage clients and servers, assuming a full bisection bandwidth net-

work between the machines. We tune the number of ;MQ threads for optimal performance.

We implement the scatter storage architecture described in Section 2.1. The storage servers

provide a simple interface to the local ext4 [114] file system. Unlike X-Stream, which uses

direct I/O, Chaos uses pagecache-mediated access to the storage devices. We select a block

size 4 MB, leading to good sequentiality and performance on both magnetic disks and SSDs.

3.8 Experimental Environment and Benchmarks

We evaluate Chaos on a rack with 32 16-core machines, each equipped with 128 GB of main

memory, a 480 GB SSD, and two 6 TB magnetic disks (arranged in RAID 0). Unless otherwise

noted, the experiments use the SSDs as storage devices. The machines are connected through

40 GigE links to a top-of-rack switch. The SSDs and disks provide bandwidth in the range of

420 MB/s and 330 MB/s, respectively, well within the capacity of the 40 GigE interface on the
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machine. We limit the available main memory on each machine to 32 GB to ensure there is

sufficient I/O in all experiments.

We use the same set of algorithms as used by X-Stream [144] to demonstrate that all the

single machine algorithms used in the evaluation of X-Stream can be scaled to our cluster.

Table 3.1 presents the complete set of algorithms, as well as the X-Stream runtime and the

single machine Chaos runtime for an RMAT-27 graph. As can be seen, the single-machine

runtimes are similar but not identical. In principle, Chaos running on a single machine is

equivalent to X-Stream. The two systems have, however, different code bases and, in places,

different implementation strategies. In particular, Chaos is a distributed system that relies on

the scatter storage architecture and its client-server model for I/O. All storage servers in Chaos

are pooled and access storage through the pagecache, whereas X-Stream uses direct I/O.

Algorithm Type State Size X-Stream Chaos
Breadth-First Search (BFS) undirected 8B 497s 594s
Weakly Connected Comp. (WCC) undirected 12B 729s 995s
Min. Cost Spanning Trees (MCST) undirected 20B 1239s 2129s
Maximal Independent Sets (MIS) undirected 1B 983s 944s
Single Source Shortest Paths (SSSP) directed 20B 2688s 3243s
PageRank (PR) directed 12B 884s 1358s
Strongly Connected Comp. (SCC) directed 16B 1689s 1962s
Conductance (Cond) directed 0B 123s 273s
Sparse Matrix Vector Mult. (SpMV) undirected 20B 206s 508s
Belief Propagation (BP) directed 32B 601s 610s

Table 3.1 – Algorithms, characteristics, and single-machine runtime on RMAT-27 for X-Stream and
Chaos, SSD.

We use a combination of synthetic RMAT graphs [62] and the real-world Data Commons

dataset [7]. RMAT graphs can be scaled in size easily: a scale-n RMAT graph has 2n vertices and

2n+4 edges. In other words, the size of the vertex and edge sets doubles with each increment in

the scale factor. We use the newer 2014 version of the Data Commons graph that encompasses

1.7 billion webpages and 64 billion hyperlinks between them.

Input to the computation consists of an unsorted edge list, with each edge represented by its

source and target vertex and an optional weight. If necessary, we convert directed to undirected

graphs by adding a reverse edge. Graphs with fewer than 232 vertices are represented in a

compact format, with 4 bytes for each vertex and the weight, if any. Graphs with more vertices

are represented in non-compact format, using 8 bytes instead. A scale-32 graph with weights

on the edges thus results in 768 GB of input data. The input of the unweighted Data Commons

graph is 1 TB.

All results report the wall-clock time to go from the unsorted edge list, randomly distributed

over all storage devices, to the final vertex state, recorded on storage. Therefore, all results

include pre-processing time.
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3.9 Scaling Results

3.9.1 Weak Scaling

In the weak scaling experiment we run RMAT-27 on one machine, and then double the size for

each doubling of the number of machines, ending up with RMAT-32 on 32 machines.

Figure 3.2 shows the runtime results for these experiments, normalized to the runtime of a

single machine. In this experiment, Chaos takes on average 1.61× the time taken by a single

machine to solve a problem 32× the size on a single machine. The fastest algorithm (Cond)

takes 0.97×, while the slowest (MCST) takes 2.29×.
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Figure 3.2 – Runtime normalized to 1-machine runtime. Weak scaling, RMAT-27 to RMAT-32, SSD.

The differences in scaling between algorithms result from a combination of characteristics of

the algorithms, including the fact that the algorithm itself may not scale perfectly, the degree

of load imbalance in the absence of stealing, and the size of the vertex sets. One interesting

special case is Conductance, where the scaling factor is slightly smaller than 1. This somewhat

surprising behavior is the result of the fact that with a larger number of machines, the updates

fit in the buffer cache and do not require storage accesses.

3.9.2 Strong Scaling

In this experiment, we run all algorithms on 1 to 32 machines on the RMAT-27 graph. Figure 3.3

shows the runtime, again normalized to the runtime on one machine. For this RMAT graph,

32 machines provide, on average, a speedup of about 13× over a single machine. The fastest

algorithm (Cond) runs 23× faster and the slowest (MCST) 8×. The results are somewhat

inferior to the weak scaling results, because of the small size of the graph.

To illustrate this, we perform a strong scaling experiment on the much larger Data Commons

graph. This graph does not fit on a single SSD, so we use HDDs. Furthermore, given the long

running times, we only present results for two representative algorithms, BFS and PageRank.

Figure 3.4 shows the runtimes on 1 to 32 machines, normalized to the single-machine runtime.
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Figure 3.3 – Runtime normalized to 1-machine runtime. Strong scaling, RMAT-27, SSD .

Using 32 machines, Chaos provides a speedup of 20 for BFS and 18.5 for PageRank.
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Figure 3.4 – Runtime normalized to 1-machine runtime. Strong scaling, Data Commons, RAID0-HDD.

3.9.3 Capacity Scaling

We use RMAT-36 with 250 billion vertices and 1 trillion edges to demonstrate that we can

scale to large graphs. This graph requires 16 TB of input data, stored on HDDs. Chaos finds a

breadth-first order of the vertices of the graph in a little over 9 hours. Similarly, Chaos runs

5 iterations of PR in 19 hours. These experiments require I/O in the range of 214 TB for BFS

and 395 TB for PR, and the pooled storage servers provide an aggregate of 7 GB/s from the 64

magnetic disks running in orchestration.

3.9.4 Scaling Limitations

We evaluate the limitations to scaling Chaos with respect to the specific processor, storage

bandwidth, and network links available.

35



Chapter 3. Graph Analytics with Chaos

Figure 3.5 presents the results of running BFS and PR as we vary the number of CPU cores

available to Chaos. As can be seen, the system performs adequately, even with half the CPU

cores available. It is nevertheless worth pointing out that Chaos requires a minimum number

of cores to maintain good network throughput.
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Figure 3.6 compares the performance of BFS and PR when running from SSDs and HDDs. The

HDD bandwidth is 2× less than the SSD bandwidth. Chaos scales as expected regardless of the

bandwidth, but the application takes time inversely proportional to the available bandwidth.
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Figure 3.6 – Runtime for Chaos with SSD and HDD, normalized to 1-machine runtime with SSD.

Figure 3.7 looks into the performance impact of a slower network by using a 1 GigE interface

to connect all machines instead of the faster 40 GigE. The throughput achieved by the 1 GigE

interface is approximately 1/4th of the disk bandwidth, breaking the scatter architecture

assumption that network is never the bottleneck (§2.4). We conclude from these results that

Chaos does not scale as well in such a situation, highlighting the need for network links that

are faster (or at least as fast) as the storage bandwidth per machine.
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3.9.5 Checkpointing

For large graph analytics problems, Chaos provides the ability to checkpoint state. Figure 3.8

shows the runtime overhead for checkpoints on a scale-36 graph for BFS and PR. As can be

seen, the overhead is under 6% even though the executions write hundreds of terabytes of

data to the Chaos store.
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Figure 3.8 – Chaos vs. Chaos with checkpointing enabled (32 machines, RMAT-35, HDD, normalized
to Chaos runtime).

3.10 Evaluation of Design Decisions

As a scatter system, Chaos does not attempt to achieve locality and pools compute and

storage on all machines to improve load balance. Also, Chaos does not rely on complex

partitioning. In this section, we evaluate the effect of these design decisions. All discussion in

this section is based on the weak scaling experiments. The effect of the design decisions for

other experiments is similar and not repeated here. For some experiments, we only show the

results of BFS and PageRank as representative algorithms.
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3.10.1 No Locality

Instead of seeking locality, Chaos pools all storage devices together, spreads all graph data

uniformly randomly across all storage servers, and relies on oversubscription to achieve high

storage throughput and utilization.

Figure 3.9 shows the aggregate bandwidth obtained as seen by all storage clients running as

part of the computation engines during the weak scaling experiment. The figure also shows

the maximum bandwidth of the storage devices, measured by fio [8].
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Two conclusions can be drawn from these results. First, the aggregate bandwidth achieved

by Chaos scales linearly with the number of machines. Second, the bandwidth achieved by

Chaos is within 3% of the available storage bandwidth, the bottleneck resource in the system.

We also evaluate a couple of more detailed design choices in terms of storage access, namely

the pseudorandom selection of storage servers and the batch sampling technique designed to

keep all storage servers busy.

Figure 3.10 compares the runtime for PageRank on 1 to 32 machines for Chaos to a design

where a centralized entity selects the storage server for reading and writing a chunk. In short,

all read and writes go through the centralized entity, which maintains a directory of where

each chunk of each vertex, edge, or update set is located. As can be seen, the running time

with Chaos increases more slowly as a function of the number of machines than with the

centralized entity, which increasingly becomes a bottleneck.

Next, we evaluate the efficacy of batch sampling in our disk selection strategy. Figure 3.11

shows the effect of increasing the window size of outstanding requests on performance. We

measured the latency to the SSD to be approximately equal to that on the 40 GigE network.

This means Φ = 2 (Equation 2.1). The graph shows a clear sweet spot at ΦK = 10, which

corresponds to K = 5. This means an utilization of 99.56% with 32 machines (Equation 2.2),

indicating that the devices are near saturation. The experiment, therefore, agrees with the
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theory. Further, Equation 2.3 tells us that even if we increase the number of machines in the

deployment, this choice of settings means that we cannot drop below 99.3% given a fixed

latency on the network. The increased runtime past this choice of settings can be attributed to

increased queuing delays and incast congestion.
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3.10.2 Dynamic Load Balancing

Chaos balances the load between different computation engines by randomized work stealing.

Figure 3.12 shows a breakdown of the runtime of the weak scaling experiments at 32 machines

in three categories: graph processing time, idle time, and time spent copying and merging.

The first category represents useful work, broken down further into processing time for the

partitions for which the compute engine running on the machine is the master and processing

time for partitions initially assigned to other compute engines. The idle time reflects load

imbalance, and the copying and merging time represents the overhead of achieving load

balance.
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The results are somewhat different for different algorithms. The processing time ranges from

74 to 87% with an average of 83%. The idle time is very low for all algorithms, below 4%. The

cost of copying and merging varies considerably, from 0 to 22%, with an average of 14%. Most

of the idle time occurs at barriers between phases. Overall, we conclude from Figure 3.12 that

load balancing is very good, but comes at a certain cost for some of the algorithms.

Next, we evaluate the quality of the decisions made by the stealing criterion we describe in

Subsection 3.5.3. To do this, we introduce a factor α in Equation 3.2 as follows:

V

B
+ D

B(H +1)
<α

D

B H

Varying the factor α allows us to explore a range of strategies.

• No stealing: α= 0

• Less aggressive stealing: α= 0.8

• Chaos default: α= 1

• More aggressive stealing: α= 1.2

• Always steal: α=∞

Figure 3.13 shows the running times for BFS and PageRank. The results clearly show that

Chaos (with α=1) obtains the best performance - providing support to the reasoning of Sub-

section 3.5.4.
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Figure 3.13 – Breakdown of runtime with work-stealing bias. 32 machines, RMAT-32, normalized to
α= 1.

As additional evidence for the need for dynamic work sharing, we compare the performance

of Chaos to that of Giraph [1], an open-source implementation of Pregel, recently augmented

with support for out-of-core graphs. Giraph uses a random partitioning of the vertices to

distribute the graph across machines, without any attempt to address load balancing (similar

to the experiment reported in Figure 3.13, with α equal to zero).

Out-of-core Giraph is an order of magnitude slower than Chaos in runtime, apparently largely

due to engineering issues (in particular, JVM overheads in Giraph). To eliminate these differ-

ences and to focus on scalability, Figure 3.14 shows the runtime of both Chaos and Giraph on

BFS and PageRank on RMAT-27, normalized to the single-machine runtime for each system.

The results confirm that the static partitions in Giraph severely affect scalability.
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Figure 3.14 – BFS and PageRank runtime for Chaos and Giraph, normalized to the 1-machine runtime
of each system.
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Chapter 3. Graph Analytics with Chaos

3.10.3 Partitioning For Sequentiality Rather Than For Locality and Load Balance

An important question to ask is whether it would have been better to expend pre-processing

time to generate high-quality partitions to avoid load imbalance in the first place instead of

paying the cost of dynamic work sharing to improve load balance. To answer this question,

we compare, for each algorithm on 32 machines, the worst-case dynamic load balancing

cost across all compute engines to the time required to partition the graph initially. We use

PowerGraph’s [89] grid partitioning algorithm, which requires the graph to be in memory. We

lack the necessary main memory in our cluster to fit the RMAT scale-32 graph that Chaos

uses on 32 machines. Therefore, we run the PowerGraph grid partitioning algorithm on a

smaller graph (RMAT scale-27) and assume that the partitioning time for PowerGraph scales

perfectly with graph size. As Figure 3.15 shows, Chaos dynamic load balancing out-of-core

takes only a tenth of the time required by PowerGraph to partition the graph in memory. From

this comparison, carried out in circumstances highly favorable to partitioning, it is clear that

dynamic load balancing in Chaos is more efficient than upfront partitioning in PowerGraph.

Chaos, therefore, achieves its goal of providing high-performance graph processing while

avoiding the need for high-quality partitions.
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Figure 3.15 – Runtime for Chaos dynamic load balancing vs. PowerGraph static partitioning (RMAT-27)

3.11 Ragnarok: Towards Petascale Graph Processing4

In this section, we present and discuss Ragnarok, an extension to Chaos that allows the system

to process graphs in the order of petabytes using only a small fraction of the input size as spare

storage capacity. In its original design, Chaos requires an aggregate storage capacity that is

multiple times (up to 3×) the size of the input graph to create, store, and process streaming

partitions. As a result, cluster operators must provision more storage than necessary to store

the unprocessed input, the partitioned input, the updates generated by the gather phase, and

the vertex state. When the input graph is very large, this is undesirable and costly.

4The text and experiments in this section correspond to work performed after Chaos was published and are not
part of the original paper [143].
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3.11. Ragnarok: Towards Petascale Graph Processing

Processing input graphs almost as large as the available storage capacity without running

out of space requires that any data be either only read or read and immediately replaced. We

define a new processing mode that merges edge and update sets for a streaming partition into

a single file. Each entry in this file contains an edge and an optional update to be applied to

the edge’s source vertex. In this new processing mode, we combine the gather and scatter

phases into a single phase, where the system reads in each entry from the streaming partition

file, applies the update (if available), and immediately streams out the reversed edge and a

new associated update. Reversing the edge ensures that the new update is applied to the

destination vertex in the next iteration.

Consider, for example, the BFS algorithm executed in Ragnarok mode. In each iteration, the

system marks edges with a flag, i.e., an update that indicates whether the edge is part of the

BFS tree. When reading from a streaming partition, if a flag is present alongside the edge, the

system updates the corresponding vertex state to mark the vertex visited and then drops the

edge from the stream as it is no longer needed. If there is no flag, the system checks whether

the source vertex is discovered, and, if so, it writes out the reversed edge along with a flag to

mark the destination visited in the next iteration. Finally, if there is no flag and the source

vertex is not marked, the system inserts the edge back in the stream without a flag. Since

the BFS algorithm need not revisit an edge after its associated vertices have been visited, we

drop all flagged entries after they are processed. As a result, the merged file for each partition

shrinks over time to only the set of edges that can still be part of the BFS.

By using a single operator combining gather and scatter, we ensure that the storage capacity

remains bounded because each entry read corresponds to a single entry written. Since we

reverse source and destination vertices, new entries are usually written to a different partition,

and therefore cannot be written in-place to the same file. We modify the storage subsystem in

Chaos to implement circular files that automatically collapse the parts of the file that have

been read while appending new entries. Also, Ragnarok mode supports undirected algorithms

such as BFS by only storing each edge in one direction. In each iteration, the system makes

two passes over the merged edge and update streaming partitions, reversing edges in each

pass to access both endpoints.

Table 3.2 shows the latest top 10 ranking by capacity of the Graph500 benchmark for BFS.

Since June 2016 and to this day, Chaos holds the third position in the ranking for successfully

processing RMAT-40, a synthetic graph input of 250 terabytes containing 16 trillion edges and 1

trillion vertices. This experiment took a little over 10 hours to finish using 20 of the commodity

machines described in 3.8. By comparison, all machines in the top 10 are supercomputers or

custom-designed hardware. This result demonstrates the ability of scatter systems to scale to

very large datasets by efficiently using few resources in a load-balanced manner.
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Rank Scale Machine Location Machines Cores
1 64T IBM S922LC DOE/NNSA/LLNL 2048 524288
2 32T BlueGene/Q Lawrence Livermore 98304 1572860
3 16T Chaos (DALCO) EPFL 20 128
4 16T Cray CS300 Lawrence Livermore 300 38400
5 16T IBM POWER9 Oak Ridge 2048 1048576
6 16T Sunway MPP Wuxi 40768 1304580
7 16T BlueGene/Q Argonne 49152 786432
8 16T BlueGene/Q Argonne 49152 786432
9 16T Custom RIKEN AICS 82944 1327100
10 8T ThinkSystem SD530 Leibniz Rechenzentrum 4096 393216

Table 3.2 – Graph500 ranking by capacity (Nov 2019) [3].

