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Abstract—The paper presents the implementation details and
the experimental validation of a linear state estimator based on
synchrophasor measurements in a real subtransmission network.
The data are provided by 15 phasor measurement units (PMUs)
installed in the 125-kV grid of the city of Lausanne, Switzerland.
The PMU-based monitoring infrastructure, the telecommunica-
tion and the phasor data concentrator are described in detail.
We compare the performance of two different state estimation
methods, i.e., the linear weighted least squares and the least
absolute value estimator, with a focus on the influence of the line
parameter errors on the state estimates. We further analyze the
latency contribution associated to each step of the measurement
chain, in order to validate its appropriateness to serve time-
critical power system applications.

Index Terms—Least absolute value, Linear state estimation,
Phasor measurement unit, Weigthed least squares.

I. INTRODUCTION

In the last decades, state estimation (SE) has become a core
power system situation awareness functionality for network
operators. Typically, power system state estimators consist in
a non-linear weighted least squares (WLS) process, that com-
putes the most likelihood system-state through the statistical
processing of real and pseudo-measurements. The accuracy
and reliability of the state estimates are exploited by various
functionalities, like voltage control, contingency and stability
analysis, security assessment, and protections tuning.

One of the main features of SE is the capability to detect,
identify, and eliminate large measurement errors, also called
bad-data. Most state estimators (e.g., the WLS) need to be
coupled with a bad-data processing method, such as the well-
known largest normalized residual (LNR) method [1]. By
contrast, the so-called robust estimators, e.g., the least absolute
value (LAV), possess an intrinsic bad-data rejection property,
thus there is no need to employ a separate bad-data proces-
sor [2]. Also, the vulnerability to leverage measurements can
be eliminated by strategic scaling without affecting the state
estimates, as demonstrated in [2]. In terms of computational
time, LAV becomes competitive with WLS, in particular in
presence of bad data.

This work was supported by the Swiss Federal Office of Energy (OFEN) under
Grant SI/501080-01. The Authors would like to thank Services Industriels de
Lausanne (SiL) for the collaboration.

The performance of the aforementioned estimators can be
improved if the measurements adopted to estimate the system
state are entirely composed of synchrophasors provided by
Phasor Measurement Units (PMUs). Indeed, a state estimator
that uses only synchrophasor measurements has the following
benefits compared to conventional estimators:

1) The measurements are a linear function of the state
variables, which leads to a linear state estimator (LSE)
consisting in a non-iterative algorithm with low compu-
tational time;

2) The measurements are time-stamped, so that they can be
time-aligned at the data collection point. This ensures
that every set of measurements given to the LSE is
composed of measurements taken at the same instant;

3) As the PMUs directly measure the phase-angle, there is
no need to choose a reference bus, at which the voltage
phase-angle is fixed to an arbitrarily selected value [3];

4) The very high PMU streaming-rate (tens of frames-per-
second (fps)) leads to a state estimator characterized by
high refresh-rate and low latency, which is called real-
time state estimation (RTSE);

5) PMUs measure by default the current and voltage pha-
sors in each phase separately, so that three-phase SE
can be used irrespectively of the network-parameter
symmetry and power-flow balance.

In the current literature, few papers have described the
implementation details and experimental results of LSEs in
real power systems using PMUs, e.g., [4], [5], [6]. These
previous contributions are limited to the description of the
SE method and implementation aspects, lacking a thorough
analysis of the SE results. In this paper, we present the SE
results obtained using the LAV and the LWLS estimators
for the 125-kV subtransmission network of Lausanne city
(Switzerland) that is operated by the utility Service Industriels
de Lausanne (SiL). The originality of this work lies in a
detailed performance assessment of the SE results provided
by LSEs that use real measurements taken in a real power
network extensively equipped with PMUs. First, we present
and discuss the results of the LWLS and LAV estimators.
Second, we perform a latency assessment of every element
of the chain comprising the PMU, the telecom network, the
Phasor Data Concentrator (PDC) and the SE process.
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Fig. 1: Network topology of the monitored portion of the 125-
kV subtransmission network of Lausanne city, together with
the PMU placement. The sending and receiving ends of the
lines are denoted by s and r, respectively.

