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Abstract

Atomistic simulations are a bottom up approach that predict properties of materials by mod-

elling the quantum mechanical behaviour of all electrons and nuclei present in a system.

These simulations, however, routinely assume nuclei to be classical particles, which leads to

incorrect predictions for systems that exhibit significant quantum delocalization and zero-

point effects, such as those containing light nuclei. The path integral approach, the state of the

art approach that models the exact quantum thermodynamics of this class of systems, is much

more computationally expensive and harder to implement than the classical methods that

evolve the system using classical statistical mechanics. This has prevented widespread mod-

elling of the quantum mechanics of nuclei in atomistic simulations, especially in combination

with computationally expensive interatomic potentials that model interparticle interactions

at a high level of theory.

In this thesis, we present several new methods that dramatically reduce the computational cost

of modelling the quantum nature of nuclei with respect to standard methods, and to existing

cost reduction schemes. These methods are based on the realization that nuclear quantum

effects can often be modelled using cheap short ranged interaction potential, or using high

order splittings that decouple non-commuting potential and kinetic energy operators, or

using generalized Langevin equations that can be used to mimic quantum fluctuations with

correlated noise. We have also derived bespoke estimators of quantities such as the quantum

heat capacity, the particle momentum distribution, and vibrational spectra that reduce the

cost of calculating these properties, and allow direct comparisons with experiments. These

methods have been implemented in the second release of an open source software i-PI,

which allows them to be used in combination with widely used softwares that compute

interatomic potentials. The availability of these methods has promoted routine incorporation
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Abstract

of nuclear quantum effects in atomistic simulations. The relevance of these advances is

underscored by the different properties and classes of materials to which we have applied

these methods. For instance, we have computed PMD in different phases of water facilitating

interpretation of Deep Inelastic Neutron Scattering experiments, and the understanding of the

local environments of protons. Similarly, we have shown how the interplay of quantum effects

and intermolecular interactions can be used to tune the heat capacity of methane loaded

metal-organic frameworks, to increase, decrease or stay constant over a range of temperatures.

We have also studied the impact of NQEs in affecting stabilities of pharmaceutically active

molecular crystals using several computationally inexpensive methods that are routinely used

to approximate quantum free energies. We have systematically studied their accuracy on

a large set of solids, and concluded that free energy calculations that include the quantum

nuclear motion exactly are the only reliable by way of predicting stabilities of molecular

crystals.
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1 Introduction

The importance of materials is well understood and it is no surprise that several landmarks

of our history – such as the stone, bronze and iron ages – are remembered by the materials

used during those periods. The current age that we live in is often referred to as the Silicon

age, due to the widespread use of Silicon in the electronics industry [13]. Similarly, solutions

of contemporary problems ranging from antibiotic resistance [14], lack of sustainable and

clean sources of energy [15], to the saturation of Moore’s law [16] rely heavily on a concrete

understanding of materials properties.

For centuries, the design and discovery of materials has been largely driven by experimental

studies, as the use of theory has been limited by our inability to solve the complex set of equa-

tions that govern the physics of materials [17], and the processes they are involved in. However,

since the last few decades, “Computation" is being viewed as the third pillar of science [18]

after theory and experiments, and due to the ever increasing availability of computational

resources, it is becoming possible to simulate the physics of materials by numerically solving

equations that were once considered intractable [19,20]. Within this perspective, the use of

atomistic simulations [21,22] – a computational strategy which aims at simulating the properties

of materials by modelling the quantum mechanics of all electrons and nuclei present in a sys-

tem – shows great potential in guiding the design and discovery of material. These simulations

are typically used to study systems at the length scale of nanometers, but provide access to

most thermodynamic as well as transport properties of materials, in a rigorous manner [21].

1



Chapter 1. Introduction

These simulations also provide the foundational step towards multi-scale modelling [23] that

use properties computed using atomistic simulations to simulate phenomena at larger length

and timescales.

In this thesis, we have aimed to improve the accuracy of atomistic simulations by develop-

ing computational methods that go beyond standard Newtonian dynamics for evolving the

positions of atoms, and rigorously account for quantum mechanical effects in their motion.

We begin by introducing the fundamentals of atomtic simulations [22,21] in Chapter 1, while

focusing on the molecular dynamics approach for simulating classical thermodynamics of

systems, and the errors it incurs while modeling systems that exhibit quantum behaviour.

We then discuss Richard Feynman’s imaginary time path integral formulation of quantum

statistical mechanics [24], which allows one to model quantum nuclear motion in atomisitc

simulations, although at a high computational cost. We further examine the limitations of the

path integral method, and the challenges that are needed to overcome to facilitate low cost

modeling of a wide variety of physical observables.

In the next part of the thesis labeled “Methodological developments", we present Chapters 2-4,

that discuss an array of novel techniques [1,2,6] that substantially reduce the computational

cost of path integral methods, and novel estimators and methodologies for the estimation of

complicated observables – quantum heat capacities [6] , particle momentum distributions [4]

(PMDs) and vibrational spectra [8] – that have historically been considered challenging to

compute. We also discuss the implementation of the methods in the second release of the

open source software i-PI [5].

We proceed to the part of the thesis labeled “Applications", that includes Chapters 5-8, and

present studies of a wide range of molecular materials ranging from fundamentally important

phases of water to technologically relevant porous materials and pharmaceutically active

molecular crystals. In Chapter 5, we computationally benchmark [4] deep inelastic neutron

scattering experiments [25], that calculate PMDs of different phases of water and highlight cer-

2



1.1. Approximations in atomistic simulations

tain anomalous properties [26]. We show a good agreement between theory and experiments

for certain phases of water by computing PMDs at unprecedented accuracy, and comment

on the origin of remaining disagreements. In Chapter 6, we compute IR and Raman spec-

tra of solid and liquid phases of water, using the methodology developed in Chapter 5 in

combination with machine-learning predictions of dielectric responses. Our results show

an overall good agreement with experimental results, and pave the way for modelling more

advanced spectroscopic properties such as second-harmonic scattering, and sum-frequency

generation. In Chapter 7, we study the quantum heat capacity of metal organic frameworks [6],

that show promise in the absorption of green house gases. We disentangle several components

of the heat capacity as a function of gas loading into components arising from host and guest

interactions, and present mechanism that can be utilized to tune the total heat capacity of

the full system to increase, decrease or stay constant over a range of temperature. In Chapter

8, we study the role of the quantum nature of nuclei in stabilizing a wide range of solids [7],

including pharmaceutically relevant ones like paracetamol. Our results show that rigorous

free energy calculations which include quantum motion of atoms are the only reliable and

accurate way of studying free energy differences in crystal structure prediction applications of

complex molecular solids. In Chapter 9, we summarize the developments and applications

presented in the thesis, and discuss the possibility of applying the developed framework to

the holy grails of computational chemistry and materials science.

Overall, our work has led to the development of a toolkit that allows efficient and accurate

simulations at a low computational cost, which makes the study of quantum mechanical

effects in a wide class of materials affordable, and systematically improves the accuracy and

reliability of atomistic simulations in the prediction of materials properties.

1.1 Approximations in atomistic simulations

The theory of quantum mechanics which treats electrons and nuclei as fuzzy objects behaving

like both waves and particles, instead of rigid billiard balls, is one of the most accurate theories

of physics [17]. In principle it allows most of the properties of materials to be estimated exactly

3



Chapter 1. Introduction

provided that its fundamental equation – the time dependent Schrödinger’s Equation [27] (SE)

– can be solved for all the electrons and nuclei present in a system. Unfortunately, the exact

solution to the SE is possible only for the smallest and simplest of systems, due to which

modern day atomistic simulations are based on approximate “quantum" descriptions of

atoms [21,22,28,29,30,31,32,33]. One of the biggest challenges in the field of atomistic simulations is

to reduce the number of underlying approximations and to develop computationally efficient

methods that enable a high quality description of the quantum mechanics of electrons and

nuclei.

One of the foundational approximations behind modern day atomistic simulations is the Born-

Oppenheimer (BO) approximation [34], which relies on the large difference in the electronic

and nuclear masses, and allows one to decouple the full SE into those for electrons and

nuclei. Basically, the nuclear coordinates enter the electronic SE as constants given that the

timescale of the nuclear motion is much larger than that of electrons. This allows one to

define a BO potential energy landscape – the hypersurface of the lowest electronic energy

eigenvalue at given nuclear coordinates – which governs nuclear motion. This approximation

remains valid in most of the cases that are encountered in chemistry and materials science,

except when small changes in the nuclear coordinates lead to large changes in the electronic

wavefunctions [35], during phenomena such as photo dissociation [36] and electron transfer

reactions [37]. The remaining problem boils down to solving the SE for the nuclear degrees of

freedom described by the Hamiltonian:

Ĥ = T̂ + V̂ =
N∑

i=1

p̂2
i

2mi
+V (q̂1, . . . , q̂N ,h) (1.1)

where, T̂ and V̂ represent the kinetic and the BO potential energy operators, p̂i , q̂i and mi

are respectively the momentum and position operators, and the mass of the ith nucleus, p̂

and q̂ represent the momentum and the position of the full system, and h is the cell tensor

that limits the region occupied by the N nuclei. The eigenstates |s;h〉 and the corresponding

vibrational energy states E(s) (h) are estimated by solving the time independent SE

Ĥ |s;h〉 = E(s) (h) |s;h〉 , (1.2)

4



1.1. Approximations in atomistic simulations

and subsequently the theory of statistical mechanics can be used to estimate thermodynamic

properties of the system by estimating the corresponding partition functions. For instance,

the canonical partition function Z
(
N ,V ,β

)
at inverse temperature β and volume V = Det[h],

assuming that the nuclei are distinguishible, can be computed as

Z
(
N ,V ,β

)= Tr
[
exp

(−βĤ
)]=∑

s
exp

(−βE(s) (h)
)

, (1.3)

while the isothermal-isobaric partition function ∆
(
N ,P ext,β

)
at inverse temperature β and

external pressure P ext can be computed as:

∆
(
N ,P ext,β

)= V −1
0

∫
dV exp

(−βP extV
)

Z
(
N ,V ,β

)
, (1.4)

where V0 is a reference volume that ensures that the partition function is dimensionless. Every

thermodynamic property can be derived from the corresponding partition functions by taking

derivatives with respect to applied external fields in the limit of large N , also known as the

thermodynamic limit. However, such calculations suffer from three notable limitations:

1. The typical length scales that are accessible in such calculations may not be enough to

reach the thermodynamic limit. To eliminate this error it is essential to perform calcula-

tions with increasing N until convergence in the property of interest is achieved [21].

2. The electronic SE is typically not solved in an exact manner as it is (so far) not possible

to obtain exact results for an arbitrary many-body correlated system. Consequently,

the errors while approximating the BO potential energy landscape [28,29,30,31,32,33] can

propagate into errors in thermodynamic properties. To reduce these errors it is essential

to solve the electronic SE at a high level of theory.

3. It is also not possible to solve the nuclear SE and thus obtain the vibrational energy levels

in an exact manner. Moreover, since the number of thermally accessible vibrational

levels is much higher that the number of populated electronic levels, it is impractical to

solve for all accessible excited states. Instead, a more efficient approach should be to

sample the energy levels with a probability that is related to their population. However,

the problem generally is typically approached from a completely different perspective.

5



Chapter 1. Introduction

1.2 Classical thermodynamics

Since the mass of the nuclei is at least three orders of magnitude higher than that of electrons,

the former are routinely treated as classical particles. One usually proceeds by computing the

trace in Eq. 1.3 in the position basis [21] 1

Z
(
N ,V ,β

)= Tr
[
exp

(−βĤ
)]= ∫

dq
〈

q
∣∣exp

(−βĤ
)∣∣q〉= ∫

dq
〈

q
∣∣exp

(−β(
T̂ + V̂

))∣∣q〉
, (1.5)

and assumes that the kinetic and potential energies commute, thus violating a fundamental

principle of quantum mechanics

Z (cl) (N ,V ,β
)= ∫

dq
〈

q
∣∣exp

(−βT̂
)

exp
(−βV̂

)∣∣q〉= ∫
dq

〈
q
∣∣exp

(−βT̂
)∣∣q〉

exp
(−βV

(
q,h

))
=

(
1

2π}

)3N N∏
i=1

(
2πmiβ

−1) 3
2

∫
dq exp

(−βV
(
q,h

))
=

(
1

2π}

)3N ∫
dp dq exp

(
−β

(
N∑

i=1

p2
i

2mi
+V

(
q,h

)))

=
(

1

2π}

)3N ∫
dp dq exp

(−βH
(
p,q

))
.

(1.6)

Here, p are a set of auxiliary momenta and H
(
p,q

)
is the classical Hamiltonian of the physical

system. Note that the momentum part of the Hamiltonian, which can be factored out by

computing Gaussian integrals, only contributes trivially to the partition function and in

general does not affect thermodynamic averages of position dependent observables

〈A(q)〉(cl) =−(βZ (cl) (N ,V ,β
)
)−1 ∂

∂λ
Z (cl) (N ,V ,β

)
V (q)→V (q)+λA(q)

∣∣∣∣
λ=0

=
∫

dp dq A(q) exp
(−βH

(
p,q

))∫
dp dq exp

(−βH
(
p,q

)) =
∫

dq A(q) exp
(−βV

(
q,h

))∫
dq exp

(−βV
(
q,h

)) .
(1.7)

A brute force numerical evaluation of such integrals has a cost that scales exponentially with

the number of nuclei N , rendering such calculations prohibitively expensive for most systems

1The trace of the Boltzmann operator is invariant w.r.t the choice of the basis set provided that it is complete
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1.2. Classical thermodynamics

of interest. A practical way of estimating such integral is using the “importance sampling"

Monte Carlo method [38] that draws samples q(t ′) from the normalized Boltzmann probability

∝ exp
(−βV

(
q,h

))
, and estimates thermodynamic averages as time averages:

〈A(q)〉(cl) =
∫

dq A(q) exp
(−βV

(
q,h

))∫
dq exp

(−βV
(
q,h

)) = lim
T→∞

1

T

∫ T

0
dt ′ A(q(t ′)), (1.8)

under the assumption known as the ergodic hypothesis that assumes that the random process

used to sample q(t ′) covers all the regions with a high Boltzmann probability within the

domain of the positions constrained by the volume V .

1.2.1 Molecular Dynamics for sampling classical thermodynamic ensembles

While the key algorithm to perform “importance sampling" is the Metropolis Markov Chain

Monte Carlo method [39], we will focus mainly on the molecular dynamics (MD) method [19].

This is because the former either requires system dependent heuristics or has an efficiency that

either scales poorly with system size; MD on the other hand can be applied to any arbitrary

potential energy landscape and doesn’t have a scaling dependence on the system size aside

from the cost of computing the potential, forces and the virial tensor.

The basic idea behind MD is to define “equations of motion" (EOMs) of the system (and of a

bath) that conserve the thermodynamic ensemble of interest. The EOMs are then numerically

integrated using a fixed timestep ∆t ′ to yield a discretized time series of the momentum

and position (p(t ′),q(t ′)) over which any observable can be averaged. Within the ergodic

hypothesis and in the limit of ∆t ′ → 0, the MD method is exact.

Sampling the classical canonical distribution

Let us focus on the canonical ensemble; the simplest set of equations of motion that conserve

the canonical ensemble are the Hamilton’s EOMs:

ṗi = fi , q̇i = pi

mi
, (1.9)

7



Chapter 1. Introduction

where, f =−∇qV (q,h) is the total force acting on the system. To study the conservation of the

ensemble, it is useful to define the Liouvilllian

i L(cl) =
N∑

i=1

[
ṗi

∂

∂pi
+ q̇i

∂

∂qi

]
=

N∑
i=1

[
fi
∂

∂pi
+m−1

i pi
∂

∂qi

]
(1.10)

which is essentially the total derivative with respect to time [22]. It is easy to show that the

canonical Boltzmann distribution is stationary with respect to the Liouvilllian of Eq. 1.9 i.e.

∂
∂t ′ exp

(−βH
(
p,q

))= i L(cl) exp
(−βH

(
p,q

))= 0. Another use of the Liouvilllian is to define the

classical time evolution operator (p(t ′+∆t ′),q(t ′+∆t ′)) = exp
(
i L(cl)∆t ′

)
(p(t ′),q(t ′)) which can

be approximated to propagate the positions and velocities over one step of the simulation [40].

It remains useful to split Eq. 1.10 into the Liouvilllian’s associated with the momentum

i L(cl)
p =∑N

i=1 fi
∂
∂pi

, and with the position i L(cl)
q =∑N

i=1 m−1
i pi

∂
∂qi

, and decouple the propagators

of the position and momentum using the second-order Trotter scheme [40]

(p(t ′+∆t ′),q(t ′+∆t ′)) = exp
(
i L(cl)

p ∆t ′+ i L(cl)
q ∆t ′

)
(p(t ′),q(t ′))

≈ exp
(
i L(cl)

p ∆t ′/2
)

exp
(
i L(cl)

q ∆t ′
)

exp
(
i L(cl)

p ∆t ′/2
)

(p(t ′),q(t ′)).
(1.11)

This amounts to the update of the momentum for half a timestep, followed by the update

of the position for a full timestep, concluded by the update of momentum for another half

timestep

pi → pi + fi∆t ′/2

qi → qi +pi∆t ′/mi

pi → pi + fi∆t ′/2.

(1.12)

The integration scheme thus obtained, popularly known as velocity-Verlet scheme [41], con-

serves properties of Hamiltonian dynamics such as time reversibility, and symplecticity.

A major limitation of Hamiltonian dynamics is that the equations of motion are not necessarily

ergodic. For instance, for a harmonic potential a system subject to Hamiltonian dynamics

will keep moving periodically on the isosurface of the energy, and not sample all the relevant

regions of position’s domain. To avoid such problems, one typically applies a “thermostat"

which means either coupling the EOMs of the system to those of some “bath" degrees of

8



1.2. Classical thermodynamics

freedom, or modifying the EOM of momentum to make the dynamics more chaotic. An easy

way to ensure ergodicity is to apply a Langevin thermostat [42] which yields the following EOMs

ṗi = fi −γpi +
√

2γmiβRi , q̇i = pi

mi
, (1.13)

where, γ is a friction parameter, and Ri is a random force drawn from a three dimensional

normal distribution. The corresponding Liouvillian is [42]

i L(cl-LE) = i L(cl) +
N∑

i=1

[
−γ

(
∂

∂pi
pi +miβ

−1 ∂
2

∂p2
i

)]
= i L(cl)

p + i L(cl)
q + i L(cl-LE)

γ , (1.14)

where i L(cl-LE)
γ is the propagator of the momentum due to the modified Langevin dynamics. It

is easy to verify that Langevin dynamics conserves the canonical ensemble as both i L(cl) and

i L(cl-LE)
γ individually conserve exp

(−βH
(
p,q

))
. The time propagation over one simulation

step is defined as

(p(t ′+∆t ′),q(t ′+∆t ′)) = exp
(
i L(cl-LE)

γ ∆t ′+ i L(cl)
p ∆t ′+ i L(cl)

q ∆t ′
)

(p(t ′),q(t ′))

≈ exp
(
i L(cl-LE)

γ ∆t ′/2
)

exp
(
i L(cl)

p ∆t ′/2
)

exp
(
i L(cl)

q ∆t ′
)

exp
(
i L(cl)

p ∆t ′/2
)

exp
(
i L(cl-LE)

γ ∆t ′/2
)

(p(t ′),q(t ′)).

(1.15)

implying time evolution of the momenta using the thermostat for half the timestep, followed

by the velocity-Verlet scheme, finally concluded by time evolution using the thermostat for

another half a timestep. We have deliberately not mathematically expressed the thermostat

step, as there exist numerous thermostats [43,44,45,46,47] which could be used in place of the

Langevin thermostat in an actual simulation.

Sampling the classical isothermal-isobaric distribution

In order to sample the isothermal isobaric ensemble, it is important to introduce the volume

V and – in the spirit of molecular dynamics – its conjugate momentum α as a dynamical

variables, and to modify Eq. 1.13 with terms that couple the system’s position and momentum

with volume fluctuations. Several attempts were made to define EOMs [48,49,43,50,51,52] that

9



Chapter 1. Introduction

rigorously conserve the isothermal-isobaric ensemble. Here, we list one such set of EOMs

proposed by Bussi Zykova and Parinello [52] (BZP)

ṗi = fi −γpi +
√

2γmiβRi −αµ−1pi , q̇i = pi

mi
+αµ−1qi ,

V̇ = 3αµ−1V , α̇= [
3V

(
P int −P ext)+β−1]−γαα+

√
2γαµβR′

i

(1.16)

where,

P int = 1

3V
Tr

[
N∑

i=1
m−1

i pi ⊗pi +
N∑

i=1
qi ⊗ fi − ∂V (q,h)

∂h hT

]
= 1

3V
Tr

[
N∑

i=1
m−1

i pi ⊗pi −Ξ
]

, (1.17)

is the instantaneous internal pressure of the system, Ξ is the virial tensor, and ⊗ defines

an outer product. As in the case of the canonical ensemble, it is straightforward (but te-

dious) to show that the Liouvillian, i L(cl-BZP) = ∑N
i=1

[
ṗi

∂
∂pi

+ q̇i
∂
∂qi

]
+ V̇ ∂

∂V + α̇ ∂
∂α , conserves

the isothermal-isobaric distribution [52] exp
(
−β

(
H

(
p,q

)+ α2

2µ +P extV
))

.

To determine the integration scheme, it is useful to split the Liouvillian of Eq. 1.16 into

i L(cl-BZP) = i L(cl-BZP)
γ + i L(cl-BZP)

p,α + i L(cl-BZP)
q,p,V , where i L(cl-BZP)

γ is associated with the thermostat

of the system and the volume, i L(cl-BZP)
p,α =∑N

i=1 fi
∂
∂pi

+ [
3V

(
P int −P ext

)+β−1
]
∂
∂α is the Liou-

villian of the system’s and volume’s momentum associated with the pressure and the forces,

and i L(cl-BZP)
q,p,V = ∑N

i=1

[
m−1

i pi
∂
∂qi

+αµ−1qi
∂
∂qi

−αµ−1pi
∂
∂pi

]
+3αµ−1V ∂

∂V is the position’s and

volume’s Liouvillian. The time propagation over one simulation step is defined as [52]

(p(t ′+∆t ′),q(t ′+∆t ′),α(t ′+∆t ′),V (t ′+∆t ′))

= exp
(
i L(cl-BZP)

γ ∆t ′+ i L(cl-BZP)
p,α ∆t ′+ i L(cl-BZP)

q,p,V ∆t ′
)

(p(t ′),q(t ′))

≈ exp
(
i L(cl-BZP)

γ ∆t ′/2
)

exp
(
i L(cl-BZP)

p,α ∆t ′/2
)

exp
(
i L(cl-BZP)

q,p,V ∆t ′
)

exp
(
i L(cl-BZP)

p,α ∆t ′/2
)

exp
(
i L(cl-BZP)

γ ∆t ′/2
)

(p(t ′),q(t ′),α(t ′),V (t ′)),

(1.18)

implying the time evolution of the system’s and volume’s momentum using the thermostat

for half the timestep, followed by the update of the system’s and volume’s momenta using the

10



1.2. Classical thermodynamics

forces and the pressure, respectively, for half a timestep [52]

α→α+ (
δt ′/2

)[
3V

(
P int −P ext)+β−1]

+ (
δt ′/2

)2
N∑

i=1
m−1

i pi · fi + 1

3

(
δt ′/2

)3
N∑

i=1
m−1

i fi · fi ,

pi (t ′+∆t ′/2) → pi (t ′)+ fi∆t ′/2,

(1.19)

followed by the update of the volume, and the system’s position and momentum for a full

timestep [52]

qi → exp
(
µ−1α∆t ′

)
qi +

sinh
(
µ−1α∆t ′

)
µ−1α

m−1
i pi (t ′)

pi → exp
(−µ−1α∆t ′

)
pi ,

V → exp
(
3µ−1α∆t ′

)
V

(1.20)

continuing with the second part of the integrator applying Eq. 1.19 and the thermostat steps

for half timesteps.

1.2.2 Molecular dynamics for calculating classical dynamical properties

So far we have tried to estimate thermodynamic properties of systems, by modelling their equi-

librium behaviour in the absence of external perturbations. These properties are calculated

by sampling from relevant thermodynamic ensembles by simulating Hamiltonian dynamics

coupled to an external bath. While in equilibrium and within the ergodic hypothesis, it is

assumed that a system loses memory of its initial microstate, making it possible to estimate its

thermodynamic properties as averages over phase space, without necessarily reproducing the

real time dynamics of the modelled system. Consequently, thermodynami c properties are

also known as static properties.

However, there exist many “dynamical" properties which are probed by perturbing the system

from its equilibrium state [22]. For instance, the diffusion coefficient can be estimated by

applying a concentration gradient and tracking the motion of atoms. Similarly, vibrational

spectra can be estimated by subjecting the system to external electromagnetic fields and

studying the response of the system. Since some of these perturbations can be time dependent,
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Chapter 1. Introduction

the resulting response can depend on the frequency of the perturbations and therefore be

time dependent as well. One would think that it would be essential to simulate the steady state

behaviour of the system within non-equilibrium ensembles in the presence of external fields.

However, under the assumption of weak external fields, linear response theory [53] allows one

to estimate the expectation values over these non-equilibrium ensembles in terms of time

correlation functions (TCF) estimated from equilibrium simulations. TCFs therefore provide

the link between the dynamics of the system in equilibrium and experimental “dynamical"

observables.

Within the classical limit, the equilibrium canonical TCF between the observables A(p,q) and

B(p,q) for the system described by Eq. 1.1 is

C cl
AB (t ) = Z cl (N ,V ,β

)−1
(

1

2π}

)3N ∫
dp dq exp

(−βH
(
p,q

))
A(p(0),q(0)) exp

(
i L(cl)t

)
B(p(0),q(0))

= Z cl (N ,V ,β
)−1

(
1

2π}

)3N ∫
dp dq exp

(−βH
(
p,q

))
A(p(0),q(0)) B(p(t ),q(t ))

= 〈A(p(0),q(0))B(p(t ),q(t ))〉(cl)

(1.21)

By expanding the classical propagator exp
(
i L(cl)t

)
as a Taylor series, applying integration by

parts repeatedly in position and momentum coordinates, and exploiting the fact that that the

classical Liouvillian conserves the canonical Boltzmann distribution, one can prove that the

detailed balance condition

C cl
AB (t ) = 〈A(q(0))B(q(t ))〉(cl) = 〈B(q(0))A(q(−t ))〉(cl) =C cl

B A(−t ). (1.22)

if fulfilled. Setting A = 1 yields another detailed balance condition

C cl
B (t ) =C cl

B (−t ) = 〈B(q)〉(cl) , (1.23)

that links thermodynamic expectation values and TCFs. Eq. 1.23 is a direct consequence

of the fact that classical Liouvillian of the Hamiltonian conserves the canonical Boltzmann

distribution.
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1.2. Classical thermodynamics

In principle, for the computation of TCFs given by Eq. 1.21, a single Hamitonian dynamics

trajectory should suffice, as it simultaneously conserves the canonical Boltzmann distribution,

and also classical evolves the system in real time. However, for many systems (such as har-

monic oscillators) Hamiltonian dynamics is not ergodic and can lead to insufficient sampling

of the configuration space. Therefore, in practice, TCFs are estimated by sampling initial

values (p(0)),q(0))) from the canonical Boltzmann distribution using molecular dynamics in

combination with thermostats, performing Hamiltonian dynamics using Eq. 1.11 from each of

the starting points, computing TCFs for all trajectories, and subsequently averaging them [54].

Similarly, time correlation functions can be estimated in the isothermal-isobaric ensemble

by evaluating the thermal average in Eq. 1.21 in the isothermal-isobaric ensemble, which in

practice leads to sampling of initial values of (p(0)),q(0))) using constant pressure molecular

dynamics simulations. This approach, however, can be computationally expensive due to the

need of performing multiple simulations, and tedious as one must check for errors arising

from lack of ergodicity.

A more convenient but less rigorous way of estimating time correlation functions is by using

a single thermostatted trajectory to compute Eq. 1.21. However, care must be taken while

selecting the thermostat so that the perturbation caused upon the real time dynamics of

the system is minimized. To this extent, global thermostats such as “stochastic velocity

rescaling" [46] and “Nose-Hoover" thermostat [48], which do not act on individual atoms but

only rescale the total momentum of the system, do not lead to a significant disruption of the

real time dynamical properties of the system, and therefore can usually be readily applied to

the computation of TCFs.

1.2.3 Limitations of classical thermodynamics

Thermodynamic properties computed with classical nuclei simulations are valid in the high

temperature limit or for system containing heavy elements. However, there exist many systems

containing light nuclei such as hydrogen for which the classical approximation is no longer

valid even at ambient temperature [55,56,57]. For instance, the pH of water is 7 because of the

quantum nature of protons. The protons experience large fluctuations along the OH bond
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Chapter 1. Introduction

and trigger auto-protolysis events [58], due to the high zero point energy of the O–H bond.

If the protons are simulated as classical particles the fluctuations along OH are relatively

small, the probability of auto-protolysis is reduced by many orders of magnitude [58], and

therefore the pH increases to about 9. Similarly, the acidity of active sites of enzymes in our

body can be under-estimated by many orders of magnitude if the nuclei are assumed to be

classical particles [59]. These examples underscore the importance of the quantum nature of

nuclei in the maintenance of aqueous biological reactions within our bodies that sustain our

lives. Other systems that exhibit NQEs are helium [60], the record high-Tc conventional super-

conductor SH3
[61], metal-organic frameworks [62,63], as well as most molecular materials [64,65].

There are also many properties which can not be modelled using classical statistical mechanics.

Recall that position dependent properties observables calculated using Eq. 1.8 do not depend

on the mass of the particles, but only on the BO potential energy landscape. Classical nuclei

simulations, therefore, will give the same results when applied to study systems containing

different isotopes of an element. We shall later see that these simulations actually correspond

to quantum nuclei simulations with hypothetical isotopes of elements that have infinite

masses. We can therefore say that difference in thermodynamical properties of isotopomers is

a "pure" quantum effect that can not be described classically. Similarly, since the momenta

used in classical molecular dynamics are just auxiliary variables used to sample the Boltzmann

distribution of the positions, momentum dependent properties such as particle momentum

distributions, kinetic energies, heat capacities etc. are not targetted by these simulations.

Therefore, it is important to turn to quantum statistical mechanics which allows one to study

all systems at low temperature, and systems containing light, as well as calculate isotope

dependent observables, and those that depend explicitly on momenta.

1.3 Quantum thermodynamics

Fortunately, it is possible to treat the quantum statistical mechanics of distinguishable nuclei

in a numerically exact manner, without painstakingly computing all the vibrational energy

14



1.3. Quantum thermodynamics

levels. The imaginary time path integral method allows one to sample configurations from the

quantum (Boltzmann) distributions of thermodynamics ensembles, just as in the case of clas-

sical statistical mechanics, although at a much higher computational cost. Nevertheless, it is

the most effective framework for treating the quantum mechanical behavior of distinguishable

particles. Within the path integral formalism, the quantum partition function is shown to be

equivalent to the classical partition function of an extended classical system made of several

replicas of the physical systems at an elevated temperature [66]. This is shown by first writing

the canonical Boltzmann distribution at β as the product of P high temperature distributions

at βP = β
P

Z
(
N ,V ,β

)= Tr
[
exp

(−βĤ
)]= Tr

[(
exp

(−βP Ĥ
))P

]
and subsequently performing a Trotter splitting of the high temperature Boltzmann distribu-

tions

Z
(
N ,V ,β

)= Tr
[(

exp
(−βP Ĥ

))P
]

= Tr
[(

exp
(−βP V̂ /2

)
exp

(−βP T̂
)

exp
(−βP V̂ /2

))P
]
+O

(
P−2) .

As in the case of classical statistical mechanics, the trace is estimated in the position basis∣∣q(1)
〉

and P −1 additional completeness relations I= ∫
dq( j )

∣∣q( j )
〉〈

q( j )
∣∣ for j ∈ {2, . . . ,P } are

inserted between the high temperature Boltzmann operators to estimate the second-order

canonical partition function

Z (2)
P

(
N ,V ,β

)= ∫
d{q( j )}

P∏
j=1

〈
q( j )

∣∣∣exp
(−βP V̂ /2

)
exp

(−βP T̂
)

exp
(−βP V̂ /2

)∣∣∣q( j )
〉

where, {q( j )} is short hand for extended vector {q(1), . . . ,q(P )}, and q( j+P ) ≡ q( j ) is implied. It is

easy to show that the second-order canonical partition function is

Z (2)
P

(
N ,V ,β

)= (
1

2π~

)3N P (
1

2π~

)3N P N∏
i=1

(
2πmiβ

−1
P

) 3P
2

∫
d{q( j )} exp

(
−βP

P∑
j=1

[
N∑

i=1

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2 +V
(
q( j )

)])
.

(1.24)
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under the assumption that the dimensions of the cell are much larger than the delocalization

of the particles. [67] As in the case of classical statistical mechanics, it is possible to convert

the prefactor into Gaussian integrals of fictitious momenta of the atoms in each replica of the

system, leading to

Z (2)
P

(
N ,V ,β

)= (
1

2π~

)3N P ∫
d{p( j )} d{q( j )} exp

(
−βP H (2)

P

(
{p( j )}, {q( j )}

))
(1.25)

which equals the classical canonical partition function of an extended classical system –

referred to as the ring polymer – at inverse temperature βP . The ring polymer Hamiltonian is

made of P replicas of the system such that the atoms in consecutive replicas are connected

with springs of frequency ωP = }−1β−1
P

H (2)
P

(
{p( j )}, {q( j )}

)
=

P∑
j=1

[
N∑

i=1

1

2
m−1

i |p( j )
i |2 +

N∑
i=1

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2 +V
(
q( j )

)]
. (1.26)

Note that the dynamical masses in Eq. 1.26 could in principle be a generalized mass matrix

[68], however, for simplicity we choose a diagonal matrix of physical masses. This Hamiltonian

is also known as the imaginary time path integral Hamiltonian as it can also be derived by

writing the canonical partition function as an imaginary time propagator in the path integral

representation, and discretising the action integral [24,22]. The spring term allows the particles

to be delocalized in space, introducing a net uncertainty in their positions. Since the spring

forces felt by the atoms depends explicitly on their masses, the heavy isotope of an atom

would experience stiffer springs and therefore smaller quantum delocalization. Note that in

the limits of infinite masses and temperature, the stiffness of the spring shoots up to infinity

and all the replicas collapse to the centroid leading to a fully classical description.

The thermodynamic average of any position dependent observable Â can either be estimated

as [66] 〈A(q)〉(2)
P = Z

(
N ,V ,β

)−1 Tr
[
exp

(−βĤ
)

Â
]

, or by deriving the partition function as in Eq.

1.7. Both methods lead to the estimator

〈A(q)〉(2)
P = Z (2)

P

(
N ,V ,β

)−1
∫

d{p( j )} d{q( j )}

[
1

P

P∑
j=1

A
(
q( j )

)]
exp

(
−βP H (2)

P

(
{p( j )}, {q( j )}

))
= lim

T→∞
1

T

∫ T

0
dt ′

1

P

P∑
j=1

A
(
q( j )(t ′)

)
,

16



1.3. Quantum thermodynamics

(1.27)

a time average of the average over beads of the observable, sampled using the classical Boltz-

mann distribution of the second-order ring polymer Hamiltonian. Note that in the limit

of P → ∞, the estimator converges to the exact quantum expectation value with an error

that scales as O
(
P−2

)
. Momentum dependent observables can not be calculated by merely

averaging over the fictitious momenta of the ring polymer, but require sampling of open chain

polymers [69] instead of closed ring polymers. As we shall see later there are several challenges

associated with calculating momentum dependent observables that need to be addressed.

