
Grid-aware Distributed Control of Electric Vehicle
Charging Stations in Active Distribution Grids

Sherif Fahmy, Rahul Gupta, Mario Paolone
Distributed Electrical Systems Laboratory
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Abstract—The penetration of electric vehicle (EV) charging
stations (CSs), along with the progressive connection of stochastic
distributed generation, is increasing the probability of violating
the power distribution grid operational constraints and deterio-
rate the quality of power supply. To this end, the paper proposes
a real-time control scheme for allocating power set-points to
EV CSs while accounting for the grid operational requirements.
In the proposed problem formulation the grid and the power
injections are modelled accounting for their unbalanced 3-phase
nature, thus enabling to formulate the problem objective and its
constraints adopting the sequence decomposition. The EVs’ users
need, along with the stochastic nature of other uncontrollable
injections (e.g. loads and generation from photovoltaic generation
units), are also taken into account. A distributed control scheme,
with a minute-scale control horizon, is proposed where local con-
trollers, operating at EV aggregation level, compute EV battery-
secure power set-points. These controllers send their set-points
to a central controller operating at the grid aggregation level.
The central controller solves a scenario-based linearised optimal
power flow accounting for grid operational and power quality
constraints. Then, it sends back its solution to the respective local
controllers. The obtained iterative algorithm is efficiently solved
until convergence. We analyse the performance of the proposed
control scheme via a set of simulation ran on the IEEE-34 feeder.
Comparisons with two other control algorithms, a grid-unaware
local controller and a myopic maximum power controller, are
included to benchmark the proposed control scheme.

Index Terms—Electric Vehicles Charging Stations, Real-Time
Distributed Control, Grid Security and Power Quality.

I. INTRODUCTION

The electrification of the private transportation sector, along
with a move towards distributed renewable generation, are be-
ing proposed as early solutions to reduce CO2 emissions. Due
to their high-power demand, the deployment of electric vehicle
(EV) charging stations (CSs) is increasing the probability of
violating static distribution grid operational constraints (i.e.,
exceeding branch ampacity limits, nodal under/over-voltages
and substation transformers overloads) [1]. Furthermore, with
the increased penetration of single-phase EV chargers, the
risk of voltage unbalances is high, thus, deteriorating the
power quality of distribution grids. The complexity behind
developing control schemes that deal with the latter point
originates from several factors: the stochastic behaviour of
EV users, the high EV power demand, the stochasticity of
renewable distributed generation that might not coincide with
EV peak load demands and the scalability of centralized

control charging schemes. In this regard, the paper proposes a
real-time (i.e. seconds to minutes scale) distributed EV power
allocation algorithm that takes into account EV users’ needs,
grids’ static and power quality constraints, and the stochastic
nature of power generation units and loads.

Centralised and distributed real-time algorithms for EV
scheduling and optimal charging that account for grid con-
straints can be found in the literature. In, [2], a distributed
locally optimal scheduling algorithm for EV CSs that deter-
mines optimal charging/discharging powers is proposed. The
local algorithms take into account EV user needs, battery
lifetime and local energy balances using grid forecasts sent by
a centralized grid observer. In [3] and [4], two centralised grid-
aware EV power allocation algorithms are developed. In [3],
Authors develop an iterative algorithm that first computes EV
power allocations that satisfy user demands based on priority
schemes. Then, it verifies through load-flow calculus whether
the allocations satisfy the static grid voltage constraints; in
case they do not, charging is postponed to the next time-
step. In [4], the proposed algorithm assumes that grids are
balanced three-phase, linearizes the power-flow equations and
accounts for substation transformer maximum power capacity
and voltage magnitude violations at nodes where CSs are
connected. In [5] and [6], two decentralised grid-aware EV
power allocation algorithms are developed. In [5], assuming
that the grid is radial and balanced, a lossless LinDistFlow
power-flow linearization is used to develop a decentralised
EV charging control scheme to achieve EV energy demand
while maximizing grid peak-load shaving. In [6], assuming
that grids are radial, ”roughly balanced” and that losses are
”relatively small”, a three-phase power-flow linearization using
the branch-flow model is used to develop a decentralised EV
charging protocol. Both algorithms in [5] and [6] incorporate
EV user needs, however, although battery degradation is
considered in [5], they both do not consider non-EV load and
generation stochasticity. With the exception of [6], all these
works assume balanced three-phase grids thus neglecting the
impact that single-phase EV charging may have on voltage
unbalance.

