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N E U R O S C I E N C E

A new method for accurate in vivo mapping of  
human brain connections using microstructural and 
anatomical information
Simona Schiavi1,2, Mario Ocampo-Pineda1, Muhamed Barakovic2, Laurent Petit3, 
Maxime Descoteaux4, Jean-Philippe Thiran2,5, Alessandro Daducci1*

Diffusion magnetic resonance imaging is a noninvasive imaging modality that has been extensively used in the 
literature to study the neuronal architecture of the brain in a wide range of neurological conditions using tractography. 
However, recent studies highlighted that the anatomical accuracy of the reconstructions is inherently limited and 
challenged its appropriateness. Several solutions have been proposed to tackle this issue, but none of them 
proved effective to overcome this fundamental limitation. In this work, we present a novel processing framework 
to inject into the reconstruction problem basic prior knowledge about brain anatomy and its organization and 
evaluate its effectiveness using both simulated and real human brain data. Our results indicate that our proposed 
method dramatically increases the accuracy of the estimated brain networks and, thus, represents a major step 
forward for the study of connectivity.

INTRODUCTION
Tractography based on diffusion-weighted magnetic resonance im-
aging (DW-MRI) offers the unique opportunity to reconstruct in vivo 
the major pathways of the brain (1) and map the human connectome 
(2). A connectome is typically represented as a graph, where nodes 
correspond to gray matter cortical areas and/or subcortical nuclei 
and edges to white matter pathways between them. Because of the 
gap between the size of the axons (few micrometers) and DW-MRI 
resolution (few millimeters), each reconstructed pathway, called 
streamline, does not represent a single axon but rather a group of 
axons, or bundle, sharing the same path. With this representation, 
macroscopic brain connectivity can be analyzed using graph theory 
and network science (3, 4), and this approach has been extensively 
used to study a wide range of neurological conditions (5, 6).

Despite this potential, a number of technical factors in addition 
to the complexity of the white matter anatomy introduce ambigu-
ities that are difficult to resolve for tractography, and recent studies 
raised serious concerns about its effectiveness for studying brain 
connectivity, as serious biases may be introduced. Thomas et al. (7) 
compared tractography reconstructions on high-quality data with 
axonal tracer results and concluded that their anatomical accuracy 
is inherently limited, revealing an intrinsic trade-off between sensi-
tivity, i.e., capability of reconstructing real bundles, and specificity, 
i.e., retrieving only true ones. The international tractography chal-
lenge organized by Maier-Hein et al. (8) highlighted that reconstruc-
tions are dominated by false positives and showed that specificity is 
the main bottleneck. Analyzing topological properties of the networks 
built with tractography, Zalesky et al. (9) demonstrated that speci-
ficity is actually crucial to study brain connectivity; similar conclu-

sions are drawn in (10). Hence, as remarked recently in (11), improv-
ing the specificity of human connectomes still represents a major 
challenge in computational neuroscience and may open new avenues 
toward a more veridical characterization of brain connectivity.

A number of solutions have been recently proposed to improve 
the accuracy of tractography reconstructions (12–15). The common 
idea consists of combining the reconstructed set of streamlines, i.e., 
tractogram, with signal forward models to assess their actual contri-
bution to the acquired DW-MR images and filter out the most im-
plausible using global optimization techniques. Although the filtered 
tractograms provide biologically more accurate estimates of connec-
tivity (16), none of these methods proved effective in reducing false 
positives. All solutions are purely data driven and rely only on the 
acquired DW-MR signal to filter out implausible streamlines. More-
over, streamlines are considered as independent entities, ignoring the 
fact that in the central nervous system, axons are naturally organized 
in fascicles. Yet, this fact is explicitly assumed to build a connectome, 
as streamlines are grouped in bundles and considered as individual 
edges of the resulting brain network (2). However, the definition of 
“connection strength” for these edges and how to assign them a 
proper weight are still open questions (17). Although some studies 
that compared tractography with tract-tracing data proved that con-
nectome reconstructions based on the number of streamlines repre-
sent a fairly realistic proxy for the connection strength of white matter 
projections (18, 19), the streamline count should not be confused 
with the actual fiber count (17). Notably, because network models 
rely on the underlying choices of what an edge represents, the accuracy 
of tractography reconstructions and how we assign a contribution 
to the streamlines become crucial.

In this study, we present a novel processing framework for dra-
matically improving the specificity of the estimated brain networks 
without affecting their sensitivity. We name it COMMIT2, as it builds 
on the convex optimization modeling for microstructure informed 
tractography (COMMIT) (12). The original formulation allowed 
combining tractography with microstructural features of the tissue 
to enhance the robustness of connectivity estimates, but turned out 
ineffective for reducing false positives (see Results). We speculate 
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that this information is not enough, and we advocate the need for 
additional prior knowledge to help tractography in resolving ambig-
uous configurations and improve the quality of reconstructions.

