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Abstract

Research interest into the miniaturisation of micro-robots has soared in recent years due to

the availability of suitable integrated actuators. The reduction in size of these components is

achieved through the implementation of Self-Sensing Actuation (SSA). This approach foregoes

the need for external sensors which increase the encumbrance of micro-robots. The SSA

approach is all the more relevant with piezoelectric actuators due to the reversible properties

of piezoelectricity. The present thesis endeavours to explore the topic of piezoelectric SSA

by applying a focus on the fundamental theory supporting the approach. It would then be

possible to determine how a piezoelectric actuator could be tailored for SSA, particularly at

the quasi-static ranges of frequencies that characterise robotic manipulation tasks.

A general model describing the piezoelectric actuator as a system with electro-mechanical

inputs and outputs has been formulated: the inputs are the force and the voltage, resulting in

a displacement and accumulated electrical charge as outputs. It is shown that all piezoelectric

actuators follow this model form, which can be summarised through the description of three

parameters: the stiffness, the capacitance, and a coefficient named β. The latter describes

the electro-mechanical coupling between charge accumulation and force, and is the most

critical characteristic when aiming for high precision SSA. It is then demonstrated through

dynamic modelling of piezoelectric actuators using bond graph models that the performance

of the position and force sensorless estimation is intimately tied to these three actuator

characteristics. Since these are a function of the actuator’s design parameters, the self-sensing

performance may be drastically improved at the design level.

By deriving design guidelines from an actuator design study based on an analytical model, a

SSA demonstration prototype is developed. A batch of piezoelectric benders are manufactured

with sub-mN sensorless estimation accuracies in mind. A test environment supporting these

actuators is designed with the specific goals of determining their parameters experimentally,

and of providing the grounds for the testing of diverse SSA implementations. After a measure-

ment campaign providing a statistical appreciation for the parameters of the actuator batch, a

calibrated self-sensing implementation approach is discussed. With this approach, it is shown

that force estimation accuracies of 0.25 mN for durations of up to 60 s are within the grasp of

these actuators tailored to SSA. Longer durations that guarantee high estimation accuracies

would be acquired by focusing more research effort into the delicate task of measuring minute

electrical charges.
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Abstract

In light of some inconsistencies between model predictions and experimental data, an updated

model is proposed: the error of the β coefficient and the stiffness are reduced to 3% and 12%

respectively. From this model describing parameters with non-monotonic characteristics,

a multi-objective optimisation study is proposed to simultaneously optimise an actuator

design for high sensitivity and low estimation error. The resulting piezoelectric actuator

design provides a β coefficient of −4.62nC/mN, corresponding to a sensitivity increase of 52%

compared the previously fabricated actuator, and a sensitivity increase by a factor of ×9.5

compared to a commercial actuator of similar morphology.

Keywords:

Self-sensing actuation, sensorless, piezoelectric actuator, micro-robotics, quasi-static.
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Résumé

La miniaturisation des micro-robots a suscité un intérêt grandissant dû à la disponibilité

d’actionneurs intégrés. La diminution en taille de ces composants est principalement pro-

pulsée par le développement d’Actionnement Auto-Sensible (AAS). Cette approche afranchi

l’actionneur de la nécessité de capteurs externes, dont l’encombrement va à l’encontre de la

miniaturisation. L’AAS est d’autant plus pertinente quand il s’agit de l’implémenter avec des

actionneurs piézoélectriques, dû à la réversibilité de leurs propriétés. La thèse ci-présentée a

pour vocation d’explorer le sujet de l’AAS en s’appuyant sur la théorie fondamentale régissant

cette méthode. Il devient possible de déterminer comment la conception d’un actionneur

piézoélectrique peut être adaptée à des applications AAS, en particulier à des gammes de

fréquences quasi-statiques qui caractérisent les manipulations micro-robotiques.

Une forme générale de modèle décrivant les entrées et sorties électro-mécaniques de l’action-

neur piézoélectrique est définie : la force et la tension sont des entrées, et il en résulte une

déformation et une accumulation de charges en sortie. Il est montré que toute morphologie

d’actionneur suit ce modèle général. Ce dernier est décrit par trois paramètres : la raideur, la

capacité, et un coefficient β. Ce dernier décrit le couplage électro-mécanique entre l’accumu-

lation de charges et la force, et il constitue la caractéristique la plus critique pour implémenter

un AAS de haute précision. Il est alors démontré au travers d’une modélisation par graphes

de liaison que la performance de l’estimation de position et de force est intimement liée à

ces trois paramètres. Ceux-ci étant liés à leur tour à la morphologie de l’actionneur, il en

vient que la performance AAS peut être conséquemment amélioré au stade de la conception

d’actionneur.

En utilisant des critères de conception déduites d’une étude d’un modèle analytique, un

prototype de demonstration visant des précisions ≤ mN est mis en place. Un environnement

de test est conçu pour développer des stratégies d’AAS. Une campagne de mesure est me-

née afin de fournir une vue statistique des paramètres du lot d’actionneurs. Dès lors, une

implémentation AAS utilisant d’une méthode de calibration pour la mesure de charges est

présentée. Il est ainsi montré que l’estimation de la force résultant de la méthode calibrée

présente une précision de 0.25 mN pour des durées d’expérience jusqu’à 60 s. Il convient de

préciser qu’une telle précision peut être garantie pour des durées plus longues à condition de

consacrer plus d’effort dans la recherche de mesures de charges de faible ordre de grandeur.
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Résumé

Suite à l’observation d’écarts entre prédictions théoriques et mesures, un modèle révisé

permet de réduire les écarts pour le coefficient β et la raideur à 3% et 12% respectivement. Les

fonctions du modèle décrivant les paramètres ne présentant pas de caractéristique monotone,

une opportunité d’étude d’optimisation a été saisie. Cela permet de proposer une conception

d’actionneurs maximisant la sensibilité décrite parβ tout en minimisant l’erreur résultant de la

mesure de charges. La conception d’un actionneur piézoélectrique optimisé résultant de cette

étude révèle un coefficient β de l’ordre de −4.62nC/mN, soit un accroissement de 52% par

rapport aux actionneurs précédemment fabriqués. Par rapport à un actionneur commercial

étudié précédemment, cela correspond de plus à un accroissement d’un facteur ×9.

Mots-clés :

Actionnement Auto-Sensible, sans capteur, actionneur piézoélectrique, micro-robotique,

quasi-statique.
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Introduction

Background and motivation

Since the advent of micro–scale electronics and mechanical systems, most notably in the field

of silicon semiconductor technology, the discipline of micro-robotics has gained traction. Not

only is it a relevant research topic garnering a large number of scientific disciplines, but it

also attracts interest for its potential, present and future, industrial applications. As for all

devices, systems developed at the nm–mm scale need to be tested, characterised, manipulated,

inspected, or sometimes assembled. Micro-robots are thus needed to complete these tasks,

and are required to cover minuscule displacements and provide careful manipulation forces.

When approaching a research topic, it is convenient to properly define it as well as the scope

that it encompasses. To do so, it is proposed to consider the definition of micro-robots brought

forward by H. Bleuler in [3], where he can be quoted as such:

Micro-robots are either machines of small proportions (from a few cm2 to a few

µm2), and / or are machines that have been designed to interact with small sized

objects (from a few mm to a few µm).

According to this definiton, micro-robots are related to the micro–scale world either through

their own volume, or through the dimensions of the object they are designed to interact with.

The present manuscript will mainly concern itself with the latter definition, even though it is

not mutually exclusive with the former. Similarly, nano-robotics may be defined in the same

manner as micro-robotics when downsizing the scale of the scope provided in the definition

by three orders of magnitude.

The main challenge in the way of a micro-robot’s use resides in the newfound relevance of

phenomena that could be considered as negligible at the macro–scale: van der Waals forces,

static electricity, surface tension, thermal conditions, and airflow. Even though tasks at the mm

scale are perfectly handled by most modern indsutrial robots, the aforementioned physical

effects cause the performance of a robot to become seemingly unpredictable when delving

into smaller scales. To counter these effects that have a negative effect on a micro-robot’s

ability to fulfil its tasks, a closed control loop must be implemented.
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(a) (b) (c)

Figure 1 – Examples of micro-robotic applications; (a) Cytoplasmic injection, source: Leica
Microsystems, (b) Mechanical testing of semiconductor micro-pillars, (c) Characterisation of

a MEMS relay for the reconfiguration of synchronous motors [8].

The applications of micro-robots in the industry are numerous and multi-disciplinary, being

used in materials science, mechanical, electrical, biological, and optical applications. With

some examples taken from the state of the art as illustrated in Fig. 1, a non-exhaustive list of

tasks performed by these devices follows:

• Micro-electronics characterisation (e.g. nanotransistors)

• Nanostructure characterisation (e.g. nanowire, nanotubes)

• Microelectromechanical Systems (MEMS) characterisation

• Small object inspection under a Scanning Electron Microscope (SEM)

• Micro-assemply and manipulation of small devices

• Optic fiber positioning

• Cytoplasmic injection

The number of use cases for micro-robotics is ever expanding due to the improvements made

in terms of accuracy, automation, and miniaturisation, as well as the growing demands of the

research community and industries for devices capable of interacting with the micro–scale.

A brief overview of the categories of micro-robots that complete these tasks is necessary to

define the scope of research of this thesis.

Micro-robotic solutions

Following the previous definition of micro-robots [3], there are two categories of micro-robots

interacting with micro–scale objects that may be identified: stations, and integrated robots.
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(a) (b)

Figure 2 – Examples of commercial prober solutions;
(a) Kleindiek nanotechnik Prober Shuttle (PS4), (b) Zyvex nProber.

Stations are devices of large volume, potentially up to several m3 in bulk (Fig. 2). As per their

name, they are generally stationary in that they are of fixed configuration. They provide a

controlled environment in which their actuators may operate with precision, and feature an

ensemble of calibrated sensors that allow for closed-loop control. The sensing schemes that

are used in stations may either be proprioceptive, or exteroceptive, providing a wide array

of sensing possibilities for the system. They are therefore optimised machines designed for

specific tasks (e.g. 4-point probe electrical characterisation of micro-electronics on wafers),

and are cutting edge in terms of performance. In their fixed configuration, they are however

limited in the applications that they can tackle, as the possibility of swapping tools is usually

limited to the device constructor’s design. Their use at a lower scale than high volume indus-

trial applications is also compounded by the large costs of such complete systems. The first

micro-robots that have been used in the industry are related to this type of configuration, as

small displacements may be more easily achieved in controlled environments.

In opposition to probing stations, the latest advancements in micro-robots have paved the way

towards the development of integrated solutions that are capable of working in constrained

volumes. They feature a single end effector, as opposed to the multitude of end effectors that

are simultaneously controlled by most probing stations, and they do not come in their own

controlled working environment. The sensors that are provided are proprioceptive rather

than exteroceptive, providing readings that are internal to the system (e.g. motor speed, joint

angles, etc.). Such examples of these robots may be seen in Fig. 3 with the Delta-Cube [18], or

the Sugar-Cube Delta robots (CSEM), where the widely used delta-robot kinematic chain is

adapted to micro-robotics in low volume robots: the Delta-Cube has an edge of 11 cm, and the

Sugar-Delta pushes it even further with an edge of 20 mm. The use of flexible joints becomes

the norm at this scale to provide elements of the kinematic chain, as miniaturisation of typical

components (e.g. joints, ball bearings) is impossible past a certain point.

The strengths of miniaturised micro-robotics lie in their flexibility and thus adaptability to

different applications. Such micro-robots have been deployed in various environments, which
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Figure 3 – Examples of integrated micro-robots; (left) Delta-cube micro-robot with 11 cm
edges [18], (right) Sugar-cube delta robot with 20 mm edges (CSEM).

are constrained in terms of working volume or working conditions, such as vacuum chambers,

Scanning Electron Microscope (SEM), [5] [59] [34], or Magnetic Resonance Imaging (MRI)

scanners [44]. Their reduced costs of aquisition, maintenance, and repair make them attractive

for academic purposes as much as for large scale industrial applications.

Limitations to micro-robotic miniaturisation

Following the preceding introduction, the drawback of integrated micro-robots that stands

out the most is the difficulty of reconciling increased miniaturisation with high accuracy and

performance. Sensors are necessary to ensure that the mechanical state (i.e. position, velocity,

force) of an actuator matches the target state. This is because of the unpredictability brought

about by the fact that sub–µm manipulations answer to rules of physics that are not present at

the macro–scale. These phenomena may not always be accurately modelled for compensation

in feedforward control approaches, therefore sensors providing direct information on an

actuator’s state are necessary to overcome them. The miniaturisation of a system entails

reducing its encumbrance volume while preserving its performance and accuracy as much

as possible. This includes reducing the encumbrance of the sensors that are necessary to

preserve the accuracy of the system, inexorably leading to the aforementioned drawback of

integrated robots over their stationary counterparts.

Some micro-robots have been implemented without proprioceptive sensors, such as the

miBot my Imina Technologies SA featuring 4 degrees of freedom controlled by stick-slip

piezoelectric actuators. These robots are manipulated by human operators with ease using

a visual feedback, and some amount of automation may be brought to them by using said

visual feedback in combination with image processing to determine the displacement of the

actuator. Despite these approaches to control, the lack of proper sensors limit the automation

capabilities of these micro-robots, therefore holding these devices back when it comes to large

scale integration within the industry.
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Figure 4 – Photos of the miBot, source: Imina Technologies S.A.

Overcoming the limitations through collocated control

To counteract this limitation, the notion of collocated control has been brought forward. Such

a control scheme requires the use of sensorless or self-sensing actuators, foregoing the need

for external sensors. In the present manuscript, the principle of Self-Sensing Actuation (SSA)

is defined as the capability of deriving the current state of an actuator as it is being driven

without the use of external sensors. The state of the actuator can be defined in accordance to

the target application, but it typically includes the position of the actuator, its velocity, and its

applied force. The exploration of self-sensing actuation has sprung from the fruits of a col-

laboration between the Integrated Actuators Lab (EPFL-LAI) and an industrial partner, Imina

Technologies S.A., through CTI project # 18318.1 P FIW-IW. The purpose of this collaboration

aimed to investigate on how to bring sensorless capabilities to the miBot (Fig. 4), a promising

micro-robotic solution proposed by the industrial partner.

Achieving self-sensing with a transducer requires to exploit its multi-physics characteristics.

Most actuators are driven by an electrical or thermal signal to produce a mechanical defor-

mation, and byproduct signals originating from the actuator in either physics domains may

be measured by the control system of the actuator. Knowledge of the transducer’s properties

may then allow to derive its current state from the measurement of these signals. In the case

of byproduct electrical signals (e.g. currents, voltages), they may be measured directly from

the drive electronics of the actuator, hence the lack of need for external sensors. Self-sensing

has been successfully implemented with different types of actuators: Omar Scaglione has

demonstrated this approach with synchronous motors [55], while Markus Flückiger has done

so for piezoelectric ultrasonic motors [14], and finally Daniel Grivon has demonstrated the

sensing possibilities that lie within magneto-rheological valves [16].

Among the multitude of actuators that are used in micro-robotics, piezoelectric transducers are

particularly suited to this approach, owing to the reversibility of their properties. Additionally,

piezoelectric actuation offers numerous advantages to micro-robotic manipulation:

• Resolution of motion: the minute displacements (1 nm — 100µm) that can be achieved

under high applied voltages (10 V — 100 V) allow for piezoelectric actuators to achieve

high precision motion. The resulting sensitivity of the actuator’s output with respect
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to the control signal is ideal for the fine motions that are required for micro-robotic

applications, e.g. manipulation of µm-sized objects.

• Miniaturization potential: piezoelectric actuators impose less encumbrance compared

to other means of actuation due to the strains achieved with small actuators, positively

affecting the miniaturization possibilities of a given robotic system. This is further

strengthened by the fact that the control electronics for a piezoelectric actuator can

be implemented outside of the working area of the robot, especially relevant when

operating in confined workspaces.

The present thesis will seek to investigate the matter of piezoelectric SSA for the advancement

of miniaturisation in micro-robotics. With a comprehensive approach to understanding the

theory behind achieving self-sensing within piezoelectric actuators, an approach to providing

ultra-high accuracy sensorless actuators will be presented with the aim of developing a proto-

type. The detection of force and position thresholds will be considered at first, with the future

prospect of using the prototype for high accuracy force and position control.

Thesis outline

Before undertaking any steps in this endeavour, an evaluation of the current advancements of

piezoelectric self-sensing in modern research is required. As such, Chapter 1 shall begin with

a complete introductory look into how self-sensing has been implemented in piezoelectric

actuators up to now. Three main approaches will be discerned: voltage measurements, current

and charge measurements, and finally impedance evaluations which are often combined

with one of the latter two. With an application goal in mind, and by deduction from the

qualitative appreciation of the strengths and weaknesses of each approach, the current or

charge measurement approach is considered for the remainder of this thesis.

Following the observation that most self-sensing attempts with piezoelectric actuators have

been made with commercially available actuators, the research focus shifts towards a top-

down approach in Chapter 2. The goal is to develop a comprehensive understanding of

piezoelectric SSA with a framework comprised of two models: a general form of analytical

model describing piezoelectric actuators and their input / output signals, and a dynamic

model constructed from Bond Graph Models (BGM). The use of BGM to understand the

dynamic behaviour of a piezoelectric actuator, allowing for the description of the estimation

performance of the system, is a novelty brought forward by this chapter. It allows to shine

some insight into the relationship between actuator parameters, i.e. stiffness, capacitance,

and the estimation accuracy of the mechanical state.

With the self-sensing theory presented in the SSA framework, Chapter 3 moves on to the design

of a piezoelectric SSA device. Before settling on an actuator morphology, experiments are

performed on samples with tasks that would typically be performed by micro-robots. Their

purpose is to highlight a scope for the actuation and sensing performances of the actuator
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in terms of displacement and applied force. Once the actuator morphology is settled, the

establishment of an analytical model according to the general model defined in Chapter 2 is

demonstrated. The analytical model is then used to maximise the estimation resolution of the

prototype, as design parameters shall be derived from this study.

From this point, all the tools to design and assemble a self-sensing prototype are in hand.

The guidelines derived from the design study are hence used in Chapter 4 to manufacture a

batch of piezoelectric actuators. The prototype is then designed around this actuator design,

with a test environment providing feedback on the electro-mechanical inputs and outputs

of the piezoelectric actuator. This makes it possible to validate in real-time the output of the

senrorless estimation for the mechanical state of the actuator. This prototype is then used

to provide a statistical evaluation of the actuator’s characteristics by experimenting on an

ensemble of six actuators. The results of the characterisation are finally used in an attempt to

implement the sensorless force estimation of the self-sensing actuator manipulation a sample.

Finally, Chapter 5 investigates a discrepancy that may be observed between the model predic-

tions and the measured values for the actuator’s parameters. The importance of previously

neglected features of the actuator stack such as the electrode thicknesses and isolation layers

is evaluated and found to be responsible for large drifts in designs with very thin piezoelectric

layers and small number of layers. A newer and more complete model for the actuator mor-

phology defined in Chapter 3 is provided. The verified accuracy and non-linearity of the new

complete analytical model provides a new opportunity to study the optimal design parameters

for a self-sensing piezoelectric actuator. A novel approach to designing self-sensing piezoelec-

tric actuators is devised by considering the actuator as a sensor, and by definining functions

for its sensitivity and its accuracy. A full multi-objective optimisation study is provided, and

the Pareto frontier of the optimisation problem is provided.
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1 An introductory look into piezoelec-
tric self-sensing actuation

1.1 Introduction

The first step in designing a high precision and sensorless piezoelectric actuator for micro-

robotics is to study the current advancements of academic research on the matter. Self-Sensing

Actuation (SSA) is a relatively recent topic, with the first publications on the topic dating back

to 1990, and with a large amount of breakthrough that has been brought in the past decade.

Before going into the specifics of sensorless piezoelectric actuators, it is convenient to have

some theoretical background. For the sake of brevity for this chapter, a summary of the theory

of piezoelectricity and piezoelectric modelling are provided in Appendix A.

As discussed in the Introduction of this thesis, piezoelectric actuators present a multitde of

perks in terms of miniaturisation and displacement accuracy. The downside to these strengths

are the unfortunate parasitic effects that are inherent to the properties of piezoelectric mate-

rials such as voltage-displacement hysteresis, creep effect, and dielectric absorption, which

have to be taken into account to guarantee an acceptable accuracy [51]. This is all the more

relevant when attempting to achieve high accuracy for micro-robotic applications, as tools

need to be precisely positioned, and exerted manipulation forces need to be controlled in a

way that objects are not damaged. Hence the need for sensors is a hurdle to the integration of

piezoelectric actuators in micro-robots and, ultimately, to their miniaturization. It has been

suggested in the Introduction that SSA is a potential solution to this problem by enabling the

precise operation of actuators without the need for external sensors.

The following sections will discuss the methods that are present in scientific literature to

this day regarding SSA with quasi-static piezoelectric actuators. Piezoelectric SSA may be

categorised depending on the nature of the electrical signal that is measured to provide a state

estimation, as it can be a voltage, a current, or an impedance. Three main axes of research

have been identified according to this type of criteria, and they will each be presented: voltage-

based SSA, current or charge-based SSA, and impedance-based SSA, the latter being often

associated with one of the other strategies in hybridised approaches. A summary of the

scientific literature’s progress on these topics will then be provided.
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Q̇p

C

Q̇in

Vin Vp C

Figure 1.1 – Electrically equivalent model of a piezoelectric actuator.

1.2 Voltage measurement bridge

One of the first contributions to piezoelectric SSA was made in 1992 by Dosch and Inman

[31], describing the voltage measurement bridge as a means to determine the mechanical

state of an actuator. The use-case for SSA presented in this first publication is the damping of

vibrating piezoelectric cantilevers. While this does not directly pertain to SSA with quasi-static

piezoelectric actuators, it does demonstrate how the state of a piezoelectric actuator can be

determined by simply measuring a voltage. The work of Dosch and Inman nonetheless serves

as a good starting point to explain the operating priniciple of the approach. Subsequent works

have attempted to reconcile the approach with quasi-static applications with some degree

of success. These will be discussed once an overview of the approach for high frequency

applications has been laid out.

The following section will present the working principle of the voltage measurement bridge,

along with short analyses of the basic strain and rate of strain sensing bridges, followed by an

overview of the improvements that have been made on the method in order to improve its

quasi-static performance.

1.2.1 Operating principle

In order to be able to derive the state of an actuator through voltage measurements, a rela-

tionship between the mechanical state (i.e. strains) and the electrical state (i.e. electric fields)

must be established. This is done by Dosch and Inman with the assumption that the actuator’s

electrical behaviour can be modelled through an electrically equivalent model (Fig. 1.1).

This simple model consists of the actuator’s internal capacitance Cp in series with a volt-

age source Vp , the latter modelling the effect of the electric displacement field D within the

piezoelectric material. This electric displacement field is a result of the strain within the

piezeoelectric material through a linear relationship, and it is linearly relate d to the electric

field and, therefore, to the voltage Vp . Thus a linear relationship can be established between

the Vp voltage of the electrically equivalent model (Fig. 1.1) and the mechanical state of the
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1.2. Voltage measurement bridge
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(b) Strain sensing bridge

Figure 1.2 – Self-sensing actuator circuit for rate of strain and strain sensing.

actuator. As voltages can generally be measured with ease, this provides a plausible approach

to estimating the state of the actuator during its operation. Determining the internal piezo-

electric voltage Vp while actuator is being driven by a voltage Vin would make it possible to

estimate the actuator’s mechanical state, opening the door to achieving SSA with piezoelectric

actuators. Only the rightmost electrically equivalent model in Fig. 1.1 will be used, as it takes

into consideration the internal piezoelectric voltage Vp that is targetted by the approach.

A challenge arises from this due to the fact that the voltage source Vp is in series with an

internal piezoelectric capacitance Cp , being internal to the piezoelectric actuator. This makes

it impossible to directly measure the Vp voltage, and the solution brought by Dosch and

Inman to this hurdle is the use of voltage measurement bridges: two bridges that can be

used to estimate either the rate of strain or the strain of an actuator have been proposed.

These circuits take advantage of the aforementioned electrically equivalent model of the

piezoelectric actuator (Fig. 1.1). They can be described as Wheatstone bridges wherein the

piezoelectric actuator has been placed on one of the branches of the bridge (Fig. 1.2a — 1.2b).

On the condition that their branches are properly balanced, the voltage output of these bridges

yields the voltage Vp , which leads to the estimation of the electrical displacement field D and,

consequently, the mechanical state of the actuator.

Rate of strain sensing bridge

The first electrical circuit to be considered is the rate of strain sensing bridge seen in Fig.

1.2a. The upper half bridge is composed of the piezoelectric actuator, modelled with the

capacitance Cp and voltage source Vp , and of a capacitance C2. The lower half of the bridge

consists of resistors R1 and R2. The sensing voltage Vs consists of the difference in electrical

11



Chapter 1. An introductory look into piezoelectric self-sensing actuation

potential between V2 and V1, both of which can be expressed as follows using phasors:

V2 =Vin · jωR2C2

1+ jωR2C2
V1 =

(
Vin −Vp

) · jωR1Cp

1+ jωR1Cp
(1.1)

Which yields the following expression for the sensing voltage Vs :

Vs =Vin ·
( jωR2C2

1+ jωR2
− jωR1Cp

1+ jωR1Cp

)
+Vp · jωR1Cp

1+ jωR1Cp
(1.2)

This expression can be greatly simplified with proper balancing of the measurement bridge.

In that regard, imposing the condition that Cp R1 =C2R2 will suppress the first half of Eq. 1.2.

By moving into the frequency domain through the transformation s = jω and by applying the

condition that ωR1Cp << 1, one can come to the following development:

Vs(s) = sR1CpVp (s)
L←−−→ vs(t ) = R1Cp · v̇p (t ) (1.3)

It can be concluded that, should the aforementioned conditions be met, the sensing voltage

Vs is proportional to the derivative of the piezoelectric voltage Vp . As the latter is proportional

to the strain, these equations can be used in order to determine the rate of strain of the

piezoelectric material.

Strain sensing bridge

The second bridge seen in Fig. 1.2b, used for direct strain sensing, is a variation of the first

bridge. The lower half bridge is replaced with identical capacitors C2. The same approach to

determine the sensing voltage Vs is applicable here, with expressions for the V2 and V1 phasors

in the following form:

V2 =Vin · C3

C2 +C3
V1 =

(
Vin −Vp

) · Cp

C2 +Cp
(1.4)

The bridge can be balanced, and the expression for the sensing voltage Vs simplified, if the

condition Cp =C3 is met. In this case, the following transformation from the frequency domain

to the time domain can be made:

Vs =Vp · Cp

Cp +C2

L←−−→ vs(t ) = vp (t ) · Cp

Cp +C2
(1.5)

Consequently, the sensing voltage Vs is proportional to the piezoelectric voltage Vp by a

factor dependent on the choice of C2, and is thus directly proportional to the strain of the

piezoelectric material. The balancing of such a measurement bridge is unfortunately a much

12



1.2. Voltage measurement bridge

more delicate matter than in the case of the rate of strain sensing bridge. The condition of

Cp = C3 is harder to achieve due to the difficulty of imposing a strict tolerance on passive

components such as capacitors. Furthermore, the capacitance of the piezoelectric actuator

Cp must be precisely known in order to match it with C3, which is made more difficult by the

fact that the impedance of a piezoelectric material may change as a function of its strain.

Raw performance of voltage measurement bridges

In order to verify the performance of this approach, Dosch and Inman have performed a

validation test using the rate of strain measurement bridge [31]. This bridge was used to

create a feedback loop so that a regulator could use the rate of strain in order to suppress the

vibrations of a piezoelectric actuator. The latter is a monomorph cantilever of dimensions

38.74×2.29×0.081 cm3, initially excited at a frequency of 20 Hz. The vibration was reduced to

5% of its initial amplitude within 0.3 s for the first mode of vibration and 0.9 s for the second

mode, demonstrating a successful self-sensing actuation implementation.

This approach is however held back by one caveat, as the electrically equivalent model that

has been considered (Fig. 1.1) is rather simplistic. It does not account for the parasitic effects

that are typically present in piezoelectric materials: hysteresis, creep, dielectric absorption,

etc. These effects aren’t as impactful at higher frequencies of operation, hence the good per-

formance achieved for the stabilization of vibrating actuators. Quasi-static implementations

of this SSA approach, however, will be held back by these effects by causing a drift over time

between the estimated and the real physical state of the actuator.

Another difficulty arising from this approach is the complexity of balancing the branches

required to isolate the sensing signal from the actuation signal in the bridge’s output. The

impedance of the piezoelectric actuator must be accurately measured before attempting to

match the opposed branch to its capacitance Cp . Furthermore, the impedance of a piezoelec-

tric actuator at quasi-static frequencies (typically less than 1 Hz) are not trivially modelled.

This is compounded by the fact that the impedance of a piezoelectric actuator is not constant

and is influenced by several internal and external parameters: strain, electric field, ambient

temperature, relative humidity, etc. The voltage measurement bridge is therefore vulnerable

to external conditions, and its ouptut may become unpredictable.

1.2.2 Improvements for quasi-static operation

Despite the difficulties faced by the implementation of a voltage measurement bridge, this

approach to self-sensing actuation has been successfully used in various high frequency

applications and, to a certain extent, quasi-static ones. Some solutions have come up to

compensate for these downfalls and make the quasi-static application more promising. These

improvements and their effect on quasi-static performance will be discussed further in the

following sections.
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Figure 1.3 – Proposals for updated bridges to extend the self-sensing bandwidth.

Extending the self-sensing bandwidth

As previously mentioned, the main flaw of the measurement bridge approach to piezoelectric

self-sensing actuation is the simplistic electrically equivalent model that is used to approxi-

mate the electrical behaviour of the piezoelectric actuator. In reality, the impendance of the

piezoelectric material has a resistive component which is the cause for leakage currents. These

currents inevitably result in a deviation over time in the estimation of the sensing voltage with

respect to the real value of the strain or rate of strain. This deterioration over time causes the

method to be unsuitable for quasi-static applications.

Some proposals have gone into possible solutions to increase the bandwidth of the measure-

ment bridge. In 1994, the design of a piezoelectric linear stack actuator used in the microposi-

tioning of small segments of a satellite dish is discussed by Jones et al. [32]. They consider the

implementation described by Dosch, as it was a promising solution to a lightweight actuation

system that could satisfy stringent requirements on operating frequencies from Direct Cur-

rent (DC) to 3 kHz. Jones acknowledged the issue of DC drift incurred in a purely capacitive

bridge and its effect on a micropositionning device, and proposes a modification in which

resistors are added in parallel to each branch (Fig. 1.3b). Similarly to the strain sensing bridge,

the sensing voltage Vs in Fig. 1.3b is isolated from the actuation voltage Vin if the condition

Cp =Cm is met, and the same equation as Eq. 1.5 can be found. An additional condition on

the resistors to eliminate the drift component burdening the sensing voltage Vs can be found

by studying the transfer function of each half-bridge, and can be expressed as follows:

C1

C1 +C2
= R2

R1 +R2
(1.6)

Rather than improving the bridge’s accuracy at lower frequencies, Putra et al. have pondered

on how extend the bandwidth to higher frequencies in 2008 [48]. In this work, a self-sensing

14



1.2. Voltage measurement bridge

piezoelectric linear stack actuator for a micro-dispensing system injecting and depositing

microliters of fluids on samples is presented. The nature of its task requires the actuator to be

capable of handling fast switching trajectories, hence the need for extending the bandwidth

to higher frequencies. Putra proposes an updated rate of strain sensing bridge (Fig. 1.3a) in

which parallel resistors are only placed in the lower legs of the measurement bridge. This

approach was also presented by Pang et al. in 2006 [6].

The following conditions must be met in order for the bridge to be balanced: Cp =Cm , C1 =C2

and R1 = R2. Meeting those conditions, the sensing voltage Vs is isolated from the actuation

signal Vin, and the bridge functions is a high-pass filter:

Vs =Vp · jωR1Cp

1+ jωR1(Cp +C1)
(1.7)

The cut-off frequency of the bridge is increased as a consequence of this modification, extend-

ing the bandwidth of the self-sensing actuation to higher frequencies. This approach allows

the self-sensing bridge to be able to accurately perform fast switching trajectories, but it is how-

ever less suitable for low frequency and quasi-static operations such as micro-positionning

and micro-manipulation.

Compensation of impedance variations

The issue that causes the most unpredictability in the bridge measurement implementation

is the senstivity of the method to external parameters. This is mainly due to the fact that

the actuator’s impedance being influenced by its environment causes the bridge to become

unbalanced. In this situation, the sensing voltage is no longer isolated from the actuation

signal, and it loses its direct relationship to the electric field, and therefore the strain, within

the piezoelectric material. Adjusting resistors while the actuator is being driven is possible

with the use of digital potentiometers, but the adjustment of capacitors is another matter.

In addition to compensating the DC drift to improve quasi-static performance, Jones makes

this observation with regards to the long term accuracy of the bridge. Matching the capaci-

tance of the piezoelectric actuator with a reference capacitor on the other half-bridge is critical

to isolate the sensing voltage Vs from the actuation signal Vin, until it inevitably became un-

balanced. It was first thought that the actuator’s capacitance changed due to the deformation

of the material, but overall this effect has been proven to have a negligible impact on the

capacitance change. Instead, the change may be due to the modification of the piezoelectric

material’s property, more specifically the permittivity ε, under the influence of an electric

field. This made it difficult to model and compensate for the changes in impedance of the

actuator. Jones therefore proposes to replace the reference capacitor leg of the half-bridge with

another identical piezoelectric actuator which will be subject to the same applied voltages.

The reference capacitance would therefore match the capacitance of the piezoelectric actuator

at all times, and the non-linearities of the piezoelectric properties can thus be compensated.
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Figure 1.4 – Robust self-sensing actuator bridge for strain sensing.

Replacing the reference capacitance of the half-bridge opposed to the self-sensing actuator is

an elegant solution in that it is passively regulated. Other attempts at increasing the robustness

of the bridge have used analog computers to replace the passive half-bridge by simulating

its output. This has been proposed by Takigami et al. in 1998 [57], as illustrated in Fig. 1.4.

The active half-bridge makes use of the previously discussed improvement by adding parallel

resistors to both branches to compensate the drift caused by leakage currents, improving

the self-sensing accuracy during quasi-static operations. Ignoring the presence of the analog

computer for now, the sensing voltage Vs of the measurement bridge presented in Fig. 1.4 can

be found by finding the expression of the V2 and V1 phasors:

V2 =Vin · C1

C2 +C1
V1 =

(
Vin −Vp

) · R2

R2 +Rp
1+ jωR2C2

1+ jωRpCp

(1.8)

The bridge can be balanced, and the expression for the sensing voltage Vs simplified, if the

conditions Cp Rp =C2R2 and C1 =Cp are met. In this case, the following transformation from

the frequency domain to the time domain can be made:

Vs =Vp · Cp

Cp +C2

L←−−→ vs(t ) = vp (t ) · Cp

Cp +C2
(1.9)

The first condition (i.e. R2C2 = RpCp ) can be controlled with ease by implementing R2 as a

digital potentiometer that can be adjusted online and using a fixed capacitance C2. However,

the second condition (i.e. C1 =Cp ) is not as easy to control and fine-tune. Despite the avail-

ability digitally tunable capacitors, matching with accuracy the evolving capacitance Cp of the

piezoelectric actuator with these devices remains a complex issue. This is where the solution

of implementing an analog computer in the stead of the passive half-bridge, composed of C1

and C2, gains merit. Since the potential V2 is not dependent on the piezoelectric voltage Vp ,

the gain of the passive half-bridge is simulated by means of this analog computer. Since it is

possible to design the analog computer to match the gain to the evolution of the piezoelec-

tric capacitance Cp online, this approach becomes more robust to external conditions that
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previously limited the potential of the bridge measurement implementation. This approach

foregoes the need for another piezoelectric actuator as a reference capacitance, making it less

costly to implement.

1.3 Charge and current measurement

The first approach to SSA that has been presented has discussed the use of voltage measure-

ments for the deduction of the electrical field within the piezoelectric material, which in turn

can be used to deduce the strain of the actuator.

In the same year that Dosch and Inman have published their paper on voltage measurement

bridges, Hagood and Anderson have offered an alternative approach to piezoelectric SSA [17].

They provide insight into the relationship between the current flowing between the shorted

electrodes of a strained piezoelectric actuator and the strain rate of the actuator. It is thus

hypothesised that the capability of isolating and quantifying the current flowing through the

actuator due to its deformation may lead to an accurate estimation of the rate of strain. As

was the case for the publication of Dosch and Inman, the approach presented by Hagood

and Anderson had been intended for high frequency applications. This research topic has

nonetheless garnered significant interest, as multiple improvements have been brought to

this approach to make it viable for quasi-static applications.

The following paragraphs will first present the basics of the charge or current measurement

SSA approach, then will discuss all the quasi-static performance improvements that have been

brought over the years.

1.3.1 Operating principle

Through the aplication of the theory of piezoelectricity, a system of two constitutive equations

can be determined for a given actuator. This system describes the state of the actuator in the

mechanical and electrical domains along with the mutual interactions of these two domains.

It may be expressed when considering the matrix form of the piezoelectric equations:[
S

D

]
=

[
sE d

dt εT

][
T

E

]
(1.10)

where D is the electric displacement field matrix, E is the electric field matrix, T is the stress

matrix and S is the strain matrix. The properties of the piezoelectric material are described by

its permittivity matrix ε, its compliance matrix s, and its piezoelectric coefficients matrix d .

The (·)E superscript denotes a constant electric field E , the (·)T superscript denotes a constant

stress T , and the (·)t subscript denotes a matricial transpose.

Through these equations, Hagood and Anderson demonstrate that the current flowing through

an actuator is related to its rate of strain [17]. Similarly, it can be shown that the electric charges
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Figure 1.5 – Operating principle of charge or current based SSA for the estimation of the
mechanical state of the actuator (mechanical quantities in red, electric quantities in blue).

accumulated by an actuator is related to its strain. This can be explained by considering the

system of equations in Eq. 1.10. The electrical and mechanical states of the actuator are both

influenced by the driving electric field E and the strain T perceived by it. The application of

both those quantities, considered as inputs to the piezoelectric system, influence the strain S

and the electric displacement field D considered as outputs of the same system. The applied

electric field E and resulting electric displacement field D can be tied to measurable electric

quantities, namely voltages for E and charges (and by extension currents) for D through

the application of Gauss’ law. These electrical signals are readily available within the drive

electronics of the actuator and do not require additional external sensors to be measured.