Unlike all the presented works, we propose a real-time
decentralised control scheme to allocate active (charging) and
reactive power setpoins to EV CSs. We directly account in
the problem for the operational constraints (voltages, branches
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and transformers ampacity limits) and power quality of grids
without any assumptions on grid topology model and losses.
To do so, we use a three-phase OPF modelled by the power-
flow linearisation based on sensitivity coefficients [7]. Further-
more, uncontrollable and stochastic loads and generation are
taken into account by leveraging scenario-based optimisation.
Additionally, EV user needs (i.e. reaching target state-of-
charges at specified departure times), EV battery wearing and
EV charging modes (i.e. three-phase, single-phase and DC
charging) are all included in the problem formulation. Finally,
to guarantee scalability, the problem is formulated in a separa-
ble form enabling the use of the alternating direction method
of multipliers (ADMM) to decompose and solve the problem
in a distributed manner. ADMM guarantees to converge to
the solution of the non-distributed version of the proposed
problem as power-flow equations are linearised. As known, the
ADMM splits the non-distributed problem into local problems
and a central aggregator problem. In the proposed method,
local problems satisfying EV user needs are solved at the
level of EV aggregators of the nodes where there are EV
CSs and do not require any knowledge of the grid parameters,
and the central aggregator problem is solved at the level of
a distribution grid operator (grid aggregator). Indeed, the grid
aggregator coordinates with all EV aggregators to guarantee
the satisfaction of grid security constraints and power quality
under injection uncertainty. It is therefore assumed that, the
developed method is aimed to be used by distribution grid
operators to ensure secure EV charging.

In summary, the main contributions of this paper are: i) a
formulation of a real-time control scheme to account for grid
operational and power quality constraints ii) a formulation of a
generalized control scheme addressing the unbalanced nature
of EV chargers, iii) to propose a separable formulation of
the problem that decouples the grid and EV CSs aggregators’
objectives and constraints, thus, enabling a distributed scalable
formulation of the proposed control scheme and iv) numeri-
cally benchmark the proposed method against controllers that
do not account for the grid constraints (grid-unaware local
controllers (GULC) and myopic maximum power controllers
(MMPC).

The rest of the paper is organised as follows. In Section II,
we first introduce the nomenclature, the grid modelling and
the mathematical formulation of the problem. In Section III
the ADMM technique used to distribute the problem is briefly
recalled with respect to its application to the proposed control
framework. In Section IV, the results produced by applying the
proposed method to the IEEE-34 node feeder [8] are presented.
Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

In this work, we consider generic 3-phase distribution
networks (whose phases are denoted as a, b and c) with either
meshed or radial topologies, where the neutral is available and
distributed. They contain N = |N | buses, where N is the set
of bus indexes, and, |E| branches with E the set of network
branches. R ⊂ N is the set of resource nodes. C ⊂ R is the

set of nodes to which EV CSs are connected. Z ⊂ N \R is the
set of zero-injection nodes. All resources (i.e. generation, loads
and zero-injection nodes) are modelled as PQ nodes. {0} ⊂ N
is the slack node. Assuming that different branches of the net-
work are not electromagnetically coupled and have non-zero
admittance, network branches are represented by 3-phase Π-
circuit equivalents with known parameters that already embed
the neutral conductor [9]. Thus1, the network is described by
the so-called compound admittance matrix [10] denoted by
Ȳ =

[
Y φ1φ2

ij

]
, with, i, j ∈ N and φ1, φ2 ∈ {a, b, c}. The

phase-to-neutral nodal voltages and nodal injected currents
are respectively denoted by Ēabc

t =
[
Ēφi,t

]
and Īt =

[
Īφi,t

]
,

with t being the time-step, i ∈ N and φ ∈ {a, b, c}. The
phase-to-neutral nodal positive-, negative- and zero- sequence
voltages are denoted by Ēseq

t =
[
Ēseq
i,t

]
, with i ∈ N and seq ∈

{positive, negative, zero}. Sequence voltages can be directly
computed by multiplying the phase-to-ground nodal voltages
with the transformation matrix T abc→seq = diag