1.3.1 Path integral molecular dynamics for sampling quantum ensembles

Expectation values of observables in Eq. 1.27 can be estimated, as in the case of classical

statistical mechanics, using the molecular dynamics technique by simulating the 3N ×P

dimensional ring polymer Hamiltonian [70], and by coupling its equations of motion with

those of thermostats [67,71] and barostats [72,73]. The generic term used to describe molecular

dynamics for sampling thermodynamic ensembles, obtained within the imaginary time path

integral method, is known as path integral molecular dynamics (PIMD). Let us briefly go

through the algorithms that enable PIMD for sampling the canonical, and the isothermal-

isobaric ensembles.

Sampling the quantum canonical distribution

The ring polymer Hamiltonian has a wide range of normal mode frequencies. For instance

the characteristic frequencies of a free ring polymer i.e. one without any potential, are

ωP∼
( j ) = 2ωP sin ( j−1)π

P for j ∈ {1, . . . ,P }, which means the friction parameter of a single Langevin

thermostat applied to the full ring polymer, may be too small or too large for some of the nor-

mal modes [74]. Both the regimes lead to non-ergodic sampling as a small friction parameter

implies less chaotic dynamics, while a large parameter implies overdamped motion which

prevents sampling new regions of phase space [74]. One of the ways to ensure ergodic sampling,

as proposed by Ceriotti and co-workers, is to apply P thermostats to the different normal
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modes of the ring polymer Hamiltonian leading to the EOMs [71]

ṗi∼
( j ) = fi∼

( j ) −γ( j )pi∼
( j ) −miωP∼

2qi∼
( j ) +

√
2miγ( j )β−1

P R( j )
i ,

q̇i∼
( j ) = m−1

i pi∼
( j ),

(1.28)

where {ṗ
∼

( j ), q̇
∼

( j )} are the momentum and position written in the normal mode representation

of the free ring polymer. The choice γ( j )| j 6=0 = 2ω̃( j ) leads to optimal sampling [74] i.e. the

middle ground between near-Hamiltonian dynamics and over damped motion, for the Hamil-

tonian of free particles. In addition a “centroid" thermostat is attached to the first normal

mode with zero frequency also known as the centroid mode. The thermostatting scheme is

known as the path integral Langevin equation (PILE-�) [71], where� is G or L depending on

whether the centroid thermostat is global (G) or local (L). Note that the use of multiple ther-

mostats within PILE-� conserves the canonical distribution as the kinetic energy is trivially

decoupled into independent normal mode components. Although derived in the free particle

limit, the PILE thermostat remains useful for most realistic systems.

A straightforward integration of Eq. 1.28 using the velocity Verlet scheme, would require a very

small timestep as the springs frequencies are usually higher than the physical characteristic

frequencies of most systems. One way to avoid this problem is by using a mass matrix that

reduces the frequencies of the free ring polymer. The other way, which allows physical masses

to be used for the ring polymer, requires the total Liouvillian of Eq. 1.28 to be written as:

i L(PI-LE) =
P∑

j=1
i L(PI)

pq( j ) + i L(PI)
p + i L(PI-LE)

γ , (1.29)

where i L(PI-LE)
γ is associated with the thermostat, i L(PI)

p =∑P
j=1

∑N
i=1 fi∼

( j ) ∂
∂pi

∼
( j ) is the Liouvillian

of the momenta due to the physical forces, and
∑P

j=1 i L(PI)
pq( j ) is the Liouvillian of the free ring

polymer that only experiences spring forces. The time propagation for a timestep ∆t ′ can then
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be performed as [71]

exp
(
i L(PI-LE)∆t ′

) (
{p( j )}(t ′+∆t ′), {q( j )}(t ′+∆t ′)

)
= exp

(
i L(PI-LE)

γ ∆t ′/2
)

exp
(
i L(PI)

p ∆t ′/2
)

exp

(
P∑

j=1
i L(PI)

pq( j )∆t ′
)

exp
(
i L(PI)

p ∆t ′/2
)

exp
(
i L(PI-LE)

γ ∆t ′/2
) (

{p( j )}(t ′), {q( j )(t ′)}
)

.

(1.30)

which implies update of momenta due to the thermostat for half a timestep, followed by the

update of momenta due to the physical forces for another half a timestep, followed by the exact

propagation (that is analytically known ) using the free particle Liouvillian for a full timestep,

followed by the other symmetric part of the integration scheme. The exact propagation

typically enables the use of a time step that is same as or half of the one used in classical

nuclei simulations. Recent developments, such as the B AO AB integration scheme [75] which

basically applies the thermostat step in the middle, instead of two thermostat steps at the ends,

and numerically integrates the spring forces allows one to use – in most circumstances – the

same timesteps that one would in classical nuclei simulations [76]. And finally, if one runs into

problems such as numerical instability or poor ergodicity due to the numerical integration

scheme, especially in the limit of large number of replicas, the recently developed Cayley

modified integration schemes [77,78] can be used.

Sampling the quantum isothermal-isobaric distribution

The isothermal-isobaric ensemble can be sampled by simulating classical constant pressure

dynamics for the ring polymer Hamiltonian at inverse temperature βP and and P times the

external pressure P ext
P =P extP as

∆(2)
P

(
N ,P ext,β

)= V −1
0

∫
dV exp

(−βP extV
)

Z (2)
P

(
N ,V ,β

)
= V −1

0

∫
dV exp

(−βP P ext
P V

)
Z (2)

P

(
N ,V ,β

)
.

(1.31)

To sample the isothermal-isobaric ensemble in an efficient manner, it is useful to assume

that the fluctuations of the centroid mode are much larger than those of the normal modes,

and only the former are scaled during volume fluctuations [72]. This results in the following
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reduced ensemble [72]

∆(2)
P

(
N ,P ext,β

)∝∼
∫

dV

∫
dp(1) dq(1)

∫
d{p( j )} j 6=1d{q( j )} j 6=1

exp
(
−βP

(
H (2)

P

(
{p( j )}, {q( j )}

)
+P ext

P V
)) (1.32)

where only the integral over the centroid position is performed over the domain of V . We

present the EOMs proposed by Ceriotti and co-workers [73], which are modifications of the

classical isothermal-isobaric EOMs described by Eq. 1.16 that sample the reduced ensemble

using the PILE thermostat

ṗi∼
( j ) = fi∼

( j ) −γpi∼
( j ) −miωP∼

2qi∼
( j ) +

√
2γmiβP R( j )

i , for j = {2, . . . ,P }

q̇i∼
( j ) = m−1

i pi∼
( j ), for j = {2, . . . ,P }

ṗi∼
(1) = fi∼

(1) −γpi∼
(1) +

√
2γmiβP R(1)

i −αµ−1pi∼
(1),

q̇i∼
(1) = m−1

i pi∼
(1) +αµ−1qi∼

(1),

V̇ = 3αµ−1V ,

α̇= [
3V

(
P int

P −P ext
P

)+β−1
P

]−γαα+
√

2γαµβP R′
i

(1.33)

where,

P int
P = 1

3V
Tr

[
N∑

i=1
m−1

i pi∼
(1) ⊗pi∼

(1) − 1

P

P∑
j=1

N∑
i=1

(
q( j )

i − q̄i

)
⊗ f( j )

i − 1

P

P∑
j=1

Ξ( j )

]
, (1.34)

with P int
P the total internal pressure of the Hamiltonian as estimated by the centroid-virial

estimator [72], and q̄i the centroid of the i th atom. The total Liouvillian of Eq. 1.33

i L(PI-BZP) =
P∑

j=2
i L(PI)

pq( j ) + i L(PI-BZP)
p,α + i L(PI-BZP)

p,q,V + i L(PI-BZP)
γ , (1.35)

with i L(PI-BZP)
γ the Liouvillian associated with the thermostat of the system and the volume,∑P

j=2 i L(PI)
pq( j ) the Liouvillian of the free ring polymer Hamiltonian with all modes but the cen-

troid, i L(PI-BZP)
p,α =∑P

j=1

∑N
i=1 fi∼

( j ) ∂
∂pi

∼
( j ) + α̇ ∂

∂α , the Liouvillian associated with the system’s and
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volume’s momenta due to the force and the internal pressure, respectively, and

i L(PI-BZP)
p,q,V =

N∑
i=1

m−1
i pi∼

(1) ∂

∂qi∼
(1)

+αµ−1qi∼
(1) ∂

∂qi∼
(1)

−αµ−1pi∼
(1) ∂

∂pi∼
(1)

+3αµ−1V
∂

∂V

the Liouvillian associated with the centroid mode of the ring polymer, the volume, and the

rest of the terms associated with the centroid’s momentum and position. It is tedious but

straightforward to verify that Eq. 1.33 conserve the reduced isothermal-isobaric distribution

i.e. i L(PI-BZP) exp
(
−βP

(
H (2)

P

(
{p( j )}, {q( j )}

)+ α2

2µ +P ext
P V

))
= 0. The time propagation for the

EOMs is performed as

exp
(
i L(PI-BZP)∆t ′

) (
{p( j )}(t ′+∆t ′), {q( j )}(t ′+∆t ′),α(t ′+∆t ′),V (t ′+∆t ′)

)
= exp

(
i L(PI-BZP)

γ ∆t ′/2
)

exp
(
i L(PI-BZP)

p,α ∆t ′/2
)

exp

((
P∑

j=2
i L(PI)

pq( j ) + i L(PI-BZP)
p,q,V

)
∆t ′

)

exp
(
i L(PI-BZP)

p,α ∆t ′/2
)

exp
(
i L(PI-BZP)

γ ∆t ′/2
) (

{p( j )}(t ′), {q( j )}(t ′),α(t ′),V (t ′)
)

.

(1.36)

which implies, the thermostat step for both the system and the volume, the update of the

momenta of the system and the volume due to forces and internal pressure, respectively, for

half a timestep [73]

α→α+ (
δt ′/2

)[
3V

(
P int

P −P ext
P

)+β−1
P

]
+ (
δt ′/2

)2
N∑

i=1
m−1

i pi∼
(1) · fi∼

(1) + 1

3

(
δt ′/2

)3
N∑

i=1
m−1

i fi∼
(1) · fi∼

(1),

pi∼
( j ) → pi∼

( j ) + fi∼
( j )∆t ′/2,

(1.37)

followed by the update of the volume, and the position and momentum of the system for a full

timestep [73]

qi∼
(1) → exp

(
µ−1α∆t ′

)
qi∼

(1) + sinh
(
µ−1α∆t ′

)
µ−1α

m−1
i pi∼

(1)

pi∼
(1) → exp

(−µ−1α∆t ′
)

pi∼
(1),

V → exp
(
3µ−1α∆t ′

)
V

(1.38)
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and the exact evolution of all the modes but the centroid of the free ring polymer for a

full timestep, continuing with the second part of the integrator applying Eq. 1.37 and the

thermostat steps for half timesteps.

1.3.2 Path integral methods for approximate quantum dynamics

As in the classical case, quantum dynamical properties can be estimated in terms of quantum

TCFs, by invoking linear response theory [22]. The standard TCF in the canonical ensemble

between position dependent operators Â and B̂ for the system described by Eq. 1.1 is

C AB (t ) = Z
(
N ,V ,β

)−1Tr
[
exp

(−βĤ
)

Â exp
(
i~−1Ĥ t

)
B̂ exp

(−i~−1Ĥ t
)]

= Z
(
N ,V ,β

)−1Tr
[
exp

(−βĤ
)

Â(0) B̂(t )
]

,
(1.39)

which can be estimated if the eigenstates of the Hamiltonian are known. Let us try to apply

the path integral tick to avoid the eigenvalue problem. This is done by estimating the trace in

Eq. 1.39, in the position basis, leading to [22]

C AB (t ) = Z
(
N ,V ,β

)−1
∫

dq( j ′)
〈

q( j ′)
∣∣∣exp

(−βĤ
)

Â exp
(
i~−1Ĥ t

)
B̂ exp

(−i~−1Ĥ t
)∣∣∣q( j ′)

〉
= Z

(
N ,V ,β

)−1
∫

dq( j ′) dq( j ′′) dq( j ′′′)
〈

q( j ′)
∣∣∣exp

(−βĤ
)∣∣∣q( j ′′)

〉
A(q( j ′′))〈

q( j ′′)
∣∣∣ exp

(
i~−1Ĥ t

)∣∣∣q( j ′′′)
〉

B(q( j ′′′))
〈

q( j ′′′)
∣∣∣exp

(−i~−1Ĥ t
)∣∣∣q( j ′)

〉
.

(1.40)

Performing a Trotter discretization of the matrix elements and inserting completeness iden-

tities in
〈

q( j ′)
∣∣∣exp

(−βĤ
)∣∣∣q( j ′′)

〉
,
〈

q( j ′′)
∣∣∣ exp

(
i~−1Ĥ t

)∣∣∣q( j ′′′)
〉

and
〈

q( j ′′′)
∣∣∣exp

(−i~−1Ĥ t
)∣∣∣q( j ′)

〉
leads to the path integral expression of the standard time correlation function. However,

since the matrix elements of the forward and backward time propagators exp
(±i~−1Ĥ t

)
are

not positive definite [22], they can not be sampled using path integral molecular dynamics

methods.

An alternative to the standard TCF is the Kubo transformed TCF, is the Kubo transformed
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correlation function [53]

K AB (t ) = Z
(
N ,V ,β

)−1
∫

dλ Tr
[
exp

(−(β−λ)Ĥ
)

Â exp
(−λĤ

)
exp

(
i~−1Ĥ t

)
B̂ exp

(−i~−1Ĥ t
)]

= Z
(
N ,V ,β

)−1
∫

dλ Tr
[
exp

(−(β−λ)Ĥ
)

Â(0) exp
(−λĤ

)
B̂(t )

]
,

(1.41)

which has the advantage that it is real, and that it reduces to the classical time correction

function in the classical (high temperature) and in harmonic limits, and that it satisfies the

detailed balance condition K AB (t) = KB A(−t) [53], unlike the standard quantum TCF. These

properties open the possibility of approximating the Kubo transformed TCF using the path

integral method, which relies on classical dynamics. Moreover, the Fourier transform (FT) of

the Kubo transformed TCF is related to that of the standard time correlation function,

FT[C AB (t )] (ω) =
[

β~ω
1−exp

(−β~ω)]
FT[K AB (t )] (ω) (1.42)

meaning that the Kubo transformed TCF can be just as easily related to experimental dynami-

cal observables, as the standard TCF.

Formal derivation of path integral methods that deliver approximate quantum dynamics,

requires the theory of Matsubara dynamics [79] which approximates the Kubo transformed

TCF by a classical TCF of an extended system (the Matsubara Hamiltonian), whose dynamics

conserves the quantum Boltzmann distribution. Unfortunately, the Matsubara TCF contains

a rapidly oscillating phase term, which makes its calculation very hard even for small sys-

tems. However, Matsubara dynamics provides the theoretical framework for the derivation

of approximate methods, such as centroid molecular dynamics (CMD) [80] and ring polymer

molecular dynamics (RPMD) [81] that do not suffer from the aforementioned phase problem,

and can be used to compute TCFs of systems of practical interest [82]. While the full derivation

of Matsubara dynamics and its simplification to other approximate methods, is beyond the

scope of this thesis, we refer the interested reader to Ref. [79,83,84], for derivations and proceed

to the description of CMD and RPMD methods.
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Centroid molecular dynamics

Centroid molecular dynamics [80] is an approximate method for computing quantum TCFs

in terms of the dynamics of the centroid of the imaginary time path integral Hamiltonian,

generated classically by the mean thermodynamic force acting on the centroid. Within CMD,

the Kubo transformed TCF of linear position dependent operators Â and B̂ is approximated as

C CMD
AB (t ) = Z 2

P

(
N ,V ,β

)−1
(

1

2π}

)3N ∫
dp1∼

′ dq1∼
′ exp

(
−βH CMD

(
p1∼

′,q1∼
′
))

A(q1∼
′(0)) exp

(
i L(CMD)t

)
B(q1∼

′(0)),

(1.43)

where the CMD Hamiltonian is defined as H CMD
(

p1∼
′,q1∼

′
)
=∑N

i=1

p1
∼

′2

2mi
+ A(q1∼

′), with A(q1∼
′) =

−β−1 log
∫

d{p( j )} d{q( j )} δ

(
1
P

∑P
j=1 q( j ) −q1∼

′
)

exp
(
−βP H (2)

P

(
{p( j )}, {q( j )}

))
the free energy land-

scape (or the potential of mean thermodynamic force) of the centroid of the ring polymer,

and i L(CMD) is the Liouvillian of the CMD Hamiltonian. It is straightforward to show that [80]

limt→0 C CMD
AB (t ) = K AB (0), and that in the classical and harmonic limits C CMD

AB (t ) = K AB (t ) for

sufficient number of replicas P . Moreover, since the CMD Liouvillian conserves the quantum

canonical Boltzmann distribution [83], C CMD
AB (t ), like the Kubo transformed TCF, also satisfies

the detailed balance condition. These properties are used to approximate K AB (t ) using CMD

away from the limits where it is exact. For general anharmonic potentials, C CMD
AB (t ) is accurate

up to O (t 6) [85], while for non-linear operators, CMD does not even recover the correct t → 0

limit [86].

Performing CMD in its native form is computationally expensive as each force evaluation

requires a path integral simulation. Therefore, one normally performs an adiabatic approxi-

mation to separate the time scales of the motion of the centroid and the rest of the modes,

by specifying lighter dynamical masses to the non centroid modes, allowing an on the fly

estimation [22] of the CMD forces acting on the centroid. This variant of CMD, also known as

partially adiabatic (PA-) CMD [87], is generally used to study systems of practical interest.
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Ring polymer molecular dynamics

Within ring polymer molecular dynamics [88], approximate quantum dynamics is obtained by

performing microcaonical dynamics of the standard ring polymer Hamiltonian, and comput-

ing TCFs of bead averages of operators. The RPMD approximation to the Kubo transformed

TCF of general non-linear position dependent operators Â and B̂ is

C RPMD
AB (t ) = Z 2

P

(
N ,V ,β

)−1
(

1

2π}

)3N ∫
dp( j ) dq( j ) exp

(
−βH (2)

P

(
p( j ),q( j )

))
ARPMD(q(0)) exp

(
i L(RPMD)t

)
B RPMD(q(0)),

(1.44)

where i L(RPMD) =∑P
j=1 i L(PI)

pq( j ) + i L(PI)
p is the Liouvillian of the standard path integral Hamilto-

nian, and�RPMD(q) = 1
P

∑P
j=1�(q( j )) is the bead average of the operator�. Just like its coun-

terpart CMD, the RPMD TCF satisfies detailed balance [81], is exact in the classical and the har-

monic limits, but for general position dependent operators displays limt→0 C RPMD
AB (t ) = K AB (0),

allowing one to approximately compute K AB (t ) using RPMD, for general anharmonic poten-

tials and non-linear operators. The position autocorrelation function within RPMD remains

accurate up to O (t 8) [85] while, TCFs of non-linear position dependent operators are accurate

up to O (t 2) [85].

Practical evaluation of RPMD TCFs requires sampling of initial structures using thermostatted

path integral molecular dynamics, and an averaging of TCFs computed over the initial config-

urations. Since the standard imaginary time Hamiltonian contains a harmonic spring term,

RPMD dynamics can be poorly ergodic. A more efficient way of running RPMD is by applying

an optimally tuned PILE thermostat [71] on the non-centroid modes, together with a weak

global thermostat on the centroid [89]. This variant of RPMD, also known as thermostatted

(T) RPMD, is much more ergodic, and also recovers the exact Kubo transformed TCF in the

classical and the harmonic limits. Furthermore, as we shall we later, it also removes some of

the artefacts of RPMD on vibrational spectra [90].
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1.3.3 Challenges associated with the path integral method

The quantum nature of distinguishable nuclei can be simulated in a classical fashion by run-

ning path integral molecular dynamics (PIMD), i.e. molecular dynamics for the ring polymer

Hamiltonian made of P replicas of the system. This also means that the computational cost of

a PIMD simulation is roughly P times that of a standard classical nuclei simulation, due to the

cost of computing the energetics of P replicas of the system. The number of replicas required

to converge a property depends on the inverse temperature β , the highest characteristic

frequency of the system ωmax, and on the property of interest. As a rule of thumb [91], to

converge the energy to less than 10% of its quantum limit, one should choose P > β}ωmax.

This amounts to an overhead that is between 10 to 50 at room temperate for molecular systems

containing hydrogen atoms. More sophisticated properties such as heat capacities – which

depend on second derivatives of the partition function – require P > 2β}ωmax to get to the

same level of accuracy, leading to an overhead that is typically over a factor of 100 [92]. These,

estimates illustrate the large cost of modelling the quantum nature of nuclei over classical

simulations, and the need for the development of cost reduction schemes, especially when

PIMD is to be performed with ab initio methods of electronic structure theory.

Over the last two decades, several methods such as ring polymer contraction (RPC) [91] (see

Chapter 2), high order path integrals [93,94,95] (see Chapter 2), and generalized Langevin

equation (GLE) thermostats [96,71] (see Chapter 4), have been developed which reduce the

computational expense of performing PIMD simulations, and have facilitated several im-

portant studies [59,58,97,64,98] that highlight the role of quantum fluctuations across different

systems. These methods, however, suffer from several notable limitations. For instance, RPC

method which relies on range separation of the potential, into slow and fast term is so far

only limited to analytic force-fields. While GLE thermostats, such as PIGLET, can be used

in combination with a first principles interatomic potentials, they are applicable only to the

study of simple structural properties, and the potential and kinetic energies. More complex

observables such as isotope-fractionation ratios [99] and heat capacities [92], which require a

large number of replicas, are not targetted by GLE thermostats. The high order path integral

method can accelerate the convergence of all thermodynamic observables, but requires sec-
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ond derivatives of the potential for performing PIMD.

There exist many other properties, such as those that depend explicitly on the momentum op-

erator (with an exception of the kinetic energy) that can not be directly obtained from standard

path integral simulations. The particle momentum distribution is one such property which

remains fundamentally relevant as it sheds light on the chemical environment of particles [100],

and can be measured quite accurately for protons in different phases of water [25]. Calculation

of this property within the path integral method, requires opening of the otherwise closed path

of the target atoms, and the calculation of their end-to-end distribution [69]. Unfortunately,

converging this property requires very long trajectories [69,95] within the standard open path

integral method, and existing cost reduction schemes either compute it in an approximate

manner [71], or require multiple simulations that constrain/restrain path opening in a con-

trolled manner [101].

Other properties which are directly not related to the observables that we have considered

within equilibrium path integral simulations are dynamical properties such as time cor-

relation functions that explicitly depend on physical time. For instance, vibrational spec-

tra [54,87,82], diffusion coefficients, reaction rates [102,103], thermal conductivity etc. are a few

dynamical properties which are influenced by the quantum nature of nuclei. These prop-

erties can be estimated approximately using many schemes based on the path integral

method [81,89,80,79,104,105,106,86,107], all of which have the same limitation (amongst many oth-

ers) that their cost scales with the number of replicas required to converge the dynamical

properties of interest.

Another problem which becomes prominent at ultra low temperatures, is the indistinguish-

ably of particles. So far we have assumed that our particles are “Boltzmannons" meaning

that they are distinguishible and follow Boltzmann statistics. However, real particles (at low

temperatures) behave either as “Bosons" or “Ferminons" meaning that their wavefunction

remains symmetric or anti-symmetric, respectively, to the exchange of identical particles.
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Including the statistics of exchange within the path integral framework, requires one to make

the partition function of the system, symmetric or antisymmetric with respect to exchange of

identical particles, by including larger ring polymers that combine combinations of identical

particles, contributing to the total partition function either with positive or negative weights

(depending on whether the systems is Bosonic or Fermionic) [66]. These larger ring polymers

can be sampled in a Monte Carlo fashion, by performing a random walk in permutation

space, however, the methodology remains problematic for Ferminos for which the sampled

probability distribution is not positive definite [108]. Aside from the challenges associated with

sampling Bosonic [109] and Fermionic [110] statistical distributions, these methods also suffer

from the large computational cost arising from the use of a very large number of replicas, as

exchange effects are prominent only at ultra-low temperatures.

It would therefore be beneficial to develop methods that cater to the deficiencies of existing

cost reduction schemes, so that path integral methods can be applied to a wide range of

estimators, as well as for the description of dynamical properties in a computationally efficient

manner. The following three chapter of the thesis, describe novel methodological develop-

ments that act on the limitations of RPC, high-order path integral and GLE thermostats , and

efficient estimators for the heat capacity, particle momentum distribution and vibrational

spectra.
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2 Accelerated path integral methods

The computational cost of a path integral simulation is approximately P times the cost of a

classical nuclei simulation, as the former require energetics of P replicas of the system. For

most systems of interest, path integral simulations can require up to 10−100 times more

computational resources at room temperature, which increases linearly as the temperature

is reduced. When combined with first principles methods of electronic structure theory that

evaluate of energies, forces and virials, these simulations can get prohibitively expensive.

Consequently, a number of methods have been developed that reduce the computational cost

of path integral simulations. In this chapter, we shall examine the strengths and weaknesses of

current cost reduction schemes, and discuss the new developments made by us that solve the

limitations of these methods.

The following chapter is partially based on the journal articles:

1. V. Kapil, J. VandeVondele, and M. Ceriotti, “Accurate molecular dynamics and nuclear quantum effects
at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate
wavefunction methods,” The Journal of Chemical Physics, vol. 144, p. 054111, Feb. 2016. VK was involved in
the development and implementation of the method, in running calculations, in performing analysis and
in the writing of the manuscript.

2. V. Kapil, J. Behler, and M. Ceriotti, “High order path integrals made easy,” The Journal of Chemical Physics,
vol. 145, p. 234103, Dec. 2016 VK was involved in the design of the research, in the development and
implementation of the method, in running calculations, in performing analysis and in the writing of the
manuscript.

3. V. Kapil, J. Wieme, S. Vandenbrande, A. Lamaire, V. Van Speybroeck, and M. Ceriotti, “Modeling the Structural
and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic
Fluctuations,” Journal of Chemical Theory and Computation, vol. 15, pp. 3237–3249, May 2019 VK was
involved in the design of the research, in the development and implementation of the method, in running
some of the calculations, in performing analysis and in the writing of the manuscript.
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Chapter 2. Accelerated path integral methods

2.1 Exploiting multiple time / length scales

We assume that the BO potential energy can be written as V
(
q,h

)=V short
(
q,h

)+V long
(
q,h

)
,

a sum of a short-ranged but cheap to evaluate component V short
(
q,h

)
, and a long-ranged

but expensive component V long
(
q,h

)
. Such splittings are usually possible when systems are

studied using force-fields that model the short and long ranged interactions using separate

analytic functions. Long ranged interactions that arise from dispersion and electrostatics

interactions are typically computationally more expensive than short-ranged interactions

between neighbouring atoms.

2.1.1 Ring polymer contraction (RPC)

Let’s say that the number of beads required to separately converge the short and long ranged

components are P and P ′, respectively. Since P ′ < P , a simulation that uses the full potential

would wastefully compute the expensive V long
(
q,h

)
component on P replicas. The ideal

solution would be to estimate V long
(
q,h

)
on a smaller ring polymer with P ′ replicas. The

method proposed by Markland and Manolopolous called Ring Polymer Contraction (RPC)

describes an efficient way to compute different components of the potential on ring polymers

of different sizes. Within this scheme, the coordinates of the ring polymer are transformed

into the free ring polymer representation {q( j )} → {q
∼

( j )}, the highest P-P’ components are

discarded to yield a smaller ring polymer {q
∼

( j )} → {q
∼

( j ′)}, and the potential is computed after

transforming back to Cartesian coordinates {q
∼

( j ′)} → {q( j ′)}. The total physical potential of the

ring polymer is approximated as

P∑
j=1

V
(
q( j ),h

)
=

P∑
j=1

V short
(
q( j ),h

)
+

P∑
j=1

V long
(
q( j ),h

)
≈

P∑
j=1

V short
(
q( j ),h

)
+ P

P ′
P ′∑

j=1
V long

(
q( j ′),h

) (2.1)

where, the transformation {q( j ′)} = ∑N
j=1 T j ′ j {q( j )} can be easily estimated in terms of the

eigenvectors of the free ring polymer as discussed in Ref. 91. Similarly the total physical force

acting on the j th replica is f( j ) = P
P ′

∑P
j ′=1 T j ′ j f( j ′). This scheme leads to a speedup of factor

of P
P ′ , assuming that the computational cost of the short-ranged interactions is negligible in
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2.1. Exploiting multiple time / length scales

comparison to that of the long-ranged interactions.

2.1.2 Multiple timestepping (MTS)

Yet another way of exploiting the splitting of the potential is by integrating the fast and slow

forces using different timesteps δt ′ and ∆t ′, respectively with ∆t ′ > δt ′, so that the expensive

component that varies slowly in time can be computed less frequently than the cheap one. In

the context of classical molecular dynamics, this is achieved by the methodology of Tuckerman

et. al who suggested writing the total Liouvillian associated with Hamiltonian dynamics as

i L(cl) =
N∑

i=1

[
f short

i
∂

∂pi
+ f long

i

∂

∂pi
+m−1

i pi
∂

∂qi

]
= i L( cl-short)

p + i L( cl-long)
p + i L (cl)

q (2.2)

and integrating the equations of motion by approximating the propagator as

exp
(
i L(cl)∆t ′

)
= exp

(
i L(cl-short)

p ∆t ′+ i L(cl-long)
p ∆t ′+ i L(cl)

q ∆t ′
)

≈ exp
(
i L(cl-long)

p ∆t ′
)[

exp
(
i L(cl-short)

p ∆t ′/M + i L(cl)
q ∆t ′/M

)]M
exp

(
i L(cl-long)

p ∆t ′
)

= exp
(
i L(cl-long)

p ∆t ′
)[

exp
(
i L(cl-short)

p δt ′/2
)

exp
(
i L(cl)

q δt ′
)

exp
(
i L(cl-short)

p δt ′/2
)]M

exp
(
i L(cl-long)

p ∆t ′
)

(2.3)

where, ∆t ′ = Mδt ′. This amounts to integration of momenta using the long-ranged force

with a large timestep, followed by M steps of velocity-Verlet using the short-ranged force

and a short timestep, concluded by integration of the momenta using the long-ranged force

with a large timestep. The same methodology can be extended to constant temperature path

integral molecular dynamics by replacing the Liouvillian associated with the position in Eq.

2.3 with that of the free ring polymer, and by applying thermostat steps as described in Eq.

1.30. Assuming that the computational cost of the short-ranged interactions is negligible in

comparison to that of the long-ranged interactions, this methodology leads to a speedup of a

factor of M .
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Figure 2.1 – Difference between quantum and classical expectation values of potential (top)
and kinetic energy (bottom) per molecule as a function of the number of path integral replicas
for a simulation of q-TIP4P/f liquid water at room temperature. Solid curves correspond to
full PIMD, while dashed curves correspond to a RPC setup in which the bonded (stretch and
bend) terms were computed on 32 replicas, and the non-bonded (electrostatic and dispersion)
terms were computed on a reduced number of replicas, that corresponds to the horizontal
axis. The blue and red arrow-heads correspond to full PIMD using 64 beads.

2.1.3 Combining MTS and RPC

MTS and RPC techniques can be combined fairly straightforwardly, and indeed, such a com-

bination was used already in early classical simulations based on ring-polymer contraction

[82]. The idea of accelerating quantum and classical calculations by combining multiple layers

evaluated at increasingly accurate levels of theory have been around for some time [111,112].

However, hitherto no attempt has been reported to use RPC (alone or in combination with

MTS) in the context of ab initio molecular dynamics, despite the fact that this is a scenario in

which obtaining an accurate estimate of nuclear quantum effects at a reduced computational

cost would be particularly desirable. This is largely due to the considerable implementa-

tion overhead connected with combining sophisticated techniques for efficiently solving the

electronic-structure problem and the cumbersome formalism that underlies PIMD and its

RPC and MTS extensions. We have presented an implementation of MTS and RPC in i-PI –

a python interface for advanced path integral simulation – that allows one to combine this

combination transparently with any software that computes interatomic energies and forces.
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2.1. Exploiting multiple time / length scales

2.1.4 Benchmarks on q-TIP4P/f water

As a test of our implementation, we first study liquid water at 300 K modelled using 216

molecules of q-TIP4P/f water at ambient density. The software LAMMPS was used to calculate

the interatomic potential; the short-ranged bonded terms (stretches and bends) were com-

puted on 32 replicas and integrated, with δt ′ = 0.25 fs, while the long ranged interactions

(dispersion and electrostatics) were estimated on a varying number of beads, and integrated

with a range of timesteps ∆t ′ to study the accuracy of RPC and MTS. As shown in Fig. 2.1, the

convergence of observables to quantum expectation values in a simulation of liquid water at

room temperature require a large number of replicas, of the order of P ≈ 30. However, this is

mostly due to the internal modes of each water molecule, that are well described by cheap

quasi-harmonic terms. The non-bonded dispersion and electrostatic interactions vary on

considerably larger length scales, and therefore a RPC scheme that computes the latter on

a reduced number of replicas converges very rapidly. A simple range-separation procedure

would allow one to reach convergence with a single evaluation of electrostatic interactions [113].

Here we want however just to verify to what extent one can push a MTS procedure, alone or in

combination with RPC, in a PIMD context.

Due to the presence of high-frequency normal modes in the free ring-polymer Hamiltonian

one would expect the first occurrence of resonances to appear already at a timestep of about

1fs for a path integral simulation with 32 replicas at 300K [114], much earlier than the≈2.7fs limit

that would be predicted due to the stretching mode frequency. Figure 2.2 shows that in this

particular case the PIMD simulation remains stable up to an outer step of about 2fs, even in a

weakly-thermostatted (white-noise Langevin, thermostat correlation time of 2 ps) PIMD simu-

lation. This rather puzzling finding can probably be ascribed to the exceedingly weak coupling

between the physical potential and the high-frequency normal modes of the ring polymer, and

does not necessarily apply to different systems with stronger anharmonicities. Here, increas-

ing the dynamical masses of high-frequency ring-polymer modes would delay only minimally

the resonance barrier, and would not be possible when using approximate quantum dynamics

techniques, such as centroid molecular dynamics (CMD) [115] and thermostatted ring polymer

molecular dynamics (TRPMD) [81,90], that involve specific prescriptions for the magnitude

of the dynamical masses. However, a similarly effective solution to deal with ring-polymer
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Figure 2.2 – Difference between quantum and classical expectation values of potential (top and
middle) and kinetic (top and bottom) energy per molecule for a simulation of q-TIP4P/f liquid
water at room temperature, as a function of the outer timestep. The bonded terms were com-
puted with a fixed inner timestep of 0.25 fs, and propagated just outside the free ring-polymer
part of the propagator. The non-bonded terms were computed less often, with a time interval
as indicated on the horizontal axis. The blue and red curves correspond, respectively, to kinetic
and potential energy. Solid curves correspond to 32 beads full PIMD simulation while dotted
and dashed curves to simulations in which the non-bonded terms were contracted to 4 and 8
beads respectively. The dot dashed curves in the top panel correspond to simulations using
a white noise Langevin thermostat with a time constant of 2 ps while the rest to simulations
using a PILE-G thermostat.

resonance barriers is to selectively thermalize the high-frequency vibrations [116]. Exploiting

the approximate knowledge of high-frequency ring polymer modes, one can here simply use

optimally-damped Langevin thermostats in the (ring-polymer) normal-modes representation,

as explained e.g. in Ref. [117]. As discussed in Ref. [118], however, some care must be paid to

minimize the effect of normal modes thermostatting on the dynamical properties of inter-

est. However, if one is merely interested in structural properties, an efficient thermostatting

scheme could be the one based on resonance free isokinetic schemes [119,120], which prevent

resonances by limiting the total energy that can be stored in each degree of freedom.