This approach to modelling the piezoelectric actuator is relevant when considering SSA, since

sensorless actuators are designed to behave simultaneously as actuators and as sensors. The

principle of operation of charge / current self-sensing is illustrated as a system in Fig. 1.5. With

E and D being available from within the drive electronics, it is possible to measure both of

these quantities without the use of external sensors. The model of the piezoelectric actuator

determined through the development of Eq. 1.10 can then be used to provide an estimation

of the strain Ŝ and the stress T̂ . This approach thus provides a way to derive the mechanical

state of the actuator from the knowledge of the driving voltage that is applied to it and the

measurement of its current, or accumulated charges.

To demonstrate their approach, Hagood and Anderson have performed an experiment with a

piezoelectric cantilever of dimensions 33×2.54×0.32 cm3. The goal of the experiment was

to stabilise the vibrating cantilever without the use of external sensors, by using a current

measurement SSA approach. After defining the constitutive equations for a cantilevered

piezoelectric actuator, they have proposed to amplify the current within the driving circuit, as

shown in Fig. 1.6. The output voltage of the current amplifier is then used by a Fourier analyser

to determine the current strain of the actuator. A second current amplification stage is used in

parallel to the amplification of the actuator’s current. It is connected to a reference capacitor

approximating the actuator’s capacitance and is subject to the same voltage. This is done in

order to negate the current flow caused by the application of a driving voltage, and is used to

subtract this unwanted contribution from the output of the actuator’s current amplification.

In this manner, only the current caused by the deformation of the actuator is measured.
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Figure 1.6 – Rate of strain sensing hardware using current measurement.

The transfer function of the system designed by Hagood and Anderson had been evaluated

for frequencies ranging from 10 Hz to 1 kHz. This led to the conclusion that the first modes of

vibration were succesfully attenuated to 1% of their initial amplitude. This experiment has thus

proven succesful in demonstrating the validity of the current measurement SSA approach, and

in showing that it is possible to use piezoelectric materials to achieve self-sensing actuation.

Due to the high frequency nature of the application proposed in this publication, the authors

have not concerned themselves with the parasitic effects of piezoelectricity (i.e. creep, hystere-

sis) and have assumed linear properties of the material. As such, this approach is unsuitable

to quasi-static operation as is, and requires additional improvements to extend its bandwidth

to lower frequencies. Similarly to the voltage measurement bridge, this approach also calls

for special care in the choice of its components. The reference capacitor needs to match

precisely the internal capacitance of the piezoelectric material, which is not constant depends

on several parameters that are external to the actuator.

1.3.2 Measurement strategies

As discussed in the presentation of the operating principle, it is possible to achieve this

type of piezoelectric SSA either through current or charge measurements. In the following

paragraphs, examples of these two strategies and what the choice of either entails in terms of

SSA performance will be discussed in the context of quasi-static applications.

Charge amplification

Some of the most significant contributions to the field of charge and current based SSA have

come from the FEMTO-ST Institute (France), starting with the publication of Ivan in 2009

on the use of current integration, or charge amplification, for sensorless position estimation

[27]. The approach of charge amplification instead of current measurement is favoured under

the stipulation that it is easier to detect small variations in position through this method. For
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Figure 1.7 – Sensorless position estimation system through charge measurement SSA.

slight variations, and therefore small rates of strain, the current flowing through the actuator

may be too low to properly detect.

This publication is aimed specifically at quasi-static applications using piezoelectric actuators,

and has led to multiple publications in the subsequent years iterating on this particular SSA

approach. A piezoelectric bimorph cantilever is considered in this article, with the aim of

deriving the deflection δ of the bimorph’s free tip when it is subject to an applied voltage Vin.

Instead of using current measurements, it is proposed to use charges measurement instead.

The reason for this approach is that the model that Ivan has used for this actuator directly

ties the accumulate electric charges Q to the displacement δ of the free tip. This is more

convenient when considering quasi-static applications than the rate of strain that would be

obtained through current measurements.

To provide a sensorless estimation of the deflection, the system presented by Ivan consists of

two main components, both illustrated in the system diagram in Fig. 1.7. These two systems

are the following:

• A charge amplification circuit is connected in series with the piezoelectric actuator,

and provides analog integration of the current i (t) flowing through the actuator. This

is done with the operational amplifier set-up in Fig. 1.8, and its instantaneous output

voltage vQ (t ) is proportional to the amount of charges accumulated by the actuator at a

given point in time.

• A data processing system is connected to the output of the charge amplifier and to a

measurement of the applied voltage Vin, and it implements the inverse model of the

piezoelectric actuator. With the knowledge of the charge Q deduced from VQ and the

voltage Vin, it provides an estimation δ̂ for the deflection of the bimorph’s free tip.

While the charges may be measured by an electrometer connected to the piezoelectric actuator

in series while it is being driven, Ivan has instead provided a design of his own. The custom

circuit, illustrated in Fig. 1.8, consists of an operational amplifier with a capacitor C in

its feedback loop. Since the integration of the current over long periods of time can lead

to the saturation of the operational amplifier, it is necessary to include a resistor with a

digitally controlled switch k. This parallel resistor discharges the integrating capacitor C when
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Figure 1.8 – Charge amplification circuit for sensorless position estimation.

necessary. The output voltage of this amplifier can be written as:

Vout =− 1

C

t∫
0

i (t )dt =−Q

C
(1.11)

where i (t ) is the instantaneous current flowing through the actuator, C the reference capaci-

tance, and t the duration of the measurement since the beginning of the experiment, and Q

the charge of the device under test.

The accumulated charges Q measured by the charge amplification circuit has two components,

such that Q =Qp +Qe . An electrical component Qe =CpVin which is caused by the application

of the driving voltage Vin on the piezoelectric actuator of capacitance Cp , and a mechanical

component Qp which is caused by the deformation of the piezoelectric material. In the

context of self-sensing being used to estimate the mechanical state of the actuator, only Qp is

of relevance. Depending on the considered piezoelectric actuator’s characteristics, it may be

that the Qe is up to three order of magnitudes higher than Qp . With the operational amplifier

saturating over a given amount of charges, this causes much of the dynamic range of the

charge measurement to be taken up by this parasitic charge.

The charge amplification circuit attenuates the electrical component Qe through the inclusion

of the reference capacitor Cr . By verifying the condition that Cr =Cp , and by applying to Cr a

voltage opposite to the actuation voltage (i.e. −Vin), the charge accumulated by Cr opposes

the charge Qe accumulated by Cp . This reduces the contribution of the applied voltage Vin to

the measured charges, and therefore increases the dynamic range of the charge measurement

by a significant margin. Note that the reference capacitor Cr does not necessarily to perfectly

match the piezoelectric capacitance Cp . As long as the Cr and Cp capacitances are accurately

characterised prior to the integration to the charge amplification circuit, it reduces the amount

of parasitic charges output by the circuit. Let ∆C be the difference in capacitance between Cr

and Cp , the final output of the voltage measurement circuit is as follows:

Vout =−Qp +CpVin −Cr Vin

C
=−Qp +∆CVin

C
(1.12)
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Foregoing the use of such a capacitor is possible depending on the actuator’s capacitance

and the amplitude of the applied voltage, but it will make it more difficult to guarantee high

estimation accuracy. This is especially relevant when attempting to estimate low applied

forces. As an example, Fallahinia has presented a similar SSA implementation for position

estimation without using a reference capacitor in the charge amplification circuit [12]. This

charge amplification approach has been used in the follow-up articles released by the FEMTO-

ST Institute which will be discussed later [52] [45] [46].

Current measurement

The more direct approach to the SSA strategy presented in this section is, as presented by

Hagood and Anderson, current measurement. This can be done in a multitude of ways, such as

measuring the current through a shunt resistor, amplifying the current through an operational

amplifier, or using a current probe. For small and low frequency deformations of the piezoelec-

tric material, the rate of strain within the actuator will be minimal, which will inevitably be the

case in quasi-static manipulation applications. The currents that flow through the actuator

will expectedly be of low amplitude, hence complex to measure. Nonetheless, some attempts

have been made to use current measurement for quasi-static SSA with piezoelectric actuators.

A current measurement approach where the current is measured within the actuator’s driving

circuit before being digitally integrated has been discussed by Ivan [26]. While no specifics

are given as to how the current was measured in this approach, Ivan describes at length the

different compensations for non-linearities (i.e. hysteresis, creep) that were necessary to

guarantee reliable information for the SSA estimation. In this publication, a piezoelectric

cantilever subject to an applied voltage Vin and to an external force Fext is determined. The

aim of the SSA implementation is to provide an estimation for both the displacement δ and

the external force Fext on the basis of the current measurement coupled with an inverse model

of the piezoelectric actuator.

Another practical approach to SSA with piezoelectric actuators and current measurement can

be seen in the development of a manipulation tweezer for Magnetic Resonance Imaging (MRI)

applications by McPherson in 2011 [43], and improved further in 2014 [44]. The considered

actuator is a linear stack nested within a rhombus mechanism, allowing the actuator to close

the tips of a tweezer together. This kinematic chain provides strain amplification within the

piezoelectric material, and a reduced force application at the tips of the tweezer. The ingenuity

of this setup improves the resolution of the SSA implementation, as the increased strain within

the piezoelectric actuator for a given applied force at the tweezer’s tips increases the amount of

current that will flow through the actuator. The SSA implementation presented by McPherson

makes use of direct current measurement by measuring the voltage on a shunt resistor. The

actuator is modelled with a system of constitutive equations describing the relationship

between the measured current, the applied voltage, and the variations in displacement. There

are several downfalls to current measurement through a shunt resistor. Chief of these is

that the use of a shunt resistor results in a decrease of actuator efficiency due to the passive
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component’s dissipation of power in the form of heat. Additionally, the sensing signal is

affected by the shunt resistor even for resistor values lower than the actuator’s impedance.

The estimated displacement and force thus slightly differ to the true displacement and force

experienced by the actuator.

1.3.3 Improvements for quasi-static operation

As was the case for voltage measurement bridges, the first implementation of piezoelectric

SSA on the basis of charge or current measurements was presented with high frequency

applications in mind. This comes with limitations to the performance in quasi-static scenarios,

due to the assumption of a linear piezoelectric model and the absence of parasitic effects such

as hysteresis. The following paragraphs will go into the improvements that have been made to

this SSA approach to make it suitable for quasi-static applications.

Compensation of material non-linearities

For quasi-static actuation, one of the key issues identified in piezoelectric materials is the

hysteretic relationship between its deformation and the electric field. This is most noticeable

when measuring the voltage-displacement characteristic of the actuator. Hysteresis could be

suppressed by modelling it, much like it is done in feedforward approaches to piezoelectric

actuation and control. Mathematical operators are used to model the hysteresis of an actuator,

and the inverse model may then be used to compensate for it.

This is the approach presented by Badel [2] [1], where the hysteresis compensation already

common in feedforward approaches is combined with charge based self-sensing. While the

charge is used in this study, it is not directly measured. Instead, a shunt resistor is connected

in series with the piezoelectric actuator and its voltage is measured to determine the current

flowing through the actuator. The charge is then deduced by integrating the current digitally.

The purpose of this SSA implementation is to achieve sensorless position sensing. By consid-

ering an electrically equivalent model of the piezoelectric actuator based Fig. 1.1 onto which

the hysteresis operator was added, an empirical model of the actuator is formulated. The

parameters of this model are then experimentally identified. As specified by the author, any

kind of hysteresis operator could be used. They propose to use an operator that they have

designed themselves. For reference, other publications like those of Ivan [26], Fallahinia [12]

[11], Mansour [35] and Islam [24] have used the Prandtl-Ishlinskii hysteresis model to great

effect.

The creep effect corresponds to a drift that occurs on a piezoelectric actuator after a DC voltage

step has been applied to it, and causes the displacement of the actuator to slightly change over

time (i.e. over several hundreds of seconds). Much like voltage steps on capacitors in electrical

theory, the creep effect is more prevalent with greater DC voltage steps, and its speed decreases

logarithmically over time. This effect is caused by the same material properties responsible
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for hysteresis. Creep compensation is briefly discussed by Ivan in his charge measurement

implementation [26], where an Auto Regressive and Moving Average Exogenous (ARMAX)

model is used to predict the effect of creep. The data processing system used by Ivan takes

into account these non-linearities of the piezoelectric material, and reverses their effect on

the current or charge measurement output by implementing their reverse model. The charge

measurement through current integration presented by Ivan is noted to be self-compensated

for material non-linearities (hysteresis, creep) due to the nature of the charge-displacement

relationship being less hysteretic than that of voltage-displacement [27]. However, subsequent

publications have nonetheless made use of these aforedescribed compensations to reach for

increased SSA accuracies.

Compensation of external non-linearities

Aside from inaccuracies caused by piezoelectric material non-linearities at quasi-static fre-

quencies, other time dependent phenomena have a negative impact on the performance of

the piezoelectric actuator. This is especially true in manipulation tasks where a position or

force must be held for a long amount of time (i.e. several minutes). This is caused by external

actors, typically by the driving circuit itself. They will affect the measurement circuit of the

sensorless actuator, and adding inaccuracies to the current or charge measurement. This

inevitably causes a drift in the force or position estimation of the SSA actuator over time, and

will cause the self-sensing function of a sensorless actuator to become dysfunctional.

The first cause of drift that can be identified is the presence of leaking resistance within

the piezoelectric actuator and the driving circuit itself. With driving voltages being applied

to the piezoelectric actuator, this leaking resistance will cause a current to flow through

the measuring circuit, and will be added to the current produced by the actuator. While

these currents are of low amplitude and could generally be ignored, the currents that are

caused by the actuator’s deformation are of a similar order of magnitude for sufficiently small

deformations. Thus these leaking currents cannot be disregarded, especially considering

that their amplitude will increase along with the voltage, while the current produced by

the strain on the piezoelectric material will remain the same. The second cause for drift in

charge or current measurement is the presence of bias currents from the input of measuring

circuits. These currents are also of low amplitude and are generally constant. Nonetheless,

they cannot be ignored for quasi-static applications where the self-sensing estimation needs

to be operational for long periods of time.

In the work of Ivan [27], and in the subsequent publications by Rakotondrabe [52] [45] [46],

the SSA estimation is implemented within a data processing system (Fig. 1.7). In addition to

providing a force and position estimation, this system takes into account the aforedescribed

external non-linearities. Ivan and Rakotondrabe proceed to compensate for the drift caused

leakage and bias currents empirically. The leakage resistance of the electric circuit and the

charge amplifier’s bias current are experimentally determined, with experimental protocols di-

minishing the contribution of other non-linearities (i.e. creep, hysteresis). With the knowledge
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Figure 1.10 – Dynamic component of the displacement estimator [52].

of these parameters, measuring the time since the start of the current integration allows the

data processing system to determine the amount of drift caused by these effects on the charge

measurement by integrating these drift currents. This estimation of the drift is then subtracted

to the measurement signal output by the charge amplifier, before the latter is used by the

estimator. In addition to these, Rakotondrabe also compensates for the dielectric absorption

of the piezoelectric actuator’s equivalent capacitance through a linear transfer function in the

Laplace domain.

Another source of error that can be introduced to the charge measurement may be caused

by external electrostatic and electromagnetic interferences affecting the electronics. This

becomes relevant when measuring nano-scale electric charges, when aiming for increased

SSA resolutions. As these may not be deterministically modelled, the only solution is to provide

proper shielding to the drive and measurement electronics of the piezoelectric actuator.

Improvement of the dynamic performance of the estimation

None of the models that have been discussed in the present section have taken into account

the transient part of the piezoelectric actuator’s deformation. Even though the estimation can

be made to be accurate after a sufficiently long period of time, the estimator will be inaccurate

for the first moments after a step of input voltage. In micro-robotic manipulation tasks,

this problem may become dire. Piezoelectric actuators which are flexible may have strong

overshoot characteristics when they are applied voltage. Uncompensated overshoot may

cause damage to the actuator itself or to the manipulated sample, both of which are generally

fragile. On top of overshoot, the actuator may keep oscillating for a long duration after a step

response, and this oscillation needs to be removed to provide a better estimation accuracy.

Dynamic position and / or force estimation coupled with robust control is therefore necessary

25



Chapter 1. An introductory look into piezoelectric self-sensing actuation

for static high precision estimation and control of self-sensing piezoelectric actuators. Static

in this context refers to frequencies that are 10 to 100 times lower than the first resonance

frequency of the actuator.

The charge measurement SSA implementations for displacement estimation presented by

Ivan were proven not to be accurate for changes that occured under 0.2 s [26] [27]. The topic of

dynamic control for accurate high precision estimation forms the main topic of the follow-up

article by Rakotondrabe [52]. An improvement to the estimation system presented by Ivan is

proposed by adding a dynamic component within the data processing system (Fig. 1.9). The

estimator, as presented earlier, only implements the reversal of the piezoelectric actuator’s

model and eventually applies drift corrections to the charge measurement. Its output is then

used by the dynamic component, cascaded with the estimator, in order to provide dynamic

corrections to the displacement estimation.

The dynamic component of the displacement estimation is implemented as a Linear Time

Invariant (LTI) model in the Laplace domain, as illustrated in Fig. 1.10. The transient response

of the actuator can be modelled with another LTI model in the form of δ(s) = K ·D(s), where K

is a static gain and D(s) is a dynamic part. By considering the output of the charge amplifier

VQ (s) = H(s) ·Vin(S), the gains G1(s), G2(s) and G3(s) of the dynamic component can be ana-

lytically expressed as a function of K , D(s) and H(s). Then, while observing the displacement

step response of the piezoelectric actuator for a given step of applied voltage Vin, the K and

D(s) parameters of the actuator’s LTI model can be determined. Once K , D(s) and H(s) are

empirically determined through experimental data, the full transfer function of the dynamic

component can therefore be determined. This approach presented by Rakotondrabe has led

to good performances for the dynamic displacement estimation. Alongside this contribution

to dynamic estimation, a robust H∞ synthesis approach has been used for the design of the

controller, which is further developed in a follow-up publication [46].

The upgrade to the dynamic estimation suggested by Rakotondrabe has significantly improved

the transient performance of the SSA estimation [52]. However, it was implemented with only

displacement sensing in mind, and does not provide an estimation for the force applied by the

actuator. An accurate and dynamic estimation of both force and displacement are necessary

for proper manipulation task, so as not to damage an object when the actuator comes into

contact with it. The previous publication by Ivan provided a dual estimation on force and

displacement with poor dynamic performances [26], but the improvement suggested by

Rakotondrabe is not suitable to improve it. Dynamic estimation such as the system presented

in Fig. 1.10 presents more complexity when considering both force and displacement. This is

the topic of another publication presented by Rakotondrabe, providing a new approach to

obtaining dynamic estimation for the complete mechanical state of the actuator [45].

Before making contact with the object to manipulate, the tip of actuator is free and the

applied force is null, hence the former is only a function of the applied voltage. Once the

tip of the actuator touches the object to manipulate, the displacement becomes a function
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Figure 1.11 – Complete system for dynamic displacement and force estimation [45].

of both the applied voltage and the applied force. Using the previously discussed dynamic

free displacement estimation [52], the dynamic real displacement of the actuator cannot

be determined without the dynamic force estimation. Furthermore, it is not possible to

determine the dynamic force on the basis of the dynamic free displacement estimation alone

without knowledge of the object’s stiffness. This becomes obvious when observing the model

of the actuator: the piezoelectric actuator may be represented as a system with voltage and

force as inputs, along with displacement and charges as outputs. One of the inputs of the

piezoelectric system, the force, is a desired output for the SSA estimator. Hence the proposal

of Rakotondrabe in a subsequent publication to use an Unknown-Input-Observer (UIO)

approach [45] to extend the dynamic performance to the force estimation (Fig. 1.11).

This type of observer takes into consideration a perturbation signal that is an unkown input to

the system, in this case the applied force F . The UIO observer makes use of the actuator state

of the previous time step to provide the next dynamic estimation. To that end, the applied

voltage Vin and the dynamic estimation of the displacement δ̂ are used as an inputs to the UIO,

and the dynamic force estimation F̂ is fed back into the UIO in a feedback loop. Furthermore,

the dynamic force estimation F̂ is also fed to the dynamic component of the displacement

estimation, so that the dynamic real displacement may be deduced. With this approach,

Rakotondrabe has succeeded in providing a simultaneous force and displacement estimation

with satisfying static and dynamic performances. The time delay introduced by the signal

processing strategies isn’t discussed in detail in these publications, and it may be prudent to

consider the effect of such a delay on the estimator’s dynamic performance.

1.4 Impedance related and hybrid approaches

The present section will provide a few other options for piezoelectric SSA that have been

noticed in the state of the art. Rather than measuring voltages, charges or currents, these

approaches have considered determining the impendance of the piezoelectric actuator, tying

this measurement to the mechanical state of the actuator. While they may not not necessarily

offer the same accuracy as the two main topics that have been previously discussed, they

27



Chapter 1. An introductory look into piezoelectric self-sensing actuation

offer an interesting alternative. This is most notable when considering hybridised approaches

that have combined impendance measurements with one of the previously discussed SSA

approaches.

1.4.1 Impedance measurement

The idea of using impedance measurement to derive the current state of the actuator has been

suggested early on to integrate self-sensing capabilities into Piezoelectric Ultrasonic Motors

(PUM). One of the first examples of this approach may be seen in the thesis of Péclat [49]

and a follow-up patent [50]. This approach was then further explored by Flückiger, with the

aim of optimising piezoelectric actuator morphologies in order to improve their mechanical

performance as well as their impedance-based self-sensing performance [13] [14].

The impedance measurement is particularly well adapted to PUM due to the high frequency

of actuation, near the resonance frequency of the piezoelectric actuator. It has been noted

that the impedance of the actuator could be related to its current strain, which is related to the

amount of displaced mass and the compliance of the rotor’s guidance rail. Much like optical

encoders for traditional electric motors, mechanical features along the rotor’s guidance could

be used to modulate the PUM’s impedance. The impedance could be determined during the

PUM’s operation by tracking the resonance frequency of the actuator, which was done with a

Phase-Locked Loop controller (PLL). Measuring the impedance while the PUM was operated

made it possible to provide an estimation of the position of the rotor. The first implementation

of such an approach led to a rotor position estimation with a resolution of 60°.

Evidently, this approach is not adapted to quasi-static application due to the necessity of

driving the piezoelectric actuators at high frequencies. Similar approaches have nonetheless

stemmed from the observation that the mechanical state and the electrical impedance of the

actuator are related. A first proposal for using impedance measurement, or rather permittivity

measurement to be exact, for low frequency piezoelectric actuators (i.e. less than 1 Hz) was

suggested by Ishikiriyama to overcome the hysteresis and creep effects when controlling the

displacement of an actuator [61]. As discussed in Section 1.2.2, when attempting to improve

the quasi-static performance of voltage-based SSA approaches, Jones made the observation

that changes in the impedance of the piezoelectric material were due to a change in material

properties such as permittivity under the influence of an applied electric field [32]. In that

regard, Ishikiriyama notes that the displacement-voltage hysteresis has a similar profile to

the permittivity-voltage hysteresis within the piezoelectric actuator. Using this similarity, it

is possible to provide a relationship between the free tip of a piezoelectric actuator and the

measurement of its permittivity. The relationship between permittivity and displacement is

then used to provide an estimation of the mechanical state of the actuator.

The main hurdle to the implementation of this impedance-based SSA approach is the measure-

ment of the impedance itself. While it could be done by tracking the resonance frequency of

the piezoelectric actuators in PUM, other means must be elaborated to achieve this with quasi-
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Figure 1.12 – Self-sensing approach for strain sensing with permittivity measurement.

static actuators. Ishikiriyama has thus proposed the permittivity measurement procedure

illustrated in Fig. 1.12. The actuator is driven with two superimposed signals: a low frequency

and high amplitude driving voltage, and a high frequency and low amplitude detection voltage.

The detection voltage is of sufficiently low amplitude so as not to affect the mechanical state

of the actuator. The output current of the actuator is then measured, and its high frequency

component is separated from the main signal by means of a lock-in amplifier. The phase

difference between the detection voltage and the detection current provides information on

the capacitance of the actuator, and therefore of its permittivity.

The end result of Ishikiriyama’s approach is that the creep is succesfully suppressed. Although

no clear information is provided on the attainable positioning accuracy of this approach,

some follow-up publications have attempted to improve on this aspect. These improvements

start with Ikeda’s implementation of high precision position control for the same bimorph

piezoelectric actuator [21]. In comparison to Ishikiriyama’s setup, the novelty of this approach

resides in the use of a differential current measurement method to improve the position

estimation. The considered actuator is a bimorph piezoelectric cantilever comprised of

two piezoelectric layers of identical polarisation. Each piezoelectric layer is subjected to

an opposite electric field to deform them in opposition, creating a push-pull interaction

between the layers and amplifying the motion of the actuator: a positive or negative change in

permittivity for a given layer will be reflected by an opposite change in the other layer.

With differential current measurement, the difference between the detection currents flowing

through each layer will therefore provide a signal corresponding to the double of the permittiv-

ity change. Furthermore, the signal of interest for the permittivity measurement self-sensing

approach is the change of permittivity itself, as it is related to the change in displacement.

In Ishikiriyama’s approach, the measurement range was tuned for the absolute value of the

permittivity, which is greater than the permittivity change by a factor of 10. Since the dif-
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ferential current measurement is used, with the resulting signal being directly related to the

permittivity change instead of its absolute value, Ikeda indicates that it is possible to lower the

measurement range to that of the difference itself. These two improvements have provided a

better Signal-to-noise ratio (SNR), hence increasing the accuracy of the positioning.

This implementation is not limited to bimorph actuators, however it may only be applied in

push-pull types of configurations featuring piezoelectric material being deformed in opposite

manners. Saigusa has followed up on this self-sensing approach with a configuration using

two piezoelectric linear stacks attached to an end effector, with one actuator pushing the end

effector and with the other actuator pulling it [54]. Applying differential current measurement

for the permittivity change detection of the two actuators has provided good positioning

results in this implementation. More recently, Suzuki has attempted to use the permittivity

measurement self-sensing approach for contact detection. While the force couldn’t be esti-

mated, it has been shown that it is possible to detect the moment the piezoelectric actuator

comes in contact with another object by observing a change in admittance [56]. The approach

remained empirical in the determination of what constitutes contact, which is reminiscent of

Flückiger’s work on self-sensing PUM [13].

1.4.2 Hybrid observers

Literature on impedance measurement for SSA is not as diverse as for voltage or current

measurement approaches in the context of quasi-static applications. Despite the lack of

research popularity, some hybrid approaches have stemmed from this, combining the non

invasive impedance measurement with current or charge measurements in an attempt to

pursue better estimators. An example of this angle of research is laid out in Islam’s work on

hybrid observers for sensorless position and force estimation. In a first publication, Islam

presents evidence for a linear relationship between the capacitance of the actuator and

its displacement [23]. This relationship is in the form of Cp = Cp0 + xCpx , where x is the

displacement of the actuator, Cp0 the capacitance at rest (i.e. zero displacement) and Cpx the

slope of the displacement-capacitance characteristic. In another publication, Islam discusses

an approach to measuring the capacitance of the actuator while it is operational [22]. It is

reminiscent of the setup provided by Ishikiriyama as it superposes a detection voltage onto

the driving voltage [61], but instead uses high and low pass filters to separate the detection

signal from the driving signal. It is then theoretically possible to implement a self-sensing

estimation of the displacement relying solely on capacitance measurement, however it has to

be noted that capacitance measurement is a low frequency operation and the output of this

method is affected by noise. As opposed to current or charge-based self-sensing approaches,

it is however hysteresis free and is also unaffected by some of the difficulties that arise when

measuring small curents (e.g. leaking and bias currents).

Due to the nature of the capacitance measurement making use of a high frequency and low

amplitude detection signal, it can be used in conjunction with charge or current measurement.
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Figure 1.13 – Schematic of the measurement setup for the hybrid observer.

This could help alleviate the low frequency and noise issues that plague the capacitance

measurement approach (x = f (Cp )), as this estimation could be combined with that of the well

proven charge-based SSA estimation method (x = f (Q)). This forms the premise for a hybrid

displacement observer for piezoelectric SSA, which is brought to fruition in a subsequent

publication [24]. A schematic of this setup is shown in Fig. 1.13. Results of the hybrid observer

are encouraging when it comes to quasi-static applications. The capacitance-based estimation

allows to correct the drift over time that naturally occurs with the charge-based estimation.

Force estimation with hybrid observers suitable for micro-robotics is succesfully demonstrated

by Fallahinia [11], with forces ranging up to 500 mN.

1.5 Overview and conclusions

The merits of Self-Sensing Actuation (SSA) are undebatably beneficial for the advancement of

miniaturisation in micro-robotics. While ample research has gone into the feedforward control

of piezoelectric actuators allowing for sensorless position control, this approach is unreliable

when aiming for manipulation tasks. While the behaviour of the actuator and its non-linear

properties may indeed be modelled in advance, lack of knowledge of the manipulated object’s

stiffness and moment of contact with the object renders the interaction non-deterministic.

This therefore justifies the need for sensorless force and position estimation for the context

of manipulation tasks. The possibility of sensorless estimation of piezoelectric actuators is

a boon, as it allows for accurate control without the burden of sensors, while overcoming

the limitations of feedforward approaches. A large panel of contributions to Self-Sensing

Actuation with piezoelectric actuators has been presented and discussed in this chapter. As

a reminder, sensorless estimation of the mechanical state (i.e. displacement, force) of a

piezoelectric actuator may be approached by measuring various electrical signals that are

present in the actuator’s drive electronics. In this state of the art, the key identified electrical

signals that can be measured are current, which may be associated with charges, voltage and

impedance.

Voltage measurement approaches, referred to as voltage-based SSA, attempt to estimate

the electric displacement field within the piezoelectric material. Through the equations of
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piezoelectricity, it can be demonstrated that this field is related to the current strain of the

material, and can therefore be used to determine the mechanical state of the actuator. The

estimation of this electric displacement field is generally done with the help of a measurement

bridge similar to Wheatstone bridges, where the piezoelectric actuator is placed on one of

the branches. When the branches of this bridge are properly balanced, its output will be

proportional to either the strain or the rate of strain depending on the bridge’s configuration.

Despite the ease with which this strategy is implemented, this first approach is held back

by some difficulties impacting its quasi-static accuracy, most notably when it comes to the

balancing of the bridge itself. While some improvements to the method have been discussed

and good results for the displacement estimation have been observed, the quasi-static force

estimation is lackluster in the implementations that are seen throughout the state of the art.

Alternatively, strategies relying on current or charge measurement, referred to as current or

charge-based SSA, have shown a lot of promise for quasi-static displacement and force estima-

tion. Through the equations of piezoelectricity, an actuator may be modelled as a system with

two inputs, applied voltage and external force, culminating into two outputs, displacement

and accumulated charges. In these approaches, the only addition to the actuator’s driving

electronics is a measurement circuit in series for the estimation of the charge and the current.

With the knowledge of the voltage applied to the actuator and this measurement circuit’s

output, the inverse model of the piezoelectric actuator may be used to derive the actuator’s

mechanical state. The range, accuracy and dynamic performance of this strategy may be

reinforced with measures suchs as the inclusion of a reference capacitor, as well as error

compensation algorithms for drifts that typically affect measurements with high impedance

devices. The current and charge-based strategies have been shown to simultaneous force and

displacement estimation as well, a strong advantage for manipulation tasks where both of

these physical quantities must be controlled.

Finally, strategies that use the estimation of the piezoelectric actuator’s impedance are re-

ferred to as impedance or capacitance-based approaches. The properties of the piezoelectric

material are affected by the electric field that has been applied to it, as well as by its strain. It is

the former relationship that this strategy intends to make use of, and provides an estimation

of the actuator’s mechanical state on the basis of the impedance measurement within the

drive electronics. Due to the complexity in accurately modelling the impedance of the piezo-

electric actuator, this approach is by default emprical in its nature. The relationship between

impedance, displacement and force must first be experimentally evaluated for a given actuator

in order to use this approach. The efficacy of this approach is further compounded by the

difficulty in accurately estimating the impedance of the actuator while it is being operated,

and this may be a low frequency process. One redeeming quality to this approach is its com-

patibility with other SSA strategies, as it may be integrated with another form of measurement

to form a hybrid strategy. This has been seen most notably in the combination of capacitance

measurement and charge measurement, compensating the weaknesses and playing to the

strengths of each strategy.
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Table 1.1 – Sensorless displacement and force estimation accuracies of strategies observed
throughout the state of the art; Morphology key is (B) for Bender and (LS) for Linear Stack).

Position estimation Force estimation
Year Morph.

Range Abs. Rel. Range Abs. Rel.
τ Ref.

Voltage-based SSA

1998 B - - - 20 mN 1 mN 5% 10 s [57]
2008 B 30µm 5µm 16.6% - - - 160 s [48]

Current and charge-based SSA

2008 LS - - - 390 N 20 N 5% 30 s [1]
2009 B - - - 1.15 mN 0.16 mN 8% 100 s [26]
2009 B 69µm 0.38µm 0.55% - - - 1000 s [27]
2010 B 8µm 0.4µm 5% - - - 300 s [52]
2013 B - - - 10 mN 0.1 mN 1% 15 s [45]
2014 LS 2.5 mm 400µm 16% 100 mN 12 mN 12% 30 s [44]
2015 B 3.1µm 0.2µm 6% 3 mN 0.2 mN 6% 200 s [46]
2015 B 77µm 6.2µm 8% - - - 10 s [12]
2017 B 15µm 0.26µm 0.2% - - - 300 s [25]
2017 LS 30µm 1.8µm 6% 550 N 44 N 8% 0.3 s [35]

Impedance-based and hybrid (*) SSA

2011 B 80µm 0.4µm 0.5% - - - 10 s [21]
2014* B 30µm 0.72µm 2.4% - - - 0.5 s [24]
2015 LS 8µm 0.1µm 1.25% - - - 150 s [54]
2018* LS - - - 500 mN 14 mN 2.8% 20 s [11]
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Figure 1.14 – Best results in terms of maximum relative error in the state of the art.
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In the interest of comparing the quasi-static performance of each strategy for either position

or force estimation, a compilation of the accuracy results that may be observed throughout

the state of the art is shown in Tab. 1.1. For each result, the actuator morphology is provided,

along with the displacement and force range, maximum absolute error, and maximum relative

error that have been observed within the estimation. In addition to the sensing performances,

the experimental duration τ is also given to provide a sense of each publication’s quasi-

static performance. It should be noted that only papers with clear statement of the resulting

maximum error were compiled. This is by no means an exhaustive summary of the results

that have been obtained in the field of piezoelectric SSA.

At first glance, the methodologies providing the most results are the current and charge-based

strategies. These are also the only implementations that successfully demonstrate a complete

estimation of the mechanical state, i.e. an estimation of both force and displacement. The

accuracies for these implementations have steadily improved over the years, with sub-µm and

sub-mN accuracies being demonstrated in some cases. Being a more recent topic, hybrid and

impedance-based approaches have offered less results so far, but their estimation accuracy

for either parameter have been promising. In these examples, displacement estimation

accuracies have been lower than 1µm, with one case being as low as 100 nm. Accuracies

in force estimation have not been on par with those of charge-based implementations as

of yet, but hybrid approaches using charge measurement could hypothetically achieve this.

As for voltage-based SSA, few papers have offered conclusive results. This topic has been

more popular in high-frequency applications, but its quasi-static performance hasn’t been as

encouraging as those of the other strategies.

Moving forward, it is clear that the strategies that will be considered for the design of high

precision piezoelectric SSA will rely on charge measurement. If necessary, capacitance mea-

surement can supplement the approach in order to improve its long duration accuracy. One

aspect that has been overlooked so far is the design of the actuator itself. Most of the publica-

tions that have been studied in this state of the art have used comercially available actuators,

and not much consideration has gone into how the design of the actuator and the SSA are

related. This forms the train of thought for the following chapters of this thesis.

The following publications by the author are related to this chapter:

• Masson, L. and Perriard, Y. (2019c). Study of self-sensing actuation strategies for quasi-

static piezoelectric actuators. In 2019 22nd International Conference on Electrical Ma-

chines and Systems (ICEMS), pages 1–5, Harbin, China. IEEE
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2 Framework for the development of
sensorless piezoelectric actuators

2.1 Introduction

Three main approaches to Self-Sensing Actuation (SSA) with piezoelectric actuators have

been discussed in the previous chapter. They may be categorised by the electrical signals

that are measured: voltage measurement, charge or current measurement, and impedance

measurement. The merits of each of these approaches to SSA in quasi-static applications have

been discussed, and it has been determined that charge-based approaches had shown the

greatest potential for high precision SSA.

Before developing such a high precision sensorless piezoelectric actuator, it is imperative

to understand how the design of the piezoelectric device affects not only its performance

as an actuator, but also its self-sensing performance. The former can be evaluated in a

variety of manners depending on the intended application of the actuator: e.g. free range of

displacement, blocking force, energy considerations. The self-sensing performance would be

evaluated as the ease and accuracy with which the mechanical state of the actuator can be

derived from the electrical measurements. In the case of charge-based self-sensing, a good

self-sensing performance would therefore imply a higher sensitivity in terms of accumulated

charges under the effect of a mechanical force or displacement. The aspects of an actuator

design that favour that accumulation of electrical charge need to be understood before that

optimising these aspects in the face of tradeoffs that may need to be taken into account.

The present chapter provides a framework for understanding the stakes of actuator design in

charge-based SSA, starting with the definition of a general model that describes the signals,

both mechanical and electrical in nature, tied to a piezoelectric actuator. Development for a

dynamic model using Bond Graphs Modelling (BGM) will then be provided for piezoelectric

actuators in micro-robotic applications. The novelty of using BGM to model a complete SSA

system provides insight into the relationship between design parameters and SSA performance,

helping understand the multi-physics interactions within the system. Based on a simulation

using this BGM, a discussion on the self-sensing possibilities offered by given design is held.