3.12 Summary

Chaos is a system for processing graphs from the aggregate secondary storage of a cluster.

It extends the reach of small clusters to graph problems with edges in the order of trillions.

With very limited pre-processing, Chaos achieves sequential storage access, computational

load balance and I/O load balance through the application of three synergistic techniques:

streaming partitions adapted for parallel execution, scatter storage, and work stealing, allowing

several machines to work simultaneously on a single partition.

We have demonstrated, through strong and weak scaling experiments, that Chaos scales on a

cluster of 32 machines, and outperforms Giraph extended to out-of-core graphs by at least

an order of magnitude. We have also quantified the dependence of Chaos’ performance on

various design decisions and environmental parameters. Finally, we showed how Chaos can

process very large graphs by taking third place in the Graph500 capacity ranking for BFS.

We summarize the characteristics of Chaos and the scatter architecture techniques used below.

Area Graph processing

Load imbalance Power-law vertex degree distribution

Uneven processing

Data spreading Vertices as files

Edges and updates as bags

Dynamic parallelism Dynamic work sharing based on work stealing + merging

Partitioning Bucket edges and updates by streaming partition

Misc. characteristics Checkpoint-based failure recovery

Petascale extension (Ragnarok)
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4 Skew-Resilient, General-Purpose
Analytics with Hurricane1

In the previous chapter, we described an analytics system for large graphs. We now exam-

ine Hurricane, a general-purpose, skew-resilient cluster analytics framework as a second

application of the scatter architecture.

4.1 Introduction

Application runtimes in data analytics frameworks are unpredictable and underperforming

on specific input datasets and software/hardware configurations. These issues often occur

because different tasks within a job take different amounts of time to complete, causing a load

imbalance where some machines sit idle while waiting for others to finish, thereby limiting the

achievable degree of parallelism. Slower tasks can degrade performance for the entire parallel

job, resulting in delayed job completion [43], resource under-utilization [92, 162], and even

application crashes.

Task runtime variance is caused by skew. Tasks may be assigned different amounts of data due

to data skew in the partitioning [106, 140]. Such skew occurs intrinsically in many real-world

datasets, making it hard to create well-balanced partitions. For example, a web dataset may

have millions of records referring to a website, map-reduce algorithms have popular keys, and

social networking and graph datasets have high degree vertices. Tasks may also suffer from

compute skew, wherein the execution time depends on the data, regardless of its size. For

instance, an algorithm may do more processing on some inputs or selectively filter data [88].

Besides data and compute skew, task runtime can also be affected by machine skew, for

example, heterogeneous or faulty machines [40]. A search for “skew” in analytics workloads on

stackoverflow [17] yields hundreds of relevant results from programmers experiencing painful

problems and unexpected crashes due to improper handling of skew.

1This chapter is based on the following publication: Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper,
Ashvin Goel, and Willy Zwaenepoel. Rock You Like a Hurricane: Taming Skew in Large Scale Analytics. In
Proceedings of the 13th EuroSys Conference, EuroSys ’18, pages 1–15. ACM, 2018. The author of this thesis is the
creator of this system. The experimental evaluation was done collaboratively with Jasmina Malicevic and Nicolas
Schiper. The author maintains the software to this day.
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Chapter 4. Skew-Resilient, General-Purpose Analytics with Hurricane

This chapter introduces Hurricane, a high-performance analytics system inspired by the

scatter architecture described in Chapter 2 that achieves fast execution times and high cluster

utilization with an adaptive task partitioning scheme. The core idea underlying this scheme

is dynamic work sharing through task cloning, where an overloaded machine can clone its

tasks on idle machines, and have each clone process a subset of the original input. This

allows Hurricane to adjust parallelism adaptively within a task, and dynamically improve

load balance across machines based on observed load, at any point in time. This is the key

to handling load imbalance: underperforming tasks can be split across multiple machines

dynamically during their execution, and idle machines can pick up a part of the task load.

By comparison, state-of-the-art frameworks such as Hadoop [93] and Spark [160] struggle

to achieve load balance and good parallelism because they rely on data locality and static

partitioning of work. Partitions are created based on storage blocks or programmer-defined

split functions and assigned to machines. However, the partition sizes and processing re-

quirements often depend on the dataset and are thus known only at runtime. Once partition

bounds are fixed, the degree of parallelism for a stage cannot be dynamically adjusted: it is not

possible to split the work or increase parallelism within a partition when it takes a long time to

process, immaterial of the reason it takes that long. For this same reason, while traditional

straggler mitigation techniques such as speculative execution [74] and tiny tasks [129] can

help with slow machines, they do not directly address data or compute skew.

Hurricane supports task cloning by combining two novel techniques: fine-grained independent

access to data and programming model support for merging. These techniques enable writing

high-performance, skew-resilient applications that automatically achieve load balance with

minimal programmer effort.

Fine-grained data access enables workers2 executing tasks to compute on small partitions

of any input or intermediate data independently of other workers, allowing fine-grained, on-

demand task cloning. Hurricane stores all input and intermediate data in data bags (§2.1.5).

Each data bag corresponds to the input or output of a task. A bag does not belong to a worker;

rather, all workers executing clones of the same task share the bag.

Hurricane supports combining the partial outputs of cloned tasks using an application-

specified merge procedure whose output is equivalent to the output of a single uncloned

task. Our merging paradigm is more general than the traditional shuffling and sorting method

for combining outputs from different partitions. It not only alleviates the need to sort, but

also allows for data records associated with the same key to be simultaneously processed on

multiple machines, providing more flexibility to balance load across partitions in the presence

of key skew.

Hurricane uses scatter storage techniques to ensure efficient cloning of tasks by spreading the

chunks in data bags uniformly randomly across all machines in the cluster and allow retrieving

2A worker is a container executing a task on a machine.
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them efficiently using a decentralized scheme. This approach achieves high cluster-wide

storage load balance, utilization, and throughput, thus ensuring that cloning does not lead to

storage bottlenecks.

We have implemented several typical analytics applications on Hurricane. We evaluate the

system on a cluster of 32 machines that are connected by a high-speed network. We show

that Hurricane achieves load balance and scales with the number of machines in the cluster,

the input data size, and the amount of skew. We observe a slowdown compared to uniform

partitions of at most 2.4× in a click counting application in the presence of 64× imbalance

between partitions. Hurricane can execute skewed hash joins 18× faster than Spark, while

keeping the performance degradation with high skew below 2.3×, and outperforms Spark’s

GraphX [90] by calculating PageRank on real-world graphs 5-10× faster.

The contributions of this work are four-fold:

• We present the first analytics system designed to systematically perform adaptive par-

titioning of work based on observed load during execution, allowing it to improve

application runtime by adaptively optimizing parallelism and providing load balance

for both compute and storage resources (§4.2).

• We demonstrate how to implement such a system through a fine-grained, adaptive

partitioning scheme based on a task cloning abstraction (§4.3.2).

• We maximize storage utilization and throughput while allowing workers to efficiently

and independently access data (§4.3.3).

• We demonstrate Hurricane’s performance for several typical analytics workloads (§4.5).

4.2 Programming Model

Hurricane supports a batch processing model. To achieve good parallelism and load balance

even in the presence of high skew, Hurricane clones tasks based on the observed load at any

point during their execution. This requires programming model support, specifically the

ability for multiple workers to dynamically share the work (and data) in a partition, as well as

the ability to reconcile multiple partial outputs into a single consistent output.

4.2.1 Application Model

Hurricane applications are specified as a directed graph of tasks, shown as circles, and data

bags. The edges in the graph represent the flow of data between tasks and bags, i.e., the

outputs of bags are connected to the inputs of tasks, and the outputs of tasks are connected to

the inputs of bags. Although the application graph does not allow loops, it is possible to imple-

ment many iterative-style applications, such as PageRank [134] or k-means clustering [95] by

creating multiple identical phases connected back-to-back in the graph.
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Executing the application graph creates an execution graph, where machines in the cluster

execute the various tasks on local workers. A worker can either execute a task or a clone of a

task. The system ensures that tasks only start once their corresponding input bags are ready.

The Hurricane framework may at any point decide to clone a task to increase parallelism and

ensure faster completion. The system entirely manages cloning tasks. When partial outputs

from clones must be reconciled, the application specifies a merge procedure to combine them.

If no such procedure is specified, Hurricane simply concatenates the outputs of all clones.

Figure 4.1 shows the graph topology of a typical Hurricane application called ClickLog that

operates on a log of clicks on advertisements to count the number of unique IP addresses

from each geographic region. This application uses three types of tasks, whose pseudo-code is

shown in Listing 4.1. Phase 1 tasks map the source bag, containing the click log, into per-region

output bags, Phase 2 tasks list the unique IP addresses in each region bag, and Phase 3 tasks

count the size of the list.
...

Phase 1

Phase 2

clicklog.txt

region.usa

region.uk

region.china

...

distinct.china

distinct.uk

count.usa

count.china

count.uk

Phase 3

... ... ...

distinct.usa

Figure 4.1 – ClickLog computation graph.

Figure 4.2 shows a possible execution graph using 4 machines. All workers execute tasks or

cloned tasks, shown using dashed lines. In this example, the number of clicks on advertise-

ments per region can vary significantly, causing skew in the tasks. As a result, Hurricane may

decide to clone some tasks. For example, Phase 1 has one original worker executing the task

and 3 clones. A task and its clone run the same code. The Phase 2 task operating on the USA

region has two workers associated with it (the original worker and a clone). Phase 2 requires

a custom merge, which is executed after all associated workers finish. Note that different

tasks (not clones) may also run the same code. For example, Phase 3 has three different tasks,

running the same code, but with different input bags.

4.2.2 Dynamic Fine-Grained Data Sharing

Multiple workers (clones) executing the same task on the same input data require a way

to obtain disjoints subsets of the data. Since Hurricane may adjust the number of clones

dynamically during task execution, workers should be able to independently and efficiently

access finer-grained partitions of the data dynamically at runtime.
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clicklog.txt

region.usa

region.uk

region.china distinct.china

distinct.uk

distinct.usa.clone1

distinct.usa distinct.usa count.usa

count.uk

count.china

Phase 1 Phase 2 Phase 2 merge Phase 3

Figure 4.2 – A possible ClickLog execution graph on 4 machines. Hurricane automatically cloned the
phase 1 task as well as the phase 2 task for the USA region. Note that cloning a phase 2 task requires the
introduction of a corresponding merge.

Hurricane achieves fine-grained data sharing through a data bag abstraction (§2.1.5) that

workers use to store data and communicate with each other. Each data bag contains fixed-size

blocks of data called chunks that are stored in files in our distributed storage service.

1 Phase 1 task (input, outputs):
2 while ip = input.remove() not empty:
3 region = geolocate(ip)
4 outputs[region].insert(ip)
5

6 Phase 1 merge (partial1, partial2, output):
7 output = concat(partial1, partial2) // default merge
8

9 Phase 2 task (input, output):
10 let distinct be a bitset
11 while ip = input.remove() not empty:
12 distinct |= ip // set corresponding bit to 1
13 output.insert(distinct)
14

15 Phase 2 merge (partial1, partial2, output):
16 output.insert(partial1 | partial2)
17

18 Phase 3 task (input, output):
19 output.insert(len(input))
20

21 Phase 3 merge (partial1, partial2, output):
22 output.insert(partial1 + partial2)

Listing 4.1 – ClickLog application code.

A worker serializes its application-specific data records into a chunk before inserting it into a

bag. Similarly, after removing a chunk, it deserializes the chunk into its data records. Hurricane

provides several typed iterators for serializing and deserializing common formats (integers,
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floats, strings, tuples, etc.), which can be combined to represent more complex data types

(e.g., nested tuples). All serializers ensure that data records do not cross chunk boundaries,

thus allowing chunks to be processed independently.

As described in Subsection 2.1.5, data bags allow multiple workers to concurrently insert

or remove chunks from the same bag without interference. For instance, in Figure 4.2, the

two workers processing the Phase 2 for the USA region read chunks from the same bag

(region.usa). This property derives from the use of chunks as the basic indivisible unit of data

used by workers. Data bags also support data processing at varying speeds by forcing workers

to request individual chunks instead of being assigned key ranges upfront. This late binding

of data chunks to workers is essential to handle skewed workloads as it makes it possible to

partition the data dynamically during task execution.

4.2.3 Dynamic Merge-Based Task Sharing

Multiple workers (clones) executing the same task on different subsets of the same input

data may need a way to reconcile their partial outputs into a single coherent output. Ideally,

workers should be able to process subsets of the data in isolation, and produce individual

outputs that can be merged to produce the final output.

Hurricane merges partial outputs through a (possibly null) merge procedure. Some tasks

can support multiple workers without any additional merging effort. Examples of such tasks

include preprocessing, map tasks (from MapReduce), filters, selects (in SQL), etc. In such

cases, it is sufficient to concatenate the chunks produced by each worker into the output bag.

In the ClickLog example, this is what happens if multiple workers execute Phase 1. Other tasks,

however, require support for merging the partial results of the concurrent workers. Examples

of such tasks include reduce tasks (from MapReduce), counting, sketches [70, 84], groupby,

etc. In the ClickLog example, this is the case for tasks in Phases 2 and 3. Often, tasks requiring

a merge must produce output satisfying some constraints (e.g., sorted result, aggregation).

As a result, an intermediate merge is required to ensure output consistency. Since merging

is application-specific, if the task requires a merge, we require the programmer to specify a

merge procedure as part of the code for that task.

Specifying a merge procedure amounts to defining a function to combine two partial outputs

into one. This merge procedure is relatively easy to write. In most cases, it is of similar com-

plexity as writing a merge combiner in Spark. However, unlike merge combiners, the merge

operation is more general. Among other things, non-aggregation outputs can be merged,

for instance, through a merge sort. The merge operation also supports non-commutative-

associative operators (e.g., unique counts, medians, duplicates removal). For convenience,

Hurricane provides a library of typical merge operations.
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4.3 Design

Hurricane is based on the scatter architecture described in Chapter 2. Figure 4.3 shows

the architecture and typical deployment of Hurricane. A Hurricane cluster consists of a

set of compute and storage nodes. The cluster administrator provisions machines for use

by Hurricane, either manually or through a resource manager, such as YARN [152]. The

compute and storage nodes may be co-located, but are provisioned independently. Then

each storage node starts a storage server, and each compute node starts a storage client that

stores and accesses data from storage servers and is configured with the list of storage nodes.

The compute nodes run tasks on local workers. Each compute node runs on one or more

cores, and workers can be multi-threaded. The storage nodes store all bags spread across the

machines. These bags can be of two types: data bags (DB) and work bags (WB). Work bags are

used to schedule tasks.

Local Storage

Task Manager

. . .

Compute Node 0

Storage Server

Storage Client

Compute Node 1 Compute Node M-1

Storage Node 0

. . .

High-speed Network

Storage Client Storage Client

Chunk

Task

App Master

Worker Worker

Task Manager Task Manager

Worker

Worker

Worker

Local Storage

Storage Server

Storage Node 1

Local Storage

Storage Server

Storage Node N-1

DB1
DB2
WB1

DB1
DB2
WB1

DB1
DB2
WB1

Figure 4.3 – The Hurricane Architecture. Although logically separated, compute nodes and servers can
be co-located.

4.3.1 Execution Model

Each Hurricane application is associated with an application master that runs on one of the

compute nodes. The master drives the application’s computation by invoking functionality

in the Hurricane framework. Also, it monitors application progress and facilitates the im-

plementation of policies for cloning and resource management. The master is a lightweight

component as it relies on distributed work bags to perform most of its functions.
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Upon starting, the application master creates a task manager on each compute node that

is responsible for executing tasks on local workers. The application master then reads the

application graph and schedules tasks for execution. Each task consists of a task blueprint,

containing a unique task identifier and the code necessary to execute the task, as well as the

identifiers of its input and output bags.

The master maintains the application’s progress in the execution graph and schedules new

tasks once all the source bags for a task have completed. The overall execution ends once

there are no more tasks to be scheduled, and no more tasks are being executed.

This execution model ensures that once an input bag becomes empty, it will remain empty,

and thus workers know when they are done. For example, in Figure 4.1, the application

master schedules the Phase 1 task, and only when it is finished, schedules all the Phase 2 tasks.

Since Phase 3 tasks only depend on the bag containing the distinct list for their respective

region, they can be scheduled immediately after the corresponding Phase 2 tasks finish. This

simple model suffices for our batch analytics workloads, although we plan to explore more

sophisticated dataflow execution models for streaming workloads [119].

4.3.2 Task Cloning

The application master automatically clones tasks on behalf of the application by modifying

the execution graph to add a copy of the cloned task that reads from the same input bag as

the original task, as well as (possibly) a merge task. When the task requires a merge, we add a

merge task to the execution graph, when the first clone is created. Then, for each clone, the

master creates a new bag dependency between the clone and the merge task. Once all the

clones complete, we execute the merge task to produce the reconciled output.

Hurricane has two design goals when cloning tasks: automatically adjusting parallelism at

runtime with minimal programmer effort and minimizing the overhead of executing a task on

multiple workers. These goals present a trade-off between responsiveness to load imbalance

and the cost of cloning and merging of results.

Dynamic Parallelism Hurricane clones a task repeatedly until it runs on every compute

node, or the system determines that it already benefits from a sufficient degree of parallelism.

The application master makes cloning decisions based on two criteria: 1) load information

that helps detect task load imbalance, and 2) a cloning heuristic that determines whether

cloning will benefit task execution time.