To this aim, we developed a new formulation that implements 
two basic observations about the organization of white matter path-
ways: (i) Streamlines are not “just lines” but represent neuronal fibers, 
and (ii) these neuronal fibers are naturally organized in bundles. 
COMMIT2 attempts to recover the connectome that best explains 
the local axon density estimated from the quantitative DW-MR signal 
and, at the same time, tries to achieve this goal using the minimum 
number of bundles. This last condition was inspired by the recent 
theory about the economy of brain network organization (20) and is 
explicitly promoted in our novel filtering procedure (see Materials 
and Methods) to reduce the incidence of false positives. Although 
COMMIT2 shares the same underlying optimization procedure with 
the original COMMIT, the new formulation is a considerable improve-
ment over the previous one and not only an incremental refinement, 
as the possibility of injecting anatomical priors represents an impor-
tant step toward a more veridical estimation of structural connectivity.

RESULTS
Sensitivity and specificity of the new formulation 
on simulated data
To quantitatively assess the effectiveness of our proposal, we used a 
digital phantom with known ground truth (Fig. 1A) specifically de-
signed to mimic typical fiber configurations encountered in the brain. 
Figure 1B shows two examples of true-positive and false-positive 
bundles that may potentially be reconstructed with tractography, 
while the ground truth connectome is shown in Fig. 1C. We tested 
both deterministic and probabilistic tractography, and we assessed 
the sensitivity and specificity of the resulting connectomes using 

well-established metrics to evaluate tractography (21): number of 
valid bundles (VBs), i.e., true-positive connections, and invalid 
bundles (IBs), i.e., false positives. Figure 1D reports the number of 
VB and IB in a representative tractogram reconstructed with prob-
abilistic tractography (left); results hold also for deterministic tracto-
graphy (Fig. 2A, second row). In line with previous literature (7–9), 
all true-positive bundles were recovered, but at the price of including 
a large number of false positives (IB = 441). After filtering the tractogram 
with COMMIT2 (right), the IB decreased from 441 to 20, boosting 
the specificity from 25.8 to 96.6% without affecting the sensitivity.

Comparison to state-of-the-art filtering techniques
We compared this outstanding performance of COMMIT2 to other 
techniques that perform similar filtering procedures on the tracto-
grams: linear fascicle evaluation (LiFE) (13), spherical-deconvolution 
informed filtering of tractograms (SIFT) (14), SIFT2 (15), and 
COMMIT (12). We first tested their effectiveness in removing the 
false-positive bundles on tractograms reconstructed with both prob-
abilistic and deterministic algorithms, and the results are shown in 
Fig. 2A. From the first column, we see that both tracking algorithms 
were able to reconstruct all 27 true bundles, i.e., high sensitivity, but 
at the price of recovering a large number of false positives, i.e., very 
low specificity (IB = 441 in case of probabilistic tracking and IB = 235 
for deterministic). These results agree with previous literature (7–9). 
In columns 2 to 5, we can see neither the sensitivity nor the specificity 
is substantially affected by filtering methods that use only micro-
structural information. All tractograms still contain all 27 true bundles, 
and the number of IB diminished only marginally: LiFE, 441 → 429 
and 235 → 215, respectively; SIFT, 441 → 342 and 235 → 216, re-
spectively; and COMMIT, 441 → 393 and 235 → 204, respectively. 
For this phantom, SIFT2 does not remove bundles, as none of the 
contributions assigned to the streamlines have exactly zero weight, 
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Fig. 1. Quantitative evaluation of the proposed method. (A) Synthetic dataset (left), inspired by real anatomical bundles of the human brain (right), used to quantita-
tively evaluate our proposed method. White matter and gray matter masks used for tractography (B) and two examples of true-positive (green) and false-positive (red) 
bundles that can potentially be reconstructed with tractography. Ground truth connectivity represented as a graph (C): Blue circles correspond to the 53 gray matter 
regions shown in (B), whereas green and red arcs represent true-positive (VB) and false-positive bundles (IB), respectively. In (D), we compare the sensitivity and specificity 
of the estimated connectome before (left) and after filtering the tractogram with our COMMIT2 method (right).
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Fig. 2. Comparison with state-of-the-art filtering techniques. (A) Sensitivity and specificity of the connectomes estimated with tractography before and after applying 
state-of-the-art filtering methods: LiFE, SIFT, SIFT2, and COMMIT; results with our novel approach are reported in the last column. VBs are reported in green, and IBs are 
reported in red. (B) Ground truth fiber count connectome and weighted connectomes estimated with tractography before and after applying each method.  and TP 
quantify the difference between the normalized ground truth connectome and those estimated by the methods when considering, respectively, all connections or only 
the true positives.
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suggesting that the definition of a threshold is needed to optimally 
use this method (see further discussion below). On the other hand, 
the last column clearly shows that the inclusion of anatomical priors, 
i.e., COMMIT2, has a dramatic impact on the specificity as compared 
with models that consider only microstructure information: When 
using COMMIT2, the number of IB is dramatically reduced (441 → 20 
and 235 → 17, respectively). These findings were confirmed also us-
ing additional digital phantoms with more complex network con-
figurations (fig. S1).