35



Chapter 2. Framework for the development of sensorless piezoelectric actuators

Piezo
F

Vin

δ

Q

(a) Piezoelectric actuator

Estimator

Q

Vin

δ̂

F̂

(b) Estimator

Figure 2.1 – System representation of the piezoelectric actuator and the self-sensing estimator;
mechanical signals in red, electrical signals in blue.

2.2 General model for charge-based self-sensing

In the following sections, the piezoelectric actuator will be considered as a system with two

input signals and two output signals. The inputs are physical quantities that describe the

interaction between the piezoelectric actuator and its environment. They consist of the

applied voltage Vin as of the external force F . Therefore, the output signals consist of the

resulting displacement δ and the accumulated charges Q, both of which are a function of the

two input signals through the constitutive equations of the system. The system representation

of the piezoelectric actuator is illustrated in Fig. 2.1a.

These constitutive equations of the system representing the piezoelectric actuator form the

basis for the general model. Knowledge of these equations may then be used to derive an

estimator for the piezoelectric actuator. The system representing the estimator, as illustrated

in Fig. 2.1b, takes the measured charges Q and applied voltage Vin signals as inputs, and

outputs the estimated mechanical state of the actuator. This state is defined by the force F̂

and the displacement δ̂, where the hat symbol indicates that the variable is an estimation of

the real physical quantity.

2.2.1 Definition of the general model

The modelling approach that is used to derive the general form of model for any charge-

based self-sensing actuator, along with a reminder on the equations of piezoelectricity, is

provided in Appendix A. As introduced in this section, the outputs δ and Q of the piezoelectric

actuator system (Fig. 2.1a) may be written as a function of F and Vin. It can be shown that the

constitutive equations for the piezoelectric actuator, which intuitively share a similar form to

that of the piezoelectricity tensor equations (Eq. 3.2), may be written as follows:

δ= f (F,Vin) = 1

K
F +βVin Q = g (F,Vin) =βF +CpVin (2.1)

where Cp is the capacitance of the actuator at rest, K the stiffness of the actuator in its

strain direction, and β a coefficient that may be expressed either in [C/N] or in [m/V]. The β

coefficient is related to the electromechanical coupling of the actuator. It is used to describe the

charge accumulation as a function of the applied force, as well as the amount of displacement

for a given applied voltage. As the other parameters, Cp and K , it is related to the actuator
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2.2. General model for charge-based self-sensing

design parameters (i.e. dimensions, layer configuration) and to the material’s properties, more

specifically to its piezoelectric coefficients di j which describe the electromechanical coupling

within the material.

As they describe the outputs of a multi-port system (Fig. 2.1a), the constitutive equations may

be written in matrix form as follows:(
δ

Q

)
=

(
1
K β

β Cp

)(
F

Vin

)
(2.2)

The estimator system, providing an approximation of the force F̂ and the displacement δ̂

from the measurement of the voltage Vin and the charge Q, can be derived from Eq. 2.2. The

constitutive equation of the estimator system may also be written in matrix form as such:(
F̂

δ̂

)
=

(
1
β −Cp

β
1

Kβ β− Cp

Kβ

)(
Q

Vin

)
(2.3)

It can be shown that these equations will remain identical for any type of actuator topology,

with the parameters Cp , K , and β of the equations determined as a function of material

properties and actuator design parameters. Intuitively, it can be said that attempting to

increase the β coefficient through actuator design will lead to a more accurate self-sensing

estimator. By doing so, the amount of measurable charges that are caused by the application

of a force F is increased, effectively increasing the sensitivity of the self-sensing actuator.

However, as it will be evidenced in later chapters of this thesis, the solution is not as simple

as maximising the β coefficient, as a tradeoff will need to be made between accurate force

estimation and accurate displacement estimation. Parasitic charge measurement effects

caused by the capacitive nature of the piezoelectric material will impose more tradeoffs on

the actuator design as well.

To illustrate how the model differs from one actuator topology to another, the parameters of

the constitutive equations for three different types of piezoelectric deformation are provided

in Appendix A. The actuators in Tab. A.1 are referred to as elementary due to their simple

configuration. They are not multi-layered examples of piezoelectric actuators, which is the

configuration for most modern piezoelectric actuators due to the increased mechanical per-

formances it provides. These monolithic actuators may be stacked (i.e. layered) an arbitrary

number of times N in order to provide increased ranges of motions for a given driving electric

field, causing the constitutive equation parameters to be modified as a function of N . When

optimising actuators for self-sensing actuation in the later chapters of this thesis, the parame-

ter N representing the number of layers shall be considered as a critical variable, as it greatly

affects the actuator’s characteristic.
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Chapter 2. Framework for the development of sensorless piezoelectric actuators

2.2.2 Experimental characterisation of a piezoelectric actuator

Following the definition of a general model, it has been possible to derive it for various actuator

topologies (Tab. A.1). To validate this modelling practice, this form of model is experimentally

verified on a commercial piezoelectric actuator.

To achieve this, a test bench is designed, allowing for the characterisation of commercial

piezoelectric actuators (Fig. 2.2). It is proposed to achieve this characterisation by measuring

the output state of the actuator (Q, δ) according to Fig. 2.1a when the input variables (F , Vin)

are varied manually across a pre-defined experience matrix. The measurement points are

spread out across this experiment matrix with F varying from 0 to 250 mN and with Vin varying

from 0 to 10 V. The resulting δ= f (F,Vin) and Q = g (F,Vin) are then fitted to planes for which

equations are in the form of y = aF +bVin + c, where c is the residue of the fit.

The commercial piezoelectric actuator that is considered for this experiment is Noliac’s

CMBP03 multi-layer bender (Fig. 2.14). The test bench is driven by a STM32F446 micro-

controller, and the latter controls and interfaces with instruments (Fig. 2.2b) that measure the

actuator’s mechanical and electrical states at all times:

• Interferometer: An SP 2000 interferometer by SIOS, with a measurement resolution

of 20 pm and a range of 2 m, is used for measuring the displacements of the actuator.

It requires a reflective surface to accurately measure displacement, hence the mirror

included in the design of the mechanical interface (Fig. 2.2a).

• Force Sensor: The UF1 force sensor by LCM Systems, with a measurement accuracy of

1 mN and a range of 220 mN, is used in two ways: to measure the strain on the actuator,

and to manually apply a given amount of force with the help of a micrometric screw

(Fig. 2.2b) and a low stiffness mechanical interface (Fig. 2.2a).

• Electrometre: The Keithley 6517A electrometre serves the purpose of charge amplifi-

cation, and is connected in series with the piezoelectric actuator and its power supply.

While the accuracy and range of the instrument is dependant on the calibre that is used

(i.e. from ±10nC to ±20µC), the accuracy of the nC-scale charge measurement will be

impacted by other considerations, e.g. proper shielding, leakage currents, etc.

The CMBP03 acutator is a multi-layered monomorph cantilever of length L and width w . Both

sections of the monomorph bender are each built with N = 12 piezoeceramic layers of height

h = 67µm, with alterning electrodes between each. The model for this actuator has been

derived in [36], and its constitutive equations may be written as such:

δ= 1

32
d31

L2

h2 Vin + s11

3456

L3

wh3 F

Q =
(
12ε33

Lw

h
+ 33

2
d 2

31
Lw

hs11

)
Vin + 1

32
d31

L2

h2 F

(2.4)
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2.2. General model for charge-based self-sensing

(a) Mechanical interface (b) Overview

Figure 2.2 – Structure of the test bench used to characterise the CMBP03 actuator.

The model parameters have been computed for the CMBP03, and are shown in Tab. 2.1. The

result of the measurements across the experiment matrix of (F , Vin) system inputs may be

seen in Fig. 2.3, with the measured displacement in Fig. 2.3a and the measured sensing charge

in Fig. 2.3b. Note that the measured displacement δ′ is opposed to the model displacement of

the actuator δ, such that δ=−δ′. This needs to be taken into account when identifying the

actuator’s parameters. Let Qp be the component of the actuator’s charge accumulation that

can be attributed to the application of the force F . It is measured by connecting in parallel

a reference capacitor Cr with an opposed supply voltage (−Vin), and by making sure that it

matches the capacitance of the piezoelectric actuator. This allows to reduce the amount of

charges that are measured, as the application of a voltage greatly increases the accumulated

charges. In this manner, the expected charge range fits completely within the available calibres

on the Keithley 6517A electrometre.

Through post-processing, the data for Qp can be converted to the total amount of charges

Q on the actuator through the knowledge of the value of the reference capacitor Cr and the

applied voltage, such that Q =Qp +Cr Vin. The measurement data for both δ and Q are fitted

to a plane, as the general model is assumed to be linear by definition:

δ[nm] =−8.9E−14 −486.1 ·Vi n [V]+17.54 ·F [mN]

Q [nC] =−44.89+331.1 ·Vi n [V]−0.4074 ·F [mN]
(2.5)

The fit for the displacement δ is satisfactory, as the average residue is negligible in face of

the other fitting coefficients. The same cannot be said for the charge measurement however,

with an average residue of −44.89 nC. This was to be expected, as nC-scale measurements are

sensitive to several parameters: leakage currents, bias current of the charge amplifier, and
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Figure 2.3 – Results of the CMBP03 characterisation.

Table 2.1 – Model predictions, measured values, and relative error for the parameters of the
constitutive equations of the CMBP03 multi-layer bender.

Parameter Unit Model Measured Error

K mN/µm 52 57 9.6%
Cp nF 398 331 20.2%
βδ pC/mN

-521
-486 6.7%

βQ pC/mN -407 21.9%

non-linearities of the piezoelectric material such as hysteresis and creep. Moreover, the mea-

surement of the voltage applied to the actuator and the reference capacitor presented noise,

which made the post-processing of Qp to determine Q less accurate. Despite this offset and

the apparent measurement noise in Fig. 2.3b, the fit is still convenient enough to determine

the model parameters empirically. The experimental value of the model parameters in Eq. 2.4

may be extracted from the equations of the fitted planes in Eq. 2.5. The resulting parameters

are shown in Tab. 2.1 alongside the model predictions. The βδ and βQ parameters refer to the

β estimates provided by the displacement and the charge measurement respectively. A relative

error of 21.9% between measurements and model predication is satisfactory, considering that

the properties of the piezoelectric material are provided with a tolerance of ±20%.

These measurements validate the model predictions for the commercial actuator. It shows

that the general model mainly described by three parameters, i.e. K , Cp , and β, may be used

to describe the state of piezoelectric actuators. With a valid form of general model in hand, it

is now possible to use it in more advanced modelling techniques.
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M

Kc

bc

δ0

Piezo
Kcin

Q

Actuator ElectronicsMechanical interface

Figure 2.4 – Graphical representation of the full system considered for bond graph modelling.

2.3 Dynamic modelling of a piezoelectric self-sensing system

Bond Graph Modelling (BGM) is an elegant approach to understanding complex systems

where multiple domains of physics interact. It is a top-down approach which aims to model

a system by considering the flow of power between its components, and it introduces the

concept of computational causality. This is useful as it allows the bond graph user to derive the

constitutive equations of complex systems with ease. The constitutive equations generated by

bond graph models are typically differential equations, and are thus particularly well suited

explain the dynamic behaviour of a system. A brief introduction to bond graph modelling is

provided in Appendix B of this thesis. For a deeper understanding of the subject matter, it is

suggested to refer to the excellent works of Borutzky [4], Gawthrop [15], and Karnopp [33].

The BGM approach is considered for the dynamic modelling of piezoelectric SSA systems. The

novelty of this tool applied to piezoelectric SSA might provide further insight into the relation-

ship between the design parameters of an actuator and the sensorless estimation performance,

all while helping understand the physics that drive this kind of electromechanical system. A

straightforward implementation of this type of model for a charge-based self-sensing system

shall be demonstrated in this section. For a complex system, the bond graph can be built by

studying each of its subsystems and by connecting their respective bond graphs together. The

complete system that will be studied in this section is illustrated in Fig. 2.4. It features three

subsystems: the piezoelectric actuator, its drive electronics, and the mechanical interface. The

latter is comprised of the target object to be manipulated coupled with an element simulating

its contact stiffness, and of the compliant mechanism supporting the piezoelectric actuator.

The following paragraphs will detail the establishment of the BGM for each system component,

followed by a complete BGM representation of the system.

2.3.1 Piezoelectric actuator modelling

Modelling a piezoelectric actuator with the bond graph approach necessitates an inspection

of the power-conjugated variables at play. As manifested in the equations of piezoelectricity, a

piezoelectric transducer behaves simultaneously as a spring in the mechanical domain and as
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Figure 2.5 – Graphical representation of the multiport C node for the piezoelectric actuator.

a capacitor in the electrical domain, with energy being exchanged between the two domains.

The efforts related to the mechanical and electrical domains, respectively the force F and the

applied voltage Vin, can be tied to a generalised displacement, respectively the displacement

δ and the accumulated charge Q. If the piezoelectric actuator is considered massless, the

system representing it may therefore be considered as a multiport C node, with F and Vin as

efforts, associated to the flows δ̇ and Q̇.

The multiport C store approximating the piezoelectric actuator is illustrated in Fig. 2.5 in

two equivalent representations. Notice that both power bonds connected to this node are

oriented towards it. This implies that the piezoelectric actuator does not merely convey energy

from one physics domain to another like most transducers, but instead it stores energy and

exchanges it with its surrounding environment. Multiport nodes other than transformers (TF)

and gyrators (GY) have not been discussed previously when introducing bond graph models,

and thorough theoretical definitions may be found in [4] [15]. They behave much like the

1-port C store nodes that have been discussed in that their constitutive equations may be

written in matrix form as follows:

q =ΦC (e) (2.6)

where q is a vector of generalised displacements, e a vector of their associated efforts, andΦC

a matrix defined by the constitutive equations of the multiport C node.

This form of constitutive equations for the multiport C node of the piezoelectric actuator

are readily available in the present context. Indeed, the constitutive equations of the general

model for charge-based SSA that have been discussed earlier in this chapter may be identifed

with the expression in Eq. 2.6: (
δ

Q

)
︸︷︷︸

q

=
(

K −1 β

β Cp

)
︸ ︷︷ ︸

ΦC

(
F

V

)
︸︷︷︸

e

(2.7)

In bond graph modelling, energy stores must be considered as energy conservative. This can

be verified by one of two methods defined by the reciprocity condition. The first is to verify

that ΦC is a symmetric matrix. The second, which is a corollary to the first, is to verify the

following condition imposed on all efforts and generalised displacements of the node:

∂ei

∂q j
= ∂e j

∂qi
(2.8)

TheΦC matrix in Eq. 2.7 verifies both of these conditions. These constitutive equations are
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2.3. Dynamic modelling of a piezoelectric self-sensing system

therefore adequate for an energy store, and the multiport C node considered to approximate

the piezoelectric actuator is appropriate. Due to theΦC matrix being invertible, it is possible

to calculate its inverseΦ−1
C and express the constitutive equations in the form of e =Φ−1

C (q).

Let ∆ be the determinant ofΦC , leading to the following constitutive equations:

Φ−1
C = 1

∆

(
CP −β
−β K −1

)
3 ∆= Cp

K
−β2 (2.9)

F = Cp

∆
δ− β

∆
Q Vin =−β

∆
δ+ 1

K∆
Q (2.10)

These equations can now be used to deduce the bond graph model of the piezoelectric actuator.

This is done by expanding the multiport C element into a transformer conveying the exchange

of energy between the electrical and mechanical domains. This transformer can then be

connected to 1-port C stores in each physics domain through a 0-junction or a 1-junction,

depending on which power conjugated variable must be propagated. The model can be

represented in up to four equivalent models according to two design considerations:

• The first of these considerations is the direction of the power conveyed by the trans-

former: commonly, the power is directed from the mechanical to the electrical domain

in the case of sensors, and from the electrical to the mechanical domain in the case of

actuators. In the context of piezoelectric SSA, even though the piezoelectric material is

also used for its sensing properties, it mainly functions as an actuator.

• Secondly, it has to be decided in which physics domains the 0-junction and the 1-

junction will be placed. This is merely a matter of which power conjugated variables

need to be propagated throughout the model for convenience, and will largely depend

on how the actuator’s bond graph will be connected to other systems’s bond graphs.

Given the actuator convention for the direction of the power conveyed by the transformer,

the two types of model that can be derived for the multiport C node are illustrated in Fig.

2.6. On the one hand, the type 1 model (Fig. 2.6a) propagates the effort F on the mechanical

side and the flow Q̇ on the electrical side. On the other hand, the type 2 model (Fig. 2.6b)

propagates the flow δ̇ on the mechanical side and the effort Vin on the electrical side. What

becomes apparent in these two models are the internal effort and flow power conjugated

variables that describe the power exchanges that are internal to the piezoelectric actuator. They

provide an enhanced understanding for the piezoelectric actuator working in a self-sensing

system. For instance, the Vp component of the voltage apparent in the type 1 model (Fig. 2.6a)

corresponds to the electrical field resulting from a strain that is sought to be measured in the

voltage measurement bridge approaches presented in Chapter 1. Similarly, the Q̇p component

of the current apparent in the type 2 model (Fig. 2.6b) corresponds to the charges that need to

be isolated in charge-based approaches in order to provide an estimate of displacement. A

summary of all these power conjugated variables and their meaning is given in Tab. 2.2.
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Table 2.2 – Intermediate power conjugated variables within the piezoelectric actuator.

Variable Expression Description

Vp − β
Cp

F
Voltage resulting from the application of a force F , in the absence
of an applied voltage.

Q̇p Kβδ̇
Current resulting from a rate of strain δ̇, in the absence of an
applied voltage.

Fp KβVin
Reaction force of the constrained actuator under an applied
voltage Vin, in the absence of an applied force.

δ̇p − β
Cp

Q̇
Rate of strain resulting from a current Q̇, in the absence of an
applied force.

Ve Vin −Vp
Component of the internal voltage contributing to the general
displacement Q.

Q̇e Q̇ −Q̇p
Reaction current to the application of an external voltage Vin

while the actuator is constrained by a force F .

Fm F +Fp
Component of the internal constraint contributing to the gen-
eral displacement δ.

δ̇m δ̇+ δ̇p
Reaction rate of strain to the application of an external force F
while the actuator is driven by a voltage Vin.

While both models are equivalent in terms of constitutive equations and interaction with ele-

ments connected to its power ports, a model type will be chosen that will allow to conveniently

connect it with other subsystems. The piezoelectric actuator will be connected in series with

its power supply and the charge amplification circuit, thus the flow Q̇ will be shared among

these subsystems. A similar reasoning can be made for the mechanical side, as the actuator

will interact with its surroundings through the application of manipulation forces; the effort F

will be shared with these subsystems. On the basis of these considerations, the type 1 model

illustrated in Fig. 2.6a will be used throughout the following developments.

0

C:

∆/Cp

TF

:−β/Cp

1

C:

Cp

F

δ̇

Fδ̇
m

F

δ̇p

Vp

Q̇

V
e

Q̇

Vin

Q̇

(a) Type 1

1

C:

1/K

TF

:1/Kβ

0

C:

K∆

F

δ̇

F
mδ̇

Fp

δ̇

Vin

Q̇p V
in

Q̇
e

Vin

Q̇

(b) Type 2

Figure 2.6 – Equivalent models expanding the multiport C node of the piezoelectric actuator.
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Figure 2.7 – Overview schematic of the mechanical interface.

2.3.2 Mechanical interface modelling

The mechanical interface subsystem consists of multiple components which might be present

in a microrobotic manipulation task. Illustrated in Fig. 2.7 are the various components that

will be considered as part of the interface:

• Sample target: The object that is the very subject of the micro-manipulation task. It

is considered to have a mass labelled as M . If the mass is sufficiently great for the

momentum produced by the actuator to be considered inconsequential, it may be

considered grounded for the simplification of this model, i.e. M →∞.

• Contact stiffness: This element is considered massless, and simply provides a way to

simulate the contact stiffness of the sample target. It consists of a spring of stiffness Kc

and a damper of coefficient bc in parallel. Should the model require simplification, they

can be omitted from it provided that the contact between the micro-robot’s end effector

and the target sample can be considered rigid.

• Compliant mechanism: Piezoelectric actuators are seldom used on their own in micro-

robot designs, but are instead integrated into a kinematic chain which either amplifies

the displacement or the force they can provide. Such a compliant mechanism is charac-

terised by its stiffness Kcin.

At t = 0 of the manipulation operation, the micro-robot is generally not already in contact

with the target sample. The distance between the robot’s end effector and the target sample

is characterised in Fig. 2.7 by the parameter δ0. The force F applied by the piezoelectric

actuator will be null until the moment it has achieved a displacement of δ = δ0. When the

displacement of the end effector δ = δ0, the characteristic behaves like that of a spring of

stiffness Kmec if dampers are neglected. As shown in Fig. 2.8, this implies a discontinuity in

the F -δ characteristic of the mechanical interface. This would entail the need to provide two
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Figure 2.9 – Bond graph model of the mechanical interface.

separate models to account for the parts of the piecewise characteristic: one for the approach

of the end effector to the target sample, and another once they are in contact.

Fortunately, there exists a way to provide a unique bond graph describing the complete char-

acteristic of the mechanical interface. As demonstrated in [4], should the speed of the state

transition from one mode to another be greater than that of the other dynamics present in

the system, a piecewise characteristic (e.g. Fig. 2.8) may be considered a good approximation

of the system. With this assumption in mind, the fast mode switching can be simulated by

a modulated transformer (MTF) with a Boolean variable g . A signal arrow is taken from a

1-junction propagating the velocity δ̇, which is then integrated to provide the current displace-

ment δ, before finally being fed into a Boolean operator. The Boolean variable g resulting from

this operation is a value of 1 should the condition be verified, in this case if δ≥ δ0. When this

condition is not met, the g returns as 0 and the modulated transformer is effectively switched

off, cutting off the piezoelectric bond graph from the mechanical interface bond graph.

Using this representation for the piecewise characteristic of the mechanical interface, its bond

graph model is defined as illustrated in Fig. 2.9. The multiport C energy store that is connected

to the extremity of the bond graph model corresponds to the piezoelectric actuator. It should
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Figure 2.10 – Schematic and bond graph representations of the charge amplifier.

be noted that there are no power sources in the model of this subsystem, since energy is

provided by the piezoelectric actuator, represented by a multiport C node in Fig. 2.9, when it

is driven by an electrical power source. It is equally worthy of note that the causality for the

compliant mechanism 1-port C node (Kcin) has been reversed to an integral causality. This

change, marked in red, is necessary to avoid any causal conflict on the 0-junction connecting

the compliant mechanism to the target sample and its contact stiffness.

2.3.3 Charge amplifier modelling

Charge-based SSA has been introduced in Chapter 1, and the topic of charge measurement

has been discussed. The most common approach is to use a charge amplifier, consisting of an

operational amplifier with an integrating capacitor Ci in its feedback loop (Fig. 2.10a). This

approach will thus be implemented for the self-sensing system bond graph. An operational

amplifier may be represented in a bond graph model as a modulated effort source (MSe) as

shown in Fig. 2.10b. When the positive terminal of the operational amplifier is grounded,

the input voltage Va is taken from an input 0-junction and is fed by a signal arrows into the

modulated effort source, which then amplifies it by a factor of −A. Let Qi be the amount

of charges accumulated by the integrating capacitor Ci and Vb be the output voltage of the

charge amplifier. The following may be written when applying the constitutive equation of the

1-port C node characterising the Ci capacitor:

Q̇i = d

d t

(
Ci Vi

)
=−Ci

(
1+ 1

A

)
V̇b (2.11)

In ideal conditions, the operational amplifier has a high gain such that A →∞, and no bias

current are present on its input terminals such that Q̇i = Q̇. The output voltage of the amplifier

is thus written as follows:

Vb =− 1

Ci
Q (2.12)

To increase the dynamic range of the charge measurement, a reference capacitor Cr supplied
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Figure 2.11 – Considered piezoelectric drive and charge measurement circuit.

by an opposed voltage −Vin is usually included in the drive circuit (Fig. 2.11). In this setup,

the current that is integrated by the charge amplifier is equal to Q̇i = Q̇ +Q̇r . The charge Q

accumulated by the piezoelectric actuator has a mechanical component which depends only

of the applied force F , as well as of an electric component which depends only of the applied

voltage Vin. Depending on actuator design, the latter may end up being several orders of

magnitude greater than the mechanical component of the charge, upon which charge-based

SSA relies. When the reference capacitor Cr approximates as accurately as possible the internal

capacitance of the piezoelectric Cp , the electric component of the charges is cancelled out.

This results in an increased dynamic range for the charge measurement, as the integrating

capacitor Ci will saturate less quickly.

2.3.4 Complete bond graph model

With the description of the separate subsystems as bond graph models now in hand, the

complete bond graph of the self-sensing system can now be assembled by connecting the

bond graphs together. The result of this combination may be seen in Fig. 2.12. The causalities

of the 1-port C energy stores characterised by Cp , ∆/Cp , Cr and Kcin have all been changed

from integral to differential to avoid causal conflicts on their adjacent 0- and 1-junctions.

A force and displacement estimator with a feedback loop to the controlled voltage sources has

been connected to the output of the charge amplifier to represent the control scheme of the

self-sensing system. More details could be brought into the model, and more specifically into

the bond graph of the piezoelectric actuator. Up to this point, developments have assumed

energy conservative and linear characteristics for this type of transducer. However, in practice,

the linearity is impacted by parasitic effects such as hysteresis and creep. Some publications

such as [60] have attempted to design bond graphs that model the behaviour brought forward

by these phenomena: a Kelving-Voigt model is used to design the creep bond graph, and a

Maxwell-Slip model is used to design the hysteresis bond graph. For the sake of brevity of

the mathematical developments that will ensue, the phenomena of creep and hysteresis are

neglected. They are complex phenomena that cannot be modelled analytically rather than

empirically, and are thus incompatible with the analytical approach provided here.
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Chapter 2. Framework for the development of sensorless piezoelectric actuators

Another simplification that has been made, due to the use of the general model in Section 2.2,

is that the actuator consists of a single block of piezoelectric material. In reality, piezoelectric

actuators are stacked to produce increased displacements for a given applied voltage. Other

publications such as [53] have sought to model each piezoelectric layer as a separate bond

graph, and to assemble all these layer bond graphs together. These approaches could be used

to expand on the complete bond graph shown in Fig. 2.12. However, a well designed and

accurate model for the self-sensing piezoelectric actuator accounts for these layers, and the

bond graph can be simplified accordingly by using the general form of the model.

2.4 Evaluation of piezoelectric self-sensing capabilities

Following its definition in Fig. 2.12, the complete bond graph of the self-sensing system

provides a powerful tool for assessing various aspects of its inner workings. Deriving the

equations of the system from its bond graph and solving the resulting system of equations

allows for a user to determine the total energy of the system, given the knowledge of the energy

stores that are represented in the bond graph. In the same manner, under specific use cases

for the self-sensing system, the bond graph may also be used to provide constitutive equations

that will describe the manipulation parameters, i.e. displacement and force. Finally, the bond

graph may be used to derive dynamic state equations of the system in the form of ẋ = Ax+Bu,

where x is the state vector and u the input vector of the system. This approach allows the

bond graph user to solve the dynamic equations in a typical state-space problem, paving the

way to robust force and displacement controllers. The system’s bond graph model will be used

to assess the feasibility of self-sensing with piezoelectric actuators. This will serve to underline

the possible tradeoffs in actuator design that will need to be made in order to achieve high

precision sensorless estimation.

2.4.1 Case study: Approach and manipulation of a high mass sample

To provide an example of the application of bond graphs while examining the self-sensing

capabilities of piezoelectric actuators, it is proposed to consider a typical case study. When

the actuator is at rest, i.e. F = 0 and Vin = 0, at the beginning of an operation, the assumption

will be made that micro-manipulation tasks are divided into two phases.

• Approach phase (a): The end effector of the actuator at rest is set within a given distance

to the sample target defined as δ0. During this phase, the applied voltage Vin is gradually

increased so that the end effector will approach the sample target, while the self-sensing

estimator will track the displacement δ. The operation transitions into the next phase

once the end effector of the actuator has travelled a distance of δ= δ0.

• Contact phase (b): The end effector is in contact with the surface of the target sample of

mass M , and the exerted manipulation force F exerted is now controlled by the applied

voltage. During this phase, a minute displacement δ still occurs as the compliant
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2.4. Evaluation of piezoelectric self-sensing capabilities

mechanism and the target sample’s surface are deformed. The self-sensing estimator at

that point will be able to track both thanks to the measurement of charge and voltage.

The problem is simplified by neglecting the damping nature of the sample’s surface, resulting

in the contact stiffness Kc being connected in series with the compliant mechanism’s stiffness

Kcin. The equivalent stiffness K ′ and the total system stiffness Ke may thus be written as:

K ′ =
( 1

Kc
+ 1

Kcin

)−1
Ke =

( 1

K
+ 1

K ′
)−1

(2.13)

Furthermore, it is assumed that the target sample’s mass M is great enough that the momen-

tum produced by the actuator may be considered inconsequential. This implies that the target

sample will not be moved by the actuator, and the latter shall only apply a force on it. Note

that further studies may be done with a defined mass M , and that they shall be required to

study the design of dynamic force control algorithms for the actuator. However, the previous

assumption is sufficient for a clear discussion on the separate force and displacement estima-

tion capabilities of self-sensing piezoelectric actuators. Based on the previous assumptions,

the complete bond graph illustrated in Fig. 2.12 may be simplified as seen in Fig. 2.13. From

the mechanical side of the bond graph, the following equations can be written:

F = Cp

∆

∫
δ̇m dt (2.14)

δ̇=−δ̇k − δ̇M (2.15)

δ̇m = δ̇+ δ̇p (2.16)

δ̇k =− Ḟ

K ′ (2.17)

δ̇p =− β

Cp
Q̇ (2.18)

δ̇M = 0 (2.19)

Similarly, the following equations may be defined from the electric side of the bond graph:

Q̇ =CpV̇e (2.20)

Vp =− β

Cp
F (2.21)

Vin =Ve +Vp (2.22)

The equations pertaining to the approach phase of this case study, denoted by the subscript a,

may be trivially derived from the general form of the self-sensing model defined in Sec. 2.2:

Fa(t ) = 0

δa(t ) =βVin(t )

Qa(t ) =CpVin(t )

(2.23)
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Figure 2.13 – Simplified bond graph of the piezoelectric actuator in contact with a sample.

From the set of equations Eq. 2.20 – 2.22, and according to the linear properties of differentia-

tion, the following equation for the current may be established:

Q̇ =CpV̇in +βḞ (2.24)

The expression of the force is found by integrating δ̇m in Eq. 2.14. The latter rate of dis-

placement may be obtained by combining the bond graph equations Eq. 2.15 – 2.19 with the

expression of the current in Eq. 2.24. This leads of the following development:

F (t ) =−βCp

∆

∫ t

t0

V̇in(t )dt −
(β2

∆
+ Cp

∆K ′
)∫ t

t0

Ḟ (t )dt (2.25)

This integral is solvable on the condition that the boundary conditions at t = t0, the moment

the piezoelectric actuator is set into contact with the target sample, are known. Since the

displacement of the actuator at that point in time is δ= δ0, the following boundary conditions

may be derived from Eq. 2.23:

F (t = t0) = 0 Vin(t = t0) = δ0

β
(2.26)

Finally, the equations pertaining to the contact phase of this case study, denoted by the

subscript b, may be established. Solving the integral in Eq. 2.25 with the proper boundary

conditions and then using the new expression of the force in Eq. 2.15 and Eq. 2.24 yields:

Fb(t ) = Keδ0 −KeβVin(t )

δb(t ) =
(
1− Ke

K ′
)
δ0 + Ke

K ′ βVin(t )

Qb(t ) =βKeδ0 +
(
Cp −β2Ke

)
Vin(t )

(2.27)
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2.4. Evaluation of piezoelectric self-sensing capabilities

Table 2.3 – Actuator parameters for the CMBP03 and the NAC2011-H11.

Parameter Symbol Unit CMBP03 NAC2011-H11

Stiffness K mN/µm 51 761
Compliant stiffness Kcin mN/µm 255 3805

Capacitance Cp nF 398 80
Leakage resistance RL GΩ 4 38
Charge coefficient β pC/mN 522 49

Figure 2.14 – Considered actuators for the case study: Noliac CMBP03 multilayer bender (left),
and Noliac NAC2011-H11 multilayer linear actuator (right).

Simulation of the actuator state

Before proceeding with a discussion on the self-sensing possibilities brought forward by

piezoelectric actuators, a simulation based on the previously defined case study is proposed.

The purpose of this simulation is to observe the evolution of the state of the piezoelectric

actuator, i.e. the force F , the displacement δ, and the accumulated charge Q, during the

approach and contact phases of the case study. This will provide a basis of comparison

between the simulated estimator’s outputs and the actual values for the state of the actuator.

Two commercial piezoelectric actuators available on the market at the date of the publication

of this thesis will be considered for this simulation. The two actuators of varying topologies,

both manufactured by Noliac, are the CMBP03 multilayer cantilever and the NAC2011-H11

multilayer stack that have been discussed in Sec. 2.2, and illustrated in Fig. 2.14. The former

provides bending motion while the latter provides linear motion. While both offer similar

ranges of motion in the order of the µm, they have been chosen due to their vastly different

actuator parameters, namely capacitance, stiffness, and charge coefficient β. The measured

parameters for both of these actuators may be found in Tab. 2.3. For this simulation, the

compliant mechanisms associated with each actuator will arbitrarily be assigned a stiffness

equal to ×5 its respective stiffness.

In the simulated case study, the end effector of each actuator is set within a distance of

δ0 = 1µm of the target sample. It is assumed that the contact stiffness of the target sample is
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Figure 2.15 – Manipulation simulation with the Noliac CMBP03 and custom actuators.

significantly greater than that of the actuator or its compliant mechanism, and will therefore be

neglected during the contact phase. To mitigate estimation inaccuracies caused by the charge

measurement when discussing the self-sensing prospects of both actuators, it is proposed to

drive both actuators with the same voltage levels, and for the same duration. The actuators

are therefore supplied with a ramping voltage that linearly increases from 0 V to 25 V in a time

frame of 20 s. The result of this simulation can be seen in Fig. 2.15 for the two candidate

actuators. As expected, due to the difference in charge coefficients β, the CMBP03 reaches the

target sample earlier (i.e. t0 = 1.53s) than the NAC2011-H11 (i.e. t0 = 16.32s).

The simulated curves (Fig. 2.15) for the charge of both actuators are seemingly linear, but

their slope is slightly altered after making contact with the sample. This is due to the fact that

the accumulated charge has an electrical component caused by the application of the drive

voltage, and a mechanical component caused by the stress on the piezoelectric material. The

green area of the charge curves in Fig. 2.15 corresponds to the mechanical component of the

total accumulated charge. This charge, referred in the following paragraphs as the sensing

charge, is the information that needs to be extracted by the self-sensing system in order to

evaluate the force F and the displacement δ. The plots in Fig. 2.15 serve well to illustrate

how the electrical component of the charges caused by the capacitive nature of piezoelectric

actuators is greater than the sensing charge by several orders of magnitude. This is why the

charge measurement is one of the most critical aspects of charge-based self-sensing.

The evolution of the state other state variables, δ, and F , calculated through Eq. 2.27, falls

within expectations (Fig. 2.17). The displacement increases linearly until contact, after which
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2.4. Evaluation of piezoelectric self-sensing capabilities

the slope is modified due to the total system stiffness. Even though the end effector has

made contact with the target sample, the piezoelectric actuator continues to deform and

compresses the compliant mechanism. As for the force, it remains null until contact, after

which it increases linearly along with the increase in voltage.

Simulation of the force and displacement estimation output

To understand the critical nature of the charge measurement, the case study is complemented

with a simulation of it accounting for typical errors that arise with this type of approach.

Force and displacement estimations as they would be implemented in a self-sensing system

are provided on the basis of this simulated charge measurement, providing grounds for

discussing the potential for self-sensing piezoelectric actuators in micro-robotics. To establish

the equation for the simulated charge measurement, it is necessary to describe the phenomena

that affect it. The two parasitic effects that will be considered in these paragraphs are the bias

current ib and the leakage current Q̇L , defined as follows:

• Leakage current: Despite piezoelectric materials featuring high resistances, typically in

the order of the GΩ, leakage currents may be observed. In quasi-static applications, the

presence of leakage currents over long periods of time will cause the charge amplification

to drift significantly from the intended sensing charge.

• Bias current: Measuring instruments making use of operational amplifiers are affected

by bias currents, albeit of small amplitude (i.e. fA – nA). This bias current is added

to the current Q̇ originating from the piezoelectric actuator, and also contributes to a

measurement drift over time observed in the charge amplifier.

Both effects have been added to the bond graph model of the charge amplifier subsystem

(Fig. 2.16). The bias current is modelled on a bond graph as a flow source adding a current

of ib to the input of the charge amplifier. The chosen value for this bias current is taken

from the worst case value provided by the Keithley 6517A electrometre manual, as this is the

instrument that has been used throughout this thesis’ experiments for charge measurements.

The leakage resistance is modelled by a resistor RL connected to the piezoelectric actuator

in parallel. On a bond graph, this is equivalent to connecting both the R node of RL and the

piezoelectric subsystem to a 0-junction, which propagates the input voltage. The leakage

current therefore results from a voltage drop of Vi n across this resistor. In order to provide

an approximation of each considered actuator’s leakage resistance, data will be taken from

Hooker’s study on piezoelectric material properties [20]: a steady resistivity on the order of

magnitude of 109Ω/cm has been measured at frequencies of 100 Hz for temperatures between

−150 °C and 50 °C. From this, the leakage resistances RL of each actuator has been estimated

thanks to the knowledge of each actuator’s topology (Tab. 2.3)

As observed in the previous paragraphs, the electrical component of the charge is greater

than the sensing charge by several orders of magnitude (Fig. 2.15). This justifies the use of a
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Figure 2.16 – Bond graph of the charge amplification with added parasitic effects.

reference capacitor Cr supplied with a voltage opposite to that of the piezoelectric actuator.