Hurricane detects load imbalance by monitoring two resources throughout the execution of a

task: CPU load and network usage. If a worker experiences a high CPU load for a prolonged

time or its network interface is saturated, this is an indication that the worker is experiencing

overload, and we should re-evaluate the degree of parallelism in that task. The master then

clones the task on an idle compute node if one is available, and the cloning heuristic allows

cloning, as discussed below.
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Hurricane clones a task worker repeatedly until it is no longer overloaded, thus increasing task

parallelism only as needed.

Note that Hurricane need not monitor for storage bottlenecks because the storage system is

designed to provide the maximum possible bandwidth to applications, and therefore running

at peak storage bandwidth is the best-case scenario.

Cloning Heuristic Hurricane only clones a task when it expects that cloning will improve task

execution time. Cloning introduces two costs that may require additional computation and

I/O: 1) loading task state in a new clone, and 2) merging of clone outputs, which introduces

an additional dependency in the execution graph. Hurricane estimates these costs to avoid

cloning close to task completion.

Consider the ClickLog example from Figure 4.1. When a Phase 1 worker is overloaded, the

application master will always clone the task since it has minimal state and does not require

a merge. This process will repeat for each worker in Phase 1 until the task completes, or

there are no more idle compute nodes. In contrast, when a Phase 2 worker is overloaded, the

heuristic may reject cloning if the task is close to completion because the overhead of merging

outweighs the benefits. The heuristic may also determine that it is worthwhile cloning, when

the task runs for a long time, as in the region.usa case. If so, the master performs task cloning

by scheduling a copy of the task on an idle node, as it would any other task, and adds the

corresponding merge task to the execution graph.

4.3.3 Storage Architecture

Hurricane decouples computation from data, storing data on storage nodes, while processing

is performed on separate compute nodes. The storage architecture in Hurricane is based on

the scatter storage architecture described in Section 2.1. We pool all storage devices together,

split all bags into chunks, and store these chunks uniformly on all storage servers. This

architecture is necessary to support task clones, which require efficient and fast access to their

subsets/partitions of the input data.

Data Placement and Access Hurricane workers use this distributed storage service to store

and access data, which helps avoid storage bottlenecks. Hurricane mostly relies on the bag

abstraction (§2.1.5) to facilitate dynamic task partitioning when data does not need to be

ordered. In rare cases where data must be ordered or obey other constraints, e.g., at the end of

a processing pipeline, the system uses regular files.

Storage Load Balancing Hurricane relies on oversubscription to ensure storage utilization

remains high and balanced throughout the execution. Workers use a batch sampling technique

to maintain a fixed number of outstanding requests for blocks to storage servers through their

client (§2.1.4).
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Batch sampling also helps reduce the latency associated with removing items from bags that

are close to empty. This latency is roughly N ·L
K , where M is the number of storage nodes, K is

the batch sampling factor, and L is the round-trip latency of a single probe operation.

4.3.4 Adding and Removing Nodes

Hurricane allows dynamic addition and removal of compute and storage nodes from an appli-

cation. This is easy to support for two reasons: 1) data is stored at storage nodes, separately

from compute nodes, and 2) the compute nodes run independently of each other.

The application master can add and remove compute nodes at any point during job execution

to accommodate variations in load. A compute node is added by starting the Hurricane

framework and configuring the framework with a list of storage nodes and starting a task

manager on the node. A compute node is removed by stopping its task manager after its

current workers have finished.

The application master may also add or remove storage nodes during job execution. A storage

node is added by starting a storage server on the node. The application master then informs

the storage clients running compute nodes about the new storage server, allowing clients to

place data there. When a storage node is removed, it stops accepting insert requests while still

allowing remove requests. When all its bags become empty, the node can be removed.

4.3.5 Opportunistic Load Balancing

In addition to cloning, Hurricane supports an opportunistic load balancing mechanism that

extends the power of combiners, used by current frameworks, for handling skewed data sets.

For example, consider a word counting application with significant skew due to the presence

of frequent words. A combiner combines the tuples for the same word, by summing their

counts, thereby reducing skew at the reducer. However, combiners are executed by workers

on the data path. As such, they risk overloading the workers processing "hot" partitions with

combining overhead.

Hurricane provides, tamed transformers3, a facility for an application programmer to provide

“tamed” code (in the form of a thunk) to transform data in a bag. Tamed transformers extend

combiners in two ways. First, they can be applied on the compute nodes when data is read

or written to a bag, but they can also be applied on the storage nodes when data is at rest.

Since data is spread across the storage nodes, any lightly-loaded storage node can apply the

transformer. Second, tamed transformers are applied opportunistically. They are implemented

using promises by inserting them into the task list of a thread pool so that they are executed

given enough time and CPU capacity. Hurricane never stalls data transmission (to worker or

storage node) by canceling the promise before transmission and sending the original data.

3A play on Combiners and Transformers in the namesake media franchise.
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Unlike combiners, tamed transformers are not restricted to commutative and associative

operations (where it is always safe to combine). They are allowed to combine across keys, and

can change the output format of data records. For example, when there is no semantically

correct way to combine a set of data records into a smaller set of data records, transformers

can still be used to reduce the total amount of data by compressing data within a chunk. Such

transformations require the definition of an inverse transformation. They should be used

sparingly as they introduce a possibility of stalls since the inverse transformation must always

be applied before supplying data to workers.

4.4 Implementation

This section describes the implementation of the various components in Hurricane.

4.4.1 Task Scheduling

Hurricane minimizes the overhead of task cloning by performing efficient low-latency schedul-

ing through a reliable, distributed task queuing interface called work bags. Work bags are

similar to data bags and expose the same interface, except they contain tasks, not data. Com-

pute nodes remove tasks (including cloned tasks) from work bags to execute on local workers.

Similar to data bags, tasks in work bags are distributed across all storage nodes and accessed

by compute nodes independently without any single point of control. Unlike traditional

scheduling queues, work bags are unordered, allowing for fast decentralized access to their

contents.

Each application has three work bags associated with it, a ready bag, a running bag, and a done

bag, corresponding to the ready, running, and exited, task states. Compute nodes remove tasks

from the ready bag to create workers. Workers execute application code by removing fixed-size

chunks from one or more input data bags, computing on the chunks, and then inserting

transformed chunks in one or more output data bags. When a worker finishes executing, it

inserts its task identifier in the done work bag. The application master monitors the done

bag and inserts tasks into the ready bag once their dependencies have been completed. The

running work bag is used for handling compute node failures.

4.4.2 Task Cloning

By default, Hurricane runs a single worker for an input bag. At any point, each compute node

can signal the application master that it is overloaded and would like a particular task to be

cloned to alleviate the load. The application master may accept or ignore the cloning request

based on a cloning heuristic. We now consider the implementation of overload detection and

the heuristic for cloning.
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Detecting Overload A task overload can occur either when the task is CPU-bound or I/O-

bound. For detecting a CPU bound task, we need to measure the CPU load on the machine

simply. The disk or the network could limit an I/O bound task. Since we distribute the chunks

in a bag across storage nodes, a disk-bound task will maximize storage bandwidth, helping us

achieve our goal of improving the performance of large datasets with skew. Assuming high

bisection bandwidth, a network bottleneck may occur when a node is limited by its endpoint

bandwidth. We can detect such a bottleneck by measuring the network throughput at each

node. As a result, a compute node generates a clone message periodically when the CPU or

its local network interface is saturated. Currently, we send clone messages at least 2 seconds

apart.

Cloning Heuristic Hurricane uses a simple heuristic to estimate whether cloning a task is

worthwhile, using the following quantities: k is the number of clones processing a task, T

is the expected time to finish the task without cloning, TC is the expected time to finish the

task with cloning, TIO is the expected additional I/O time due to cloning, i.e., the time to read

and load additional task state and the time to merge the clone’s output data. It follows that

TC = k
k+1 T +TIO .

Given the above quantities, Hurricane clones a task if TC < T , i.e., k
k+1 ·T +TIO < T , which

simplifies to:

T > (k +1) ·TIO (4.1)

In other words, cloning is worthwhile when the time to finish the task without cloning is

greater than the product of the number of clones and the I/O time resulting from cloning.

For example, assume a task is expected to finish in 10 seconds with 4 clones, and the clones

are overloaded. Adding a fifth clone brings down the completion time to 8 seconds. So the

cloning overhead cannot be more than 2 seconds, or else it will likely delay task completion.

The cloning heuristic avoids cloning close to the end of a task, and so we only need a rough

estimate of these quantities.

The application master knows the value of k. T is estimated by sampling the input bag on a

few storage nodes to estimate how much data is left and how fast it is emptying. While TIO is

application-specific, we estimate it as two times the size of the remaining portion of the input

bag that the task will read (for input and output).

4.4.3 Storage Nodes

Storage nodes provide storage for data bags and work bags. Hurricane implements the bag

API as described in Subsection 2.1.5 Bags are stored as files and stored at each storage server

as Linux ext4 [114] buffered files. In addition to the insert and remove operations, the

implementation includes other operations such as reusing the contents of a bag, sampling the

amount of data remaining in a bag, and garbage collecting a bag.
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4.4.4 Fault Tolerance

Fault tolerance is especially important for complex application graphs that must process large

amounts of data.

The application master provides a single point of control for the application’s execution. This

component is application-specific, while all other Hurricane components are application

agnostic, and run independently of each other. A consequence of this design is that the crash

of a compute node does not interfere or block any other compute node from making progress

since compute nodes are not aware of each other. Similarly, the crash of a storage node does

not prevent other storage nodes from serving/storing data. Hurricane applications place

all persistent state at the storage nodes, while computes nodes contain only soft state. This

approach allows us to use a simple checkpoint-replay mechanism for handling compute node

failures and primary-backup replication for storage node failures.

Application Master Failure The application master is the only entity that knows about the

state of the computation. However, this state is stored in its work bags that are stored on the

storage nodes. When the application master fails, we restart it and replay the done work bag.

Replaying the done work bag involves rereading the entire bag, taking note of each completed

task to update the execution graph. Replaying these task completions lets the application

master recover the state of the execution graph to its pre-failure state. Once replay completes,

the application master resumes normal operation. Neither compute nodes nor storage nodes

need to be aware of an application master failure and can continue to execute tasks normally.

Short-lived application master crashes will not usually cause application slowdown as com-

pute and storage nodes can proceed independently of the application master because the

latter is only required to schedule new tasks or to clone existing tasks. Nonetheless, cluster op-

erators may opt to replicate the application master using Apache ZooKeeper [97] for increased

resilience to failures.

Compute Node Failure When a compute node fails, the application master restarts all cur-

rently running tasks on the node. To do so, it scans the running work bag for all tasks that

the compute node was currently executing. It then terminates all running clones of these

tasks. Next, it discards data in the output bags and rewinds the input bags of these tasks,

and finally reschedules them by moving them back to the ready bag. From the application’s

perspective, restarting failed tasks from scratch enables maintaining the exactly once invariant

when reading data from input bags.

Our approach is simple to implement and reason about but comes at the expense of potential

slow progress in the presence of many failures. We leave the implementation of a more fine-

grained recovery approach to address compute node failures that avoids restarting associated

clones as future work.
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Storage Node Failure Hurricane protects against storage failures using redundancy tech-

niques such as RAID [136]. Besides, the system supports primary-backup replication of the

data stored on storage nodes. Since data is spread across all storage nodes, an application

can tolerate n storage node failures by using n +1 replication. Each bag, including data and

work bags, is replicated along with bag state, such as the current file pointer position from

which the next chunk will be read. The replication level is configurable for each application.

In the event of a storage node failure, the application master informs each compute node to

use a backup storage node. Compute nodes re-issue requests to the backup storage node and

proceed as usual.

Decentralized Control In the current version of Hurricane, the application master serves as a

centralized control plane. On the other hand, the data plane is fully decentralized. While we do

not foresee any scalability bottlenecks as a result of this decision, we leave the implementation

of a decentralized application control plane for future work.

Speculative Execution Hurricane does not currently provide a mechanism for speculative

execution [74]. We do not attempt to restart crashed, hung, or slow tasks on compute nodes

speculatively. Crashed or hung tasks will eventually be detected by the application master

and will be killed and restarted then. Cloning successfully mitigates stragglers, as slow tasks

will eventually be cloned, but this is not done speculatively. We leave the implementation of

speculative cloning as future work.

4.4.5 Software and Configuration

Hurricane is written in Scala and runs on a standard Java Virtual Machine (JVM) version 8 [12].

The system and all benchmark applications are roughly 7’000 lines of code. Similarly to all

scatter systems, Hurricane disaggregates compute and storage logically by running separate

JVM processes for storage and compute nodes. We use the Akka toolkit (version 2.4) [13] for

high-performance concurrency and distribution. We use TCP-based netty (version 4) [14]

for inter-machine communication, but also support UDP-based Aeron (version 1.2) [15] for

high-throughput low-latency messaging. Due to observed instabilities in Aeron, we opted for

netty as the default. We use reasonable defaults for all system parameters. In particular, we do

not tune the network stack, the storage subsystem, or the JVM.

The chunk size is chosen to minimize the overhead of remote data access, reduce internal

fragmentation caused by small bags, and minimize random accesses to the disk. Our system

uses a 4 MB chunk size.
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4.5 Evaluation

This section evaluates the performance of the Hurricane system and compares it with the

Hadoop (version 2.7.4) and Spark (version 2.2.0) systems. Our experiments show the effect

of increasing skew and input data size on the system. Then, we evaluate the various de-

sign choices we made in Hurricane. Finally, we evaluate the performance of three realistic

applications.

We evaluate Hurricane on 32 16-core machines (2 Xeon E5-2630v3), each equipped with 128

GB of DDR3 ECC main memory. The machines have two 6 TB magnetic disks arranged in

RAID 0. The RAID array sustains a bandwidth of approximately 330 MB/s, as reported by

fio [8]. The machines are connected through 40 GigE links to a top-of-rack switch that provides

full bisection bandwidth. We run no other workload on the machines to ensure that each

system can fully utilize the 128 GB of main memory. We co-locate compute nodes and storage

nodes and run one storage node per machine using all available storage. We do not enable

replication of bags unless explicitly stated.

4.5.1 Taming Skew

We first evaluate how well Hurricane can deal with skewed workloads along two dimensions:

increasing skew in the data, and increasing input data size. To do so, we use the ClickLog

application presented in Subsection 4.2.1. This application is representative of many analytics

workloads, such as the MapReduce paradigm that transforms input data before aggregating it

along some dimension.

The input takes the form of text files uniformly distributed across all storage nodes. Each input

line contains an IP address. The output is the count of the number of unique IP addresses in

each geographic region. We simulate the geolocation function to avoid external API calls.

For the evaluation under skew, we normalize the skew runtimes with the corresponding

runtimes for uniform inputs. Table 4.1 establishes the baseline ClickLog runtimes on uniform

inputs with increasing size. We start with 320 MB (10 MB per machine) and multiply the size

by 10 until the input size is 3.2 TB (100 GB per machine). At 10 MB, 100 MB, and 1 GB per

machine, the experiment runs from memory and the performance scales sub-linearly due to

execution overhead. The 320 GB (10 GB per machine) and 3.2 TB (100 GB per machine) runs

execute from disk and scale almost linearly at aggregate disk bandwidth.

Input size 320 MB 3.2 GB 32 GB 320 GB 3.2 TB
Runtime 5.7s 8.9s 22.8s 90s 959s

Table 4.1 – ClickLog runtime over a uniform input (baseline). The total size of the input is scaled from
320 MB to 3.2 TB of total input.
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To evaluate performance in the presence of skew, we use a synthetic input generator that takes

two parameters: input size and skew. We use a Zipfian distribution with parameter s (0 ≤ s ≤ 1)

to obtain different amounts of skew. Then we generate partitions by dividing the key range

into equal parts so that adjacent keys are placed in each partition.

We show how increasing the skew affects Hurricane. We introduce increasing skew in the input

data using skew parameter s, with values 0 (uniform), 0.2 (mild skew), 0.5 (medium skew), 0.8

(medium high skew), and 1 (high skew). The corresponding imbalance between the largest

and smallest region is 1×, 2.3× , 8×, 28×, and 64×.

Given s = 1, the largest region makes up 19.6% of the total input. Using Amdahl’s law, and

assuming that the largest region is the serial (non-parallelizable) fraction of the parallel execu-

tion and that the processing requirements are uniform, we can estimate that the maximum

achievable speedup in this scenario is 4.5× when the largest region is not broken up. When

using 32 machines, this corresponds to a best-case slowdown of 7.1× (32/4.5).

Figure 4.4 shows Hurricane’s slowdown with increasing skew and input sizes. We observe that

Hurricane suffers at most 2.4× slowdown across all configurations and significantly less in

most cases. By spreading data chunks across all storage nodes and cloning tasks processing

large regions to split the work at runtime, Hurricane achieves a much better slowdown than

7.1×.
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Figure 4.4 – ClickLog runtime with increasing skew.

In Figure 4.4, the normalized runtime increases with increasing skew due to task cloning and

merging overheads. Tasks are cloned every two seconds, and so it takes some time until all

compute nodes are busy (e.g., in Phase 1). The merge operation introduces overheads because

it reconciles the partial outputs of clones after their execution. There is no task cloning (and

therefore no merging) for the first two input sizes (10 MB and 100 MB). These experiments run

fast due to the small input size and have little overhead caused by skew. The third input size

(1 GB) experiences some task cloning in the presence of skew. In the worst case (s = 1), this

overhead is 0.24×, of which 63% is due to cloning delays, and the rest is from merging partial

outputs. Experiments for the 10 GB input size lead to a significant amount of task cloning

for large skew (s = 0.8 and s = 1). The worst-case overhead is 0.38×, of which 39% is due to

cloning delay in the first phase, and the rest is from merging partial outputs. Figure 4.8 shows
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these effects by plotting the sustained throughput over time when the skew s=1, for 10 GB

input size. Note that as the input sizes become larger, the application executes for a longer

time, and therefore the relative overhead due to cloning delay decreases.