Figure 2.2 shows that the use of an optimally-damped path integral Langevin thermostat [117]
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Figure 2.3 – The velocity-velocity autocorrelation function from TRPMD [90] (λ= 0.5) runs for
q-TIP4P/F water at 300K. A reference run (timestep 0.25fs, 32 beads, shaded area) is compared
with a run with 8-beads RPC for the non-bonded interactions, and an outer MTS timestep
of 1fs (C8+M1, red continuous line), with a run with 1-bead RPC and 1fs MTS (C1+M1, blue
dashed line), and with a run with 8-beads RPC and 3fs MTS (C8+M3, green dot-dashed line).

does actually extend the stability of the method to outer timesteps well above the resonance

barrier for the stretches. In fact, the deviations that are observed for the mean potential energy

are due to the outer timestep becoming inappropriate to integrate the long-range force (which

is relatively quickly varying since we do not use any kind of range separation scheme). This

additional stabilization is probably due to the coupling between ring-polymer modes and

high-frequency centroid vibrations – which is also the cause for spectral broadening observed

in thermostatted RPMD. Dynamical properties appear to be less strongly affected than ther-

modynamic averages when RPC/MTS techniques are pushed to their limits. Figure 2.3 shows

the velocity-velocity autocorrelation function for liquid water computed with TRPMD, and

compare the results using full 32-beads PIMD and those obtained with RPC to 8 beads of the

non-bonded interactions, and MTS to 1fs outer. Using RPC down to the centroid, or using a 3fs

outer timestep, lead to minor deviations from the reference. In summary, these benchmarks

demonstrate the effectiveness of our implementation of combined RPC and MTS techniques

in i-PI, and show that with an appropriate thermostatting scheme one can push the stability

limit of MTS schemes beyond the resonance barrier of RPMD, for the calculation of both static

and dynamical properties (Fig. 2.2 and 2.3).
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Chapter 2. Accelerated path integral methods

2.1.5 MTS / RPC combined with electronic structure methods

Having briefly reviewed the main ideas, and demonstrated the stability of RPC+MTS PIMD, let

us move on to discuss a few aspects that are specific to a first principles context. To give a prac-

tical example, we simulated the quantum distributions of the Zundel cation at the MP2 level

of theory, using semi-local DFT as the short-ranged component, and the difference between

MP2 and DFT as the long-ranged component. While other choices are possible, this combi-

nation is really attractive, as it is general in nature, and the impact of the scheme can be very

significant. Indeed, as system size increases, MP2 and semi-local DFT display very different

computational costs, since traditional implementations scale as O(N 5) and O(N 3) respectively.

For example, three orders of magnitude time difference can be expected for samples of 64

water molecules [121]. The excellent scalability of the MP2 implementation [122,123] in CP2K [124],

nevertheless enables an acceptable time to solution. In the MP2+RPC context a large number

of cheap DFT calculations must be combined with the expensive MP2 calculations, and the

question of load balancing, avoiding idle processes as much as possible, imposes itself. As a

simple, yet efficient, solution to this problem, we over-subscribe compute nodes using two

processes per core. One process belongs to the P DFT tasks, while one process belongs to

the P ′ MP2 tasks and the contracted DFT tasks, which run at the same time as MP2. While

the MP2 tasks compute, the full-path DFT tasks are effectively sleeping, and vice versa. In

this way, idle resources are avoided, and only a small fraction of total wall time is spent in

the DFT part, which is naturally parallel over the beads, while the computation for each bead

is parallelised as well. If the contraction is pushed all the way to the centroid, the cost of

performing MP2+DFT with MTS+RPC is basically the same as the cost of doing standard MP2

MD.

The combination of MP2 with semi-local DFT employs the same computational setup as de-

scribed in Ref. [121]. In particular, this approach is based on the resolution of identity Gaussian

and Plane Waves (RI-GPW) which provides an efficient and scalable approach to perform

MP2 based MD in gas and condensed phases. [126,122,123,127] The Gaussian basis employed

for MP2 is of the correlation consistent triple zeta quality [126] and is parametrized for the

pseudopotentials employed. [128] The optimized density functional (ODF) discussed below

is of the GGA family, starting from the PBE1W [129] functional, for which the small basis and
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Simulation KH [meV] KO [meV] dOO [Å]
MP2 148.4(5) 58.9(4) 2.413(4)
PBE 143.1(5) 57.5(4) 2.445(4)
PBE+C 143.2(5) 58.5(3) 2.409(5)
PBE+C2+M 144.7(6) 58.3(4) 2.410(1)
ODF 148.9(5) 58.9(4) 2.416(3)
ODF+C 149.3(5) 59.6(4) 2.413(4)
ODF+C+M 149.7(3) 59.3(3) 2.410(3)
ODF+C+M2 149.4(4) 59.4(3) 2.412(5)
ODF+C+M+G 148.0(9) 59.4(5) 2.412(2)
HFX+C+M 155.3(7) 60.6(5) 2.411(3)

Table 2.1 – Expectation values of quantum kinetic energies per H and O atom, and for the
O-O distance, in a simulation of a gas-phase Zundel cation at 300K. All simulations were
performed using 32 beads and a base timestep of 0.25fs, except that using PIGLET (+G) that
used six replicas. PBE refers to use of the standard PBE generalized gradient approximation
(GGA) functional [125], ODF refers to a GGA optimized to MP2 [121], and HFX to Hartree-Fock.
Ring-polymer contraction was used to reduce the cost by computing the MP2 forces on the
centroid only (+C), or on two beads (+C2). A multiple timestep algorithm was also employed
to evaluate such force only once every 1fs (+M) or 2fs (+M2). All simulations were run for 10ps,
including 1ps for equilibration. Statistical errors on the last digit are reported in parentheses.

van der Waals D3 parameters [130] have been specifically refitted in order to reproduce the

energetics of bulk liquid water. [121]

Results for the mean kinetic energy of hydrogen and oxygen atoms, and the mean O-O dis-

tance, for different simulations, are reported in Table 2.1. The table caption summarizes the

details of the simulations. The standard PBE functional underestimates the H kinetic energy

with single-bead contraction, improving as expected with a contraction to two beads. This

indicates that PBE differs too much from the reference, requiring a considerable increase in the

number of MP2 replicas. Also Hartree-Fock is not very accurate, this time predicting a too large

value of the H kinetic energy, despite the RPC correction. This suggests that the MTS strategy

proposed in Ref. [131], which combines HFX and MP2, cannot be used universally for RPC, at

least not without a large number of correction beads. Hybrid functionals, which mix GGA

exchange with Hartree-Fock exchange, will likely provide a suitable intermediate potential

energy surface. However, as a computationally less demanding, but less universal alternative,

an optimized semi-local DFT (ODF) shows excellent performance. The results reported in

39



Chapter 2. Accelerated path integral methods

ODF+C+M2.3
2.4
2.5

ODF+C2.3
2.4
2.5

ODF2.3
2.4
2.5

PBE+C2.3
2.4
2.5

PBE2.3
2.4
2.5

MP2 MD

-0.5 0 0.5
ν [Å]

2.3
2.4
2.5

0 2 4 6 8 10
P(ν,dOO)

-2 -1 0 1 2
P-PMP2

[Å]

dOO

Figure 2.4 – Joint probability distribution for the proton transfer coordinate and the O-O
distance in the gas-phase Zundel cation at 300K, modeled with nuclear quantum effects and
different electronic structure methods (left panels). Right-hand panels show the difference
with respect to the MP2 reference. The bottom-right panel shows the difference between a
classical MP2 MD simulation and the (quantum) MP2 reference.
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Table 2.1 are within the statistical error bars from the MP2 reference already without any RPC

correction, and as a consequence it is not possible to detect statistically significant effects on

these averages due to RPC and/or MTS. However, also in this case the RPC correction does

have a noticeable effect. This is shown in Figure 2.4 using the joint probability distribution of

the O-O distance and the proton transfer coordinate. The difference between the MP2 and the

ODF+C is almost zero and smaller than ODF only. The remaining error is largely due to the

statistical uncertainty in the probability distributions, which is relatively costly to reduce for

the reference MP2 simulation that employs 32 MP2 beads.

Let us finally note that RPC and MTS methods can be seamlessly combined with other strate-

gies to reduce the cost of a PIMD calculation: as demonstrated in Table 2.1, the use of a

colored-noise PIGLET thermostat [132] makes it possible to reduce the number of baseline

beads to six, that would be advantageous in cases where the cost of the GGA calculations is not

negligible. The implementation we have introduced in i-PI to perform these calculations is

completely general, and multiple levels of MTS and RPC can be easily combined if one wanted

to reach the ultimate level of cost/accuracy optimization.
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Figure 2.5 – Fourier-transform of the potential-potential correlation function for different
RPC simulations. The curve for MP2 (in grey) is taken as a reference; being evaluated on
32 replicas, it also contains the high-frequency non-centroid modes of the ring polymer.
The other two curves correspond to the correction potential (MP2 minus GGA) evaluated
on the centroid for the HFX (green), PBE (blue) and optimized DFT (red) simulations. The
horizontal scale indicates the period of different vibrational modes, for ease of reference. Since
these simulations were heavily thermostatted for sampling and stability, the spectrum has
no physical meaning, and is just a tool to assess the time scales that are relevant for different
potential components.
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A simple way to assess the viability of accelerating a simulation by means of RPC and/or

MTS is to verify the magnitude and time scale for the variation of the correction poten-

tial. Fig. 2.5 shows the Fourier transform of the correction potential correlation function

〈V short(t )V short(0)〉. Clearly, the difference between MP2 and HFX contains strong high-

frequency components, which would require a high number of beads in the contracted V short.

Using the PBE GGA shows only a marginal advantage, as the spectrum still has a pronounced

peak at the stretching frequencies. On the contrary, the ODF exhibits a smaller difference, and

in particular a density of states smaller by an order of magnitude for the stretching region

- which explains the excellent performance in reproducing quantum kinetic energies even

without RPC.

2.2 High-order path integrals

In standard (second-order) path integral schemes, an approximate factorization of the high-

temperature Boltzmann operator is introduced, that leads to an error that decreases as O (1/P 2).

High-order techniques use an alternative splitting of the Boltzmann operator [133,94], leading

to an alternative ring polymer Hamiltonian with a faster, O (1/P 4) convergence to the exact

quantum limit. This makes it possible to reduce the number of replicas and hence the compu-

tational cost. [134] While many high-order schemes exist [133,135], here we focus on the specific

case [2] of a fourth-order Suzuki-Chin (SC) splitting

Z
(
N ,V ,β

)= Tr
[

exp
(−βP Ĥ

)P
]

= Tr
[
exp

(−βP V̂e /3
)

exp
(−βP T̂

)
exp

(−4βP V̂e /3
)

exp
(−βP T̂

)
exp

(−βP V̂e /3
) P

2

]
+O

(
P−4) ,

(2.4)

where V̂e = V̂ + α
6β

2
P [V̂ , [T̂ ,V̂ ]], V̂o = V̂ + 1−α

12 β2
P [V̂ , [T̂ ,V̂ ]] and α ∈ [0,1] is a dimensionless

parameter that can be adjusted to improve the convergence for a given problem. It seems,

however, that no generally-applicable prescription for its choice can be obtained. In the

present study, for reasons that will become apparent later on, we always used α = 0. We

proceed as we did in the case of second-ordered PIMD, and compute the trace in Eq. 2.4 in the

position basis
∣∣q( j )

〉
and insert P −1 completeness of identities I= ∫

dq( j )
∣∣q( j )

〈
q( j )

∣∣〉 between

42



2.2. High-order path integrals

the potential (V̂�) and kinetic energy operators. It is easy to show that for α= 0, the fourth

ordered canonical partition function reads

Z (4)
P

(
N ,V ,β

)= (
1

2π~

)3N P ∫
d{p( j )} d{q( j )} exp

(
−βP H (4)

P

(
{p( j )}{q( j )}

))
, (2.5)

the classical canonical partition function of the fourth-ordered ring-polymer Hamiltonian

H (4)
P

(
{p( j )}, {q( j )}

)
=

P∑
j=1

[
N∑

i=1

1

2
m−1

i |p( j )
i |2 +

N∑
i=1

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2
]
+

P/2∑
j=1

[
2

3
V

(
q(2 j−1),h

)
+ 4

3
V

(
q(2 j ),h

)
+ 1

9
Ṽ

(
q(2 j ),h

)]
.

(2.6)

Note that the odd and even replicas feel the physical potential V
(
q( j ),h

)
scaled by factors of

2/3 and 4/3 respectively and that the high-order term Ṽ
(
q( j ),h

) = ω−2
P

∑N
i=1 m−1

i |f( j )
i |2, that

depends on the modulus of the force only acts on the even replicas.

The thermodynamic average of any position dependent observable Â can either be estimated

as 〈A(q)〉(4)
P = Z (4)

P

(
N ,V ,β

)−1 Tr
[
exp

(−βĤ
)

Â
]

, or by deriving the partition function as in

Eq. 1.7. The former are called operators (OP) estimators, while the latter are referred to as

thermodynamic (TD)estimators. The OP estimator of Â

〈A(q)〉OP (4)
P = Z (4)

P

(
N ,V ,β

)−1
∫

d{p( j )} d{q( j )}[
2

P

P/2∑
j=1

A
(
q(2 j−1)

)]
exp

(
−βP H (4)

P

(
{p( j )}, {q( j )}

)) (2.7)

only depends on the instantaneous average of the observable over odd replicas. The thermo-

dynamic estimators of observables are generally much more complex and in general require

ad hoc expressions that depend on higher derivatives of the potential (arising trivially from

the partition function).

2.2.1 Challenges associated with high-order path integrals

The difficulty in applying high-order schemes can be understood by considering the fact that

the force and virial contain derivatives of Ṽ with respect to the atomic positions and the cell
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parameters,

f̃( j )
i ≡−∂Ṽ

(
q( j ),h

)
∂q( j )

, Ξ̃( j ) ≡ dṼ
(
q( j )),h

)
dh hT . (2.8)

Given that Ṽ
(
q( j ),h

)
already contains first-order derivatives of the physical potential, the com-

putation of the forces and the virial, required to sample the canonical and isothermal-isobaric

ensembles by means of path integral dynamics, also demands the calculation of high-order

derivatives of the potential, which is often cumbersome and computationally prohibitive.

Much of the work on the practical implementation of high-order path integrals has therefore

focused on avoiding the calculation of these terms, by sampling the standard path integral

Hamiltonian and introducing fourth-order statistics by re-weighting [134,95]. Unfortunately,

re-weighting schemes have poor statistical performance for large systems [134,136], so the appli-

cation of the SC scheme has until now been limited to small systems and to constant-volume

sampling. An alternative way of estimating high-order observables is by using perturbation

theory [137], which can be perceived as a truncated cumulant expansion of the ratio of second

and fourth-order partition functions. Although this scheme remains efficient, it requires

complicated ad hoc estimators for computing thermodynamic averages.

2.2.2 Estimating high-order forces and virials

One should notice, however, that the expression for f̃ involves the second derivative of V

projected on the mass-scaled force. As it has been recognized in the context of high-order path

integral Monte Carlo [138,139], and similarly to what has been done for instance in electronic

structure theory [140], it is possible to evaluate this kind of projected second derivatives by

finite differences (FD),

f̃(2 j )
i =ω−2

P m−1 ∂

∂q(2 j )
i

|f(2 j )
i |2 =−2ω−2

P lim
ε→0

1

εδ

(
f(2 j )

i

∣∣∣
q(2 j )

i +εδ(2 j )u(2 j )
i

− f(2 j )
i

)
, (2.9)

where u(2 j )
i = f(2 j )

i /mi and δ(2 j ) =
[

(3N P )−1 ∑N
i=1 u(2 j )

i ·u(2 j )
]− 1

2
is a normalization factor, so

that ε represents the root mean square displacement applied to each atom. This avoids the

explicit calculation of the Hessian and allows for the direct sampling of the Suzuki-Chin

canonical ensemble. Following a similar strategy , we show that the high-order component of
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the virial can be estimated as:

Ξ̃(2 j ) =
− N∑

i=1
q(2 j )

i ⊗ f̃(2 j )
i +

∂Ṽ
(
q(2 j )

i ,h
)

∂h hT


=−2ω−2

P

[
N∑

i=1
f(2 j )

i ⊗ f(2 j )
i /mi + lim

ε→0

1

εδ(2 j )

(
Ξ(2 j )

∣∣∣
q(2 j )+εδ(2 j )u(2 j )

−Ξ(2 j )
)]

.

(2.10)

These expression can be used seamlessly to propagate the equations of motion and to evaluate

the estimators for thermodynamic and structural properties. The crucial aspect that makes

this procedure viable is that the derivative yields a rigorously time-reversible and symplectic

integrator, when combined with a velocity-Verlet integrator. As a result, the scheme is stable

even for relatively large values of the finite-difference step, which is advantageous e.g. when

evaluating the forces in ab initio calculations, where residual errors in the convergence of the

self-consistent solution to the electronic structure problem inevitably lead to noisy forces.

2.2.3 MTS integrators for high-order path integrals

Note that using the finite difference estimators, the SC scheme is a factor of 1.5 more expensive

than standard PIMD. This relatively small overhead can be reduced even further by using a

MTS integrator for the high-order forces and virials. We note that the prefactor of f̃( j ) and Ξ( j )

is ω2
P , which for realistic values of P , leads to small and slowly varying forces and virials. The

time propagator for the fourth-order Hamiltonian over the timestep ∆t ′ can be written as

exp
(
i LSCPI-LE∆t ′

)= exp
(
i LPI-LE

γ ∆t ′
)

exp
(
i L̃SCPI

p ∆t ′
)

[
exp

(
i LSCPI

p δt ′
)

exp
(
i LPI

q δt ′
)

exp
(
i LSCPI

p δt ′
)]M

exp
(
i L̃SCPI

p ∆t ′
)

exp
(
i LPI-LE

γ ∆t ′
)

,

(2.11)

which implies the thermostat step, followed by the update of the momenta using the high-

order forces for half the outer timestep p( j ) → p( j )+ f̃( j )∆t ′/2, followed by velocity-Verlet for the

pseudo second-ordered Hamiltonian with the potential scaled by weighs 2/3 and 4/3 for the

odd and even replicas, respectively, for M =∆t ′/δt ′ steps using a small timestep δt ′, followed

by the update of the momenta using the high-ordered forces for half the outer timestep,

concluded by the thermostat step. In the context of constant pressure simulations, MTS can
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be implemented by using the propagator

exp
(
i LSCPI-BZP∆t ′

)= exp
(
i LPI-BZP

γ ∆t ′
)

exp
(
i L̃SCPI-BZP

p,α ∆t ′
)

[
exp

(
i LSCPI-BZP

p,α δt ′
)

exp

((
P∑

j=2
i LPI

p,q j + i LPI-BZP
p,q,V

)
δt ′

)

exp
(
i LSCPI-BZP

p,α δt ′
)]M

exp
(
i L̃SCPI-BZP

p,α ∆t ′
)

exp
(
i LPI-BZP

γ ∆t ′
)

,

(2.12)

where exp
(
i L̃SCPI-BZP

p,α ∆t ′
)

implies

α→α+ (
∆t ′/2

)[
3V

(
P̃ int

P −P ext
P

)]
pi∼

( j ) → pi∼
( j ) + f̃i∼

( j )
∆t ′/2,

(2.13)

with P̃ int
P = 1

3V Tr
[
−∑P

j=1

∑N
i=1

(
q( j )

i − q̄i

)
⊗ f̃( j )

i −∑P
j=1 Ξ̃

( j )
]

the high-order component of the

pressure, and exp
(
i LSCPI-BZP

p,α ∆t ′
)

corresponds to

α→α+ (
δt ′/2

)[
3V

(
P int

P −P ext
P

)+β−1
P

]
+ (
δt ′/2

)2
N∑

i=1
m−1

i pi∼
(1) · fi∼

(1) + 1

3

(
δt ′/2

)3
N∑

i=1
m−1

i fi∼
(1) · fi∼

(1),

pi∼
( j ) → pi∼

( j ) + fi∼
jδt ′/2,

(2.14)

such that P int
P and fi∼

( j ) are respectively the pressure and forces associated with the pseudo

second-ordered Hamiltonian with the potential scaled by factors of 2/3 and 4/3 for the even

and odd replicas, respectively.

The MTS scheme reduces the cost of the SC scheme to 1+ 1
2M times that of standard PIMD,

leading to a negligible overhead for realistic values of M = 4,8. This makes the SC scheme

already advantageous at room temperature, and its lead substantial for low-temperature or

high-accuracy studies. A similar scheme can be easily derived in the context of other high-

order factorizations such as that introduced by Takahashi and Imada [133]. It is also possible to

implement perturbed path estimators [135] on top of a full fourth-order path integral Hamil-

tonian, providing even faster convergence to quantum expectation values. Finally, further

dramatic speed-ups can be obtained whenever one can apply range-separation techniques

such as ring-polymer contraction [91], since we have made sure that our implementation in

46



2.2. High-order path integrals

i-PI [141] is fully compatible with that of conventional real and imaginary-time multiple time

stepping [142].

2.2.4 A GLE thermostat for high-order path integrals

Having access to direct sampling of the SC Hamiltonian opens up the possibility of combining

high-order path integrals with a generalized Langevin equation acceleration. In the Trot-

ter case, the normal mode (NM) eigenvectors of the Hamiltonian for a harmonic potential

V (q) = mω2q2/2 do not depend on the frequency ω itself, that only leads to a shift to the NM

frequencies. This makes it possible to apply sophisticated thermostatting strategies, with

different GLEs applied to individual NM coordinates – all without the need of knowing the

NM decomposition of the physical potential [132]. Unfortunately, this is not the case for the

Suzuki-Chin Hamiltonian. However, since the NM transformation remains an orthogonal

transformation, it is possible to apply a single GLE to all Cartesian (or Trotter NM) coordinates

which gives the same effect as applying such GLE onto the proper SC NMs.

In the harmonic limit, for a physical potential of frequency ω, the frequencies ωk (ω), and the

eigenvectors u(k)(ω) of the SC Hamiltonian can be obtained by diagonalizing the dynamical

matrix D j j ′ , that reads

D j j ′ =



2ω2
P + 2

3ω
2 j = j ′ ∈ Odd

2ω2
P + 4

3ω
2
(
1+ 1

6

(
ω
ωP

)2
)

j = j ′ ∈ Even

−ω2
P j = j ′±1

0 otherwise

where the cyclic boundary conditions j +P ≡ j are implied. A further complication stems from

the fact that the estimator for the fluctuations of q is not just an average over the coordinates

of all beads. In fact, one has to choose whether to design the GLE so as to speed up the

convergence of either the TD or the OP estimator for 〈q2〉. Given its simplicity, and the direct

connection with all structural observables, we opted for the latter choice, that gives

〈q2〉 = 2

P

∑
j∈odd

〈
[

q ( j )
]2〉 = 1

P

∑
k

Uk 〈
[

q̃ (k)
]2〉 (2.15)
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where Uk = 2
∑

j∈odd

∣∣∣u(k)
j

∣∣∣2
gives the weight of the k-th mode on the displacement of the even

beads.

The design of the effective-temperature curve T?(ω) can then proceed in a similar way to what

was done in Refs. [143,132]: considering that for a classical oscillator 〈q2〉 = 1
mβω2 one can write

the functional equation

~
2ωkB

coth
~ωβ

2
= 1

P

∑
k

Uk (ω)
T?(ωk (ω))

ωk (ω)2 . (2.16)

Here we made explicit the dependence of the eigenvector coefficients and of the normal modes

frequencies on the physical frequency of the underlying potential. Solution of Eq. (2.16) can

be obtained by singling out the lowest-lying NM, obtaining the iteration

T?(ω0) =ω
2
0

U0

[
P~

2ω(ω0)kB
coth

~ω(ω0)β

2
− ∑

k>0
Uk (ω0)

T?(ωk (ω0))

ωk (ω0)2

]
(2.17)

that can be made to converge with an appropriate mixing scheme [143] and with the starting

condition

T?(ω0) = ~ω0p
6kB

coth

(
β~ω0p

6P

)
(2.18)

Yet another complication associated with using a GLE in connection with SC path integrals is

that the lowest normal-mode frequency is not equal to the physical frequency, as in Trotter

PIMD. For this reason, one needs to invert the ω0(ω) relation to find what is the physical

frequency that corresponds to the argument of T? we are solving for. In a similar way, one can

then obtain the frequencies of the higher NMs as a function of the lower frequency ω0, which

eventually makes it possible to solve numerically the iteration in Eq. 2.17. In fact, it is possible

to give a closed (albeit cumbersome) expression for such inverse relation [144]

ω(ω0) =22/3 A2/3 + 3
p

A
(
4x2

0 −6P 2
)+4 3

p
2x2

0

(
3P 2 +2x2

0

)
8β~ 3

p
A

A =27P 6 −72P 2x4
0 +16x6

0 +3
[
81P 12 −432P 8x4

0 +384P 4x8
0 −384P 2x10

0

]1/2

x0 =β~ω0.

(2.19)
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This thermostatting scheme enforces different fluctuations on different ring-polymer vibra-

tions so as to obtain converged quantum expectation values for any OP-method estimator of

position-dependent properties in the harmonic limit, and for any number of beads. Contrary

to the Trotter case, where one can further tune ring-polymer fluctuations to accelerate the

convergence of the centroid-virial kinetic energy estimator, this is not possible here, so we

can expect that the convergence of the quantum kinetic energy will be less efficient than

with the PIGLET approach [132]. GLE parameters enforcing the desired temperature curve for

this Suzuki-Chin GLE (SC+GLE) approach have been obtained following the fitting protocol

discussed in Ref. [145], and are available for download from an on-line repository [146].

2.2.5 Benchmarks on water using a dissociable potential

For a comprehensive benchmark study of the methods discussed in the previous section we

will use simulations of water, a prototypical system for the investigation of nuclear quantum

effects. For this purpose we use a neural network (NN) potential fitted to ab initio calculations

performed with the B3LYP hybrid density functional [147] and the D3 dispersion corrections by

Grimme [148], as implemented in CP2K [149]. The potential is fully reactive, i.e. it allows for the

possibility of bond breaking and formation, and has recently been shown to provide an excel-

lent description of nuclear quantum effects in water, as probed by isotope fractionation and

the nuclear quantum kinetic energy [150], at the same time allowing us to obtain thorough sam-

pling. The potential was evaluated using a NN implementation [151] for LAMMPS [152]. Unless

otherwise specified, each result we report involved a trajectory of at least 200 ps for a supercell

containing 128 molecules at the experimental density. We enforced constant-temperature

sampling at T = 300 K using a PILE scheme [117] with γk =ωk /2, and a weak, global thermostat

on the centroid – so that effectively canonical-sampling runs correspond to the thermostat-

ted ring-polymer molecular dynamics (TRPMD) protocol [90] suitable to discuss quantum

dynamical properties. In order to probe the behavior of our approach in a lower-temperature

regime, we also performed simulations of a 96-molecules box of hexagonal ice at T = 100 K.

For colored-noise simulations we used the PIGLET thermostat [132] for Trotter PI, and the

SC+GLE strategy discussed above for SC PIMD. These calculations will be a challenging test

case for our techniques, because the reactive nature of the NN potential allows for quantum
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fluctuations of the hydrogen bond probing the strongly anharmonic regions in the potential

energy surface of water [58].
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Figure 2.6 – Expectation values of the quantum contributions per molecule to the potential
energy V as well as to the kinetic energy T , as a function of the finite-difference displacement
ε, for a SC-PIMD simulation of liquid water at 300 K performed with 16 beads. The two
sets of points correspond to the symmetric (blue) and the asymmetric (red) finite-difference
integrators. Error bars indicate the statistical error, which is of the order of 1% for the potential
and of the order of 0.1% for the kinetic energy. The superscript “cl” indicates the classical
component. Note that given the definition of the displacement vector u, the finite-difference
step ε indicates the root-mean-squared displacement of an atom during the evaluation of the
derivative.

Stability of the finite-difference scheme

A possible problem that one has to be aware of when using force evaluation schemes based on

discrete approximations of the derivatives is that in many cases – most notably for ab initio

simulations – imperfect convergence of self-consistency schemes can introduce numerical

noise. In particular, when using a small displacement in a finite difference scheme, the signal-

to-noise ratio degrades, which can lead to instabilities in the integration of the equations of

motion. Therefore it is important to test how sensitive are the results to the specific value of

the atomic displacement. Figure 2.6 shows that the SC integrators we introduce here, due to

their time-reversibility and symplectic properties, show exceptionally good stability, with no

appreciable effect of the root mean squared atomic displacement on the quantum expectation

values of the potential and kinetic energies for ε. 0.1Å.
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Figure 2.7 – Error per molecule on the value of the potential energy V as well as the kinetic
energy T , as a function of the number of beads P , for a simulation of liquid water at 300 K
performed with second and fourth-order PIMD, and with the corresponding colored-noise
methods, namely PIGLET (second-order) and SC+GLE (fourth-order). We only report here
the OP-method estimators. The fully-converged value is taken to be SC PIMD with P = 48,
and errors are plotted on a log-log scale to highlight the faster convergence of fourth-order
methods.

Convergence of energy estimators

The most straightforward measure for the convergence of a PIMD method to the quantum

limit is given by the potential and kinetic energy estimators. Figure 2.7 shows such conver-

gence tests, comparing Trotter and SC path integrals with and without colored noise. Results

are in line with the expectations. Fourth-order PIMD gives a much improved asymptotic

convergence, without the statistical instabilities observed in re-weighting strategies [136] and

giving with P = 16 results that are superior to Trotter PI with P = 32. The number of evalua-

tion of f̃( j )
i can be reduced with a MTS scheme. Even by computing the SC force as often as

every M = 2 steps, it can be clearly seen that also at room temperature our finite-differences

implementation of high-order path integrals provides higher accuracy at a smaller cost than

Trotter PIMD. As shown in figure 2.8, the improvement becomes even more significant as the

temperature is lowered. In a simulation of hexagonal ice at T = 100K , SC PIMD reaches an

error of a few meV per molecule when P = 48. When using Trotter PIMD, one would need to

use more than 128 beads to obtain a similar accuracy.

GLEs improve significantly the convergence of both standard and fourth-order PIMD, giving

potential energies that are within a few percent of the converged results with as few as 4-6 beads
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Figure 2.8 – Error per molecule on the value of the potential energy V as well as the kinetic
energy T , as a function of the number of beads P , for a simulation of ice at 100 K performed
with second and fourth-order PIMD, and with the corresponding colored-noise methods,
namely PIGLET (second-order) and SC+GLE (fourth-order). We only report here the OP-
method estimators. The fully-converged value is taken to be SC PIMD with P = 128, and errors
are plotted on a log-log scale to highlight the faster convergence of fourth-order methods.

for water, and 16-24 beads for ice. Although the GLE-thermostatted results are better than the

canonically sampled PI simulations for all values of P , we observe that the convergence of GLE

techniques is non-monotonic, similar to what was observed in simulations of small molecules

at ultra-low temperature [153]. It appears that the convergence of SC+GLE is not better than

that obtained by PIGLET, which underscores the fact that the limiting factor for convergence

of GLE schemes has more to do with zero-point energy leakage between different modes than

with the asymptotic convergence of the PI section of the method. SC+GLE results are more

sensitive to the coupling strength of the colored noise than in the case of PIGLET, probably

due to the more complex form of the full path integral Hessian in the harmonic limit.

Although the possibility of combining high-order path integrals with correlated noise sampling

might be beneficial in some specific cases – for instance when computing structural properties

at ultra-low temperature – it seems that the best course of action should be to use PIGLET

whenever an accuracy of a few percent is sufficient, and resort to SC PIMD with conventional

thermostatting whenever one wants (a) to reach the ultimate level of convergence, (b) to use

sampling techniques (e.g. replica exchange) for which it is necessary to have a well-defined

functional form for the phase-space density, or (c) to compute complicated estimators whose

convergence is not accelerated by GLEs.
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Figure 2.9 – The top panels show the radial distribution functions for O-O (left), O-H (center),
and H-H (right) for the classical simulations along with some characteristic points whose
convergence as a function of the number of replicas P is plotted in the four lower panels for
each case. The red arrows show the corresponding values for a purely classical simulation.
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Radial distribution functions

The radial pair correlation functions g (r ) represent the most frequently used indicators of the

structure of water. Figure 2.9 shows the convergence of a few key features in the O-O, O-H

and H-H correlation functions. As it has already been noted [154], for Trotter PIMD there is

an interesting non-monotonic convergence behavior of the gOO distribution function, that

gets less structured when going from classical to 2 and 4 beads, and then becomes more

structured when it approaches convergence. Such a trend can be seen as a manifestation of

the competition between quantum effects in different vibrational modes, that progressively

converge as the number of replicas is increased. Overall, the convergence of the radial dis-

tribution functions with P is fully consistent with what is observed for the energy estimators.

The more strongly quantized degrees of freedom – such as the O-H stretch – show the slowest

convergence, and the most dramatic improvements with SC path integrals and colored-noise

techniques. GLE methods give very good agreement with 6-8 beads, but if a very high accuracy

is required – as it is often needed in case of radial distribution functions, for which changes in

the peak shapes of a few percent can be significant – SC PIMD with 16 beads gives the best

performance/cost ratio.

2ndorder PIMD
4thorder PIMD
PIGLET
SC+GLE

2 4 8 16 32 64

P

10-4

10-3

10-2

p
(ν
=

0
)/

p
(m

a
x
)

Figure 2.10 – Relative probability for observing proton delocalization over a H-bond. p(ν)
is the probability density relative to the proton-transfer coordinate ν, and the plot reports
the ratio between p(0) and the most likely H-bond configuration p(max), as a function of the
number of replicas P . Note the the convergence is slower than for the energy in Fig. 2.7.
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H-bond fluctuations

One of the most remarkable effects of quantum fluctuations in room-temperature water is the

occurrence of transient self-dissociation events, in which a quantum fluctuation momentarily

brings a proton closer to the acceptor oxygen atom than to the oxygen it is covalently bound

to [58]. The extent of these fluctuations is a particularly challenging quantity to compute,

because of the small fraction of particles that undergo such broad excursions at any given time,

the strong anharmonicity of the potential in this region, and the dependence on the level of

electronic structure theory [155]. Figure 2.10 shows the probability of having a proton mid-way

between the donor and acceptor oxygen relative to the probability of the most common value

of the proton transfer coordinate ν. The convergence is very slow for all methods, with the

exception of SC PIMD - although for P ≤ 4 fourth-order methods give dramatic over-estimation

of these fluctuations. Colored-noise methods do accelerate convergence, but tend to yield

too high fluctuations. For P = 6, PIMD would underestimate the fluctuations by a factor of 5,

whereas PIGLET provides a too high value by a factor of 2. SC+GLE improves the convergence

relative to PIGLET – an advantage that is however less significant when one considers the

increase in computational cost. Even when predicting strongly anharmonic fluctuations, GLE

techniques make it possible to reach semi-quantitative accuracy quickly, and fourth-order

path integrals are useful to reach full convergence in the asymptotic regime.