The paper is structured as follows. Section II describes
the topology of the network and of the PMU placement.
Section III provides implementation details of the sensing
infrastructure and of the synchrophasor network. Section IV
formulates the studied SE methods. Section V assesses the
accuracy of the employed SE methods and the time-latency of
the overall SE process. Section VI concludes the paper.

II. NETWORK STRUCTURE AND PMU PLACEMENT

For the study presented in this paper, we use the measure-
ments provided by PMUs installed in the 125-kV network
that supplies the city of Lausanne. Fig. 1 shows the network
structure and the PMU placement. The topology is composed
of 7 buses and 10 lines. Buses #1 and #7 are connected to the
higher voltage grid through step-up transformers. No zero-
injection buses are present in this network. The statistics of
the power absorbed by the loads are reported in Table I.

We installed 15 PMUs and each PMU can acquire signals
from up to two three-phase departing lines by using multiple
input-modules. Three-phase nodal-voltage and current-flow
synchrophasors are measured at both ends of each line. The
full set of measurements is therefore composed of 20 three-
phase voltage phasors and 20 three-phase current-flow phasors.
Note that multiple voltage measurements are available at each
bus. Overall, we estimate 42 state variables by using 240
measurements. The pervasive PMU deployment leads to a
high measurement redundancy equal to 5.7, which enhances
the SE reliability and benefits. A line breaker is present at
both ends of each line and the breaker status is included in
the PMU packet, thus enabling the real-time knowledge of
the network topology. The network model is built from the
network topology and line parameters provided in Table II.

TABLE I: 2015 year statistics of the load absorbed-power.

Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

Pmax [MW] 55 26 30 30 24
Pmin [MW] 12 8 10 10 9
Pmean [MW] 30 15 18.5 18.5 15

TABLE II: Line parameters: zero (0) and positive (1) sequence.

L R0 X0 B0 R1 X1 B1

[km] [Ω/km] [Ω/km] [S/km] [Ω/km] [Ω/km] [S/km]

Line 1 4.682 0.217 0.756 14.3e-6 0.112 0.372 15.1e-6
Line 2 1.625 0.168 0.093 63.2e-6 0.051 0.205 63.2e-6
Line 3 1.916 0.168 0.093 63.2e-6 0.051 0.205 63.2e-6
Line 4 1.849 0.185 0.102 60.4e-6 0.051 0.210 60.4e-6
Line 5 4.249 0.177 0.498 57.2e-6 0.061 0.201 57.2e-6
Line 6 4.291 0.168 0.093 63.2e-6 0.051 0.205 63.2e-6
Line 7 2.841 0.226 0.611 57.4e-6 0.064 0.210 57.4e-6
Line 8 3.800 0.420 1.272 1.8e-6 0.159 0.410 2.8e-6
Line 9 4.682 0.217 0.756 14.3e-6 0.112 0.372 15.1e-6
Line 10 3.800 0.420 1.272 1.8e-6 0.159 0.410 2.8e-6

III. SYSTEM ARCHITECTURE

This section describes the measurement infrastructure that
comprises transducers, PMUs, telecommunication network and
Phasor Data Concentrator (PDC).

A. PMU-based monitoring infrastructure

The monitoring infrastructure is composed of 15 PMUs
that receive the voltage and current signals from conventional
potential (PTs) and current transformers (CTs). The PT and
CT accuracy-classes are specified in Table III, and the PT and
CT full-scales are 125 kV and 600 A, respectively. The ratio
errors and phase displacements are derived from the accuracy
class as indicated in the IEC Std. 61869 [7], [8].

The PMUs are based on the National Instruments (NI) Grid
and Automation System [9], a programmable and customizable
intelligent electronic device (IED) with PMU capabilities that
was designed and tested for standard-compliant electrical
substation installations. The absolute time-synchronization is
given by a stationary GPS-module that provides the UTC-
time information with a maximum uncertainty of 100 ns.
The system is also equipped with an 8-channels digital-input
module used to monitor in real-time the status of the breakers.

TABLE III: Accuracy class of PTs and CTs.