For all the methods, we also compared their ability to accurately 
estimate the actual edge weights of the ground truth connectome. 
Figure 2B shows the estimated connectomes represented as matrices, 
where we can appreciate the quite different definitions of connection 
strength assumed by each method: actual fiber count used to generate 
the ground truth phantom, streamline count for the raw and the 
SIFT-filtered tractograms, and sum of the streamline weights esti-
mated by SIFT2 and LiFE from the entire DW-MR signal or, in the 
case of COMMIT and COMMIT2, from the fiber density map. To 
fairly compare these different approaches, we normalized the con-
nectomes and computed the distance between them and the normal-
ized ground truth connectome. If we consider all connections, i.e., 
, then the error with COMMIT2 is very small as compared with the 
raw tractogram, LiFE, and COMMIT, which are about 50 to 80% 
higher, while SIFT and SIFT2 obtained even higher errors. Focusing 
only on the true-positive connections, i.e., TP, we observe again that 
COMMIT2 outperforms all other methods, but now SIFT2, LiFE, 
and COMMIT show comparable results, whereas the raw and 
SIFT-filtered ones have almost twice the error.

Comparison to other basic filtering procedures
We also compared COMMIT2 with other basic filtering procedures 
often used in the literature to discriminate between true-positive 
and false-positive bundles in the connectomes. Figure 3 reports the 
receiver operating characteristic curve analysis for the performance 
of these methods on the tractogram reconstructed with probabilistic 
tractography; results hold for deterministic tracking. The connec-
tomes corresponding to the best performance (i.e., max J) of each 
method are reported as well. COMMIT2 results are plotted in pink 
as function of the relative importance of the anatomical priors in the 
filtering procedure (see Materials and Methods); the best performance 

with J = 0.97 corresponds to the connectome shown in Fig. 1D. The 
yellow line refers to results obtained by using the same formulation 
of COMMIT2 but considering the streamlines as independent (see 
Materials and Methods). This is called lasso regularization (22) and 
consists in promoting sparsity at the level of the individual stream-
lines rather than the bundles; this form of regularization was tested 
in the original COMMIT formulation (12). The gray line corresponds 
to filtering the tractogram by thresholding the bundles as function 
of their cardinality, i.e., removing progressively the connections 
containing a low number of streamlines, which is a very common 
procedure used in clinical studies to reduce the presence of false 
positives in the connectomes. For the sake of comparison, we also 
tested the effect of randomly filtering the bundles at the same re-
moval rate of COMMIT2 (dark blue); the reported values correspond 
to the average score from 100 different experiments. The best per-
formance of each approach (i.e., max J) is also reported as a graph 
for visual inspection. Comparing the pink and the yellow curves, we 
can easily appreciate that without the grouping of streamlines im-
plemented in our new formulation, only a very modest improvement 
of the sensitivity/specificity trade-off was possible (max J = 0.64). 
COMMIT2 outperformed thresholding, as this latter could only 
improve marginally the initial configuration (VB = 27 and IB = 441; 
Fig. 2A, top left) up to a maximum J = 0.72, corresponding not only 
to decreasing the IB to 120 but also to a loss of two valid ones. 
Per contra, COMMIT2 was able to reduce considerably more IBs 
(441 → 20) before losing valid ones. We also investigated the impact 
of thresholding on the connectomes already filtered by previous 
methods (fig. S2). All methods largely benefitted from this additional 
postprocessing, even though none could reach the same performance 
of COMMIT2. Notably, thresholding caused the loss of 2 of the 
27 VBs in all cases but not COMMIT2, on which it had no effect.

Qualitative evaluation on in vivo human brain data
Last, we tested the effectiveness of the new formulation on in vivo 
data from the Human Connectome Project (HCP) (23). As the ground 
truth is unknown, we qualitatively assessed the impact of COMMIT2 
on known true-positive and false-positive bundles that were manu-
ally defined by an expert neuroanatomist. The top row of Fig. 4 
shows these known bundles as reconstructed in the original tracto-
gram along with the voxel coverage, i.e., number of voxels traversed 
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Fig. 3. Comparison with basic filtering procedures. Receiver operating characteristic curve analysis to assess how COMMIT2 (pink) compares to other filtering proce-
dures present in the literature in terms of discriminating between true-positive and false-positive bundles in the connectome. The yellow results correspond to using the 
same formulation of COMMIT2 but considering all streamlines as independent. We also tested the effect of filtering the tractogram by thresholding the bundles as func-
tion of their cardinality (gray) and their random removal using the same rate (dark blue). The best performance of each approach (i.e., max J) is reported as a graph for 
visual inspection.
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by the streamlines associated with each bundle; the bottom row re-
ports the same bundles after filtering with COMMIT2. Results show 
that our COMMIT2 filtering procedure does not affect the true- 
positive bundles, as the voxel coverage is comparable with the original 
tractogram and the total contributions estimated by COMMIT2 are 
high. This means that COMMIT2 removes implausible streamlines 
inside the bundles but recognizes these bundles as fundamental to 
explain the data and keeps the coverage of the white matter intact. 
Conversely, the false-positive bundles are markedly thinned, i.e., 
the voxel coverage is extremely reduced, and the weights assigned to 
them by COMMIT2 are close to zero, meaning they are not necessary 
to explain the signal. In particular, we observe that while the less 
populated bundles are (almost) completely removed, the more pop-
ulated ones are extremely thinned in terms of white matter coverage 
and that their contribution to the resulting connectome is minimal. 
This effect can be observed also on the differences between the 
weights of the connectomes reported on the left side of the figure.