(
T abc→seq
i

)
,

where T abc→seq
i = 1

3

[
1, 1, α; 1, α2, α; 1, α, α2

]
, with α =

ej2π/3. The branch currents are denoted by Ībr,t =
[
Īφi,j,t

]
,

with (i, j) ∈ E . The apparent power injections are denoted
by S̄t = P t + jQt =

[
S̄φi,t

]
= s̄t + s̄t,EV, with s̄t =[

1i∈R

{
s̄φi,t

}]
being the nodal injections of all resources,

s̄t,EV =
[
1i∈C

{
s̄φi,EV,t

}]
being the nodal injections of the per-

node-aggregated EV CSs. The apparent power injections at the
slack node are denoted by S̄0,t =

[
S̄φ0,t

]
=
[
Ēφ0,t¯

Iφ0,t

]
with

φ ∈ {a, b, c}. We adopt the convention where negative nodal
injections are absorptions while positive injections are actual
injections into the grid. Note that active nodal power injections
of per-node-aggregated EV CSs, pt,EV = <{s̄t,EV}, are non-
positive as we only consider EV charging in the scope of this
paper. However, the reactive nodal power injections of per-
node-aggregated EV CSs, qt,EV = ={s̄t,EV}, are considered
bi-directional when one or more CSs connected to a node i ∈ C
support bi-directional reactive power-flows (e.g. mode 4 - DC
chargers).

The goal of the proposed method is to solve an optimization
problem (OP), at every time-step t, that determines s̄t,EV. The
OP objectives and constraints can be grouped into two sub-
problems. The first, referred to as grid sub-problem, guarantees
the safe operation of the grid by solving an OPF that considers
the stochastic nature of non-EV nodal injections (c.f. II-A).
The second, referred to as EV sub-problem, satisfies EV user
requirements while minimizing EV-battery wearing. In the
following we present the objectives and constraints of each
of the sub-problems separately.

A. Grid sub-problem

The grid sub-problem is a stochastic security-constrained
optimal-power-flow (OPF). As known, OPF problems are non-

1Matrices and vectors will be denoted in bold (e.g. M ), complex numbers
will be denoted with an over-bar (e.g. x̄ = |x̄|∠x̄ = <{x}+j={x}), complex
conjugates with a under-bar (e.g.

¯
x = conj(x̄) = |

¯
x|∠

¯
x = <{x} − j={x}).
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convex due to the nature of the power-flow equations. Thus,
to make it tractable and efficiently solvable, we linearize the
power flow equations to express the security constraints (see
section II-A2) [11]. To deal with the stochasticity of non-
EV injections, we use scenario-based optimization. Note that,
even though we linearize the power-flow equations, we did
not use chance-constrained optimization since our linearization
model is dependent on the (stochastic) state of the grid and
is not static (see [12]). Each scenario contains a collection of
nodal power injections for resource nodes sampled from pre-
computed probability density functions (PDFs). In the follow-
ing, we first describe the method to create the latter PDFs.
Then, we explain the formulation of the security constraints
and, finally, present the grid sub-problem objective.

1) Constructing PDFs for resources’ nodal power injec-
tions: the PDFs are created using historical data in the form of
active and reactive nodal injection profiles for every resource
connected to a given node. Each of these profiles is first
clustered into 4 seasons (i.e. winter, spring, summer and
autumn), then, sub-clustered into day-type (i.e. working days,
weekend or vacation days), then, finally sub-sub-clustered into
the fixed time resolution of the control algorithm. For every
sub-cluster a Gaussian mixed model (i.e. a sum of multivariate
Gaussian normal distributions) is fitted to the data using
MATLAB’s function fitgmdist. This is done to account
for the time correlation between the different time-steps for
each specific sub-clusters. At the end, we obtain multivariate
(the random variables here are all the time-steps of a given
day) PDFs for each nodal injection pertaining to a season and
day-type.