Vibrational density of states

This far we have focused exclusively on static, time-independent properties. The path in-

tegral formalism is of a statistical mechanical nature, and strictly speaking no dynamical

observable can be inferred. That said, several methods inspired by PIMD (such as centroid

molecular dynamics, CMD [156,115] and ring polymer molecular dynamics, RPMD [81,157]) have

been proposed to approximately estimate diffusion coefficients, vibrational spectra and other

time-dependent quantities. For these benchmarks we will focus on thermostatted RPMD

(TRPMD) [90], a simple approach that can be seen as combining elements of CMD and RPMD,

alleviating some of their most severe artifacts [158], at the price however of a broadening of

high-frequency peaks [118]. The idea is just to attach a Langevin thermostat to ring-polymer

modes, with a damping coefficient adjusted to be proportional to the frequency of the mode
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Figure 2.11 – Vibrational densities of states (Fourier-transforms of the velocity-velocity cor-
relation functions) for TRPMD simulations of liquid water at 300 K, using a second-order
Hamiltonian (lower panel) and a fourth-order Hamiltonian (upper panel). Simulations with
P = 4,16,32 (green, blue, red) are compared with a fully-converged Trotter TRPMD simulation
(gray, shaded).

in the free-particle limit. For V = 0 there is no difference between the second and fourth-

orderHamiltonians, and consequently the TRPMD approach can be applied in exactly the

same way to a fourth-order simulation.

Generally, one performs (T)RPMD using a number of replicas that is sufficient to converge

satisfactorily the static properties to their quantum values. In Figure 2.11 we investigate the

convergence of the vibrational density of states (velocity-velocity correlation spectrum) of

water with increasing numbers of replicas. Interestingly, the cv v (ω) converges faster than

structural properties. When using H tr
P , P = 16 is sufficient to obtain a vibrational spectrum

that is indistinguishable from the fully-converged limit. On the other hand, convergence

for H sc
P is dramatically slowed down. This is consistent with what observed in Ref. [95] for

a harmonic potential and the closely-related case of Takahashi-Imada path integrals: the

physical vibration is shifted to higher values, and the discrepancy decays slowly, as 1/P 2.

Even at P = 32 one can observe a significant blue shift and broadening of the OH stretch

peak relative to fully converged Trotter TRPMD. Although TRPMD based on fourth-order

path integrals eventually converges to the same spectrum as conventional Trotter TRPMD, it
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2.2. High-order path integrals

does so very slowly, and so there is no advantage in applying fourth-order factorizations to

approximate quantum dynamics. The SC scheme could however be used to accelerate the

convergence of the mean field centroid force in the case of fully adiabatic centroid molecular

dynamics. [134]
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3 Efficient calculation of complicated

observables

3.1 Heat capacity

The heat capacity, i.e., the amount of energy required to increase a material’s temperature

is a fundamental thermodynamic property. It is used to monitor phase transitions [159], to

calculate heat exchange during thermodynamic cycles [160], and as a starting point for many

models used to understand gas adsorption [161]. The heat capacity is affected significantly

by the quantum nature of nuclei, as it is a measure of the change in the population of the

quantized energy levels of a system. For instance, the constant volume heat capacity (Cv ) of

an ideal crystal, described by the Debye model deviates significantly from its classical Dulong-

Petit limit at low temperatures. The calculation of the quantum heat capacity for general

anharmonic systems requires path integral molecular dynamics simulations [138,162,163,92].

Since the number of replicas required to converge the heat capacity is generally much higher

than that required to converge the energy [92], path integral heat capacity calculations for

The following chapter is partially based on the journal articles:

1. V. Kapil, J. Wieme, S. Vandenbrande, A. Lamaire, V. Van Speybroeck, and M. Ceriotti, “Modeling the Structural
and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic
Fluctuations,” Journal of Chemical Theory and Computation, vol. 15, pp. 3237–3249, May 2019. VK was
involved in the design of the research, in the development and implementation of the method, in running
some of the calculations, in performing analysis and in the writing of the manuscript.

2. V. Kapil, A. Cuzzocrea, and M. Ceriotti, “Anisotropy of the Proton Momentum Distribution in Water,” The
Journal of Physical Chemistry B, vol. 122, pp. 6048–6054, June 2018. VK was involved in the design of
the research, in the development and implementation of the method, in running the calculations, in
performing analysis and in the writing of the manuscript.
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most molecular systems containing hydrogen are generally considered expensive at moderate

temperatures, and prohibitive at low temperature. More so, naive heat capacity estimators

have poor statistical properties, and therefore require long simulations [162]. It is therefore

essential to develop methodologies for efficient computation of the heat capacity. Here, we

derive low variance constant volume and constant pressure heat capacity estimators, and

demonstrate their improved performance with respect to existing estimators.

3.1.1 Estimators of heat capacity using standard PIMD

The most naive way of estimating the internal energy is by averaging the primitive estimator

E PR = 3N P

2β
− 1

P

P∑
j=1

N∑
i=1

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2 + 1

P

P∑
j=1

V (q( j ),h), (3.1)

which is obtained by taking the derivative of the partition function with respect to β. This

estimator, however, is inefficient as it’s variance depends linearly on P , meaning that length

of simulation required to converge its average increases linearly with P . An efficient way of

computing the internal energy, such that the variance of the estimator only depends weakly

on P , is using the virial theorem, which replaces the spring term by an inner product between

the positions and the forces. The resulting centroid-virial estimator [164] has the form

E CV = 3N

2β
+ 1

P

P∑
j=1

(
q( j ) − q̄

)
· f( j ) + 1

P

P∑
j=1

V (q( j ),h), (3.2)

where q̄ is the centroid of the beads. Direct temperature derivative of the internal energy

estimators, leads to primitive and centroid virial heat capacity estimators [162]

〈C�V 〉(2)
P = kBβ

2

[
〈E�E PR〉(2)

P −〈E�〉(2)
P 〈E PR〉(2)

P −〈∂E�

∂β
〉

(2)

P

]
(3.3)

where�= TR,PR. Due the presence of the spring term in E PR, the variance of these estimators

unfortunately also depends explicitly on P , rendering their computation inefficient for realistic

values of P. As in the case of internal energy, it is useful to use the virial theorem, and derive
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3.1. Heat capacity

the so called “double-centroid-virial" estimator [162]

〈C DCV
V 〉(2)

P = kBβ
2
[
〈E CVE CV〉(2)

P −〈E CV〉(2)
P 〈E CV〉(2)

P +〈E ′〉(2)
P

]
(3.4)

where

E ′ = 3N

2β2 + 1

2Pβ

[
3

2

P∑
j=1

(
q( j ) − q̄

)
· f( j ) − 1

2

P∑
j=1

(
q( j ) − q̄

) ∂2V (q( j ),h)

∂q( j ) 2

(
q( j ) − q̄

)]
(3.5)

The direct evaluation of the E ′ term is complicated by the presence of terms that depend

explicitly on the Hessian of the potential. A practical way of estimating E ′, as prescribed by

Yamomoto [165], is through the temperature derivative

E ′ = 3N

2β2 − 1

P

P∑
j=1

∂2

∂β′2

[
β′V (q̄ +

√
β′

β

(
q( j ) − q̄

)
,h)

]
β′=β

(3.6)

where the second derivative is estimated using the centered finite difference formula ∂2 f
∂x2 ≈

1
δx2

[
f (x +δx)+ f (x −δx)−2 f (x)

]
. The methodology proposed by Yamamoto therefore re-

quires 2P additional force evaluation at positions q +
√

β′
β

(
q( j ) − q̄

)
for β′ =β±δβ.

While the approach proposed by Yamamoto is both elegant and practical, it is actually possible

to estimate E ′ directly with a smaller computational effort. One can note that the second

derivative in Eq. 3.5 is the Hessian projected on the vector joining the beads with the centroid.

Taking inspiration from the finite difference formula for computing the projected Hessian in

the SC forces [2], we have found a simple formula E ′ = 3N
2β2 + 1

2Pβ

[∑P
j=1

(
q( j ) − q̄

) · f′( j )
]

, where

f′( j ) = 3

2
f( j ) + 1

2ε

(
f( j )

∣∣∣
q( j )+ε(q( j )−q̄)

− f( j )
)

(3.7)

This expression gives the result as the Yamamoto estimator, assuming that the forces are

calculated accurately, but requires just P additional force evaluations while displacing the

replicas along the position vector that connects them with the centroid. The advantage of this

formula will become more evident in the context of high-order PIMD.

Estimators of the constant pressure heat capacity CP can be computed similarly, by starting

from the β derivative of the isothermal-isobaric partition function. The estimators thus
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obtained are very similar to those of CV ; the estimators of energy are replaced by those of

enthalpy H� = E�−P extV , and terms such as E ′ and ∂E�

∂β are retained.

3.1.2 Estimators of heat capacity using high-order PIMD

As discussed in Chapter 2, there exist two kinds of estimators in the context of SC PIMD. Those

which are estimated from the partition function using thermodynamic (TD) identities are

called thermodynamic estimators, while those which are obtained as expectation values of

operators are called operator (OP) estimators. We begin by discussing the TD estimators of

energy and heat capacity. Direct differentiation of the partition function with respect to β

yields the TD primitive estimator of energy,

E TD;PR = 3N P

2β
− 1

P

P∑
j=1

N∑
i=1

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2 + 1

P

P/2∑
j=1

[
2

3
V

(
q(2 j−1)

)
+4

3
V

(
q(2 j )

)
+ 1

3
Ṽ

(
q(2 j ),h

)]
,

(3.8)

and a subsequent use of the virial theorem, as in the case of standard PIMD, leads to the TD

centroid virial estimator of energy

E TD;CV = 3N

2β
+ 1

P

P∑
j=1

(
q( j ) − q̄

)
·
(
fsc ( j )

)
+

P/2∑
j=1

[
2

3
V

(
q(2 j−1)

)
+4

3
V

(
q(2 j )

)
+ 1

3
Ṽ

(
q(2 j ),h

)]
,

(3.9)

where fsc ( j ), the weighted physical force plus the high-order term acting on the j th replica,

is readily evaluated using the finite difference formula [2] during the course of molecular

dynamics. The corresponding TD heat capacity estimators obtained by deriving the averages

of these estimators with respect to β, and the TD centroid virial heat capacity estimators

obtained by using the virial theorem are

〈C TD;�
V 〉(2)

P = kBβ
2

[
〈E TD;�E TD;CV〉(2)

P −〈E TD;�〉(2)
P 〈E TD;PR〉(2)

P −〈∂E TD;�

∂β
〉

(2)

P

]
,

〈C TD;DCV
V 〉(2)

P = kBβ
2
[
〈E TD;CVE TD;CV〉(2)

P −〈E TD;CV〉(2)
P 〈TD;E CV〉(2)

P +〈E ′ TD〉(2)
P

] (3.10)
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3.1. Heat capacity

where, E ′ TD is a highly complicated expression that depends on the third derivatives of the

potential energy. Fortunately, the prescription of Yamamoto [163], allows one to express it as

the temperature derivative

E ′ TD = 3N

2β2 − 1

P

P∑
j=1

∂2

∂β′2

[
β′V sc(q̄ +

√
β′

β

(
q( j ) − q̄

)
,h)

]
β′=β

, (3.11)

where V sc(q( j ),h) is the scaled physical potential plus the high of term of the j th replica.

Practical evaluation of this term requires requires 2P additional force evaluations as in the

case of standard PIMD.

An elegant way of approaching the computation of heat capacity within the SC scheme, and

subsequently reducing the associated computational cost, is by using OP estimators of energy.

These estimators take the same form as in the case of standard PIMD, but are only evaluated

on odd replicas. For instance the OP centroid virial estimator of energy is

E OP;CV = 3N

2β
+ 2

P

P/2∑
j=1

(
q(2 j−1) − q̄

)
· f(2 j−1) + 2

P

P/2∑
j=1

V (q(2 j−1),h). (3.12)

Not only are OP estimators simpler to express, but they also reduce the order of the derivative

of the potential by one, required for the computation of the energy and the heat capacity

(vide infra). We have shown that by deriving the average of the OP centroid virial estimator of

energy, and using the virial theorem, it is possible to obtain the double centroid virial heat

capacity OP estimator

〈C OP;DCV
V 〉(4)

P = kBβ
2
[
〈E OP;CVE OP;CV〉(4)

P −〈E OP;CV〉(4)
P 〈E OP;CV〉(4)

P +〈E ′ OP〉(4)
P

]
(3.13)

where, E OP-CV has the same expression as in the case of standard PIMD, except that it is

evaluated on even replicas. We show that it can also be computed as the finite difference

E ′ = 3N
2β2 + 1

Pβ

[∑P/2
j=1

(
q(2 j−1) − q̄

) · f′ (2 j−1)
]

, where

f′ (2 j−1) = 3

2
f(2 j−1) + 1

2ε

(
f(2 j−1)

∣∣∣
q(2 j−1)+ε(q(2 j−1)−q̄)

− f(2 j−1)
)

(3.14)

can be computed by displacing the odd replicas along the position vector that connects them
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with the centroid. This estimator only required P/2 additional force evaluations, i.e. it has

one-fourth the cost of the Yamamoto’s estimator of E ′ TD.

3.1.3 Benchmarks on liquid water
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Figure 3.1 – The top panel shows the convergence of the isobaric heat capacity of liquid
water at 300 K, modeled by the q-TIP4P/f potential, as a function of the number of replicas.
The blue curve was obtained from standard PIMD using the Yamamoto estimator while
the red and green curves were obtained from SC PIMD using the Yamamoto (TD) and OP
estimator respectively. The dashed black line represents the experimental result. Error bars
indicate statistical uncertainity. The bottom panel shows that instantaneous values of the the
computationally expensive E ′ � term when computed with the OP and the Yamamoto (TD)
estimator.

We tested the SC estimators on the well-known isobaric heat capacity of liquid water which

is 1 cal mol−1K −1 or 9 kB per molecule at 300 K. The water molecules are modeled with

the q-TIP4P/f force field [166]. As shown in Figure 3.1, both estimators converge to the same

value and are in excellent agreement with the experiments. More importantly, however, the

variance of the computationally expensive E ′ � term with the OP method is almost two orders

of magnitude smaller than with the Yamamoto estimator. The OP estimator also only requires

one fourth of the number of force evaluations than its Yamamoto counterpart and should

therefore always be preferred.
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3.2. Particle momentum distribution

3.2 Particle momentum distribution

The momentum distribution of particles n(p) can be measured directly using Deep Inelastic

Neutron Scattering (DINS) experiments [167,25], and provide sensitive information on the chem-

ical environment or the local structure of target particles. For instance, the subtle features

obtained from the momentum distributions can be used to understand phenomena such as

the softening of OH bonds in ice [168]. Moreover, many useful quantities such as the quantum

kinetic energies [25], as well as the kinetic energy tensor [169] can be estimated while measuring

particle momentum distributions. DINS experiments provide highly accurate estimates of

the quantum kinetic energies, therefore they can be used to study the accuracy of ab initio

potential energy surfaces obtained from electronic structure methods.

Since the classical PMD of all particles is a Maxwell-Boltzmann distribution, any deviation

of the PMD from the classical limit is a direct probe of the quantum nature of nuclei, and

therefore can be simulated only if the nuclei are considered quantum particles. Here, we

discuss how the particle momentum distribution can be estimated within the imaginary

time path integral method by opening the paths of target atoms. We present a theoretical

framework that greatly simplifies the implementation of the “open" path integral method.

We also discuss the poor statistical performance of the standard momentum distribution

estimator, and present a novel virial like estimator that reduces the computational effort by

over an order of magnitude.

3.2.1 Open paths for calculating the particle momentum distribution

We take as starting point a well-established expression for the canonical particle momentum

distribution of the i ′ th atom in a system composed of N atoms at inverse temperature β, in

terms of the Fourier transform of the off-diagonal components of the one-particle density

matrix: n
(
p
)= (2π~)−3 ∫

d∆ e−i}−1p·∆ ρi ′(∆) with

ρi ′(∆) = Z−1
∫

d{q̂}
〈

q̂1, . . . q̂i ′ , . . . , q̂N
∣∣exp

(−βĤ
)∣∣q̂1, . . . , q̂i ′ −∆, . . . , q̂N

〉
. (3.15)
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Figure 3.2 – The discretization of the imaginary time path integral using a uniform grid starting
from τ = 0 to τ = β~ (left) gives the standard open PIMD Hamiltonian while the alternate
discretization (right) makes it possible to integrate out the ends, yielding a Hamiltonian which
describes an open paths with P replicas.

n
(
p
)

can be computed performing a second-order Trotter splitting of the Boltzmann operator

into P factors, e−βĤ ≈
[

e−βP
V̂
2 e−βP T̂ e−βP

V̂
2

]P
and inserting complete sets of position states

between each pair of factors. This yields

n(p) = (2π~)−3
∫

d∆ e−i}−1p·∆ N (∆) (3.16)

where, N (∆) = 〈δ(∆−q(1)
i ′ +q(P+1)

i ′ )〉(2)

P
is the end-to-end distribution of the i ′ th atom in the

isomorphic open polymer Hamiltonian

H (o)
P ({p}, {q}) =

P∑
j=1

[
N∑

i=1 6=i ′

1

2
m−1

i |p( j )
i |2 +

N∑
i=1 6=i ′

1

2
miω

2
P

(
q( j )

i −q( j+1)
i

)2
]

+
P∑

j=1

[
1

2
V

(
q( j ),h

)
+ 1

2
V

(
q( j+1),h

)]
,

(3.17)

with q( j )
i ≡ q( j+P )

i implied for i 6= i ′. Note that the single particle density matrix of the i ′ th

atoms is equivalent to the end to end distribution of the open path associated with the i ′ th

atom of the isomorphic Hamiltonian. Since the end points of all but one ring polymer coincide,

one has to introduce an additional replica just to evaluate the potential for two configurations

that differ only by the positions of the i -th particle, and that are each weighted by a factor 1/2

(Figure 3.2). Besides the slight computational overhead, the presence of the extra replica for the

target species and the scaling of the potential makes the implementation of this Hamiltonian
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in an existing PIMD code somewhat cumbersome.

3.2.2 A convenient algorithm for implementing open PIMD

To avoid this inconvenience, we use in the implementation of PIMD for open and closed

ring polymers – also popularly known as open PIMD – in the i-PI code [141] an alternative

second-order splitting e−βĤ ≈
[

e−βP
T̂
2 e−βP

V̂
2

][
e−βP

V̂
2 e−βP T̂ e−βP

V̂
2

](P−1) [
e−βP

V̂
2 e−βP

T̂
2

]
. We

show in Ref. [4], that it possible to compute the end-to-end distribution N (∆) by sampling the

Hamiltonian of a truncated ring polymer

H (o)
P ({p}, {q}) =

P∑
j=1

[
N∑

i=1

1

2
m−1

i [p( j )
i ]2 +

N∑
i=1

1

2
miω

2
P [q( j )

i −q( j+1)
i ]2+ (3.18)

V
(
q( j )

i ,h
)]

− 1

2
m′

iω
2
P [q(1)

i ′ −q(P )
i ′ ]2 (3.19)

in which all the replicas experience the full physical potential and both open and closed

replicas are represented by P beads. Implementing Molecular Dynamics or Monte Carlo

sampling for this Hamiltonian in an existing closed-path code is trivial since it just requires

the modification of the normal mode (or staging) transformation for the target species [117].

The attentive reader will have noticed that the alternative Trotter splitting contains two addi-

tional free-particle propagators, that describe the fluctuations of the end-points of the path

around the first and the P-th bead. These fluctuations can be evaluated analytically, and cor-

respond to a Gaussian convolution of the 1-st-to-P-th bead distribution. In practice, in order

to estimate N (∆) one simply needs to compute the histogram of ∆ using a kernel function

that depends parametrically on β, m and P :

N (∆) = 〈G3D(∆,q(1)
i −q(P )

i )〉(o)

P
, (3.20)

with G3D(x,x′) = (p
2πσP

)−3 e
− (x−x′)2

2σ2
P , and σP =

√
m−1

i βP~2.

When computing n(p) in an isotropic system such as liquid water, one is generally interested in

the spherical average of the end-to-end distribution, N (∆), because the spherically-averaged
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momentum distribution can be obtained from it as

n(p) =
∫

d∆ 4π∆2N (∆)
Sin

(
p∆

)
p∆

. (3.21)

N (∆) can be obtained from N (∆) by simply writing∆, in spherical coordinates and integrating

over the polar and azimuthal angles

N (∆) =
∫ 2π

0
dφ

∫ 1

−1
d(Cos(θ)) 〈G3D(∆− (q1 −qP ))〉(o)

P = 〈Gr(∆,
∣∣∣q(1)

i −q(P )
i

∣∣∣)〉
HP

(3.22)

where Gr (x, x ′) = (2πσ2
P )−1/2 1

xx ′

[
e
− 1

2σ2
P

(x−x ′)2

−e
− 1

2σ2
P

(x+x ′)2]
is the appropriate Kernel used to

bin the end-to-end distance.

3.2.3 An efficient estimator for the momentum distribution

The major problem associated with open path simulations is that the convergence of the

end-to-end distribution is very slow with respect to simulation time, especially for ∆∼ 0. This

translates into a large error in the momentum distribution, and could even lead to additional

spurious peaks arising from the noise in N (∆). The solution to this problem proposed by Lin

et. al, is a displaced path estimator [101] which essentially computes the thermodynamic force

associated with the end-to-end distance. This estimator can be computed using free energy

perturbation (FEP) by sampling from a closed ring polymer, but has a computational overhead

arising from the evaluation of the potential energy of the replicas along a open polymer

(obtained by displacing the closed ring polymer). Unfortunately, the FEP method is applicable

only to small systems, as its efficiency degrades exponentially with increasing system size. In

the strong quantum regime, or in the limit of large system size, it is more efficient to compute

the mean force using the thermodynamic integration method that bears the computational

cost of multiple simulations with constraints/restraints at different fixed values of ∆. Other

methods that can be used to yield efficient estimates of the particle momentum distribution

are enhanced sampling techniques, such as metadynamics [170] or variationally enhanced

sampling [171], that accelerate convergence of the free energy surface of the end-to-end vector.

We have proposed an elegant solution to this problem, by deriving a virial-like estimator that
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3.2. Particle momentum distribution

computes the derivative of N (∆). We begin by noting the following properties of the derivative

of the 3D kernel:

∇∆G3D
(
∆,q(1)

i −q(P )
i

)
=−∇q(1)

i
G3D

(
∆,q(1)

i −q(P )
i

)
=∇q(P )

i
G3D

(
∆,q(1)

i −q(P )
i

)
, (3.23)

∇q( j 6=1,P )
i

G3D
(
∆,q(1)

i −q(P )
i

)
= 0 (3.24)

which allow us to express the gradient of the end-to-end distribution as a linearly scaled sum

of derivative ∇∆N (∆) = 〈∑P
j=1λ j∇q( j )

i
G3D

(
∆,q(1)

i −q(P )
i

)
〉(o)

P
, where λ j is an arbitrary sequence

with fixed boundary conditions λ1 =−1
2 and λP = 1

2 . Of the P gradients, only those w.r.t the

end beads contribute to the average; The rest of them only contribute to the fluctuations

of the estimator, which is advantageous since an appropriate choice of λk should allow us

to minimize the variance of the estimator. However, before we proceed to that, we cast the

“scaled gradient" in a virial like form, by performing an integral by parts

∇∆G3D
(
∆,q(1)

i −q(P )
i

)
=

P∑
j=1

〈λ j∇q( j )
i

G3D
(
∆,q(1)

i −q(P )
i

)
〉(o)

P
(3.25)

=
P∑

j=1
〈λ j G3D

(
∆,q(1)

i −q(P )
i

)
βP∇q( j )

i
HP 〉

(o)

P
(3.26)

While it would be possible to optimize the λ j based on the computed bead-bead correlations

from a reference calculation, we find that results close to the optimum can be obtained taking

the λ j is in such a way that the contribution from the spring force coming from intermediate

beads vanishes. This condition can be met by imposing that λ j is an arithmetic progression

with a common difference of 1
P−1 for which the fluctuations in the spring term becomes

independent of P and the estimator takes the simplified form

∇∆G3D
(
∆,q(1)

i −q(P )
i

)
=−〈g G3D

(
∆,q(1)

i −q(P )
i

)
〉(o)

P
, (3.27)

where g = g = σ−2
P

1−P−1

[
(q(1)

i −q(P )
i )

]
+∑P

j=1βPλ j f( j )
i is the scaled gradient. We have also derived

the gradient of the radial distribution function of ∆

dN (∆)

d∆
=− lim

P→∞
〈g ·

 q(1)
i −q(P )

i∣∣∣q(1)
i −q(P )

i

∣∣∣
 Gdr

(
∆,

∣∣∣q(1)
i −q(P )

i

∣∣∣)〉(o)

P

(3.28)
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Figure 3.3 – The convergence of the kinetic energy of a proton in supercooled q-TIP4P/f
water at 271K from open PIMD simulations using 64 beads calculated from the momentum
distribution using the scaled gradient (SG) estimator (green). As a reference for comparison
the value calculated from the standard estimator (black) with 1ns of trajectory and the exact
result (dashed) from closed PIMD are also plotted. The red and the blue points are obtained
using the standard and the scaled gradient estimators from simulations where one proton per
molecule is represented by an open path.

where Gdr(x, x ′) = (2πσ2
P )

−1/2 (
x ′x

)−2

[
e
− (x′+x)2

2σ2
P

(
xx ′+σ2

P

)+e
−mi (x′−x)2

2σ2
P

(
xx ′−σ2

P

)]
is the appro-

priate kernel.

3.2.4 Benchmarks on different phases of water

To test the convergence of the regular and the scaled gradient estimators we ran simulations

of 64 molecules of q-TIP4P/f water at 271K using 64 imaginary time slices. The distribution

of momentum of a proton in water can essentially be described as an anisotropic Gaus-

sian [172,132,173], so we can use as a convergence check the comparison between the quantum

kinetic energy computed from a closed-path simulation and that obtained from the second

moment of n(p). As shown in figure 3.3, the scaled gradient estimator (which can be obtained

from an open path simulation at virtually no computational overhead) shows an error which

is approximately 5 times smaller than that associated with the standard estimator. For sim-

ulations with a single open path, 1ns-long simulations are needed to approach a statistical

error sufficient to discriminate between different water molecules, whereas more than 20

would be needed without using the derivative estimator. Fig. 3.3 also demonstrates that the

approximation introduced in Ref. [69] – that is, opening one path per water molecule – leads to

negligible systematic error, and once combined with the derivative estimator allows reaching

a statistical error of about 2 meV with trajectories that are only 10 ps long.
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4 Accelerated methods for vibrational

spectra

Vibrational spectroscopic techniques – from conventional infrared (IR) and Raman to ad-

vanced femtosecond pump-probe [174,175], sum-frequency generation, second harmonic scat-

tering [176,177], and multi-dimensional vibrational spectroscopy [178] – are a cornerstone of

chemistry [174]. These techniques have a multitude of applications such as the character-

ization of functional groups in chemical systems [179], the determination of the atomistic

mechanisms of phase transitions through insight into chemical environments [180], and the

identification of unique structural fingerprints of molecular crystals [181]. The use of atomistic

simulations for the computation of spectroscopic properties facilitates the interpretation of

these experiments and provides support to the characterization of novel materials.

Even neglecting effects that go beyond the Born-Oppenheimer (BO) decoupling of electronic

and nuclear degrees of freedom, accurate calculations of the vibrational spectra of materials

require an explicit treatment of the quantum dynamics of the nuclear degrees of freedom [66]

The following chapter is partially based on the journal articles:

1. M. Rossi, V. Kapil, and M. Ceriotti, “Fine tuning classical and quantum molecular dynamics using a
generalized Langevin equation,” The Journal of Chemical Physics, vol. 148, p. 102301, July 2017 VK was
involved in the implementation of the method, in running calculations, in performing analysis and in the
writing of the manuscript.

2. V. Kapil, D. M. Wilkins, J. Lan, and M. Ceriotti, “Inexpensive modeling of quantum dynamics using path
integral generalized langevin equation thermostats,” The Journal of Chemical Physics, vol. 152, p. 124104,
Mar. 2020 VK was involved in the design of the research, in the development and implementation of the
method, in running calculations, in performing analysis and in the writing of the manuscript.
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on the electronic ground state potential energy surface. Quantum dynamics is in principle

exactly obtained from the solution of the time dependent Schrödinger equation for the nu-

clei, but this is only practical for systems containing a handful of degrees of freedom [182,183].

Condensed phase systems can be studied [184] either by an exact treatment of the quantum

dynamics of a subset of the nuclear degrees of freedom [185], or through classical dynamics on

the quantum free energy surface of the nuclei [79,104]. Among the methods in the latter class,

several of the most popular ones are based on the imaginary time path integral framework –

such as (thermostatted) ring polymer molecular dynamics [88,89] ((T)RPMD), centroid molecu-

lar dynamics [186,87] (CMD), path integral Liouville dynamics [105] and the recently developed

quasi-centroid molecular dynamics [107] (QCMD). These methods ignore real time coherence

but include effects arising from equilibrium quantum fluctuations and have been validated

on several model systems and small molecules for which exact or highly accurate results are

available [79,89,85,89,87]. While these methods show great promise for accurate determination of

spectroscopic properties [187,188,189], their cost remains high when combined with a potential

energy surface computed by ab initio electronic structure methods. Methods such as ring

polymer contraction [91] and multiple time stepping [40] as well as their combination [1], as

discussed in Chapter 2, can be used to reduce the cost of these simulations, however, they rely

on range separation of the potential energy landscape which is not universally given.

Among the many methods that have been introduced in the past decade to accelerate the

convergence of path integral calculations [190], those that combine (path integral) molecular

dynamics with a generalized Langevin equation [96,71,191] (GLE), such as the quantum thermo-

stat (QT) and PIGLET, can be applied transparently to empirical, machine learning or first

principles simulations. The PIGLET thermostat has been used to evaluate all sorts of ther-

modynamic properties, including structural observables [192], free energies [193], momentum

distributions [71], and quantum kinetic energies [59] with a reduction in computational effort

varying between a factor of 5 at ambient conditions to a factor of 100 at cryogenic temper-

atures [194]. The aggressive thermostatting used to impose quantum fluctuations, however,

significantly disrupts the dynamics of the system, and common wisdom is that the calculation

of dynamical properties using PIGLET is impossible.
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4.1. A Generalized Langevin Equation Thermostat

Here we present a simple post-processing strategy that makes it possible to reconstruct

dynamical properties from classical and quantum GLE thermostatted simulations. We apply

this method to study trajectories generated using PIGLET, leading to a dramatic reduction

in the cost of including quantum effects in spectroscopic quantities. We show that when

applied to model systems the accuracy of the scheme is on par with that of conventional

path integral dynamical schemes, aside from a small residual broadening of the spectra. We

then demonstrate the usefulness of our approach by computing the IR and Raman spectra of

solid and liquid water, using state-of-the-art machine-learning interatomic potentials, dipole

moment, and polarizability surfaces.

4.1 A Generalized Langevin Equation Thermostat

The generalized Langevin equation for a particle with unit mass in one dimension, subject to

a potential V (q), is given by the non-Markovian process

q̇ = p

ṗ =−V ′(q)−
∫ t

−∞
K (t − s)p(s)ds +ζ(t )

(4.1)

where K (t), is the memory kernel that describes dissipation, and ζ(t) is a Gaussian random

process with a time correlation function H(t ) = 〈ζ(t )ζ(0)〉. Throughout this chapter, we con-

sider unit mass in all equations. The numerical integration of this equation is computationally

challenging since it requires the knowledge of the entire history of the particle’s trajectory.

However, exploiting the equivalence between the non-Markovian dynamics of Eq. 4.1 and

Markovian dynamics in an extended space, n auxiliary degrees of freedom s can be coupled

linearly to the physical momentum, which results in the Markovian Langevin equation

q̇ =p ṗ

ṡ

=
 −V ′(q)

0

−
 app aT

p

āp A

 p

s

+
 bpp bT

p

b̄p B

 ξ

 .
(4.2)
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Here ξ is a n +1 dimensional vector of uncorrelated Gaussian numbers. In order to label the

portions of the matrices that describe the coupling between the different components of the

extended state vector x ≡ (q, p,s)T , we use the following notation:

q p s

q mqq mqp mT
q

p m̄qp mpp mT
p

s m̄q m̄p M

}
Mp

}
Mqp

(4.3)

Upon integrating out the auxiliary degrees of freedom, equation 4.1 is recovered with

K (t ) =2appδ(t )−aT
p e−|t |Aāp

H(t ) =dppδ(t )−aT
p e−|t |A

[
Zap −dp

] (4.4)

where Z = ∫ ∞
0 e−At De−AT t dt and Dp = Bp BT

p . This implies that by tuning the elements of the

matrices Ap and Bp , a Generalized Langevin equation with the desired friction kernel and

noise correlation can be approximated within a Markovian framework. Note that although

we focused on a one-dimensional case to simplify the notation, it is also possible to apply

Eqn. (4.2) to each Cartesian coordinate of an atomistic system. Since the overall dynamics is

invariant to a unitary transformation of the coordinates, the response of the system would be

the same as if the GLEs had been applied in e.g. the normal modes coordinates.

4.1.1 Controlling Classical Dynamics

Let us consider a particle subject to a harmonic potential V (q) = 1
2ω

2
0, and coupled to a GLE.

The time evolution of its state vector x = (q, p,s)T can be expressed as:


q̇

ṗ

ṡ

=−


0 −1 0

ω2
0 app aT

p

0 āp A




q

p

s

+


0 0 0

0
Bp

0




0

ξ

. (4.5)
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Figure 4.1 – Various regimes of the white noise thermostat acting on the harmonic oscillator.
The left, central and right panels, respectively representing the under-damped (γ = 0.1),
optimally-damped (γ= 1) and over-damped limits (γ= 10), show the velocity auto-correlation
functions (top) and GLE metrics (bottom) for various values of the physical frequency. We
choose three values for the physical mode ω0, labeled in the picture and shown with different
colors. The GLE metrics as defined by equations 4.11, 4.12 and 4.13 are represented by circular,
plus shaped and cross shaped markers respectively.

Since the force is linear in q , equation 4.5 takes the form of an Ornstein-Uhlenbeck process,

that can be written concisely as

ẋ =−Aqp x+Bqpξ. (4.6)

Since its finite-time propagator is known analytically [195], it is possible to compute any time

correlation function in terms of the drift and diffusion matrices Ap and Bp . For instance, the

vibrational density of states can be computed exactly by taking the Fourier transform of the

velocity-velocity correlation function, and reads:

Cpp (ω,ω0) = 1

[Cqp (ω0)]pp

[
Aqp (ω0)

A2
qp (ω0)+ω2

Cqp (ω0)

]
pp

, (4.7)

where the stationary covariance matrix can be obtained by solving the Riccati equation

Aqp Cqp +Cqp AT
qp = Bqp BT

qp .