In the absence of a ground truth, we could only evaluate the es-
timated networks qualitatively. The raw connectome appears very 
dense, which is an expected result as it corresponds to probabilistic 
tracking, but we can clearly observe that after filtering with COMMIT2, 
it is definitely more sparse, in agreement with the recent theory 
about the economy of brain networks (20). The connectomes recov-
ered with SIFT, SIFT2, LiFE, and COMMIT are shown in fig. S3; all 

have a density that is at least twice as dense than the one estimated 
with COMMIT2. However, from the visual inspection of the known 
true-positive and false-positive bundles, our results suggest that this 
higher level of sparsity does not imply the loss of valid connections 
but seem to indicate that the connections that are filtered out are 
indeed incompatible with the underlying data.

DISCUSSION
Over the years, tractography has proven particularly effective for 
noninvasively studying the neuronal architecture of the brain, but 
recent studies have challenged its accuracy (7–10). In particular, it 
was shown that the presence of false-positive connections in the re-
constructions can significantly bias the topological properties of the 
estimated brain networks, raising serious concerns for its use in 
mapping the human connectome. Some authors prescribed the need 
for a revolution of tractography techniques to reliably reconstruct 
the known anatomy while controlling for false positives and, partic-
ularly, that the notion of both anatomy and microstructure is essen-
tial to progress (8). We explicitly developed COMMIT2 with this 
concept in mind, and in fact, our novel formulation naturally in-
corporates both these characteristics. Apart from sharing the same 
convex optimization procedure with the original COMMIT, the 
method presented here is an important improvement of the previous 

FF
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Fig. 4. Qualitative evaluation of the proposed method with in vivo data. Top row: Connectome and bundles of the input tractogram; bottom row: the same filtered 
by COMMIT2. To better compare the bundles before and after the filtering, we report the voxel coverage and the sum of the streamline weights assigned by COMMIT2. 
The filtering procedure behaves extremely differently for the true (first column) and the false (second column) positives. While the voxel coverage of the true positives 
remains intact, the one of the false positives is dramatically reduced, and in some cases, they are completely removed. Looking at a more quantitatively meaningful 
measure—the COMMIT2 weights—we also appreciate that the weights associated with the true positives are much higher than those of the false positives, which are 
very close to zero.
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framework and not only an incremental variant. The possibility to 
inject priors about brain anatomy and its organization, and not only 
about microstructural properties, represents a powerful and novel 
way to tackle the false-positive problem in tractography and brain 
structural connectivity. When we compared the performance of 
COMMIT2 with other state-of-the-art filtering techniques (LiFE, 
SIFT, SIFT2, and COMMIT) (12–15), which are all similar in spirit 
to our proposed method but are purely data driven, none of them 
proved effective in reducing IBs. This clearly indicates that adding 
anatomical priors about the organization of the bundles has indeed 
a dramatic impact on the specificity of the estimated connectomes.

COMMIT2 is not a pure tractography algorithm but a flexible 
filtering procedure that can be applied on top of any tractogram. An 
appealing feature of the COMMIT2 formulation is that it allows in-
jecting additional priors on the bundles (see Materials and Methods). 
A possible way to take advantage of this property is to use the ana-
tomical knowledge we have on bundles. In practice, if we knew that 
a connection surely exists, e.g., from atlases or population studies, 
then we could promote the corresponding bundle; conversely, if we 
knew that a specific tractography algorithm is keen to find a partic-
ular implausible connection, then we may want to penalize it more 
than others during the filtering. Thus, as our knowledge about true- 
positive and false-positive bundles improves, COMMIT2 results can 
be directly improved, since the framework can selectively promote or 
penalize groups of fibers with these priors. Besides, we demonstrated 
the effectiveness of this new formulation by fitting the streamlines to 
the intra-axonal signal fraction map estimated from DW-MRI with 
a specific biophysical model, but multiple options are available in the 
literature, e.g., (24–26), among others. We believe this choice does 
not affect the validity of our results, as this map could be replaced by 
any additive quantity as long as this provides a proxy measure of 
axonal density or any microstructural property of the fibers that is 
invariant along their pathway. The investigation of which map is 
the most suitable as input for COMMIT2 was beyond the scope of 
this work and will be the subject of future studies. Clearly, the more 
our knowledge on microstructural modeling grows, the more accu-
rate the estimates with our framework will become.

By performing experiments with both deterministic and proba-
bilistic tractography, we could observe that despite the initial con-
nectomes were quite different, after filtering them with COMMIT2, 
they became more comparable and with minimal discrepancy of 
network density. On the contrary, the connectomes estimated by other 
methods differ quite heavily depending on the input tracking method. 
This suggests that the application of COMMIT2 converges toward 
a more reliable estimation of connectivity. Sarwar et al. (27) recently 
investigated whether using deterministic or probabilistic tracking is 
preferable for clinical studies. They concluded that to minimize the 
impact of false positives, one should prefer deterministic tracking 
at the price of having maybe some false negatives, unless a strong 
thresholding is used on the connectomes estimated with probabilistic 
tracking. Here, we presented results using both, showing that although 
the input was different, the final results obtained with COMMIT2 
are comparable. On the tractogram obtained with probabilistic track-
ing, we also compared the performances of COMMIT2 against a 
standard thresholding procedure, showing that although the latter 
was able to improve the initial configuration, its best performance 
was far from the accuracy obtained with COMMIT2. In the same 
spirit, to analyze in vivo data, we performed probabilistic tracking 
with multishell multitissue anatomically constrained tractography 

(28) to highlight the benefits of the application of COMMIT2 even on 
top of one of the most accurate state-of-the-art methods. Nevertheless, 
we stress that, as already pointed out by the results on synthetic data, 
the performances of COMMIT2 on a different input tractogram 
would be comparable.