The largest input size (100 GB) suffers from the largest overhead across all experiments,

1.4× for s = 1. Unlike smaller input sizes, half of this overhead is due to desynchronized

garbage collection pauses at storage nodes, which prevents the system from achieving peak

I/O throughput [110]. We are actively looking into this problem, and expect our solution to

bring the overhead down to similar levels as that of smaller input sizes.

4.5.2 Design Evaluation

Varying Partition Sizes We now evaluate how decreasing the partition size, i.e., creating

more tasks of smaller sizes and scheduling them statically without cloning affects the runtime

for a skewed workload. To that end, we run Hurricane with and without cloning (dubbed Hur-

ricaneNC) on a 32 GB input with skew parameter s = 1. We increase the number of partitions

from 32 to 4096 so that the average task size decreases with more partitions. The average task

size with 32 partitions is 1 GB, whereas, with 4096 partitions, it is 8 MB (comparable to the

chunk size).

Figure 4.5 shows the results for this experiment. We break down the runtimes of each phase.

The first phase buckets the IP addresses into regions, and the second phase uses a bitset

to list unique IP addresses, while the third phase counts the size of the bitset. Hurricane

starts with a single worker in Phase 1, which it can clone based on load conditions, while

HurricaneNC always runs a single worker per task since it does not clone workers. To ensure a

fair comparison for HurricaneNC, we split the Phase 1 input into equal-sized partitions such

that each compute node is assigned at least one partition of the input.
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There is no skew in Phase 1, and thus the size of tasks has little impact on the phase’s runtime.

We observe that Hurricane takes a little longer to complete Phase 1 because it starts the phase

with a single worker, and on-demand cloning introduces some delay for detecting overload.

However, the benefit of Hurricane’s approach is that the application does not need to specify

the correct number of clones. Phase 2 has significant skew, and here we observe how cloning

reduces the phase’s runtime, even though it comes at the expense of a merge. Hurricane can

parallelize the processing of large partitions through cloning, whereas HurricaneNC’s runtime

is dominated by the time it takes to process the largest partition on a single worker. Phase 3

runs very quickly as it does little work.

We plot the best case slowdown as computed in Subsection 4.5.1 in dashed lines as a reference.

We observe that HurricaneNC’s performance closely matches the curve, whereas Hurricane

stays below. The shape of the results for HurricaneNC indicates that its speedup becomes less

significant every time we double the number of partitions until, eventually, it cannot achieve a

better runtime.

We conclude from these results that smaller partitions alone are insufficient for addressing

skew: even though the average partition size decreases, large partitions remain comparatively

large. In the absence of cloning, a single worker must process the largest partition sequentially,

and so the system cannot fully leverage the presence of more tasks to achieve better load

balancing. Finally, we observe that creating too many small partitions introduces scheduling

and storage overheads, as evidenced by the increase in runtime for Phase 1 for both systems.

Cloning and Spreading We now seek to evaluate which feature of Hurricane works best to

address skew, and in particular, whether both cloning and spreading data across storage nodes

are necessary for good performance. We only present the runtime for the first two phases,

since the third phase runs for a short time.

We consider four configurations of Hurricane with different features turned off:

• Configuration 1: Cloning Off, local data. Cloning is disabled. We create one task per

bag, i.e., one task for Phase 1 and r tasks for Phase 2 (where r is the number of regions).

Phase 1 task input is on local disk, and its output data is written locally. Phase 2 tasks

read their input data from remote machines in parallel.

• Configuration 2: Cloning Off, spread data. Cloning is disabled. We create the tasks as

before. All data (including initial input) is spread.

• Configuration 3: Cloning On, local data. Cloning is enabled. We create one task per

bag as before, but the system can clone both Phase 1 and Phase 2. Data is placed as in

Configuration 1.

• Configuration 4: Cloning On, spread data. Cloning is enabled, as in Configuration 3. All

data (including initial input) is spread.
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We run the ClickLog application on 8 machines in each of the above four configurations with

80 GB of input data (10 GB per machine). Figures 4.6 and 4.7 show the results for Phase 1 and

Phase 2 respectively. Phase 1 is not impacted by skew since each IP is geolocated and placed

in the corresponding region bag independently. We observe that spreading data in the bag

is essential for good performance as local data places the burden of serving that data on a

single storage node. For instance, with local data, turning cloning on only speeds up Phase 1

by 25% because, even though the output of clones is placed on local storage, one machine

must still supply the entire input. Figure 4.7 shows that Phase 2 is severely impacted by skew,

as shown in the first configuration. Spreading the data improves performance by 33% (second

configuration) because it helps achieve better storage load balance, allowing the machine

processing the heaviest region to use all disks when it is the last task remaining, effectively

increasing its storage bandwidth. Cloning with local data (configuration 3) is slower than

cloning with data that is spread (configuration 4) because clones are introduced with a delay,

hence the output is not uniformly distributed across all storage nodes if it is kept local. Finally,

we observe that cloning has the most impact with increasing skew since it allows the heaviest

region to be simultaneously processed by multiple workers.
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Figure 4.6 – Runtime of ClickLog Phase 1 for different configurations with various features turned off.
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Figure 4.7 – Runtime of ClickLog Phase 2 for different configurations with various features turned off.

Locality One might wonder whether Hurricane takes a performance hit by spreading data

uniformly in the absence of skew. As we can see from Figures 4.6 and 4.7, this is not the case in

our deployment because the network is fast enough to match storage bandwidth. As a result,

remote bandwidth is roughly the same as local bandwidth.
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Overload Detection & Cloning Heuristic Hurricane clones tasks to rebalance load and in-

crease parallelism for large tasks, allowing the system to utilize both CPU and storage resources

better. We evaluate the effectiveness of our overload detection mechanism and cloning heuris-

tic with ClickLog running on 32 machines with 320 GB input. We set the skew parameter to 1

(high skew).

Figure 4.8 shows the aggregate throughput achieved by all compute nodes in the system

sampled at one-second intervals. Phase 1 starts with one worker executing the single task.

Since the task is CPU bound, it clones rapidly until all 32 machines are running clones around

the 15 second time point (the number of clones doubles approximately every 2 seconds).

There is no merge in Phase 1, and all workers complete roughly at the same time.

Phase 2 then starts with one task per region, which together occupy all available worker slots

at compute nodes. As tasks associated with small regions complete, their associated Phase

3 tasks are scheduled and executed. When they finish, some compute nodes become idle

because there are no more available tasks, allowing compute nodes processing larger regions

to get higher storage bandwidth. This overloads their CPU, so they issue cloning requests

to the application master, which grants them on a case-by-case basis. Eventually, only the

largest region remains, with 26 workers simultaneously processing it. Cloning stops beyond 26

workers because storage, and not the CPU, becomes the bottleneck. As this region gets close

to the end, the application master rejects further cloning requests, as the merge overhead

would become larger than the benefits of cloning. Once the region is processed, the outputs of

each clone are combined by a merge task, and application execution terminates.

Throughput remains nearly constant for Phase 2 despite significant skew because the system

clones tasks on idle compute nodes when storage is not the bottleneck.
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Batch Sampling We consider the batch sampling technique presented in Subsection 4.3.3

and Subsection 2.1.4 and evaluate its impact on performance. Batch sampling of chunks

is a form of oversubscription performed by storage clients on behalf of workers is a means

for ensuring that storage nodes remain busy throughout their execution and that workers
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are not starved for data, essentially overlapping computation and communication through

prefetching of chunks.

We consider Phase 1 of ClickLog with various batch sampling factor values, from ΦK = 1 (i.e.,

one chunk at a time) to ΦK = 32 (i.e., one in-flight request per storage node). Figure 4.9 shows

that allowing workers to prefetch multiple chunks is essential for good performance and to

keep storage nodes busy. However, prefetching too many chunks (ΦK = 32) is undesirable

since it risks overwhelming storage nodes and could lead to unfairness. ΦK = 10 is the sweet

spot, allowing us to achieve 33% runtime improvements simply through better overlapping of

computation with storage I/O.
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Throughput and Storage Utilization In the scatter architecture, storage nodes are designed

to scale storage I/O throughput observed by compute nodes with an increasing number of

storage nodes. We verify that this is the case by running a synthetic benchmark where each

worker writes a fixed amount of random data (100 GB) and then reads the data back. We

start on one machine and then double the number of machines until 32, thus doubling the

aggregate amount of data stored in storage nodes. The results indicate that Hurricane sustains

maximum I/O bandwidth, regardless of the number of machines involved. For instance,

we achieve 330 MB/s read bandwidth with one machine and 10.53 GB/s read bandwidth

with 32, an increase of 31.9× for 32× more machines. Similarly, we achieve 327 MB/s write

bandwidth with one machine and 10.39 GB/s write bandwidth with 32, i.e., 31.7× speedup. By

increasing the number of storage nodes, applications can scale throughput while maintaining

high storage throughput.

Fault Tolerance We evaluate the impact of compute node and application master crashes on

throughput. Figure 4.10 shows the aggregate throughput over time for an execution of ClickLog

on a 320 GB input using 32 machines (10 GB per machine). We forcibly crash a compute node

twice: once during phase 1 and once during phase 2. In each case, we also crash the application

master 20 seconds after recovering from the compute node crash. Compute node crashes

cause throughput to deteriorate temporarily, as the system must stop all corresponding task

clones and restart the crashed task. Since phase 1 consists of a single task, the crash of the

compute node requires restarting all workers in the system. In phase 2, the same crash only
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requires restarting all associated clones of the task (recall, different regions have different

tasks), and thus the throughput only degrades by ∼ 25%. Application master crashes have little

impact on throughput for two reasons: the master’s recovery is speedy (less than 1 second),

and once tasks are placed in the work bag, compute nodes can proceed independently of the

master’s status.
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Figure 4.10 – ClickLog throughput over time on 32 machines with worker and application master
crashes. The vertical dashed line separates Phase 1 from Phase 2.

4.5.3 Applications and Comparisons

Finally, we consider three workloads, representative of real-world applications, described

below. We compare the performance of Hurricane on these workloads with optimized imple-

mentations in Hadoop and Spark.

• ClickLog: count the distinct number of occurrences of each IP address per region in a

log of clicks on advertisements. This application was presented in Section 4.2.

• HashJoin: given two relations and an equality operator between values, for each distinct

value of the join attribute, return the set of tuples in each relation that have that value.

This is a classic problem in relational databases.

• PageRank: execute 5 iterations of the PageRank algorithm [134] on a large real-world

power-law graph. PageRank has many real-world applications and is a well-known

benchmark used in graph processing systems. This is an iterative multi-stage applica-

tion.

ClickLog We compare our ClickLog results with Hadoop and Spark by evaluating each sys-

tem’s performance under different levels of input skew.

The implementation of ClickLog in Hadoop maps parts of the input text to the workers,

which tokenize it, parse the IP addresses, geolocate the IP address per region, and output

intermediate lists of IP addresses in each region. The reduce phase goes over the intermediate
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lists to perform a distinct count. Spark operates in much the same way on resilient distributed

datasets, mapping the input to workers, tokenizing, geolocating by region, and counting

distinct IP addresses. Wherever possible, we use the same data structures and perform the

same operations for all implementations. In particular, all implementations use bitsets to

perform the distinct count.

We use HDFS [148] in the case of Hadoop and Spark. We make sure that both Hadoop and

Spark read their input data from the local disk and write the much smaller output without

replication. We also split the job into enough tasks to ensure that Hadoop and Spark can

utilize all available cores in the cluster and have enough opportunities to balance the load. We

try multiple values for the number of partitions (ranging from 100 to 1’0000) and report the

best runtime across all configurations. We verify that no task was restarted because of a crash

during the execution.

Table 4.2 shows the runtime of all three systems on uniform inputs for two input dataset sizes.

The 320 MB input is guaranteed to fit in memory on a single machine even in the presence of

high skew, while the 32 GB may not fit in a single machine due to Java runtime overheads. All

three systems (in particular Hadoop) experience some overhead when executing on the small

320 MB input as a result of small task sizes.

Hurricane achieves lower overall runtimes because it does not need to sort intermediate data,

which allows better overlap between computation and communication. Both Hadoop and

Spark must sort intermediate data to ensure key ranges do not overlap. However, eliminating

sorting in Hurricane does not come free, since the system must perform an additional merge

task for cloned tasks.

System 320 MB 32 GB
Spark 8.2s 32.4s
Hadoop 37.1s 50.3s
Hurricane 5.7s 22.8s

Table 4.2 – ClickLog runtime over a uniform input for 320 MB and 32 GB input sizes.

Figure 4.11 shows the slowdown on all three systems as skew is introduced in the input. To

ensure a fair comparison, the runtime for each system is normalized to its own runtime with

the uniform input.

We observe that both Hadoop and Spark suffer significant performance degradation in the

presence of skew, particularly as the input size increases. Spark runs out of memory and

crashes with highly skewed tasks due to a hard limitation of 16 GB placed on task memory.

Hadoop suffers from a large increase in runtime due to the impact of skew on a few reducers,

forcing them to spill.

HashJoin Table 4.3 shows the runtimes for two joins, one between a small 3.2 GB relation

and a larger 32 GB relation, and the second between a 32 GB relation and a 320 GB relation,
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Figure 4.11 – Comparison of Hurricane, Spark, and Hadoop when the skew is increased for input sizes
320 MB and 32 GB. A full bar indicates that the execution did not terminate in under an hour and was
forcibly terminated. Negative bars indicate a crash.

for both Hurricane and Spark. For both joins, we introduce skew in the first (smaller) relation,

causing a much larger hit rate for some keys. The join in Hurricane splits the smaller relation

into 32 equal-sized partitions and sorts them in memory. It then creates 32 corresponding

partitions in the larger relation, and finally streams the larger partitions, while the smaller

partition is in memory, outputting matching keys. Spark’s implementation proceeds similarly

but with more partitions to make sure all available CPU cores are used. We try varying the

number of partitions (ranging from 100 to 1’0000) and report the best overall runtime. As

before, we ensure that input data is read from the local disk and that there are no task crashes

during execution. We also disable output replication.

System
3.2 GB ./ 32 GB 32 GB ./ 320 GB
s=0 s=1 s=0 s=1

Hurricane 56s 89s 519s 1216s
Spark 81s 1615s 920s >12h

Table 4.3 – HashJoin runtime for two different relation sizes and different amounts of skew. s = 0 is
uniform.

We can observe that Spark struggles with the load imbalance caused by skew and that this

effect worsens as the input size increases. The slowdown is directly caused by a larger hit rate

in some partitions. Hurricane handles the situation more gracefully due to its ability to spread

68



4.6. Summary

both input and output across storage nodes as well as its ability to clone the tasks containing

keys with a larger hit rate.

PageRank Table 4.4 compares the runtime of PageRank in Hurricane and Spark’s GraphX, a

state-of-the-art graph-parallel library for graph applications. We compare different input sizes

using 32 machines. We use the RMAT graph generator [62] to generate real-world power-law

input graphs, i.e., graphs whose degree distribution is skewed. RMAT-24 has 16 million vertices

and 256 million edges, RMAT-27 has 128 million vertices and 2 billion edges, while RMAT-30

has 1 billion vertices 16 billion edges.

PageRank is computed iteratively for 5 phases after an initialization phase. The PageRank

implementation in Hurricane is based on the Chaos model described in Chapter 3. In each

phase, each vertex in the graph sends its current PageRank along outgoing edges to neighbor-

ing vertices and then aggregates the PageRanks received by neighbors along incoming edges

to compute its new PageRank. PageRank is essentially a join of vertex identifiers with outgoing

edge source vertex identifiers to send out vertex values, followed by a groupby aggregation of

received values on vertex identifiers. Because this is an iterative algorithm with changing input

data, it is representative of long multi-phase application graphs. We use GraphX’s example

PageRank implementation for comparison, ensure the input is read locally, and check that no

crashes occur during execution.

System RMAT-24 RMAT-27 RMAT-30
Hurricane 38s 225s 688s
GraphX (Spark) 189s 3007s > 12h

Table 4.4 – Comparison of Hurricane and GraphX on 5 iterations of PageRank over an RMAT-27,
RMAT-30, and RMAT-32 graph.

Hurricane performs much better than GraphX on all input sizes. We observe significant task

cloning in Hurricane throughout the execution, particularly for partitions with high-degree

vertices, which allows each stage of the computation to finish in a timely fashion. GraphX

struggles to finish executing on larger input sizes due to spilling and shuffling overhead. These

results demonstrate that Hurricane handles skew effectively in multi-stage applications.

4.6 Summary

Hurricane is a system for high-throughput analytics designed from the ground up for handling

skewed workloads. Hurricane works well because it is designed to dynamically partition work

based on load imbalance. It allows programmers to seamlessly write applications whose

performance does not degrade significantly in the presence of skew. Applications using

Hurricane benefit from high capacity and scalability, as well as inherent load balance and high

parallelism.
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We provide a summary of Hurricane’s features, as well as the specific scatter architecture

techniques used by the framework below.

Area General-purpose analytics

Load imbalance Skew in input and intermediate data

Processing skew due to, e.g., filtering

Machine skew due to, e.g., interference

Data spreading All data as bags

Sorted data as files

Tasks in work bags

Dynamic parallelism Dynamic work sharing based on cloning + merging

Partitioning Simple, user-defined

Misc. characteristics Decentralized task scheduling

Opportunistic load balancing
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5 Load Balanced LSM-Based Distributed
Databases with Hailstorm1

In this chapter, we depart the world of big data analytics for that of distributed databases. We

present Hailstorm, a filesystem substrate inspired by the scatter architecture that improves

load balance for large-scale distributed databases based on Log-Structured Merge-tree storage

engines.