# PT sending CT sending PT receiving CT receiving

Line 1 0.2 0.2 0.2 0.2
Line 2 0.2 0.5 0.5 0.5
Line 3 0.5 0.5 0.2 0.5
Line 4 0.2 0.5 0.2 0.5
Line 5 0.2 0.2 0.5 0.5
Line 6 0.2 0.5 0.2 0.5
Line 7 0.2 0.2 0.5 0.5
Line 8 0.2 0.2 0.2 0.2
Line 9 0.2 0.2 0.2 0.2

Line 10 0.2 0.2 0.2 0.2
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Fig. 2: qq-plot (left) and box-plot (right) representation of the
telecom network latency during 24-hours (Sept 7, 2016).

The PMU implements the synchrophasor estimation algo-
rithm presented in [10] and has been certified to be compliant
with every class-P requirements and most of the class-M ones,
with the exception of the out-of-band interference test. The
PMU is characterized by a maximum total vector error (TVE)
of 0.02% that is maintained in both steady-state and most
of the dynamic conditions, irrespectively of the harmonic-
distortion level. The PMUs stream the synchrophasors with
a reporting rate of 50 fps, and are characterized by a mean
PMU measurement reporting latency of 44 ms and standard
deviation of 0.3 ms [11]. Note that the transducer errors are
largely predominant compared to the TVE value of PMUs;
therefore, the measurement uncertainties used by the SE
processes account only for the transducer errors.

B. Telecommunication network

PMU stream data through the legacy optical-fiber of SiL:
each PMU is connected to a switch through an Ethernet cable.
The communication is established through a dedicated virtual
LAN. Optical-fiber represents the favourite communication
layer to transmit data at the high streaming-rate of PMUs, as
it guarantees fast and reliable data delivery and enables a large
data traffic. In this respect, Fig. 2 shows the aggregated end-
to-end latency of PMU data measured over 24-hours across
all PMU data streams, on September 7th, 2016. As it can
be noticed, the data delivery is quite deterministic and is
characterized by very few outliers. The majority of the values
is concentrated around the median of 44 ms, and outliers are
upper bounded by the maximum value of 163 ms.

C. Phasor data concentrator

The adopted PDC architecture is presented in [11], and
implements the so-called absolute time data pushing logic,
therefore the time-aligned datasets are reported at a constant
reporting rate (corresponding to the PMU one, i.e., 50 fps). To
do so, the PDC is synchronized to an absolute time reference,
provided by a GPS card characterized by an accuracy of 100
ns. By using such logic, the latency variations in receiving the
data frames, introduced by the underlying telecommunication
media, are completely compensated by the PDC wait time,
resulting in a periodic reporting of time-aligned data-sets to
the SE process. According to the results presented in Fig. 2,
the absolute PDC wait time is set to 60 ms: such value allows
to collect a consistent number of outliers without scarifying
the timing needs of overlying time-critical applications.
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Fig. 3: Flow diagram of the LSE process.

The PDC is placed in the control room of SiL, located by
bus # 2 (see Fig. 1), and is integrated in a workstation equipped
with an Intel Xeon Processor at 2.4 GHz, 8 GB of RAM and
running Windows Server 2008.

IV. STATE ESTIMATION METHODS AND IMPLEMENTATION

The SE process is composed of a series of functions
depicted in the flow diagram of Fig. 3.

The raw measurements undergo plausibility checks in order
to identify gross errors. The topology processor builds the net-
work topology based on the status of the breakers1. Then, an
observability analysis is performed in order to check whether
the entire grid is observable given the topology and the
available measurements (comprising real-time measurements
as well as possible pseudo-measurements and zero-injection-
buses virtual-measurements). If not, the grid can be split in
observable islands and a separate SE is performed for every
island. The network model is built with the network topology
and parameters. The LWLS needs also the measurement
noise covariance matrix that represents the uncertainties of
the measurements. Finally, the LSE computes the estimated
state. Afterwards, the LWLS uses a bad-data processor to
identify and eliminate possible bad-measurements; after the
elimination procedure, the estimated state is recomputed and
this process is iterated until no bad measurements are detected.

A. Plausibility checks, topology processor and observability

A first plausibility check consists in analyzing the SYNCH,
STAT and CHK fields (see [12]) in order to detect and remove
measurements coming from PMUs that (1) have detected a loss
of external time synchronization or a time input connection
failure, or (2) are providing data frames with corrupted bits.