Besides improving the estimation of brain connectivity, we be-
lieve that COMMIT2 is also a promising tool that can be routinely 
used by neurosurgeons for whom tractography has rapidly become 
an essential tool for planning surgery. By allowing visualization of 
the different bundles before the operation, tractography has always 
been considered as a potential tool, but since its reliability has al-
ways been under debate, not all neurosurgeons feel comfortable to 
trust it. Nevertheless, the continuous progress in MRI scanners has 
already provided them an easy access to patient’s diffusion images 
through which they can now have access to a more reliable structural 
connectivity reconstruction. The short computational time required 
by COMMIT2 can allow its application on any type of whole-brain 
tractograms that may be built from a large database (like HCP www.
humanconnectome.org, UK BioBank www.ukbiobank.ac.uk, …) to 
extract and study the most reliable bundles and omit the false-positive 
ones. With COMMIT2, we could now perform studies on the vari-
ability of the diffusion metrics along bundles in large cohorts of sub-
jects and possibly relate them with their functional counterpart.

Although we obtained outstanding results, we acknowledge that 
the proposed framework is not without limitations, and there is room 
for future improvements. First, the bundle regularization guaran-
tees that if a group is not necessary to explain the signal, then all its 
streamlines will be discarded. This implies that none of the eventual 
good streamlines present in that group will be kept, so the choice 
made to group streamlines plays a critical role. Instead, if a group is 
necessary to explain the signal, even if a streamline follows a very 
different path from the others in the same group because of this 
choice of regularization, then it will be kept since it still connects the 
same two regions of interest (ROIs). Although a proper way to filter 
inside groups is still under investigation and will be an object of 
future works, we can speculate that one possible way to do that is 
considering a finer parcellation for the gray matter, resulting in smaller 
groups to be evaluated by the framework. Another way could be 
using clustering techniques to group streamlines together, e.g., (29). 
All these possibilities will be tested and compared in future analy-
ses. Another key assumption of our formulation is that, at the cur-
rent resolution of DW-MRI and recalling that streamlines do not 
represent single axons, the contribution of every streamline remains 
constant along its path. This assumption is shared by all methods 
considered in this study and most state-of-the-art tractography al-
gorithms present in the literature. Of course, if this assumption was 
not biologically valid, all these algorithms and the results presented 
here might be biased.

Conclusions
In conclusion, our novel processing framework has the potential of 
changing the landscape of connectome analysis and, most impor-
tantly, improves our confidence in the interpretation of group differ-
ences or disease differences of certain connections in the connectomes, 
which now are characterized with more informative anatomical and 
quantitative microstructural properties. Tractography is not doomed 
and not inherently limited to choose a trade-off between sensitivity 
and specificity. COMMIT2 can break this trade-off by including a 
notion of local density of fibers and a group notion of bundles. This 

 on A
pril 15, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

https://www.humanconnectome.org
https://www.humanconnectome.org
https://www.ukbiobank.ac.uk
http://advances.sciencemag.org/


Schiavi et al., Sci. Adv. 2020; 6 : eaba8245     29 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 11

is more than an incremental improvement to tractography. It is a 
powerful step forward, which greatly improves the specificity of trac-
tography algorithms and opens the door to quantitative and accu-
rate analyses of the human connectome.

MATERIALS AND METHODS
Microstructure informed tractography
Given a DW-MR image I and a tractogram  T , the acquired data can 
be seen as   I = A (  T  )   + η  , where  A : T → I  is an operator describing 
the signal contribution of each fiber to the nd q-space samples acquired 
in the nv = nxnynz voxels of  I ∈  ℝ +   n  x  × n  y  × n  z  × n  d     and  is the acquisition 
noise. The goal of tractography is to solve the inverse problem, i.e., 
finding the set of streamlines    ̃  T   that best describes the acquired im-
age I. The term “microstructure informed tractography” refers to a 
relatively novel area of research (30) whose aim is to obtain more 
quantitative and biologically meaningful estimates of brain connec-
tivity by complementing tractography with biophysical models of the 
tissue microstructure (31). Several solutions have been proposed 
(12–15), but the originality of COMMIT (12) lies in the possibility 
to express tractography and tissue microstructure in a unified 
framework and solve this inverse problem using convex optimiza-
tion. The signal in each voxel of I is described as a linear combina-
tion of the diffusion arising from all the fibers of  T  that intersect the 
voxel, in addition to local contributions from other tissues, e.g., ce-
rebrospinal fluid (CSF). The joint problem can then be expressed as 
a system of linear equations

  y = Ax + 𝛈  (1)

where the vector  y ∈  ℝ +   n  d   n  v     contains the nd DW-MR measurements 
acquired in the nv voxels of I, the matrix  A ∈  ℝ    n  d   n  v  × n  c     encodes the 
potential contributions of all streamlines in  T  (and possibly other 
tissues) to the signal in each voxel according to a given multicom-
partment model, and  accounts for both acquisition noise and 
modeling errors. The positive weights  x ∈  ℝ +   n  c     represent the actual 
contributions of the nc compartments, encoded as columns of A, 
needed to explain the acquired data I and can be estimated using 
non-negative least squares (NNLS)

   argmin  
x≥0

     ‖Ax − y‖ 2  2   (2)

where ||·||2 is the Euclidean norm in ℝn.
Any multicompartment model (31–33) can be virtually used in 