It is useful to perform a spectral decomposition of Eq. 4.7 in order to gain more insight into

the spectrum of a GLE-thermostatted oscillator. It is straightforward to show that by writing

Aqp (ω0) = Odiag(Ω)O−1 where O is the matrix of eigenvectors andΩ a vector containing the

corresponding eigenvalues, the expression for the velocity-velocity correlation function can
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be written as

Cpp (ω,ω0) =∑
j r

Op j
Ω j (ω0)

Ω2
j (ω0)+ω2

O−1
j r

[Cqp (ω0)]r p

[Cqp (ω0)]pp
. (4.8)

For example, in the case of white-noise Langevin with friction γ, the correlation function reads

C (γ)
pp (ω,ω0) = 2γω2

π
(
γ2ω2 +ω4 −2ω2

0ω
2 +ω4

0

) . (4.9)

The spectrum in Eq. 4.8 corresponds to a sum of Lorentzian functions, with the peaks positions

and lineshapes determined by the poles at ω=±iΩ j . Motivated by this spectral decomposi-

tion, we define several quantities that give a concise description of the shape of the spectrum.

After having introduced the integral function of the spectrum

W (ωa ,ωb) = 2

π

∫ ωb

ωa

Cpp (ω,ω0)dω=

=
{[

tan−1
(

ω

Aqp (ω0)

)]ωa

ωb

2Cqp (ω0)

π[Cqp (ω0)]pp

}
pp

,
(4.10)

which can be computed easily based on the same eigendecomposition of Aqp , we define the

median

ω̄(ω0) →W (0,ω̄) = 0.5, (4.11)

that characterizes the position of the peak, and the interquartile distance

∆ω(ω0) = 1

2
(ω0.75 −ω0.25) (4.12)

→ W (0,ω0.25) = 0.25

W (0,ω0.75) = 0.75

that characterizes its width. Together, these two indicators are sufficient to determine fully a
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Lorentzian lineshape

L(ω,ω0) = 1

π

∆ω(ω0)

(ω− ω̄(ω0))2 + [∆ω(ω0)]2 . (4.13)

In order to quantify the presence of multiple poles or other sources of asymmetry in the

lineshape that are not captured by ω̄ and ∆ω, we introduce a “non-Lorentzian-shape" factor S,

S(ω0) =
∣∣∣∣∫ ∞

0
[Cpp (ω,ω0)−L(ω,ω0)]2dω

∣∣∣∣0.5

. (4.14)

According to the definitions above, a perfect δ-like Lorentzian spectrum would have ω̄/ω0 = 1,

∆ω/ω0 = 0, and S = 0. In order to exemplify how these measures behave in the case of a

simple white noise thermostat attached to the harmonic oscillator, we show in Fig. 4.1 how

the velocity-velocity spectrum of oscillators of different frequency ω0 changes with different

regimes of white noise, and how the measures defined in Eqs. 4.11 to 4.14 relate to the

magnitude of the perturbation induced in a δ-like spectrum shape.

Analyzing Fig. 4.1, we can see that, as expected, the regime that introduces the least distur-

bance to the VDOS is the underdamped regime (the limit where Ap = 0 is microcanonical

dynamics) – and that for a given γ the modes with lower frequency suffer the most pronounced

relative disturbance. Focusing on the underdamped case, the measures ω̄/ω and ∆ω predict

the shift and broadening of the peaks at low frequencies, as well as the lack of disturbance at

high frequencies. Going to the optimally damped and the overdamped case, the disturbances

to the spectra get more pronounced through the whole range of frequencies, and it is easy

to follow how the different indicators we introduced quantify this change. The S measure

is always relatively small, indicating that a simple white-noise thermostat does not affect

significantly the Lorentzian character of the peaks.

In the same spirit as the fitting procedure introduced in Ref. [145], we define figures of merit

that target these measures, and complement the indicators of sampling efficiency that were

previously introduced. By giving different weights to different targets and to different fre-

quency ranges, it is possible to generate GLE thermostats that are designed to have a prescribed

77



Chapter 4. Accelerated methods for vibrational spectra

effect when applied to a given system. As we will show below, even in cases for which the

GLE thermostat disturbs classical molecular dynamics in quite extreme ways, based on the

analytical prediction of such disturbance one can recover the true dynamics of the underlying

system.

4.1.2 Predicting and correcting the dynamical disturbance of a GLE

Equation 4.7 predicts the velocity-velocity correlation function for a harmonic oscillator of

frequencyω0 subject to a given GLE. If one considers an assembly of independent oscillators of

different frequencies, the total correlation function of the system can be written as
∑

i C (ω,ωi ).

Taking the limit of a continuum distribution corresponding to the density of states g (ω), one

can write

C GLE
v v (ω) =

∫
dω′ g (ω′)C (ω,ω′). (4.15)

Note that if rather than the total velocity correlation function one were computing a linear com-

bination of correlation functions (e.g. a dipole spectrum to which each oscillator contributes

with its own transition dipole moment), Eq. (4.15) would still hold, with g (ω) representing a

combination of the density of states and the weight of each mode. The question, of course, is

how well this relation would hold in a real, anharmonic system, and how well the indicators of

dynamical disturbance can be used to tune the behavior of the GLE dynamics - given that the

kernel C (ω,ω′) was derived under the assumption of harmonic dynamics. To benchmark this

framework in a realistic scenario, we performed simulations of NN liquid water at 300K and

experimental density. We computed the vibrational density of states from a reference NVE

simulation of the same model, and then compared it with the Fourier transform of the velocity-

velocity correlation function resulting from different kinds of GLE. Figure 4.2 shows the results

for white-noise Langevin dynamics using different values of the friction, and two GLE matrices.

GLE(A) was designed to dramatically disturb all low-frequency modes, whereas GLE(B) was

optimized to only affect modes within a narrow range of frequencies between 3000 and 4000

cm−1. One can see that the GLE spectrum is qualitatively distorted in accordance with the

three indicators ω̄, ∆ω and S(ω), but also that convoluting the NVE density of states according

to Eq. (4.15) yields a near-perfect quantitative prediction of the GLE dynamics. These results
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Figure 4.2 – Each row reports the velocity-velocity correlation spectrum for a thermostatted
simulation of liquid water at 300K and experimental density (left) and the predicted measures
of spectral disturbance (ω̄/ω0, ∆ω/ω0, S(ω)) as a function of frequency, together with the
GLE friction kernel K (ω) (right). The spectrum from the thermostatted trajectory (GLE) is
compared with the density of states obtained from microcanonical runs (NVE), as well as with
the spectrum predicted by convoluting the density of states with C (ω,ω0) (NVE→GLE) and
the density of states reconstructed by deconvoluting the thermostatted spectrum (GLE→NVE).
The simulations were performed with a strong white-noise thermostat (a), a very-strong white-
noise thermostat (b), a GLE designed to distort dramatically the whole spectrum (c), and a
GLE designed to only affect the stretching peak (d with inset).
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open a path to the design of thermostats that only affect a portion of the frequencies while

leaving the others untouched, as is the case for GLE(B).

Given the remarkable accuracy of the analytical prediction of the GLE dynamical disturbance,

the possibility of performing the inverse operation arises – that is to analytically predict

the NVE density of states given the velocity-velocity correlation function obtained from a

thermostatted run. This operation corresponds to a deconvolution of the GLE spectrum using

C (ω,ω′) as a convolution kernel. It is well-known that this class of inverse problems is very

unstable, and that an appropriate regularization is crucial to obtain sensible results that are

not dominated by noise. Direct inversion using Tikhonov regularization with a Laplacian

operator led to promising but unsatisfactory results. In particular, we found a tendency to

obtain large spurious oscillations in the low-density parts of the spectrum, often leading to

unphysical negative-valued curves.

We therefore used the Iterative Image Space Reconstruction Algorithm (ISRA), that enforces

positive-definiteness of the solution [197,198]. Initializing the iteration with the GLE-computed

velocity correlation spectrum, f0(ω) = cGLE
v v (ω), the ISRA amounts to repeated application of

the iteration

fn+1(ω) = fn(ω)h(ω)∫
dx D(ω, x) fn(x)

(4.16)

where we have defined

h(ω) =
∫

dx C (x,ω)cGLE
v v (x)

D(ω, x) =
∫

dy C (y,ω)C (y, x).
(4.17)

The ISRA converges to a local solution satisfying
∫

dx C (ω, x) f∞(x) = cGLE
v v (ω). We found that a

convenient way to monitor the convergence is to compute at each step the residual, and the

Laplacian of fn ,

rn =
∫

dω

∣∣∣∣∫ dx C (ω, x) fn(x)− cGLE
v v (ω)

∣∣∣∣2

ln =
∫

dω
∣∣ f ′′

n (ω)
∣∣2 .

(4.18)
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Figure 4.3 – The panels on the left report the velocity-velocity correlation functions, obtained
from quantum-thermostatted simulations of liquid water at 300K and constant experimental
density. As in Fig. 4.2, the spectrum from a GLE simulation is compared with the NVE density
of states, as well as with the transformed and reconstructed spectra. Panels on the right depict
the radial O-O, H-H and O-H distribution functions from the QT runs, compared with those
from a converged PIMD calculation [196] (dashed lines). The topmost panels correspond to
a weakly-coupled GLE, the middle and bottom panels correspond to strongly coupled GLEs
fitted independently
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Chapter 4. Accelerated methods for vibrational spectra

Plotting (rn , ln) on a log-log scale reveals a behavior resembling a L-curve plot, that can

be used as a guide to avoid over-fitting – although in practice we find that the well-known

slow asymptotic convergence of the ISRA effectively prevents reaching a situation in which

fn becomes too noisy. As can be seen from Fig. 4.2, this approach provides an excellent

reconstruction of the true density of states even in cases in which the GLE dynamics distorts

the spectrum of water beyond recognition. There are of course discrepancies, particularly

in the low-frequency region that is both strongly anharmonic and harder to statistically

converge. Nevertheless, the possibility of correcting for the disturbance induced by a GLE on

the dynamics of complex atomistic systems opens up opportunities to obtain more accurate

estimates of dynamical properties from simulations that use Langevin equations to stabilize

trajectories, [116] or that contain intrinsic stochastic terms [199,200,201,202].

4.1.3 Dynamical properties from a quantum thermostat

Besides correcting dynamical properties in classical thermostatted simulations, this iterative

reconstruction of the unperturbed DOS could be particularly helpful in another scenario.

As mentioned in the Introduction, GLEs have been successfully applied as a tool to sam-

ple a non-equilibrium distribution in which different vibrational modes reach a stationary

frequency-dependent effective temperature T?(ω). In particular, the so-called “quantum

thermostat” [203] and “quantum thermal bath” [204] try to enforce a temperature curve that

mimics a quantum-mechanical distribution of energy in the normal modes of the system.

Trying to maintain this temperature imbalance in an anharmonic system inevitably leads to

zero-point energy leakage [205], i.e. cross-talk between different normal modes that lead to

deviations from the desired T?(ω). This problem can be addressed by using a strongly-coupled

GLE [145], that results however in a pronounced disturbance of the system’s motion – making

any inference on quantum effects on dynamical properties little more than guesswork. Being

able to compensate for the dynamical disturbance induced by a GLE can make this approach

somewhat more credible, and less dependent on the details of the thermostat.

Figure 4.3 gives a demonstration of this idea – as well as a clear warning to the dangers of

using the results of a quantum GLE without careful validation. Let us start by discussing

the accuracy of the QT in terms of structural properties, for which we can obtain a reliable
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Figure 4.4 – A comparison between the classical vibrational density of states for a NN model
of room-temperature water (NVE), that estimated from critically-damped TRPMD (TRPMD),
with the QT velocity-velocity correlation function scaled by Cpp (ω0) (QT/〈v〉2) and finally
the dynamically-corrected QT (QT→NVE). The QT parameters are those used for panel (c) in
Figure 4.3.

benchmark from a fully converged [196] PIMD simulation of the same NN model. As seen from

the radial distribution functions, using a weakly coupled quantum thermostat (panel a) leads

to significant zero-point energy leakage. The stretching modes show narrower fluctuations

compared to PIMD, and the O-O distribution demonstrates a dramatic loss of structure, which

is compatible with a much higher effective temperature of librational and translational modes.

Increasing the coupling to the thermostat (panels b and c) improves significantly the structure

of water, that becomes very close to that from the PIMD simulation. This comes however at

the price of a very pronounced disturbance of the dynamical properties, that is most apparent

in the low-frequency part of cv v .

Moving on to dynamical properties, let us now discuss the relations between the (classical)

density of states, the GLE spectrum and the curves obtained by convolution and decon-

volution through the kernel1 C?(ω,ω0) = mβCpp (ω0)C (ω,ω0). The deconvolution process

corrects at the same time for dynamical disturbances and the frequency-dependent occu-

pations of different normal modes, so any deviation between the reconstructed spectrum

and the classical DOS is an indication of anharmonic effects, and/or zero-point energy leak-

age that induces deviations from the target T?(ω). As shown in the lower panel of Fig. 4.3,

the iteratively-reconstructed DOS displays the qualitative features one would expect from a

quantum spectrum of water: the low-frequency modes are effectively unchanged relative to a

1It is useful to use a non-normalized kernel, as it automatically corrects for the different occupations of normal
modes of different frequency when converting between the density of states and the power spectrum.
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Chapter 4. Accelerated methods for vibrational spectra

classical DOS, whereas stretches and bends show a considerable red shift and broadening. The

reconstructed spectra from panels b and c – that correspond to different but strongly coupled

GLEs – are qualitatively very similar, particularly when contrasted with the weakly-coupled

GLE in panel a. In the latter case, the low-frequency modes are overheated, leading to an

overestimation of the DOS relative to the classical limit, and the stretching peak shows a blue

shift, consistent with the fact that H-bonds are broken and stretch modes are underpopulated

compared to the true quantum distribution.

While there is no absolute benchmark for quantum effects on dynamical properties of water,

it is useful to compare the results from the “dynamically-corrected” QT simulations with

those from a TRPMD simulation. As shown in Figure 4.4, the dynamical corrections do much

more than rescaling frequencies by the QT occupations Cpp (ω0). The heavily-distorted low-

frequency part of the spectrum becomes very close to the classical DOS, and small corrections

are also applied to stretches and bending. While there is a considerable difference between

the TRPMD spectrum and the corrected QT spectrum in the bending and stretching region,

one should note that a similar discrepancy can be seen between TRPMD, CMD and other

approximate quantum dynamical techniques [118].

4.1.4 Dynamical properties from a PIGLET thermostat

While the results of the quantum thermostat display qualitative features associated with

nuclear quantum effects such as the red shift of the stretching and bending modes, and the

increase in the diffusion coefficient, they suffer from the fact that the quantum thermostat

is not systematically improvable, and offers only a qualitative description of the quantum

Boltzmann distribution.

In order to overcome these limitations, we show that a deconvolution scheme can also be

applied to the case of spectra obtained with the PIGLET technique. Given that in PIGLET

simulations the centroid of the ring polymers is subject to a classical Boltzmann sampling

termostat, we correct the velocity autocorrelation function of the centroid using the deconvo-

lution kernel defined by the thermostat that acts on it, assuming that the (non-equilibrium)

GLE thermostats that act on the internal modes of the ring-polymer do not affect the dynamics
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Figure 4.5 – Vibrational density of states as calculated by the velocity autocorrelation Cv v (ω)
for a harmonic oscillator parametrized to model a C–H bond ((a), (b) and (c)) and a Morse
oscillator parametrized to model an O–H bond ((d), (e) and (f)). Simulations were performed
at 150 K ((a) and (d)) and 300 K ((b) and (e)) using MD (grey), TRPMD (blue), PA-CMD (purple),
and using the opt(H) (green) and opt(V) (red) variants of the PIGLET thermostat. In the case
of the harmonic oscillator, the curves obtained using MD and PA-CMD have been vertically
shifted so that they do not coincide with that of TRPMD. The dashed and solid lines show the
spectra obtained using the PIGLET thermostat (green and red), and the corrected spectra using
the deconvolution scheme described in this work, respectively. Panels (c) and (f) show the
convergence of the line position using the opt(V) variant of PIGLET as a function of number
of replicas P at 150 K (diamond markers) and 300 K (circular markers). The dashed black line
shows the 0 → 1 transition frequency.
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of the centroid. This assumption is exact in the harmonic limit for any number of beads, as the

time evolution of the centroid is decoupled from the other ring polymer modes. In the limit

of large number of beads PIGLET tends to standard canonical sampling, and the (purified)

centroid dynamics should converge to that of TRPMD.

We begin illustrating the merits and the limitations of this approach by studying the VDOS

of simple and analytic model systems for which exact results are known. We consider a

one-dimensional harmonic Ĥ = p̂2

2µ + 1
2 K

(
q̂ −q0

)2 , with µ= 1694.9533, q0 = 2.0598 and K =
0.3035 a.u. tuned to reproduce a typical C–H stretching vibration [206]. In the harmonic limit

methods such as TRPMD, CMD and even classical MD are known to deliver exact line posi-

tions. We have used two variants of the PIGLET thermostat – that we will refer to as opt(V)

and opt(H) – with different parameterizations of the centroid thermostat. The parameters of

the opt(V) and opt(H) thermostats have been tailored, respectively, to minimize the autocor-

relation time of the potential and the total energy, and the latter is roughly speaking twice as

aggressive as the former [74]. As shown in panels (a) and (b) of Fig. 4.5, the PIGLET thermostats

have a detrimental effect on the VDOS, broadening and shifting the peaks to an extreme

extent, which is the reason why they are usually considered unsuitable for the calculation

of dynamical properties. The “corrected spectra” obtained by applying the deconvolution

procedure, instead, have line positions that are in good agreement with the exact results at

both 150 K and 300 K 2. The line widths of the corrected spectra are slightly larger than those

obtained with other methods, even after deconvolution. Between the two variants of PIGLET,

opt(H) leads to higher Lorentzian broadening, which indicates that contrary to the case of a

classical trajectory the deconvolution procedure cannot eliminate completely the effect of the

thermostat, making the lineshape dependent on the parameterization of the GLE. As shown in

panel (c) of Fig. 4.5, the line positions obtained by “correcting" the opt(V) spectra agree with

the exact results to within 15cm−1, which is the frequency resolution of the computed spectra.

Encouraged by the observation that – particularly for the weaker opt(V) centroid thermostat –

deconvoluted PIGLET spectra show harmonic vibrations at the correct frequency, and only

a modest peak broadening, we consider the case of a one-dimensional Morse oscillator.

2It can be shown that in the harmonic limit, for exact integration, results ought to be independent of temperature,
so the agreement between the two temperatures indicate that the method is robust to integration and sampling
errors.
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Figure 4.6 – Infra-red Cµ̇µ̇(ω) spectra as calculated by the autocorrelation of the time derivative
of the dipole moment for hexagonal ice at 150 K (top) and liquid water (bottom) at 300 K,
described with the q-TIP4P/f potential. Simulations have been performed using MD (grey),
TRPMD (blue), QCMD (purple), and using opt(V) (red) variant of the PIGLET thermostat. The
dashed and solid lines show the spectra obtained using the PIGLET thermostat (red), and the
corrected spectra using the deconvolution scheme described in this work, respectively.

The parameters of the Hamiltonian Ĥ = p̂2

2µ +D
(
1−e−α(q̂−q0)

)2
are tuned to describe the

anharmonic O–H stretching mode in water ( µ= 1741.0519, q0 = 2.0598 and α= 1.1605 a.u.,

as in Ref. [206]), which displays a large nuclear quantum effect in the frequency of the 0 → 1

transition [89]. As shown in panels (e) and (f) of Fig. 4.5, the line positions obtained using all

methods are blue-shifted with respect to the exact 0 → 1 transition frequency. Classical MD

blue-shifts the line position by over 100cm−1, while CMD and TRPMD, which both require

64 and 32 replicas at 150 K and 300 K, respectively, are shifted by around 60 cm−1. As shown

in panel (g), the line positions of the deconvoluted PIGLET spectra remain close to the exact

result for a small number of replicas and systematically converge to line positions of TRPMD

as the number of replicas is increased. For the number of beads that typically converge

structural observables to their quantum limit i.e. 16 replicas at 150 K and 6 replicas at 300 K [2],

the results obtained using the proposed scheme are within 50 cm−1 of the exact result and

in good agreement with TRPMD and CMD. As in the case of the harmonic oscillator the

spectra obtained using the opt(H) variant of PIGLET are considerably broadened even after

deconvolution. On the other hand, the spectra obtained using opt(V) are only slightly broader

than those obtained with TRPMD, and give accurate line positions with a computational cost
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that is 3-4 times lower.

Finally, we test the approach on condensed-phase systems. We begin by studying the IR spec-

trum of hexagonal ice at 150 K and liquid water at 300 K using the q-TIP4P/f water model [207]

and a linear dipole moment surface, as used in a number of prior investigations [208,107,86].

The IR spectrum Cµ̇µ̇(ω) is calculated using the autocorrelation of the time derivative of the

instantaneous dipole moment of the system µ(t ) and is normalized to integrate to unity. Since

the opt(V) variant of PIGLET has been shown to consistently provide more resolved spectra,

we report results only with this variant using 6 replicas at 300 K and 16 replicas at 150 K. Fur-

thermore, we have not used PA-CMD as it is known to exhibit a curvature problem [209] at low

temperatures. We instead present results from QCMD simulations taken from Ref. [107]. As

shown in Fig. 4.6, the thermostatted IR spectra are severely affected but show three distinct

bands that correspond to the librational, bending and stretching motion. All the bands are

well resolved by applying the deconvolution procedure. At 300 K, all three bands are in good

agreement with TRPMD and QCMD, aside from a slight broadening of the stretching band

for the deconvoluted PIGLET spectra. At 150 K, instead, the librational and bending bands

remain in good agreement with TRPMD and QCMD while the stretching band is broadened

and red shifted by around 60 cm−1 with respect to these methods. Given that in the case of

gas phase water, for which exact quantum dynamical results are available, both QCMD and

TRPMD yield consistently a blue-shift of 60 cm−1 for the stretching band [107], the discrepancy

is comparable with the typical accuracy of much more demanding methods.
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5 Anisotropy of the Proton Momentum

Distribution in Water

Aqueous systems exhibit many distinctive properties [210], many of which are affected by the

quantum nature of protons, even at room temperature and above [211]. One of the most evident

signatures of the quantum fluctuations of nuclei is the deviation of the momentum distribution

of protons n(p) from the classical Maxwell-Boltzmann limit. This is essentially a consequence

of the fact that position and momentum do not commute, making the distribution of momen-

tum depend on the local potential felt by the proton. This quantity can be measured directly

through Deep Inelastic Neutron Scattering (DINS) experiments [167,25,172,212,213]. However,

the interpretation of these experiments is not straightforward because the dependence of

the momentum on the potential is not a trivial one, and because the spherically-averaged

momentum distribution contains relatively little information, and so high quantitative accu-

racy of measurements and simulations is necessary to reach a compelling comparison. Early

reports of large anomalies in the temperature dependence of proton kinetic energy in super-

cooled water [214,215] have not been reproduced in path integral simulations using empirical

forcefields [216], and have been considerably reassessed in subsequent measurements [169]. An

early study of this discrepancy based on vibrational self-consistent field calculations came

to the conclusion that softening of the OH stretch due to electrostatic interactions could not

reproduce the experimental momentum distribution at room temperature and below [217].

The following chapter is partially based on the journal article V. Kapil, A. Cuzzocrea, and M. Ceriotti, “Anisotropy
of the Proton Momentum Distribution in Water,” The Journal of Physical Chemistry B, vol. 122, pp. 6048–6054, June
2018. VK was involved in the design of the research, in the development and implementation of the method, in
running the calculations, in performing analysis and in the writing of the manuscript.
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The model, however, was giving a generally poor description of quantum fluctuations, and

even failed to account for the sign of the change in kinetic energy upon condensation. More

recently, a concerted effort between experiment [169] and modelling [218] has shown that widely

different interatomic water potentials reproduce to a very good accuracy the equilibrium

isotope fractionation (that is directly related to the quantum kinetic energy [218]), and that their

proton kinetic energy differs less than 2meV/atom among each other. Experiments close to

the melting point agree very well with these estimates. Disagreement still exists, however, for

room-temperature water, for which experiments consistently measure a kinetic energy which

is about 7% lower than predicted by modelling. Furthermore, the quantum kinetic energy is

not sufficient to characterize fully the quantum momentum distribution, that results from the

combination of several vibrational modes with different zero-point energies.

A more complete comparison requires the evaluation of the full, anisotropic particle mo-

mentum statistics. The standard methods for the computation of n(p) are “open" [69,219] and

“displaced" [101] Path Integral Molecular Dynamics (PIMD) simulations which include exactly

the quantum effects on the motion of nuclei on an ab initio potential energy surface. However,

these simulations have a particularly high computational cost. In the case of open PIMD, the

estimator used to calculate the momentum distribution allows to accumulate statistics for a

single particle out of the entire simulation, and as a consequence requires very long trajecto-

ries to obtain converged averages. Displaced PIMD computes the distribution by estimators

based on free energy perturbation – that can be affected by large statistical artifacts [136] –

or on thermodynamic integration – that require multiple trajectories and allows to sample

one single particle. A few ab initio simulations exist that show qualitative agreement with

experiments for the full momentum distribution [100,220,173]. However, as discussed above,

clear discrepancies still exist [219,169,173]. The integrated nature of the signal, and the subtle de-

pendence on thermodynamic conditions, call for a quantitative benchmark to be established.
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5.1 Computational setup

Having developed and implemented an efficient sampling scheme, and demonstrated the

potential of the scaled gradient estimator (see Chapter 3) in reducing the cost of computing

the momentum distribution by over an order of magnitude, we begin the investigation of

the momentum distribution of various phases of water at room temperature and below.

Experiments performed in this regime have observed a non monotonic dependence of the

kinetic energy across the temperature of maximum density of water [215]. They indicate that

supercooled water possesses an excess proton kinetic energy [169,221], about 7% higher than

that of room temperature water. In order to investigate the source of this anomaly, we use

three very successful water models- q-TIP4P/f [222], NN-B3LYP+D3 [196] and MBPOL [223] - to

estimate the proton momentum distribution and the mean proton kinetic energy respectively

using open and closed PIMD simulation for ice and supercooled water at 271 K and liquid

water at 296 K and 300 K using 64 replicas. Since proton momentum distribution and quantum

kinetic energy are dominated by short range interactions, we used small simulations cells

of water and ice containing 64 molecules and 96 molecules, respectively at experimental

densities. Four proton disordered structures were used for simulating ice. To avoid the huge

computational cost of ab initio path integral simulations, we use a neural network [224,225] fit to

reference density functional theory calculations using the B3LYP hybrid functional [226] and D3

empirical Van der Waals corrections [130], that was shown in previous publications to provide

very accurate estimates of the quantum properties of the first-principles reference at a fraction

of the cost [196,218]. Since the MBPOL potential also has a cost that is not negligible, we fit a

short-range NN potential [224,227] to MBPOL energy and forces (parameters of the fit provided

in the SI) and use it together with the i-PI implementation [142] of multiple timestep molecular

dynamics [40] and ring polymer contraction [113], performing a full MB-POL evaluation every

4 steps, and on a contracted ring polymer with 8 beads , which are very conservative values

that still allows us to achieve a 20× speedup in terms of wall-clock time. The end-to-end

vector and the forces acting on the target atoms were sampled every 2 fs. The momentum

distributions were calculated using the scaled gradient estimator from 40 ps long simulations.

For ice, distributions obtained from different starting configurations were further averaged.
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Figure 5.1 – The difference between the radial proton momentum distribution and the Maxwell-
Boltzmann distribution with the same second moment for B3LYP+D3 (red), MBPOL (blue),
q-TIP4P/f (green) and experimental water (grey). The dashed lines correspond to a recent
DINS experiment [169] on room temperature, supercooled and hexagonal ice. The dotted
line corresponds to a distribution constructed from a Inelastic Neutron Scattering (INS)
experiment for hexagonal ice at 271 K [228].

Phase B3LYP+D3 MBPOL q-TIP4P/f Exp

[Å−1] [Å−1] [Å−1] [Å−1]

271 K [SW] (3.1, 3.9, 7.0) (3.0, 4.0, 7.1) (3.0, 4.0, 7.0) (3.7, 4.3, 6.6)
271 K [Ih] (3.4, 3.9, 6.9) (3.1, 3.9, 7.1) (3.1, 4.0, 7.0) (2.9, 5.0, 6.5)
300 K [W] (3.0, 4.1, 6.9) (3.0 , 3.9, 7.2) (3.0 4.0 7.1) (3.1, 5.3, 5.8)

Table 5.1 – Mean components of the proton kinetic energy along the x, y, z directions for
various phases of B3LYP+D3, MBPOL and q-TIP4P/f water, obtained by fitting the spherical
average of an anisotropic Gaussian to the momentum distribution calculated from open
PIMD simulations with 64 imaginary time slices. The x direction is along the hydrogen bond
and y, z lie on the plane perpendicular to it. The residuals of the fit are of the order of 10−3.
Experimental results for ice and supercooled water are from a recent DINS measurement [169]

while those for room temperature water were obtained from a private communication [229].

5.2 Quantum kinetic energies

We first consider the mean proton kinetic energies listed in Table 5.1. Our results for su-

percooled water and ice are in excellent agreement with the experiment [169] and the values

calculated at the triple point in an earlier work [218]. Contrary to the experimental observation,

however, the increase in kinetic energy between the supercooled liquid and room-temperature

conditions suggests that the proton doesn’t experience any softening of free energy along the

proton transfer coordinate, and that the change in kinetic energy is consistent with a simple

increase in thermal excitations of the low-frequency degrees of freedom.
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5.3 Anisotropic proton momentum distributions

In order to provide a more complete picture that can help reconcile simulations and exper-

iments, we then proceed to evaluate and compare the full proton momentum distribution.

Given that the shape of n(p) contains an overwhelming dependence from the mean kinetic

energy, we decided to show in Fig. 5.1 the difference between the momentum distribution and

the Maxwell-Boltzmann distribution corresponding to the quantum kinetic energy reported

in table 5.1. This particular representation highlights the anisotropy introduced by the zero

point energy of the collective modes. We find that distributions calculated by the three models

are very close to each other. This is in line with the results of an earlier work [150] which showed

that the kinetic energy is distributed along the stretch, bend and hindered rotation in the

ratio ∼ 4 : 1.5 : 1 for all the models, and is consistent with the main vibrational frequencies

of water and with inelastic neutron scattering measurements [221]. DINS experiments [169]

are also in good qualitative agreement with the models, although they consistently show a

less-pronounced degree of anisotropy. There is also a small spread in the curves measured

at different temperatures and between DINS experiments – that obtains directly n(p) – and

inelastic neutron scattering data [221], that also give qualitative agreement with the computed

anisotropy even though it obtains n(p) from an indirect analysis. It should be stressed that

the nature of the spherical averaging is such that the anisotropic momentum distribution

depends rather weakly on the anisotropy of n(p), leading to large error bars on the anisotropy

coefficients, and to difficulties in identifying inhomogeneities in the sample [230]. The com-

puted n(p) can be fitted to an anisotropic Gaussian lineshape [132,173] with essentially no error,

which strongly suggests that (at least for room-temperature water) the spherically-averaged

distribution does not contain enough information to infer the presence of deviations from a

quasi-harmonic description. Table 5.1 shows that the three models are in excellent, quanti-

tative agreement with each other, and small changes as a function of temperature, whereas

experimental values are somewhat more erratic, probably due to the difficulty in separating

the anisotropic contributions, that are strongly correlated in the fit.
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Figure 5.2 – Panel A shows the temperature dependence of the proton kinetic energy cal-
culated using closed PIMD simulations that sample the N PT ensemble using B3LYP + D3
(red), MBPOL (blue) and QTIP4P/f (green) water potentials. The square markers correspond
to the values obtained from NV T simulations at experimental densities. Panel (B) shows
the temperature dependence of the difference between the proton momentum distribution
calculated using N PT open PIMD simulations and the Maxwell-Boltzmann distribution with
the same mean kinetic energy for B3LYP + D3 (left), MBPOL (middle) and QTIP4P/f (right)
water potentials.

5.4 Constant pressure ensemble

In order to rule out subtle sources of error in the simulations, such as the fact that melting

points of different models can vary substantially, and that the equilibrium molar volumes

at constant pressure do not always correspond to the experimental density that we used

in our NVT simulations, we also performed a scan of the temperature range from 250 K

to 340 K, running for each water model 10 additional NpT simulations using both closed

paths (to estimate the kinetic energy) and open paths (to estimate the anisotropy). After

successfully equilibrating the densities, we study the temperature dependence of the kinetic

energy and find that all the models display a monotonic increase in the kinetic energy with

essentially the same slope (figure 5.2) confirming that the disagreement with experiments

at room temperature is not an artifact of our simulation protocol. Density effects are also

small, as evidenced by the minute differences between NVT and NpT results. The anisotropic

components of n(p) are even more stable across different temperatures, being essentially

constant for each model over a temperature range of almost 100K – which is small compared

to the scale of the quantum kinetic energy of protons.
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5.5 Discussion

In summary, we find that the particle momentum distribution of water does not show any trace

of anomalous behavior when going from the supercooled limit to temperatures well above

room temperature, even when considering the full, anisotropic form of n(p). Our analysis

is particularly thorough, including three very different water models: a fixed point-charge

model, a dissociable machine-learned potential fitted to hybrid density functional theory data,

and a state-of-the-art many-body forcefield that has shown consistently quantitative accuracy

in reproducing many of the classical and quantum properties of water [231,232,233]. We repeat

our simulations at different thermodynamic conditions, spanning a range of 100 K around

the experimental melting point, to exclude the possibility that anomalous effects may be

shifted to a different temperature due to the inaccuracies of the models. The three potentials

are in excellent agreement with each other, despite being based on widely different models

and physical approximations. The ≈ 2 meV accuracy of DINS measurements is not sufficient

to discriminate between them. This should elicit new efforts to improve the accuracy and

reliability of DINS experiments, that despite the technical challenges offer a rather unique

approach to probe quantum nuclear fluctuations in aqueous environments, complementing

other kinds of neutron spectroscopies [221]. We suggest that ice Ih constitutes a very promising

system to be used for benchmarking. Measurements on single crystals should give a better

handle of the anisotropy of the distribution, and allow for a more stringent benchmark of

both atomic-scale models and of measurements of the integrated, radial distribution, that

is necessary before a comparison in more challenging conditions [210] can be meaningfully

attempted. Meanwhile, the scaled-gradient estimator we introduce here, together with the

efficient and comprehensive implementation in an open-source code that can be interfaced

with many electronic-structure packages, and the use of short-range machine-learning poten-

tials that reduce the cost of performing high-end ab initio path integral calculations, should

make it possible to further test the accuracy of the atomistic models for this difficult problem.

Efforts in this direction should focus on the remaining disagreement between experiments

and models at room temperature. As we have shown, the computed particle momentum

distribution is essentially the same for increasingly accurate potentials, that also exhibit a

kinetic energy that is consistent with equilibrium fractionation data of liquid and gaseous
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water. If this last discrepancy cannot be traced to an experimental problem, it might be the

signal for an extraordinarily elusive anomalous behavior of this deceptively simple substance.