5.1 Introduction

Distributed databases such as MongoDB [19], Couchbase Server [59], or Apache Cassandra [21]

have become the new standard for data storage in cloud applications. Internet companies

use them to power large-scale services such as search engines [63, 69], social networks [21,

26, 44, 47, 57, 154], online shopping [19, 75], media services [22], messaging [52], financial

services [23, 61], graph analytics [27], and blockchain [28, 86, 121]. As distributed databases

become the de facto storage systems for distributed applications, ensuring their fast and

reliable operation becomes critically important.

Distributed databases shard data across multiple machines and manage the data on each

machine using embedded storage engines such as RocksDB [57], a Log-Structured Merge-

tree [133] (LSM) key-value (KV) store. These databases can suffer from unpredictable per-

formance and low utilization for two reasons. First, skew occurs naturally in many work-

loads and causes CPU and I/O imbalance, which degrades overall throughput and response

time [96, 113, 120, 158]. Current LSM-based databases address skew by resharding data

across machines [19, 20, 21, 24, 25]. However, this operation is expensive because it involves

bulk migration of data, which affects foreground operations. Second, background opera-

tions such as flushing and compaction can cause significant I/O and CPU bursts, leading

to severe latency spikes, especially for queries spanning multiple machines such as range

1This chapter is based on the following publication: Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel.
Hailstorm: Disaggregated Compute and Storage for Distributed LSM-based Databases. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, pages 301–316. ACM, 2020. Hailstorm was designed, implemented, and evaluated solely by the author
of this dissertation. The author maintains the software to this day.
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queries [38, 41, 69, 78, 110]. These problems are hard to address in existing systems because

the storage engines operate independently of each other and thus are unaware of resource

usage and background operations on other machines. As a result, these databases experience

significant imbalance in terms of CPU and I/O load, and storage capacity.

This paper presents Hailstorm, a lightweight distributed filesystem specifically designed to

improve load balance and utilization of LSM-based distributed databases. This filesystem is

inspired by the scatter architecture (see Chapter 2). Figure 5.1 shows the high-level architecture

of a generic distributed database running with Hailstorm. Hailstorm is deployed under the

storage engines running on each machine.

Database 
Instance 0

. . .Storage 
Engine

Distributed Database

Database 
Instance 1

Database 
Instance N-1

Storage 
device 0

Storage 
device 1

Storage 
device N-1

. . .

Storage 
Engine

Storage 
Engine

Hailstorm

Figure 5.1 – High-level architecture of a distributed database with Hailstorm. Storage engines access
storage devices through the Hailstorm filesystem which pools all storage devices within a rack.

The key idea in Hailstorm is to disaggregate compute and storage, allowing each to be load

balanced and scaled independently, thus improving overall resource utilization.

Hailstorm scales and balances storage using the scatter storage techniques presented in

Section 2.1. We pooling storage within a rack at a fine granularity so that each database

storage engine can seamlessly access the aggregate rack storage bandwidth. The data for

each database shard is spread uniformly across all the storage devices in a rack in small

blocks (1 MB). This approach effectively provides a second, storage-level sharding layer that

guarantees high storage utilization even in the presence of skew, removes per-machine disk

space constraints, and eliminates the need for database-level resharding within the rack.

Hailstorm scales computation by offloading expensive background compaction tasks to other

less utilized machines, leveraging uniform, fine-grained storage pooling (§2.2.3). Our approach

reduces the CPU impact of compactions on overloaded machines, frees up CPU cycles for

user requests, and lowers the memory footprint, thereby improving throughput and query

response time.
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We evaluate the performance of Hailstorm with MongoDB [19], a widely-used distributed

database with a key-value store interface, running over Mongo-Rocks [24], an adapter for the

popular RocksDB [57] storage engine. For our benchmarks, we use the reference Yahoo Cloud

Serving Benchmark (YCSB) workloads [68] as well as two production workloads from Nutanix.

We also experiment with TiDB [25], a state-of-the-art distributed database that supports SQL

ACID transactions and bundles RocksDB as its storage engine. With TiDB, we evaluate the

benefits of Hailstorm on industry-standard TPC-C [138] and TPC-E [65] benchmarks.

Hailstorm provides throughput improvements for skewed YCSB workloads running on Mon-

goDB of 60% on average and up to 22× for scan workloads. It also reduces tail latency by 4-5×
in skewed write workloads. On the production traces with skew, Hailstorm achieves 3× higher

and stable throughput. With TiDB, Hailstorm improves throughput by 56% on TPC-C and 47%

on TPC-E.

We make the following contributions in this work:

• We present Hailstorm, a system that disaggregates storage and compute for distributed

LSM-based databases (§5.3).

• We demonstrate how the scatter-inspired Hailstorm filesystem for LSM storage engines

(§5.3.2) uses pooled storage and fine-grained spreading of data across machines to scale

storage within a rack (§5.3.3).

• We leverage our filesystem design to scale CPU resources within a shard by seamlessly

offloading expensive background tasks to less utilized machines (§5.3.4).

• We show that Hailstorm’s approach is the proper way to mitigate skew in various workloads

and databases and that the system successfully achieves load balance for both storage and

compute (§5.5).

5.2 Background & Challenges

We discuss the issues and challenges involved in dealing with skew and I/O bursts in dis-

tributed databases and LSM stores, which we support with empirical evidence.

5.2.1 Skew in Distributed Databases

Distributed databases [19, 20, 21, 22, 23, 44, 63, 69, 75, 154] store data on many machines,

and are designed for large-scale data storage and low-latency data access. Although differ-

ent distributed databases offer query abilities ranging from simple key-value semantics to

SQL transactions, they all require sharding, i.e., partitioning data across multiple database

instances, in order to store large datasets. Data is usually partitioned by collection or table

using range-based or hash-based key partitioning.
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The database engine translates user queries into individual queries that are routed to one or

multiple database instances for execution. The set of database instances accessed by a query

can vary significantly from one query to another and depends on the sharding policy. For

example, while many reads and writes typically access a single instance, range queries and

transactions may involve many instances.

Skew occurs naturally in many distributed workloads [96, 113, 120, 158], because some keys

are more popular than others. As a result, sharding inevitably leads to data imbalance across

the machines that make up a distributed database. This uneven key distribution can cause

capacity problems if a machine has too much data to store locally. More importantly, uneven

key distribution results in uneven accesses that cause load imbalance as some machines

perform more operations than others.

5.2.2 Compaction in LSM KV Stores

Log-Structured Merge-tree (LSM) KV stores [29, 57, 86, 139] are a popular way to provide

persistent storage in single-machine production environments, especially for write-heavy

workloads. They provide key-value semantics using an in-memory buffer that is periodically

flushed to disk when it becomes full. In case of failure, LSM KV stores recover the data in the

in-memory buffer using a write-ahead log.

LSM KV stores organize data on disk in files sorted by key, called Sorted String Tables (sstables).

The sstables are maintained in a tree-like data structure, with higher levels of the tree contain-

ing larger sstables. The key ranges of different sstables in a given level Li do not overlap, except

for the first level, L0 that corresponds to flushed in-memory buffers. LSM KV stores preserve

the tree structure using background operations called compactions that merge sstables in Li

with overlapping sstables in Li+1, while discarding duplicates.

Compactions run in separate background threads as they are typically expensive operations

in terms of both CPU and I/O. Executing a compaction at Li requires reading all overlapping

sstables in Li+1 to perform an external merge sort before writing back the new sstables. Since

sstables are larger as we go to higher levels, this results in high write amplification, where a

single, small sstable causes multiple larger sstables in the higher level to be read and written.

The larger the sstables involved are, the longer the compaction and the more resources are

required. For example, if the highest LSM level contains hundreds of gigabytes, a single

compaction involving that level can take minutes to hours.

Figure 5.2 shows the throughput fluctuation over a one-hour time period for RocksDB [57],

running YCSB A, a workload consisting of 50% reads and 50% writes. The throughput generally

remains between 18 KOps/s and 32 KOps/s with an average of 22.4 KOps/s, but repeatedly

drops to ∼2.7 KOps/s. The performance degradation is due to compaction threads competing

for CPU and I/O resources with the threads servicing client requests. Profiling this particular

experiment reveals that storage is saturated as I/O bandwidth remains almost constantly
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close to 320 MB/s, the maximum write bandwidth for our SSD. We also observe peaks of CPU

utilization when compaction tasks run. As more data is stored, compactions become more

expensive, throughput drops to as low as ∼0.6 KOps/s around 01:00, and compaction duration

quadruples to 9 seconds.
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Figure 5.2 – Embedded RocksDB throughput over time (HH:mm) on a machine equipped with an
Intel S3500 Series SSD using the YCSB A [68] workload (50% reads and 50% writes).

Table 5.1 shows the average and tail latencies in the same experiment. Latency spikes coincide

with the execution of compaction tasks. Compaction tasks not only limit the available CPU

and I/O bandwidth for read operations and writes to the write-ahead log, but also slow down

flushing of the in-memory buffer when it becomes full, preventing the system from accepting

more writes. Upon profiling, we find that writer threads are stalled 48.4% of the time due to

flushing.

Mean P50 P99 P99.9 P99.99 Max
1.6ms 0.7ms 35.1ms 72.1ms 181.3ms 69.5s

Table 5.1 – RocksDB latency profile. YCSB A, 50% reads - 50% writes.

Several solutions have been proposed to reduce the impact of background operations in LSMs

on individual machines. However, they do not take advantage of spare resources and capacity

on other machines [29, 50, 139].

5.2.3 Distributed Databases with LSM Storage Engines

Many distributed databases rely on embedded LSM KV stores for local storage on each of their

database instances in order to benefit from their high performance [20, 21, 24, 25, 154].

This two-layer architecture can, however, lead to situations where both layers interfere with

each other, combining the undesired effects of skew (§5.2.1) and expensive background

operations (§5.2.2) and causing severe performance degradation for database users. Skew

causes some machines to experience higher load from user requests, causing an overload, and

background operations become more intensive since these machines manage more data than

others. If the requests have dependencies or high fan-out, these overloaded machines become

stragglers, and performance across the whole database collapses.
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MongoDB, like many other distributed databases, addresses skew by resharding, i.e., sharding

again, to remove hotspots and improve load balance. Resharding operations, performed

manually or automatically at the database layer, include, e.g., adding a new shard, splitting

one shard into multiple shards, or merging multiple shards into one. Resharding involves

migrating existing data from one shard to another, often located on a different database

instance. Resharding is expensive because it introduces background operations that compete

for resources with regular operations. Unlike resharding in B-tree-based databases, which is

usually performed by splitting B-tree nodes [39, 149], resharding in LSM-based databases is

more complicated because data is stored in files with overlapping key ranges. As database

instances strive to maintain their LSM data structure in the presence of additions and deletions

due to migrations, additional flushing and compaction tasks are required. These compactions

cause significant amplification of I/O and CPU usage. Furthermore, resharding decisions are

usually taken by the distributed database based on its own load metrics, without regard to I/O

load on individual instances and their current background operations.

Figure 5.3 compares the throughput fluctuation over time for 8 MongoDB instances using

RocksDB for storage. We run YCSB A, a write-intensive workload, YCSB C, a read-only workload,

both with single-key queries, as well as YCSB E, a read-write workload with range queries, with

both uniform and skewed (Zipfian) distributions.

In all three cases, the throughput is degraded with Zipfian request distribution, whereas the

uniform throughput is higher and more constant. Skewed workloads, therefore, take longer to

finish: YCSB A, C, and E respectively run 3.3×, 1.4×, and 8.5× slower due to skew.

In YCSB A with Zipfian distribution, the per-instance throughput is much higher on one

machine than it is on the others. That machine serves ∼75% of requests and experiences

high CPU usage and I/O load. This highlights the problem when skew in the workload and

background operations are combined. During the entire execution, MongoDB attempts to

recover from this hotspot by rebalancing shards and redistributing a total of 25.4 GB of data

across other database instances, thus reducing data skew from 9× to 5×. However, this data

migration causes more expensive flushes and compactions as the offloaded keys are deleted

from one instance and written to another, and results in additional performance degradation

and longer throughput drops, e.g., at 00:37.

In YCSB C, the per-instance throughput in the skewed scenario also suffers from significant

imbalance, with one machine serving almost 3× more requests than the others. MongoDB’s

shard rebalancer constantly runs during this workload and migrates data from the machine

experiencing high load to the others, leading to an increase in throughput from ∼140 KOps/s

to ∼150 KOps/s in 15 minutes. We observe flushes and compaction tasks on each database

instance as a result of data migration, causing occasional sharp drops in throughput, e.g.,

at 00:04. These results demonstrate that even read-only workloads can suffer throughput

degradation and exhibit similar characteristics as write-heavy workloads due to resharding.
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Figure 5.3 – MongoDB aggregate throughput on 8 instances over time (HH:mm) for the YCSB workloads
A, C, and E with uniform and Zipfian key distribution. The database is first populated with 100 GB of
data before executing each workload with an additional 100 GB. Each MongoDB instance is configured
to use the LSM-based RocksDB [57] storage engine.

In YCSB E, the throughput in the Zipfian case is significantly degraded. It frequently drops

close to 0 as range queries are stalled by compactions competing for I/O bandwidth and CPU

resources on overloaded machines. We profile system resource usage and find that the most

overloaded machine oscillates between 100% CPU and 100% I/O usage for 2 hours. While

the uniform workload completes after 3.5 hours, the skewed workload completes in 30 hours,

with 1/8th the throughput and 99-percentile latency 5 orders of magnitude higher. After

2.5 hours of execution, the combination of resharding overhead and increasingly expensive

compactions cause near-zero throughput for over an hour.

Overall, the MongoDB shard rebalancer is unable to address imbalance in the face of skew

and high request rate. Resharding often comes too late and is too slow to be useful. Besides,

data migrations trigger additional background operations on database instances that impact

the foreground tasks and make the overload worse.

77



Chapter 5. Load Balanced LSM-Based Distributed Databases with Hailstorm

5.2.4 Summary

We have shown that skew has a significant impact on application performance, and storage

engines suffer from I/O bursts due to background operations such as flushing and compaction.

When skew and I/O bursts are combined, performance can collapse. Also, resharding rarely

improves performance, especially when run during peak loads and in the presence of hotspots.

By rebalancing shards, distributed databases attempt to solve three orthogonal problems:

CPU, I/O load, and I/O capacity imbalance. These challenges motivate a more synergistic

approach, taken in Hailstorm, where we disaggregate resources to address load balance at the

database and the storage layers independently.

5.3 The Hailstorm Design

Figure 5.4 expands on Figure 5.1 to show the detailed system architecture corresponding

to a typical deployment on top of Hailstorm. The Hailstorm architecture is based on the

scatter architecture described in Chapter 2 and consists of a set of compute and storage nodes.

Each compute node runs a database instance with an embedded storage engine alongside

the high-performance, distributed Hailstorm filesystem, consisting of a storage client that

provides a filesystem interface to storage engines, and a Hailstorm agent that schedules and

outsources compaction tasks on behalf of the local storage engine. Database instances use the

Hailstorm filesystem instead of local storage for data persistence. Hailstorm pools all storage

servers within the same rack together to provide its storage service. Each storage node runs a

storage server that allows storage clients to store and access data. Compute and storage nodes

are provisioned independently and can run on separate, possibly dedicated machines. In the

rest of this paper, we make the assumption that compute and storage nodes are co-located.

The distributed database operates the same way as in traditional deployments as it is oblivious

to the fact that storage engines are using Hailstorm. User queries are served as usual, but

individual storage engines now perform storage operations across the network using the

Hailstorm pooled storage service.

In the remainder of this section, we present an overview of the Hailstorm design. We first

discuss and motivate the filesystem approach. We then describe the storage architecture,

including some optimizations and handling of fault tolerance. Finally, we demonstrate how

our approach supports efficient compaction offloading.

5.3.1 Hailstorm Design Principles

Hailstorm derives its design principles from the scatter architecture. The system disaggregates

compute and storage resources in order to scale and load balance each resource independently.

Hailstorm pools storage devices within a rack by introducing a filesystem layer below LSM

storage engines, and spreads all data uniformly across all storage devices, disregarding locality
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Figure 5.4 – Distributed database deployed on top of Hailstorm. Hailstorm spreads data uniformly for
each storage engine across all pooled storage devices within the rack.

(§2.1.2 and §2.1.3). This approach allows the system to guarantee uniform data placement and

to mitigate storage hotspots by spreading the I/O load. Finally, Hailstorm pools computation

resources within a rack together by offloading the background compaction tasks necessary to

maintain the LSM structure to other machines with spare CPU and memory (§2.2.3). In so

doing, the system provides relief to machines with high load whose resources are significantly

taxed by compactions.

5.3.2 Filesystem Architecture

Hailstorm exposes a subset of the standard POSIX filesystem interface as required by storage

engines. This filesystem interface serves as a drop-in replacement for the local filesystem

used by storage engines for data persistence. The Hailstorm filesystem uses a client-server

architecture, where each client can access and store data on all servers within the same rack,

thereby allowing the shards of one storage engine to span multiple storage devices (§2.1.2).
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Why a Filesystem? We choose to expose a filesystem interface, instead of providing a block-

level interface, because it provides the desired visibility into the operations of storage engines.

In particular, we require knowledge of the sstable files used by the LSM store to perform

compaction offloading. Also, the filesystem interface provides support for operations such

as mmap() that are commonly used by storage engines. File-level visibility also allows us to

perform more informed prefetching. Another significant benefit of using a standard POSIX

file interface is that it requires minimal modifications to the storage engine code.