COMMIT. In general, a multicompartment model assumes differ-
ent diffusion behaviors according to the geometrical microstructure 
properties. For brain tissues, a common assumption is to distinguish 
between two or three compartments: intra-axonal (IA; mimicking 
the restricted movement of water molecules inside axons), extra-axonal 
(EA; mimicking the hindered movement outside axons), and isotropic 
(ISO; mimicking the free movement of the water like in CSF) if 
three are considered. The linear operator A is typically a block matrix 
of this form

  A = [ A   IA ∣ A   EA ∣ A   ISO ]  (3)

where nc = nr + nh + ni and the submatrices   A   IA  ∈  ℝ    n  d   n  v   ×  n  r    ,   A   EA  ∈  
ℝ    n  d   n  v   ×  n  h    , and   A   ISO  ∈  ℝ    n  d   n  v  × n  i     encode, respectively, the nr restricted, 
nh hindered, and ni isotropic contributions to the image. This for-

mulation assumes invariance of a microstructural parameter (e.g., 
intra-axonal signal fraction and axon diameter) along a particular 
pathway and uses this prior to get more robust estimates of both the 
trajectory and microstructural properties of a fiber.

Illustrative toy example
To illustrate this estimation process, let us consider the synthetic 
toy example shown in Fig. 5A. In the left panel, we display the ori-
entation distribution functions (ODFs) simulated in each voxel, which 
were used to reconstruct the three streamlines visualized in the mid-
dle panel using a generic tractography algorithm. The right panel 
shows the forward model we adopted to construct the matrix A: a 
“stick” to account for the anisotropic contributions of the streamlines 
and a “ball” to consider possible CSF contaminations (31). Figure 5B 
illustrates the components of the linear system y = Ax that we want 
to solve using COMMIT. In the column vector y, we concatenate the 
data simulated in each voxel. The matrix A is constructed by first 
checking how the reconstructed streamlines intersect the voxels: Fiber 1 
crosses voxels 1 and 2, fiber 2 crosses voxels 1 and 3, and fiber 3 
crosses voxels 2, 3, and 4. We then create one column for each 
streamline and store in the rows corresponding to each voxel it tra-
verses the contribution of a stick oriented in the same direction of 
the streamline; if a streamline does not cross a voxel, then the corre-
sponding rows are set to 0. To account for the possible presence of 
CSF in a voxel, we add four columns, and in each of them, we put 0 
everywhere, except in the rows corresponding to a distinct voxel, 
where we insert an isotropic contribution according to the ball model.

Every column in A is controlled by a different contribution in x, 
and for a given configuration of contributions x, the predicted sig-
nal is obtained by performing the multiplication Ax. COMMIT seeks 
for the optimal configuration of x, which must be positive, such that 
the predicted signal, i.e., Ax, is as close as possible to the measured 
signal, i.e., y; hence, it tries to minimize their difference, i.e.,  argmin  
‖Ax − y‖ 2  2  . According to matrix-vector multiplication properties, we 
can immediately notice that to obtain the correct profile in voxel 1, 
we must have a positive contribution in the first two entries of x but 
0 in x4, since there is no CSF in voxel 1. To assign the values to the 
remaining entries of x, we continue the multiplication. Looking at 
voxel 2, we observe that x3 = x5 = 0, while from the third and forth 
voxels, we obtain x6 = 0 and x7 = 1, respectively. The entries of x are 
uniquely determined, and since x3 = 0, fiber 3 is marked as a false 
positive and removed from the tractogram.

Injecting priors about brain anatomy and its organization
The purpose of this study was to evaluate whether we could im-
prove the sensitivity/specificity trade-off of tractography by taking 
into consideration two fundamental observations about brain anat-
omy during the estimation process: (i) Streamlines are not “just lines” 
but represent neuronal fibers, and (ii) these neuronal fibers are nat-
urally organized in bundles. To enforce the first prior knowledge, 
we implemented in A a simple forward model that assigns a contri-
bution, i.e., volume or cross-sectional area, to each streamline of the 
input tractogram T proportionally to its length inside each voxel. Then, 
with Eq. 2, we require that the total amount of streamlines that traverse 
a voxel must sum up to the actual intra-axonal signal fraction in 
that voxel, which can be estimated in every voxel of the brain from 
DW-MR acquisitions using standard models like neurite orientation 
dispersion and density imaging (NODDI) (26) or spherical mean 
technique (SMT) (25). As each streamline represents a coherent 
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set of real anatomical fibers, there cannot be a space for every pos-
sible reconstructed streamline. To implement the second prior, we 
first grouped all streamlines connecting the same pairs of gray 
matter regions and rearranged the corresponding columns of A 
accordingly, as shown in Fig. 6. Then, we added a new term to the 
cost function in Eq. 2 to try to explain the data, if possible, using the 
smallest number of these groups. Mathematically, this is achieved 
with the group lasso regularization (34), and the problem 2 becomes