98



6 Quantum spectroscopy of Water

Complementing the study of the anisotropic proton momentum distributions of different

phases of water, we calculate quantum spectroscopic quantities for solid and liquid phases of

water, that shed light on the chemical environment of atoms by looking at their responses to

the electric field of neighbouring atoms. Quantitatively accurate spectroscopic predictions

of water are of utmost important, as they not only enrich our understanding of the hydrogen

bond network across different phases of water [168], but also lay the foundation for reliable

modelling of more complex systems such as aqueous solutions of acids and bases [56], and

phenomena such as aqueous reactions [234], and dissolution of salts and molecular crystals in

water [235].

Simulating IR and Raman spectra of water in an accurate manner presents several challenges,

such as a high accuracy in modelling the Born Oppenheimer (BO) potential energy landscape

(PES), and dielectric response properties such as polarization and polarizabilities, as well

as an explicit treatment of quantum dynamics of the nuclear degrees of freedom. Here, we

use our deconvolution scheme (see Chapter 4), that has been shown to recover quantum

dynamical properties from path integral simulations accelerated by Generalized Langevin

equations (GLE) thermostats, to inexpensively model quantum nuclear dynamics of water in

The following chapter is partially based on the journal article V. Kapil, D. M. Wilkins, J. Lan, and M. Ceriotti,
“Inexpensive modeling of quantum dynamics using path integral generalized langevin equation thermostats,” The
Journal of Chemical Physics, vol. 152, p. 124104, Mar. 2020. VK was involved in the design of the research, in the
development and implementation of the method, in running the calculations, in performing analysis and in the
writing of the manuscript.
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combination with first principles level predictions of the PES and dielectric responses using

state of the art machine learning techniques.

6.1 Machine learning models

In order to inexpensively evaluate the dipole and polarizability surfaces, we trained a new

model based on the recently developed symmetry-adapted Gaussian process regression (SA-

GPR) [236] framework, which has proven to be capable of generating highly accurate models of

the polarizability of organic molecules [237] and of molecular crystals [238]. We trained models

for the polarizationµ of pure water and for the polarizabilityα, using 1000 boxes of pure water,

each containing 32 molecules, generated by replica exchange molecular dynamics (REMD)

simulations with the q-TIP4P/F [207] water model 1. The polarization, µ and polarizability,

α for each frame was calculated at the DFT/PBE-USPP level using the modern theory of

polarizability [239], with a plane-wave cutoff of 55 Ry and a 5×5×5 k-point grid.

We generated models for the polarization (a vector quantity) and the polarizability (a rank-2

symmetric tensor) using symmetry-adapted Gaussian-process regression (SA-GPR), along

with λ-SOAP kernels [236]. We will refer to the models as µH2O for polarization and αH2O

for polarizability. The µH2O model predicts the polarization of a bulk water system A as a

spherical tensor of order λ= 1 µ(A ) with components m ∈ {−1,0,1},

µm(A ) = ∑
i∈env

∑
m′

k1,ζ
m,m′(A ,Xi )wi ,m′ , (6.1)

where i is a local environment extracted from the training set, k1,ζ
m,m′(A ,Xi ) is a λ= 1 spherical

kernel between molecule A and environment Xi , and wi ,m′ is a weight; the vector of weights

w is obtained by a regularized matrix overlap.

The subscript ζ in the definition of the kernel indicates that it is taken by multiplying a pure

The work on training machine learning models was performed by Dr. David M. Wilkins
1These data first appeared in Ref. [236] and can be found at https://archive.materialscloud.org/2018.0009/v1
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spherical kernel by a scalar kernel raised to some power,

k1,ζ
m,m′(A ,Xi ) = k1

m,m′(A ,Xi )(k0(A ,Xi ))ζ−1. (6.2)

The model was optimized with respect to the following hyperparameters:

• nmax, the number of radial functions used to resolve the local density.

• lmax, the highest degree of spherical harmonic used to resolve the local density.

• ζ, the exponent defined by Eq. (6.2).

• ncomp, the number of spherical harmonic components retained to represent each envi-

ronment, selected by a farthest-point sampling (FPS) method [240].

• nenv, the number of environments drawn from the training set [241,242] The environments

to be used were chosen by furthest point sampling.

• σG , the width of Gaussians used to produce the SOAP density field [243].

• r0 and m, parameters for radial scaling of the weights associated with each atom in a

local environment [244]. The radial cutoff for an environment was set to rc = 5.0 Å.

• σ2, the regularization applied when inverting kernel matrices.

These hyperparameters were optimized with 5-fold cross-validation using 800 of the molecules.

Table 6.1 gives the optimal hyperparameters for µH2O (the same parameters were used here

to build the spherical kernel and the scalar kernel used in applying Eq. (6.2)).

Table 6.1 – Hyperparameters used to build the µH2O model.

nmax lmax ζ ncomp nenv σG /Å r0/Å m η

6 4 2 400 1000 0.20 2.0 5 1×10−5

The αH2O model predicts the λ = 0 (scalar) and λ = 2 components of the polarizability
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separately as,

α0(A ) = ᾱ0 + ∑
i∈env

k0,ζ(A ,Xi )wi , (6.3)

α2
m(A ) = ∑

i∈env

∑
m′

k2,ζ
m,m′(A ,Xi )wi ,m′ , (6.4)

where ζ is defined analogously to Eq. (6.2), and m,m′ ∈ {−2,−1,0,1,2}. ᾱ0 is the average of

the scalar part of the polarizability in the training set. The two predictions are then com-

bined to give a prediction of the full Cartesian tensor. The definitions of these two spherical

components are as given in Ref. [237]
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Figure 6.1 – Left: Learning curves for the µH2O (top) andαH2O (bottom) models for the dipole
moment µ and polarizability α of bulk water, showing the root mean square error (RMSE)
in predicting µ and α of a testing set containing 200 frames as a function of the number of
frames used to train the model. Right: Parity plots (right) of the predictions of these models
with ideal predictions shown in dashed black lines.

The αH2O model is comprised of two models, which are trained separately, and each of which

has its own set of hyperparameters. Though the λ = 0 kernel that is used in building the

λ= 2 model does not need to be the same as that used in building the λ= 0 model, the same

hyperparameters were used for each in building αH2O. Table 6.2 gives the hyperparameters

used in building this model.

Table 6.2 – Hyperparameters used to build the αH2O model.

nmax lmax ζ ncomp nenv σG /Å r0/Å m η

λ= 0 8 6 2 400 1000 0.35 2.0 4 1×10−6

λ= 2 4 2 2 400 1000 0.30 2.0 4 1×10−6

µH2O predicts the polarization per molecule with an error of 8.8×10−3 D, or ∼ 1% of the

intrinsic variation in the training set, and predicts an average molecular dipole moment
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6.2. IR and Raman spectra

of 2.8 D in this set, which is well within experimental error bars [245]. αH2O predicts the

polarizability per molecule with an error of 5.9×10−2 a.u., or ∼ 11% of the intrinsic variation

in the training set. Fig. 6.1 summarizes the performance of these two models in predicting the

dielectric response properties of bulk water.
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Figure 6.2 – Vibrational density of states as calculated by the velocity autocorrelation Cv v (ω)
for liquid water at 300 K ((a) and (c)) and ice ((b) and (d)) at 200 K with PIGLET (green) and
TRPMD (red) methods, using neural network potentials trained on revPBE0+D3 ((a) and (b))
and B3LYP+D3 ((c) and (d)) energetics.

6.2 IR and Raman spectra

We first generate 100 ps long trajectories with opt(V) PIGLET parameters, using 12 replicas for

hexagonal ice at 200 K and 6 replicas for liquid water at 300 K. In order to assess the comparative

importance of the underlying potential energy surface and that of the approximations to

quantum dynamics, we ran simulations with two ML potentials based on a Behler-Parrinello

neural network framework [224] – the one introduced in Ref. [2] based on B3LYP+D3 reference

calculations, and the one introduced in Ref. [246], based on revPB0+D3. As shown in Fig. 6.2,

the peaks in the deconvoluted PIGLET velocity-velocity correlation spectra agree well with

those from thermostatted ring polymer molecular dynamics (TRPMD), except for a red-shift

of the stretching of ≈80 cm−1, similar to what observed for q-TIP4P/f. For this reason, in what

follows we only discuss results for PIGLET, and compare them to experiments.

As shown in panels (a) and (c) of Fig. 6.3, the stretching band of the IR spectrum of liquid
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Figure 6.3 – Infra-red Cµ̇µ̇(ω) and the reduced depolarized Raman R(ω) spectra calculated
using the autocorrelation of the time derivative of the dipole moment and the polarizabilty for
hexagonal ice (bottom) at 200 K and liquid water (top) at 300 K using the PIGLET thermostat.
Simulations were performed using neural network potentials trained on B3LYP+D3 (red) and
revPBE0+D3 (green) data. Black curves show results obtained from experiments [247,248,249].
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water is well reproduced by the revPBE0+D3 potential, in agreement with Ref. [189], while the

B3LYP+D3 potential red shifts the stretching band with respect to the experimental result [247].

The librational band is well reproduced by both potentials. The only major discrepancy in

the spectra is the over-softening of the bending band, which is an artefact that was already

observed in Ref. [2] and linked to a shortcoming of the neural network potential. As shown in

panels (b) and (d) of Fig. 6.3, the position of the stretching band of the reduced depolarized

Raman spectrum obtained from revPBE0+D3, computed using the time derivative of the

instantaneous polarizability of the system following the procedure of Ref. [250], is in excellent

agreement with both experimental result and previous calculations [189]. As in the case of

IR, B3LYP+D3 systematically red shifts the stretching band with respect to the experimental

result [248]. The bending and libration portion of the spectrum, however, is reproduced only

qualitatively. Due to the overwhelming intensity of the stretching band, the deconvolution

algorithm introduces levels of noise in the lower-frequency region that are comparable to the

intensity of the spectrum. At 200 K the position of the IR stretching band of hexagonal ice

calculated using the revPBE0+D3 potential is in excellent agreement with experiments [249]

as shown in the bottom panel of Fig. 6.3. However, the Raman stretching band of ice is

blue-shifted by revPBE0+D3 and fortuitously well reproduced by the B3LYP+D3 potential,

suggesting that a significant part of the error in modeling the Raman spectrum of ice is due to

the inherent limitations of DFT. The agreement of the stretching IR and Raman peaks with

the experiments could also arise from a partial error cancellation from the approximations

in DFT, and the neglect of the non-centroid components of the spectra. Therefore, it would

be interesting to figure out the extent of non-linearity of the dipole and polarizability time

correlation functions by comparing their t → 0 limit, with the results from path integral

molecular dynamics. Overall, the accuracy of our results shows that the approximation

inherent in applying the deconvolution procedure to the correlation spectra of non-linear

dielectric responses does not introduce major artefacts, and that the level of consistency

between different approximate quantum dynamics methods is equivalent or better than that

between different flavors of (hybrid) density functional theory.
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6.3 Discussion

When combined with ML potentials trained on dispersion corrected hybrid DFT and with ML

predictions of dielectric responses computed at the GGA level, the deconvolution method

provides IR and Raman spectra of water that are in good agreement with experiment, with

a discrepancy with respect to TRPMD that is comparable to the difference between two

reference electronic-structure methods. The ML response functions include non-linear terms,

showing that the dynamical correction – despite having been derived for linear operators –

performs very well also in the presence of mild non-linearities. The reduction in computational

cost due to GLE thermostats, will make it possible to routinely assess the importance of

quantum nuclear effects in the dynamical behavior of gas phase molecules, and complex

condensed-phase systems, where the combination of TRPMD or centroid molecular dynamics

with first-principles energetics becomes prohibitively expensive. Our results show that ML

dielectric predictions, together with dynamical corrections to GLE-accelerated path integral

simulations open the way to accurate and computationally efficient modeling of both standard

spectroscopic probes such as IR and Raman, and of more advanced spectroscopies such as

second harmonic scattering and sum-frequency generation.
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7 Modeling structural and thermal

properties of loaded metal-organic

frameworks

Tailor-made porous materials [251] like metal-organic frameworks (MOFs) [252] are at the core

of emerging technologies due to their exceptional physical and chemical properties, such

as a tunable ultrahigh porosity and an associated enormous gas storage capacity. Therefore,

they have been proposed for applications such as adsorbed natural gas (ANG) storage in

vehicles [253,254], adsorption-driven heat pumps [255,256], and carbon capture and sequestration

(CCS) [257,258]. While a lot of work still needs to be done to optimize the crucial adsorption

and storage properties of these porous materials, [259] studies on other critical requirements

such as heat management are gaining interest. [260] For instance, the heat capacity, i.e., the

amount of energy required to increase the material’s temperature, is a fundamental thermody-

namic property of interest in these applications which involve large thermal fluctuations, as

adsorption and desorption processes imply the release or consumption of energy. Moreover,

the heat capacity of the MOF affects the energy penalty to regenerate the adsorbent in, for

example, CCS. [261] To date, however, information on the heat capacity is lacking for most

MOFs [161,262] and the influence of adsorbed guest molecules on the heat capacity has not

yet been investigated, in contrast to other thermal properties such as the thermal expansion

The following chapter is partially based on the journal article V. Kapil, J. Wieme, S. Vandenbrande, A. Lamaire,
V. Van Speybroeck, and M. Ceriotti, “Modeling the Structural and Thermal Properties of Loaded Metal–Organic
Frameworks. An Interplay of Quantum and Anharmonic Fluctuations,” Journal of Chemical Theory and Compu-
tation, vol. 15, pp. 3237–3249, May 2019. VK was involved in the design of the research, in the development and
implementation of the method, in running some of the calculations, in performing analysis and in the writing of
the manuscript.
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behavior and the thermal conductivity. [263,264]

Within this context, an efficient and accurate simulation protocol to tackle the structural and

thermal properties of MOFs including all the relevant physical effects could facilitate a better

understanding of the structure-property relations and suggest design principles for materials

with improved properties. Due to the importance of finite-temperature effects, anharmonicity,

and nuclear quantum effects (NQEs), the modeling of the thermophysics of MOFs is generally

not a trivial exercise. The first two effects have already been the subject of many investigations

and were included in our protocol to characterize the thermodynamics of MOFs. [265,266] Fur-

thermore, very recently, some of the present authors highlighted the necessity of an accurate

theoretical framework for the design of thermoresponsive MOFs. [267] However, the impact of

NQEs has so far received far less attention within the MOF community, despite the many light

atoms contained in the crystal structure and present inside the pores. [268,269,270]

In this regard, path integral molecular dynamics (PIMD) [68] provides an ideal reference frame-

work for the evaluation of thermodynamic averages, as it seamlessly captures both NQEs and

the anharmonic motion of nuclei. The statistics of distinguishable quantum particles can be

obtained through the equivalence between the thermodynamics of a quantum system and a

classical ring polymer containing P replicas of the system. [271] In the limit of large P values,

NQEs can then be systematically accounted for. The major downside of this technique is the

associated high computational cost, i.e., P times the corresponding cost of classical molecular

dynamics (MD) simulation. However, several methodological advances [134,272,196,91,142,135]

that enable a reduction of the computational cost have made it a mainstream technique for

material modeling. [273]

An additional difficulty arises from the fact that most experiments and practical applications

are performed in isothermal-isobaric conditions, while the vast majority of atomistic simula-

tions are performed with a fixed unit cell, corresponding to isochoric conditions. As most solid

materials have a very small compressibility, the difference between the two ensembles is often

negligible. For MOFs on the contrary – particularly when loaded with a gas – the behavior in

isobaric and isochoric conditions can be very different. Some of us emphasized the impor-

tance of taking into account the variations of the cell shape to simulate properties of flexible
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Figure 7.1 – The structure of the MOF-5 with a gas loading x of 0, 50, 100, and 150 molecules
of methane (left to right) in the conventional unit cell (8(Zn4O(CO2)6) · x CH4). The oxygen,
carbon, and zinc atoms are shown in red, silver, and blue respectively. For the sake of aesthetics,
the hydrogen atoms are not included. The methane molecules are represented by silver
tetrahedra.

MOFs. [265] While algorithms for performing path integral simulations at constant pressure

conditions exist [72,73], an accurate evaluation of the thermophysical properties requires a very

large number of replicas to reach convergence. Here, we use the high-order path integral

method that we have developed (see chapter 2), to greatly accelerate the convergence of these

simulations.

This method, in combination with a first-principles-based force field [274,275,266], makes it

possible to characterize the structural and thermophysical properties of complex molecular

systems such as guest-loaded MOFs. We investigate the archetypical case of the well-known

MOF-5 [276,277] in the presence and absence of methane in its pores (see Figure 7.1). Evaluating

and understanding the impact of methane adsorption on the properties of MOFs is especially

important as they have been proposed as potential adsorbents for natural gas storage ap-

plications. [253,259,254] We demonstrate the crucial role of a complete statistical-mechanical

description of the quantum and anharmonic fluctuations in MOFs for a correct description

of the structural properties and the heat capacity of guest-loaded MOFs. By meticulously

disentangling anharmonic and nuclear quantum effects for both the lattice and the guest

molecules, we are able to propose an efficient empirical calculation scheme which may be

used to screen MOFs for beneficial thermal properties on a larger scale.
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7.1 Materials

The materials that are considered in this theoretical work are pristine and methane-loaded

MOF-5 scaffolds. [276] This framework consists of Zn4O(CO2)6 inorganic nodes connected

through 1,4-benzenedicarboxylate (bdc) linkers. The unit cell is cubic and contains eight

inorganic nodes, as shown in Figure 7.1. We consider three different loadings x of 50, 100,

and 150 methane molecules in the conventional unit cell (8(Zn4O(CO2)6) · x CH4), which

encompass both the low- and high-adsorption regime. [278,253] At 100 bar and room tempera-

ture, for example, approximately 120 methane molecules are present per conventional unit

cell, as experimentally measured by Mason et al. [253]. [279] It is also important to note that

experimentally the chemical potential is controlled and not the number of guest molecules,

and that the experimental loading is highly dependent on the temperature. For computational

convenience, we performed all our molecular dynamics simulations at a fixed number of

particles. The purpose of comparing multiple loads is only to provide qualitative insight into

the interplay between temperature, framework, and guest molecules rather than to compare

directly with experiment.

7.2 First-principles-derived force fields

The molecular simulations are performed using newly developed force fields for MOF-5

and methane. They are derived with QuickFF [274,275], a software package developed to de-

rive force fields for MOFs in an easy yet accurate way based on information obtained from

first-principles input data. Isolated cluster models were used to generate the required first-

principles input data, which includes the equilibrium geometry and Hessian together with

the atomic charges. Within the QuickFF protocol, the quantum mechanical potential energy

surface (PES) is approximated by a sum of analytical functions of the nuclear coordinates

that describe the covalent and noncovalent interactions. The covalent interactions, which

mimic the chemical bonds between the atoms, are approximated by different terms as a

function of the internal coordinates (bonds, bends, out-of-plane distances, and dihedrals).

The noncovalent interactions are composed of electrostatic and van der Waals interactions.

The guest-host interactions between MOF-5 and methane only include noncovalent terms.
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7.3 Calculation of thermodynamic observables

The simple OP estimators for the total energy (E) and enthalpy (H) are listed in Chapter 3.

Since the standard estimators for the heat capacity in path integral methods tend to be very

complex and exhibit a large variance, we have derived an OP double-virial estimator for the

isobaric (and isochoric) heat capacity CP = ∂H
∂T . The derivation is presented in chapter 3,

where it is also shown that this estimator has very good statistical properties and outperforms

existing heat capacity estimators [163]. However, in this study we computed thermophysical

properties over a broad range of temperatures and found it more convenient to estimate CP

by means of a finite difference approximation to the temperature derivative of the enthalpy:

CP (T ) = ∂H

∂T
≈ H |T+∆T − H |T−∆T

2∆T
. (7.1)

A dedicated estimator will prove useful in simulations that are targeted at a single, specific

temperature.

7.4 Computational Details

The required first-principles cluster data for the determination of the covalent terms in the

force field are generated with Gaussian 16 [280] using the B3LYP [281] exchange-correlation

functional. A 6-311G(d ,p) basis set [282] is used for the C, O, and H atoms, together with the

LanL2DZ basis set for Zn. [283] The atomic charges are derived with the Minimal Basis Iterative

Stockholder (MBIS) partitioning scheme [284]. The atomic charges of the MOF-5 clusters are

obtained from the PBE [285] electron density computed with GPAW [286]. For methane, the

atomic charges are derived from the B3LYP all-electron density obtained with Gaussian 16.

The parameters of the van der Waals interactions are taken from the MM3 force field. [287,288].

The van der Waals interactions are calculated up to a cutoff of 15 Å and a tail correction is added

to the potential and its derivatives. [289] The initial configurations of the methane molecules

are generated using RASPA [290] by inserting methane molecules at random positions, while

ensuring that only realistic intermolecular distances are retained. Afterwards a canonical

Monte Carlo algorithm was used to equilibrate the positions.
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For MOF-5 with and without methane, we perform classical and path integral MD simulations

at a mechanical pressure of 1 bar and at different temperatures in the range of 100 K to 500

K. The classical MD simulations of both loaded and pristine MOF-5 are performed using

Yaff in the classical isothermal-isobaric ensemble ensemble, without constraints on the

unit cell. [265] While the covalent interactions are calculated by Yaff, the expensive long-

range interactions are computed by LAMMPS [291] in a computationally efficient manner. The

equations of motion are updated via a Verlet scheme, with a timestep of 0.5 fs. The temperature

is controlled via a single Nosé-Hoover chain consisting of three beads, with a relaxation time

of 100 fs. [292,293,294] A Martyna-Tobias-Klein barostat with a relaxation time of 1000 fs is used

to control the pressure. [295,51,265] We performed five independent runs of 500 ps, starting from

a different random seed and from different methane positions. For the empty MOF-5, a single

trajectory of 500 ps was used. An equilibration time of 100 ps was considered.

The PIMD simulations are performed with the universal force engine i-PI [5] in the Suzuki-

Chin isothermal-isobaric ensemble, in which the cubic symmetry is kept fixed. The evaluation

of the forces is carried out by Yaff and lammps, similar to the classical MD simulations,

while the time evolution of the nuclei to sample the appropriate thermodynamic ensemble is

done with i-PI. To control the temperature, a PILE-L thermostat [117] is applied to the system

and a white noise Langevin thermostat [42] is applied to the cell. To control the pressure, a

path-integral version of the Bussi-Zykova-Parinello (BZP) barostat [296,73], adapted to the SC

scheme, is used. The time constants for the thermostats and the barostats are same as the

ones used in the classical simulations. A B AO AB type [297] MTS scheme [40] is used to integrate

the equations of motion. The computationally cheap short-range terms of the force field

are computed on 64 replicas and integrated with a timestep of 0.25 fs. The remainder of the

interactions, i.e. the expensive long-range interactions, are computed on 8 replicas using

RPC and integrated with a timestep of 1 fs. As discussed above, a finite differences strategy is

adopted to determine the heat capacity from the enthalpy with a temperature interval of 25 K.

We performed thirty independent runs of 50 ps, starting from a different random seed and

from different methane positions. For the empty MOF-5, five independent trajectories of 125

ps were used. An equilibration time of 25 ps was considered.

The importance of the inclusion of NQEs and anharmonicities in the modeling of the heat
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Figure 7.2 – Panels (a) and (b) show the lattice parameter a of MOF-5 with x = 0,50,100,150
molecules of methane as a function of temperature (T ), obtained from classical MD and PIMD
respectively. Panel (c) shows the linear thermal expansion coefficient (α) as a function of x.
The classical and quantum estimates are respectively shown with dashed and solid lines. Error
bars indicate statistical uncertainity.

capacity is probed by comparing the results with other methods such as classical MD, which

neglects NQEs, and the harmonic approximation, which neglects anharmonicity. We discuss

the accuracy of these commonly-adopted approximations and provide empirical relations,

which might resolve the general lack of knowledge of the heat capacity of this class of materials.

7.5 Structural properties

To unravel the influence of adsorbates on the framework and finally on the heat capacity,

we start by investigating the structural response of MOF-5 for various loadings and tempera-

tures. Here, one could expect that a proper inclusion of NQEs already becomes important as

zero-point effects were recently found to substantially increase the volume of MOF-5 when

comparing classical MD with PIMD. [270] Additionally, NQEs have previously been observed

to change the volume of bulk alkanes by about 10%. [298,299,300] A comparison of Figures 7.2

(a) and (b) indeed reveals that the inclusion of NQEs increases the volume by almost 1 %

for all loadings and temperatures. Horizontally, this shift corresponds to a more substantial

temperature reduction of about 100 K.

Interestingly, the qualitative changes in the volume as a function of loading at the different

temperatures does not change appreciably with or without the inclusion of NQEs. At low tem-
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peratures, the material slightly shrinks in the presence of methane. The observed adsorption-

induced deformation can be understood by attractive van der Waals interactions between the

framework and the adsorbed methane. [301,302] At higher temperatures, by contrast, the empty

framework has the lowest volume, as entropic and kinetic effects start dominating and the

adsorbed molecules increase the internal pressure, which leads to a volumetric expansion

when increasing the loading. The main effect of NQEs on the volume of the guest-loaded

system is thus an upward volume shift, [270] which is to a large extent independent of the

number of guest molecules and the temperature.

Varying the concentration and the type of adsorbates in the framework was suggested by

Calero and co-workers [264] as a way to control and tune the thermal expansion of a system

based on classical MD simulations. We confirm that with methane it is possible to go from

the well-known negative thermal expansion behavior of the empty framework [303,304,305]

towards positive thermal expansion. A proper inclusion of NQEs in our molecular dynamics

simulations does not influence the predictions in this temperature window [270] and this

conclusion still holds with methane in the pores, as shown in Figure 7.2 (c).

A more surprising picture emerges when looking at the distribution of methane inside MOF-

5. Recent PIMD simulations [299] of bulk methane (at 110 K) have shown that NQEs lead to

significant changes in the structure of methane at low temperature, corresponding to an

overall softening of the structure and an increase in the intermolecular distance by about 0.1

Å. In contrast, in our study of methane confined in the pores of MOF-5, even at 100 K – where

NQEs are expected to be the greatest – there is no appreciable difference between the shape

of the classical and quantum distribution functions of methane, as shown in Figure 7.3. This

can be understood by the fact that the change in the structure of bulk methane comes entirely

from the isotropic expansion of the gas 1. In the case of methane molecules confined in the

pores, the low compressibility of the framework makes the expansion as observed in bulk

methane when including NQEs impossible.

This discussion shows that the structural response of MOF-5 to a varying number of methane

1A 10 % increase in volume due to NQEs, assuming the molecules to be spherical is associated with a (1.10)
1
3

times increase in the effective radius. The classical "radius" is close to 4 Å. And thus the increase in the inter-
molecular distance due to NQEs coming from the isotropic expansion of the gas is (1.10)

1
3 ∗4−4 ≈ 0.13 Å.
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Figure 7.3 – The methane distribution in the pores of MOF-5 at different temperatures as ob-
tained from PIMD simulations. Orange spots indicate high probability adsorption sites. Other
colors show the distribution of the low probability methane positions in the conventional unit
cell and represent the probability representation (from very high (orange), to high (dark blue),
to low (white) probability). The results are displayed for a loading x of 100 methane molecules
per conventional unit cell (8(Zn4O(CO2)6).
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molecules and temperature is largely unaffected by NQEs, except for the zero-point lattice

fluctuations. Our observations also corroborate the common practice of ignoring NQEs when

studying the loading of porous materials by Grand Canonical Monte Carlo simulations [290].

Nevertheless, this conclusion cannot be generalized to other adsorbates, especially those

possessing stronger intermolecular interactions such as hydrogen bonding.
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Figure 7.4 – Heat capacity CP of the empty MOF-5 as a function of temperature (T ) computed
using classical MD (dashed), PIMD (solid) and the harmonic approximation (dotted). The right
pointing arrow shows the Dulong-Petit limit. Different experimental results are shown in black
using triangular [262], square [306], and diamond [161] markers. Error bars indicate statistical
uncertainity.

7.5.1 Heat Capacity

MOF-5 has been the subject of a few experimental heat capacity studies [161,307,306,262] which

have shown that the material has a low specific (or molar) heat capacity, about 0.7 J/g·K
at room temperature, even when compared to other MOFs. Depending on the type of the

application, a large (e.g. for ANG to limit temperature fluctuations) or a small (e.g. for CCS

to limit the energy penalty) heat capacity is sought after. It is thus important to understand

how this property changes at different levels of loading and temperature, and to determine

the factors influencing the heat capacity, which is now possible using our high-order PIMD

scheme.
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In the previous section, it has been shown that classical MD can – at least qualitatively – be used

to model the structural response of MOF-5 in the presence of methane at various temperatures.

This approach is however expected to fail for the description of the heat capacity since the

heat capacity of many systems is dominated by NQEs at room temperature, as evidenced

by experimental deviations from the classical Dulong-Petit law. The most common way of

including NQEs for solids is the static harmonic approximation, using Einstein or Debye

harmonic model for solids, which is able to reproduce the heat capacity of many solids and

will therefore also be used for comparison.

We begin by presenting the estimates of the temperature dependence of the isobaric heat

capacity of the empty MOF-5 framework. As shown in Figure 7.4, the classical MD estimates

(dashed line) are in agreement with the Dulong-Petit law. The simulations yield an almost

constant value of 3 kB per degree of freedom, which indeed results in large deviations from the

experimental values. [161,307,306,262] Upon inclusion of NQEs with our PIMD scheme (solid line),

we find that the results follow the experimental measurements reasonably well up to almost

400 K. This agreement is remarkable, as these measurements are typically carried out on

the as-synthesized sample, which possibly includes solvents [161] and differs from the perfect

crystal that we have simulated. Figure 7.4 also reveals that the results obtained using the
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Figure 7.5 – Panel (a) shows the comparison of the classical (dashed), quantum (solid), and
harmonic estimates (dotted) of the isobaric heat capacity CP of MOF-5 with 100 molecules of
methane, as a function of the temperature T . Panel (b) shows the temperature dependence of
the quantum isobaric heat capacity of MOF-5 with x molecules of methane. Panel (c) shows
the quantum isobaric heat capacity of the MOF with x molecules of methane as a function of
x at 300 K. Error bars indicate statistical uncertainty.

simple and computationally inexpensive harmonic approximation (dotted line) are in good
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agreement with the exact values computed with PIMD. This implies that anharmonic quantum

contributions to the heat capacity and the effect of an adequate anharmonic sampling are

small for the empty MOF.

Another notable detail of our calculations is that the harmonic approximation was used to

estimate the isochoric heat capacity instead of the isobaric one. As the isobaric and isochoric

heat capacities are almost the same, the MOF behaves like a regular solid, despite its large

negative thermal expansion coefficient. The harmonic approximation could therefore serve as

an efficient procedure to accurately estimate the heat capacity of the empty framework in the

increasing number of high-throughput MOF screenings. [259,308]

In order to study the effect of adsorbates, we start by considering the case of a loading x of 100

methane molecules per conventional unit cell (8(Zn4O(CO2)6) · 100 CH4). Contrary to the case

of the empty framework, we could not find published experimental data for the heat capacity

of the guest-loaded framework. Although a high-level PIMD strategy might not be required

to estimate the heat capacity of the empty MOF host, PIMD proves to be crucial to capture

the correct temperature dependence of the loaded system, as can be seen in the left panel of

Figure 7.5. Here, anharmonic effects become important as we observe differences between the

PIMD results and the harmonic approximation. The discrepancy in the qualitative behavior of

the heat capacity between both techniques can be understood through the mobility of the

guest molecules in the large pores of the framework, which cannot be adequately captured by a

harmonic approximation. [309] These low-frequency anharmonic motions explain why we find

at the classical MD level a similar low-temperature dependence as in PIMD, but only PIMD

simulations include both anharmonic and nuclear quantum effects correctly. Interestingly,

the combination of both effects yields a heat capacity that does not change monotonically,

but exhibits a minimum at about 200 K.

Extending towards other loadings of methane in the middle panel of Figure 7.5, it becomes

clear that the heat-capacity minimum as a function of temperature depends strongly on the

number of guests and becomes more pronounced at higher loadings. Even when expressing

the heat capacity normalized to the total mass of the system, one can see that at a fixed

temperature Cp increases almost linearly with the loading (see Figure 7.5 (c) at 300 K).
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Figure 7.6 – Panels (a), (b) and (c) respectively show the decomposition of the specific heat
capacity of the MOF and the adsorbate system into host, host-guest, and guest-guest contri-
butions for different gas loadings (x). The curves were obtained by deriving a polynomial fit to
the energy as a function of temperature.

To rationalize the origin of the non-monotonic temperature dependence of the heat capacity,

we determine which interactions give the most substantial contribution to Cp . To this end,

the force-field energy contributions are decomposed in terms of the host, host-guest, and

guest-guest interactions. Figure 7.6 displays the most important results of this analysis. The

host and guest-guest contributions to the specific heat capacity are visualized in panels (a)

and (c). The shape of the different host curves appears to be independent of the loading.

In fact, when rescaled to the mass of the empty MOF, the curves coincide with one another

and with the curve obtained within the harmonic approximation. This demonstrates that

the degrees of freedom of the MOF-5 framework, which are more strongly quantized, are

predominantly harmonic and do not change significantly due to the interaction with methane.

Their contribution to the total heat capacity per unit mass, however, decreases with the loading

due to a change in the mass balance. The guest-guest interactions, on the other hand, are

relatively constant and only show a small increase when going from 100 K to 500 K, due

to the activation of high-frequency vibrational modes. The most interesting contribution

arises from the host-guest interactions, which explains the non-monotonic behavior of the

specific heat capacity of the guest-loaded system. The contribution of these interactions

decreases with a sharp temperature dependence when sufficient guest molecules are present

inside the pores. The large heat capacity at temperatures lower than 100 K originates from

the known first-order structural phase transition of methane in MOF-5 at 60 K, [310,311] from
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Figure 7.7 – The decomposition of the total heat capacity of MOF-5 with 100 methane
molecules per unit cell into covalent (COV), electrostatic (EI), and van der Waals (DISP)
contributions. The curves were obtained by deriving a polynomial fit to the energy as a
function of temperature.

which we observe the decreasing tail. Since the methane molecules are more localized at low

temperatures, the attractive host-guest interactions allow to efficiently store thermal energy.

At higher temperatures, from 250 K to 500 K, the host-guest contributions become negligible

as the confined guests become more mobile and less bound to the framework, so that the

increase in thermal energy can no longer be stored in the physical interactions between the

methane guests and the MOF-5 host.

Another decomposition of the force-field energy in terms of the covalent, electrostatic, and

van der Waals interactions shows that the short-range covalent interactions and thus the

network of chemical bonds (Figure 7.7) dominates the contributions to the heat capacity. For

the empty MOF-5 framework, the noncovalent interactions are negligble. This confirms that

the heat capacity of empty MOF-5 can be approximated by considering only contributions

from the separate molecular fragments of the material [161] and suggests why the harmonic

approximation works well for this material. For the loaded framework, the noncovalent part

starts to play a role, which is especially true for the host-guest interactions. Not surprisingly,

in the case of nonpolar methane molecules, these interactions are dominated by the van der
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Waals terms in the force field. This suggests that the use of different, more polar, guests in

which electrostatic interactions play a more prominent role (e.g. CO2) could give rise to other

interesting phenomena. However, care must be taken in interpreting these different terms, as

a separation is not unambiguously defined and might be force-field dependent.