The status of the breakers streamed by PMUs are used
by the topology processor to update in real-time the net-
work topology. In case of missing/removed measurements, the
breaker status is set to the last available status or to a user-
defined normal status. We have implemented also a topology-
error check that detects an error in the OPEN breaker status:
when the active-power flow measurement is higher than 100

1A more robust implementation could integrate a sophisticated plausibility
check also of the status of the breakers.
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kW and the breaker status streamed by the PMU is OPEN, the
breaker status is overwritten as CLOSED. Instead, we are not
able to detect an error in the CLOSED breaker status, because
it can occur that the breaker status is CLOSED and the power
flow is zero, at the same time.

Then, given the topology and the set of measurements, we
build the measurement matrix H that links the state variables
to the measurements (see Section IV-B1 for further details).
If H is of full rank, we proceed with the SE; if not, we give
a warning and wait for the next time-step. Note that, due to
the very high redundancy, the case of unobservable network
is not likely to occur.

B. State estimation methods

We recall here below the formulations and characteristics
of the two SE methods employed in this paper.

1) Linear weighted least squares: The LWLS is a static
state-estimator that uses only the information contained in the
current set of measurements z ∈ Rm [1], [13]. The linear
measurement model is

zk = Hkxk + vk (1)

where k is the discrete-time index, xk ∈ Rn is the system state,
Hk is the measurement matrix, and vk is the measurement
noise that is assumed to be a white Gaussian sequence with
covariance matrix Rk. The network state is composed of
the real and imaginary parts of the nodal phase-to-ground
voltages at every bus and in each of the three phases. Then,
the estimated state x̂k is computed as

x̂k = G−1
k HT

kR
−1
k zk. (2)

where Gk is the so-called Gain matrix:

Gk = HT
kR

−1
k Hk. (3)

2) Least absolute value: The objective of the LAV esti-
mator is to minimize the sum of the absolute values of the
measurement residuals rk as [1], [2]:

min cT |rk| (4)
subject to: zk −Hkx̂k = rk

where c is a vector of ones. This optimization problem can
be re-arranged as an equivalent linear programming problem.
Note that the LAV does not require neither the definition of
the matrix Rk nor separate bad-data processing. In the ideal
case of white Gaussian measurement noise with the exact
knowledge of Rk, the LWLS remains the optimal estimator.
However, such assumptions is not true for real systems.

C. Measurement-noise covariance matrix

The measurement-noise covariance matrix R is assumed to
be diagonal, as we neglect the correlation among different
measurements for the reasons stated in [13]. The diagonal
entries of R are the variances that take into account the errors
of PTs/CTs and PMUs. However, we consider only the PT/CT
errors, since the PMU error is more than a order of magnitude
smaller than the PT/CT uncertainties [10].

Under these assumptions, the procedure to derive the di-
agonal elements of the measurement-noise covariance matrix
R is carefully explained in section 4.2.1 of [14], and briefly
summarized in what follows. The measurement variances are
evaluated from the limits of ratio error and phase displacement
defined by the PT and CT accuracy classes (given in the IEC
Std. 61869 [7] and [8], respectively). As indicated in the Guide
to the expression of uncertainty in measurement (GUM) [15],
we assume a Gaussian error distribution2. Therefore, we divide
these limits by a coverage factor equal to 3 in order to obtain
the standard deviations. These limits are defined as a function
of the measurand, therefore, they change continuously over
time together with the grid operating conditions. It is worth
pointing out that, as indicated in [7], [8], as long as the PT/CT
loading conditions defined in these standards are respected, the
error limits are only a function of the measurand, and not of
the loading condition. The final step consists in the projection
of the variances from polar to rectangular coordinates as LSE
uses measurements in rectangular coordinates [13].

D. Bad-data processor

The WLS is vulnerable to bad-data that cause biased es-
timates; indeed, they require a post-estimation method that
detects and identifies bad-data. We have implemented the well-
known largest normalized residual (LNR) test [1]. The latter
detects the presence of bad-data if the LNR exceeds a certain
threshold ε (usually equal to 3 or 4) and flags the related
measurement as a bad-data. Then, the SE is re-computed
without using this measurement. The procedure is iterated until
no bad-data are detected.