This adds a current Q̇r to the input of the chargle amplifier that will compensate the amount

of charges contributed by the actuator’s capacitance Cp , increasing the dynamic range of the

charge measurement. Note that the voltage drops accross the piezoelectric actuator and the

reference capacitor Cr are noted ±V ′
in, due to the presence of the voltage Va at the input of the

charge amplifier. In the case of an ideal operational amplifier where A →∞, the assumption

can be made that Vin ÀVa , and that Va could be considered as grounded. Given the knowledge

of all the currents that pass through the charge amplifier, the output of the latter can be written

as such:

Vout =− 1

Ci

∫
Q̇i dt =− 1

Ci

∫ (
Q̇ +Q̇L +Q̇r + ib

)
dt (2.28)

Integrating the current leads to the following measured charge Qi :

Qi =
∫ t

t0

Q̇ dt −Cr Vin +
∫ t

t0

ib dt + 1

RL

∫ t

t0

Vin dt (2.29)

The piezoelectric current Q̇ may be replaced by the expression in Eq. 2.24. The bias current is

instrument specific and shall be assumed to be constant. The definition of the drive voltage

function Vin(t ) will however matter in its associated integral. Since the drive voltage is a ramp

signal, it may be written as Vin(t ) = γt . This results in the following measured charges:

Qi ,a(t ) =Cd Vin(t )+ ib t + γ

2RL
t 2

Qi ,b(t ) =
(
Cd −β2Ke

)
Vin(t )+βKeδ0 + ib t + γ

2RL
t 2

(2.30)
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Table 2.4 – Simulation parameters of the case study.

Parameter Symbol Unit Value

Experiment time τ s 20
Maximum voltage Vmax V 25

Voltage slope γ V/s 1.25
Sample distance δ0 µm 1

Bias current ib fA 4

where Cd is the difference between the piezoelectric actuator’s capacitance Cp and the ref-

erence capacitor Cr , such that Cd =Cp −Cr . Matching the capacitance of the piezoelectric

actuator at rest is not trivial. This is not an issue as long as the reference capacitor is accurately

characterised, but it is ideal that it matches the actuator as close as possible in order to reduce

the capacitance difference Cd . In these simulations, it is assumed that Cr can be matched

with Cp within 1% of its value. This does not affect the precision of the self-sensing system, as

the Cr capacitor is only used as a means to fit the sensing charge into the dynamic range of

the coulombmeter, but defining a value is necessary to proceed with the simulation.

As a reminder, the equations for a simple force and displacement estimator based on the

measurements of sensing charge and applied voltage were discussed in Sec. 2.2. This estimator

does not account for the parasitic effects that affect the charge measurement, therefore using

the simulated charge measurement with these equations will evidence the impact of these

effects on the estimations:

F̂ = 1

β
Q − Cp

β
Vin δ̂= 1

Kβ
Q − ∆

β
Vin (2.31)

Notwithstanding the charge measurement drifts, the charges accumulated by the piezoelectric

actuator are equivalent to Q = Qi −Qr . This equivalence, combined with Eq. 2.30, may be

used in Eq. 2.31 to provide an equation for the simulated force and displacement estimations:

F̂ (t ) = 1

β
Qi (t )− Cd

β
Vin(t ) δ̂(t ) = 1

Kβ
Qi (t )+ Kβ2 −Cd

Kβ
Vin(t ) (2.32)

Note that these estimator equations only rely on the actuator’s own parameters (i.e. K , Cp , β)

and on the reference capacitor Cr , but is independant of the other system parameters such as

the compliant mechanism’s stiffness Kcin or the contact stiffness Kc . This is convenient in that

it allows the self-sensing system to determine the actuator state without having to characterise

the objects that are to be manipulated.
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Figure 2.17 – Simulated force and displacement estimations for the case study.

2.4.2 Discussion on the tradeoff of actuator design and self-sensing performance

The estimator functions in Eq. 2.32 have been used to simulate the estimator output for the

CMBP03 and NAC2011-H11 actuators in this case study. The results are provided in Fig. 2.17.

The parameters that have been used to generate the simulated curves are provided in Tab.

2.4. It has been stated that the most critical aspect of the charge-based SSA approach is the

charge measurement. More specifically, it is the accurate extraction of the sensing charge that

witholds information on the actuator’s mechanical state. From the analytical simulations for

the CMBP03 and NAC2011-H11 actuators, this sensing charge for the target application of the

simulation is typically in the range of 10 nC – 100 nC for displacements up to 3µm and forces

of up to 500 mN. Depending on the target applications (i.e. lower displacements and forces)

and the actuator design, the sensing charge may even be lower than this.

The estimation simulation (Fig. 2.17) illustrates how important it is to compensate for the

parasitic currents that affect the extraction of the sensing charge. The measurement of the

sensing charge, which corresponds to the output of the charge amplifier in the topmost graph
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2.4. Evaluation of piezoelectric self-sensing capabilities

of Fig. 2.17, shows a slight drift over time caused by the parasitic currents. The difference in

capacitance Cd will also add a drift between the integrated charge Qi and the actual sensing

charge, albeit not a problematic drift since it can be compensated at the level of the estimator

(Eq. 2.32 so long as Cr is properly characterised. This drift will cause the charge amplifier to

saturate faster1, reducing the dynamic range of the charge measurement.

The CMBP03 multilayer bender is the most flexible of the two actuators, featuring a lower

stiffness and a greater β. However, its large piezoelectric layer area of 21×7.9mm2 cause it to

have a lower leakage resistance and a greater capacitance, making it more prone to charge

measurement drift. In terms of displacement, it provides a quick approach to the target sample

for the same driving signal (t0 = 1.53s). The displacement error for the bender remains low

during the approach phase, however it accumulates swiftly after that point. After t = 20s,

the relative error approaches 100% of the actual displacement, rendering the displacement

estimation unusable. As for the force, the relative error is lower than 1% for the first 5 s of the

simulation, and remains lower than 30% after t = 20s.

The NAC2011-H11 multilayer linear actuator has a greater stiffness and a lower β coefficient,

causing it to reach the target sample at a slower pace (t0 = 16.32s). Thanks to its smaller

piezoelectric layer area of 2 × 2mm2, it features a greater leakage resistance and a lower

capacitance. The displacement estimation accuracy is more promising than that of the bender,

as the maximum relative error after t = 20s is under 20%. The same could not be said for the

relative error of the force estimation, as it is greater than 100% for most of the simulation.

To better understand the impact of actuator parameters on these estimation errors, a closer

look at the analytical expressions of the errors should be taken. It can be demonstrated that

this expression remains identical for both phases of the case study, and that for a ramping

drive voltage in the form of Vin it can be written as follows:

εδ = δ(t )− δ̂(t ) =−t 2 γ

2K RLβ
− t

ib

Kβ
εF = F (t )− F̂ (t ) =−t 2 γ

2RLβ
− t

ib

β
(2.33)

Some conclusions can be made with regards to actuator parameters that affect self-sensing

accuracy. From Eq. 2.33, it is apparent that for increased F and δ estimation accuracy, the

leakage resistance RL and the β coefficient both need to be as high as possible. Additionally,

the actuator stiffness K also affects the displacement estimation accuracy, as a greater stiffness

lowers the estimation error εδ. This is apparent with the better estimation results for the

NAC2011-H11, with a stiffness greater than the CMBP03 stiffness by one order of magnitude.

The fact that the capacitances Cr and Cp do not appear in Eq. 2.33 corroborates with the

earlier statement that those only affect the dynamic range of the measurement, as long as they

are both properly characterised.

1For instance, the widest calibre offered by the Keithley 6517A electrometre is ±2µC, with the smallest being
±10nC. Being able to use smaller calibers without saturating the charge amplifier brings increased resolution to
the charge measurement, and therefore to the actuator state estimation.
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Note that the examples in Fig. 2.17 show the results that would be obtained without com-

pensating the parasitic currents, and that the error in estimations may be reduced with such

compensations. Serious efforts to implement accurate charge-based self-sensing must ac-

count for some form of compensation to increase the long term accuracy. It is, however, a

complex matter to accurately characterise currents that are in the fA – nA range, and errors

over long periods of measurement are to be expected.

2.5 Conclusion

So far in the scientific literature pertaining to charge-based SSA, a concise effort to build a

framework for understanding their performance hasn’t been witnessed. This chapter provides

such an approach to charge-based self-sensing by offering a bottom-up construction of

piezoelectric SSA theory. As an introduction to this theory, a general model compatible

with any type of piezoelectric actuator has been defined. The form of this model offers the

convenience of deriving the estimator equations for the displacement and the force. This

general model has been verified experimentally with a test bench aiming to characterise a

commercial actuator, showing that the model is accurate within 22% of the measured data.

This relative error can be attributed to the fact the properties of the piezoelectric material are

provided by the manufacturer with tolerances of ±20%. To that end, it has been noted that

further characterisations of actuators following that model should require systematic testing

across batches of actuators to provide a statistical apprecication of the model fit.

Following up on the presentation of a general model, a new angle of study for self-sensing

piezoelectric actuators has been proposed. The Bond Graph Modelling (BGM) approach has

been taken to provide dynamic models for a complete piezoelectric SSA system. This complete

system is comprised of the piezoelectric actuator, the manipulated object, and the drive and

measurement electronics. The causal aspect of bond graphs provides differential equations

describing the system energetically, providing a sense of the multi-physics interactions that

occur between the sub-components of the complete system. While BGM have been used

to formulate a theoretical understanding, their use may be expanded later on to derive the

system’s response to a given control input in the frequency domain. Therefore, the BGM

approach laid out in this chapter may be used to design robust controllers for sensorless

actuators. The theory provided by bond graphs has been then used to study a typical use

case for sensorless piezoelectric actuators in micro-robotics, paving the way to a discussion

between actuator morphology and self-sensing performance.

From the moment the general model was established with the actuator’s parameters, i.e. K , Cp ,

and β, it has been hypothesised that the design parameters and topology of an actuator will

greatly influence the self-sensing performance. The simulation resulting from this case study

has been applied to two different commercial piezoelectric actuators: Noliac’s CMBP03 bender

and NAC2011-H11 linear actuator. The simulated outputs of the SSA estimator (Fig. 2.17) offer

different results and prospects for each of the two actuators, despite their similar displacement
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and force ranges. In broad terms, it can be said that the NAC2011-H11 multilayer linear

actuator with greater stiffness is more suitable for displacement estimation, while the CMBP03

multilayer bender with lower stiffness is more suitable for force estimation. In reality, the

self-sensing prospects of one given actuator design is more complex than merely considering

theβ, K or RL parameters. The latter not only depend of the piezoelectric material’s properties,

but also of the actuator’s topology and type of deformation, i.e. compression/traction, flexion,

shear deformations.

With this newfound comprehension of piezoelectric SSA theory in hand, the next step of this

research has been to provide a methodology to design optimal self-sensing piezoelectric actua-

tors for given applications. It is clear that the force application and displacement requirements

will greatly vary from one type of practical application to another, so too will the sensorless

estimation requirements.

The following publications by the author are related to this chapter:

• Masson, L., Civet, Y., Germano, P., and Perriard, Y. (2017). Design of a generalised

charge-based self-sensing model for quasi-static piezoelectric actuators. In 2017 20th

International Conference on Electrical Machines and Systems (ICEMS), pages 1–6, Sydney,

Australia. IEEE
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3 Novel approach to high resolution
self-sensing actuator design

3.1 Introduction

With the introduction of Self-Sensing Actuation (SSA) theory, it has been shown that the

morphology and design parameters of piezoelectric actuators are critical in determining their

self-sensing performance. Most works of piezoelectric SSA in the scientific literature presented

in Chapter 1 make use of readily available commercial actuators to implement their approach.

While the results provided by these implementations are promising in terms of estimation

accuracy, greater results could be obtained by using appropriately designed actuators. Hence

the proposal for the development of a self-sensing actuator prototype starting from the ground

up, using analytical models as discussed in Chapter 2.

Before designing a prototype, the scope of its actuation and self-sensing capabilities should

first be defined in order to properly constrain the design. To that end, experiments are

undertaken on samples that could be typically manipulated in micro-robotic applications.

These experiments seek to determine the required resolution for the force and displacement

estimations so that the actuator may fulfil its tasks without the need for external sensors.

The minimum actuator performances (e.g. blocking force, free displacement stroke) are

also defined, as a tradeoff might need to be studied between these two different types of

performances.

With some order of magnitude for the estimation resolutions in mind, it is then possible to

proceed with the prototype modelling and design. The modelling is based on an actuator mor-

phology that is considered to be suitable for the studied micro-robotic samples. The novelty of

the modelling approach consists in considering the number of layers of the stacked actuator

as a design variable that may be tuned in order to influence the final actuator parameters.

Finally, the design based on the actuator model may be performed by attempting to maximise

predefined design goals. The maximisation of these goals represented by an objective function

is constrained by requirements on the actuator performance and by the boundaries of the

design parameters.
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Figure 3.1 – SEM images of the micro-pillars.
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Al

Figure 3.2 – Cross-sectional schematic of a micro-pillar.

3.2 Defining a scope for self-sensing piezoelectric actuation

Before pursuing the endeavour of designing a self-sensing actuator for micro-robotic applica-

tions, it is necessary to have a grasp on the orders of magnitude for the displacements and

forces at play at first. Hence the initial step of studying samples that could potentially be the

target of micro-robotic manipulation, in order to delimit the scope of the self-sensing and

actuation needs of the task.

The samples that have been considered for these tests are silicon micro-pillars that are 37µm

in height and 3.5µm in diameter. These micro-pillars are arranged in a high density "forest",

as illustrated in Fig. 3.1. As seen in the cross sectional schematic in Fig. 3.2, the outer surface

of the micro-pillars consists of p-type doped silicon (green), and the interior consists of n-type

doped silicon (yellow). The bottom of the wafer is coated by an aluminum electrode (gray),

serving as an electrode to the P-N junction that is the micro-pillar. By connecting the probes

of a measuring instrument to the top of a micro-pillar and to the bottom electrode of the wafer,

one may characterise this individual micro-pillar by means of I-V curves. Special care has

been taken to ensure that no oxydation of the micro-pillars would take place, as this would

hinder the accuracy of their electrical characterisation.

The battery of experiments that have been performed on these micro-pillars may be divided

into two categories, which are defined as follows:
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3.2. Defining a scope for self-sensing piezoelectric actuation

• Mechanical tests have been undertaken to determine the upper boundaries of the scope

of force and displacement control. By mechanically characterising the micro-pillars,

the maximum force causing the breaking points of the pillars and the electrical probe

are sought out. To that end, compression and flexure tests have been produced by a

nanoindenter within the chamber of a Scanning Electron Microsope (SEM).

• Electrical tests have been conducted on a large number of samples in order to establish

a relationship between the applied force and the quality of the electrical measurements.

The purpose of these tests is to understand the resolution of the sensorless force estima-

tion that would be required to properly characterise these micro-pillars. These tests are

also performed in a SEM chamber, and a thin electrode adapted to these micro-pillars

has been attached to the nanoindenter. The electrical characterisation is performed

with a Keithley 2400 electrometer.

3.2.1 Mechanical tests

A diamond point is attached to the nanoindenter in order to manipulate the micro-pillars

without affecting their compliance. The nanoidenter features a closed loop control on both

position and force, and simultaneously records measurements for both of these states. All the

tests are performed within the chamber of a SEM in order to visually postion the diamond

point with respect to the pillars. To mechanically characterise the micro-pillars, compression

and flexure tests have been performed on them using the diamond point mounted on the

nanoindenter while recording the displacement and the force perceived by the latter. These

deformations are illustrated in the SEM imagery of Fig. 3.3. A strain-stress curve of the samples

may then be established, providing information on the stiffness of the samples, and more

importantly on their breaking point.

Compression tests were the simplest experiment that could be performed on the micro-pillars.

In this procedure, the diamond point is intially positioned on top of the pillar with the help of

SEM imagery (Fig. 3.3). It is then moved downward at a steady rate in a position control loop

until the visible rupture of the pillar prompts the end of the experiment. The experiment has

been reproduced across seven different micro-pillars. With the measurements of the force

and the displacement perceived by the nanoindenter, a type of stress-strain curve may be

established for these micro-pillars. An example of four of those curves may be seen in Fig. 3.4.

The experiment presented great repeatability in the results, as the average of the estimation

Young’s modulus for all pillars is 137 GPa for a standard deviation of 6.2 GPa. Finally, the yield

strength for all micro-pillars has been observed to be in the 22–24 mN range.

Contrary to the compression tests, flexure tests are slightly more complicated to perform due

to the dimensions of the diamond point. To perform these tests, the micro-pillars were slightly

preloaded axially with the diamond point, then the latter was displaced by the nanoindenter

laterally to induce the flexure of the micro-pillar (Fig. 3.3). The axial load is kept constant

throughout the experiment by adapting the vertical displacement of the diamond point, and
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Figure 3.3 – Micro-pillars deformed in compression (left) and in flexure (right).
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Figure 3.4 – Mechanical tests on multiple micro-pillars.

the experiments is ended as soon as the micro-pillar has ruptured. The characterisation curves

on three of the successful flexure attempts are shown in Fig. 3.4. The results of the flexure tests

show less repeatability than that of the compression tests: a stick-slip motion can be seen in

some iterations as the diamond point slides across the top of the micro-pillar (e.g. Pillar 3 in

Fig. 3.4). The average Young’s modulus determined from the flexure tests is of 139 GPa for a

standard deviation of 9.8 GPa. The yield strength of the micro-pillars in flexure deformation is

equally similar to that of compression deformation, and is estimated to be of 20 mN.

While no mechanical characterisation has been performed on the thin titanium probes used

for the electrical measurements, the forces that would deform the probe past its elastic limit

have been qualitatively estimated. This has been done by progressively loading the top of a

micro-pillar with the electric probe mounted on the nanoindenter, and visually evaluating

the presence of plastic deformation on the probe tip. The experiment has been ended when

plastic deformation was apparent at a force of 2 mN and a displacement of 2.75µm (Fig. 3.5).
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3.2. Defining a scope for self-sensing piezoelectric actuation

Figure 3.5 – Plastic deformation of the titanium probe tip.

Correlation between SEM imagery and the load measurement data points to an elastic limit of

approximately 1.15 mN for the titanium probe tip. It is also possible to observe damage on the

surface of the micro-pillar’s top (Fig. 3.5, right photo). Therefore, to use these titanium probes

to electrically characterise the micro-pillars, the applied force must be controlled without

exceeding this elastic limit.

3.2.2 Electrical tests

For the electrical tests, the diamond point is replaced by a titanium probe which is mounted at

a fixed 30° angle with respect to the surface of the micro-pillar’s top. This probe is connected

to the high terminal of an electrometer, while the low terminal of the latter is connected to the

bottom electrode of the silicon wafer. The electrometer that is used for the I-V characterisation

is a Keithley 2400, and is capable of sourcing a voltage while measuring the current. Through

voltage sweeps, it is possible to draw the I-V curves that electrically characterise the P-N

junction of a micro-pillar. The tests are still executed within the chamber of a SEM in order to

visually position the probe on top of the micro-pillars (Fig. 3.5).

To outline a relationship between the force applied by the probe and the quality of the electrical

contact, a micro-pillar has been loaded at different loads and subjected to I-V sweeps. To

compare the various I-V curves, the dynamic resistance at a given voltage is evaluated for each

sweep as the basis for a comparison. The estimation of the dynamic resistance at 0.5 V for

different I-V sweeps shows that increasing the applied force past a certain point has no effect

on increasing the repeatability of the electrical characterisation. Aside from the considerations

on the chemical compositions of the probe and the sample, this seems to indicate that as

long as the load is sufficient, it is possible to do accurate electrical measurements on the

micro-pillar. The minimal amount of force that is required for this task has been identified to

be of 0.3 mN, as no current would pass through the measurement electronics below this limit.

The repeatability of these voltage sweeps has been assessed in two manners. The first has

consisted of executing five successive voltage sweeps between −2 V and 2 V at a fixed load

of 0.5 mN, and with a current cutoff of ±0.5A for protection. The second method varies the
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Figure 3.6 – I-V curves for the micro-pillars after successive loadings and successive sweeps.

measurement repeatability through successive loadings and unloadings of a micro-pillar: a

sample is loaded with a force of 0.5 mN, a voltage sweep between −4 V and 4 V is realised, then

the pillar is unloaded. The resulting I-V curves may then be compared to extrapolate the effect

of mechanical fatigue on the electrical measurement. These loading and unloading steps are

repeated ten times, with the voltage sweeps being done during each iteration. The resulting

I-V curves for some iterations of both of these experiments are plotted side by side in Fig.

3.6. The mean dynamic resistance evaluated at 0.5 V is of 984Ω. With the given applied force

and probe angle parameters, it can be said that the repeatability of the measurement with

successive sweeps is coherent, and that a force of 0.5 mN is suitable. It can be noted however

that the measurements with successive loadings of the micro-pillar do lead to a decreased

measurement repeatability, indicating that a high positioning accuracy and repeatability is

necessary.

3.2.3 Discussion of the results

Valuable information on the actuation and sensing scope of the self-sensing actuator has been

obtained through measurements with samples that would typically be manipulated by such a

device. Conclusions can be made for the displacement and the force separately.

Given the dimensions of the micro-pillars, being 37µm in height and 4µm in diameter, a free

stroke on the order of at least 25µm is proposed for the prototype actuator that is to be de-

signed. A higher range would be advantageous for more flexibility in the device’s potential use

cases, however this can be remedied by achieving coarse positioning with another, less precise,

actuator. Not much information has been obtained in these measurements on what would

constitute an acceptable position estimation resolution However, given the displacements

required to characterise the micro-pillars with stress-strain curves in Fig. 3.4, an accuracy of

0.1µm would be ideal for the self-sensing actuator’s estimation requirements.

Given the yield strength of the micro-pillars, an actuator that would need to manipulate
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3.3. Analytical modelling of a piezoelectric cantilever

and characterise these samples would need to apply forces of up to 24 mN. However, the

force must be controlled with accuracy. On the one hand, no current will flow through the

sample until sufficient force is applied. The required amount of force to establish a proper

electrical contact has been identified at aproximately 0.3 mN. On the other hand, instruments

like thin platinum probes used in electrical measurements are damaged beyond forces of

up to 1.15 mN. Ideally, the self-sensing piezoelectric actuator would need to aim for a force

estimation resolution in the order of 0.1 mN.

These values are to be taken into account in the following chapters, especially when coming

up with an actuator design for the self-sensing prototype.

3.3 Analytical modelling of a piezoelectric cantilever

In section 3.2, a typical case study for micro-manipulation tasks has been observed with the

electrical characterisation of 25µm long and 4µm wide silicon micro-pillars. For such samples,

and considering the thin measurement probes that were used for their characterisation, it

has been concluded that the force must be controlled in a way that it does not exceed 1.2 mN,

while also allowing for accurate force application within the 0.3 – 0.5 mN range. To achieve

this feat, not only would a self-sensing piezoelectric actuator be required to guarantee a force

sensing resolution on the order of 0.1 mN, but a low blocking force would also be desirable to

protect the manipulated objects.

Additionally, some insight into the impact of actuator morphology and design, and more

specifically of the resulting characteristics K , Cp , and β, on self-sensing performance has

been provided in Chapter 2. It had been observed that a greater stiffness is only beneficial to

displacement estimation. While a lower stiffness had no impact on the force estimation, it

lowers the blocking force of the actuator. This results in lower manipulation forces, such that

low stiffness actuators are more suitable for the handling of fragile objects. This line of thought

applied to the micro-pillar case study, along with the large presence of this morphology in

the self-sensing scientific literature (e.g. [27] and [46]), has led to the choice of monomorph

benders for the development of a high resolution self-sensing actuator. In addition to the

convenience in terms of low stiffness that this morphology comes with, in contrast with

traction or shearing stack actuators, the SSA implementations in the scientific literature

provide points of reference. The performance of the actuator designed for self-sensing will be

able to be compared with other self-sensing bender examples.

The first step to designing a high accuracy self-sensing actuator is to derive its constitutive

equations from its defined morphology, and therefore the expression of its model parameters.

As the fabrication of the actuator has been taken into account as the next step, inspiration has

been taken from the morphology of the Noliac CMBP03 multi-layer bender used in Chapter 2

so that the fabrication process of this commercial company may be used. The monomorph

bender is illustrated in Fig. 3.7, and is a multi-layer configuration composed of 2N layers of

piezoceramic interspersed with electrodes. These layers are divided into two areas: an upper
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Figure 3.7 – Schematic of the piezoelectric monomorph bender [41].
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Figure 3.8 – Representation of the strains in the piezoelectric bender, due to the piezoelectric
effect (red) and to the mechanical bending (blue).

area (grey) of N layers which is electrically activated by an electric field and thus deformed, and

a lower (white) area of N layers which is passively deformed and which causes the flexure of the

beam. As a positive electric field E in the upper area is opposed to the material’s polarisation

P , the area expands along its length due to the negative sign of the d31 piezoelectric constant.

As shown in Fig. 3.7, let L be the length of the layers, w their width, and h their individual

thicknesses.

The configuration of this actuator makes it possible to use it as a bimorph bender as opposed

to a monomorph bender. With a bipolar supply and the coulombmeter in series to the actuator,

the mechanical contributions to the charge accumulation (i.e. the sensing charge) will cancel

each other out in the upper and lower active areas, shown in white and grey in Fig. 3.7. Indeed,

one area would be working in compression while the other would be working in traction. Such

implications indicate that separate electronics to drive and sense would be required for each

area. This falls outside of the scope of this chapter, however it may be considered as a possible

venue of investigation to extend the capabilities of self-sensing pieoelectric actuators further.

3.3.1 Modelling approach

As discussed in Chapter 2, the piezoelectric actuator may be considered as a system with

two inputs and two outputs, coupling signals from the mechanical and electrical domains.

The inputs are the force F applied on the bender’s tip, and the actuation electric field E .

Due to the electromechanical coupling present in piezoelectric materials, both of the output
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displacement δ and the output charge Q are a function of these inputs. As per the general

model for self-sensing piezoelectric actuators established in Chapter 1, the expected result of

the analytical model is a system of two constitutive equations:
δ=βVin + 1

K
F

Q =CpVin +βF
(3.1)

where the outputs δ and Q are related to the inputs through the actuator’s characteristics.

These are its mechanical stiffness K , its capacitance Cp , and its β coefficient.

The actuator parameters β, Cp , and K , in the constitutive equations are all to be expressed as

a function of the actuator’s dimensions and the material properties of the piezoelectric and

electrode layers. This shall provide a level of control upon these parameters when designing

the actuator. The key to determining these parameters is to express the x-coordinate strain

S1(z) relative to the z-coordinate along a vertical section of the bender.

The strain is caused by two separate effects, illustrated in Fig. 3.8, with mechanical defor-

mation onthe one hand caused by the application of the force F (in blue), and piezoelectric

deformation on the other hand caused by the application of an electric field E within the

piezoelectric material (in red). The principle of superposition may be applied in this case,

due to the supposed linearity of the piezoelectric effect, and therefore the total strain along

a section of the beam may be written as the sum of the mechanical strain S1,m(z) and of the

piezoelectric strain S1,p (z). The strains are to be expressed in generic forms in relation to the

reference frame defined in Fig. 3.8. Respectively, the strains S1,m and S1p are defined by the

position of their neutral planes γm and γp (i.e. where the strain is null), and by their slope

relative to the z-coordinate εm and εp .

A methodology for determining the two strains and, by deduction, the total strain, is repre-

sented in the schematic of Fig. 3.9. After writing the piezoelectricity theory equations for an

actuator morphology, the mechanical strain is determined by considering the applied voltage

Vin to be zero and by applying classical bending theory to the piezoelectric bender. Conversely,

by considering the applied force F to be zero, the piezoelectric strain may be determined

by solving Euler’s laws of motion at equilibrium with the sum of the internal forces Fint and

internal moments Mint within a section of the bender.

With the former demonstration for the generic form of the strain S1, the latter may then be

inserted into the piezoelectricity equations for the actuator to derive the electric displacement

field D under the effects of both the force F and applied voltage Vin. The amount of charges Q

accumulated on the layer electrodes may therefore be deduced by applying Gauss’ law to the

electric displacement field D . As for the total displacement, according to bending theory, it is

calculated through the double integration throughout the length L of the slope of the strain

slope. By superposition, the sum of the strain slopes εtot = εp +εm is integrated.
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Figure 3.9 – Modelling methodology for the piezoelectric monomorph bender.

Applying the equations of piezoelectricity

The first step for modelling the piezoelectric actuator after defining its morphology is to

apply the piezoelectric equations to the considered configuration (Fig. 3.9). This provides the

expressions for the stress T and the electric field D in each area of the actuator (Fig. 3.7).

The piezoelectric equations are written in tensor form as such (Appendix A):
S = sE T +dE

D = dT +εT E
(3.2)

where the state of the material is described by the strain tensor S, the stress tensor T , the

electric displacement field D , and the electric field E . The material properties are represented

in matrix form by the compliance s, the permittivity ε, and the piezoelectric coefficient tensor

d . The superscripts T and E respectively denote a zero or constant stress and electric field

when evaluating a given parameter.

The schematic in Fig. 3.8 illustrates the sign convention used for the following demonstration.

The referential frame is set at the bottom of the bender, and indexes 1, 2 and 3 respectively

correspond to the x, y and z axes. Let the superscript u denote the active piezoelectric layers
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in the upper area, and let l denote the inactive piezoelectric layers in the lower area. On the

one hand, the electric field in the piezoelectric layers of the upper area can be expressed as

E u
3 =Vin/h and is opposed to the piezoelectric polarisation. On the other hand, the electric

field in the piezoelectric layers of the lower area E l
3 is null. Since the upper piezoelectric layers

are driven in opposition to their polarisation, the terms multiplied by the d31 coefficient are

assigned a "−" sign. The following piezoelectricity equations may be derived:

Su
1 =−d31E u

3 + s11T u
1

Sl
1 = s11T l

1

(3.3)
Du

3 = ε33E u
3 −d31T u

1

D l
3 = d31T l

1

(3.4)

The expressions for the stresses T u
1 and T l

1 , with the strains replaced by the generic form of the

strain S1, may be used to determine the parameters of the strain (i.e. neutral plane and slope).

With the stresses updated with the parameters of the strain equations, the equations for the

electric displacement fields Du
3 and D l

3 are then used in the application of Gauss’ Law. Note

that only Du
3 shall be used, as the lower area is short circuited and is only used as a passive

deformation layer.

3.3.2 Determination of the deformation strains

Piezoelectric strain

The parameters of the piezoelectric strain S1,p (z) will first be evaluated. As represented in Fig.

3.8, let γp be the position of the neutral plane and εp be the slope of the strain along a section

of the actuator stack. In the frame of reference defined in Fig. 3.8, the total strain caused by

the piezoelectric effect S1,p can therefore be expressed as follows:

S1,p (z) = εp (z −γp ) (3.5)

When considering Euler’s law of momentum for a section of the beam at equilibrium, the

sum of internal forces and moments is zero. From this statement, it is possible to find the

expressions for εp and γp by solving the following system of equations:Fint = Fl +Fu = 0

Mint = Ml +Mu = 0
(3.6)

The force Fi exerted on each area of the actuator stack can be obtained by integrating the

stress T i
1 across the section of the actuator stack, where i denotes the upper or lower area:

Fi =
Ï

A
T i

1 dA (3.7)

The moment Mi on each area of the actuator stack can be expressed in a similar manner by
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integrating the stress T i
1 , multiplied by the distance z to the neutral plane, across the surface

of the beam section:

Mi =
Ï

A
T i

1 z dA (3.8)

Using the expressions of the layer strains Si
1 in Eq. 3.3, it is possible to develop the expressions

for the stresses T i
1 . These can then be used to express the forces and the moments described

by Eq. 3.7 and Eq. 3.8. By using the frame of reference described in Fig. 3.8, these expressions

of force and moment can be used in conjunction with the system of equation in Eq. 3.6 to find

the expression of the slope of the internal strain εp and of the position of the neutral plane γp .

With the expressions of the stresses deduced from Eq. 3.3, it is thus possible to calculate the

internal forces and moments in the upper and lower areas of the beam section. Since the

number of layers N is a design variable, it is necessary to express the total forces and moments

as the sums of all layers:

Fl =
N∑

n=1

∫ γp+nh

γp+(n−1)h

w

s11
εp z dz

Fu =
2N∑

n=N+1

∫ γp+nh

γp+(n−1)h

w

s11
(εp z +d31E u

3 )dz

(3.9)

Ml =
N∑

n=1

∫ γp+nh

γp+(n−1)h

w

s11
εp z2 dz

Mu =
2N∑

n=N+1

∫ γp+nh

γp+(n−1)h

w

s11
(εp z +d31E u

3 )z dz

(3.10)

Finally, the total force Fint and the total moment Mint are deduced from Eq. 3.9 and Eq. 3.10.

The following expressions can be given for these two internal physical quantities:

Fint = N w

s11

(
2εp h(γ+hN )+d31Vin

)
Mint = N w

6s11

(
4εp h(3γ2 +6γhN +4h2N 2)+3d31Vin(2γ+3hN )

) (3.11)

Solving the system of equations Eq. 3.6 derived by Euler’s Law of momentum, along with Eq.

3.11, yields the following results for the expressions of εp and γ:

εp =− 3d31

4N h2 Vin (3.12) γ=−N h

3
(3.13)

which yields the final expression of the piezoelectric strain caused by the actuation signal Vin,

with respect to the reference frame defined in Fig. 3.8:

S1,p (z) =− 3d31

4N h2 Vin

(
z + N h

3

)
(3.14)
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Due to the fact that the d31 piezoelectric coefficient is negative, the slope of the piezoelectric

strain is positive (Fig. 3.8). This implies that a positive applied voltage Vin will cause the tip of

the bender to move downwards with respect to the reference frame. It is therefore expected

for δ to be negative when a positive voltage is applied in the absence of force.

Mechanical strain

The mechanical stain S1,m will now be evaluated. As represented in Fig. 3.8, let γm be the

position of the neutral plane and εm be the slope of the strain. In the frame of reference defined

in Fig. 3.8, the total strain caused by the mechanical deformation S1,m(z) can be expressed as

follows:

S1,m(z) = εm(z −γm) (3.15)

The assumption can be made that the bender is symmetrical and that the external force F is

applied orthogonally to the bender. This prompts the statement that the neutral plane of the

mechanical deformation is situated at the center of the section of the actuator stack, leading

to the following expression of its position γm in the frame of reference:

γm = N h (3.16)

The slope of the strain εm is related to the moment of inertia I of the bending section of

the actuator stack. The moment of inertia of a solid is evaluated by integrating z2 across

the surface of its section with respect to its rotation axis, i.e. the neutral plane of its flexure

deformation:

I =
Ï

A
z2d A =

N h∫
−N h

w z2 dz = 2

3
w N 3h3 (3.17)

The assumption has been made that the bender is sufficiently thin so that the moment M is

uniform across one bender section at a distance x from the bender tip. According to the frame

of reference for a beam bending downward, the moment M applied to the axis of rotation of a

bender section at a given x-coordinate can be written as M(x) = (L−x)(−F ). From bending

theory, the slope of the strain εm can be expressed as follows:

εm = s11

I
M(x) =−3s11(L−x)

2h3N 3w
F (3.18)

which yields the final expression of the piezoelectric strain caused by the application of the

upward force F with respect to the reference frame defined in Fig. 3.8:

S1,m(z) =−3s11(L−x)

2h3N 3w
F

(
z −N h

)
(3.19)
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The slope of the mechanical strain is negative (Fig. 3.8), indicating that a positive applied

force F will cause the tip of the bender to move upwards with respect to the reference frame,

in opposition to the displacement caused by the piezoelectric strain.

3.3.3 Constitutive equations of the piezoelectric actuator

Displacement

According to bending theory, one can write that the curvature of the beam is ρ = 1/ε. By

integrating the slope of the strain along the length of the bender twice, one can determine

the deflection of the beam for a given position on the x-axis. Due to the orientation of the

reference frame (Fig. 3.8) and the way the moment M(x) was calculated, this approach yields

results that would be negative. The opposite of the double integration will thus be used for the

deflection within the reference frame. Note that the expression of the neutral planes γm and

γp were only necessary in solving the systems of equations for the strains. They do not directly

intervene in the calculation of the displacement, as the displacement is directly related to the

strain slope of each bending mechanism.

Integrating the slope of the piezoelectric strain along the length of the bender twice yields the

expression of the displacement of the bender at a given position on the x-axis:

δp (x) =−
x∫

0

x∫
0

εp dxdx (3.20)

leading to the following expression of the displacement at a given coordinate x caused by the

converse piezoelectric effect, due to the application of an input voltage Vin:

δp (x) = 3

8
d31

x2

N h2 Vin (3.21)

Similarly, integrating the slope of the mechanical strain along the length of the bender yields

the expression of the displacement of the bender at a given position on the x-axis:

δm(x) =−
x∫

0

x∫
0

εm dxdx (3.22)

leading to the following expression of the displacement at a given coordinate x caused by the

mechanical deformation of the bender, due to the application of an upward force F :

δm(x) = s11x3

2N 3h3w
F (3.23)
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3.3. Analytical modelling of a piezoelectric cantilever

The displacement of the actuator corresponds to the total deflection at the tip of the bender

(i.e. x = L). The principle of superposition makes it possible to add the two deflections, δm(L)

and δp (L), in order to obtain the total deflection δ(x) Therefore, the constitutive equation of

the actuator’s displacement may be deduced from Eq. 3.21 and Eq. 3.23:

δ= 3

8
d31

L2

N h2 Vin + s11L3

2w N 3h3 F (3.24)

Charge

The application of Gauss’ Law in conjunction with the expression of the electric displacement

field D (Eq. 3.26) may be used to evaluate the amount of free electrical charges accumulated

around the active piezoelectric layers:

Q =
Ó

S
D dA (3.25)

The electric field E is null in all the layers of the actuator stack, except for the piezoelectric

layers of the upper area upon which the voltage Vin is applied. Since the electrical charges

of the actuator will only be measured on the electrodes that are connected to the active

piezoelectric layers, only Du
3 in Eq. 3.4 will be considered in the application of Gauss’ Law.