7.5.2 The interplay of gas loading, anharmonicities, and quantum effects

Our analysis of the structural and thermal properties of methane-loaded MOF-5 shows that

the total system does not always need a full treatment of anharmonicities and NQEs. This

suggests that a full path integral sampling of the entire system may not be necessary, espe-

cially if qualitative trends are to be studied. Hence, inspired by our results, we propose an

empirical formula for the volume and the heat capacity in which the most important effects,

i.e., anharmonicities and/or NQEs, are captured and which might prove to be beneficial for

future studies of guest-loaded MOFs.

As discussed above, the main difference between the volume with or without NQEs comes

from zero-point effects in the lattice. [270] The correct volume can therefore be estimated as

follows:

V ≈ V anh
qn [MOF-5]−V anh

cl [MOF-5]+V anh
cl [MOF-5+CH4],

where anh stands for the inclusion of anharmonicities with MD, and cl and qn denote the

use of classical or path integral MD respectively. The left most panel of Figure 7.8 indicates

that this approximate volume agrees very well with the exact results obtained from PIMD

simulations. A more stringent test is the thermal expansion coefficient, which is – as shown

in Figure 7.8 (b) – also in excellent agreement with the PIMD results. For systems where a

first-principles treatment of the potential energy surface is required and PIMD simulations are

too expensive, other approximate techniques such as the quasi-harmonic approximation or

classical MD with a quantum thermostat could be used to estimate the zero-point effects [270].

In contrast, we observed in the previous section that the heat capacity of the framework could

be estimated with a harmonic approximation, while the guest-host interactions are dominated
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Figure 7.8 – Panels (a), (b) and (c) respectively show the temperature dependence of the cell
parameter (a) for MOF-5 with 50 and 150 molecules of methane, the linear thermal expansion
coefficient α of MOF-5 with x molecules of methane as function of x, and the isobaric heat
capacity CP of MOF-5 with 100 molecules of methane, obtained with classical MD (dashed),
PIMD (solid), and the approximation introduced in the work (dot-dashed). Error bars indicate
statistical uncertainity.

by anharmonicities. For that reason, we propose:

C ≈
(
C har

qn −C har
cl +C anh

cl

)
[MOF-5+CH4],

in which the high frequency modes of adsorbate and the MOF are treated in a harmonic

fashion and the host-guest interactions are treated classically. For C har
cl , the Dulong-Petit law

can be used. The proposed relation is analogous to similar corrections that are routinely used

to compare the heat capacity obtained from classical simulations with experimental data. [312]

As shown in the rightmost panel of Figure 7.8, this approximation works really well for this

system, and is even able to qualitatively reproduce the heat capacity minimum for a loading of

100 methane molecules. Beyond 200 K, the agreement between the empirical expression and

the exact PIMD becomes quantitatively correct. This method could thus be an inexpensive

route to estimate the heat capacity of guest-loaded MOFs.

7.6 Discussion

To summarize, we used the high-order path integral method to calculate the isobaric thermo-

physical properties of materials, that is generally applicable and therefore ideally suited to the
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study of guest-loaded MOFs. The method is rigorous and can be seamlessly combined with

other cost-reduction techniques, which facilitates a huge reduction of the computational cost

compared to standard techniques.

We investigated the heat capacity of the prototypical MOF-5 loaded with different numbers of

methane molecules. We observed that the level of statistical sampling that is needed to achieve

quantitative accuracy depends on the property of interest. For all the cases we considered, we

found the framework to behave in a strongly quantized manner, but to be largely amenable to

a harmonic treatment. The adsorbates, on the other hand, show only mild quantum effects in

their intermolecular interactions, but require a full anharmonic description. The heat capacity

shows a particularly subtle interplay of quantum and anharmonic fluctuations, that results in

a non-monotonic temperature dependence of the heat capacity, with a minimum around 200

K.

Through a decomposition of the heat capacity into molecular interactions, we find that the

host-guest interactions are responsible for this behavior, as their contribution to the total

heat capacity decreases with temperature. By comparing the behavior of different classes

of framework materials and guest molecules, this may reveal new design rules to optimize

the thermal behavior of a storage material over a broad range of temperatures and levels

of loading. Our approach provides an affordable route to perform benchmark studies and

approximation strategies to carry out the high-throughput studies that are needed to obtain

a complete understanding of the interplay between framework, adsorbate, and quantum

mechanical and anharmonic fluctuations that determine the thermophysical properties of

MOFs.
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8 Assessment of approximate methods

for anharmonic free energies

The free energy is a key thermodynamic quantity which provides a measure of phase stability.

Knowledge of the free energy and its derivatives with respect to temperature and applied fields

can, in principle, be used to calculate every other thermodynamic observable. Reliable predic-

tions of free energies from atomistic simulations remain a challenge because they require an

accurate description of inter-atomic interactions, as well as proper treatment of the statistical

mechanics of the nuclear degrees of freedom. The availability of computational resources

combined with developments in electronic structure theory [28,29,30,31,32,33,313,314,315,316] have

made it possible to calculate the Born-Oppenheimer (BO) surfaces that govern nuclear motion

routinely and accurately. Consequently, the accuracy of free energy calculations is often lim-

ited by the statistical sampling of the nuclear degrees of freedom [317]. For molecules and for

crystalline phases, this is most commonly performed within a harmonic approximation, which

is reasonable for weakly anharmonic systems, such as metals at low temperatures [318], but fails

close to the melting temperature [319,318] and in the presence of defects [320]. The problem is

exacerbated for the case of organic solids, which require a proper description of anharmonicity

arising from quantum nuclear motion even at room temperature [321,322,98,64]. Anharmonic

and quantum effects are also often important for systems containing light elements, such

as hydrogen [323,324,325], helium [60], water [57], ice [326,327,328], the record high-Tc conventional

The following chapter is partially based on the journal article V. Kapil, E. Engel, M. Rossi, and M. Ceriotti,
“Assessment of Approximate Methods for Anharmonic Free Energies,” Journal of Chemical Theory and Compu-
tation, vol. 15, pp. 5845–5857, Nov. 2019. VK was involved in the design of the research, in the development and
implementation of the method, in running the calculations, in performing analysis and in the writing of the
manuscript.
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superconductor SH3
[61], metal organic frameworks [62,63], as well as most molecular materi-

als [64,65]. Systems of reduced effective dimensionality such as graphene [329,330] often exhibit

stronger anharmonicity than their three-dimensional analogues.

Within the BO approximation [34] and given the BO potential, exact anharmonic free ener-

gies can be calculated using approaches based on imaginary time path integral (PI) simula-

tions [331,70]. However, these simulations have historically been considered computationally

prohibitive, when combined with an accurate electronic structure method. Consequently, a

small zoo of frameworks has been developed which approximately account for quantum an-

harmonic motion at a much lower computational cost. These invoke different approximations

and exhibit different scaling behaviour with system size.

Here, we present an extensive benchmark of the accuracy of some of the most common

approximate techniques, namely, the harmonic approximation (HAR) [332], self-consistent

phonons (SCP) [333,334], the independent mode framework (IMF) [335], and the vibrational

self-consistent field (VSCF) [335], against reference results obtained using PI thermodynamic

integration (QTI) [336,64]. Computationally efficient algorithms for these methods have been

developed and implemented in the universal force engine i-PI [337]. The accuracy and the

computational efficiency of the methods is tested on a set of solids ranging from from simple

allotropes of carbon, anharmonic but relatively rigid polymorphs of ice to polymorphs of

paracetamol that contain (nearly) freely rotating internal degrees of freedom.

8.1 Theory

To briefly outline the different free energy methods we discuss, we consider a three-dimensional

periodic system, whose minimum potential energy, “equilibrium” atomic positions form a

Bravais lattice, noting that finite and aperiodic systems simply represent the limit of infinite

period. The full ionic Hamiltonian of such a system is

Ĥ =−∑
p,i

~2

2mi
∇2

rpi
+V

({
rpi

})
(8.1)
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where mi is the mass of nucleus i , V is the BO potential governing nuclear motion, and p

and i run over the Bravais points and the nuclei within a unit cell, respectively. In practice we

perform supercell simulations using periodic Born-von Karman simulation cell h consisting

of Na ×Nb ×Nc replicas of the unit cell and with cell vectors NaRa , NbRb , and Nc Rc .

In the following we only consider Γ-point vibrational motion within the simulation cell. We

thereby sample those K-points within the first vibrational Brillouin Zone (BZ) of the underlying

unit cell, for which exp(−i K ·R) = 1 ∀ R = naRa +nbRb +nc Rc , with 0 ≤ nx < Nx . The

Hamiltonian of the system is then uniquely defined given the positions of the N particles

within the simulation cell h:

Ĥ =−~2

2
∇rM−1∇T

r +V (r,h) (8.2)

where (∇r,r) ≡ ({∇r1 , . . . ,∇r3N }, {r1, . . . ,r3N }) denotes the momenta and positions of the 3N

degrees of freedom associated with the N particles and M= Diag[m1, . . . ,m3N ]. The canonical

partition function of the system at inverse temperature β= (kB T )−1 and volume V = Det[h] is

defined as

Z (N ,V ,β) = Tr
[
exp

(−βĤ
)]

, (8.3)

where the trace can be performed over any complete basis set. In the thermodynamic limit,

the Helmholtz free energy of the system is

A(N ,V ,β) =−β−1 ln Z (N ,V ,β) . (8.4)

Direct computation of A is hindered by the computational complexity of solving the Schrödinger

equation associated with the Hamiltonian Ĥ , motivating approximate but computationally

more affordable approaches.

8.1.1 Harmonic Approximation

For small displacements, r−r0, of the particles from their equilibrium positions, r0 ≡ argminr V (r,h),

the potential can be Taylor expanded. Truncation after the quadratic term amounts to the
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harmonic approximation

V har (r,h) =V (0) + 1

2
(r− r0)K(r− r0)T (8.5)

with V (0) ≡V (r0) and K= ∇2V (r,h)
∣∣

r=r0 . The spectral decomposition of the Hessian,

K=M 1
2 UΩ2UT M 1

2 = ŨΩ2ŨT
(8.6)

provides the unitary matrix U, the mass-scaled transformation matrix Ũ, and the diagonal

matrix containing the normal mode frequenciesΩ= Diag[ω1, . . . ,ω3N ]. After transformation

to the normal mode coordinates ∇q ≡ ŨT ∇r and q ≡ Ũ(r− r0), the Hamiltonian

Ĥ har =−~2

2
∇2

q +
1

2
qΩ2qT +V (r0)

=V (0) + Ĥ com +
d∑

i=1

[
−~2

2
∇2

qi
+ 1

2
ω2

i q2
i

] (8.7)

separates into V (0), the centre of mass term Ĥ com, and a term describing a system of d = 3N−3

independent simple harmonic oscillators (SHO) whose energies and wave functions for a

given excitation state si , E har
i ,(si ) = (si + 1/2)~ωi and |φ(si )

i 〉, are known analytically. In finite

systems, global rotations decouple analogously. The centre of mass contribution to the free

energy Acom is that of a free particle in a three dimensional box with a volume and shape equal

to that of the Wigner-Seitz cell of the system, while the contribution from the free rotations of

finite systems can be computed within the rigid rotor approximation [338].

For the remaining system of harmonic oscillators, the d-body wave function of the global state

described by the d-tuple s = (s1, . . . , sd ) is a Hartree product of the independent normal mode

wave functions:

|Ψhar
(s) 〉 =

d∏
i=1

⊗ ∣∣φi ,(si )
〉

(8.8)
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and the free energy is:

Ahar(N ,V ,β) =V (0) + Acom +
d∑

i=1

[~ωi

2
+β−1 ln

(
1−e−β~ωi

)]
. (8.9)

8.1.2 Independent Mode Framework

A first approximation to anharmonic quantum nuclear motion is detailed in the work of

Monserrat et al. [335]. The potential is expanded in terms of the normal mode coordinates

V (q) =V 0 +
d∑
i

V (1)(qi )+ 1

2

d∑
i

d∑
j 6=i

V (2)(qi , q j )+·· · , (8.10)

where

V (1)(qi ) =V (0, . . . , qi , . . . ,0)−V (0) , (8.11)

is the (anharmonic) independent mode term and

V (2)(qi , q j ) =V (0, . . . , qi , . . . , q j , . . . ,0)

−V (1)(qi )−V (1)(q j )−V (0) .
(8.12)

describes pairwise coupling between normal modes. This expansion can be continued for

more general n-body terms V (n). Since one starts with the harmonic approximation, in which

the normal modes are non-interacting, the hope is that higher-order terms decrease in size

with increasing n. The validity of this assumption is discussed in section 8.3. Truncation after

V (1) amounts to the independent mode approximation with the Hamiltonian

Ĥ imf =V (0) +
d∑
i

[
−~2

2
∇2

qi
+V (1)(qi )

]
. (8.13)

Despite the presence of anharmonicity the normal modes remain independent. A Hartree

product analogous to Eq. (8.8) of anharmonic normal mode wave functions solves the Schrödinger
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equation yielding the eigenvalues E imf
i ,(si ). The Helmholtz free energy is

Aimf(N ,V ,β) =V (0) + Acom −
d∑

i=1

[
β−1 ln

∑
si

exp
(
−βE imf

i ,(si )

)]
. (8.14)

8.1.3 Vibrational Self-consistent Field

Retaining terms involving V (2) (and/or higher order terms) leads to coupling of the previ-

ously independent normal modes and complicates the solution of the Schrödinger equation.

Monserrat et al. [335] solve the equation

[
−~2

2
∇2

q +V (q)

]∣∣∣Ψvscf
(s)

〉
= E vscf

(s)

∣∣∣Ψvscf
(s)

〉
(8.15)

within the iterative Vibrational Self-Consistent Field (VSCF) approach, where V (q) represents

the truncated form of Eq. (8.10). Using a Hartree product trial wavefunction amounts to a

mean-field (MF) treatment and leads to the VSCF equations

[
−~2

2
∇2

qi
+ V̄i (qi )

]∣∣∣ψvscf
i ,(si )

〉
= E vscf

i

∣∣∣ψvscf
i ,(si )

〉
(8.16)

where V̄i (qi ) is the mean-field potential experienced by normal mode i ,

V̄i (qi ) = ∑
j 6=i

ρ(q j ) V (q) (8.17)

with

ρ(q j ) =
∑

s j
exp

(
−βE vscf

j ,(s j )

)∣∣∣ψvscf
j ,(s j )

〉〈
ψvscf

j ,(s j )

∣∣∣∑
s j

exp
(
−βE vscf

j ,(s j )

) . (8.18)

To lowest order the VSCF free energy becomes

Avscf(N ,V ,β) =V (0) + Acom −β−1 ln
∑

s
exp

(
−β∑

i
E vscf

i ,(si )

)
. (8.19)

A perturbation theory can be constructed in terms of the (assumed to be small) difference

between the mapped out and the MF potential, V (q)−∑
i V̄i (qi ), leading to a second-order
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MP2 correction to the energy of state s given by

E vscf,(2)
(s) = ∑

s′ 6=s

〈
Ψvscf

(s′)

∣∣∣V (q)−∑
i V̄i (qi )

∣∣∣Ψvscf
(s)

〉2

E vscf,(1)
s −E vscf,(1)

s′
(8.20)

and to the approximate free energy

Amp2(N ,V ,β) = Avscf(N ,V ,β)−β−1 ln
∑

s
exp

(
−βE vscf,(2)

s

)
. (8.21)

In all the examples we discuss below, we never consider terms beyond V (2) in Eq. (8.10),

similarly to what was done by Monserrat et al.. In all cases we considered, the MP2 correction

is very small and therefore we decided not to include it. Thus, every time we refer to IMF in

what follows, we imply that we only considered V (1), and whenever we refer to VSCF we imply

the Hartree energy computed on the potential of Eq. (8.10) including terms up to V (2).

8.1.4 Self-consistent Phonons

Another way of calculating an anharmonic correction to the harmonic approximation exploits

the Gibbs-Bogoliubov inequality [339], which states that the true free energy of a system is

always bounded from above by the free energy Ascp computed using a trial density matrix,

ρ̂scp:

A < Ascp = 〈
Ĥ +β−1 ln ρ̂scp〉

Ĥ scp ; ρ̂scp = exp
(−βĤ scp

)
Tr

[
exp

(−βĤ scp
)] , (8.22)

where 〈�〉Ĥ scp = Tr
[
ρscp �

]
is an ensemble average defined by the the trial density matrix ρ̂scp.

Within the self-consistent phonons method [340,341], ρ̂scp is the density matrix of a harmonic

Hamiltonian with Hessian Kscp and equilibrium positions rscp,

ρ̂scp(r) = (2πD)−
1
2 exp

(
−1

2
(r− rscp)D−1(r− rscp)T

)
, (8.23)
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where D = M− 1
2 UQ2UT M− 1

2 and Q is a diagonal matrix containing the root-mean-square

(RMS) displacements [333]

q̃i
scp(T ) =

√√√√ ~
2ωscp

i

coth
~ωscp

i

2kB T
(8.24)

of the normal modes. The lowest upper bound to the true free energy is obtained by minimiz-

ing the free energy with respect to rscp and Kscp. This leads to the steady state conditions [333]

〈fr(r)〉H scp = 0

〈K(r)〉H scp =Kscp
(8.25)

where fr(r) correspond to the forces of the potential V (r). The solution is obtained in a self

consistent manner by starting with educated guesses of
(
rscp,Kscp)= (

rscp
0 ,Kscp

0

)
, which are

in practice chosen to be those obtained within the harmonic approximation, and updating

Kscp

Ĥ scp
l+1

= 〈K(r)〉Ĥ scp
l

,

rscp

Ĥ scp
l+1

= rscp

Ĥ scp
l

+Kscp

Ĥ scp
l+1

−1 〈fr〉Ĥ scp
l

,
(8.26)

until convergence is achieved. Here Ĥ scp
l denotes the the trial Hamiltonian of the l-th SCP

iteration. The resultant free energy at the l-th iteration is calculated as

Ascp = Acom +
[
~ωscp,l

i

2
+β−1 ln

(
1−e−β~ω

scp,l
i

)]

+
〈

V (r)− 1

2
(r− rscp

l )Kscp
l (r− rscp

l )T
〉

Ĥ scp
l

.

(8.27)

8.1.5 Thermodynamic Integration

Within the thermodynamic integration scheme the exact1 free energy difference between

two states is calculated as the work to reversibly transform one state into the other [342,343,344].

For solids this method can be used to calculate the classical anharmonic correction to the

1The free energy obtained from path-integral based thermodynamic integration will be exact for a given
interatomic potential and within the statistical accuracy afforded by the length of the simulations.
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harmonic Helmholtz free energy as the reversible work done while “switching on" the anhar-

monic part of the potential [345,346]. In the Hamiltonian Hλ = (1−λ)H har +λH the Kirkwood

coupling parameter λ smoothly switches the potential from harmonic (λ= 0) to fully anhar-

monic (λ= 1). The free energy difference at a given temperature is obtained by computing the

integral of the thermodynamic force along the switching path:

∆Acl = Acl − Ahar
cl =

∫ 1

0
dλ

(
∂A

∂λ

)
=

∫ 1

0
dλ

〈
V −V har

〉
Hλ

, (8.28)

where, 〈�〉Hλ represents an average over the classical canonical ensemble sampled by the

intermediate Hamiltonian and Ahar
cl is the classical harmonic free energy. Setting aside statisti-

cal errors, ∆Acl can be computed exactly by sampling the thermodynamic forces at multiple

values of λ ∈ [0,1] using molecular dynamics simulations in the canonical ensemble. Depend-

ing on computational convenience, ∆Acl can also be calculated by alternative TI paths, that

involve computing the anharmonic free energy at a low temperature T0, and then the change

in free energy between T0 and the desired temperature [347,344],

A(N ,V , (kB T )−1)

kB T
= A(N ,V , (kB T0)−1)

kB T0
−

∫ T

T0

〈V 〉T̃ + 3N
2 kB T̃

kB T̃ 2
dT̃ , (8.29)

where 〈�〉T̃ is an average over the classical NV T̃ ensemble. A similar expression can be used

to compute the full value of ∆Acl, by taking the T0 → 0 limit of Eq. (8.29) [348]

∆Acl =−T
∫ T

0
dT̃

〈
V −V (0) − 3N

2 kB T̃
〉

T̃

T̃ 2
. (8.30)

To include quantum anharmonic corrections due to zero-point energy, tunnelling, etc., a

second thermodynamic integration must be performed to calculate the work required to

reversibly transform the particles from classical to quantum [349,350]. This can be achieved

by defining the Hamiltonian Ĥ g = −g ~2

2 ∇rM−1∇T
r +V (r,h), where g scales the mass of the

particles [336,322,99]. As g is varied from 1 to 0 (i.e. the limit of infinite mass), the de Broglie

wavelength of the particles smoothly drops from its physical value to zero, yielding the desired

transformation from quantum to classical particles. The corresponding free energy difference
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is:

∆Aqn = Aqn − Acl =
∫ 1

0
dg g−1 〈

T̂ −Tcl
〉

Ĥ g . (8.31)

where
〈

T̂
〉

Ĥ g represents the average quantum kinetic energy for the intermediate Hamiltonian

and Tcl is the classical kinetic energy which is independent of the mass of the system. Eq. (8.31)

can be computed exactly (modulo statistical error) by sampling the quantum canonical ensem-

bles for g ∈ [0,1] using PI molecular dynamics (PIMD). The difference between the classical

and quantum kinetic energy can be computed directly using a centroid-virial kinetic energy

estimator [351,60]. The total anharmonic free energy is computed as:

A = Acom + Ahar
cl +∆Acl +∆Aqn. (8.32)

For a given PES, Eq. 8.32 gives the exact anharmonic free energy (aside from statistical error)

provided that a sufficient number of intermediate states are used to perform the classical and

quantum thermodynamic integrations.

8.2 Implementation

In order to perform a direct comparison of the different approximate methods, IMF, VSCF,

and SCP were implemented within i-PI [337]. i-PI is an open-source python package for

atomistic simulations which collects energies and forces computed from one of the many

of density-functional-theory (DFT), empirical and machine-learning potential codes it is

interfaced to. The IMF, VSCF, and SCP implementations are schematically shown in Figs. 8.1 to

8.3. The reference free energies can be evaluated by post-processing (PI)MD simulations and

required no new dedicated implementation, since i-PI is able to collect energy and forces

from different codes, and to combine them to realize simulations with mixed and weighted

potentials.
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Figure 8.1 – Schematic representation of the independent mode approximation module. See
the main text for a detailed discussion of the implementation.

8.2.1 Independent Mode Framework

Given the transformation matrix, Ũ, and normal-mode frequencies from the harmonic ap-

proximation, we perform single-point energy and force evaluations for equally spaced con-

figurations q j
i = j f q̃i (T ) along each normal mode i where q̃i is the RMS displacement of

the normal mode at a target temperature T . We increase j by one at a time until the sam-

pled energy V (1)(q j
i ) exceeds a user-defined multiple nE of the thermal harmonic energy

V (1)(q j
i ) > nE E har

i (T ). This ensures that the potential is always mapped out far enough into

the classically forbidden region (but only as far as necessary) to localize the nuclear density,

at temperatures lower or equal than the chosen target. The independent mode potential∑
i V (1)(qi ) is then reconstructed by fitting cubic splines to {(q j

i ,V (1)(q j
i ))}. The corresponding

independent mode Hamiltonian is expanded in a basis of SHO eigenstates and diagonalized

to evaluate the independent mode anharmonic Helmholtz free energy. The Helmholtz free

energy is converged with respect to the density of the frozen-phonon samples q j
i by repeatedly

halving f and supplementing the already collected {(q j
i ,V (1)(q j

i ))} with corresponding sam-

ples, until the required convergence threshold is met. For each f the Helmholtz free energy is

converged with respect to the size of the SHO basis.
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8.2.2 Vibrational Self-Consistent Field

The implementation of the VSCF framework is split into two modules: one for mapping

the potential energy surface (PES), and one for solving the VSCF problem. The mapping

strategy mirrors that employed in the IMF module. In a first loop over normal modes, we

collect {( j f q̃i (T ),V (1)( j f q̃i (T ))} until the sampled potential exceeds a user-defined multiple

of the harmonic energy V (1)( j f q̃i (T )) > nE E har
i (T ), thereby also determining the sampling

range for the coupling corrections. In a second loop over n-tuples of normal modes, we

then sample {((q j1

i1
, . . . , q jn

in
),V (n)(q j1

i1
, . . . , q jn

in
))} in a similar fashion and extract the coupling

corrections V (n)(qi1 , . . . , qin ) using cubic spline fits. Currently, sampling and fitting of n = 2,3

are implemented. The extracted coupling corrections are stored for use within the VSCF solver

module.

The module for solving the VSCF problem consists of two submodules, the first of which per-

forms the VSCF calculation itself. The thermal density determining the mean-field potentials

{V̄i (qi )} is initialised as the IMF thermal density. Within a VSCF step the MF independent

mode Hamiltonians for the given MF potentials are constructed, expanded in an SHO basis,

and diagonalized to determine the updated MF thermal vibrational density and the free en-

ergy Avscf. To stabilize the VSCF convergence, 50% of the thermal density resulting from the

previous VSCF iteration are mixed in before the mean-field potentials {V̄i (qi )} are updated

and the next VSCF step is initiated. This is repeated until self-consistency has been reached as

indicated by convergence of the associated free energy Avscf to within the required threshold.

The second submodule allows the calculation of an MP2 correction on top of the MF eigen-

states and -energies by looping over pairs of eigenstates (s,s′) to evaluate the MP2 corrections

in Eq. (8.20) on a real-space grid of predefined density. We only consider eigenstates of the

self-consistent MF description with eigenenergies E vscf
s within a set multiple of kB T .

8.2.3 Self-Consistent Phonons

Our implementation of the SCP method is schematically shown in Fig. 8.3. In the first loop

over SCP steps, we construct the trial density matrix ρ̂scp(r) using the mean position rscp

and Hessian Kscp obtained from the previous step. In the first step ρ̂scp(r) is built based on
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(a)

(b)

Figure 8.2 – Schematic representation of the (a) VSCF mapper and (b) VSCF solver module.
See the main text for a detailed discussion of the implementation
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the equilibrium geometry and the harmonic Hessian. In the second loop we calculate the

ensemble averages of the forces and the Hessian, necessary to perform the optimization

steps described in Eq. 8.26. These are realized as Gaussian integrals and computed using MC

importance sampling as

〈�〉H scp = 1

Ns

Ns∑
i=1
�+O

(
1/

√
Ns

)
(8.33)

where Ns is the number of samples. Samples are generated by translating 3(N −1)-tuples

of (quasi-)random numbers on the interval [0,1] into atomic displacements from the mean

position rscp using the inverse cumulative distribution function of ρscp(r) with a Beasley-

Springer-Moro algorithm [352,353]. To speed up the convergence of the averages with respect to

the number of samples, we employ the following tricks:

1. For small system sizes, instead of drawing pseudo random numbers, we use low-

discrepancy quasi-random numbers – specifically Sobol sequences [354] – as was done

in the implementation of Brown and coworkers [333]. This leads to a more uniform sam-

pling, so that error in equation 8.33 decays as O
(
ln(Ns)d /Ns

)
which becomes ∼O (1/N )

for low dimensional integrals [355]. For large system sizes, we resort to pseudo random

numbers as the performance of Sobol sequences degrades [356]. We use the FORTRAN

implementation of Burkardt [357] to generate Sobol sequences.

2. As was done in the implementation of Errea and co-workers [358], we re-use samples

from previous SCP iterations via a reweighting scheme. Given the updated trial density

ρ̂
scp
l at the l-th SCF iteration, the reweighted average using the Ns samples {r}k drawn

from the trial density ρ̂scp
k at the k-th SCP iteration is

〈�〉k
Ĥ scp

l

= 1

Ns

∑
r∈{r}k

[
wk

l (r)�(r)
]

wk
l (r) ≡ ρscp

l (r)/ρscp
k (r)

(8.34)

We minimize the error in the global estimates 〈�〉l at the l -th SCP iteration by weighting
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samples drawn in the k-th SCP iteration according to a “batch weight”

〈�〉Ĥ scp
l

≈
l∑

k=1

[
W k 〈�〉k

l

]
W k = Var

(
�k

)−1
[∑

k ′
Var

(
�k ′)−1

]−1 (8.35)

where �k ≡�({r}k ) and the variance of a generic observable over samples from k-th

SCP iteration is [359]

Var
(
�k

)
=

(
Var(�)+

〈
−� ln wk

l

〉) exp
(
Var

(− ln wk
l

))
Ns

(8.36)

where wk
l ≡ wk

l

(
{r}k

)
, provided both� and − ln wk

l are normally distributed. Neglecting〈−� ln wk
l

〉
renders the batch weights independent of the observable being considered

W k
l = exp

(−Var
(
ln wk

l

(
{r}k

)))∑
m exp

(−Var
(
ln wm

l ({r}m)
)) (8.37)

and thereby also suitable for both Hessians and forces.

3. Taking inspiration from stochastic over-relaxation algorithms [360,361], we always draw

pairs of configurations (qi ,qi+1), where qi+1 =−qi , ensuring that forces from the sym-

metric part of V cancel out exactly.

4. To compute the average Hessian we use integration by parts, as suggested in the Ref.

333, and to further reduce the variance, we express it in terms of the difference between

the harmonic and the anharmonic forces:

〈K (r)〉k
Ĥ scp

l

=Kscp
l −D−1

〈[
r− rscp

l

]T [
fr(r)− fscp

r (r)
]〉k

Ĥ scp
l

fscp
r (r) ≡−Kscp

l

(
r− rscp

l

) (8.38)

Samples are drawn in sets of Ns until at least one component of the average forces (in terms of

normal mode coordinates) is statistically significant, as assessed by whether the average over

samples is larger than the standard deviation.

Direct application of Eq. 8.26 in Cartesian space may lead to instability due to the residual
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Figure 8.3 – Schematic representation of the SCP module. See the main text for a detailed
discussion of the implementation

statistical errors. Therefore, we only update rscp along those normal modes which exhibit a

statistically significant net force,
〈

fqi

〉
, where

〈
fq

〉= ŨT 〈fr(r)〉. The optimization continues

until no statistically significant force component remain or the “batch weights” become

smaller than a preset threshold, at which point a new SCP iteration begins.

While all modes must be real upon convergence, insufficient statistics may lead to spurious

imaginary modes with ω2
i < 0 before convergence is achieved. Such imaginary modes are

treated by setting ω2
i =−ω2

i in the effective harmonic description. It is also possible to define a

lower threshold for the permissible value of ωi , although it was not necessary to apply this

threshold for any of the examples discussed here.

8.3 Results

We first describe the systems that have been studied and the potentials that have been used

to compute inter-particle interactions. We then investigate the scaling of the computational

cost of the methods with respect to the system size, before assessing their accuracy by sys-

tematically comparing the approximate free energies to reference quantum thermodynamic
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integrations. We neglect the centre of mass contribution to the free energy throughout as it

cancels out when comparing methods. We converge all results with respect to the sampling of

the vibrational BZ by increasing the simulation cell size, allowing us to compare the different

methods in equivalent and physically meaningful conditions.

8.3.1 Systems and Computational Details

Three sets of materials are studied in this work in order of increasing complexity. As a first

example we consider the diamond [362] and lonsdaleite [363] allotropes of carbon. These differ

only in the stacking of hexagonal bilayers of tetrahedrally-coordinated carbon atoms. Their

room temperature densities are identical to within experimental error [362,363], and equal

to 3.51g/cm3. We consider simulation cells containing up to 64 atoms, starting from the

two- and four-atom primitive cells for diamond and lonsdaleite respectively. All the cells

were designed to be as close to cubic as possible to render the effective sampling of the

vibrational BZ as uniform as possible. Inter-atomic interactions are modelled using the

Gaussian Approximation Potential (GAP) of Deringer and Csányi [364], which is based on LDA

DFT calculations on configurations from MD simulations of liquid and amorphous carbon.

For crystalline carbon (including diamond and graphite) it has been shown to reproduce DFT

energies and forces to within RMS errors of 2 meV/atom and 0.1 eV/Angstrom, respectively.

As a second benchmark, we discuss two proton-ordered polymorphs of ice, hexagonal (XIh) [365,366]

and cubic (XIc) [367] ice. These become thermodynamically (meta-)stable below the experimen-

tal transition temperature for proton-disordering of 72 K [365,366]. For XIc we assume I 41/amd

symmetry, noting that the true experimental structure of XIc is still under debate [367]. In direct

analogy to the above carbon allotropes the oxygen sublattices of XIh and XIc only differ in

the stacking of bilayers of tetrahedrally-coordinated oxygen atoms. In view of the absence of

experimental data for sufficiently pure XIc we take its density to be identical to that of XIh.

We use the experimental density at ambient pressure and 10 K of 0.93g/cm3, noting that the

thermal expansion of ice XIh between 10 K and 70 K is less than 0.5 %. We use simulation

cells containing up to 16 molecules to allow for the possibility of coupling between pseudo-

translations, which are not present at the Γ-point of the unit cell, and librational, bending

and O–H bond stretching modes. The interatomic interactions are described using a Behler-
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Parinello type neural network (NN) [368], based on B3LYP+D3 DFT reference calculations for

around 20,000 liquid water and hexagonal ice configurations from MD and PIMD trajectories.

This potential successfully reproduces the density of states, pair correlation functions and

energy fluctuations of B3LYP+D3 liquid water [369] and has been used to study the quantum

kinetic energy, proton momentum distribution, and vibrational density of states of solid and

liquid water [370,371].

Finally we analyze two polymorphs of paracetamol (N-acetyl-p-aminophenol), the monoclinic

form I [372] and the orthorhombic form II [373]. The two forms differ in the packing of hydrogen

bonded sheets of molecules – zig-zag for form I and almost planar for form II. We consider the

conventional unit cells containing four and eight formula units for forms I and II respectively,

at room temperature experimental densities. Inter-atomic interactions are described on the

basis of the Merk Molecular Force Field also used in Ref. [64]. The accuracy parameter of the

PPPM method [374] used for calculating electrostatic interactions was set to 10−6 fractional

error in the individual force components, which is smaller than the value usually required,

to ensure a smooth PES. While this simple potential contains harmonic terms for bonds and

angles, it remains highly anharmonic as the dihedral interaction term describes a (almost)

free rotation of the methyl groups at room temperature.

8.3.2 Computational cost

We define the computational cost of an approximate method (�) as the minimum number

of energy or force evaluations required to converge the per atom anharmomic free energy

(A�− Ahar) to within 10% of the reference value for the largest system size. For the case of

diamond, this tolerance is equal to a stringent 0.2 meV/atom. Fig. 8.4 shows how the cost of

these methods and the reference QTI scales with the number of atoms in the simulation cell.

The cost of IMF calculations depends linearly on the number of normal modes – which

scales linearly with system size – and the number of points sampled along each mode. In our

implementation, the later remains weakly dependent on the potential due to the variable,

dynamically optimized sampling point density.

Analogously the VSCF approach exhibits a rough scaling behaviour of N n where n is the
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Figure 8.4 – Scaling of computational costs in the case of diamond in terms of the number
of energy and force evaluations for IMF (pink), VSCF (green), SCP (blue) and QTI (black)
with the number of atoms in the simulation cell. Here, we do not make use of any crystal
symmetries to reduce the cost of calculations. For the approximate methods the free energy
was converged to within 10% of the fully converged QTI results for 64 atoms with respect to all
relevant convergence parameters. Analogously, the cost of QTI is defined as the total number
of force evaluations required to drive the statistical error to below 10 % of the fully converged
QTI results for 64 atoms.

dimensionality of the potential surfaces that are being sampled. For the case of diamond we

use n = 2 and therefore observe a N 2 dependence for large N .