What About Using Existing Filesystems? Unlike existing distributed filesystems [30, 72, 87,

148, 156], Hailstorm is specialized for LSM KV stores. This specialization obviates the need

for Hailstorm to implement many complex features found in traditional distributed and

cluster filesystems. Since sstable files are not modified in place and only shared across storage

engines for compaction offloading, Hailstorm does not require any support for fine-grained

file sharing. Therefore, Hailstorm keeps most file metadata locally, avoiding the need for

centralized metadata management. As indicated in Subsection 2.1.3, we use smaller block

sizes (e.g., 1 MB) than most distributed filesystems to keep I/O latency low. Since LSM KV

stores already use journaling, Hailstorm does not need to implement journaling to ensure

filesystem consistency.

Hailstorm can leverage its specialization to optimize for efficient data access, in particular fast

sequential operations on sstables, which is necessary for good compaction performance. We

perform aggressive prefetching on behalf of the compaction tasks (§2.1.4) and provide remote,

in-memory caching for large data sets using the page cache-backed nature of our implementa-

tion. Optionally, we allow write-ahead logs to remain on fast, local storage, facilitating failure

recovery.

5.3.3 Storage Architecture

Hailstorm uses the scatter storage architecture described in Section 2.1 to scale storage within

a rack. Hailstorm pools storage from all machines within a rack using a client-server filesystem

approach.

Pooling Storage Each storage client exposes a filesystem interface to its co-located LSM

storage engine and stores the data at block granularity on a pool of all storage devices (§2.1.2).

This makes it possible to absorb storage load in the presence of peaks on database instances

by spreading I/O operations to all storage servers within the rack. LSM storage engines

running on Hailstorm can, therefore, sustain reads and writes during compactions, and

avoid flush stalls [51]. It also enables efficient compaction offloading since the sstables for a

particular storage engine can be accessed from any client, and thus, storage does not become

a bottleneck. Pooling storage also enables small and large shards to cohabit within a rack

without requiring additional provisioning or expensive rebalancing.
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Data Placement and Access Hailstorm only uses files, not bags. Clients store data in fine-

grained blocks uniformly across all storage servers within the rack (§2.1.3). Clients access data

blocks as requested by the filesystem layer (§2.1.4).

Storage Load Balance Hailstorm ensures high storage utilization and balanced using over-

subscription (§2.1.4). However, unlike in previous applications, Hailstorm clients cannot

use prefetching for standard foreground requests since the access pattern is determined by

user queries and is therefore random. As a result, clients may not always be able to maintain

a fixed number of outstanding requests to storage servers. In practice, we find that this is

rarely a problem because read requests generally involved multiple I/O operations, and writes

are absorbed into the in-memory buffer before being written out sequentially. Also, the I/O

pattern during compactions is always sequential, and therefore supports prefetching of next

blocks by clients.

Read Optimizations LSM KV stores must often access multiple sstables to find the value for

a key. If reads across the network were to use the same block granularity as writes, this may

cause long delays. Hailstorm optimizes for this scenario by having reads from foreground

threads execute at smaller block granularity, thereby reducing block access latency. Flushing

and compaction use the default block granularity to maximize I/O performance. In order

to guarantee high storage utilization with smaller granularity requests, our batch sampling

technique uses a larger amplification factor Φ value for reads (§2.1.4).

Asynchronous I/O Hailstorm performs most I/O operations asynchronously with the excep-

tion of fsync(). Storage engines rely on fsync() to guarantee that storage is in sync with the

in-core state, so we use a blocking implementation to ensure correct fsync() semantics.

Fault Tolerance Distributed databases rely on replication to provide fault tolerance. They

replicate data across replica sets that are located on different machines, different racks, dif-

ferent availability zones within a datacenter, and possibly across datacenters. LSM storage

engines ensure durability by using a write-ahead log (WAL).

In the event of a crash, Hailstorm primarily relies upon the failure recovery mechanisms

implemented by LSM storage engines and distributed databases. Replication is a concern for

the distributed database layer and is better implemented there than at the filesystem level

where there is insufficient visibility into the entire database. Hailstorm allows databases to

perform replication transparently but requires that replicas be placed in different racks, so

they do not all become unavailable at the same time due to failures in a storage pool.

When deploying distributed databases on top of Hailstorm, a single disk failure or machine

crash may cause all shards within the rack to become unavailable since data for each shard is

spread uniformly. Hailstorm mitigates single-disk failures using standard techniques to ensure

redundancy, e.g., RAID [136]. Also, the system supports optional primary-backup replication
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at the block level to further protect data durability and filesystem availability. File metadata

is persisted locally and replicated. All other state in Hailstorm is soft state and can be lost

without affecting correctness.

5.3.4 Compaction Offloading

Hailstorm uses the scatter compute architecture described in Section 2.2 to increase paral-

lelism as needed for heavy database shards. Specifically, we rely on offloading of background

tasks (§2.2.3), specifically compactions, to alleviate CPU load on overloaded machines. In this

work, we do not explore dynamic work sharing techniques (§2.2.2).

Compaction Mechanism Hailstorm runs a lightweight agent on compute nodes alongside

each storage client and database instance to monitor resource usage. Agents intercept all

automatically triggered compaction jobs on their co-located LSM storage engine. If the agent

believes that the local machine is overloaded, it pauses the compaction threads and attempts

to offload the compaction to another compute node in the rack with a lower load. Otherwise,

it allows the compaction job to proceed locally. If the agent decides to offload the compaction

job, it extracts the relevant parameters (e.g., which sstable files should be compacted), and

contacts a peer on another compute node to run the compaction on its behalf. The agent

informs its peer of the details of the compaction job and transfers the associated file metadata.

The remote agent spawns a new LSM storage engine process on its compute node with the

sole purpose of running a manual compaction job equivalent to the one that was offloaded.

Since compaction does not modify the files in place, no additional synchronization between

the two agents is necessary. When compaction completes, the remote agent notifies the agent

on the original compute node with the list of newly created sstable files and their associated

file metadata and wakes up the paused compaction threads. This allows the original LSM

storage engine to take ownership of the new sstables and install the compaction locally.

Overload Detection If a database instance is already experiencing significant load, the ad-

ditional execution of background tasks using significant resources such as compaction can

lead to request queuing and stall flushing of the in-memory buffer, thereby causing longer

tail latencies and degradation in throughput. Since our design pools secondary storage and

the network is fast at the rack level (as is the case in many deployments), compaction tasks

primarily lead to CPU or memory bottlenecks in Hailstorm.

Compaction Policy Database operators can implement various compaction policies based

on their service-level objectives (SLOs), such as running dedicated compaction machines.

By default, Hailstorm uses a simple heuristic to determine whether to try and offload a local

compaction task. Each Hailstorm agent measures CPU utilization periodically and maintains

an exponential moving average (EMA) with weight α that is shared with other agents on the
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same rack. Whenever an agent intercepts a local compaction task, it offloads compaction to

the compute node with the lowest EMA value, provided that the difference between its EMA

value and the target compute node’s is larger than a customizable threshold θ. This scheme

balances CPU load within a rack over time.

In practice, we find that values of α= 0.5 (with 1-second CPU sampling period) and θ = 0.2

work fairly well. Disabling compaction offloading can be achieved by setting θ ≥ 1.

5.4 Implementation

Hailstorm is implemented in about 1,000 lines of C++ code. We use FUSE [31] to provide a

filesystem interface for storage engines and use about 2,000 lines of Scala code to implement

distribution, client-server communication, and Hailstorm agents. We choose FUSE to simplify

development, but alternative approaches such as Parallel NFS [32] are also possible. We inter-

face Scala with our C++ FUSE module using the Java Abstracted Foreign Function Layer [33]

for high-performance and low overhead. We use the Akka toolkit [13] for high-performance

concurrency and distribution. For simplicity, we use the local ext4 [114] filesystem to store

blocks on storage servers. We find that the overhead of using a filesystem on the server side is

negligible with our block sizes.

Supported databases Hailstorm implements the scatter storage architecture described in

Section 2.1 and provides a subset of the POSIX API for the filesystem it exposes through

storage clients. As a result, Hailstorm does not require any modifications to storage engines or

databases. We have successfully tested Hailstorm with RocksDB [57], as well as API-compatible

variants of LevelDB [86], including PebblesDB [139] and HyperLevelDB [29].

Hailstorm has been tested for deployment under MongoDB [19] using MongoRocks [24] as its

storage engine, as well as TiDB [25], whose KV store, TiKV [25], uses an embedded RocksDB

engine. It should, in principle, be possible to deploy Hailstorm in any distributed database

environment which uses compatible LSM-based storage.

Compaction Offloading For compaction offloading, we intercept compaction tasks and

invoke Hailstorm agents in order to execute these compactions remotely, and therefore need

to make small changes to RocksDB (∼70 lines of code). Also, to perform remote compaction,

we spawn a RocksDB process modified to remove some checks that would otherwise prevent

compaction to run (6 lines of code commented out).

I/O Granularity and Batch Sampling Hailstorm uses a block size of 1 MB (§2.1.3). Not only

does 1 MB provide a good balance between performance and remote access latency, but it

also helps us minimize FUSE overhead by reducing the number of transitions to kernel mode.

We pick a block size of 64 KB for client reads, which provides a good balance between latency
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and overhead from I/O accesses and FUSE. Each Hailstorm client concurrently has ΦK = 10

pending requests for 1 MB blocks and ΦK = 100 for 64 KB blocks (§5.3.3), which we have

empirically determined to work best in our cluster environment.

5.5 Evaluation

5.5.1 Goals

We evaluate Hailstorm using synthetic and production workloads on popular storage engines

and distributed databases. Our evaluation sets out to answer the following questions:

1. How do distributed databases perform when deployed on Hailstorm in terms of through-

put and latency, especially in the presence of skew? (§5.5.3)

2. Does resharding help in traditional database deployments? How does it compare with

Hailstorm? (§5.5.3)

3. Can databases supporting distributed SQL transactions also benefit from using Hail-

storm? (§5.5.4)

4. What is the impact of different features of Hailstorm on performance and how does it

compare with other distributed filesystems such as HDFS? (§5.5.5) Do configuration

values affect performance? (§5.5.6) Can Hailstorm improve throughput for B-trees?

(§5.5.7)

5.5.2 Experimental Environment

Hardware We run this evaluation on up to 18 dedicated 16-core machines (2 CPU sockets

with Xeon E5-2630v3). Each machine has 128 GB of DDR3 ECC main memory and an SSD

providing a read bandwidth of 420 MB/s and a write bandwidth of 320 MB/s, as reported by

fio [8]. The machines are connected to a 40 GigE top-of-rack switch that provides full bisection

bandwidth.

LSM KV stores We evaluate the performance of Hailstorm using RocksDB [57] (version 6.1),

a popular LSM-based single-machine KV store.

Distributed databases We use two distributed databases with different designs and charac-

teristics:

• MongoDB [19] (version 3.6), a popular and widely used database with a key-value

store interface. MongoDB offers a powerful JSON-based document model and query

language, many configuration options, and supports a multitude of storage engines. In
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this evaluation, we run MongoDB with Mongo-Rocks integration [24] (version 3.6), a

RocksDB-based storage engine developed by Facebook and Percona.

• TiDB [25] (version 3.0), a distributed database supporting SQL ACID transactions built

on top of TiKV [20], a scalable distributed KV store whose design is inspired by Google

Spanner [69] and HBase [154]. TiKV instances embed RocksDB for storage. TiDB requires

the use of separate placement drivers responsible for metadata, load balancing, and

scheduling.

Deployment Unless otherwise specified, we always run 8 database instances with embedded

storage engines (MongoDB shard servers or TiKV instances and placement drivers) on 8

dedicated machines. When using Hailstorm, we co-locate compute node and storage node on

the same machines as the 8 database instances. Different deployments, such as using separate

machines to run storage nodes are possible and supported.

When evaluating MongoDB, we deploy 2 configuration servers co-located with 2 routing nodes

(mongos) on 2 additional machines. When running with Hailstorm, we turn off MongoDB’s

shard balancer for the entire experiment. We run 8 YCSB load generators on 8 separate, dedi-

cated machines, which we have empirically determined to be sufficient to saturate MongoDB.

For TiDB, we deploy 8 TiDB servers (responsible for receiving and processing requests) on

8 additional machines. We run the TPC-C and TPC-E load generators on a separate, dedi-

cated machine, which we confirmed were sufficient to saturate TiDB. We do not enable data

replication and clear the buffer cache as well as the database caches before each experiment.

System configuration We limit the total physical memory available to 32 GB of main memory

on MongoDB shard servers and TiKV instances to ensure that all workloads are served from

both main memory and secondary storage. We allocate up to 8 GB of main memory out of the

available 32 GB for Hailstorm and use default block sizes.

We refer to deployments of RocksDB, MongoDB, or TiDB using local storage only as Baseline

(BL). When deployments rely on Hailstorm to pool storage and distribute file data in blocks

across all storage servers, but not on compaction offloading, we refer to them as Storage

Pooling (HS-SP), and we call them Hailstorm (HS) when they rely on both.

5.5.3 Distributed Database: MongoDB

We evaluate Hailstorm in a distributed database setting with MongoDB [19] using synthetic

and production workloads, and show how our approach benefits such deployments.

Workloads We use the Yahoo! Cloud Serving Benchmark (YCSB) [68] workloads as well as

two production workloads from Nutanix. A summary of workloads used in this section is

shown in Table 5.2, including their profiles (write:read:scan ratio) and the item sizes. YCSB
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provides 6 synthetic benchmarks covering a wide range of workload characteristics. For

completeness, we consider an additional YCSB benchmark consisting of 100% inserts, which

we refer to as YCSB I, and which corresponds to the load execution mode in YCSB. This write-

only workload is added to provide a complete spectrum. To evaluate the impact of skew, we

consider uniform and Zipfian key distributions for YCSB workloads. Zipfian key distributions

are skewed, simulating the effect of popular keys. Nutanix’s workloads are write-intensive

workloads from production clusters. Nutanix 1 is more uniform than Nutanix 2, which has

some skew.

Workload Description Profile (W:R:S) Item size
YCSB A write-intensive 50:50:0 1 KB
YCSB B read-intensive 5:95:0 1 KB
YCSB C read-only 0:100:0 1 KB
YCSB D read-latest 5:95:0 1 KB
YCSB E scan-intensive 5:0:95 1 KB
YCSB F read-modify-write 25:75:0 1 KB
YCSB I write-only 100:0:0 1 KB
Nutanix 1 write-intensive 57:41:2 250B-1 KB
Nutanix 2 write-intensive 57:41:2 250B-1 KB

Table 5.2 – MongoDB workloads description and characteristics.

We first populate the database with 100 GB of data (100 million keys) from each workload

before executing the workload with an additional 100 GB of data (100 million keys). We execute

Nutanix’s workloads with a pre-populated database containing 256 GB of data and execute

each workload with an additional dataset size of 256 GB (approximately 700 million keys).

5.5.3.1 Synthetic Benchmark (YCSB)

Throughput Figure 5.5 compares the average throughput achieved by MongoDB for Baseline

and Hailstorm for all YCSB workloads using uniform and Zipfian distributions.

Deploying MongoDB over Hailstorm allows the database to maintain good throughput even

in the presence of high skew. Throughput is better with Hailstorm than with Baseline for

write workloads (YCSB A, F, and I) thanks to storage pooling and compaction offloading. In

particular, the throughput for YCSB A and I improves by ∼2.2× and ∼2.3×. Read-intensive

workloads (YCSB B, C, and D) mostly take advantage of storage pooling, and their throughput

improves by 46%, 15%, and 5%, respectively. Scan-intensive workloads (YCSB E) improve

by over 22× with Hailstorm when there is skew in the workload. These benefits stem from

offloading compactions, which lowers the load on the overloaded machine. Range queries

almost always involve all MongoDB instances, and the presence of a single overloaded instance

is sufficient to degrade performance dramatically. Range queries are commonplace in real

deployments, and so Hailstorm will have significant benefits in these environments.
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Figure 5.5 – MongoDB average throughput for Baseline and Hailstorm for YCSB workloads with
uniform and Zipfian key distributions. Hailstorm maintains high throughput on all workloads.

Some workloads take a small throughput penalty in the uniform case when running on top

of Hailstorm, due to FUSE and network overheads. However, these overheads are more than

compensated if the workload has skew.

Throughput over time Figure 5.6 shows the throughput over time on all YCSB workloads

with Zipfian key distribution for Baseline and Hailstorm.

These results demonstrate the ability of Hailstorm to maintain high and relatively constant

throughput in the presence of skew. In particular, the throughput for write-intensive workloads

(YCSB A and I) is lower for Baseline compared to Hailstorm as a result of skew, since one

MongoDB instance is absorbing most of the load and can only do so using its local storage.

Even with a smaller proportion of writes in YCSB B and F, the Baseline throughput is lower.
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Figure 5.6 – MongoDB per second throughput timelines for Baseline and Hailstorm with YCSB work-
loads. Hailstorm manages to keep the throughput relatively constant throughout the execution.

Also, the throughput for the Baseline repeatedly falls by ∼3× for YCSB A and ∼4× for YCSB I,

and to 0 in YCSB E as a result of a series of particularly costly compaction tasks. Throughput

for YCSB C and D (100% reads) remains similar in both cases, as the database is not large

enough to cause significant amounts of local I/O in the Baseline case.

Latency Figure 5.7 presents the mean and tail client response times for the MongoDB Base-

line and Hailstorm for both request distributions using 3 representative workloads: YCSB A,

C, and I. Hailstorm significantly improves response times under skew, especially for write

workloads. For example, it reduces the mean response time by 37%, 18%, and 29%, as well as

tail latencies by ∼4×, ∼30%, and ∼5× for YCSB A, C, and I respectively. Also, Hailstorm does

not adversely affect the mean response times in the uniform case.

5.5.3.2 Production Traces

Figure 5.8 compares the average throughput achieved by MongoDB for Baseline and Hailstorm

and for both production workloads from Nutanix.
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Figure 5.7 – MongoDB mean and tail response times for Baseline (BL) and Hailstorm (HS) for YCSB A,
C, and I with uniform and Zipfian requests distributions.