2) Constraints: they are the static operational and power
quality constraints of a distribution grid, i.e., the branch
currents magnitudes, the nodal voltages magnitudes, the ratios
of nodal voltages negative- over positive- sequences and zero-
over positive- sequences, and the substation apparent power
magnitudes, should all be within predefined bounds. The
negative- and zero- sequence voltage bounds are added to
abide with the EN50160 std. [13] and to mitigate the voltage
unbalances created by single-phase EV chargers. Each of the
latter electrical quantities is linearized and expressed using
their partial derivatives with respect to active and reactive
nodal injections, i.e., sensitivity coefficients computed using
the approach proposed [7]. The linearization is nothing more
than a first-order Taylor expansion of the system state variables
about a given set of nodal power injections. As we consider
scenario-based optimization, each grid operational constraint
needs to be verified for all scenarios d = 1, ..., D. Recall that a
scenario represents random realizations of resource injections
that assume the non-presence of EV CSs. The constraints are
given by,

∣∣∣Ēabc
t

∣∣∣d ∈ [Enom − β,Enom + β] ,
∣∣Ībr,t

∣∣d ≤ Imax
br ,

∣∣S̄0,t

∣∣d ≤ Smax
0∣∣∣Ēnegative

t

∣∣∣d ≤ δneg

∣∣∣Ēpositive
t

∣∣∣d, ∣∣Ēzero
t

∣∣d ≤ δzer

∣∣∣Ēpositive
t

∣∣∣d
(1)

where, Enom and β are tolerances for the nodal voltage
magnitudes, δneg and δzer are, respectively, tolerances for the
magnitudes of the negative- and zero- sequence nodal voltages,
Īmax

br =
[
Īφ,max
i,j,t

]
, with (i, j) ∈ E , is the vector of branch am-

pacity limits, S̄max
0 =

[
S̄φ,max

0,t

]
is the vector of per phase sub-

station transformer apparent power limits and a superscript d
refers to a scenario.

∣∣∣Ēabc
t

∣∣∣ , ∣∣Ībr,t
∣∣ , ∣∣S̄0,t

∣∣ , ∣∣∣Ēnegative
t

∣∣∣ , ∣∣Ēzero
t

∣∣
and

∣∣∣Ēpositive
t

∣∣∣ are generically linearly approximated by,

Γdt ≈ Γ̃dt

(
˜̄Sdt

)
+

∂Γt
∂P t

∣∣∣∣
˜̄Sdt

(
pt,EV − pt−1,EV

)
+

∂Γt
∂Qt

∣∣∣∣
˜̄Sdt

(
qt,EV − qt−1,EV

) (2)

where, Γ ∈
{∣∣∣Ēabc

t

∣∣∣ , ∣∣Ībr,t
∣∣ , ∣∣S̄0,t

∣∣ , ∣∣∣Ēnegative
t

∣∣∣ , ∣∣Ēzero
t

∣∣ ,∣∣∣Ēpositive
t

∣∣∣}, Γ̃dt
(
˜̄sdt
)

is the electrical quantity resulting from

a load-flow computation with nodal injections ˜̄Sdt = ˜̄sdt +
s̄t−1,EV, where ˜̄sdt are the sampled scenarios and s̄t−1,EV
the optimal EV injections of the previous control timestep,
and, the sensitivity coefficients ∂Γt/∂P t| ˜̄Sdt and ∂Γt/∂Qt| ˜̄Sdt
being, respectively, the partial derivatives of the electrical
quantity Γ with respect to nodal active and reactive power
injections, computed using the injections ˜̄Sdt following the
method in [7]. Note that in [7] only the techniques for
computing the nodal voltage and branch currents sensitivity
coefficients are presented. However, assuming that Ȳ is invari-
ant to nodal injections, all other sensitivity coefficients can be
directly computed using the following (3) and equation (10)
in [7].