The cost for the SCP scheme, using pseudo random numbers, arises from the use of Monte

Carlo importance sampling of the optimal effective harmonic description, which scales inde-

pendently of system size. The statistical reweighting scheme reduces the cost for small sizes

but becomes increasingly less beneficial as N is increased [359]. The net result is a near linear

scaling behaviour for the system sizes that we have considered. We note that the use of Sobol

sequences improves the convergence of the MC integrals for small system sizes, and thereby

reduces the cost of the SCP, but leads to an unfavourable exponential scaling for large N .

The reference calculations (QTI) were performed using a combination of a TI from the har-

monic reference to the anharmonic potential using classical MD and a quantum TI over mass

using PIMD. We define the cost of a QTI simulation as the total number of force evaluations

required to drive the statistical error – the dominant source of error, given we converged

the discretization of the integral [375,376] and the number of replicas in a high-order PIMD

scheme [369] beyond that level – to below 10 % of the reference value for the largest system size

obtained from a fully converged QTI simulation. One should note that the variance of the
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integrands and the cost of performing one molecular dynamics step is different for classical

and quantum MD. Thus the minimum number of force evaluations required to reduce the

error to within the tolerance is an optimization problem. Since both the integrals are effective

energies and the fluctuations of the potential energy in the canonical ensemble display a

∼ 1p
N

behaviour with respect to its mean, QTI also displays a ∼ 1p
N

scaling behaviour.

In summary, in the limit of small system size, SCP and IMF display the most favourable

scaling. The reference technique QTI displays a O (1/
p

N ) behaviour, making it the least

expensive method in the limit of large system size. For carbon, however, as well as for all the

system discussed in this work, we do not reach this limit, and QTI requires a substantially

larger number of force evaluations than either SCP or IMF. It is worth noting that at fixed

cell size (unlike the other anharmonic methods) IMF and VSCF also provide the temperature

dependence of the free energy without any additional force evaluations.

In the current implementation, none of the above free energy methods exploit crystal sym-

metries. Exploiting crystal symmetries in HAR, IMF and VSCF is straightforward and the

reduction in computational cost is simply related to the reduction in the number of indepen-

dent normal modes. Crystal symmetries can similarly, albeit not quite as trivially, be exploited

in SCP [358] and the other methods. However, crystal symmetries do not affect the overall

scaling behaviour with respect to the number of degrees of freedom considered in a given

calculation and have therefore not been regarded in the benchmarks for the computational

cost.

8.3.3 Accuracy

We gauge the accuracy of the approximate methods by studying the error incurred in the

absolute anharmonic free energy, and in the free energy differences between two phases of

the same material.

Allotropes of Carbon

Diamond and lonsdaleite are mildly anharmonic systems which serve as excellent starting

points for our study. We find that 32-atom simulation cells suffice to converge the free energy
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Figure 8.5 – Panels (a) and (b) respectively show the quantum anharmonic Helmholtz free
energies A�− Ahar of diamond and lonsdaleite allotropes of carbon at 300 K with IMF (pink),
VSCF (green), SCP (blue), and QTI (black). Panel (c) shows the difference in the potential
energies of the minimum-energy configurations V (grey), and the free energy difference
A�diam − A�lons obtained using the harmonic approximation (yellow) and the aforementioned
anharmonic methods.

difference between diamond and lonsdaleite, with respect to BZ sampling.

As shown in panels (a) and (b) of Fig. 8.5, the quantum anharmonic contribution to the free

energy of both diamond and lonsdaleite is approximately 2 meV/atom. IMF, which considers

anharmonicity only along normal modes, underestimates the anharmonic free energy by

around 1 meV/atom. Including pairwise mean-field coupling using VSCF leads to a large

over correction that increases the error to over 2 meV/atom, while SCP (which also includes

a mean-field anharmonic corrections within Gaussian statistics) gives excellent results in

comparison to the reference. This indicates that the error in VSCF arises from the truncation

of the potential.

We also study the accuracy of the methods in reproducing the free energy difference between

diamond and lonsdaleite, as shown in panel (c) of Fig. 8.5. Notably, the free energy contribution

from quantum anharmonic motion for the two allotropes is almost identical so that there is

almost no anharmonic correction to the free energy between the two phases.

Fortuitously IMF and VSCF benefit from large amounts of error cancellation and reproduce

the exact result within the errors in the anharmonic free energies. Overall, all approximate

methods perform reasonably well at reproducing both the (very small) anharmonic corrections

and the free energy difference.
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Figure 8.6 – Panels (a), (b) and (c) respectively show the quantum anharmonic Helmholtz
free energies A�− Ahar of hexagonal and cubic polymorphs of ice XI at 70 K with IMF (pink),
VSCF (green), SCP (blue) and QTI (black). Panel (c) shows the difference in the potential
energies of the minimum-energy configurations V (grey), and the free energy difference
A�XIh − A�XIcobtained using the harmonic approximation (yellow) and the aforementioned
anharmonic methods.

Polymorphs of Ice

Ice XIh and ice XIc are a more challenging test-case because of the large anharmonic contribu-

tion due to the pronounced anharmonicity of the O–H bond, the coupling between the high

and low frequency modes [377], and the small free energy difference between the hexagonal

and cubic polymorphs [327,328]. Supercells containing 16 molecules of water suffice to converge

the free energy difference for all methods.

As shown in panels (a) and (b) of Fig. 8.6, the overall contribution from quantum anharmonicity

to the free energy is around 25 meV/molecule for both systems. Contrary to the case of carbon,

we find the approximate methods do not accurately reproduce the reference anharmonic

free energy. For instance, the IMF technique produces qualitatively incorrect anharmonic

corrections. The VSCF approach with pairwise couplings of normal modes provides the best

approximation, but remains off by over 10 mev/molecule. The SCP scheme incurs errors of

around 20 meV/molecule.

In line with previous path integral calculations on hexagonal and cubic ice [328], we find the

free energy difference between the polymorphs of ice XI to be almost zero, as shown in panel

(c) of Fig. 8.6. IMF predicts the hexagonal form to be more stable by around 7 meV/molecule.

After adding mean field coupling corrections within VSCF the margin of stability reduces to
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around 5 meV/molecule. The SCP scheme benefits from cancellation of errors and fortuitously

gives the correct result within 1 mev/molecule.

Polymorphs of Paracetamol

As a final test, we consider forms 1 and 2 of crystalline paracetamol. These are more complex

molecular crystals, for which free energy calculations are complicated by the presence of quasi-

free rotations of the methyl groups. Reference free energies are obtained by first integrating

from the harmonic reference to the full potential at 10 K, then by performing classical TI

with respect to temperature [348] from 10 K to 300 K, and finally by quantum TI over masses.

We found that, for this system, classical anharmonicity is almost completely suppressed at

10 K, and the classical anharmonic correction for the fluctuations around the potential energy

minimum is essentially zero. We expect that, at an appropriately low temperature, a similar

behavior will be shared by many systems, making this route more efficient than integrating

between harmonic and full potential at the target temperature [64]. The subtle issues connected

with the degeneracy of the rotational conformers of the methyl group are discussed below.

For reference, the free energies were recalculated using the TI route employed in Ref. [64], and

we were able to reproduce the same result within statistical error. As shown in Figs. 8.7 (a)

and (b), the overall quantum anharmonic corrections for forms I and II are around -58 and

-46 meV/molecule. All approximate anharmonic methods produce qualitatively incorrect

anharmonic free energy corrections.

As shown in Fig. 8.7 (c), the free energy difference between the two forms is around 12 meV/molecule.

The difference with respect to Ref. [64] arises due to the use of slightly different lattice con-

stants, a more accurate path integral sampling technique [369] and a finer PPPM mesh for

the Ewald summation of electrostatics. As in the cases of carbon and ice, the IMF and SCP

benefit from significant error cancellation. The former correctly predicts form II to be more

stable but performs worse than a harmonic approximation in getting the correct magnitude.

The latter also predicts the correct sign but fortuitously estimates the magnitude to within 5

mev/molecule of the exact result. VSCF doesn’t benefit from error cancellation to the same

extent and overestimates the stability of form II by over 70 meV/molecule.
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Figure 8.7 – Panels (a), (b) and (c) respectively show the quantum anharmonic Helmholtz free
energies A�− Ahar of form I and form II polymorphs of crystalline paracetamol at 300 K with
IMF (pink), VSCF (green), SCP (blue) and QTI (black). Panel (c) shows the difference in the
potential energies of the minimum-energy configurations V (grey), and the free energy differ-
ence A�I − A�II obtained using the harmonic approximation (yellow) and the aforementioned
anharmonic methods.

An important contribution to the anharmonic free energy correction for each phase is due to

the degeneracy of the rotational conformers of the methyl groups. In the presence of D degen-

erate, non-overlapping states, the conformational contribution to the free energy amounts

to −kB T lnD (for reference, at room temperature a three-fold degeneracy contributes about

30 meV, which is comparable with the overall anharmonic corrections in this system). We take

this term into account in QTI calculations by computing harmonic to anharmonic corrections

for a single minimum at low temperature, explicitly including the configurational entropy.

This term is very small at sufficiently low temperature (< 1 meV per molecule at 10K, in this

case) and can be safely ignored in general cases, in which knowledge of possible degeneracies

is not available. We then perform a TI over temperature using replica exchange molecular

dynamics [378], so that the degenerate states are sampled even at the lowest temperatures.

We don’t include this term in the approximate methods, because at 300 K the distributions

associated with the three states show some overlap, and so a simple configurational entropy

term ceases to be rigorous.

The failure of normal mode based approaches for paracetamol is unsurprising, as the descrip-

tion of quasi-free rotations requires curvilinear coordinates. In paracetamol the potential

energy barrier for rotational motion corresponds to approximately 200 kB K, implying (even

classically) quasi-free rotation of the methyl groups at room temperature. For the force field
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used to describe paracetamol, the potential governing rotation and breathing of methyl groups

can be extracted explicitly (neglecting coupling to the remainder of the molecule) and takes

the simple form

V (r,θ) = 1

2
k (r − r0)2 +Vθ (1−cos(3θ)) (8.39)

where k = 53.114 eV/Å2, r0 = 1.09 Å, and Vθ = 8.54 meV. This allows us to study the failure of

the above approximate free energy methods with the activation of angular motion on the basis

of a simple toy model,

Ĥ =− ~2

2µ

[
∂2

∂r 2 + 1

r 2

∂2

∂θ2

]
+V (r,θ) (8.40)

which can easily be studied over a range of temperatures. The exact solution for this simple

model is obtained by exact diagonalization (ED) of the Hamiltonian matrix on a regular, square

two dimensional real space grid of 256×256 points spanning from (x, y) = (−1.5r0,−1.5r0) to

(x, y) = (1.5r0,1.5r0). We find that the reference free energy is converged to within 0.2 meV.

The temperature dependence of the free energy of the model system is shown in Fig. 8.8. At

high temperature, a large fraction of the discrepancy is due to the degeneracy, that is not

captured by the approximate descriptions. Even at the lowest temperature, where the con-

figurational entropy term is small, however, only VSCF – which in this case treats the full

dimensionality of the problem, albeit at the mean-field level – accurately captures the full

anharmonic correction. With rising temperature the VSCF approximation becomes increas-

ingly inaccurate, as the amplitude of angular motion of methyl groups increases and the

vibrational density delocalizes over the three equivalent potential energy minima (see Fig. 8.8).

The harmonic, IMF, and SCP approximations severely overestimate the free energy throughout.

For the harmonic approximation this can be explained by the fact that linear coordinates mix

angular and much higher frequency radial motion, so that the effective “angular mode” is

stiffened substantially, while the radial mode retains the true harmonic frequency. IMF and

SCP exacerbate this effect, and yield essentially the same free-energy estimate.
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Figure 8.8 – Temperature dependence of the Helmholtz free energy of a quasi-free rotor
obtained with IMF (pink), VSCF (green), SCP (blue). Reference data obtained from exact
diagonalization are shown in black. The insets show the position distribution function at
temperatures of 25 K, 50 K, 100 K and 200 K with blue and white indication high and low
probability.

8.4 Discussion

Diamond and lonsdaleite, as examples of simple weakly anharmonic solids, highlight the util-

ity of approximate free energy methods. While the accuracy of the approximate Helmholtz free

energies varies, all approaches achieve sub-2 meV/atom accuracy and, more importantly, con-

sistently yield a systematic improvement over the harmonic approximation at a substantially

lower computational cost than the reference QTI. On the other hand, ice and paracetamol, as

examples of more complex, molecular crystals, highlight the limitations of approximate tech-

niques. The free energies of the molecular crystals are substantially overestimated due to the

inherent limitations of normal modes based descriptions in the presence of large-amplitude

curvilinear librational or quasi-free rotational motion. The simple model description of the

rotation of the methyl group in paracetamol demonstrates that SCP, IMF and VSCF artificially

stiffen the rotational modes, leading to an overestimation of the total free energy. The failure

of these methods for ice can also be understood along the same lines: at larger displace-

ments along the normal modes initially corresponding to librational motion, O–H bonds

are stretched and bent, leading to an overestimation of the effective frequency of librational

motion and consequently the free energy. This is confirmed by the blue shifts of the librational

modes observed in the case of IMF and SCP with respect to the harmonic approximation.

Consequently, these methods do not consistently yield systematic improvements over the
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harmonic approximation for free energies of solids that possess high amplitude librational

or quasi-rotational modes. However, we expect these techniques to perform well for atomic

and ionic solids, where the point-like nature of the atomic/ionic building blocks suppresses

large-amplitude curvilinear motion, including also cases, such as ferroelectrics, in which

anharmonicities are very strong but do not have a curvilinear character. It is worth mentioning

that (in suitable applications) normal modes based approximate methods lend themselves to

identifying the atomistic/structural origins of anharmonicity and facilitate analyses of, for ex-

ample, spectral properties of strongly anharmonic phonons, as probed by inelastic scattering

processes, the formation of charge-density-waves, and ferroelectric instabilities [379].

We also find that the approximate methods methods benefit from error cancellation, leading

to errors in free energy differences that are consistently smaller than the errors in the absolute

Helmholtz free energies. One should consider, however, that we have compared systems with

very similar local environments. Within that perspective, the quasi-harmonic approxima-

tion [380] and its extension to approximate anharmonic methods which minimizes the free

energy w.r.t. to the volume of the system, may lead to a more significant error cancellation.

However, such beneficial cancellation of errors is not guaranteed in general.

As the approximate results can vary from almost quantitatively accurate to qualitatively in-

correct results, QTI is the only free energy methods among those considered in this work

that provides reliable anharmonic free energies for large and complex organic solids. Given

that it displays a O (1/
p

N ) computational cost, it may furthermore require comparable or

fewer force evaluations than a SCP or VSCF calculation for systems of interest, in particular

when considering biological or pharmaceutical compounds that involve large unit cells with

flexible molecular units. It is further worth noting that QTI (and other statistical sampling

methods such as SCP) are substantially less susceptible to noise in the underlying PES than

the harmonic approximation, IMF and VSCF. While random noise largely cancels out in the

ensemble averages calculated in statistical sampling methods, especially in combination with

stochastic thermostats [381,382], the harmonic approximation relies on the ability to determine

a meaningful dynamical matrix and thus a differentiable PES, and the IMF and VSCF require

an interpolatable PES. This is demonstrated by performing the Ewald summation in the de-

scription of paracetamol using a coarser PPPM mesh, which leads to discontinuities in the
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PES of 0.50 meV. While the resultant QTI and SCP free energies remain largely unaffected, the

free energy estimates obtained from the analytic methods – at least in the implementation we

discuss here – depend heavily on the size of the finite displacements underlying the mapping

of the PES, and the VSCF in particular eventually fails to converge altogether. In cases in which

achieving sufficient absolute accuracy is impossible, one should consider using regularized

approximations of the PES rather than a strict interpolation.

Efforts towards obtaining a computationally feasible anharmonic free energy should therefore

be channelled towards reducing the cost of performing a QTI or, at least, a classical-nuclei

TI with nuclear quantum contributions evaluated at a more approximate level [64,63]. This in-

cludes streamlining hierarchical frameworks [383] that perform the full free energy calculations

using inexpensive bespoke potentials [384] or cheaper basis sets [318], reducing the cost to that

of reversibly switching an ab initio potential. Machine learning potentials offer exceptional

promise to provide ab-initio-quality potential energy surfaces to evaluate the anharmonic free

energy, and approximate methods could also constitute an effective sampling approach to

generate data to train and validate such ML potentials.
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9 Conclusions

Accurate and reliable prediction of material properties requires high accuracy simulations that

model the quantum mechanics (QM) of electrons and nuclei in a computationally efficient

manner. While a lot of attention has been given to the QM of electrons, a classical approxima-

tion has been routinely adopted to model the motion of nuclei which gives good results for

studying systems at high temperatures, and those containing only heavy nuclei. To capture

the quantum mechanical motion of nuclei in systems at low temperatures or those containing

light atoms at room temperature and beyond, imaginary time path integral simulations are

required which simulate multiple replicas of the system and thus are typically one to two

orders of magnitude more expensive than standard simulations that treat nuclei within the

classical approximation.

The high computational cost and non-trivial implementation of path integral methods has

prevented their widespread adoption in combination with first principles electronic structure

methods. Within this perspective, the use of generalized Langevin equation (GLE) thermostats

that reduce the associated computational cost of path integral simulations, and the open

source software i-PI which allows simulations with several electronic structure codes have

ensured a surge in the use of path integral methods for modelling the quantum nature of

nuclei. However, GLE based methods only provide a semi quantitative description of nuclear

quantum effects, and can be applied only to simple structural observables. The study of

dynamical properties – such as vibrational spectrum – heat capacities, and momentum depen-

dent observables, within an efficient and transparent framework remains an open challenge.

153



Chapter 9. Conclusions

In this thesis, we have presented an array of methodologies that accelerate the convergence

of the imaginary time path integral method in a systematic manner. First of all, we have

combined ring polymer contraction (RPC) that allow different number of replicas for slow and

fast component of the potential energy, with multiple timestep (MTS) methods that allow slow

components of the forces to be evaluated less frequently, in the context of ab initio electronic

structure path integral simulations. We have shown that this combination leads to a dramatic

reduction in cost of simulations performed at a high level of electronic structure theory by

utilizing low cost methodologies which can accurately model short ranged forces on the cheap.

The method also displays excellent performance for the computation of dynamical properties

such as vibrational spectra and diffusion coefficients.

To be able to perform simulations in the high accuracy regime, we have presented a revamp

of the high-order path integral method which is based on a more accurate splitting of the

Boltzmann operator than the standard method. This technique has not been popular due to

the need to compute the Hessian of the potential at each time step. We have developed an

integration scheme which prevents the evaluation of the Hessian, and makes it possible to

harness the efficiency of the technique. The cost of this method can be further reduced by

using range separation methods like RPC and MTS. We expect this method to be useful when

highly accurate comparisons need to be made with experiments, or when quantities requiring

large number of replicas such as the heat capacity or free energies, are to be studied.

We have also developed a simple methodology that simplifies the implementation of the

“open" path integral method, useful for studying momentum dependent observables. We also

present a highly efficient “virial like" estimator of the particle momentum distribution which

reduces the associated computational cost by over an order of magnitude than standard meth-

ods, making it possible to make comparisons with highly accurate Deep Inelastic Neutron

Scattering experiments.
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In order to model dynamical properties, such as vibrational spectra, we present an inexpensive

methodology based on the use of GLE thermostats to accelerate the convergence of quantum

nuclear effects. Typically, GLE thermostats use artificial noise to model quantum fluctuations

that induces major artefacts in the vibrational spectra – such as severe broadening and shifting

of peaks. We show that it is possible to analytically estimate the dynamical perturbation

induced by the artifical noise, and to a good extent correct for these artefacts using a decon-

volution algorithm, making it possible to recover meaningful dynamical properties at a low

computational cost.

All the methods have been implemented in the second release of the i-PI code which has

allowed their combination with softwares that evaluate potential energies and forces. Access to

first principle as well as machine learning potential energy surfaces has allowed application of

these methods to a wide class of materials. For instance, we have studied the proton momen-

tum distributions (PMDs) and their kinetic energies, in several phases of water such as room

temperature liquid water, supercooled water, and ice. This quantity is influenced by the local

environment, of protons, giving subtle information on chemical environments in different

phases of water. The computation of the PMD is challenging for both theory and experiments,

and its deviation from theoretical results will have implications on our understanding of the

hydrogen bond network in water. Our results have shown an excellent agreement between

theoretical and experimental results for supercooled water and ice, but a disagreement for

liquid water. Our results also show an absence of the experimentally observed anomalous

non-monotonic temperature dependence of the proton kinetic energies, which we confirm

using several accurate water models, indicating either an experimental problem for the mea-

surement at room temperature, or an incomplete understanding of liquid water.

We also complement the PMDs with calculations of the IR and Raman spectrum of water,

made inexpensive using the simple deconvolution method developed by us together with

machine learning predictions of polarization and polarizability computed at first principles

electronic structure level. Our results show an overall good agreement with experimental IR

and Raman spectra for liquid water, and IR spectra for ice, and that low cost modelling of more
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advanced spectroscopic quantities such as sum frequency generation and second harmonic

scattering should be possible by combining our deconvolution method with machine learning

predictions of dielectric responses.

We have also applied the methodologies we developed to study the impact of nuclear quantum

effects on the thermal and structural properties of nano-porous materials such as metal

organic framework. In particular, we have studied the temperature dependent heat capacity

of MOF-5, a promising candidate for the absorption of green house gases, as a function of the

loading with methane gas. The use of the high-order path integral method, in combination

with RPC and MTS, paves the way for an efficient computation of this quantity, which would

have otherwise been prohibitive. Our results show that nuclear quantum effects lead to an

increase in the heat capacity of the system as the temperature is increased, while anharmonic

effects reduce this quantity. The extent of increase and decrease can be tuned by carefully

selecting a MOF and and a guest molecule, allowing for a novel mechanism for controlling

the heat capacity of the total system to increase, decrease or stay constant over a range of

temperature.

Finally, we have studied the role of the quantum nature of nuclei in influencing the free

energy of solids. Even though this quantity can be calculated using path integral free energy

calculations, a number of methods have been developed which approximate it, beyond

the harmonic approximation, and provide a computationally inexpensive estimate of the

anharmonic free energy. Understanding which of the approximations involved are justified

for a given system is complicated by the lack of comparative benchmarks. To facilitate this

choice we have assessed the accuracy of some of the commonly used approximate methods.

We have compared anharmonic corrections to Helmholtz free energies against reference path

integral calculations for a diverse set of systems, ranging from simple weakly anharmonic

solids to flexible molecular crystals with freely-rotating units. The results suggest that, for

simple solids such as allotropes of carbon, these methods yield results that are in excellent

agreement with the reference calculations, at a considerably lower computational cost. For

more complex molecular systems such as polymorphs of ice and paracetamol the methods

do not consistently provide a reliable approximation of the anharmonic correction. Despite
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substantial cancellation of errors when comparing the stability of different phases, we do not

observe a systematic improvement over the harmonic approximation even for relative free

energies. We conclude that efforts toward obtaining computationally feasible anharmonic

free energies of organic molecular crystals should therefore be directed toward streamlining

path integral free energy calculations.

To conclude, this thesis provides the necessary infrastructure for modelling the properties of

materials while explicitly including the quantum nature of nuclei. The methods that we have

developed provide a means to efficient calculations of a wide array of properties, including

vibrational spectra, heat capacities, particle momentum distributions and free energies, while

systematically improving upon the limitations of already existing cost reduction schemes.

The implementation of these methods in an open-source code that can connect to first

principles softwares, ensures the combination of these methods with the latest electronic

structure methods. Our methods eliminate the systematic errors due approximations in

sampling finite temperature vibrations and quantum mechanical fluctuations. Therefore, any

disagreement of static properties with experimental results can now be traced to underlying

approximations in potential energy landscapes. Therefore, to reach the ultimate level of

accuracy, focus should now be using highly accurate energetics from advanced wave function

methods such as quantum Monte Carlo. Since, the cost of such simulations can be large

despite the saving brought by the methods developed in this thesis, we recommend the use of

machine learning potentials as surrogate models for sampling. Combination of path integral

methods with methods such as quantum Monte Carlo would lead to near exact results at given

thermodynamic conditions, and will pave the way for solving open problems such as organic

crystal structure prediction, and in silico materials design and discovery.
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[139] M. Buchowiecki, J. Vanícek, and J. Vaníček, “Monte Carlo evaluation of the equilibrium

isotope effects using the Takahashi-Imada factorization of the Feynman path integral,”

Chem. Phys. Lett., vol. 588, pp. 11–16, 2013.

[140] A. Putrino, D. Sebastiani, and M. Parrinello, “Generalized variational density functional

perturbation theory,” J. Chem. Phys., vol. 113, p. 7102, 2000.

172



Bibliography

[141] M. Ceriotti, J. More, and D. E. Manolopoulos, “i-PI: A Python interface for ab initio

path integral molecular dynamics simulations,” Comput. Phys. Commun., vol. 185,

pp. 1019–1026, 2014.

[142] V. Kapil, J. VandeVondele, and M. Ceriotti, “Accurate molecular dynamics and nuclear

quantum effects at low cost by multiple steps in real and imaginary time: Using den-

sity functional theory to accelerate wavefunction methods,” J. Chem. Phys., vol. 144,

p. 054111, 2016.

[143] M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, “Accelerating the convergence of

path integral dynamics with a generalized Langevin equation.,” J. Chem. Phys., vol. 134,

p. 84104, 2011.

[144] G. Brain, Higher Order Propagators in Path Integral Molecular Dynamics. PhD thesis,

Part II Chemistry Thesis, Oxford University, 2011.

[145] M. Ceriotti, G. Bussi, and M. Parrinello, “Colored-Noise Thermostats à la Carte,” J. Chem.

Theory Comput., vol. 6, pp. 1170–1180, 2010.

[146] M. Ceriotti, “GLE4MD.” http://epfl-cosmo.github.io/gle4md, 2010.

[147] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J.

Chem. Phys., vol. 98, p. 5648, 1993.

[148] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu.,” J. Chem. Phys., vol. 132, p. 154104, 2010.

[149] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter,

“Quickstep: Fast and accurate density functional calculations using a mixed Gaussian

and plane waves approach,” Comput. Phys. Commun., vol. 167, pp. 103–128, 2005.

[150] B. Cheng, J. Behler, and M. Ceriotti, “Nuclear quantum effects in water at the triple

point: Using theory as a link between experiments,” The Journal of Physical Chemistry

Letters, vol. 7, pp. 2210–2215, May 2016.

[151] A. Singraber, T. Morawietz, J. Behler, and C. Dellago to be published.

173



Bibliography

[152] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput.

Phys., vol. 117, pp. 1–19, 1995.

[153] F. Uhl, D. Marx, and M. Ceriotti, “Accelerated path integral methods for atomistic

simulations at ultra-low temperatures,” J. Chem. Phys., vol. 145, p. 054101, 2016.

[154] S. Ganeshan, R. Ramírez, and M. V. Fernández-Serra, “Simulation of quantum zero-

point effects in water using a frequency-dependent thermostat,” Phys. Rev. B, vol. 87,

p. 134207, 2013.

[155] L. Wang, M. Ceriotti, and T. E. Markland, “Quantum fluctuations and isotope effects in

ab initio descriptions of water,” J. Chem. Phys., vol. 141, p. 104502, 2014.

[156] J. Cao and G. A. Voth, “A new perspective on quantum time correlation functions,” J.

Chem. Phys., vol. 99, pp. 10070–10073, 1993.

[157] S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, “Ring-polymer

molecular dynamics: quantum effects in chemical dynamics from classical trajectories

in an extended phase space.,” Annu. Rev. Phys. Chem., vol. 64, pp. 387–413, 2013.

[158] A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, “On the applicability of centroid

and ring polymer path integral molecular dynamics for vibrational spectroscopy.,” J.

Chem. Phys., vol. 130, p. 194510, 2009.

[159] D. J. Wales, “Decoding heat capacity features from the energy landscape,” Physical

Review E, vol. 95, Mar. 2017.

[160] J. Wieme, S. Vandenbrande, A. Lamaire, V. Kapil, L. Vanduyfhuys, and V. Van Speybroeck,

“Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A

Molecular Simulation Perspective,” ACS Applied Materials & Interfaces, vol. 11, pp. 38697–

38707, Oct. 2019.

[161] B. Mu and K. S. Walton, “Thermal analysis and heat capacity study of metal-organic

frameworks,” J. Phys. Chem. C, vol. 115, pp. 22748–22754, 2011.

[162] K. R. Glaesemann and L. E. Fried, “Improved heat capacity estimator for path integral

simulations,” J. Chem. Phys., vol. 117, p. 3020, 2002.

174



Bibliography

[163] T. M. Yamamoto, “Path-integral virial estimator based on the scaling of fluctuation

coordinates: Application to quantum clusters with fourth-order propagators,” J. Chem.

Phys., vol. 123, p. 104101, 2005.

[164] M. Kolár and S. F. O’Shea, “A high-temperature approximation for the path-integral

quantum monte carlo method,” Journal of Physics A: Mathematical and General, vol. 29,

no. 13, p. 3471, 1996.

[165] T. M. Yamamoto, “Path-integral virial estimator based on the scaling of fluctuation

coordinates: Application to quantum clusters with fourth-order propagators,” J. Chem.

Phys., vol. 123, p. 104101, 2005.

[166] S. Habershon, T. E. Markland, and D. E. Manolopoulos, “Competing quantum effects in

the dynamics of a flexible water model,” J. Chem. Phys., vol. 131, p. 024501, jul 2009.

[167] G. F. Reiter, J. Mayers, and J. Noreland, “Momentum-distribution spectroscopy using

deep inelastic neutron scattering,” Phys. Rev. B, vol. 65, p. 104305, 2002.

[168] C. J. Burnham, G. F. Reiter, J. Mayers, T. Abdul-Redah, H. Reichert, and H. Dosch, “On

the origin of the redshift of the OH stretch in ice ih: evidence from the momentum dis-

tribution of the protons and the infrared spectral density,” Physical Chemistry Chemical

Physics, vol. 8, no. 34, p. 3966, 2006.

[169] C. Andreani, G. Romanelli, and R. Senesi, “Direct Measurements of Quantum Kinetic

Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental

Benchmark,” J. Phys. Chem. Letters, vol. 7, pp. 2216–2220, 2016.

[170] R. Quhe, M. Nava, P. Tiwary, and M. Parrinello, “Path integral metadynamics,” Journal of

Chemical Theory and Computation, vol. 11, pp. 1383–1388, Mar. 2015.

[171] Y. Wu and R. Car, “Quantum momentum distribution and quantum entanglement in

the deep tunneling regime,” The Journal of Chemical Physics, vol. 152, p. 024106, Jan.

2020.

[172] C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, “Measurement of

momentum distribution of light atoms and molecules in condensed matter systems

using inelastic neutron scattering,” Adv. Phys., vol. 54, pp. 377–469, 2005.

175



Bibliography

[173] D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson, M. a. Adams,

L. Lin, and R. Car, “Spherical momentum distribution of the protons in hexagonal ice

from modeling of inelastic neutron scattering data.,” J. Chem. Phys., vol. 136, p. 024504,

2012.

[174] F. Perakis, L. De Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kühne, R. Torre, M. Bonn, and

Y. Nagata, “Vibrational spectroscopy and dynamics of water,” Chemical reviews, vol. 116,

no. 13, pp. 7590–7607, 2016.

[175] S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond Mid-IR Pump-Probe

Spectroscopy of Liquid Water: Evidence for a Two-Component Structure,” Science,

vol. 278, pp. 658–660, Oct. 1997.

[176] S. Roke and G. Gonella, “Nonlinear Light Scattering and Spectroscopy of Particles and

Droplets in Liquids,” Annual Review of Physical Chemistry, vol. 63, no. 1, pp. 353–378,

2012.

[177] Y. R. Shen, “Optical Second Harmonic Generation at Interfaces,” Annual Review of

Physical Chemistry, vol. 40, pp. 327–350, Oct. 1989.

[178] H. Bakker and J. Skinner, “Vibrational spectroscopy as a probe of structure and dynamics

in liquid water,” Chemical reviews, vol. 110, no. 3, pp. 1498–1517, 2009.

[179] “Map: Principles of Instrumental Analysis (Skoog et al.),” Jan. 2017.

[180] X. Xue, Z.-Z. He, and J. Liu, “Detection of water–ice phase transition based on Raman

spectrum,” Journal of Raman Spectroscopy, vol. 44, no. 7, pp. 1045–1048, 2013.

[181] Y. Han, J. Liu, L. Huang, X. He, and J. Li, “Predicting the phase diagram of solid carbon

dioxide at high pressure from first principles,” npj Quantum Materials, vol. 4, pp. 1–7,

Mar. 2019.

[182] G. Li and H. Guo, “The Vibrational Level Spectrum of H2o(X̃ 1 Á) on a Par-
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Fang, Jan Kessler, Igor Poltavsky, Steven Vandenbrande, Jelle Wieme, Clemence Corminboeuf, Thomas D. Kühne, David E.
Manolopoulos, Thomas E. Markland, Jeremy O. Richardson, Alexandre Tkatchenko, Gareth A. Tribello, Veronique Van
Speybroeck, and Michele Ceriotti. i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics

Communications, 236:214–223, March 2019
[https://www.sciencedirect.com/science/article/pii/S0010465518303436?via%3Dihub,
https://arxiv.org/abs/1808.03824]

8. Venkat Kapil, Alice Cuzzocrea, and Michele Ceriotti. Anisotropy of the proton momentum distribution in water. The Journal

of Physical Chemistry B, 122(22):6048–6054, May 2018
[https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b03896, https://arxiv.org/abs/1805.01193]

9. Mariana Rossi, Venkat Kapil, and Michele Ceriotti. Fine tuning classical and quantum molecular dynamics using a general-
ized langevin equation. The Journal of Chemical Physics, 148(10):102301, March 2018
[https://aip.scitation.org/doi/abs/10.1063/1.4990536, https://arxiv.org/abs/1704.05099]

10. Venkat Kapil, Jörg Behler, and Michele Ceriotti. High order path integrals made easy. The Journal of Chemical Physics,
145(23):234103, December 2016
[https://aip.scitation.org/doi/abs/10.1063/1.4971438, https://arxiv.org/abs/1606.00920]

11. Venkat Kapil, Joost VandeVondele, and Michele Ceriotti. Accurate molecular dynamics and nuclear quantum effects at low
cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods. The

Journal of Chemical Physics, 144(5):054111, February 2016
[https://aip.scitation.org/doi/abs/10.1063/1.4941091, https://arxiv.org/abs/1512.00176]

† first computational author

204



12. Shalini Awasthi, Venkat Kapil, and Nisanth N. Nair. Sampling free energy surfaces as slices by combining umbrella sampling
and metadynamics. Journal of Computational Chemistry, 37(16):1413–1424, April 2016
[https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.24349, https://arxiv.org/abs/1507.06764]

For more details check out https://scholar.google.ch/citations?user=F2NMPNQAAAAJ&hl=en

PUBLICATIONS IN PEER-REVIEWED CONFERENCE PROCEEDINGS
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