   argmin  
x≥0

      ‖  Ax − y ‖   2  2  + λ  ∑ 
  g∈G
       ‖    x    (  g )    ‖    2    (4)

where G is a general partition of the streamlines into groups, x(g) 
represent the coefficients corresponding to the streamlines in a given 
group g ∈ G, and the parameter  > 0 controls the trade-off between 
data and the regularization term. This additional term in the cost 
function penalizes the contributions at the level of groups and, in 
practice, promotes (but does not constrain) convergence toward a 
solution that explains the measured DW-MRI data with the mini-
mum number of bundles; this formulation does not have any prior 
knowledge about which groups correspond to true-positive or false- 
positive bundles. Note that setting  = 0 corresponds to the classical 
COMMIT. As this formulation represents an extension to the COMMIT 
framework, we refer to it as COMMIT2 in the manuscript.

Without any strong a priori knowledge on the bundles, a classical 
way to operatively solve this problem is to use the so-called adaptive 
group lasso (35), which penalizes all groups in the same manner regard-
less of their cardinality. The problem can then be rewritten as

   argmin  
x≥0

      ‖  Ax − y ‖   2  2  +  ∑ 
  g∈G
      λ    (  g )      ‖    x    (  g )    ‖    2    (5)

with

      (g)  =    
  √ 
_

 ∣ g ∣  
 ─ 

 ‖ x  NNLS  (g)  ‖  2  
    (6)

where ∣g∣ is the cardinality of the group g and   x NNLS  (g)    are the weights 
of the streamlines obtained by solving the NNLS problem in Eq. 2, 
i.e., without any regularization term.

Evaluation criteria
We assessed the sensitivity and specificity of the resulting connec-
tome using the Tractometer metrics defined in (21). True positives 
are described in terms of the valid connection (VC) ratio, which is the 
proportion of streamlines in the tractogram that connects a correct 
pair of ROIs, as well as the corresponding number of VBs. Similar 
metrics can be computed for the false positives, i.e., invalid connections 
(ICs) and IBs. To summarize sensitivity and specificity in a single 
score, we computed the Youden’s index J = sensitivity + specificity − 1. 
Sensitivity is defined as the ratio between VB and the number of real- 
positive bundles (27 in this dataset), and specificity as 1 − IB/N, where 
N is the number of real negatives (594 in this dataset). N represents the 
number of ROI pairs that may potentially be connected (incorrectly) 
by tractography and was computed by reconstructing 10 million 
streamlines with the probabilistic algorithm, as it is more permissive.

We also compared the performance of our novel formulation to 
other state-of-the-art filtering techniques: LiFE (13), SIFT (14), SIFT2 
(15), and COMMIT (12). For each method, we downloaded the soft-
ware package developed by the original authors—i.e., https://github.
com/brain-life/encode for LiFE, https://mrtrix.org for SIFT/SIFT2, 
and https://github.com/daducci/COMMIT for COMMIT—and run 
the code with default parameters.
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Fig. 5. Synthetic toy example to illustrate the modeling and the parameter estimation using the COMMIT framework. (A) The simulated ODFs, a possible tractogram 
estimated with a generic tractography algorithm, and the forward model used to associate a signal contribution to each streamline. (B) The corresponding vector y 
containing the simulated data in all voxels, the matrix A encoding the signal contributions of each streamline according to the chosen forward model (and the potential 
presence of CSF), and the coefficients x estimated by COMMIT.
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Last, we investigated the accuracy in the estimation of the actual 
weights of the edges in the ground truth connectome. However, as 
each technique assumes a different definition of connection strength 
between two brain regions, to validate these weights, we first nor-
malized each connectome to its maximum value and then computed 
the root of the sum of squared differences between them and the 
normalized ground truth connectome. This measure was computed 
both considering all the connections in the connectomes

   =  √ 

_____________

    ∑ 
i,j=1

  
53

     ( C  i,j   −    ̃  C    i,j  )   2     (7)

and only the true-positive ones

     TP   =  √ 
_______________

    ∑ 
(i,j)∈TP

     ( C  i,j   −    ̃  C    i,j  )   2     (8)

where Ci, j indicate the entries of the ground truth connectome,     ~ C    i,j    
indicate the entries obtained from one of the compared methods, 
and TP is a set containing only the pairs (i, j) corresponding to the 
true-positive bundles.

Synthetic phantom description and processing
We quantitatively evaluated our novel approach using a realistic 
digital phantom with known ground truth developed for the re-
construction challenge organized in 2013 at the International Symposium 
on Biomedical Imaging (ISBI) using Phantomas (https://github.
com/ecaruyer/phantomas). This simulated dataset is shown in 
Fig. 1A and consists of 27 ground truth fiber bundles that were 
specifically designed to mimic real fiber configurations typically en-
countered in the brain (Fig. 1B). These include complex arrange-
ments of bending, crossing, and branching fibers at various angles 
and with different curvatures; in addition, three spherical regions 
corresponding to fast diffusive compartments such as in brain ven-
tricles were added. The corresponding DW-MR signal was generat-
ed using the composite hindered and restricted model of diffusion 
(24) along 64 directions with b = 3000 s/mm2 and adding Rician 
noise with a signal-to-noise ratio of 30. The intra-axonal signal frac-

tion of this phantom was computed from the geometry of the ground 
truth streamlines.