∂S̄φ0,t
∂{P or Q}t

∣∣∣∣∣
˜̄sdt

=
∂Ēφ0,t

∂ {P or Q}t

∣∣∣∣∣
˜̄sdt

Īφ0,t + Ēφ0,t
∂Īφ0,t

∂{P or Q}t

∣∣∣∣∣
˜̄sdt

∂
[
Ēzero
i,t , Ē

positive
i,t , Ēnegative

i,t

]T
∂{P or Q}t

∣∣∣∣∣∣∣
˜̄sdt

= T abc→seq
i

∂
[
Ēai,t, Ē

b
i,t, Ē

c
i,t

]T
∂{P or Q}t

∣∣∣∣∣
˜̄sdt

(3)
Finally, note that the only variables in (2) for the control
timestep t, i.e., pt,EV and qt,EV, do not have a superscript
d as we want these variables to satisfy the constraints for all
scenarios, rendering the satisfaction of the constraints robust
to nodal injections stochasticity as D increases.

3) Objective: From the grid operator perspective, since all
the security constraints were added as hard constraints, the
objective is, in theory, free to be defined by the modeller. In
practice, having branch currents close to their ampacity limits
can affect the cables’ lifetimes and increase network losses,
thus, the simplest considered objective is to minimize〈

1,

 ∂
∣∣Ībr,t

∣∣
∂Qt

∣∣∣∣∣
˜̄Sdt

(
qt,EV − qt−1,EV

)� ∣∣Ībr,t
∣∣〉 , (4)

where 1 is a vector of ones, � is the Hadmarad division (i.e.
element-wise vector division) and the <,> is the dot product.
The latter objective minimises the per-unit-amapcity branch-
current-magnitudes through the reactive power contribution
at EV CSs. This is done to allow the active power to be
fully optimised for the EV sub-problem objectives (see section
II-B2), thus, not penalising EV charging.

B. EV sub-problem
The EV CSs sub-problem aims, for every time-step, to com-

pute the power allocations given to the different EVs connected
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to the different CSs k, with k = 1, ...,K(i), where K(i) is
the total number of CSs connected to node i ∈ C. Indeed, we
assume that at every node i ∈ C, there is an aggregator that
can send active and reactive power setpoints to all CSs (or
EV plugs) k = 1, ...,K(i). For simplicity, and without loss of
generality, each CS is assumed to have a fixed charging mode,
i.e. three-phase (3ph), single-phase (1ph) or direct current
charging (DC). Furthermore, we assume three-phase chargers
are balanced, DC chargers are connected to all three phases
through a fully balanced inverter (i.e. balanced in active and
reactive powers), and single-phase chargers can be connected
to any phase. Additionally, only CSs with DC charging are
assumed to have controllable bidirectional reactive power flow
as this is the situation in practice. However, in the future, if
other charger types start supporting bidirectional power flow,
little change needs to be done to the problem formulation as
it remains fundamentally the same2.

To formulate the problem, we assume that every time an
EV is plugged to a CS, the user will input five quantities:
(i) the initial SoC of the vehicle in percentage (SoCt0,k,i,k,i,
with t0,k,i being the arrival time of the car at the k-th CS
of node i), (ii) the estimated departure time (tf,k,i), (iii) the
desired SoC at departure (SoCtf,k,i,k,i), (iv) the car model,
and, (v) whether or not the user would like the k-th CS to
continue providing charging power if the time t exceeds tf,k,i
(τ+
t,k,i ∈ {0, 1}). Note that, in practice, the departure time can

be chosen by the user if he/she actually has a time-constraint,
otherwise, the charging duration can be translated to the
user as an equivalent charging price. It is worth mentioning
that the car model provides information on the maximum
charging powers (Pmax

k,i > 0) and battery capacity (Emax
k,i ) of

the vehicle, the charging efficiency (ηk,i) and whether or not
the SoC is measured (and sent) by the vehicle (to the CS). In
the following we will present the constraints and objectives
pertaining to the EV CSs sub-problem.

1) Constraints: the constraints of each EV aggregator of
node i ∈ C ensure three aspects: (i) the SoC of each EV
connected to the k-th CS of node i will remain below the
target SoC; (ii) the per-phase nodal injections correspond to
the charging mode of each connected EV, and, (iii) charging
powers are all within EV inverter limitations. The constraints
are described here below.
SoC lower that target after application of optimal EV power setpoint

SoCt,k,i −
ηk,iPt,k,i∆t

Emax ≤ SoCtf,k,i,k,i (5)

EV power setpoint limitations

(Pt,k,i, Qt,k,i) ∈


{

(P,Q) | P 2 +Q2 < Smax
k,i

2, ωt,k,i = 1
P ≥ −Pmax

k,i

}
{(0, 0)} ωt,k,i = 0

(6)

2Extending the method to support Vehicle-to-Grid-enabled charged is
straight-forward using the techniques presented in [14].