With the previous observations, the electric displacement in these layers can be written as

follows:

Du
3 = ε33E u

3 −d31T u
1 (3.26)

As shown in Eq. 3.26, the stress T u
1 must be evaluated in order to calculate the electric

displacement field. While the neutral plane was not important for the determination of the

displacement, it becomes necessary to calculate the charge accumulation since it intervenes

in the expression of the stress T u
1 . In Eq. 3.3, in order to determine the stress T u

1 , the strain Su
1

is replaced by the sum of the piezoelectric strain Su
1,p and the mechanical strain Su

1,m :

S1(z) = εm(z −γm)+εp (z −γp ) (3.27)

This expression of the strain is a function of the z coordinate, and therefore it cannot be used

as is in Eq. 3.26 which assumes a constant strain throughout the layer. The piezoelectric

material within a single layer may be considered as a stack of infinitesimally small layers,

each infinitesimal layer contributing to the free charge accumulation around that layer. This

hypothesis, formulated by Dunsch [10], makes it possible to use the average stress within a

layer to calculate the accumulated free charge:

T1(k) = 1

h

kh∫
(k−1)h

1

s11
(S1(z)+d31E u

3 )dz (3.28)
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where k denotes the position of the layer within the bender, starting from the bottom of the

stack.

The effective stress in Eq. 3.28 can be used in Gauss’ Law (Eq. 3.25) to finally calculate the total

amount of free charges accumulated by the active layers of the piezoelectric actuator:

Q =
N∑

k=N+1

L∫
0

w∫
0

(ε33E u
3 −d31T1(k))dydx (3.29)

which leads to the final expression of the electrical charges:

Q =
(
N
ε33Lw

h
+ 3

8

Lwd 2
31

hs11

)
Vin + 3

8
d31

L2

N h2 F (3.30)

Full model and parameter identification

The previously developed expressions for the outputs of the piezoelectric actuator under the

effect of inputs F and Vin form the constitutive equations for the actuator. It follows the same

form as the one predicted by the general model in Chapter 2 (Eq. 3.1). The total displacement

δ and accumulated charge Q represent the state of the actuator, and are written
δ= 3

8
d31

L2

N h2 Vin + s11L3

2w N 3h3 F

Q =
(
N
ε33Lw

h
+ 3

8

Lwd 2
31

hs11

)
Vin + 3

8
d31

L2

N h2 F

(3.31)

From these equations, the actuator parameters may be determined by comparing the system

in Eq. 3.31 to the general form of the model in Eq. 3.1:

K = 2w N 3h3

s11L3 (3.32)

β= 3

8
d31

L2

N h2 (3.33)

Cp = N
ε33Lw

h
+ 4

3
β2K (3.34)

As expected, the β parameter (Eq. 3.33) is the same for the displacement equation and the

charge equation. As for the capacitance (Eq. 3.34), its left hand term is the expected result

for the capacitance of such a bender configuration, but its right hand term is expressed as a

function of β and K . While the physical significance of this right hand term could be debated,

estimations based on a known actuator, the Noliac CMBP03, show that it is lower than the left

78



3.4. Self-sensing actuator design

hand term by two orders of magnitude. It may be neglected in the further developments for

the sake of simplifying the equations.

3.4 Self-sensing actuator design

The constitutive equations for considered bender morphology now provide a direct relation-

ship between the actuator characteristics and its design parameters, most notably the number

of layers N . Knowing the impact of the latter on the actuator characteristics has been deemed

essential to providing high resolution self-sensing actuators. As stated in Chapter 2, there is

a tradeoff to be made in terms of actuator stiffness and SSA performance. Not only is a high

number of layers strongly related to a higher stiffness, improving the actuation performance

and the self-sensing position estimation, but it also has a negative impact on the β coefficient

in the case of benders. As seen in Eq. 3.33, the coefficient is inversely proportional to N .

In the following section, the process for designing a monomorph bender based on the afore-

described morphology (Fig. 3.7) is laid out. After analyzing the considerations and the

objectives for the design, an analytical study is used to discover the best strategy to employ for

the different design parameters.

3.4.1 Design considerations and objectives

Design space

The design parameters that have an impact on the final actuator characteristic constitute

the design space for the actuator. Their scope, and their boundaries, have been chosen to

fit the device within a restrained volume needed for some micro-robotic applications (e.g.

operation in a SEM chamber). These parameters can be divided into two categories which will

be described as follows.

The first category regroups all the parameters that describe the physical dimensions of the

actuator’s morphology. The length L and the width w are continuous parameters that describe

the planar dimensions of the layers, and consequently of the bender itself. The layer thickness

h is discrete and limited to a few pre-determined values that are tied to the fabrication processe.

Finally, the number of layers in each area of the bender (Fig. 3.7) N is a natural number. Due

to planarity concerns when fabricating the actuator, a minimum bender total thickness of

Hmin = 0.35mm is required. This implies that the lowest value N can be is always tied to the

layer thickness h, such that Nmin = Hmin/(2h) . All of the parameters describing the physical

dimensions of the morphology and their scopes for this design are provided in Tab. 3.1.

The second category of parameters pertains to the properties of the piezoceramic used in the

fabrication process. The piezoelectric coefficients di j , the compliance si j , and the permittivity

εi j are such parameters, and they cannot be modified independently from one another. A

piezoelectric material must be chosen, and the di j , si j and εi j will be a consequence of
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Table 3.1 – Physical parameters of the actuator design.

Parameter Symbol Unit Range

Length L mm [10, 25]
Width w mm [1, 10]

Layer thickness h µm {20; 50; 67}
Nb. of layers N - {Nmin; . . . ; 20}

that choice. Since the choice of materials is often limited, it is not necessary to take into

account the material when designing the actuator. Instead, the study of the objective functions

may be performed for each of the piezoelectric materials separately, and the material with

the most suitable solution shall be selected. For the calculations performed in the coming

developments, the NCE51 PZT ceramic developed by Noliac will be taken into account.

Objective function of the design

Before attempting to tackle the design, a clear objective must be determined. With the example

provided in this chapter, the aim is to illustrate how to design an actuator with improved SSA

performance for force estimation, all while guaranteeing sufficient actuator peformance for

micro-manipulation tasks. The estimation of the force through charge measurement has been

discussed at length in Chapter 2, and serves as the basis to improve the SSA performance of

an actuator design.

The sensing charge, a component of the total charge accumulated by the actuator, is directly

related to the force applied on the actuator by the β coefficient. The other component that

contributes to the total accumulated charge is a byproduct of the capacitive nature of piezo-

electric materials, and is directly related to the driving voltage through its capacitance Cp .

When measuring and integrating the current that flows through the actuator, both of these

components are detected. A reference capacitor is thus supplied with an opposed driving

voltage, suppressing the capacitive component of the charge accumulation and improving the

charge measurement resolution prospects of the method.

Following these observations, and based on the knowledge provided by the constitutive

equations (Eq. 3.1), the design goals are twofold:

1. The β coefficient must be maximised so that the sensing component of the total charge,

Qp =βF , is increased, improving the resolution of the force estimation.

2. Despite the compensation of the electrical component of the total charge, Qe =CpVin, it

is preferable to minimise it with respect to Qp to reduce estimation errors.

An objective function representing the fitness of a particular actuator design to these goals may

be defined. The analytical study of this objective function within the boundaries of the design
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space (Tab. 3.1) shall provide insight into the preferences of each parameter for improved

SSA performance. Since the aforedescribed goals aim to maximise Qp , and minimise Qe with

respect to Qp , the following objective function f (L, w,h, N ) is defined:

f (L, w,h, N ) =−Qp

Qe
=− βF

CpVin
(3.35)

Note the assignment of a "−" sign in front of the ratio of the charge components. Since Qp is

negative, due to the β coeficient being negative, the sign of the function is inverted so that the

design problem may be formulated as the maximisation of the objective function, as opposed

to its minimisation.

The expression of the objective function in Eq. 3.35 can be further expanded by considering

the reference voltage that shall be used. Since the worst case for the Qp /Qe ratio would be

when the voltage is at its maximum, it is proposed to consider this value for Vin. Since the

NCE51 PZT ceramic can support a maximum electric field of E max
3 = 3V/µm before undergoing

depolarisation, the maximum applied voltage is a function of the layer thickness such that

V max
in = E max

3 h. This expression for the voltage will be substituted in Eq. 3.35.

The target application for the design is manipulation tasks of µm–scale objects, compatible

with the experiments that were led in Section 3.2. To that end, it was determined that a

displacement of at least δ = −δmin = −25µm needs to be guaranteed, and that forces of

up to Fmax = 100mN can be applied by the actuator throughout this displacement range.

Due to the fact that the minimal displacement that can be achieved with the current design

space (Tab. 3.1) is of 122µm, it is not necessary to constrain the objective function with this

requirement. The main constraint will be the applied force, and a blocking force of Fmax under

any displacement of the full range is guaranteed under the following condition (Eq. 3.31):

F (L, w,h, N ) =−2w N 3h3

s11L3 δmin − 3w N 2h2d31

4Ls11
E max

3 ≥ Fmax (3.36)

For the sake of brevity, the terms Fmax, E max
3 and δmin will from now on respectively be written

as F , E3 and δ. Hence this formulation for the design’s objective function (Eq. 3.36–3.35):

maximize
L,w,h,N

f (L, w,h, N ) =−3

8

L

wh2N 2

d31

ε33E3

subject to F (L, w,h, N ) ≥ F.

(3.37)

3.4.2 Analysis of the objective function

The objective function f (L, w,h, N ) (Eq. 3.37) is represented in five dimensions. The study of

its evolution, along with the evolution of the force constraint (Eq. 3.36), provides insight on

the strategy to adopt for each parameter to match the design goals. For the convenience of
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the analytical study, it is convenient to reduce the dimensionality of the objective function. A

number of simplifications can be done to achieve this. To that end, with the layer thickness h

being discrete, it makes sense to consider this parameter as a constant in the following study,

as each of the three values of h (Tab. 3.1) can be studied separately. This first consideration

reduces the dimensionality of the problem from five to four.

Reducing the dimensionality of the design problem

As it is a natural number, considering N as a real number does not make sense in a physical

terms. However, for the analytical study, the lower case n will replace N and will be considered

as a real in order to study the influence of the number of layers on the evolution of the objective

function. Following this study, n can be discretised as N to the value closest to the solution.

The objective function curves as a function of (L, w) for different values of n may be seen in Fig.

3.10. What can be said at first glance is that the objective function is seemingly monotonous,

and that the solution to the design problem may be trivial.

The dimensionality of the design problem may be reduced further by expressing one of the

remaining variables (i.e. L, w , or n) as a function of the other variables. One approach

that would enable this is to find a set of design points {L, w,n} that would satisfy the force

constraint while maximising the objective function. Consider the following equation, which

states that the maximum applied force of the actuator is equal to the requirement of minimum

blocking force across the whole free displacement range: F (L, w,h,n) = F . By applying the

force constraint from Eq. 3.36, on can write the width w as a function of the length L and the

number of layers n that would satisfy this condition:

w(L,n) =− 4F s11L3

h2n2(3d31L2E3 +8hnδ)
(3.38)

By subsituting the width w in the objective function (Eq. 3.37 by its expression in Eq. 3.38, the

objective function f (L, w,n) may be reparametrised into a new, three dimension, objective

function f (L,n). The result of this reparametrisation may be written as:

f (L,n) =−9d 2
31E3L2 +24d31hnδ

32E3L2s11ε33
(3.39)

The parametric surface illustrated in red in Fig. 3.10 represents the set of design points {L, w,n}

that satisfies the force constraint all while maximising the objective function within the design

space. This parametric surface may be described using Eq. 3.38 and Eq. 3.39 as follows:
x = L

y = w(L,n)

z = f (L,n)

(3.40)
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f(n = Nmin)

f(n = Nmin + 2)
f(n = Nmin + 4)

Solution plane
for F = Fmax

Figure 3.10 – Representation of the intersection between the objective function (blue) for
different values of n with the solution plane satisfying the constraint (red).

It can be said with firm conviction that the set of design points {L, w,n} that satisfies the

F (L, w,h,n) = F condition is also the one that maximises the objective function (Eq. 3.37)

within that constraint. Indeed, the partial derivatives of Eq. 3.36 with respect to L, w , and n are

of opposite sign to those of Eq. 3.37. This implies that attempting to modify the solution set

of {L, w,n} to maximise the objective function will also decrease the maximum applied force

of the actuator below the required mechanical specification (Eq. 3.36). With the parametric

surface described in Eq. 3.40, the dimensionality of the design problem has been brought

from five down to three.

Study of the partial derivatives

It has been suggested that the maximisation of the objective function could be trivial, as

its surface for any given n (Fig. 3.10) seemed monotonic. The same could be said for the

parametric surface f (L,n) (Eq. 3.40), in red in Fig. 3.10, representing the set of solutions that

maximise f (L, w,h, N ) while guaranteeing the force constraint. This monotonicity needs to

be proven before any certain claim can be made, however. To that end it is proposed to study

the partial derivatives of the parametrised surface to analytically determine if it is concave,

convex, or simply monotonic within the scope of the design space. First, the partial derivative

of f (L,n) with respect to L (i.e. x-axis in Fig. 3.10) is determined:

∂ f

∂x
= ∂ f

∂L
=− 3d31nhδ

2E3F L3s11ε33
(3.41)
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(a)
∂ f

∂L

(
L, N

)
(b)

∂ f

∂w

(
L, N

)
Figure 3.11 – Partial derivatives of f with respect to L and w .

Table 3.2 – Evolution of the partial derivative of f with respect to w .

n −∞ n0,1 np n0,2 +∞
∂ f /∂w + 0 + ∞ + 0 −
f (L,n) ↗ ↗

∥∥∥∥ ↗ ↘

Since L and n are strictly positive by definition, the partial derivative of f (L,n) with respect

to L is strictly positive in the design space. It can be thus said that the parametric surface

described in Eq. 3.40 is monotonic with respect to L, and increasing the latter will maximise

the objective function. Finally, the partial derivative of f (L,n) with respect to w (i.e. y-axis in

Fig. 3.10) is determined. In this case, since w is a function of L and n, the partial derivative of

f (L,n) needs to be decomposed as such:

∂ f

∂y
= ∂ f

∂w
= ∂ f

∂n

∂n

∂w
= ∂ f

∂n

(∂w

∂n

)−1
(3.42)

The partial derivative of w with respect to n can be calculated from Eq. 3.38, while the partial

derivative of f with respect to n can be calculated from Eq. 3.39:

∂w

∂n
= 24F L3s11

h2n3

d31E3L2 +4hnδ(
3d31E3L2 +8hnδ

)2 (3.43)
∂ f

∂n
= 3d31hδ

4E3F L2s11ε33
(3.44)

Resulting in the following partial derivative of f (L,n) with respect to w :

∂ f

∂w
= d31h3n3δ(3d31E3L2 +8hnδ)2

32E3F 2L5s2
11(d31E3L2 +4hnδ)ε33

(3.45)
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Determining the sign of the partial derivative relies on finding its poles np,i and zeros n0,i :

n0,1 = 0 < np =−d31E3L2

4hδ
< n0,2 =−3d31E3L2

8hδ
(3.46)

The evolution of the partial derivative of f (L,n) with respect to w is summarised in Tab. 3.2. It

is strictly positive within the interval [n0,1,np [. Considering a length L between 10 mm and

25 mm (Tab. 3.1), and considering the material properties of the Noliac NCE51 piezoceramic,

it can be shown that np ∈ [29,182]. Since by definition n ∈ [Nmin,20] and Nmin > 0, it is possible

to affirm that n ∈]0;np [ and that the parametric surface described in Eq. 3.40 is monotonic

and increasing with respect to w .

3.4.3 Design guidelines for piezoelectric self-sensing benders

From the analytical study of the objective function, multiple conclusions may be drawn

regarding the design parameters. A set of solutions that both maximises the objective function

and satisfies the force constraint has been evidenced, and is represented by a parametric

surface (Eq. 3.40) in Fig. 3.10. The monotonicity of this parametric surface has been proven

through the study of its partial derivatives with respect to (L, w). The solution that maximises

the objective function is found on the boundary of the design space visualised in Fig. 3.10.

The partial derivative of f with respect to L is strictly positive, and f is therefore monotonically

increasing with respect to this parametr. The length L must be set to the upper boundary

of its scope in the design space (Tab. 3.1). It can also be shown that the partial derivative of

f with respect to h is strictly negative and, by the monotonically decreasing characteristic

of f , imposes that h should be set to the lower boundary of its scope (Tab. 3.1). As for the

width, the partial derivative of the objective function with respect to w is strictly positive in

the interval of the design space, indicating that w should also be maximised. Unlike the other

parameters, w may not simply be chosen on the boundary of its scope, since it is bound to

the force constraint by Eq. 3.38, and is tied to the choice of the free parameters L, h, and

N . Instead, the parameter N must be chosen so that it maximises w . The strategy to adopt

is highlighted by looking at the partial derivative of w with respect to N (Eq. 3.43) which is

strictly negative in the [Nmin,20] interval. The width w is therefore monotonically decreasing

with respect to N , and the latter should be set to the lower boundary of its scope (Tab. 3.1). It

is therefore a function of the minimum actuator thickness Hmin and layer thickness h. The

design strategy may thus be summarised by the following points:

• Let h be the minimum value in Tab. 3.1

• Let L be the maximum value in Tab. 3.1

• Calculate N as Nmin = Hmin/(2h).

• Calculate w as a function of L and n according to Eq. 3.38.
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A self-sensing actuator suitable for the micro-robotic application that has been discussed

may now be designed by applying the aforedescribed methodology. Without any practical or

fabrication considerations, the parameters for the self-sensing piezoelectric bender would

be a length of L = 25mm, a layer thickness of h = 20µm, a number of layers of N = 9, and

therefore a width of w = 2.8mm, resulting in an actuator thickness of 0.36 mm.

3.5 Conclusion

This chapter has presented a new angle of research to piezoelectric SSA. Where most publica-

tions have sought to use readily available commercial actuators to implement self-sensing

implementations, albeit successfully, none have attempted to model then design an actuator

that maximises the results of their sensorless estimation.

Prior to designing the prototype, the scope of its design has been established by performing

typical micro-robotic tasks on µm–scale samples: silicon micro-pillars that are 37µm in height

and 3.5µm in diameter. Following these experiments, it has been determined that the force

estimation would require a resolution of 0.1 mN, and that the position estimation would

require a resolution of 0.5µm. In terms of actuator performance, the actuator would need to

be able to apply forces of up to 100 mN across a free displacement range of 25µm. The lower

stiffness of benders is more adapted to applications where precise force control is required

(Chapter 2). This morphology has thus been considered for the prototype design, and a model

has been developed from it. For the sake of design flexibility, the model has considered the

number of layers of the actuator stack to be a variable. The resulting actuator characteristics

calculated through the model may thus be influenced by this parameter.

Finally, with the design scope established by the measurements on the micro-pillar and with

the analytical model of the actuator in hand, it has been possible to proceed with the design

of the prototype. An objective function reflecting the design goals of the prototype was first

established. The design sought to maximise the sensing component of the accumulated

charges, while reducing the proportion of electrically induced charges. An analytical study has

been performed on the objective function that had been constrained with design requirements,

and its monotonicity with respect to the design parameters has been proven. Consequently,

some concise guidelines to maximise the self-sensing performance could be formulated.

The following publications by the author are related to this chapter:

• Masson, L., Xinchang, L., and Perriard, Y. (2018). Design of an Optimized Self-Sensing

Piezoelectric Cantilever for Micro-Robotic Applications. In 2018 International Confer-

ence on Manipulation, Automation and Robotics at Small Scales (MARSS), pages 1–6,

Nagoya. IEEE

• Masson, L., Xinchang, L., and Perriard, Y. (2019b). An optimized self-sensing piezoelec-

tric cantilever for micro-robotic applications. Journal of Micro-Bio Robotics, 15(2):91–103
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4 Prototype fabrication and self-sensing
performance assessment

4.1 Introduction

A design study of piezoelectric benders has provided clear guidelines for the fabrication of

actuators tailored to specific Self-Sensing Actuation (SSA) applications. In the context of this

thesis, a scope for actuation and self-sensing performances has been defined from measure-

ments done in a benchmark scenario. The forces and displacements at play for the mechanical

and electrical characterisation of P-N junction micro-pillars have hence been used to establish

an actuator design space suited to this application. Using the previously established guidelines

leads to the fabrication of a piezoelectric actuator that would be suitable for micro-robotic

applications similar to that of the benchmark scenario. Nonetheless, proceeding from the

design based on a theoretical model towards the practical implementation of that design may

involve the adaptation of some parameters to the design process.

The development of a bender is the first step in designing a self-sensing prototype, which

consists of two parts: the piezoelectric actuator itself, and the surrounding system referred to

as the self-sensing test environment. The self-sensing prototype’s goals are twofold. Firstly,

it must facilitate the complete characterisation of the actuator integrated within the system.

The assessment of the parameters shall also serve to validate the analytical model that has

been developed in Chapter 3. Secondly, its purpose is to provide an environment for the

implementation, testing, and assessment of SSA strategies with a fabricated actuator. Due to

the tolerances of up to ±20% that are present in properties of the piezoceramics that are used

in the fabrication of actuators, providing a modular environment that allows to test several

actuators with ease is an important aspect of the prototype design.

The following sections of this chapter will present the self-sensing prototype that has been

developed over the course of this thesis, beginning with fabrication of a batch of actuators

and of the self-sensing system that surrounds it. With a clear picture of the complete system,

the identification of actuation and self-sensing parameters that characterise the system shall

be discussed. Finally, a self-sensing implementation with this system will be shown, leading

into the qualitative and quantitative assessments of the resulting sensorless performance.

87



Chapter 4. Prototype fabrication and self-sensing performance assessment

21 mm

7.8 mm

Electrode (2 µm)

Isolation (40 µm)

Passive piezo (20 µm)

Active piezo (20 µm)

Figure 4.1 – Structure and topology of the fabricated actuator.

4.2 Prototype design and assembly

As mentioned, the prototype consists of two parts. The actuator fabricated according to

the design guidelines in Chapter 3 is the centerpiece of the prototype and the focus of the

SSA implementation. Surrounding the actuator, a supporting self-sensing testing system is

responsible for providing an input voltage to drive the actuator, to integrate and measure

the accumulated charges, to apply any compensation related to the measurement strategy

that is required (e.g. reference capacitor), and finally to provide sensorless estimations of the

actuator’s mechanical state. In the experimental state of the self-sensing implementation, it

is also necessary that this system includes non-invasive force and displacement sensing in

order to validate the output of the self-sensing estimation. The following sections will discuss

the bulk fabrication of an actuator design, and a general overview of the self-sensing test

environment will be provided.

4.2.1 Fabrication of an actuator batch

The complexity of the fabrication of multi-layered piezoelectric actuators has led this research

to turn to an industrial supplier for the handling of the process. The chosen supplier is

Noliac, with whom discussions were held on the aforementioned design parameters. The

real morphology of the actuator, illustrated in Fig. 4.1, differs slightly from the one that has

been used to derive the model in Chapter 3. The first difference comes from the presence of

two passive layers both on the top and the bottom of the actuator stack for electric isolation

purposes. This, along the fact that the electrodes have a thickness of 2µm, render the final

actuator thickness greater than predicted by the model. Additionally, the active length and

width of the actuator are slightly lower than outer dimensions of the bender, as isolation

margins of 0.2 mm on the sides and of 3.8 mm along the length of the actuator need to be

taken into account.
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Table 4.1 – Final actuator specifications.

Param. Material L w h N H β Cp K
(−) (mm) (mm) (µm) − (mm) (nC/mN) (nF) (mN/µm)

Value NCE51F 21 7.8 20 6 0.35 -9.01 496 0.314

Table 4.2 – Inspection of the fabrication results.

Specification Measurement
Parameter Unit

Average Min Max Average Min Max
Length mm 21.0 20.6 21.5 21.13 21.12 21.15
Width mm 7.80 7.65 7.95 7.84 7.83 7.86

Thickness mm 0.35 0.25 0.45 0.481 0.457 0.495
Stroke µm 290 232 348 301 273 317

Blocking force N 0.22 0.18 0.26 0.27 0.26 0.28

Further parameter calculations made with the model shall only consider the effective dimen-

sions of the actuator, which are obtained by subtracting the isolation margins from the external

dimensions. To keep in line with the encumbrance requirements of the actuator, the design

space for the external dimensions will be modified: the maximum length L is reduced from

25 mm to 21 mm, and the maximum width w is reduced from 10 mm to 9.6 mm. Furthermore,

the calculation of the minimum amount of layers Nmin must now account for the added thick-

nesses of the electrodes and isolation layers. With these modifications to the design space in

mind, and following the conclusions of the objective function study, the design should consist

of a length of L = 21mm, a number of layers of N = 6, and a layer thickness of h = 20µm. The

width preserving the mechanical performance of the actuator can be calculated as a function

of the other parameters as w = 6.1mm.

Due to the fact that these chosen width and length parameters are close to that of some of

Noliac’s standardised actuators, i.e. wstd = 7.8mm and Lstd = 21mm, for which appropriate

fabrication tools were already available, it has been decided to match these parameters to

the standard. The resulting actuator would have identical length and width as these standard

actuators, such as the CMBP03 produced by Noliac, but with customised internal parameters

(i.e. layer thickness, number of layers) that are determined by applying the present chapter’s

design methodology. Setting the length and width to these standard values inevitably causes

an 8.1% decrease of the design’s objective function, but in 8.8% increase in the blocking force.

Due to the fact that the β coefficient does not depend on the width w , this parameter of the

actuator characteristic remains unchanged. Since this design still fits within the requirements

specified in the previous section, this approach has been undertaken in order to drastically

reduce the cost and lead time of the actuator’s fabrication.

The final actuator parameters and its calculated characteristics are summarised in Tab. 4.1.

The actuator has a free stroke of δmax = 290µm and a blocking force of Fmax = 220mN. Given
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Figure 4.2 – Structure of the self-sensing prototype: mechanical signals in red, electrical
signals in blue, digital communication busses in black.

a charge measurement resolution of 1 nC, such a design would be able to provide at best an

estimation resolution of 0.35µm for the displacement, and a resolution of 0.11 mN for the

applied force. An inspection of the dimensions and actuation performance may be found

in Tab. 4.2. Most parameters are within specifications of the fabrication process, however it

should be noted that the measured blocking force is 23% greater on average. This seems to

indicate that the resulting stiffness is greater than anticipated, and shall need to be confirmed

with the testing that will follow in the present chapter.

4.2.2 Self-sensing test environment

The test environment component of the prototype is structured as shown in Fig. 4.2. It

has been designed with the purpose of simultaneously measuring all of the electrical and

mechanical state parameters of the actuator. To achieve this, a centralised architecture with a

Cortex-M4F micro-controller running time critical software to coordinate all the measuring

instruments has been adopted. In addition to this duty, it handles the processing of the data

so as to provide sensorless estimations of the mechanical state. As such, the system provides a

functional environment for implementing charge-based SSA strategies while also allowing for

the validation of the outputs. The drive electronics, the position sensor, and the force sensor

attached to a motorised linear positioning stage all communicate with the ST Microelectronics

microcontroller, an STM32F446, through serial communication busses shown in black dashed

lines in Fig. 4.2 (I2C and SPI).

When considering the piezoelectric as a system (Fig. 4.2), the electrical inputs and outputs

(blue) of the actuator are contained within the same electrical loop. Since the charges are

related to the current flowing through the electrodes, the circuit providing the driving voltage

must also include charge amplification in series to the driven device. The drive electronics

have been designed specifically for this project. However, with the amplification of charges in

the order of nC being a delicate matter, the latter task is handled by a specialised Source Meter

Unit (SMU): the Keithley 6517A configured as a coulombmeter. This instrument provides
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Figure 4.3 – Overview of the mechanical structure.

(a) Motorised linear stage. (b) Actuator fixation.

Figure 4.4 – Sub-systems of the self-sensing prototype.

charge measurement calibers ranging from ±200nC to ±2µC, with respective resolutions of

1 pC and 10 pC, which is befitting of the fabricated actuator’s characteristics.

Regarding the mechanical inputs and outputs of the actuator in Fig. 4.2 (red), the use of

non-invasive instruments has enabled the continuous determination of the mechanical state

without affecting the actuator. All mechanical components are precisely positioned from one

another by using machined pieces on an optical experimentation table with passive damping

(Fig. 4.3). The relative displacement at the tip of the bender, i.e. end effector, is measured

by a Keyence LK-G32 sensor head placed 2 cm away from the bender. It measures distance

variations from a reference surface through triangulation using a laser beam. The fabricated

actuators are glued using Araldite, a two-port epoxy adhesive, onto an actuator holder piece

(Fig. 4.4b and Fig. 4.5). The latter component has been designed to be attached to the test

environment by way of screws, making it possible to replace the bender under test with ease.

To accomodate the sub–mN force measurement, a high precision force sensor developed

by Femto-Tools, the FT-ST100000, is used to measure and apply force to the piezoelectric
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Figure 4.5 – Photo and schematic of the fabricated actuator; the hashed red area corresponds
to the clamping / glueing surface for the actuator’s assembly.

actuator with a range of 100 mN and a resolution of 5µm. It is mounted on a motorised

linear positioning stage powered by a Faulhaber micro-motor driving an endless screw with a

pitch of 200µm (Fig. 4.4a). It is capable of providing a displacement resolution of 1µm, and

the mechanical setup provides a free stroke of 3 cm. The incentives for mounting the force

sensor on a positioning stage are twofold. On the one hand, it allows to experiment with the

mechanical properties of the benders with flexure tests: deforming the bender with the tip of

a force sensor makes it possible to draw force-displacement and charge-force characteristics

that make it possible to derive its stiffness K and its β coefficient. On the other hand, it allows

to simulate real use cases for the self-sensing actuator by positioning the force sensor at a given

distance from the bender tip and acting as a target sample: approach and force application

control experiments may then be run with the SSA bender, with the manipulated force sensor

tip providing validation data for the sensorless force estimation.

4.3 Identification of the actuation and self-sensing parameters

Before attempting to implement charge-based SSA strategies with the fabricated actuators,

it is necessary to run an experimentation plan designed to characterise a batch of actuators.

A set of six benders has been prepared and glued to plastic holders to that effect (Fig. 4.5),

and they have been numbered for identification with the series of roman numerals I–VI. The

characterisation of a batch of actuators allows for a statistical appreciation of the parameter

spread, which is all the more justified by the usual ±20% tolerances on material properties.

This tolerance is further compounded by the fact that the design parameters of the fabricated

actuators aim for extremes in terms of dimensions and number of layers. The following

paragraphs will detail a series of experiments that have been systematically run across the

whole actuator batch to determine their stiffness K , capacitance Cp , and β coefficient. The

knowledge of these parameters will also be necessary for the SSA implementation.
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Table 4.3 – Results of the capacitance measurements.

Actuator No. I II III IV V VI

Upper area Cp (nF) 497 498 496 497 502 520
Lower area Cp (nF) 496 492 499 508 508 511

4.3.1 Capacitance measurement

The first experiment that can be done is to simply measure the capacitance of the piezoelectric

actuator. This has been done with a Keysight 34450A digital multimeter. The impedance of a

piezoelectric actuator inevitably varies under given stresses and applied voltages, therefore

only its capacitance at rest may be evaluated. This is sufficient to determine the validity of

the model prediction however, as the latter only considers the capacitance at rest. The model

developed in Chapter 3 predicts a capacitance of Cp = 496nF±20% given the fabrication

parameters of the prototype’s actuator. This prediction corresponds to the capacitance of

either area of the bimorph, i.e. upper or lower which are symmetrical. As per the schematic in

Fig. 4.5, let the positive bias be connected to the electrodes connected to the upper area of

the bender, let the negative bias be connected to the bender’s lower area, and let the common

electrode be the ground voltage potential for both sets of electrodes. The measurements for

the upper area (resp. lower area) are done by connecting the positive bias (resp. negative bias)

to the HI port and both the negative bias (resp. positive bias) and the common electrode to

the LO port of the multimeter, in order to short-circuit the unused area of the bender.

The results of these measurements are shown in Tab. 4.3, and the normal distribution of the

results compared to the toleranced model prediction are represented in Section 4.3.5. The

measured capacitance for the upper area has a mean value of 501.7 nF for a standard deviation

of 9.2 nF, while the results for the lower area show a mean value of 502.3 nF for a standard

deviation of 7.7 nF. The 90% confidence interval for both of these distributions encompasses

the expectations provided by the model (Tab. 4.1), and the model prediction presents an error

of 1.2% compared to the mean capacitance measured across all benders and areas. In that

regard, the fit between model and empirical data is satisfactory.

4.3.2 Step response

To evaluate the dynamic behaviour of the benders, it is proposed to observe their response

following a step in voltage application. Exercising precise control over a quasi-static bender’s

positionning requires an a priori understanding of its dynamic response to a ramped control

scheme, as this is the most likely way it will be driven. Initially, the actuators’s input voltage is

left in a short-circuit state, and at t = 1s a voltage step of 5 V is applied to the electrodes of the

bender’s upper area. While the voltage is maintained and no force is applied to the bender’s

tip, the deformation is continuously observed over the course of five minutes in order to be

able to observe the creep effect of the piezoelectric material.
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Figure 4.6 – Displacement measurements for the step response experiment (left), with an
example of fitted curve for the transient response of an actuator (right).

From this experiment, one can hope to derive two pieces of information, as two signals are

contained within the results shown in Fig. 4.6. Firstly, the study of the transient response

occuring after the voltage step serves to derive the time constant τ that is important for the

actuator’s control. This response also provides a way to estimate the β coefficients, as the

displacement will exponentially converge to the result of the voltage application, described as

δfree =βVin. Secondly, by observing the long term evolution of the displacement, an estimation

of the severity of the creep effect for each bender may be estimated.

The results of the step response experiment performed on all six piezoelectric actuators are

presented in Fig. 4.6. It is first proposed to examine the transient response of the benders.

Both the τ and β parameters are found by fitting the measurement points of the first seconds

after the Vin = 5V voltage step at t = 1s to a function that reflects the expected behaviour.

As mentioned previously, the unconstrained actuator converges exponentially to the free

displacement δfree through a function in the form of:

δ(t ) =−5β
(
1−e−(t−1)/τ) (4.1)

The resulting parameters of these exponential fits to the transient responses of actuators I–VI

may be found in Tab. 4.4. An example of fitted curve is also shown in the rightmost graph of

Fig. 4.6. Across all actuators of the batch, an average −β coefficient of 3.207µm/V has been

identified, along with a standard deviation of 0.192µm/V. Compared to the model estimation

of −β= 9.01µm/V, the β coefficient estimated through this experiment presents a high level

of discrepancy with the theoretical expectations. More insight into this spread is provided in

Section 4.3.5, and an updated model presented in Chapter 5 converges with the data provided

by this experiment.
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Table 4.4 – Extrapolated parameters of the fitted curves for the unit response experiment.

Actuator No. I II III IV V VI

−β (µm/V) 3.253 3.206 3.272 2.830 3.327 3.356
τ (ms) 35.5 35.3 50.5 54.1 36.4 36.0
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Figure 4.7 – Qualitative observation of the creep on the expected displacement.

Thanks to the transfer function of the transient responses (Eq. 4.1), the evolution of the creep

effect can now be investigated. The creep is determined by subtracting the free displacement

δfree from the total measured displacement δ shown in Fig. 4.6. The resulting relative displace-

ments are shown in Fig. 4.7, with a relative displacement of 1 corresponding to the absence of

creep. Further characterisation experiments making use of charge measurements would be

required to fully describe this phenomenon through a model. However, the result presented

in Fig. 4.7 is sufficient for a qualitative observation of its effect. Varying amounts of creep

are found for actuators I–VI, with relative displacements ranging from 3% to 23% after five

minutes of observation.

4.3.3 Free stroke

In order to verify the repeatability of the previous estimations for the β coefficient, another

experiment from which this parameter can be derived has been performed. In this experiment,

the voltage Vin applied to a bender’s upper area is sweeped across its complete nominal

range, i.e. 0 V – 60 V, while the the displacement δ is measured. The expected outcome

for this experiment is the highlighting of the hysteresitic relationship between voltage and

displacement. The resulting δ – Vin characteristics also provide a way to estimate the β

coefficient. The latter may be determined by calculating the initial slope of the hysteresis,

starting at Vin = 0V. Another mechanical parameter may be found from this experiment, as

the displacement at Vin = 60V corresponds to the free stroke δmax of the actuators.
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Table 4.5 – Extrapolated β slopes and maximum displacements δmax for the free stroke
experiment.

Actuator No. I II III IV V VI

−β (µm/V) 3.255 3.285 3.130 2.715 3.110 3.255
δmax (µm) 298 308 303 273 291 314

0 10 20 30 40 50 60
0

100

200

300

Applied voltage Vin (V)

Fr
ee

d
is

p
la

ce
m

en
tδ

(µ
m

)

Piezo I Piezo II
Piezo III Piezo IV
Piezo V Piezo VI

Figure 4.8 – Displacement measurements for the free stroke experiment.

The results of the voltage sweep are presented in Fig. 4.8, with the extrapolation of the free

stroke δmax and β coefficient for actuators I–VI shown in Tab. 4.5. From this experiment,

the average free stroke δmax = 301µm in Tab. 4.2 across the whole batch coincides with the

the average free stroke of 298µm derived from this experiment. As for the −β coefficient, its

average estimation is of 3.125µm/V for a standard deviation of 0.213µm/V. While it reflects

the β coefficient of the previous experiment, the discrepancy with the expectations set by the

model is still relevant. More information is provided in that regard within Section 4.3.5.

4.3.4 Flexure testing

The final electromechanical characterisation experiments that have been done are typical

flexure tests. For this experimental protocol, the varied input becomes the applied force F .

It is transmitted directly by the force sensor, and the amount of force is controlled through

the motorised linear positioning stage on which the sensor is mounted on. By driving the

force sensor’s tip against the bender’s end effector, an applied force sweep F from 0 to 45 mN

is executed while the test environment collects displacement and charge measurements from

the bender. This sweep is performed a total number of ten times on each bender to verify

the repeatability of the experiment’s results. Thanks to the readings on the mechanical and

electrical outputs of the self-sensing actuator collected by the test environment, it is possible

to characterise the benders in one of two ways through this experiment. First, the δ – F
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Table 4.6 – Extrapolated β and K slopes for the flexure experiment.