Connectomes were constructed from the reconstructions obtained 
with both deterministic and probabilistic tractography using the 
53 gray matter ROIs as network nodes. We used the MRtrix software 
(36) as it is a popular processing suite to analyze DW-MR data. First, 
we computed the fiber orientation distributions (FODs) in each voxel 
using constrained spherical deconvolution (37), with lmax = 8. Then, 
we reconstructed 1 million streamlines with both deterministic (SD_
STREAM) and probabilistic (iFOD2) algorithms using default pa-
rameters and performed the tracking using the white matter mask 
as the seed region. Last, we assigned each end point of a streamline 
to a node if that point fell within 2 mm from one of the 53 gray 
matter ROIs (default setting). A streamline was considered as con-
necting two nodes if both end points were assigned; otherwise, it 
was discarded and excluded from the analysis.

For completeness, we also evaluated the proposed framework 
using two additional digital phantoms with more complex network 
configurations, created with Phantomas following a similar procedure 
as described in the recent work of Sarwar et al. (27). We defined 20 gray 
matter ROIs and then randomly generated two three-dimensional 
geometries of fiber bundles to obtain a connection density in the 
resulting connectomes of 10% (fig. S1, blue panel) and 20% (fig. S1, 
rose panel), respectively. The centerline of each fiber bundle was de-
fined using third-order piecewise polynomials, and a constant radi-
us was randomly assigned to each bundle in the range of 1.5 to 4 mm. 
The generation of the DW-MR images and the processing were per-
formed as before.

In vivo data processing
We also tested COMMIT2 on in vivo data using data from the HCP 
repository (www.humanconnectome.org). We downloaded the pre-
processed diffusion data corresponding to subject 100307 and the 
structural T1-weighted image with the corresponding standard 
Desikan-Killiany (38) parcellation in 85 gray matter ROIs performed 
with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). Detailed pro-
cessing methods applied to all HCP open-access data are described in 
(23). We performed whole-brain anatomically constrained tractography 

CCGG CCSSTT

MMCCPPSSLLFF

IILLFF

UUFF

...

SSLLFF UUFF IILLFF CCGG

...

AAllll  iinnddeeppeennddeenntt

Current approachCurrent approach

Proposed
Proposed

Matrix A

Fig. 6. Injecting priors about brain anatomy and its organization. Current tractography algorithms consider all streamlines in a tractogram as independent entities, 
and COMMIT is no exception; every column of the matrix A encodes a different streamline, and all columns are treated as independent during the estimation of their 
contributions (Top). The proposed method (COMMIT2) groups streamlines belonging to the same anatomical bundle together and considers the corresponding columns 
of A as a single entity in the estimation; every streamline is still modeled by a distinct column, but streamlines belonging to the same bundle are arranged together as a 
sub-block of the matrix A and considered as a whole (Bottom). SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; ILF, inferior longitudinal fasciculus; CG, 
cingulum; CST, cortico-spinal tract; MCP, middle cerebellar peduncle.
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(28). To do so, we first segment the T1-weighted image using FMRIB’s 
automated segmentation tool (39) to derive the multitissue image. 
This allowed performing the tissue-informed spherical deconvolution 
(40). With the recovered fiber orientation distributions, we performed 
probabilistic tracking (iFOD2) and the white matter mask as the 
seed region. We generated 5 million streamlines of length between 
20 and 200 mm and default parameters. To create the connectome, we 
then used the standard 85 ROIs of the FreeSurfer Desikan-Killiany 
atlas (38), replacing the brainstem with only its last part (i.e., medulla). 
Among all the existing models to estimate the voxel-wise intra-axonal 
signal fraction, we decided to use the SMT (25). We acknowledge 
that this choice is arbitrary, but we believe it does not affect the va-
lidity of our framework. To improve the microstructure model is 
out of the scope of COMMIT2, although it is important to choose 
one that has been proven to be valid for the DW-MRI data regime 
identified by the acquisition’s parameters. We performed the fitting 
with the open-source code available at https://github.com/ekaden/
smt. The connectomes were constructed using the streamline count 
for the original tractogram and the sum of weights for the one fil-
tered with COMMIT2; we also computed the network density, i.e., 
the ratio between the actual and the possible connections. Figure S3 
compares the connectomes obtained after applying the state-of-the-
art methods (SIFT, SIFT2, LiFE, and COMMIT) as described in the 
previous sections. The processing time was ≈7′ for SIFT, ≈4′ for 
SIFT2, ≈24 hours for LiFE, ≈26′ for COMMIT, and ≈37′ for COMMIT2; 
all experiments were conducted on an AMD 1950x workstation 
with 16 cores and 64-gigabyte RAM.

Code and data availability
The numerical phantom used as validation is publicly available and 
can be downloaded from https://github.com/ecaruyer/phantomas. 
The in vivo MRI data used are those of subject 100307 of the HCP 
and are available at www.humanconnectome.org. The code is open 
source and freely available at https://github.com/daducci/COMMIT.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/31/eaba8245/DC1

View/request a protocol for this paper from Bio-protocol.
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