Hailstorm provides consistent throughput for both Nutanix 1 (uniform) and Nutanix 2 (skewed).

In contrast, the MongoDB Baseline suffers from a 3× performance degradation on Nutanix 2

resulting from a hotspot on one of the database instances. Hailstorm, therefore, does not add

significant overhead on uniform workloads and successfully maintains performance close to

uniform when the workload is skewed.

5.5.3.3 Large Database

Until now, we have shown the significant benefits of Hailstorm when workloads have skew. In

this experiment, we show that Hailstorm benefits uniform workloads as well. Figure 5.9 shows

the throughput over time for Baseline and Hailstorm with YCSB A on a uniform distribution

starting with a large 1 TB database. Baseline performance suffers from sudden drops that in-

crease over time as a result of larger compactions taking place, while Hailstorm has consistent

performance over time. This experiment shows that even with uniform workloads, I/O bursts

due to background operations cause skew across storage engines.
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Figure 5.8 – MongoDB average throughput for Baseline and Hailstorm and for Nutanix’s workloads.
Hailstorm improves throughput in both cases, especially for workload Nutanix 2.
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Figure 5.9 – MongoDB per-second throughput for Baseline and Hailstorm on a large 1 TB database
with YCSB A and uniform distribution. Baseline experiences drops over time as larger compactions
occur, causing load imbalance across storage engines.

5.5.3.4 Resharding Costs

Table 5.3 shows the average throughput in MongoDB for Baseline and Hailstorm for YCSB A

with Zipfian distribution and with resharding enabled or disabled.

Resharding=OFF Resharding=ON
Baseline 42.9 KOps/s 58.9 KOps/s
Hailstorm 130.2 KOps/s 113.0 KOps/s

Table 5.3 – MongoDB average throughput for Baseline and Hailstorm for YCSB A Zipfian distribution
with resharding enabled or disabled.

This table presents several interesting results. First, turning resharding off for MongoDB

causes throughput to drop by 27%. Resharding in MongoDB is beneficial in skewed workloads.

Second, Hailstorm performs better than Baseline with or without resharding, indicating that

storage pooling and compaction offloading are more effective than resharding. Indeed, proper

skew mitigation requires synergistic approaches at both the distributed database and storage

layers. Finally, resharding causes a 15% throughput drop for Hailstorm due to increased I/O

operations. This justifies disabling MongoDB’s balancer for experiments with Hailstorm.
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5.5.4 Distributed SQL Transactions: TiDB

We now consider distributed SQL transactions in TiDB [25], a popular horizontally-scalable

database compatible with MySQL [80]. TiDB is built on top of TiKV [20], a distributed database

with a key-value interface.

Workloads We use both the industry-standard TPC-C [138] benchmark and the more recent

TPC-E [65] benchmark. TPC-C models a number of warehouses with orders, entries, payments,

monitoring of stock, etc. Multiple transactions execute simultaneously, and the performance

metric is the number of new-order transactions per minute (tpmC). TPC-E models a broker

whose customers generate trades, account balance checks, market analysis, etc., and the

performance metric is the number of trade-result (executed trades) transactions per second

(tpsE). Both benchmarks also include a price per performance metric based on the total cost

of ownership of the cluster used for 3 years.

Bench Model Tables Txs R:W RW:RO Sec Idx
TPC-C Warehouses 9 5 65:35 92:8 2
TPC-E Brokerage 33 12 91:9 23:76 10

Table 5.4 – TiDB benchmarks description and characteristics.

The main characteristics of each benchmark are shown in Table 5.4, including the type of

business modeled by the benchmark, the number of tables, the number of distinct transactions,

the I/O read to write ratio (R:W), the read-write to read-only transaction ratio (RW:RO), and the

number of transactions using a secondary index. [66] contains more details and comparisons

about these benchmarks.

Benchmark Results Table 5.5 summarizes the benchmark results for both TPC benchmarks,

with Baseline and Hailstorm. We show performance and price per unit of performance

(price-performance) metrics for our cluster. We conclude that Hailstorm provides significant

performance improvements and cost reduction for distributed databases.

TPC-C TPC-E
Configuration tpmC $ / tpmC tpsE $ / tpsE
Baseline 32,184 3.10 277.3 360.60
Hailstorm 50,178 2.00 408.1 245.05

Table 5.5 – TiDB TPC-C and TPC-E results for Baseline and Hailstorm. Estimated total system cost for
our cluster is USD 100,000. Hailstorm improves throughput by 1.56× and 1.47× respectively.

Figure 5.10 compares the throughput (measured in transactions per second) over 1 hour for

both scenarios and both benchmarks.

Baseline suffers from unstable throughput and frequent, drastic drops in throughput in both

benchmarks. These drops are caused by compactions running on TiKV instances and re-

sharding operations executed by placement drivers trying to remove hotspots. We notice a
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Figure 5.10 – TiDB per 10-second throughput timelines (HH:mm) for Baseline and Hailstorm with
TPC-C and TPC-E.

significant amount of data migration due to TiDB’s resharding policies. Short bursts of data

migration consume as much as 90% of the I/O bandwidth for a single TiKV instance and

are responsible for prolonged drops at approximately 00:30 and 00:40 for TPC-C. Although

TPC-C’s request distribution is uniform and TPC-E is only mildly skewed, there is significant

imbalance across TiKV instances due to compaction and uneven data placement.

Hailstorm offers a more stable and overall higher throughput than Baseline. Compaction

offloading helps limit pressure on overloaded instances, and storage pooling removes many

I/O bottlenecks.

5.5.5 Comparison with HDFS

In this section, we compare Hailstorm with HDFS [148], an existing production distributed

file system. We perform experiments directly on standalone RocksDB [57], thus avoiding

any interference or overheads of using a distributed database. To this end, we design a

microbenchmark that uses YCSB and its driver for embedded RocksDB.

Workloads We consider three custom YCSB workloads: a read-only workload, a write-only

workload, and a mixed workload consisting of 50% writes and 50% reads. Keys are selected

uniformly at random, and values are 1 KB each.
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Configurations We run each workload on 8 machines in parallel using separate RocksDB

databases in 4 configurations i:8 for i values of 8, 4, 2, and 1. An i:8 configuration represents a

scenario where 8 machines are running a RocksDB database, but only i of them are executing

the workload with the other machines remaining idle. 8:8 corresponds to uniform, 4:8 to mild

skew, 2:8 to intermediate skew, and 1:8 to high skew.

We execute each of the above 4 configurations 4 times: first with RocksDB using the local

ext4 [114] filesystem, thereby establishing a Baseline (BL), then with RocksDB using HDFS

with a replication factor of 1 to maximize performance, then with RocksDB using Hailstorm

for storage pooling (HS-SP), and finally with RocksDB running on top of Hailstorm with both

storage pooling and compaction offloading (HS).

We run this experiment with two workload sizes: 100 GB (storage workload, the dataset does

not fit in memory), and 20 GB (in-memory workload, the dataset fits in memory). The in-

memory workload shows Hailstorm performance when the workload is CPU bound. We first

discuss the results for the storage workload and then the in-memory workload.

Storage Workload Results Figure 5.11a shows the aggregate throughput (over all 8 machines)

for each of the 3 workloads in each of the 4 configurations for the 100 GB workload.

Hailstorm in the 8:8 configuration (uniform case) fares comparably with vanilla RocksDB.

However, in the presence of skew, as expected from previous experiments, Hailstorm’s through-

put is much higher than the corresponding vanilla RocksDB (Baseline) throughput. Storage

pooling and compaction offloading together enable Hailstorm to keep throughput close to

the 8:8 configuration. Hailstorm performance decreases mildly with increasing skew due to

remote reads and writes and increased compaction offloading.

In contrast, the throughput of RocksDB over HDFS is lower than the corresponding Baseline

case, even though it uses distributed storage. We profile this experiment and find that the

low performance stems from synchronous calls to the namenode before accessing data, per-

forming I/O one block at a time, and writing blocks preferentially to the local disk. This shows

the need for a specialized filesystem designed to maximize storage bandwidth. As an aside,

we also experimented with running RocksDB on two full-featured, distributed filesystems

(Ceph [156] and GlusterFS [72]), and unfortunately both filesystems would invariably crash

after some time, and RockDB would hang, for unclear reasons.

In-memory Workload Results Figure 5.11b shows the aggregate throughput results for the

20 GB CPU-bound workload. The read workload results show that Hailstorm improves perfor-

mance compared to the baseline by roughly a factor of 2 under skew. This benefit results from

storage pooling, which allows the initial dataset to be loaded faster from disk. To understand

why Hailstorm read performance goes down with increasing skew, we measured the maximum

achievable RocksDB random read throughput on a single machine using a RAM disk and found

that the system becomes CPU-bound at 200 KOps/s. RocksDB spends significant times on
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Figure 5.11 – RocksDB aggregate throughput comparison between Baseline (BL), RocksDB over HDFS
(HDFS), Hailstorm with storage pooling (HS-SP), and full Hailstorm (HS) on 8 machines. 3 workloads
are considered in 4 different configurations with increasing skew, and data sizes of 100 GB and 20 GB.

binary search to find a random key, decompression, and checksums, which limits Hailstorm

performance.

Write and read+write numbers are qualitatively similar for both workload sizes. When com-

paring with the 100 GB workload, the 20 GB write and read+write throughputs are almost

double since the data can be cached in memory. However, unlike the read-only workloads,

the throughput cannot go over 2× due to write-ahead logging. Also, HS-SP throughput suffers

from a steep drop from 4:8 to 2:8 because the bottleneck switches from storage to CPU. This is

not the case for HS due to compaction offloading.

5.5.6 Sensitivity Analysis

We perform a sensitivity analysis for the compaction offloading threshold θ using two ma-

chines: node1, which receives full load, and node 2, which receives 10%, 50%, or 80% of the

full load. We use the same workloads and configurations as in the previous section (§5.5.5).

For each scenario, we consider three θ values: 0.1, 0.2, and 0.5. Figure 5.12 reports the average

throughput with the read+write workload for each instance in each scenario.
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Figure 5.12 – RocksDB average throughput for the read+write workload with different compaction
offloading thresholds θ using two RocksDB instances where one machine receives 10%, 50%, or 80%
load.

Overall, different θ values have little impact. Large values (e.g., θ = 0.5) make compaction

offloading less frequent, and thus lead to slightly lower throughput on overloaded machines.

5.5.7 Using Hailstorm with B-Trees

Although Hailstorm is primarily intended for use with LSM-based storage engines, we ex-

pect storage pooling to provide benefits even when storage engines are based on B-trees,

e.g., Aerospike [23], Couchbase Server [59], KVell [104], and WiredTiger [34]. B-trees exhibit

different access patterns and storage behavior than LSMs and do not require compaction [67].

Figure 5.13 compares the average throughput achieved by MongoDB with the B-tree-based

WiredTiger [34] storage engine for Baseline and Hailstorm for all YCSB workloads in Table 5.2

using both uniform and Zipfian distributions on 8 machines. We only use Hailstorm for storage

pooling and disable compaction offloading.
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Figure 5.13 – MongoDB with WiredTiger [34] storage engine average throughput for Baseline and
Hailstorm for YCSB workloads with uniform and Zipfian key distributions.
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Unlike with LSM stores, Hailstorm does not improve performance for reads in the presence of

skew because the CPU, not the I/O, is the bottleneck. Hailstorm’s storage pooling provides ∼2×
throughput improvements in the Zipfian case for write workloads YCSB A, F, and I. Hailstorm

also improves performance for range-based queries in YCSB E as it partially relieves the

overloaded machine that becomes a straggler. We expect that offloading B-tree background

tasks such as garbage collection in a similar way as we offload compaction tasks in LSMs

would further improve write performance.

5.6 Conclusions

As the scale of distributed databases grows and their performance requirements become more

stringent, solutions that can address challenging issues such as the presence of skew at scale

become necessary. We have made a case for deploying distributed databases over Hailstorm,

a system that disaggregates compute and storage in order to scale both independently and

improve load balance. Hailstorm consists of a storage layer that pools storage across the

machines of a rack, allowing each storage engine to utilize rack storage bandwidth. This

effectively provides storage-level sharding, which helps mitigate the impact of skew, addresses

per-machine capacity limitations, and absorbs I/O spikes. Hailstorm leverages its storage

layer to perform compaction offloading and reduce CPU pressure on overloaded machines.

We include a summary of Hailstorm characteristics and specific features inspired by the scatter

architecture below.

Area Distributed LSM-based databases

Load imbalance Partitioning skew

Queries

Compactions

Data spreading Sstables as files

Write-ahead logs as files

Dynamic parallelism Compaction offloading

Partitioning Range- or hash-based (database-specific)

Misc. characteristics POSIX filesystem

Fine-granularity reads optimization
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6 Related Work

In this chapter, we survey the state-of-the-art closest to the work presented in this thesis. We

begin by identifying and discussing literature related to the scatter architecture presented in

Chapter 2. We then discuss related work for Chaos (Chapter 3), Hurricane (Chapter 4), and

Hailstorm (Chapter 5).

6.1 Storage Disaggregation and Pooling

6.1.1 Disaggregated Storage

Many systems performing storage disaggregation were proposed recently.

Flat datacenter storage [124] (FDS) shows how one could take our assumption of local storage

bandwidth being the same as remote storage bandwidth and scale it out to an entire datacenter.

Remote storage access is minimal for small-to-medium clusters with sufficient bisection

bandwidth [55]. The scatter architecture exploits this property to decouple storage and

computation makes it possible to achieve better utilization and load balance across workloads.

Also, unlike FDS (and similar systems such as CORFU [49]), we leverage pseudorandom

uniform data placement to remove the central bottleneck of a metadata server.

Flash storage disaggregation [100] aims to improve storage capacity and IOPS utilization by

accessing remote flash devices. The scatter architecture is partially inspired by this work but

focuses more on load imbalance concerns. Each file in the scatter storage architecture is

sharded at block-level and distributed uniformly across all storage devices. Also, we do not

perform disaggregation at block-level, but rather at file-level, allowing us to support high-level

operations such as compaction offloading.

LegoOS [147] is an operating system designed specifically for hardware resource disaggrega-

tion. However, storage is not the main focus of this work, and LegoOS does not attempt to

achieve load balance or maximize storage utilization.
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6.1.2 Distributed In-Memory Storage

Several distributed in-memory storage systems have been proposed recently to improve

performance and mitigate load imbalance [55, 79, 127]). These systems apply pooling higher

up the memory hierarchy by pooling main memory to improve performance for workloads

whose memory footprint varies. Although the scatter architecture leverages the buffer cache

when pooling storage devices, its primary focus remains on pooling secondary storage. We

also address load imbalance for both storage and computation.

6.1.3 Distributed Filesystems

Distributed parallel filesystems such as HDFS [148], GFS [87], GlusterFS [72], or Ceph [156]

are used in large scale intra-/inter- datacenter deployments [30]. These systems often focus

on providing high availability and scalability by spreading blocks of data and replicating them

across servers. In contrast, the scatter architecture aims to improve load balance and storage

utilization. As a result, we spread all data blocks uniformly in a pseudorandom fashion. This

deterministic data placement strategy allows us to design a decentralized data plane and

to maximize storage utilization via client-based prefetching. Our storage architecture also

intentionally does not support concurrent parallel accesses to the same file, leaving such

concerns up to the application developers, and thereby greatly simplifying metadata and

consistency.

6.1.4 Two-Level Sharding

Social Hash [146] is a framework running in production at Facebook that aims to optimize

query response time and load balance in large social graphs by using two-level sharding. In

this scheme, data objects are first partitioned using a graph partitioning algorithm before

being dynamically assigned in groups. By dynamically assigning data objects to groups, the

system can react to changes in the workload and improve load balance. Similarly, scatter

storage leverages the increased flexibility offered by using a two-step data assignment scheme

but works with files and data blocks rather than objects. Social Hash, like Akkio [47], relies on

locality to improve response time. In contrast, our approach abandons locality entirely and

spreads data blocks uniformly across all storage devices.

6.1.5 Storage Utilization

The batch sampling technique used in the scatter storage architecture is inspired by power-of-

two scheduling [117], although the goal is quite different. Power-of-two scheduling aims to

find the least loaded servers to achieve load balance. Our approach aims to prevent storage

engines from becoming idle through oversubscription.
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6.2 Graph Processing

In recent years a large number of graph processing systems have been proposed [64, 89, 90,

94, 99, 103, 111, 122, 123, 125, 137, 144, 155, 163]. We mention here only those most closely

related to our work.

6.2.1 Distributed In-Memory Systems

Pregel [111] and its open-source implementation Giraph [1] follow an edge-cut approach. They

partition the vertices of a graph and place each partition on a different machine, potentially

leading to severe load imbalance. Mizan [99] addresses this problem by migrating vertices

between iterations in the hope of balancing load in the next iteration. Chaos addresses load

imbalance within each iteration, by allowing more than one machine to work on a partition if

needed. Pregel optimizes network traffic by aggregating updates to the same vertex. While

this optimization is also possible in Chaos, we find that the cost of merging the updates to the

same vertex outweighs the benefits of reduced network traffic.

PowerGraph proposes the GAS model, and PowerLyra [64] introduces a more straightforward

variant, which we adopt in Chaos. PowerGraph [89] introduces the vertex-cut approach,

partitioning the set of edges across machines and replicating vertices on machines that have

an attached edge. PowerLyra improves on PowerGraph by treating high- and low-degree

nodes differently, reducing communication and replication. Both systems require lengthy

pre-processing times. Also, in both systems, each partition is assigned to exactly one machine.

In contrast, Chaos performs only minimal pre-processing and allows multiple machines to

work on the same partition.