Actuator No. I II III IV V VI

−β (nC/mN) 3.193 3.359 3.114 2.890 3.077 3.201
K (mN/µm) 0.834 0.838 0.925 0.958 0.982 0.933
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Figure 4.9 – Force, charge, and displacement measurement results for the flexure experiment.

characterestic function provides a way to estimate the stiffness K , as it corresponds to the

slope of the curves which are expected to be linear. Similarly, the F – Q characteristic function

provides is related to the β coefficient, as it is equivalent to the slope of the curves which

are once more expected to be linear, as per the SSA model established in Chapter 2. The

latter estimation is a direct way to validate the results of the previous two experiments, as

the relationship between force and charge through β is more straightforward than the one

between the voltage and the displacement.

The results of the flexure tests across benders I–VI are shown in Fig. 4.9, and the K and β

parameters that have been derived from these experiments are presented in Tab. 4.6. From the

mechanical output of the experiments (δ – F characteristics), the estimated stiffnesses of the

benders have a mean value of 0.912 mN/µm for a standard deviation of 61µN/µm. And from

the electrical output of the experiments (F – Q characteristics), the estimated −β coefficients

have a mean value of 3.139 nC/mN for a standard deviation of 0.156 nC/mN. Once more,

these estimated β coefficients fit with the previous experiments while being lower than the

-9.01 nC/mN predicted by the model. The same may be said for the estimated stiffness, where

the model predicted a stiffness of 0.314 mN/µm. The reasons for this discrepancy and an

updated model that converges with this experimental data are discussed in Section 4.3.5.
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Table 4.7 – Results overview of the actuator characterisation experiments.

Actuator No. I II III IV V VI µ σ

K (mN/µm) 0.834 0.838 0.925 0.958 0.982 0.933 0.912 0.061
Cp,u (nF) 497 498 496 497 502 520 501 9.2
Cp,l (nF) 496 492 499 508 508 511 502 7.7
β1 (µm/V) 3.253 3.206 3.272 2.830 3.327 3.356 3.207 0.192
β2 (µm/V) 3.255 3.285 3.130 2.715 3.110 3.255 3.125 0.213
β2 (µm/V) 3.193 3.359 3.114 2.890 3.077 3.201 3.139 0.156
τ (ms) 35.5 35.3 50.5 54.1 36.4 36.0 41.3 7.9

4.3.5 Results overview

The results of all the characterisation experiments that have been presented in this section,

along with the mean values and standard deviations, are summarised in Tab. 4.7. To further

illustrate the results of this characterisation campaign, graphs showing the normal distribution

of the characterisation results with respect to the model predictions are given in Fig. 4.10.

The three most important parameters that needed to be identified throughout these exper-

iments were the stiffness K , the capacitance Cp , and the β coefficient. Not only correctly

identifying these parameters is necessary for the implementation of SSA within the prototype,

but they are also required to validate the predictions of the model established in Chapter 3.

The latter model is referred to as model 1 in Fig. 4.10. The following conclusions may be found

for the three actuator paramaters regarding their model 1 predictions:

• The prediction for the capacitance Cp = 496nF presents itself as satisfactory, as it over-

laps with the 90% confidence intervals of the normal distributions of the capacitance

measurements (Fig. 4.10). The error of the prediction of model 1 with relation to the

mean measured Cp is of 5 nF, amounting to a relative error of 1%.

• The same conclusion may not be drawn with the prediction for the stiffness K =
0.314mN/µm. The error of the prediction of model 1 with relation to the mean measured

stiffness is of 0.598 mN/µm. In other words, the prediction is greater than the measured

value by a factor of ×3.

• As was the case for the stiffness, the model 1 prediction for β = −9.01nC/mN does

not correlate with the experimental data. The prediction error with regards to the β

measurements obtained from the flexure tests amounts to 5.871 nC/mN. In other words,

the prediction is lower than the measured value by a factor of ×1
3 .

The observation that there is a factor of ×3 and ×1
3 between the model 1 predictions and mea-

surement data for K and β is not a coincidence, as the β coefficient is inversely proportional

to the stiffness K [36]. However, such a large discrepancy did not occur when applying the

same model to the commercial Noliac CMBP03 bender in Chapter 2.
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Figure 4.10 – Comparison between the characterisation results and the model predictions.

Table 4.8 – Comparison between model 1, model 2, and the measurement results.

Parameter Model 1 Model 2 Measurement

−β (nC/mN) 9.01 3.046 3.139
K (mN/µm) 0.314 1.022 0.912
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The source of this error is related to an incomplete evaluation of the bender stack’s stiffness

when establishing model 1. Some features of the stack have been neglected when establishing

the model (Chapter 3), such as the electrode thickness and the presence of isolation layers

at the top and bottom of the actuator stack. For thick and large numbers of layers, this

assumption would not be cause for error. However, the guidelines derived from the design

study have pushed for lowering the number of layers and opting for thinner layers, increasing

the importance of these previously neglected features. Chapter 5 delves into that topic in

detail and provides an updated model, referred to as model 2 in the present chapter.

New conclusions may thus be drawn for the measurements of actuator parameters for benders

I–VI shown in Tab. 4.7. While the expression of the capacitance stays the same for both models,

the predictions for K and β of the new model 2 converge with the experimental data in a more

satisfactory manner than the predictions of model 1 did (Tab. 4.8). As seen in Fig. 4.10, the

model 2 prediction of the β coefficient overlaps with the 90% confidence intervals of all three

experimental estimations of this parameter. The error of this prediction amounts to 93 pC/mN,

which corresponds to a relative error of 3%. Finally, the model 2 prediction for the stiffness

K converges with the experimental data (Fig. 4.10), albeit with less accuracy, as it does not

overlap with the 90% confidence interval of the measurement spread. The absolute error with

respect to the mean measurement amounts to 0.11 mN/µm, corresponding to a relative error

of 12%. According to the supplier, a lower experimental stiffness than theoretically predicted

is to be expected, as this is usually caused by multi-layered fabrication processes.

Three separate estimations for the β parameter have been obtained from the step response,

free stroke, and flexure experiments. They are consistent with one another, however the

estimation derived from the flexure tests shall be considered as more reliable from this point.

Fitting an exponential curve to the transient response implies some a priori assumptions,

as the number of measurement points that constitute the transient response is not clearly

defined. Finally, the hysteretic aspect of the voltage – displacement characteristic may be

cause for error when evaluating the inital slope of the curve.

4.4 Self-sensing actuation

The self-sensing prototype was designed with the goals of first validating the self-sensing

model predictions for the fabricated acuators, and then of providing a development environ-

ment allowing to implement and test self-sensing implementations. Now that the design of

the prototype has been discussed and the batch of benders have been characterised, the study

can move on to the latter objective.

With a mean β coefficient of 3.139 nC/mN for benders I–VI, the accuracy of the charge mea-

surement must be able to detect charge increments of 319 pC if the self-sensing estimator

were to be intended for 0.1 mN accuracies. The charge measurement must also not greatly

deteriorate over time if the SSA actuator is to be used with this accuracy in quasi-static appli-

cations. At this point, the charge measurement becomes the most critical component and will

100



4.4. Self-sensing actuation

determine the performance of the prototype. However, implementing such an accurate charge

measurement is compounded by issues that arise when measuring low charges (sub–µC) that

flow through high impedance devices such as piezos. Appendix C presents the parasitic effects

that cause issues with the charge measurement.

A self-sensing implementation that has been applied to the fabricated benders will be dis-

cussed in the following paragraphs. The aim of this implementation is to provide a sensorless

force estimation while the bender’s end effector is being moved towards a sample, which will

have been positioned at a fixed distance from the end effector at the beginning of the experi-

ment. In essence, this experiment is identical to the scenario proposed for the simulation of

a real use case at the end of Chapter 2. The goal of this manipulation is to determine if the

actuator would be able to detect a threshold of force while it is manipulating an object, and

at which resolution it could do so. This will help to determine the typical force estimation

accuracy in manipulation tasks that could be expected from the self-sensing benders that

have been fabricated for this thesis.

4.4.1 Calibrated approach

Despite the compensations and guards that have been put in place to counteract the parasitic

effects that interfere with its procedure (Appendix C), the charge measurement has still proven

to be difficult. While it has been possible to determine the bias current, it has been a complex

matter to obtain a proper characterisation for the creep and the hysteresis of the piezoelectric

actuator. Not only would the bias current ib vary from one experiment to another, but as soon

as an input voltage Vin were to be applied, the leakage current would also drastically increase

past expectations. The variation of the bias current is not predictable, however the leakage

current is consistent for a given applied voltage Vin. Therefore, instead of the compensated

approach that has been discussed, a calibrated approach to the charge measurement has been

chosen.

This approach implies that the charge measurement has to be calibrated prior to driving the

actuator. The aim of this approach is to establish a charge – voltage profile which empirically

describes the evolution of the charge with respect to the applied voltage. This is done in the

absence of external mechanical interactions, in other words when the self-sensing actuator is

not manipulating an object. The charge – voltage profiles that are created in calibration runs

are then used to extract the sensing charge from the measured charge during the subsequent

approach runs, as the electrical contribution of the charges are independent from the force

interactions that occur between the actuator and the manipulated sample. The calibration

and approach runs are performed as such:

• Calibration runs: During the calibration runs, the force sensor is removed from the

proximity of the bender’s end effector so that it may move freely without constraint.

The calibration runs are then repeated a large number of times. During each runs, the

actuator is subjected to a ramping applied voltage Vin in steps of 200 mV from 0 V to
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Figure 4.11 – Calibration of the self-sensing approach: the 99% confidence intervals are shown
for the calibration runs, the approach runs, and for the resulting measured charge Qm .

10 V, and the output charge is measured simultaneously. The output is then saved on

the monitoring computer, and the normal distribution of the charge measurements is

evaluated with respect to voltage to create a charge – voltage profile.

• Approach runs: The force sensor is used as a manipulated sample in these experiments,

as it allows to validate the output of the self-sensing estimation. The tip of the sensor

is first placed at a set distance (i.e. 5µm–20µm) from the bender’s end effector, as

shown in Fig. 4.12. For each approach run, the bender is then deformed by a ramping

driving voltage Vin as it had been during the calibration runs. While the end effector

approaches the force sensor and then applies a force upon it, the charge is measured

by the electrometer. The sensing charge is extracted from the measured charge by

subtracting the calibrated charge – voltage profile from it, and a force estimation can

then be performed using the estimation equations shown in Chapter 2.

An example of the charge measurements for the calibration runs and the approach runs is

provided in Fig. 4.11. Since the calibration runs are repeated a large amount of times to

provide a statistical evaluation of the charge – voltage profile, the calibration measurements

are represented by their 99% confidence intervals in this graph. The 99% confidence interval

for a multitude of approach runs is also shown to show if there would be an overlap between

both confidence intervals, which would make it impossible to extract the sensing charge.
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Figure 4.12 – Photos of the force sensor positioned close to the bender’s tip.

For each separate approach run, the difference between the calibration profile and the real use

case measurement corresponds to the sensing charge. The 99% confidence intervals for the

estimated sensing charges are shown in purple in Fig. 4.11). As expected, before the contact

between the force sensor and the bender’s end effector, represented by a vertical dashed line

in Fig. 4.11, the sensing charge is null. It starts increasing along with the force once the contact

has been made, and expectedly by a factor described by the actuator’s β coefficient.

4.4.2 Discussion on the resulting SSA performance

With the extracted sensing charges, it is possible to provide an estimation of the force by

applying the estimator equations as discussed in Chapter 2. This has been done for multiple

approach runs to determine if the performance remained consistent throughout. For these

experiments, the force estimation is compared to the force measurement with respect to time

in Fig. 4.13, and the absolute error of the estimation εF is calculated.

Across all three runs, the SSA performance could be qualitatively described as satisfactory.

The estimated force converges with the measured force for the duration of the experiment

(τ = 110s), whether it be during the approach of the bender’s tip and or during the force

application phase. For the approach runs 1 and 2, the absolute error εF does not usually

exceed 0.25 mN, while it increases to up to 1 mN near the end of approach run 3 (after t = 80s).

Due to the statistical approach of the calibration measurements, it is not possible to point

out the true cause for this drift near the end of approach run 3. However, it can be said that

the sensorless force estimation implemented in this experiment would be sufficient to detect

forces with a resolution of 0.25 mN for shorter experiments (t ≤ 60s), which is befitting of the

micro-robotic use case studied in Chapter 3.

The calibrated strategy is not as precise as a full fledged compensated charge measurement

would be, as occasional drifts could occur during the experiments. It must be also noted

that a new set of calibration runs must be performed before a new set of experiments to

account for changes in environmental factors, as the accuracy of the sensing charge extraction

would degrade over very large periods of time (i.e. several hours). It is evident that more
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Figure 4.13 – Self-sensing force estimation result for three separate approach runs.
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robust performances could be obtained by using the fabricated benders in setups capable of

accurately compensating the charge measurement in order to determine the sensing charge.

Despite these observations, the SSA results shown in Fig. 4.13 demonstrate that it is possible to

obtain a sub–mN accuracy in the force estimation of the self-sensing benders by implementing

a calibrated approach.

4.5 Conclusion

In this chapter, the design and implementation of a prototype for Self-Sensing Actuation (SSA)

has been presented. It had been determined that a SSA prototype consisted of two parts:

the piezoelectric bender, of which the constitutive equations and design have been studied

at length in Chapter 3; and the test environment surrounding the actuator, responsible for

driving the actuator and measuring all the electro-mechanical variables that describe the state

of the piezoelectric system.

The first step in designing the SSA prototype has been the choice of an actuator design,

following the guidelines that were established in Chapter 3. The initial design that has been

derived from these guidelines aims to maximise the charge contributions of the bender’s

mechanical deformation. However, due to real considerations deriving from the fabrication

process of the actuator, the final actuator parameters vary mildly from the initial design (Tab.

4.1). This has caused an 8.1% decrease in the objective function and an 8.8% increase in the

blocking force. Despite these alterations of the maximised design, the prototype featured

promising characteristics for the prospect of self-sensing. With aβ coefficient of −9.01 nC/mN,

it offered a ×17 increase in its sensorless estimation’s resolution compared to the commercial

Noliac CMBP03 bender of similar morphology.

These expectations have unfortunately been dampened by the results of the characterisation

campaign of six fabricated actuators that followed. The test environment of the prototype has

been used with success to measure the parameters of bender I–VI: the capacitance Cp , the

stiffness K , and the β coefficient. While the measurement of the capacitance Cp was shown to

converge with the prediction offered by the model established in Chapter 3, the stiffness K

and the β coefficient diverged from the predictions by factors of ×3 and ×1
3 respectively.

When considering the probable causes for the discrepancy between model predictions and

measurement results, it has been pointed out that some features of the bender design that were

previous considered as negligible could be responsible: the thickness of the electrodes and the

presence of isolation layers at the top and bottom of the stack. Since the model predictions

were still correct for Noliac’s commercial CMBP03 bender, it has been suspected that the error

is exacerbated by the guidelines derived by the actuator’s design study for thinner and less

piezoceramic layers. While the results of this discussion and an model update are the topic

for Chapter 5, the results for this new model are still compared to the characterisation results.

The measurements converge with the new model’s parameters, with an error of 3% for the β

coefficient and an error of 12% for the stiffness K .
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Finally, using the newly characterised actuators, a self-sensing implementation has been

performed with the prototype. The aim has been to replicate the use case simulation provided

at the end of Chapter 2, by driving the self-sensing actuator toward a manipulation sample and

estimating the applied forces. This was done with the intent to determine the best accuracy

that could be achieved for the force detection, so that a threshold detection could be imple-

mented for manipulation tasks. Due to difficulties presented by the charge measurements

in the pC–nC scale, a calibrated approach has been opted for instead. With this strategy, it

has been shown across multiple runs that it is possible to expect an accuracy of 250µN for

durations of less than 60 s. However, as the charge measurement deteriorate over time, this

accuracy is downgraded to 1 mN for experiments lasting up to 110 s. The results obtained

with a simple calibrated approach are however greatly encouraging, and future work on this

topic could focus on the critical charge measurement in order to push the envelope of what is

possible in terms of self-sensing accuracy.

The following publication by the author is related to this chapter:

• Masson, L., Ren, X., and Perriard, Y. (2019a). Novel test environment for the develop-

ment of self-sensing piezoelectric actuators. In 2019 22nd International Conference on

Electrical Machines and Systems (ICEMS), pages 1–5, Harbin, China. IEEE
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5 Definite improvement of self-sensing
performance through optimisation

5.1 Introduction

In Chapter 3, it has been shown how one can model a multi-layered piezoelectric monomorph

bender and express its characteristics as a function of all design parameters, including the

number of layers N . To validate the analytical model and to obtain a working prototype,

an actuator has been designed and manufactured according to design guidelines that have

been laid out by the conclusions of the design study. Through the subsequent experimental

validations presented in Chapter 4, it has been observed that the model predictions did not

converge with the experimental data for the fabricated bender; estimation errors of the β

coefficient by an alarming factor of ×3 were evidenced.

The model predictions for the CMBP03 bender converged well with the experimental data,

therefore it has been stipulated that this has been caused by the design guideline’s push for

thinner and fewer piezoelectric layers to increase the SSA sensitivity. This cause for model

error becomes problematic when attempting to maximise the SSA performance of an actuator,

as thinner and fewer layers lead to better estimation resolutions through the increase in the β

coefficient. To be more specific, the drift between model predictions and experimental data

has been correlated with the ratio of active thickness to the total thickness of the actuator

stack. This active thickness corresponds to the layers that were effectively taken into account

by the model, excluding some features that were thought to have a negligible impact on the

model. These features have been identified as the thickness of the electrodes and the presence

of isolation layers at the top and bottom of the actuator stack.

The present chapter endeavours to demonstrate a rigorous approach to providing a definite

improvement in SSA performance. This improvement is obtained by starting from a more

accurate model which will account for the entirety of the actuator stack. The initial design

assumptions on topology are reconsidered in Section 5.2, and a more accurate updated model

is presented. From there, by considering the actuator as a sensor and by aiming to optimise

it’s sensitivity and accuracy, a multi-objective optimisation methodology with an original

numerical approach is presented at length in Section 5.3.
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5.2 Reconsidering the design assumptions on actuator topology

To reiterate on the analytical model established for the multi-layer piezoelectric monomorph

bender, it is first necessary to reconsider the actuator topology that has been defined. This

necessity stems from the observation that features originating from fabrication considerations

could no longer be neglected when reaching for fringe values of certain parameters. When

reducing the number of layers or the individual piezoelectric layer thickness, both improving

the SSA performance of the design, the model neglecting these features became erroneous.

These features will hereby be included when elaborating the analytical model of the actuator,

and the newly considered actuator topology is schematically described in Fig. 5.1. The

following paragraphs will describe the new topology, and will provide an insight into why the

exclusion of these features cause a wide gap between the β parameter estimation from the

model and from experimental data.

5.2.1 Description of the topology and associated design parameters

The new topology is evidently based on the one described in Chapter 3. The section of the

monomorph bender is composed of an upper active area of N piezoelectric layers and a lower

passive area of an equal number of piezoelectric layers. As a reminder, even if this bender is

configured as a bimorph, only the piezoelectric layers of the former are electrically driven to

deform the piezoelectric actuator, hence the bender being considered monomorph. This was

done to simplify the drive electronics of the actuator given that electronics for sub-nC charge

measurement need to be added to it. Additionally, the usage of piezoelectric material in the

lower area is convenient for the fabrication process itself. Should there be any need to explore

the use of the bimorph configuration in an SSA setting, this actuator can be used and serve as

a basis of comparison with the monomorph performance.

As mentioned in the preamble to this section, two features present in the bender’s section will

now be considered in addition to the upper and lower area. The new topology, along with its

new features, is schematically described in Fig. 5.1. The two features are the following:

• Electrodes layered around each drivable piezoelectric layer, defined by their own thick-

ness he and material properties, most notably their compliance se . Their thickness is

fixed by the design process to 2µm, and there is a total of 2N +1 electrodes to surround

all the piezoelectric layers. They are represented by the black layers in Fig. 5.1.

• A pair of high impedance isolation layers present at the top of the actuator stack, and

another pair present at its bottom. As a security measure, they cover the bare electrodes

that are driven with high voltages. The individual thickness of these 4 isolation layers is

the same thickness h as the piezoelectric layers, and the material is the same piezoce-

ramic due to the ease of the fabrication process when using the same materials. They

are represented by the red layers in Fig. 5.1
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Figure 5.1 – Considered monomorph topology in the case where N = 2; electrodes in black,
piezoelectric layers of the upper and lower areas in grey, and isolation layers in red.

The external dimensions of the actuator is described by the length of the bender L and its

width w . The piezoelectric layers from the isolation, upper and lower areas are all described by

their thickness h, while the electrodes are defined by their thickness he . For the sake of brevity

in writing some lenghty equations in the following demonstrations, the µ coefficient has been

defined as the ratio between the piezoceramic layer thickness and the electrode thickness.

Due to the fact that the he parameter will remain a constant in the considered fabrication

process, it may be replaced by he = h/µ.

In total, the actuator stack is built from 2N +4 piezoceramic layers and of 2N +1 electrode

layers. Knowing the electrode thickness he and the piezoelectric layer thickness h, the total

thickness H of the bender can therefore be calculated as follows:

H = (2N +1)he + (2N +4)h (5.1)

The following mathematical developments will require a frame of reference when elaborating

the analytical model. As illustrated in Fig. 5.1, and in Fig. 5.3 during the following paragraphs,

the origin of the frame of reference is placed at the bottom end of the stack: the x (index 1)

axis along the length L, the y (index 2) axis along the width w , and the z (index 3) axis along

the bender’s total thickness H .

5.2.2 Influence of the electrodes and isolation layers

The assertion was made that the exclusion of the isolation layers and the electrodes from the

first model caused estimation errors for the β parameter. It is proposed here to rationalise this

gap between model and experimental estimations for given actuators. The model is accurate

when considering piezoelectric layer thicknesses h ≥ 40µm and a sufficient number of layers

N , but the error appears when decreasing these parameters. To understand the cause of this

deviation, the active thickness of the bender must be considered.
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Figure 5.2 – Effect of the decrease in h and N parameters on the ηe and ηi thickness ratios.

This quantity, hereby labelled as η, is defined as the ratio of the added thicknesses of the

piezoelectric layers in the upper and lower area of the bender section to the total thickness H

of the bender’s section defined in Eq. 5.1. In other words, the active thickness as it has been

defined is the percentage of the bender’s section that is taken into account by the model, with

the unaccounted thickness corresponding to the electrodes and isolation layers.

In order to visualise the effect of decreasing N and h on the active thickness η, consider ηe

(respectively ηi ) as the ratio of the added thicknesses of the electrodes (respectively isolation

layers) to the total thickness H . As per their definition, it is evident that η= 1−ηe −ηi , and

that increasing either of these ratios is detrimental to the active thickness η. The two ratios ηe

and ηi may be written as follows:

ηe = (2N +1)he

H
(5.2) ηi = 4h

H
(5.3)

It can be verified that ηe is proportional to 1/h and that ηi is proportional to 1/N . This can be

visualised in Fig. 5.2, where ηe (left) and where ηi (right) are plotted as a function of N with

h as a constant, then as a function of h with N as a constant. When h = he and for N = 10,

ηe corresponds to 46.7% of the total thickness. Similarly, when N = 1 and for h = 20µm, ηi

corresponds to 63.4% of the total thickness. Conversely, the N (respectively h) parameter has

a minimal impact on the ηe (respeticely ηi ) ratio. Therefore, the concept of active thickness

illustrates how the model does not consider a significant portion (as high as 63.4% for instance)

of the bender’s section when decreasing N and/or h.

110



5.2. Reconsidering the design assumptions on actuator topology

The loss of accuracy from the model was correlated to the decrease in the active thickness

η past a certain point in Chapter 3. As a consequence, this loss of accuracy may in turn be

correlated to the decrease in h and N parameters studied above. This can be explained by the

fact that the bender section is central to the study of a bending cantilever.

Given this rationale, it is now evident that a new model must be formulated by taking ac-

counting for the isolation and electrode layers present in the bender’s section. This holds

especially true when aiming to optimise the bender’s design in a way that maximises the β

parameter, which has been shown to be done when decreasing the number of layers N and

the piezoelectric layer thickness h.

5.2.3 Updating the model for the monomorph bender

With this modelling objective and the new actuator topology (Fig. 5.1) in mind, the new model

can now be established. The process for doing so is entirely based on the demonstration

shown in Chapter 3, using a combination of the principle of superposition, piezoelectric

theory, and bending theory. The novelty of the new approach will consist in modelling a

bender for which the actuator stack is heterogeneous, meaning that it is composed of layers of

differing mechanical properties. Let the index u (resp. l ) denote the piezoelectric layers in

the upper and active (resp. lower and inactive) area of the actuator. Addtionally, let the index

t (resp. b) denote the piezoelectric isolation layers at the top (resp. bottom) of the actuator

stack, and let e denote the electrode layers.

Displacement equation

As a reminder, two phenomena are simultaneously causing the mechanical deformation of the

actuator. On the one hand, the applied voltage Vin strains the active piezoelectric layers within

the actuator through the converse piezoelectric effect, reverberating this strain throughout

the whole section of the stack of layers. On the other hand, the applied force F on the bender’s

tip uniformly spreads a strain throughout all the layers of the actuator stack section. Due to

the linearity of these phenomena, the displacement equation of the piezoelectric actuator can

be evaluated by applying the principle of superposition. Independently from one another,

the actuator displacement caused by each phenomenon can be modelled, after which both

displacements can be summed to express the total displacement δ caused by the external

application of inputs Vin and F .

The parameters of the piezoelectric strain S1,p (z) are first evaluated. The deflection of the

beam due to the converse piezoelectric effect, referred to as δp , can be tied to the applied

voltage Vin. The application of the theory of piezoelectricity allows for the evaluation of the

strain S within the piezoelectric layers of the material thanks to the knowledge of the electric

field E . With the disposition of the electrodes illustrated in Fig. 5.1, it is possible to relate the

applied voltage Vin to the electric field E and layer thickness h.
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Let γp be the position of the neutral plane and let εp be the slope of the strain along the bender

section. With respect to the neutral plane, the strain caused by the piezoelectric effect may be

written as S1,p (z) = εp z. When considering a section of the beam at equilibrium, the sum of

internal forces Fint and internal moments Mint is zero. The µ ratio has been defined earlier

in order to simplify the equations of this demonstration: the constant electrode thickness

will from then on be replaced by he = h/µ. Solving the equilibrium leads to the following

expression for the slope of the strain:

εp =−6d31N 2seµ
2(1+µ)

h2P
Vin (5.4)

where P is expressed as:

P = s11(1+2N )
(
1+4N (1+µ)2 +4N 2(1+µ)2

)
+

2seµ
(
6+24µ+32µ2 +24N 2(1+µ)2 +N 3(1+µ)2 +N (23+70µ+48µ2)

) (5.5)

The expression of the position of the neutral plane γp is also found by solving the system of

equations:

γp =− h(s11R1 + se R2)

6Nµ(1+µ)
(
(2N +1)s11 + (2N +4)seµ

) (5.6)

where R1 is expressed as:

R1 = (1+2N )
(
−1+2N 2(1+µ)2 +N (−1+7µ+8µ2)

)
(5.7)

and where R2 is expressed as:

R2 = 2µ
(
−9N 2(1+µ)+2N 3(1+µ)2 −2(3+12µ+16µ2)−N (17+40µ+24µ2)

)
(5.8)
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The mechanical stain S1,m is now evaluated. Let γm be the position of the neutral plane and εm

be the slope of the strain. With respect the neutral plane, the strain caused by the mechanical

deformation may be written as S1,m(z) = εm z. Due to the symmetrical nature of the bender’s

morphology, it is evident that the neutral plane for the mechanical deformation can be found

at the center of the beam section:

γm = (N +2)h + (N + 1

2
)he (5.9)

According to bending theory, the slope of the strain εm is related to the compliance of the

material, the moment of inertia, and the moment of force. It can be expressed as follows:

εm = s11

I
M(x) =−12se s11µ

3

wh3P
(L−x)F (5.10)

With the expressions of the piezoelectric strain slope εp , the mechanical strain slope εm , and

their respective neutral planes, the expressions of the strains S1,p (z) and S1,m(z) may be fully

written. Bending theory dictates that the curvature of a beam ρ is related to the slope of its

strain ε such that ρ = 1/ε. Due to the orientation of the reference frame and to the way the

moment M(x) was calculated, the application of bender theory yields a negative result. The

opposite of the double integration will thus be used for the deflection within the reference

frame. The total displacement δ of the piezoelectric bimorph at its tip, when subjected to an

applied force F and a driving voltage Vin, may now be expressed by applying the principle of

superposition with the mechanical deflection δm(L) and the piezoelectric deflection δp (L):

δ= 3d31N 2se L2µ2(1+µ)

h2P
Vin + 4L3s11seµ

3

wh3P
F (5.11)

Charge equation

In order to derive the electrical output of the actuator, Gauss’ law is be used to evaluate the free

electrical charges accumulated at the electrodes around the piezoelectric layers. It requires

knowledge of the electric displacement field D and of the effective stress T (k), the latter being

the average stress across one layer’s thickness. By doing so, one can express the total amount

of electrical charges accumulated by the piezoelectric actuator as such:

Q = 3d31N 2se L2µ2(1+µ)

h2P
F + (

N
Lwε33

h
+Cδ

)
Vin (5.12)

where Cδ is a term that is related to the d31 piezoelectric coefficient and the actuator mor-

phology parameters. Its expression will be left out of this manuscript due to the length of

the equation. However, using calculations based on the actuator design from Chapter 3, it is

possible to verify that Cδ is two orders of magnitudes lower than the main capacitance term,

and this term will therefore be neglected from now on.
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Chapter 5. Definite improvement of self-sensing performance through optimisation

Complete model and parameter identification

It is now possible to write the constitutive equations as predicted by the general form defined

in Chapter 2 and the piezoelectric equations (Eq. 3.2). Note that in this instance, the force F is

negative with respect to the reference frame, hence the sign change from the general model

for the terms in front of F . The state of the self-sensing actuator subject to an upward applied

force and driving voltage is described by its displacement δ and accumulated electrical charge

Q, both of which can be described by a system of equations:
δ= 3d31N 2se L2µ2(1+µ)

h2P
Vin + 4L3s11seµ

3

wh3P
F

Q = N
Lwε33

h
Vin + 3d31N 2se L2µ2(1+µ)

h2P
F

(5.13)

The K , Cp and β parameters can now be identified. The expression of δ in Eq. 5.11 can be

compared with its equivalent in the general model in order to identify K and β. Similarly, the

expression of Q in Eq. 5.12 may be compared with its equivalent in the general model in order

to identify Cp and confirm the expression of β.

K = wh3P

4L3s11seµ3 (5.14)

Cp = N
Lwε33

h
(5.15)

β= 3d31L2N 2seµ
2(1+µ)

h2P
(5.16)

This confirms that the β parameters in both constitutive equations of the system Eq. 5.13 are

the same, lending credence to the model being established in these demonstrations.

5.2.4 Experimental validation of the complete model

The validity of the updated model has been assessed with the SSA prototype that has been

developed for this thesis. The measurements and the comparison with the updated model

parameters have already been presented in Chapter 4, the results of which are reminded in Tab.

5.1. In this table, model 1 refers to the initial model that has been presented in Chapter 3, while

model 2 refers to the updated model that has been presented in the preceding paragraphs.

As discussed earlier, the predictions for the stiffness K and the β coefficient of model 1 have

presented large discrepancies with respect to the experimental data. The predicted K was

lower than the measured stiffness by a factor of ×1
3 , while the predicted β was greater than

the measured coefficient by a factor of ×3. Including the previously neglected features of the
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5.3. Multi-objective optimisation study based on the complete model

Table 5.1 – Reminder of the experimental results presented in Chapter 4.

Parameter Model 1 Model 2 Measurement

−β (nC/mN) 9.01 3.046 3.139
K (mN/µm) 0.314 1.022 0.912

actuator stack in the updated model 2 has reduced the error of the β prediction down to 3%,

and the K prediction down to 12%. These results lend credence to the validity of the model

update presented in this chapter.

5.3 Multi-objective optimisation study based on the complete model

Now that an accurate analytical model of the piezoelectric actuator has been formulated, it is

possible to perform an optimisation study based on it. Before proceeding with an optimisation

study, a reflexion must be carried out on the aspects of the actuator’s characteristics that

must be improved for the optimisation of the SSA performance. Beneficial aspects must be

maximised, while the ones detrimental to SSA must be minimised. In order to do so, it is

convenient to consider the SSA actuator as a sensor: not only its purpose is to actuate, but

it also must provide feedback on its state. In that light, it is possible to discuss the accuracy,

precision, or linearity of the SSA actuator, much like the same would be discussed for a sensor.

In this section, an approach is proposed to optimise an SSA bender’s sensitivity and accuracy.

The objective functions of the optimisation study will be defined along with the constraints

that are imposed on the design. Following this preamble, a novel multi-objective optimisation

approach based on a solution searching algorithm will be discussed, after which the Pareto

frontier of the set of solutions will be evidenced and discussed.

5.3.1 Optimisation problem definition

This study relies on two sensor concepts to define the SSA performance of a given piezoelectric

actuator design: sensitivity and accuracy. Sensors usually convert a signal from one physics

domain (e.g. mechanical, thermal, magnetic) into a signal from another domain. This con-

verted signal can then be interpreted by an electronics system, and this signal can thus be used

for instance in a control feedback loop. The self-sensing implementation of a piezoelectric

actuator is analogous to a sensor’s purpose by allowing a system to interpret the mechanical

state of the actuator through electrical signals produced by the actuator itself. The precision,

in other words the resolution, of a self-sensing piezoelectric actuator depends entirely on the

measurement electronics and not on the design of the actuator itself, therefore it does not fall

within the purview of this study.

To proceed with the definition of the objective functions, knowledge of the measurement

set up that will be connected to the actuator is necessary. As discussed in previous chapters,
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Chapter 5. Definite improvement of self-sensing performance through optimisation

the charge based self-sensing approach is the preferred method for the implementation of

a quasi-static actuator intended for micro-robotic applications. The charge measurement

set up is inspired by the implementation of Rakotondrabe in [46] with the use of a reference

capacitor Cr . This capacitor is supplied with a voltage in opposition to the piezoelectric

actuator’s drive voltage Vin in order to attenuate the amount of electrical charges accumulated

by the actuator’s capacitance. This approach improves the charge measurement range of the

electrometer by a substantial margin. The charge contributions due to application of Vin are

indeed demonstrably greater, by up to two orders of magnitude, than the charge contributions

due to an applied force.

First objective function: Sensitivity ( fβ)

With the analogy of a sensor in mind, the concept of sensitivity for an SSA actuator refers to the

variation of the charge measurement in response to a given variation of force or displacement.

An optimal SSA actuator would aim to maximise this sensitivity, so that a charge measurement

system will be able to detect smaller variations in force or displacement with its given sensing

resolution. This forms the basis for the first objective function of this study.

When considering the previously presented analytical model, this sensitivity can be directly

represented by the β parameter, a coefficient expressed in C/N representing the amount of

electrical charges accumulated as a result of the application of a given force F . With the d31

piezoelectric coefficient being negative and all other parameters in its equation being positive,

β is therefore strictly negative. In order to maximise |β|, it is proposed to add a negative sign

in front of the expression of β in (Eq. 5.16), resulting in the following objective function to

maximise:

fβ(L, w, {h,µ}, N ) =−β=−3d31L2N 2seµ
2(1+µ)

h2P
(5.17)

where P is expressed in Eq. 5.5.

Second objective function: Accuracy (ε f )

In a similar fashion, the concept of accuracy for an SSA actuator corresponds to the maximum

error of the estimation. In terms of self-sensing actuator optimisation, this is a parameter

that needs to be minimised, and will therefore dictate the second objective function of this

optimisation study. The charge-based self-sensing approach is usually affected by phenomena

that cause drift over time, in particular bias currents produced by the measurement electronics

and drift currents that are inevitable. Both of these currents are picked up by the charge

measurement electronics, and will create a drift in the charge measurement over time. When

discussing quasi-static SSA, where it may be necessary to maintain a position or an applied

force for long periods of time, it is necessary to define a measurement time constant. It will

be referred to as τ from now on, and it shall define the amount of time during which a given

estimation accuracy can be guaranteed.
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5.3. Multi-objective optimisation study based on the complete model

The maximum error ε f accumulated after a lapse of time τ must be expressed as a function

of τ and all the actuator parameters. To that end, considering the measurement circuit from

Chapter 4, the expression of the measured charge Qm should be considered:

Qm =βF +VinCd +Ql +Qb =βF̂ (5.18)

where Cd is the difference between actuator capacitance Cp and the reference capacitance

Cr , Vin the applied voltage, Ql the charge drift caused by leakage currents, Qb the charge drift

caused by bias currents, and F̂ the force estimation.

When considering that the difference between the estimation F̂ and the applied force F defines

the estimation error ε f , such that ε f = F̂ −F , one can write:

ε f = (VinCd +Ql +Qb)β−1 (5.19)

The charge drift components can be written as:

Ql +Qb =
τ∫

0

Vin

Rl
d t +

τ∫
0

ibd t (5.20)

where Rl is the leakage resistance of the circuit, and ib the bias current. Both of these quan-

tities can be either estimated or measured experimentally, and can therefore be used in the

expression of the estimation error ε f .

Considering the worst case for each parameter allows the ε f parameter to estimate the highest

possible estimation error after a lapse of time τ. In that regard, the maximum electric field

E3,max will be used in the following calculations, with Vin,max = E3,maxh. This maximum electric

field causes the highest accumulation of unwanted charges caused by Cp , which the addition

of the capacitance Cr intends to compensate for. From the expression of β in Eq. 5.16, the

expression of the estimation error ε f can be written as a function of the actuator parameters

and of the P coefficient described in Eq. 5.5:

ε f =−h2 E3,maxhNρCd +E3,maxLwτ+ ib Nρτ

3d31L2N 3seµ2(1+µ)ρ
P (5.21)

The electrometer that is intended for use in the charge measurement electronics for the SSA

actuator is the Keithley 6517A. Therefore, in keeping with the spirit of considering the worst

case for each parameter, the value of ib will be set to the highest possible value provided by

its datasheet, i.e. 4 fA. In this section, the leakage resistance Rl will be modelled on the basis

of the piezoelectric material resistivity ρ measurements performed by Hooker [20]. While it

is a complex matter to estimate the impedance of a piezoelectric component at quasi-static

frequencies, this study regarding the properties of PZT-based piezoelectric ceramics provides

a realistic expectation of the order of magnitude of the piezoelectric actuator’s resistance. In

the context of a charge based SSA actuator, the exactitude of this estimation is not a high
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Chapter 5. Definite improvement of self-sensing performance through optimisation

Table 5.2 – Actuator morphology parameters.