On the contrary, the bad-data rejection is an intrinsic prop-
erty of the LAV, which does not need a separate bad-data
processor. The LAV is still vulnerable to leverage measure-
ments, because the residuals of the leverage measurements
remain little even in presence of large measurement-errors.
This drawback can be eliminated with a proper scaling of H
without affecting the SE result, thanks to the linearity of the
measurement model, as explained in detail in [2].

V. STATE ESTIMATION RESULTS

In this section, we present and discuss the estimation values
obtained with the following state estimators:

• LWLS estimator without bad-data processing;
• LWLS estimator that uses the LNR test to identify and

remove bad data, called LWLS - LNR (the threshold of
the LNR-test is set to 4);

• LAV estimator.
In addition, we present a latency assessment of each element
of the process, from the PMUs to the SE output.

A. Accuracy assessment

We consider the network in quasi-steady state conditions
when the state changes smoothly and no particular events (e.g.,
line switching or faults) take place. The analyses carried out

2A more realistic PT and CT error model could be estimated online [16].
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TABLE IV: Three-phase power-flow measurements at a spe-
cific time-step (the first of the considered time-window), at
both ends of every line (sending s and receiving r).

Psa Psb Psc Qsa Qsb Qsc
[MW] [MW] [MW] [MVAR] [MVAR] [MVAR]

Line 1 10.896 10.673 10.825 -0.062 -0.738 -0.686
Line 2 2.864 1.977 2.122 0.402 0.491 -0.562
Line 3 -3.701 -4.366 -4.360 -0.511 -0.473 -1.236
Line 4 -12.807 -13.103 -13.258 -2.241 -2.305 -2.701
Line 5 -6.055 -6.127 -6.380 -0.069 0.047 -0.126
Line 6 -14.502 -14.428 -14.538 -1.584 -1.825 -1.684
Line 7 11.559 11.370 11.693 -0.950 -0.917 -1.007
Line 8 -0.364 -0.073 -0.265 -0.893 -0.939 -0.634
Line 9 10.769 10.588 11.095 -0.483 -0.342 -0.421
Line 10 -0.375 -0.065 -0.262 -0.893 -0.921 -0.651

Pra Prb Prc Qra Qrb Qrc
[MW] [MW] [MW] [MVAR] [MVAR] [MVAR]

Line 1 -10.872 -10.652 -10.808 -0.301 0.366 0.312
Line 2 -2.841 -1.956 -2.122 -0.908 -1.002 0.056
Line 3 3.708 4.371 4.386 -0.129 -0.170 0.612
Line 4 12.801 13.109 13.255 1.698 1.784 2.172
Line 5 6.052 6.137 6.384 -1.152 -1.272 -1.107
Line 6 14.519 14.448 14.562 0.214 0.452 0.312
Line 7 -11.572 -11.375 -11.704 0.072 0.057 0.139
Line 8 0.354 0.074 0.265 0.827 0.880 0.573
Line 9 -10.752 -10.563 -11.080 0.118 -0.018 0.048
Line 10 0.376 0.082 0.261 0.859 0.883 0.598

in this section refer to a 200 seconds time-window on August
16th 2016 at 8 a.m. UTC time (10 a.m. Swiss local time).

A snapshot of the grid operating-conditions is shown in
Table IV, which contains the power measurements at both
ends of each line (derived from the voltage and current
synchrophasors) at the first time-step of the considered time-
window. The sending and receiving line-ends are specified
in Fig. 1 and the power-flow is positive if exiting from the
bus. Note the presence of not negligible active-power flow
imbalances among the phases of a line (e.g., almost 1 MW
difference between phases a and b of line #2) and between the
two parallel lines #1 and #9 (about 300 kW in phase c). Similar
observations can be made for the reactive power; therefore, a
three-phase state estimator is particularly useful in this case.

The voltage magnitude and phase-angle measurements are
plotted in Fig. 4 together with the estimates provided by the
LWLS estimator. The voltage estimates of the other two state
estimators (LWLS-LNR and LAV) are not shown in this figure,
as they are very similar to those of the LWLS. It can be
seen that the errors introduced by transducers are compensated
by the state estimators that provide a consistent profile of
the estimated voltages. In particular, the measured voltage
magnitude at bus #6 is affected by a visible bias close to the
limit of the PT accuracy class. Also, all voltage magnitudes
and phase-angles are close to each other, because the grid is
composed of electrically short and not heavily loaded lines.