GraM [157] has shown how a graph with a trillion edges can be handled in the main memory

of the machines in a cluster. Chaos represents a different approach where the graph is too

large to be held in memory. Thus, while Chaos is slower than GrAM it requires only a fraction

of the amount of main memory to process a similarly sized graph.

6.2.2 Single-Machine Out-Of-Core Systems

GraphChi [103] was one of the first systems to propose graph processing from secondary

storage. It uses the concept of parallel sliding windows to achieve sequential secondary

storage access. X-Stream [144] improves on GraphChi by using streaming partitions to provide

better sequentiality. GridGraph [163] further improves on both GraphChi and X-Stream by

reducing the amount of I/O necessary. Chaos extends out-of-core graph processing to clusters.
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6.3 General-Purpose Analytics

Skew Mitigation SkewTune [102] mitigates skew in MapReduce programs by identifying slow

tasks and repartitioning them to run on idle nodes. Since the system is intended to be a drop-in

replacement for MapReduce, it suffers similar limitations, namely that the output order must

be preserved and the data placed locally on the original worker. While this approach can help

with skew, it also causes significant data movement, which can overwhelm already overloaded

workers. SkewTune can also worsen performance inadvertently by repartitioning tasks that

are close to completion.

Camdoop [71] performs in-network data aggregation during the shuffle phase of MapReduce

applications, which can help mitigate data skew by decreasing the amount of data moved and

the overall load on the network. Unfortunately, this solution requires specialized hardware that

is not currently available. We believe such hardware would also benefit Hurricane deployments.

Tamed transformers allow implementing similar functionality in software.

Straggler tasks are a challenge for analytics workloads [43]. A commonly used method for

handling stragglers is speculative execution, which involves detecting a straggler as soon

as possible and restarting a copy of the task on another machine [42]. While this approach

helps with machine skew, it does not address data or compute skew. Hurricane allows slower

workers to split their task via cloning, avoiding the need to restart the task from scratch.

Garbage Collection (GC) can be a major cause of skew for applications written in garbage-

collected languages such as Java, Scala, or Python. GC induces uncoordinated pauses across

JVM [131], thereby reducing overall throughput and increasing tail-latency. Recent research

attempts to mitigate this problem by synchronizing (or desynchronizing) garbage collection

across all workers running the same application to minimize unpredictability [110]. Hurricane

is also prone to GC pauses, but its decentralized design and finer-grained partitioning help

reduce its impact.

6.3.1 Adaptive Partitioning of Work

As far as we can tell, Hurricane is the first cluster computing framework to adaptively partition

work based on load observed by workers during task execution. This design is made possible

through fine-grained data sharing among multiple workers executing the same task and

programmer-defined merge procedures.

Several techniques based on over-decomposition have been proposed to split analytics jobs

into smaller tasks to mitigate skew and improve load balance. These techniques require

manual intervention from the programmer and are application- and input-specific. For

instance, they require fine-tuning the programmer-defined split function [129], exploiting

commutativity and associativity to combine identical keys[159], and/or splitting records

for the same key across multiple partitions[16]. Hurricane mitigates skew in an application-
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independent manner by dynamically splitting partitions when a task is cloned. We have shown

that our approach mitigates skew effectively, without requiring tuning of the application for

specific data sets, and that it applies to arbitrary operations, such as finding unique values.

Traditional cluster computing frameworks split data into partitions and use shuffling and

sorting to merge them back in an application-independent way [93, 119, 160]. This often

comes at the cost of sorting intermediate outputs and prevents records with the same key

being sent to multiple reducers, which can cause load imbalance in the presence of skew.

More importantly, this approach places constraints on the shape of partitions, making it

harder to redistribute a partition in a balanced way. Hurricane takes a different approach by

empowering application developers to provide a custom merge method, when applicable.

This merge subsumes the traditional shuffling and sorting paradigm while being more flexible

because it allows the outputs of clones that have been created at any point during execution

to be merged in an application-specific manner.

Although adding a merge procedure to existing frameworks is relatively simple, taking full

advantage of it would require significant re-engineering and changes to the execution model

to allow for tasks to be repartitioned on-the-fly. Fault tolerance mechanisms would also

need to be adapted to account for the possible presence of multiple partial outputs. Finally,

frameworks that rely on key sorting to send records to the appropriate reduce may also end up

losing the ability to combine records by key as a result of such changes.

6.3.2 Joins

Load balancing for parallel joins has been extensively studied in parallel databases. Earlier

work [83, 128] focused on careful partitioning based on input sampling to achieve load balance.

At the same time, more recent approaches [145] use late binding to gain flexibility and reassign

partitions to other workers. Hurricane requires less focus on partitioning, relying instead on

cloning and merging for handling skew and load imbalance.

6.3.3 Distributed Scheduling

Support for scheduling tiny tasks has led to the design of distributed or hybrid schedulers

such as Sparrow [132] or Hawk [76]. Sparrow uses a batch sampling algorithm to schedule

tasks, whereas Hawk partitions the cluster for large and small jobs, and uses a randomized

work stealing algorithm to place short jobs. Hurricane also recognizes the need for efficient

scheduling, in particular for clones, and schedules tasks in a distributed, decentralized way

through work bags.
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6.3.4 Remote Memory

When analytics applications suffer from skew in their input or intermediate data, they may be

forced to spill data to disk because it does not fit in memory, leading to serious performance

issues. Spongefiles [81] allows machines with large datasets to use the memory of remote

machines as a backing store, thereby avoiding spilling. Hurricane spreads data by default

across all machines through the bag abstraction. Since files back bags, the spreading of data

helps even when the dataset size does not fit in the main memory of the entire cluster, because

it allows spreading the disk I/O.

6.3.5 Avoiding Scale-Out

Nobody ever got fired for using Hadoop on a cluster [142] suggests that many analytics work-

loads and applications should not use scale-out solutions but instead run on single machines

with large main memory. This is particularly true when processing datasets whose size is

comparatively small (e.g., less than 100 GB). Hurricane targets scenarios with larger input

sizes.

6.4 Distributed Databases

Distributed databases distribute data across many nodes, often on a global scale. Many new

databases rely on distributed KV stores and store data on local storage [19, 20, 23, 25]. Other

databases such as Apache HBase [154] or Google Spanner [69] rely on a distributed filesystem

to store data, which they leverage mainly for data replication. Hailstorm is primarily intended

for databases using local storage, effectively providing storage-layer resharding to remove I/O

hotspots by spreading block data uniformly across storage devices.

6.4.1 Shard Rebalancing

Skew is often intrinsic to the application and cannot easily be removed. It is often mitigated

manually or automatically using shard rebalancing [35, 69]. This is achieved by identifying

hotspots in the workload and migrating data to less utilized database instances [47, 105]. How-

ever, shard rebalancing requires in-depth knowledge of the shape of the data managed [48].

Furthermore, rebalancing data between shards is costly as it triggers additional compaction,

flushing, and garbage collection tasks, and is performed too late to be effective. Hailstorm au-

tomatically shards data uniformly across all storage devices, which works in all cases without

requiring knowledge of the shape of data.
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6.4.2 Compaction Offloading

Using a dedicated remote compaction server for a replicated store has been previously pro-

posed in the context of HBase [41]. In this scheme, the system offloads large compactions

to a dedicated remote compaction server relying on replication to provide fast data access.

Hailstorm takes a different approach by exploiting rack-locality to create a storage manage-

ment layer underneath storage engines that allows fast access to data without depending

on replication. We offload compaction tasks in a peer-to-peer manner that does not require

complex centralized decision making. Finally, our solution works for any distributed database

using LSM storage engines.

6.4.3 LSM KV Stores

Many systems attempt to solve the write amplification problem in LSMs. HyperLevelDB

increases parallelism and modifies the compaction algorithm to reduce compaction costs [29].

PebblesDB combines LSM with skip-lists to fragment data in smaller chunks, thereby avoiding

complete rewrites of sstables within a level [139]. TRIAD delays compactions until there is

sufficient overlap and pins “hot” key entries in memory to avoid creating many copies on

storage [50]. Silk attempts to opportunistically execute compactions during low load and

preempt them at high load [51]. While these approaches provide temporary relief, they often

lead to higher costs in the long run as uncompacted or fragmented LSMs suffer from increased

read latency and delayed compactions inevitably trickle down the LSM levels. Furthermore, all

these solutions apply to a single node configuration and do not take advantage of distributed

storage. Nevertheless, these optimizations are orthogonal to our approach and could be

combined with it.

6.4.4 B-Tree Load Balancing

Yesquel’s approach to splitting B+ tree nodes improves load balance and reduces contention

but does not achieve uniform distribution across all database instances [39]. Furthermore,

this approach may lead to many unnecessary splits if load intensity varies across keys over

time. Although Hailstorm provides improvements mainly for write-intensive workloads, our

block-level sharding would still improve storage load balance in Yesquel. Although we have

not explored this, it should be possible for Yesquel or other similar systems to use Hailstorm

for split offloading. MoSQL relies on a B-tree design and keeps all data in main memory for

fast access [149]. This reduces contention and load imbalance but places a hard cap on the

total size of the database. Hailstorm has no such limitation since we use secondary storage.
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7 Conclusions

How should we design scalable and load-balanced applications for computer clusters? The

answer proposed in this dissertation is simple, yet surprising: abandon data locality. We

propose a new architecture for distributed systems that separates computation and storage,

enabling each resource to scale independently, and subsequently, pools all compute and

storage resources together to spread the load evenly. We show how to balance load across

storage devices by spreading data uniformly and designing a decentralized and randomized

access scheme based on overprovisioning. We also provide solutions to balance compute load

across the processing resources of a cluster by adjusting parallelism on demand using a bag

abstraction that enables dynamic work sharing and a background task offloading mechanism.

While our approach may not always be possible to integrate into current mainstream systems,

we hope that, at the very least, it provides a series of useful guidelines to inspire the design

and implementation of future systems. Cluster computing will no doubt evolve in the coming

years, as new applications, new systems, new requirements, and new challenges appear. Even

if the scatter architecture is not a part of this evolution, we believe that its main contribution

is to question the overreliance on data locality in the era of Big Data.

We anticipate that, with the coming data deluge, there will be a need to store and process Big

Data in an efficient and load-balanced way. In this context, it is critical to provide tools that

enable application developers to focus on writing high-value business application code rather

than spending time fine-tuning partitioning and system parameters to achieve load balance,

high utilization, and good performance.

In the rest of this chapter, we summarize the results obtained with the three scatter applications

presented in this thesis. We then discuss a few of the lessons learned. Finally, we sketch a few

directions for future research.
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7.1 Scatter Applications

We implemented three applications based on the scatter architecture and demonstrated

how the resulting systems achieve load balance. Table 7.1 summarizes our results. For each

system, we list its area of application, the data structures that are spread across all disks, the

technique used to achieve dynamic parallelism, as well as the maximum evaluated imbalance

ratio between machines (Max Imb.) and the resulting slowdown experienced by the system

compared to a uniform distribution.

System Area Spreading Parallelism Max Imb. Slowdown
Chaos Graphs Streaming Partitions Work Sharing 23:1 2.3×
Hurricane Analytics Data + Work bags Work Sharing 64:1 2.4×
Hailstorm Databases Sstables + WAL Offloading 11:1 1.1×

Table 7.1 – Summary of the key results presented in this thesis.

7.2 Lessons Learned

Locality is nonessential for Big Data. The main thread underlying the work presented in

this thesis is the departure from data locality as a first-class principle in high-throughput

cluster computing systems. Locality should not be treated as a primary requirement but rather

as a nonessential optimization. While this position may seem controversial, we observe that

data locality, specifically placing partitions on the machines that must perform computation

on them, is fundamentally problematic to ensure load balance in systems that process large

amounts of data.

It is important to point out again that abandoning locality is only feasible if network bandwidth

is larger than storage bandwidth. This assumption is valid today for typical infrastructure

dedicated to batch processing or data storage. As storage and network technologies evolve

in the future, new trends may invalidate this assumption. However, in a scenario where the

storage becomes systematically faster than the network, it may no longer be worthwhile to

scale out many applications as they could instead leverage fast and large local storage in a

single machine to process data efficiently.

Load imbalance is everyone’s problem. We argue in this dissertation that load imbalance

should not be addressed unilaterally at a single layer or component, e.g., by improving parti-

tioning or rebalancing partitions. In other words, optimizing the bottleneck without taking

into account the context of an entire system will likely only move it elsewhere. Successfully

mitigating load imbalance requires a more synergistic approach that involves all layers and

resources of a distributed system. The ultimate goal of the scatter architecture is for the system

bottleneck to be on an aggregated resource, e.g., storage, ensuring maximum achievable

throughput.
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7.2. Lessons Learned

Pray for the best, prepare for the worst and expect the unexpected. A key decision in the

scatter architecture design is the combination of a proactive approach (spreading data uni-

formly) and a reactive approach (adjusting parallelism within a partition dynamically). The

combination of both approaches is what makes the scatter architecture so effective at dealing

with load imbalance by avoiding uneven data distribution ahead of time while also actively

working on getting out of an imbalanced state when it (inevitably) occurs.

Moving computation is cheaper than moving storage. When locality is not a concern, it

does not matter where the computation executes. Consequently, the scatter storage architec-

ture brings data to the computation rather than the converse. In this architecture, computation

can execute anywhere and multiple units of computation can operate simultaneously on sep-

arate subsets of the data. Not only does this pull-based approach at block granularity help

overlap computation and communication, but it also provides late binding of data to compute

nodes, a key property for load balance. When combined with a fixed number of outstanding

requests per storage client, this approach ensures that compute nodes self-regulate the data

ingestion rate and avoid data starvation.

Avoid centralization when possible. An intriguing consequence of the scatter storage design

decision to spread data in blocks uniformly across storage devices in a locality-oblivious

manner is the fact that doing so removes the need for a centralized directory service. This

demonstrates that relaxing locality allows us to simplify our design and remove a potential

bottleneck and a single point of failure.

Summarizing the trade-offs between locality and load balance explored in this dissertation

inspires us a simple trilemma theorem regarding the incompatibility of these two properties

in high-throughput distributed systems.

Theorem 1 (BLP Theorem). It is impossible for a Big Data distributed system to provide more

than two of the following three guarantees simultaneously:

• Balance: The system achieves load balance in both compute and storage.

• Locality: The data for every partition is always stored and processed entirely on the same

machine.

• Partitioning: The system is distributed, and the dataset is divided into partitions pro-

cessed assigned to disjoint machines.

This theorem follows intuitively from the fact that it is impossible to find perfectly balanced

partitions in many problems, and therefore enforcing data locality will cause load imbalance.

We illustrate this trilemma in Figure 7.1. The scatter architecture chooses balance and par-

titioning at the expense of locality (BP). Many existing systems, such as Apache Hadoop or
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Spark opt for locality and partitioning at the expense of load balance (LP). Finally, selecting

both locality and load balance corresponds to a single-machine system (BL).

B

L P
BL BP

LP

Balance

Locality Partitioning

Figure 7.1 – BLP Theorem. Achieving load balance (B), locality (L), and partitioning (P) in a single
distributed system is impossible. Pick any two of these properties.

7.3 Future Work

The scatter architecture described in this thesis suffers from various limitations. We list some

examples below:

• Priorities. Scatter storage servers treat all requests from clients in a FIFO order, but some

applications could benefit from the ability to send priority requests, e.g., for latency-

sensitive operations. Hailstorm supports simplified priorities by using a different read

granularity for requests issued by a foreground or background thread.

• Heterogeneous resources. When spreading data uniformly across all storage devices,

we assume that all storage devices have the same capacity and support the same band-

width. While this is generally verified within a rack or a small cluster, it is desirable to

incorporate support for uniform distribution based on available resources.

• Adaptive batch sampling factor. As demonstrated, the batch sampling strategy de-

scribed in Subsection 2.1.4 works well in practice. However, there are extreme cases

where it may be sub-optimal, for example, when a client is alone accessing a large

number of servers. A worthwhile improvement to the batch sampling algorithm would

be for clients to dynamically adjust their batch sampling factor based on overall storage

server load to maximize storage utilization.

We also suggest additional scatter applications in the three areas surveyed in this thesis.
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Graph Processing Applications Graph pattern mining algorithms look for instances of in-

teresting patterns in a graph. This process generates exponentially more data than the input

size. It often exhibits skew in the distribution of pattern instances over the graph, making it a

prime candidate for the scatter architecture. Another possible application would be graph

databases where the data is structured in a graph and retrieved using graph-style queries. Due

to the difficulty of finding good partitions in graphs, distributed graph databases are natural

candidates for a scatter approach.

Analytics Applications In this thesis, we explore Big Data but do not focus on “Fast Data”,

i.e., stream processing. Load balance may be a lesser concern in low latency, continuous

processing applications, but it is nonetheless an exciting area to explore. A similar approach

as Spark’s micro-batching to support streaming could be investigated with Hurricane.

Another area of analytics that garnered much attention lately is Machine Learning (ML). Many

ML problems exhibit skew or load imbalance in some form. For instance, supervised learning

algorithms may be subject to significant load imbalance, e.g., due to uneven class distribution

in a classification problem or because of skew in the distribution of events during logistic

regression. Similarly, reinforcement learning is well-known to manifest high variance in the

exploration process due to pruning or horizon-mitigating techniques.

Distributed Database Applications Hailstorm explored the feasibility of inserting a filesys-

tem substrate below database storage engines to transform distributed databases into scatter

applications. While successful in achieving load balance, the system is limited by the original

database design. A worthwhile avenue for future research would be building a scatter dis-

tributed database from the ground up instead. This approach could incorporate new features,

such as the ability to service requests for a shard from multiple machines, thereby achieving

dynamic work sharing for distributed databases, or the ability to migrate data across racks

more efficiently to replace shard rebalancing.

Finally, we very much look forward to the scatter architecture being used in new and exciting

application areas.
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