Parameter Symbol Unit Range

Length L mm [5, 35]
Width w mm [2, 10]

Layer thickness h µm {20; 50; 67}
Thickness ratio µ - {10; 25; 33.5}

Nb. of layers N - {Nmin; . . . ; 40}

priority. Indeed, the ε f component does not represent the exact estimation error of the SSA

actuator, as the SSA method presented in the following Chapter attempts to compensate these

charge measurement drifts as much as possible. The point of studying ε f in this optimisation

study is therefore only to minimise these estimation errors as much as possible.

Design space and constraints

For the optimisation study to produce meaningful results, the solutions must answer to

realistic expectations. This implies, for instance, that the resulting dimensions should be

within manufacturing capabilities, or that the resulting characteristics of the actuator such

as stiffness or capacitance are within expected ranges. For instance, a very high capacitive

load would be problematic for the drive electronics, while a low stiffness will reduce the

manipulation strength of the piezoelectric actuator.

To that end, it is necessary to define a design space along with design constraints prior to the

optimisation study. A design space is defined by the parameters that can be tuned during the

optimisation, and they can be divided into two categories: material properties, and actuator

morphology properties. Design constraints tie these parameters to conditions imposed on

the design. They enable the expression, for instance, of some parameters as a function of the

other parameters. This reduces the dimensionality of the optimisation problem and further

facilitates the optimisation study. The list of parameters that define the design space, along

with their respective symbols, units and ranges, are presented in Tab. 5.2, and are discussed at

length in the following paragraphs.

Material properties pertain to parameters such as the piezoelectric coefficients di j , the com-

pliance si j and the permittivity εi j . As they depend on the choice of piezoceramic material for

the fabrication, they cannot be chosen independently from one another. With the amount of

choices for the material being limited, it is not necessary to consider the piezoelectric material

as a design parameter that needs to be optimised. The same calculations that will be presented

in this study can be made for each set of material properties, and a choice can be made from

the results of these calculations. For the subsequent demonstrations, the NCE51 piezoceramic

by Noliac will be the baseline for the material properties, as it has been used for the previous

manufacturing of piezoelectric actuators.
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5.3. Multi-objective optimisation study based on the complete model

Actuator morphology properties describe the shape and configuration of the piezoelectric

actuator illustrated in Fig. 5.1, and are evidently the principal parameters to be tuned through-

out the optimisation study. The length L and width w are continuous parameters directly

describing the external dimensions of the actuator. The parameter pair {h,µ} is discrete and

limited to three possible sets of values. To each h is associated a µ parameter value describing

the ratio between the thickness of the piezoelectric layers h and the constant electrode layers

he = 2µm. As explained in Section 5.2.3, the µ parameter has been defined to simplify the

writing of some of the model equations. Finally, the number of layers N for each area of

the actuator is discrete. The lower boundary Nmin must be chosen as a function of the {h,µ}

parameter pair such that it verifies through Eq. 5.1 that the total actuator thickness H is

greater than Hmin = 0.35 mm. The actuator morphology parameters and their boundaries are

all summarised in Tab. 5.2.

The first constraint to be imposed upon the design is the value of the piezoelectric capacitance

Cp which must not exceed Cp,max = 500 nF. A higher capacitance would be detrimental

to the self-sensing estimation due to the higher amount of undesirable electrical charges

accumulated by the driving voltage Vin, but also to the power supply of the actuator which

would need to be designed to drive more capacitive loads. From the previous developments,

the expression of the design constraint on the capacitance Cp can be written:

Cp (L, w, {h,µ}, N ) = N
Lw

h
ε33 (5.22)

A mechanical performance constraint is also imposed on the actuator’s design. Given that it is

intended to be used in micro-manipulation tasks, it must be capable of maintaining blocking

forces of up to Fmin = 150 mN at a displacement of at least δmin = 37.5µm. The expression

of the maximum blocking force F can be derived from the expression of the displacement δ,

leading to:

F (L, w, {h,µ}, N ) = wh2 3d31E3,maxL2N 2seµ
2(1+µ)−hPδmin

4L3s11seµ3 (5.23)

The terms E3,max and δmin will from now on respectively be written as E3 and δ for the sake of

brevity. As for the constraining variables, Cd must not exceed 10 nF, the measurement time

constant is set to τ= 100 s, the bias current is ib = 4 fA, and the maximum electric field before

depolarization of Noliac’s NCE51 piezoceramic is E3 = 3 Vµm−1.

5.3.2 Multi-Objective Optimisation

The multi-objective optimisation problem can now be formally defined. The aim is to max-

imise the sensitivity of the sensor described by the fβ objective function (Eq. 5.17), and to

improve the accuracy by minimising the estimation error ε f (Eq. 5.21). These objective func-

tions must be optimised while also guaranteeing design conditions defined by the constraints

imposed on the maximum actuator capacitance Cp (Eq. 5.22) and the required blocking force
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F (Eq. 5.23) at a given displacement δmin. The multi-objective optimisation problem can thus

formally be written as follows:

minimise
L,w,{h,µ},N

ε f (L, w, {h,µ}, N )

maximise
L,w,{h,µ},N

fβ(L, w, {h,µ}, N )

subject to F (L, w, {h,µ}, N ) ≥ Fmin,

Cp (L, w, {h,µ}, N ) ≤Cp,max.

(5.24)

Analytical Study

The analytical model describing the behaviour of the piezoelectric actuator makes it possible

to take a rigorous analytical approach. Indeed, the evolution of the objective functions over

the design space can be studied by examining the partial derivatives of the function, and it

can be demonstrated whether a maxima (or minima) exists within that design space. As a first

step, it is proposed to study the evolution of both objective functions fβ and ε f with respect to

the two continuous parameters: actuator length L and width w . The partial derivatives of the

sensitivity objective function fβ with respect to L and w are as follows:

∂ fβ
∂L

= − 6d31LN 2seµ
2(1+µ)

h2P
∂ fβ
∂w

= 0

(5.25)

Since all the design parameters are positive (Tab. 5.2), the P coefficient described in Eq. 5.5

is demonstrably strictly positive within the design space. The same can be said for all the

parameters present in the partial derivative of fβ with respect to L, with the exception of the

negative d31 coefficient. This partial derivative is therefore strictly positive, and it can be

said that fβ is monotonous and ascending with respect to L within the design space. Since

the partial derivative with respect to w is always null, fβ is independent of w . The partial

derivatives of the accuracy objective function ε f with respect to L and w are as follows:

∂ε f

∂L
= h2P

E3(2hNρCd +Lwτ)+2ib Nρτ

3d31L3N 3seµ2(1+µ)ρ
∂ε f

∂w
= −h2P

E3τ

3d31LN 3seµ2(1+µ)ρ

(5.26)

The same reasoning used in the demonstration for the partial derivatives of fβ can be used

for the partial derivatives of ε f . It is worthy to note that the sign of ib will depend on the

measurement circuit, and that it has been verified to be positive in the case presented in

Chapter 4. Considering the design space, the numerator of the partial derivative with respect

to L is strictly positive, and its denominator is strictly negative due to all parameters being

120



5.3. Multi-objective optimisation study based on the complete model

positive with the exception of d31. The partial derivative of ε f with respect to L is therefore

strictly negative, and it can be said that ε f is monotonous and descending with respect to L

within the design space. The same reasoning leads to the conclusion that the partial derivative

of ε f with respect to w is strictly positive, and therefore ε f is monotonous and ascending with

respect to w within the design space.

Conclusions to this initial analytical study are that the fβ (resp. ε f ) function is maximised

(resp. minimised) when increasing the length L, and that the ε f function is minimised by

decreasing the width w . Without the presence of constraints, an optimal solution would be

the maximum possible length L and the smallest possible width w . These constraints will

however impose restrictions on the values of L and w that are eligible. It is thus proposed to

consider L as a variable to maximise, while using the constraints of the optimisation problem

to impose boundaries to the possible values of w . By solving F = Fmin and Cp =Cp,max, the

minimum width wmin and maximum width wmax can respectively be written as a function of

L, N , and {h,µ}, as seen in Eq. 5.27 and Eq. 5.28 respectively.

On the one hand, the wmin expression (Eq. 5.27) provides the minimum width w required to

be able to satisfy the minimum blocking force application constraint, as a lower width would

reduce the stiffness of the actuator.

wmin = 4FminL3s11seµ
3

−3d31E3L2h2N 2seµ2(1+µ)+h3δP
(5.27)

On the other hand, the wmax expression (Eq. 5.28) provides the maximum width w required

to be able to satisfy the maximum actuator capacitance constraint, as a greater width would

increase the surface of the electrodes and therefore the total capacitance.

wmax =Cp,max
h

LNε33
(5.28)

It is possible to replace w with the expressions of wmin and wmax in the fβ and ε f objective

functions in order to create parametric curves representing the boundaries of w as a function

of all the other parameters. Both of the parametric curves have been plotted over the objective

functions in Fig. 5.4, in red for wmin and in purple of wmax. The surface of the plotted objective

functions colored in pink corresponds to the design points satisfying the condition imposed

on the width w by the optimisation constraints: w ∈ [wmin; wmax]. Since both objective

functions are compatible in terms of optimisation with respect to L and w , i.e. increasing L

and decreasing w is beneficial to both, it can be asserted that the intersection between the

two parametric curves, in other words the point (L, w) satisfying the condition wmin = wmax,

corresponds to the optimal solution for a given N and {h,µ}.

Since one optimal solution can be associated to a N and {h,µ} pair of parameters, the opti-

misation could proceed with a study of the evolution of the objective functions with respect

to these parameters. This reduces the dimensionality of the optimisation study further by

121



Chapter 5. Definite improvement of self-sensing performance through optimisation

Figure 5.4 – Graphical representation of the ε f and fβ objective functions for a N = 1 and layer
thickness h; wmax (Purple), wmin (Red).

tying the values of L and w to a given N and {h,µ} pair of parameters. Two problems arise

from this approach and render it impossible to achieve analytically, however. The first issue is

that it is impossible to solve N in equations using the fβ and ε f objective functions, since the

dependency of these functions to N is polynomial to the mth degree, where m > 3. The second

issue is that there is no guarantee that the (L, w) intersection between wmin and wmax is within

the design space. It is then proposed to proceed with the optimisation study numerically, as

both N and {h,µ} are discrete parameters with a limited number of possible values, especially

in the case of the latter.

Numerical approach: Finding the Pareto frontier

The remaining parameters to fine tune in order to optimise the actuator design are the number

of layers N as well as the thickness pair {h,µ}, both discrete in nature. The former may have

up to 40 possible values, while the latter can only have three. It is thus more efficient to solely

study the evolution of the objective functions with respect to N , and to repeat the same study

across the three possible values of {h,µ}. The approach will hereafter be to plot the objective

functions for each layer thickness h with respect to N , then to determine the Pareto frontier of

the optimisation problem. As previously demonstrated, when considering the optimisation

constraints, there exists an optimal solution (L, w) for a given N that both maximises fβ and

minimises ε f at the intersection of the wmin and wmax curves. It has also been mentioned that

this solution could be outside of the boundaries of the design space.

Hence, the first step to plotting all the optimal solutions with respect to N is to establish an

algorithm which will find the second best (L, w) solution which fits within the design space.
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This is possible due to the monotonicity of the fβ and ε f objective functions within the design

space, and due to their compatibility in terms of goals, i.e. L must be maximised and w

minimised in order to optimise both functions. With this in mind, the compatible approach to

maximising each objective function can be described in two steps. Let w0 be the minimum

value of w , w f the maximum value of w , L0 the minimum value of L, and L f the maximum

value of L in the design space defined in Tab. 5.2.

Considering the initial (L, w) optimal solution found analytically at the intersection of the wmin

and wmax constraint functions, the length L must first be reduced to L′ = Lmax if necessary, or

left to L′ = L otherwise. Following this initial step, the width w must be adjusted according to

four identified cases. In accordance with the relationship of ε f to the width w , the algorithm

must pick the lowest possible value of w that still conforms to the design space and constraints.

The adjustment of w will thus depend on the relationship between the boundaries of the

design space
[
w0, w f

]
and the constraints wmin(L′) and wmax(L′). The four identified cases,

which are illustrated in Fig. 5.5, are the following:

• Case 1: Both wmin(L′) and wmax(L′) are greater than the boundaries, such that w f < wmin.

The length L must be reduced further by solving L′′ for wmin(L′′) = w f , and the best

solution is therefore (L′′, w f ).

• Case 2: At least wmin(L′) is within boundaries, such that w0 ≤ wmin(L′) ≤ w f . Consider-

ing the wmin constraint, the best solution is (L′, wmin(L′)).

• Case 3: Only wmax(L′) is wihin boundaries, such that wmin(L′) < w0 ≤ wmax(L′) ≤ w f .

The width can be set to its lowest boundary, and the best solution is (L′, w0).

• Case 4: Both wmin(L′) and wmax(L′) are lower than the boundaries, such that wmax(L′) < w0.

The length L must be reduced further by solving L′′ for wmax(L′′) = w0, and the best

solution is (L′′, w0).

As shown in the example for a width of h = 50µm in Fig. 5.5, the lowest possible w that max-

imises L and satisfies all imposed conditions is always picked by the algorithm (black circle).

The highest value of w that maximises L is represented by a red dot, and is considered the

worst outcome for a maximised L in that in increases the ε f objective function. Furthermore,

this example shows that the new optimal (L, w) solution, replacing the analytically determined

optimal solution, is always within boundaries of the design space and conforms with the

design constraints imposed on F and Cp . It is possible that, after following the steps of the

algorithm, the new length L′ is lower than its lower boundary L0. In this situation, none of

the (L, w) solutions within the design space satisfy the design constraints on F and Cp for the

considered N and {h,µ} pair of parameters. Since there is no solution satisfying the constraints,

the solution in this case is rejected.

The described algorithm is represented in pseudocode form in Fig. 5.6. The numerical

approach to solving the multi-objective optimisation problem can therefore be pursued with
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Figure 5.5 – Illustration of the four cases considered by the algorithm for h =50µm, with the
valid design space for (L, w) drawn in green, the solution chosen by the algorithm circled in

black, and the solution that is considered the worst as a red dot.

1: if L > Lmax then
2: L′ = Lmax

3: end if
4: if w f < wmin(L′) then
5: Solve L′ for wmin(L′) = w f

6: Calculate fβ and ε f with L′ and w = w f

7: else if w0 ≤ wmin(L′) ≤ w f then
8: Calculate fβ and ε f with L′ and wmin

9: else if wmin(L′) < w0 ≤ wmax(L′) ≤ w f then
10: Calculate fβ and ε f with L′ and w0

11: else if wmax(L′) < w0 then
12: Solve L′ for wmax(L′) = w0

13: Calculate fβ and ε f with L′ and w = w0

14: end if

Figure 5.6 – Pseudocode of the (L, w) solution correction algorithm.
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the digital implementation of the aforedescribed steps. With there being a single optimal

(L, w) solution after the application of the algorithm, it is possible to study the evolution of

the objective functions with respect to N for each given {h,µ} pair of parameters, from which

a maxima (respectively minima) for fβ (respectively ε f ) can be potentially singled out. This

implemention produces the plots presented in Fig. 5.7 for the three possible {h,µ} pairs of

parameters. These plots not only show the evolution of the objective functions fβ and ε f with

respect to N , but also the evolution of the corresponding design parameters L and w , as well

as the evolution of the actuator characteristicss F and Cp .

The series of plots in Fig. 5.7 clearly illustrate how the algorithm brings the initial analytical

solutions in line with the design space (i.e. L, w) and constraints (i.e. F , Cp ). The valid ranges

for L, w , F and Cp are illustrated in white in their respective plots, with the exterior of their

boundaries represented in grey. The leftmost column of plots in Fig. 5.7a show the evolution

of the optimal objective functions with respect to N by analytically determining the optimal

solution (L, w) at the wmin = wmax intersection. In some cases, the (L, w) solution determined

this way conforms with the imposed conditions, as can be seen for h = 20µm for N < 11 for

instance. For greater layer thicknesses, however, the length of the actuator is immediately

out of bounds. The values of Cp and F are, as would be expected by solving the wmin = wmax

equation, constant and equal to their respective constraint values. In parallel, the evolution

of the optimal objective functions with respect to N after the application of the algorithm

can be seen in rightmost column of equations in Fig. 5.7b. These plots show that the optimal

design points conform with the imposed conditions for all values of N and {h,µ}, at the cost of

a reduced overall optimality of the fβ and ε f objective functions. The values of Cp and F are

increased or decreased as a function of the w chosen by the algorithm, in accordance with the

four identified cases of the algorithm illustrated in Fig. 5.5.

5.3.3 Closing remarks of the optimisation study

Were the design space not a concern, it would be clear that the objective functions would be

monotonous with respect to N , and that increasing N to its highest value would be the answer

to the optimisation problem. Additionally, the lefthand plots of Fig. 5.7 show that picking the

greatest value for the layer thickness h would also provide the optimal solution. Both of these

observations are counter intuitive to the observations that were made in the previous chapter

regarding the optimisation goals for h and N .

However, this improved multi-objective optimisation study shows that, when considering

realistic limitations of an actuator’s parameters and its characteristics, the SSA performance of

the actuator is greatly improved by reducing h to a minimum. This rectification of the optimal

solutions is in line with the aforementioned observations made in the previous chapter that

reducing h to a minimum is beneficial to the SSA performance of a design. The evolution of

the new optimal solutions with respect to N indicates that, for each {h,µ} pair of parameters,

there is a local maxima for fβ and a local minimal for ε f . This is evidenced in the magnified
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(b) After the application of the algorithm

Figure 5.7 – Evolution of the objective functions fβ and ε f , design parameters L and w , and
constraint functions F and Cp , and after the application of the correction algorithm.
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Figure 5.8 – Evolution of fβ and ε f as a function of N ; the optimal solution for each objective
function is circled in black, and the points making up each Pareto front in emboldened.

optimised objective functions plots with respect to N (Fig. 5.8), where the single optimal

solution for each layer thickness is circled in black. Moreover, this plot indicates that for each

h there exists a series of Pareto efficient values of N that optimise fβ and ε f . This implies that,

within these sets, it is not possible to improve one objective function without degrading the

other. The sets constitute the Pareto frontiers of the multi-objective optimisation problem,

and the points corresponding to each set are emboldened in Fig. 5.8.

The existence of these Pareto frontiers can be better observed by plotting all the optimal

solutions ( fβ,ε f ) across the complete range of the N and {h,µ} parameters. This is shown in

Fig. 5.9, where ε f is represented on the asbscissa and fβ is represented on the ordinate. The

range of ( fβ,ε f ) solutions for each N is shown as a horizontal bar. These bars correspond to

the range of values between the optimal w chosen by the algorithm and the worst viable w ,

as illustrated in Fig. 5.5. They are horizontal in these plots because w has no effect on the fβ
objective function. The leftmost extremity of each bar corresponds to the w chosen by the

optimisation algorithm, and therefore to the optimised points illustrated in Fig. 5.8.

Given the arrangement of the plot axes, the Pareto frontier for each h would correspond to the

upper-left boundary of their respective body of solutions. The Pareto frontiers, circled in black

in Fig. 5.9, are identical to the sets of Pareto efficient solutions evidenced in Fig. 5.8. When

considering the optimisation of one objective function regardless of the other, the extremities

of the Pareto efficient sets are found. The solutions that optimise fβ or ε f the most are shown

with their respective design parameters and final actuator characteristics in Tab. 5.3. The two

points that constitute the Pareto frontier for the h = 20µm body of solutions (Fig. 5.9) also

form the Pareto frontier of the whole multi-objective optimisation problem, when grouping

the bodies of solutions for all values of h.
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Figure 5.9 – Representation of all solution ranges for different values of N , with the leftmost
extremity of each range corresponding to the solution chosen by the optimisation algorithm;

the Pareto efficient points of the Pareto frontiers for each h are circled in black.

Among those two Pareto efficient points, a tradeoff must be made between maximising fβ and

minimising ε f in order to single out one best solution at the end of this multi-objective opti-

misation study. Since the most critical aspect of an SSA piezoelectric actuator is its sensitivity

|β|, and that its accuracy may be improved using proper error compensation techniques, the

solution maximising the fβ objective function (N = 11) is preferred. This results in an actuator

within design specifications with a sensitivity of |β| = 4.62nC/mN, and with an accuracy de-

fined by a maximum error of ε f = 0.45N. This amount of error may appear to be alarming for

an SSA actuator intended for sub-mN accuracies. It is essential, however, to keep in mind that

this error ε f is not representative of the true estimation errors of the final SSA implementa-

tion. In such a case, the post-processing of the charge measurement will account for errors

introduced by piezoelectric creep, hysteresis, and drift from the measurement electronics.

As a closing remark, the results of the optimisation study may be considered as intuitive. In a

less restrained design space for the intervals of the length L and the width w , the optimal solu-

tion will always be found by applying the design guidelines formulated in Chapter 3. This can

be analytically proven by demonstrating the monotonicity of both objective functions through

the study of their partial derivatives. However, a local maxima for fβ and a local minima for ε f

have been introduced into the study by the inclusion of engineering considerations. These
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Table 5.3 – Summary of the optimal solutions for each possible value of h, with an
optimisation priority either on fβ or ε f , and corresponding design parameters and

characteristics.

h
(µm)

Priority
L

(mm)
w

(mm)
N
(-)

H
(mm)

Cp

(nF)
F

(mN)
fβ

(nC/mN)
ε f

(N)

20 fβ 24.4 2.2 11 0.57 500 150 4.62 0.45
20 ε f 24.8 2.0 12 0.61 500 160 4.50 0.41

50 fβ 35.0 4.2 4 0.62 197 150 2.46 5.07
50 ε f 35.0 2.0 11 1.35 259 563 1.77 1.93

67 fβ 35.0 2.3 4 0.82 80 150 1.40 5.74
67 ε f 35.0 2.0 10 1.65 176 851 1.07 3.86

considerations are in part related to the fabrication process, for which adapted dimensions

are needed to ensure planarity as much as they are needed to ensure realistic proportions

for the actuator. The stability of the extrema imposed by engineering considerations may be

asserted. This is due to the fact that the numerical correction of the optimal (L, w) solutions

for a given {h,µ} follows itself the design guidelines of Chapter 3 by first choosing the longest

possible length L, and then adapting the width w to the imposed performance constraints.

5.4 Conclusion

After providing an understanding of the causes of the initial model’s inaccuracies, this chapter

has succesfully proposed a more accurate model for monomorph cantilevers intended for

SSA implementations. The crux of the matter of this chapter has been the demonstration

of a rigorous approach to achieving high SSA accuracies and sensitivies through actuator

design. In order to maximise both of these aspects, the proposed design approach relies on a

multi-objective optimisation study for which an original numerical optimisation algorithm

has been provided. Two objective functions have been defined, with fβ describing the sentivity

of the actuator to be maximised, and the accuracy ε f describing the estimation error of the

self-sensing implementation to be minimised. These two functions formed the basis of the

multi-objective optimisation study, and were associated with conditions in the form of a

design space and characteristics constraints. A first pass of analytical study has provided a way

to find an optimal (L, w) solution as a function of the other actuator morphology parameters,

N and {h,µ}. From this point onward, the optimisation study has proceeded with a numerical

approach due to limitations of the analytical approach, and an algorithm has provided a way

to find the Pareto frontier of the optimisation problem.

For each thickness of layer, i.e. 20µm, 50µm, and 67µm, a best solution for maximising

either the sensitivity or the accuracy has been identified. As expected from the initial design

study provided in Chapter 3, the highest theoretical SSA performance would be obtained
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with thinner piezoelectric layers. The preferred solution on the Pareto frontier has been

characterised with a β coefficient of −4.62nC/mN, which offers a promising leap in SSA

performance. To understand the performance gain due to this design approach, it is relevant

to look at other actuators that have been discussed throughout this thesis:

• Compared to the commercial CMBP03 bender manufactured by Noliac presented in

Chapter 2, and featuring a coefficient of β = −0.486nC/mN, the optimised offers a

sensitivity increase by a factor of ×9.5.

• Similarly, compared to the actuator manufactured following the design guidelines pre-

sented in Chapter 3 with a coefficient of β=−3.139nC/mN, the optimised design offers

a sensitivity increase of 52%.

• A final point of comparison that could be made which would bring to light the potential

of this optimised design would be the bender used by Rakotondrabe et al. in [46] in

similar publications. They use a bender for which they identify a coefficient of β =
−1.03nC/mN, and are capable of achieving sub-mN and sub-µm accuracies with their

advanced SSA implementations. The optimised design used in similar implementations

could then offer a theoretical sensitivity increase by a factor of ×4.5.

Great strides of progress have been achieved in piezoelectric SSA since its inception, most of

the advances having been made on the grounds of improving the error compensation, dynamic

capabilities, and robustness of the sensorless estimation. With the definite improvement of

SSA performance through actuator design methodologies presented in this chapter, a rather

unexploited subject has been brought to light within the research field of piezoelectric self-

sensing. This has been made possible by considering the SSA actuator as a sensor as much as

an actuator, and bringing the focus onto the characteristics pertaining to its performance as a

sensor when designing the actuator.

The following publications by the author are related to this chapter:

• Masson, L. and Perriard, Y. (2019a). Improved modelling of a monomorph piezoelectric

actuator for linear self-sensing applications. In 2019 12th International Symposium on

Linear Drives for Industry Applications (LDIA), pages 1–6, Neuchatel, Switzerland. IEEE

• Masson, L. and Perriard, Y. (2019b). Multi-objective optimisation methodology for self-

sensing piezoelectric monomorph benders. In 2019 12th International Symposium on

Linear Drives for Industry Applications (LDIA), pages 1–6, Neuchatel, Switzerland. IEEE
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Research overview

A broad variety of research topics pertaining to piezoelectric Self-Sensing Actuation (SSA)

have been covered throughout this thesis. With the goal of achieving an actuator design

capable of sensorless sub–mN estimation resolution and accuracy in mind, the work has

adopted a bottom-up approach after a detailed overview of the current state of the art on

the matter. This has entailed laying down the theoretical groundwork in order to understand

the impact an actuator design might have on SSA prospects. This groundwork has provided

an expectation for the general model of self-sensing piezoelectric actuators in the form of

constitutive equations. With the assumption of the linearity of material properties, the latter

related the mechanical and electrical inputs, the applied force and the driving voltage, to the

mechanical and electrical outputs, the displacement and the accumulated charges.

Despite the objective of operating at quasi-static frequencies, i.e. working frequencies below

1 Hz, a dynamic model was still required to provide a tool to model step responses. Such a

model has been assembled with the help of Bond Graph Models (BGM), and with it came

valuable insight into the internal dynamics of the multi-physics system that is a piezoelectric

actuator. The BGM provides the added benefit of enabling the study of the force and displace-

ment estimation accuracies over time, and has served as a valuable tool to understand how

an actuator’s characteristics, i.e. capacitance and stiffness, potentially affected the sensorless

estimation accuracies. Consequently, the firm expectation that properly designing an actuator

for SSA would lead to greater results in terms of sensorless estimation had been sowed.

Before going into the design study of a particular morphology of self-sensing actuators, an

experiment has been performed on a typical micro-robotic application. The aim has been to

collect data on the manipulation forces and displacements required of the micro-robot to fulfil

its task. Among several actuator morphologies, the monomorph bender has been selected for

the design. This educated choice has been made upon the understanding of the positive effect

of a lower stiffness on force estimation. From this choice, an analytical model of the bender

has been formulated, tying every design parameter to the final characteristics of the actuator.

After defining the design goals in terms of estimation resolution and error, an analytical study

of the actuator fitness function has determined its monotonicity. This has thus provided a

clear guideline to maximising the self-sensing performance within a pre-defined design space.
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With these tools in hand, it has been possible to approach the conception of a prototype

to demonstrate a high accuracy self-sensing piezoelectric actuator. The prototype is built

around two subsystems: the piezoelectric actuator, fabricated according to the guidelines that

have been derived from the design study; and the test environment surrounding the actuator,

providing validation measurements for the displacement, the force, and electrically driving

and sensing the actuator. By following the design guidelines, thin benders have been fabricated

in bulk with the help of a commercial supplier. From the model that had been derived earlier,

the fabricated actuators had a promising β coefficient of −9.01nC/mN, offering a theoretical

self-sensing performance increase of ×17 over Noliac’s commercial CMBP03 bender with a β

coefficient of 0.486 nC/mN.

Before attempting to implement self-sensing estimation, it has been necessary to experiment

on the batch of actuators with the prototype’s test environment. The aim was not only to

validate the self-sensing model, but also to determine the real parameters of the actuator

that would be used in the sensorless estimation. Unfortunately, despite the great success in

characterising the piezoelectric actuator, it was found that the measured β coefficient was

of 3.139 nC/mN, lower than the model prediction by a factor of ×1
3 . Despite these discrepan-

cies, which were later solved in the final chapter of this thesis, a sensorless force estimation

demonstration has been implemented on the prototype. Following the simulation scenario

provided at the end of Chapter 2, the goal was to approach the bender to the force sensor’s

tip, which was acting as a simulated manipulation sample, with a ramping input voltage. The

force would be determined while the actuator was live, demonstrating what kind of force

estimation accuracy could be expected when attempting to detect a force threshold. Using a

calibrated approach, it has been possible to achieve force estimation accuracies of 0.25 mN

for experiments that were shorter than 60 s.

From the measurement campaign that has been held on the batch of actuators, it had become

apparent that there is a significant difference between the actuator characteristics predicted by

the analytical model and those that were measured experimentally. Hence the conclusion that

one or several aspects of the main design had been made based on wrong assumptions. After

analysing the aspects of the design that were considered negligible, the sources of the model

error had been identified as the neglect of the electrode thicknesses and of electrical isolation

layers at the top and bottom of the actuator stack. A new and complete model has been

reformulated based on these observations, and the updated model provides an estimation of

3.046 nC/mN for the β coefficient of the fabricated benders, corresponding to an error of 3%.

The new model functions showed that a design solution that would maximise the self-sensing

performance while guaranteeing proper actuator performance would be complex and offer

no obvious solution, which had been the case with the first model. The opportunity has

thus been seized to demonstrate a more rigorous design approach through multi-objective

optimisation, once again based on the analytical study of the updated model. The study has

resulted in a Paretto frontier, providing solutions that offer a tradeoff between estimation

sensitivity and resolution. The optimal actuator design offered a β coefficient of 4.62 nC/mN,
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hence providing a 52% improvement over the first design that had been fabricated in bulk.

Compared to the state of the art, the bender used by Rakotondrabe in [46] with great success

in self-sensing applications has a β coefficient of 1.03 nC/mN. Hence, the optimised actuator

discussed in this thesis would offer a sensitivity increase of ×4.5. These promising results

pave the way for future research that would push the enveloppe of what is possible in terms of

accuracy and resolution with piezoelectric self-sensing actuation.

Original contributions

The original research that has been conducted for this thesis has brought forward some novel

contributions to the state of the art of self-sensing piezoelectric actuators. These contributions

are outlined in the following points of this section.

• Piezoelectric self-sensing framework:

There has been a lack of presentation on how to approach piezoelectric SSA from the sci-

entific litterature, as most examples made use of readily available commercial actuators

to implement their succesful strategies. The research proposed in this thesis has sought

to address this by proposing a bottom-up approach to self-sensing. A theory has been

formulated by considering the actuator as a system receiving force and voltage as inputs,

and resulting in charge and displacement outputs. Constitutive equations describing

the relationship between the four signals have been derived from the model, and it has

been shown that the form of this model is the same for every actuator morphology. The

main strengths of Bond Graph Models (BGM) have been exploited to complement the

theory with a dynamic model. The BGM of a complete self-sensing system including

the actuator, the charge sensing electronics, and the mechanical interface offers an

high-level intuitive understanding of the multi-physics system.

• Insight into the relationship between actuator characteristic and SSA performance:

In addition to its qualitative insight, the use of a BGM to perform a dynamic simulation

has been demonstrated. This simulation has provided a quantitative evaluation of

the self-sensing performance of a system over time. This has been used to bring to

light the impact of actuator characteristics on self-sensing estimation accuracy. Aside

from the expected tradeoff between actuation performance and self-sensing resolution,

a tradeoff between displacement control and force control has been evidenced: for

instance, a lower stiffness leads to greater force estimation resolution while reducing

the free stroke of the actuator. This intuition serves a purpose in understanding what

actuator morphology to chose from depending on the target application.

• Model-driven self-sensing optimisation for piezoelectric actuators:

Several examples of piezoelectric bender modelling exist in the state of the art, but all

featured a fixed configuration in terms of layers in the actuator stack. Two instances

of modelling are available in the present thesis, and they have demonstrated how to
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approach benders with a variable number of piezoelectric layers. Such analytical models

are useful, as they bring more design flexibility in self-sensing piezoelectric actuators.

From this model, analytical studies and multi-objective optimisations have shown that

there is a tradeoff for the actuator stack.

• Modular environment providing grounds for SSA experimentation:

The prototype consisting of custom fabricated piezoelectric benders surrounded by a

modular test environment has provided flexibility in researching self-sensing imple-

mentations. The possibility of measuring the complete electro-mechanical state of the

operated actuator makes it possible to validate the output of the self-sensing estimation.

The self-sensing implementation that has been demonstrated in this thesis has made

use of a calibrated approach, and the repeatability of the approach has been satisfactory

while offering good force estimation accuracies.

Outlook and future prospects

While this thesis has explored a broad aray of topics, the field may still benefit from more

research interest. Some aspects of piezoelectric SSA in particular have not been explored in

depth in the scope of this research,

• Strengthening piezoelectric SSA theory:

While tests on multiple actuators have been made and have shown that the pre-calculated

analytical model fit the general SSA models, the understanding of the effect of design

morphologies on actuation and self-sensing performances may benefit from additional

research. By systematically modelling and experimentally characterising a wide variety

of morphologies, e.g. piezotubes, shear stacks, membranes, one could compile a robust

catalogue of solutions to various ranges of micro-robotic applications. Expanding the

model capabilities beyond the linear aspects of the actuator’s behaviour should also

be considered. With such possibilities in hand, it would become possible to reduce

the impact of non-linear effects such as creep and hysteresis in the actuator design by

accounting for them in the multi-objective optimisation.

• Dynamic considerations of self-sensing:

Quasi-static applications have been the target working frequency of the prototype.

While the working dynamic models constructed with BGMs allow for a quantitative

description of a self-sensing system’s dynamic responses, this aspect of the actuator

performance has not been taken into account during the optimisation and design of the

prototype. To extend the improvement of piezoelectric SSA performance further, more

research needs to consider working the dynamic aspects of actuation and sensing into

the model-driven approach that has been presented in this thesis.

• Robust charge measurement accounting for piezoelectric non-linearities:

The most critical aspect to the implementation of SSA is the measurement of trace
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amounts of electrical charge (i.e. pC–nC), in particular in quasi-static applications where

the charge measurement must be accurate for long periods of time. This challenge is

made more difficult by parasitic effects that plague the charge measurement, such as

the creep and hysteresis inherent to piezoelectric properties, or the presence of leakage

and bias currents within the drive electronics. Leaps and bounds of progress could be

achieved if research effort were invested into this particular aspect of the charge-based

self-sensing topic, as this would be the key to extending the duration of the self-sensing

accuracy above 60 s.

• Towards a more engineered micro-robotic integration:

The developed prototype has been used to position with respect to and apply force on a

manipulation target. Such experiments are sufficient to demonstrate the increases in

performance through model-driven self-sensing actuator design, however it remains

distant to real micro-robotic applications. In the latter, tools are used to interact with

µm–scale samples (e.g. electrical probes, diamond points, graspers), while in the former,

the end tip of the piezoelectric actuator directly interacts with the sample. The path

to large-scale use of piezoelectric SSA, and therefore the furtherment of miniaturised

micro-robotics, requires the study of kinematic chains and configurations making use

of optimised self-sensing actuators.
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A Equations of piezoelectricity

To model, optimise and design piezoelectric actuators, it is necessary to have a grasp on the

theory of piezoelectricity. To that end, this appendix provides the constitutive equations for

piezoelectric materials. After a brief on the discovery and the basic principles of piezoelectric-

ity, the equations that describe the direct and converse effects will be presented, after which a

short introduction on how a model may be derived is presented. For a complete overview of

piezoelectric theory, the following sources are suggested:

• Tichý, J., Erhart, J., Kittinger, E., and Přívratská, J. (2010). Fundamentals of Piezoelectric

Sensorics. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN: 978-3-540-43966-0

• Heywang, W., Lubitz, K., and Wersing, W., editors (2008). Piezoelectricity: evolution and

future of a technology. Number 114 in Springer series in materials science. Springer,

Berlin. ISBN: 978-3-540-68680-4

A.1 History of piezoelectric discovery

The precursor to the discovery of piezoelectricity has been the research of Carl von Linné

and Franz Aepinus on pyroelectricity in the middle of the XIXth century. Both von Linné and

Aepinnus had proven the existence of pyroelectric materials which, when subjected to tem-

perature variations, saw a change in their electric polarization. Following these observations,

other researchers had then stipulated that there would be another type of material that could

present a change in electric polarization in response to a mechanical stress, without being

able to prove or disprove the theory.

It was not until the year 1880, with the work of brothers Jacques and Pierre Curie, that the direct

piezoelectric effect had been observed and experimentally validated. They had posited that the

piezoelectric properties of a material would arise from the asymmetrical nature of its crystal

structure. The hypothesis was succesfully validated by measuring the variation of electric

potential of crystals under mechanical stess, such as quartz, tourmaline and Rochelle salt. This

experimental proof was however limited to the direct piezoelectric effect, as the converse effect
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had not been considered at that point. It was in 1881 that Gabriel Lippmann had predicted

that the piezoelectric effect was in fact reversible, on the basis of thermodynamics calculations.