To give an idea of the time-evolution of the voltage, Fig. 5
shows the voltage measurements and estimates at bus #1 with
a reporting time of 20 ms and an observation interval of 30 s.
As shown in Fig. 1, bus #1 is equipped with 5 PMUs, therefore
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Fig. 4: Voltage magnitude and phase at every bus at a specific
time-step k = 1.
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Fig. 5: Time evolution of the measured and estimated voltage
magnitude at bus #1.

5 measurements are provided (some plots are superimposed).
Here the voltage estimates of the three state estimators are
almost superimposed.

On the contrary, the time evolution of the current estimates
shown in Fig. 6 shows a very different behavior of the
state estimators. The LAV estimates oscillate between the
measurement values and the LWLS estimates, whereas the
LWLS-LNR estimates have even larger and sudden changes.
Indeed, 18 measurements on average are identified as bad-data
at every time-step by the LNR-test. The normalized residuals
of voltage measurements are lower than 2, whereas the large
majority of the normalized residuals of current measurements
are higher than the threshold set for the LNR-test (equal to 4),
as we can observe in Fig. 7 (only real parts of the sending-end
current-flow measurements are shown as imaginary parts and
receiving-end have similar residuals). The question is whether
all measurements flagged as bad-data contain real gross errors
or the LNR-test is giving erroneous results.

To confirm this hypothesis, an off-line simulation to assess
the impact of line-parameter errors in this specific grid is
carried out. Using a power flow solution corresponding to
the loading of the real grid, 10000 state estimations are
executed where different combinations of random parameter
errors in the ±5% range are added to all transmission lines.
Fig. 8 shows the statistics of the normalized residuals obtained
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Fig. 7: Statistics of the distributions of the normalized residuals
related to the real-part of the sending-end current measure-
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with this procedure. We can observe that relatively small
errors in estimating line parameters (smaller than 5%) produce
normalized residuals in the range of the ones observed in
the real grid. Therefore, since it is plausible that ±5% errors
are present in the parameters, we can conclude that the high
normalized residuals are due to line-parameter errors and not
to gross errors in the measurements. In this case, the LNR-test
erroneously flags some measurements as bad-data producing
the undesired behavior observed in Fig. 6.

After having clarified the cause of the small deviations
of the estimated values from the measured values, we can
compare the residuals (difference between estimated and mea-
sured quantity, expressed in Amperes) related to the sending-
end current-flow magnitudes for the three state estimators,
which are displayed in Fig. 9. As expected, the LWLS-LNR
exhibits the highest residuals in some time-steps, because good
measurements are erroneously eliminated. The LWLS and
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Fig. 8: Off-line simulation where random errors are added to
the line parameters in the range ±5%. Normalized residuals
related to the real-part of the sending-end current measure-
ments of the LWLS estimator (similar residuals are obtained
for the imaginary parts and for the receiving-end currents).
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Fig. 9: Statistics of the distributions of the residuals of the real
parts of the sending-end current-flow measurements (similar
residuals are obtained for the imaginary parts and for the
receiving-end currents).
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Fig. 10: Time-latency assessment: CDF of the time latency
associated with the analyzed SE processes.

LAV residuals are smaller than 10 A along the 200 seconds
time-window, which are quite small (less than 6%) compared
to the measured current values. Therefore, the LWLS and LAV
estimates can be considered to be accurate enough and the bad-
data identification threshold could be increased from 4 to 50
or 100 in order to avoid flagging good measurements as bad-
data due to errors in the line parameters. In this case, since no
measurements are eliminated by the LNR test, the LWLS-LNR
and the LWLS estimators use the same set of measurements
and their results will be identical.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



B. Time-latency assessment

This section is meant to assess the timing performance of
the overall SE process in order to demonstrate the appropri-
ateness of the developed tools to serve real-time power system
applications. The total time-latency of the process is defined
as the time interval between the central instant of the PMU
acquisition time-window and the instant the SE provides the
estimated state. To this end, the PDC is equipped with a
GPS receiver providing the absolute time information with a
resolution of 1 ms and the PMU data flow is tracked along
the entire chain of events, measuring:

• The data frame arrival time in the PDC (PMU latency);
• The time-aligned dataset push time (PDC latency);
• The SE computation time.
Figure 10 shows the cumulative distribution function (CDF)

of the latency of every step of the above-described chain,
considering the same data samples used in Section V-A.
As evident from the figure, the PDC absolute time data
pushing logic enables the cancellation of the latency variations
introduced by the telecommunication network: even though
data are collected by the PDC between 40 and 48 ms, time-
aligned datasets are streamed to the SE with a latency that is
exactly 60 ms for every data frame.

Depending on the computational complexity of the adopted
SE method, the final latency can vary widely. As expected, the
LWLS is the fastest algorithm, characterized by 0.5 ms mean
latency, as it accounts for the lower computational burden. By
contrast, the LWLS-LNR is the slower one (31 ms on average),
as, at each time-step, it has to compute the covariance matrix
of the residuals and re-estimate the state as many times as
the number of identified bad-data. Indeed, in the considered
observation interval, the LWLS-LNR rejects on average 18
current measurements per time-stamp. Independent of the
adopted SE process, the overall computation time is below
120 ms, which is compatible with real-time applications.

VI. CONCLUSION

The paper described the practical implementation and re-
sults of state estimation in the 125-kV subtransmission net-
work of the city of Lausanne, Switzerland. We assessed the
SE accuracy using two methods, the LWLS and the LAV, and
we measured the time-latency of every element of the process.

We observed that the effect of line parameter errors and
measurement errors can be similar, as they can both generate
large measurement residuals. This phenomenon causes the
LNR-test to erroneously eliminate some measurements from
the data set. We showed with offline simulations that even
5% errors in the line parameters may generate large residuals.
In a real grid where both parameter and measurement errors
are inevitably present, it is not trivial to discriminate between
the two. In the case presented in this paper, thanks to the
high measurement redundancy, we could verify that the large
residuals are most probably due to line parameter errors. A
network operator should first carefully verify the reliability of
line parameters in order to ensure a high SE accuracy [17].

Moreover, if the LWLS is used, the bad-data identification
threshold used by the LNR-test should be adjusted in order to
avoid flagging good measurement as bad-data. The LAV does
not suffer from this problem, but has a higher computational
time.

The latency assessment has proved that the SE output is
made available with very low latency, below 100 ms, which is
compatible with time-critical power system applications. The
fastest estimator is the LWLS without bad-data processing
(overall latency of about 60 ms). However, the more bad-data
are identified by the LNR-test, the more re-computations of
the estimates are required; indeed, we showed that the overall
computation time of the LWLS can become higher than that
of the LAV.
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[11] A. Derviškadić, P. Romano, M. Pignati, and M. Paolone, “Architecture
and experimental validation of a low-latency phasor data concentrator,”
IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2885–2893, July
2018.

[12] “IEEE standard for synchrophasor data transfer for power systems,”
IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pp.
1–53, Dec. 2011.

[13] M. Paolone, J.-Y. L. Boudec, S. Sarri, and L. Zanni, Advances in Power
System Modelling, Control and Stability Analysis. F. Milano, Ed.
Edison, NJ, USA: IET, 2015, ch. 6: Static and recursive PMU-based
state estimation processes for transmission and distribution power grids.

[14] L. Zanni, “Power-system state estimation based on PMUs static
and dynamic approaches - From theory to real implementation,”
PhD Thesis, EPFL, Lausanne, 2017. [Online]. Available:
http://infoscience.epfl.ch/record/228451

[15] Joint Committee for Guides in Metrology (JCGM), “Guide to the
expression of uncertainty in measurement (GUM),” JCGM 100:2008,
2008.

[16] A. Pal, P. Chatterjee, J. S. Thorp, and V. A. Centeno, “Online calibra-
tion of voltage transformers using synchrophasor measurements,” IEEE
Transactions on Power Delivery, vol. 31, no. 1, pp. 370–380, Feb. 2016.

[17] Jun Zhu and A. Abur, “Identification of network parameter errors,” IEEE
Transactions on Power Systems, vol. 21, no. 2, pp. 586–592, May 2006.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020