This indirect effect, named converse piezoelectric effect, would cause a piezoelectric material

to strain under the application of an electric potential. Based on this mathematical proof,

the Curie brothers would immediately go on to experimentally demonstrate the converse

piezoelectric effect.

Even though Pierre and Marie Curie would develop a quartz piezoelectric electrometre to

assist them in their research in 1889, piezoelectric theory saw little evolution until the con-

tribution of Woldemar Voigt in 1910. In his Lehrbuch der Kristallphysik (mit ausschluss der

kristalloptik) publication, Voigt rigorously described piezoelectric theory using tensor calculus

using piezoelectric constants he defined. The aspects of the theory that are relevant to the

work of this thesis will be laid out in the following paragraphs.

A.2 Equations

In the mechanical domain, the behaviour of linear elastic materials is described by Hooke’s

law, describing the relationship between the strain of a material (i.e. deformation) and the

stress it is subjected to (i.e. pressure) [47]:

S = sT (A.1)

where S is the material strain, T the associated stress, and s the mechanical compliance. These

parameters are represented in the form of tensors in the generalised form of Hooke’s law. For

simple isotropic materials, the tensor form of Hooke’s law may be simplified into a scalar or

matricial operation.

The electrical domain behaviour of any materials subjected to an electric field may be de-

scribed by the following equation in matricial form [9]:

−→
D = ε−→E (A.2)

where
−→
E is the electric field vector,

−→
D the electric displacement field vector, and ε the permit-

tivity coefficient matrix. Due to the three dimensional aspect of these quantities, the tensor

form is not necessary for this physics domain.

Piezoelectric materials act as electro-mechanical transducers that cause both the electrical

domain and mechanical domain to interact directly. This mutual interaction is described

by the piezoelectric tensor d which is appended to the two previous equations. As such, the

electric field generated by the direct piezoelectric effect is described by d T , while the strain

caused by the converse piezoelectric effect is described by d E [58]. These updated equations

constitute a system of two equations that completely describe a given material’s behaviour in

the two physics domains.
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Let the superscripts T and E respectively denote a constant stress and electric field. By simpli-

fying the tensorial notation with Einstein’s notation, the equations describing piezoelectric

theory are written as follows [19]:Si j = sE
i j kl Tkl +di j k Ek

Di = di kl Tkl +εT
i j E j

(A.3)

Tensors are mathematical entities that are complex to manipulate. For anisotropic materials,

the d tensor may require up to 18 independant coefficients to fully describe the piezoelectric

properties of a material. Thankfully, the most commonly used crystals, i.e. barium titanate

and lead zirconate titanate (PZT), belong to the 4 mm crystal class. The symmetry present

in these crystals allow for simplifications of the property tensors of these materials, hence

making it possible to use matricial notations to describe the phenomenon:
−→
S = {

s
}−→

T +{
d

}t−→E
−→
D = {

d
}−→

T +{
ε
}−→

E
(A.4)

The coefficients of strain and stress tensors S and T have been linearised into vectors
−→
S and−→

T , which is made possible by the symmetrical properties of PZT crystals. Indexes 1, 2, and 3

correspond the othorgonal deformations caused by the σx , σy , and σz stresses, while indexes

4, 5, and 6 correspond to the shearing deformations caused by the τy z , τzx , and τx y stresses:

−→
S t =

(
S1 S2 S3 S4 S5 S6

) −→
T t =

(
T1 T2 T3 T4 T5 T6

)
(A.5)

The axes 1, 2, and 3 used in the referential frame for the piezoelectricity equation in Eq. A.4

correspond to the crystallographic axes a, b, and c of the tetragonal PZT crystal [58]. The 3–axis

hence corresponds to the polarisation direction of the piezoelectric material. Consequently,

in order to simplify the tensorial notation into a matricial one, the coefficients of the material

property matrices
{
d

}
,
{

s
}
, and

{
ε
}

are arranged as follows:

{
d

}=
 0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

 (A.6)
{
ε
}=

ε11 0 0

0 ε22 0

0 0 ε33

 (A.7)

{
s
}=



sE
11 sE

12 sE
13 0 0 0

sE
21 sE

22 sE
23 0 0 0

sE
31 sE

32 sE
33 0 0 0

0 0 0 sE
44 0 0

0 0 0 0 sE
55 0

0 0 0 0 0 2
(
sE

11 − sE
12

)


(A.8)
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Q Sc

D

Figure A.1 – Integration surface used in the application of Gauss’ law.

A.3 Deriving a model

The constitutive equations of the piezoelectric actuator are derived from the ground up by

defining the actuator topology and its polarity, and by resolving the piezoelectricity tensors

according to this definition [19]: D = dT +εT E

S = sE T +dE
(A.9)

where the tensor D is the electric displacement field, E is the electric field, S is the strain, T is

the stress, s the compliance constants, ε the dielectric constants, and d the piezoelectric con-

stants of the material. Due to the symmetrical properties of common piezoelectric materials

(e.g. PZT), the tensors of piezoelectricity may be written in matrix form [58] [19].

The accumulated electric charges on the electrode surface connected to the piezoelectric

material may be derived by applying Gauss’ law with the electric displacement field D eval-

uated in Eq. A.9. This law provides a relationship between the integration of the electric

displacement vector D on a closed surface and the amount of electrical charges Q within the

contained volume:

Q =
Ó
Sc

D dA (A.10)

where the closed surface Sc is chosen in a way that it encapsulates one of the actuator’s

electrodes, as illustrated in Fig. A.1. Only one of the faces of Sc presents a non-zero electric

displacement field D , which greatly simplifies the integral in Eq. A.10.

The use of the piezoelectricity tensors (Eq. A.9) and of Gauss’ law (Eq. A.10) are sufficient to

derive the constitutive equations for any piezoelectric actuator. This approach is analytical

by nature, and it is assumed that the properties of the piezoelectric material remain linear.

This is evidently not the case, as these properties are affected by the electric field applied

to the actuator. The non-linearities that affect the piezoelectric actuator, such as creep and

hysteresis, need to be modelled aside for accurate control of the actuator. Despite these

issues, these constitutive equations serve to examine the parameters of an actuator, and to

determine its mechanical and self-sensing performances. Examples of parameters derived for

basic actuators may be found in Tab. A.1: δ is the displacement, F the applied force, K the

stiffness, Cp the capacitance, and β an electro-mechanical coupling coefficient related to the
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Table A.1 – Constitutive equation parameters for three elementary deformations.

Traction Shearing Flexure

a

h

b

P E

F

δ

a

h

b

PE

F

δ

L
w

h P E

F

δ

β= d33 β= d15 β= 3

8
d31

L2

h2

K = ab

hs13
K = ab

hs55
K = 2wh3

L3s11

Cp = ε33
ab

h
Cp = ε11

ab

h
Cp = ε33

Lw

h
+ 4

3
β2K

di j piezoelectric coefficients. The constitutive equations for the piezoelectric actuators in Tab.

A.1 are all found by substituting the expressions of the β, K , and Cp parameters in the general

model euqations in Eq. 2.2, presented in Chapter 2.

Each of these examples demonstrates what shall be referred to as elementary deformations, as

they provide simple examples of the main ways to produce motion with piezoelectric mate-

rials: flexure deformation, shearing deformation, and traction (or conversely compression)

deformation. Traction (respectively shearing) deformations is created by ensuring that the

electric field E and the polarity of the piezoelectric material P are colinear (respectively or-

thogonal), thus making use of the d33 (respectively d15 or d24) piezoelectric coefficient. As for

flexure deformation, the example provided here is that of a monomorph cantilever. An inactive

piezoelectric layer is superimposed with one that is activated by an electric field aligned with

its polarization. Through the d31 piezoelectric constant, the active layer is elongated, which

results in flexure deformation of the whole beam due to the mechanical resistance of the

attached passive layer. This type of motion can also be achieved and greatly amplified with

bimorph benders, where both layers are activated with opposite electrical fields, therefore

causing them to deform in opposite directions.
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Bond graph modelling is a powerful and versatile approach to dynamic modelling of complex

systems. This rather recent discipline proposes to study the energy exchanges that occur

within a system, as well as those that occur between the system itself and its environment.

From these modelled energy flows, constitutive equations for the system may be derived and

its behaviour given specific inputs and conditions may be understood. The elegance of the

bond graph approach stems from the fact that energy may be exchanged from one energy

domain to another, and therefore it is easy to study multi-physics system and predict how

the physics domains interact with each other. This is especially relevant when the studied

systems are transducers, actuators, and sensors, which often have two or even three physics

domain intervening in their operating principles. The choice of using bond graph modelling

for self-sensing piezoelectric actuators has hence been self-explanatory in this thesis work.

The present appendix serves as a brief introduction to bond graph modelling, the purpose of

which is to familiarise the reader with the modelling concepts that will be manipulated.

Bond graphs are built up from two main categories of modelling objects: nodes and bonds.

Nodes are components, or subsystems, of a system. For instance, the mechanical domain

would include nodes that would portray masses, springs, and dampers, which the mechanical

domain would include resistors, capacitors, and inductors. The bonds are the energetic

interactions that take place between these nodes. The particularity of these bonds is that they

introduce the notion of computational causality. The model allows scientists to consider the

order in which the energy flow is propagated within a system, which inevitably influences how

the results of such an energy flow will be calculated: either through derivation or integration.

The theory of bond graph modelling has been formally defined by Henry Paynter in 1959.

Since its inception, the method has been discuused in a myriad of scientific publications that

have provided their own contributions. In the following sections, it is principally the work of

Borutzky [4], Gawthrop [15], and Karnopp [33] that have been used to compile this summary.

The variables that describe a bond will first be introduced, followed by an illustration of how

these bonds are represented, after which the concept of causality is discussed. Finally, the

nodes that constitute the basic building blocks of bond graph elements shall be enumerated.
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B.1 Power conjugated variables

Bond graph models deal with the instaneous energy exchanges that occur within a system,

which are characterised by the instantaneous power P (t ). Two power conjugated variables are

introduced: the effort e(t ), and the flow f (t ). These variables are related to the instantaneous

power P (t ) through the following relationship:

P (t ) = e(t ) · f (t ) (B.1)

The proper analogy to illustrate the power conjugated variables would be the mechanical

force F or the voltage u for the effort, and the velocity v or the current i for the flow. In fact,

an equivalence for the effort and the flow may be drawn across multiple physics domain, as

illustrated in Tab. B.1. These variables help to define the amount of power flowing between

two components of a system.

In addition to the power conjugated variables, two energy variables are defined: the gen-

eralised displacement q(t), and the generalised momentum p(t). These variables quantify

the total amount of energy transferred by the power P (t) in a given time period, and are

accumulated within energy stores of the system. These energy variables’ equivalent physical

quantities for each physical domain are also provided in Tab. B.1. They are each related to one

of the power conjugated variables as such:

q(t ) = q(t0)+
t∫

0

f (τ)dτ (B.2) p(t ) = p(t0)+
t∫

0

e(τ)dτ (B.3)

The relationship between the effort e, the flow f , the displacement q , and the momentum

p are best illustrated by the so-called tetrahedron of state, as shown in Fig. B.1. By properly

interpreting this tetrahedron, one may find how a flow is converted into an effort and, likewise,

how a flow is caused by an effort. Depending on the order in which these variables are

propagated within a system, the relationships are either integral or derivative. This concept is

important to keep in mind when later considering the concept of computational causality for

the elaboration of these models.

Three type of components are identified in the conversions between the four state variables:

the generalised reactance R, inertance I , and compliance C . Analogies are often drawn be-

tween systems from different domains, the most common of which being between hydraulics

and electronics to explain and contextualise how current and voltage interact within a closed

circuit. In these analogies, components from different domains are often compared due to

their similar impact on the constitutive equations of the system. This is where the generalised

reactance, inertance, and compliance intervene. For instance, capacitors and springs behave

as compliances for their respective domains. Furthermore, a generalised reactance is equiva-

lent to a damper in the mechanical domain, and to a resistor in the electric domain. Finally,

the inertance pertains to the mechanical mass and to the inductance.
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Table B.1 – Power conjugated variables pertaining to multiple physics domains.

Energy domain
Effort

e(t )
Flow
f (t )

Generalised
momentum

p(t )

Generalised
displacement

q(t )

Translational
mechanics

Force
F [N]

Velocity
v [m/s]

Momentum
p [Ns]

Displacement
x [m]

Rotational
mechanics

Moment
M [Nm]

Angular
velocity
ω [rad/s]

Angular
momentum

L [Nms]

Angle
θ [rad]

Electro-
Voltage

u [V]
Current

i [A]
Linkage flux

λ [Vs]
Charge
Q [C]

magnetic
Magnetomotive

force
Θ [A]

Magnetic
flux rate
φ̇ [Wb/s]

–
Magnetic

flux
φ [Wb]

Hydraulics
Total pressure

p [N/m2]
Flow rate
Q [m3/s]

Pressure
momentum
Pp [Ns/m2]

Volume
V [m3]

Thermodynamics
Temperature

T [K]
Entropy flow

Ṡ [J/K/s]
–

Entropy
S [J/K]

Chemical domain
Chemical potential

µ [J/mol]
Molar flow
Ṅ [mol/s]

–
Molar mass

N [mol]

f (t )

p(t ) q(t )

e(t )

R

∫
dt

1

I

∫
dt

1

C

f (t )

p(t ) q(t )

e(t )

1

R

d

dt

I d

dt

C

Figure B.1 – Tetrahedron of state [33], and relationship between its variables.
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B.2 Power bonds

A power bond is the graphical representation of an energy exchange between two nodes of

the bond graph. It is quantified by the instantaneous power P (t), and its conjugated power

variables e(t ) and f (t ). Given knowledge of the nodes and their bonds, it is possible to deduce

a set of equations at each of the system’s nodes. Due to the fact that an energy exchange, or

flow, has a concept of directionality, a sign convention must be provided so that the power

conjugated variables of the energy exchange P (t ) are consistent with respect to their sign. This

is achieved by adding a half-arrow in the graphical representation of the power bond (Fig. B.2).

Any variable flowing in the direction of the bond’s half-arrow reference be positive.

A B
e(t )

f (t )

Figure B.2 – Graphical representation of a power bond.

In the example of Fig. B.2, positive energy flows from node A, an energy source, into node

B, an energy sink. For nodes that are energy sources in a specific power bond, the positive

direction of power P (t) > 0 flows aways from the node itself. On the contrary, the positive

direction of power P (t ) > 0 flows into energy sink nodes. To further describe a bond, labels for

the effort (top) and for the flow (bottom) may be provided around the half-arrow.

A B
e(t )

f (t )

e

f

Figure B.3 – Graphical representation of activated bonds (i.e. signals).

There exists a special kind of bond, labelled as activated bond, which merely conveys an

information. They are generally represented as a simple arrow flowing out of a node, with

a label of the power conjugated variable that is conveyed by the signal. This signal can

then be fed into a block diagram for signal processing and for feedback control. Since ideal

measurements only carry the information of one power conjugated variable while the other

variable is zero, the effective energy flow P (t ) within that bond is null. As such, activated power

bonds do not affect the power balance of the node it originates from.

B.3 Concept of computational causality

As mentioned earlier, bond graph nodes each have an associated constitutive equation that

may be derived from the bonds they are connected to. Determining the constitutive equation

for each node of the bond graph provides the user with a set of equations that completely

describes the sytem. Bonds carry two variables, the effort e(t) and the flow f (t), and one

constitutive equation is not enough to solve both variables.
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Hence the need for one of the variables to be considered as imposed by the node at the other

end of a bond. In this manner, each node’s equation may be solved to provide an expression

for either e(t) = F
(

f (t)
)

or f (t) = F
(
e(t)

)
, enabling the possibility of systematically deriving

the constitutive equations for a full system through its bond graph model. This is done by

assigning the computational causality within a bond.

A B
e(t )

f (t )

(a)

A B
e(t )

f (t )

(b)

Figure B.4 – Standard graphical representation for the causality of a power bond.

The graphical representation for the assignment of computational causality is a straight line

othorgonal to the bond placed at either node (Fig. B.4). This line indicates which side of the

bond is imposing the flow f (t ). Consequently, the absence of a line on one side indicates that

this side is imposing the effort e(t ). As such, the following may be said of node A in each case

represented in Fig. B.4:

a. f (t ) is imposed by node B, and e(t ) = F
(

f (t )
)

is derived from node A.

b. e(t ) is imposed by node B, and f (t ) = F
(
e(t )

)
is derived from node A.

B.4 Bond graph elements

Nodes are the building blocks of bond graph models, and several types of basic nodes have

been defined so that all systems may be schematically represented from them. While energy

storage nodes are single-port, most nodes are multi-port, implying that they can be connected

with two or more bonds. All nodes are associated with one or more constitutive equations

describing their influence over the bonds they are connected to. More specifically, these con-

stitutive equations describe the behaviour of a multi-port element at a given port as a function

of its power conjugated variables. Due to the non-spatial properties described by bond graph

nodes, the constitutive equations of the latter may be considered as lumped parameter models.

They each represent a single effect of a more complex physical phenomenon.

B.4.1 Elements and their constitutive equations

The following paragraphs will describe the basic bond graph nodes that are used to model

most multi-physics systems. Each node will be presented with its constitutive equations. As

a means of concluding this overview of bond graph nodes, the next section provides a table

summarising all the presented nodes along with their constitutive equations.
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Power conserving junctions

As Henry Paynter, the creator of bond graphs, put it in The Gestation and Birth of Bond

Graphs (2000), the power conserving junctions have a capital role in rendering bond graphs a

complete and formal discipline. These nodes serve to split and distribute the power conjugated

variables among several other nodes. They neither dissipate nor store energy, as they are

energy conservative. They are a multi-port node, featuring two to as many ports as required to

distribute and propagate a variable.

The first of these nodes is the 0–junction, otherwise known as a flow junction. These nodes

propagate an input effort throughout all their ports, and split the incoming flows among all the

outgoing flows. In this manner, they behave much like Kirchhoff’s voltage law. The constitutive

equations for a 4–port 0–junction as depicted in Fig. B.5 may be written as:

e1 +e2 = e3 +e4

f1 = f2 = f3 = f4
(B.4)

0

e
1

f1

e 2
f 2

e 3
f 3

e
4

f4

Figure B.5 – Bond graph node for a 0–junction with 4 ports.

The second node is the 1–junction, otherwise known as a effort junction. It is the dual of

the flow junction, hence the naming convention oppositing the 0–junction to the 1–junction.

These nodes propagate an input flow throughout all of their ports, and split the incoming

efforts into all outgoing efforts. As an analogy, it behaves similarly to Kirchhoff’s current law.

The constitutive equations for a 4-port 1–junction as depicted in Fig. B.6 may be written as:

e1 = e2 = e3 = e4

f1 + f2 = f3 + f4
(B.5)

1

e
1

f1

e 2
f 2

e 3
f 3

e
4

f4

Figure B.6 – Bond graph node for a 1–junction with 4 ports.
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Both 0–junctions and 1–junctions need to observe strict causality requirements. Indeed, since

they propagate an input effort (respectively flow) to all of their ports, there needs to be one

and only bond that imposes the propagated power variable. The required causality for both

junctions is depicted in Fig. B.7. Note that input effort or flow does not mean whether the

direction of the bond is directed toward the junction or not, hence the lack of half-arrows in

Fig. B.7. Instead, the causality of one of the bonds imposes the propagated variable to the

junction while the causality of all other bonds are reversed.

0 1

Figure B.7 – Expected causality for 0–junctions and 1–junctions.

Should a 0–junction or 1–junction fail to meet this strict causality requirement, the system

would be in a causal conflict. Such a conflict makes it impossible to systematically derive the

constitutive equations of the system. This is generally remedied by toggling the causality of the

bonds that connect the junction with its surrounding nodes, often alternating the equations

of adjacent nodes between integral and derivative causalities.

Energy storage elements

Energy stores are 1–port nodes that describe how energy is stored in a system. The energy is

generally stored in the form of a momentum or a displacement, and these nodes are considered

energy conservative. Two main types of energy stores are defined: C-stores which are related

to the generalised compliance component C of a physics domain, and I-stores which are

related to the generalised inertance component I of a physics domain.

The C-store nodes store energy in the form of generalised displacements q(t ), and the latter

are tied to the effort through the characteristic function of the node φC as follows:

q(t ) =φC
(
e(t )

)
(B.6)

C :φC
e

f

(a) Integral causality.

C :φC
e

f

(b) Derivative causality.

Figure B.8 – Bond graph nodes for 2–port C elements.

Depending on the defined causality of the node’s bond, the constitutive equation of C-store

nodes may be written as such, with the lefthand equation being the integral causality, and the

righthand equation being the derivative causality:
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e(t ) =φ−1
C

( t∫
0

f (τ)dτ
)

(B.7) f (t ) = d

dt
φC

(
e(t )

)
(B.8)

The I-store nodes store energy in the form of generalised momenta p(t ), and the latter are tied

to the flow through the characteristic function of the node φI as follows:

p(t ) =φI
(

f (t )
)

(B.9)

I :φI
e

f

(a) Integral causality.

I :φI
e

f

(b) Derivative causality.

Figure B.9 – Bond graph nodes for 2–port I elements.

Depending on the defined causality of the node’s bond, the constitutive equation of I-store

nodes may be written as such, with the lefthand equation being the integral causality, and the

righthand equation being the derivative causality:

f (t ) =φ−1
I

( t∫
0

e(τ)dτ
)

(B.10) e(t ) = d

dt
φI

(
f (t )

)
(B.11)

The difference between integral and derivative causalities may be understood when examining

the tetrahedron of state describing the relationship between the four state variables (Fig. B.1).

The integral causality is generally preferred when modelling engineering systems, but it may

happen that the derivative causality is sometimes required. This generally happens when a

causal conflict needs to be solved. Note that in their preferred causalities, C-stores impose the

flow to their adjacent node while I-stores impose the effort to their adjacent node.

Dissipators

Dissipators are nodes that provide a direct relationship between the effort and the flow, and

they are related to the generalised reactance component R of a physics domain. They model

the energy losses that occur within a system, whether it’s due to friction, heat dissipation, or

magnetic losses.

R :φR
e

f

(a) Resistive causality.

R :φG
e

f

(b) Conductive causality.

Figure B.10 – Bond graph nodes for R elements.

The constitutive equation of the R node may be written as such, with the lefthand equation

describing the resistive causality, and the righthand equation describing the conductive

causality:
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e(t ) =φR
(

f (t )
)

(B.12) f (t ) =φG
(
e(t )

)
(B.13)

The resistive characteristic function of the R node φR is the inverse of its conductive character-

stic function φG . These nodes are not as sensitive to the causality assigned to their bond, as

they are not defined by an integral or derivative characteristic.

Ideal energy sources and sinks

Ideal energy sources and sinks are non-physical elements. Energy cannot be created or

destroyed, it is exchanged. The system modelled by a bond graph does not encompass the

whole universe, but a piece of it which is the scope of the system. Therefore, rather than

describing actual components of a system, ideal energy stores and sinks are used to describe

the interaction of the system with its external environment.

Se
E

f (t )

(a) Effort source.

S f
e(t )

F

(b) Flow source.

De
E

f (t )

(c) Effort sink.

D f
e(t )

F

(d) Flow sink.

Figure B.11 – Bond graph nodes for ideal energy sources and sinks.

The bonds of ideal energy sources (respectively sinks) impose an outgoing (respectively ingo-

ing) effort E or flow F . They are graphically represented as shown in Fig. B.11

Ideal couplers

Finally, ideal couplers are 2–port nodes that convert energy from one physics domain into

another. They are energy conservative, implying that they do not dissipate energy, and they do

not store energy. Instead, couplers merely exchange energy between their two ports. There are

two kinds of couplers used in bond graphs: transformers (TF) and gyrators (GY).

TF

:me1

f1

e2

f2
TF

:me1

f1

e2

f2

Figure B.12 – Bond graph nodes for transformers (TF).

Transformers (Fig. B.12) establish a direct transformation of the power conjugated variables

from one physics domain into another. Note that transformers may have either an effort or

a flow as input, and that their output retains the same causality. The constitutive equations

for these 2-port couplers constrain the efforts and the flows of its bonds as follows, where the
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modulus m is a positive real constant:

e1(t ) = m ·e2(t )

f2(t ) = m · f1(t )
(B.14)

GY

:we1

f1

e2

f2
GY

:we1

f1

e2

f2

Figure B.13 – Bond graph nodes for gyrators (GY).

Gyrators (Fig. B.13) on the other hand establish a crossed relationship between the power

conjugated variables of its two bonds, from one physics domain into another. This implies

that the effort of the input is related to the flow of the output, and that the flow of the input is

related to the effort of the ouptut, hence the opposite causalities of the coupler’s two bonds.

The constitutive equations for these 2-port couplers constrain the efforts and the flows of its

bond as follows, where the gyrator ratio w ia a positive real constant:

e1(t ) = w · f2(t )

f2(t ) = w · f1(t )
(B.15)

Modulated variants of transformers and gyrators exist where the coefficients m and w are

replaced by controllable, modulated, functions f (t) and g (t). The M prefix is appended to

the name of the nodes, and they are represented as in Fig. B.14. Note that modulated sinks

and sources may also be defined in a similar way. Special care must be taken that modulated

elements such as sources and sinks do not violate the principles of energy conservation.

MTF

:m = f (t )
e1

f1

e2

f2

(a)

MGY

:w = g (t )
e1

f1

e2

f2

(b)

Figure B.14 – Examples of modulated elements: modulated (a) transformer, (b) gyrator.

B.4.2 Summary

Now that an overview of the basic elements used to build bond graphs has been provided, it is

proposed to summarise all of this information into a table in Tab. B.2. When working with or

reading about bond graph models, it is a helpful resource to better grasp all the notions that

are being worked with.
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Table B.2 – Summary of the bond graph elements and their constitutive equations.

Element Bond graph node Constitutive equations

0–junction 0

e
1

f1

e 2
f 2

e 3
f 3

e
4

f4

e1 = e2 = e3 = e4

f1 + f2 = f3 + f4

1–junction 1

e
1

f1

e 2
f 2

e 3
f 3

e
4

f4

e1 +e2 = e3 +e4

f1 = f2 = f3 = f4

Effort source Se
E

f (t )
Se = E(t )

Flow source S f
e(t )

F
S f = F (t )

Dissipator
R :φR

e

f
e(t ) =φR

(
f (t )

)
R :φG

e

f
f (t ) =φG

(
e(t )

)

1–port C element
C :φC

e

f
e(t ) =φ−1

C

(∫ t

0
f (τ)dτ

)
C :φC

e

f
f (t ) = d

dt
φC

(
e(t )

)

1–port I element
I :φI

e

f
f (t ) =φ−1

I

(∫ t

0
e(τ)dτ

)
I :φI

e

f
e(t ) = d

dt
φI

(
f (t )

)

2–port TF element
TF

:me1

f1

e2

f2 e1(t ) = m ·e2(t )

f2(t ) = m · f1(t )

TF

:me1

f1

e2

f2

2–port GY element
GY

:we1

f1

e2

f2 e1(t ) = w · f2(t )

f2(t ) = w · f1(t )

GY

:we1

f1

e2

f2
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C Charge measurement techniques for
high impedance devices

Initial charge measurement attempts that have been performed on the fabricated benders in

Chapter 4 have shown that, if uncompensated for various parasitic effects, the charge mea-

surement has a tendency to drift by an order of magnitude after sufficiently long exeriments,

i.e. τ≥ 60s. The slightest unwanted current flowing in the actuator’s drive and measurement

electronics will be integrated by the charge amplifier, the Keithley 6517A, and is responsible

for these drifts. Some of these phenomena can be modelled and therefore compensated in the

measurement’s post-processing. However, as it will be shown, some of these effects appear

random, and must therefore passively be shielded against. In these paragraphs, the causes for

these drifts shall be presented, and a solution to counter them will be discussed.

C.1 Parasitic effects inherent to the supporting electronics

The first category of measurement drift that will be discussed is caused by the measurement

electronics itself. As a reminder from Chapter 2, the electronics is set up as shown in Fig. C.1.

The piezoelectric actuator and a reference capacitor are connected to the HI terminal of the

Keithley 6516A electrometer, of which the LO terminal is connected to the circuit’s ground. The

actuator and the reference capacitor Cr are supplied by symmetrical and opposite voltages

+Vin and −Vin respectively. This is done to increase the dynamic range of the charge measure-

ment for the Keithley 6516A, as this set up cancels in large part the electrical contribution of

the voltage application if Cr is sufficiently close to Cp .

Let Q(t ) be the charges amplified by the electrometer, Qp (t ) the charges accumulated by the

piezoelectric actuator, and Qc (t) be the charges accumulated by the reference capacitor Cr .

Given this measurement setup, the charges meausured by the electrometer may be written as:

Q(t ) =Qp (t )+Qc (t ) =βF (t )+CpVin(t )−Cr Vin(t ) (C.1)

There are two other phenomena that affect the charge measurement from within the electron-

ics. The first of these is the bias current ib , an effect that is present at the input of circuits using
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Figure C.1 – Charge components and parasitic charges.

operational amplifiers. For instance, the Keithley 6517A is designed to have a bias current

lower than 4 fA. It is sufficiently low to be ignored in the majority of applications. However, this

is not negligible when attempting to detect charges in the pC–nC range in long experiments,

as its contribution is integrated over time. To characterise the bias current of the measurement

electronics, the input voltage Vin is grounded and the current ib is measured.

In addition to the bias current, the second phenomenon impacting the charge measurement

over long periods of time is the leakage current. It is caused by the application of the voltage

Vin on the piezoelectric actuator and the reference capacitor. Despite their great impedances,

these leakage currents in the order of the fA–pA are also integrated by the electrometer and

cause drift in the charge measurement. The leakage resistance is measured by applying a

non-null input voltage Vin to the actuator and reference capacitor. The charge contribution

of the bias current ib t is subtracted from the measured charge in order to obtain the leakage

current, and therefore the leakage resistance Rl . With these phenomena in mind, the charges

integrated by the electrometer in the measurement electronics may be written as such:

Q(t ) =βF (t )+CpVin(t )−Cr Vin(t )+ ib t +
t∫

0

Vin(t )

Rl
dt (C.2)

Let Qm(t) = βF (t) be the mechanical contribution to the charges, otherwise referred to as

the sensing charge. This is the component that needs to be isolated from the electrical

charge contribution and the parasitic effects in order to provide a sensorless estimation of the
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actuator’s mechanical state. From Eq. C.2, the sensing charge is thus written:

Qm(t ) =Q(t )−CpVin(t )+Cr Vin(t )− ib t −
t∫

0

Vin(t )

Rl
dt (C.3)

C.2 Parasitic effects inherent to the piezoelectric actuator

Some of the currents flowing through the bender that offput the charge measurement are

produced by the actuator itself, due to the non-linearities inherent to piezoelectric materials.

The two main causes of drifts are usually identified as creep and hysteresis, both of which are

all the more important when considering quasi-static applications. Fortunately, these effects

are well understood by now, and a great number of examples dealing with their compensation

may be found in the scientific literature. In the specific context of piezoelectric SSA, Clévy

has discussed how these effects are compensated from the charge measurement [7]. In fact,

Clévy proposes that the −CpVin term in Eq. C.3 should be replaced by operators describing

the hysteresis and the creep : QH (Vin) and QC (Vin).

Hysteresis is a well known particularity of piezoelectric materials, and to a further extent

ferroelectric materials. The non-linearities of the piezoelectric material’s properties create

a hysteretic relationship between the actuator’s displacement and the applied voltage. This

hysteresis is reflected upon the mechanical component of the charge accumulation, as the

charge is directly related to the material’s strain. After applying a triangular signal onto the

actuator and compensating the output of the electrometer for bias and leakage currents, the

hysteresis can be modelled by means of a Prandtl-Ishlinskii operator QH (Vin.

Caused by the non-linearity of the piezoelectric material’s properties, the creep causes the

displacement of the piezoelectric bender to continuously drift over the course of several

minutes after the application of a driving voltage. This creeping deformation also provokes a

drift in charge measurement, since the charge is related to the strain within the piezoelectric

material. It may be modelled thanks to a Linear Time Invariant (LTI) function QC (Vin after

applying a voltage step, which is fitted to the resulting charge measurement after subtracting

the hysteresis, bias, and leakage contributions. The resulting charge measurement with all the

modelled compensations is thus written as such:

Q(t ) =βF (t )+QH (Vin)+QC (Vin)−Cr Vin(t )+ ib t +
t∫

0

Vin(t )

Rl
dt (C.4)

C.3 Parasitic effects caused by environmental contributions

The third and last category of parasitic effect that will be discussed are caused by the environ-

ment surrounding the actuator and the electronics. As such, they can not be modelled and
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Figure C.2 – Effect of the airflow on the charge measurement: the enclosure is removed from
the test bench in the red areas of the plot.

compensated from the charge measurement, and are prone to apparent randomness. The

prototype’s design must minimise these effects as much as possible. These effects are typically

related to room temperature, electrostatic and electromagnetic interferences, and relative

humidity, which all become a source of error when measuring small.

The first issue that arose when attempting to measure the leakage and bias currents was a

random component that affected the charge measurement. After troubleshooting, the cause

of this error has been identified to be the airflow within the room. To validate this hypothesis,

an experiment was carried out with a charge measurement performed for over 100 s. During

this experiment, an enclosure that has been designed to cover the piezoelectric actuator

and its surrounding sensors is periodically taken out and put back on. The resulting charge

measurement may be seen in Fig. C.2. Whenever the enclosure is removed, the current (i.e.

derivative of the charge) varies over time, and whenever it is put back on, it becomes stable

once more. The exact cause of the measurement’s perturbation other than the fact that it is

related to the airflow is unknown and hasn’t been verified: it could be related to electrostatic

charges carried by the air, or it could be that the self-sensing actuator is sensitive enough that

small deformations caused by the airflow will impact the charge measurement.

Another issue that needs to be accounted for is the effect of electric perturbations caused by

electrostatic and electromagnetic interferences. To that effect, the drive and measurement

electronics must be carefully designed to limit these effects and be well guarded against

external interference. In the self-sensing prototype, a double shielding setup as illustrated in

Fig. C.4 has been used. The electrometer is connected to the electronics by way of a triaxial

cable connected to two different shields. The inner shield, referred to as the noise shield, is

connected to the ground of the electronics. It is meant to reduce the interference caused by

external signals by absorbing currents and dissipating them in the ground plane, instead of

in the tracks conducting sensitive signals. The outer shield, referred to as the safety shield, is

connected to the earth. Its main function is to protect the user from electrocution hasard, but

it also helps with guarding the electronics by acting as a secondary Faraday cage.
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Figure C.3 – Photos of the enclosure surrounding the prototype.

Figure C.4 – Schematic of the double shielding for the electronics.
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Acronyms

Symbol Description

BGM Bond Graph Model

BM Bridge Measurement (self-sensing)

CM Charge Measurement (self-sensing)

FFT Fast Fourier Transform

HPF High-Pass Filter

LPF Low-Pass Filter

LTI Linear Time Invariant

MEMS Microelectromechanical Systems

MRI Magnetic Resonance Imaging

OA Operational Amplifier

MCU Micro-Controller Unit

MOO Multi-Objective Optimisation

PLL Phase-Locked Loop

PUM Piezoelectric Ultrasonic Motor

PZT Lead-Zirconate Titanate (piezoceramic material)

SEM Scanning Electron Microscope

SMU Source Meter Unit

SNR Signal-to-Noise Ratio

SSA Self-Sensing Actuation

UIO Unknown-Input Observer
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Nomenclature

List of symbols

Symbol Unit Description

β CN−1 Charge accumulation coefficient

mV−1 Electro-mechanical conversion coefficient

γm m Position of the mechanical deformation neutral plane

γp m Position of the piezoelectric deformation neutral plane

δ m Actuator displacement

δ0 m Initial distance between end effector and sample

δm m Mechanically induced displacement

δp m Piezoelectrically induced displacement

η (%) Active thickness ratio

ηe (%) Electrode layers thickness ratio

ηi (%) Inactive layers thickness ratio

εδ m Displacement estimation error

ε f N Force accuracy objective function (MOO)

εF N Force estimation error

εi j Fm−1 Element of the permittivity matrix

εm m−1 Slope of the mechanically induced strain

εp m−1 Slope of the piezoelectrically induced strain

µ (%) Ratio between layer thickness and electrode thickness

ρ Ωm Resistivity

τ s Experiment duration

Cd F Difference in capacitance between Cp and Cr

Ci F Integration capacitor of the charge amplifier

Cp F Piezoelectric capacitance

Cr F Reference capacitor of the charge amplifier

di j CN−1 Element of the piezoelectric coefficient tensor

D Cm−2 Electric displacement field

e – Effort power conjugated variable (multi-physics)

E Vm−1 Electric field
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Nomenclature

f – Flow power conjugated variable (multi-physics)

fβ CN−1 Force sensitivity objective function (MOO)

F N Mechanical force

Fext N External mechanical force

Fint N Internal mechanical force

h m Layer thickness for the actuator stack

he m Electrode thickness

H m Total thickness of the actuator stack

Hmin m Minimum total thickness of the actuator stack

i A Instantaneous current

I kgm2 Moment of inertia

ib A Bias current

K Nm−1 Stiffness

L m Cantilever length

Mext Nm External mechanical moment

Mint Nm Internal mechanical moment

N – Number of layers in the actuator stack

Nmin – Minimum number of layers in the actuator stack

p – Generalised momentum (multi-physics)

P Cm−2 Electric polarisation field

q – Generalised displacement (multi-physics)

Q C Free charges

Qe C Electrical component of the accumulated charges

Qp C Mechanical component of the accumulated charges

Qr C Free charges accumulated by the reference capacitor

Q̇ A Piezoelectric acuator instantaneous current

RL Ω Leakage resistance

si j m2 N−1 Element of the compliance tensor

S (%) Mechanical strain

S1,m (%) Mechanically induced strain
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Nomenclature

S1,p (%) Piezoelectrically induced strain

T Nm−2 Mechanical stress

Vin V Actuator input voltage

Vp V Direct piezoelectric effect voltage

VQ V Output voltage of the charge amplifier

Vs V Measurement bridge sensing voltage

w m Cantilever width
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