Translation of EV power setpoint to phase powers

Pt,k,i =

{
P at,k,i + P bt,k,i + P ct,k,i
Pφt,k,i

k ∈ 3ph or DC
k ∈ 1ph, φ ∈ {a, b, c}

Qt,k,i =

{
Qat,k,i +Qbt,k,i +Qct,k,i
0

k ∈ DC
k ∈ 1ph or 3ph

P at,k,i = P bt,k,i = P ct,k,i, P
a
t,k,i ≤ 0 k ∈ 3ph or DC

Qat,k,i = Qbt,k,i = Qct,k,i k ∈ DC
P bt,k,i = P ct,k,i = 0, P at,k,i ≤ 0 k ∈ 1ph

(7)
Link to Grid sub-problem Variables

s̄φi,EV,t =

K(i)∑
k=1

Pφt,k,i + jQφt,k,i, ∀φ ∈ {a, b, c} (8)

where, ∆t is the fixed control time-step resolution, a sub-
script t represents time-step t, Pt,k,i and Qt,k,i are variables
representing respectively the active and reactive total power
at the k-th CS, P at,k,i, P

b
t,k,i, P

c
t,k,i, Q

a
t,k,i, Q

b
t,k,i and Qct,k,i

are variables representing the active and reactive per phase
nodal injections at the k-th CS, ωt,k,i ∈ {0, 1} is equal
to 1 if an EV is plugged at time-step t to the k-th CS of
node i ∈ C and Smax

k,i is the maximum supported apparent
power of the k-th CS of node i that is here assumed to be
independent of the AC and DC-side voltages of each CS. Also,
for simplicity, the maximum charging power Pmax

k,i per EV
and associated efficiency are assumed independent of the SoC
which, in practice, may not be true as some EVs reduce their
charging powers when their SoC gets close to 1. However, if
known, these dependencies can easily be added to the problem
formation. Note that, the boolean ωt,k,i ∈ {0, 1} is known at
every time-step which simplifies the problem as it does not
introduce the non-convexity usually associated with integer
variables representing EV arrival and departure times. Finally,
if the SoC of the present time-step t (SoCt,k,i) is measured
then we directly have access to it, otherwise, it is estimated
as:

SoCt,k,i = SoCt−1,k,i −
ωt,k,iηk,iPt−1,k,i∆t

Emax
k,i

2) Objective: The objective of the EV sub-problem is
twofold.

The first objective is to fairly achieve the target SoC for
every connected EV as soon as possible. This is given by,

K(i)∑
k=1

κt,k,i

(
SoCtf,k,i,k,i − SoCt,k,i +

ηk,iPt,k,i∆t

Emax

)
(9)

where κt,k,i is given by

κt,k,i =


µt,k,i τt,k,i = 0, ωt,k,i = 1

0.1νt,k,i min
k′|τt,k′,i=0

µt,k′,i τt,k,i = 1, ωt,k,i = 1

0 ωt,k,i = 0

,

(10)
where τt,k,i is a boolean constant that is true if the present
time-step t exceeds the kth EV’s departure time (tf,k,i),
µt,k,i ∈ [0, 1] is given by,

µt,k,i =

min
k′|τt,k′,i=0

{tf,k′,i − t}

tf,k,i − t
SoCtf ,k,i − SoCt,k,i

max
k′|τt,k′,i=0

{
SoCtf ,k′,i − SoCt,k′,i

}
(11)

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



and νt,k,i ∈ [0, 1] is given by,

µt,k,i =
SoCtf ,k,i − SoCt,k,i

max
k′|τt,k′,i=1

{
SoCtf ,k′,i − SoCt,k′,i

} . (12)

The weighting factor κt,k,i gives: (i) more weight to plugged
EVs with SoCs that are far from their target SoCs (SOCtf ,k,i)
and with little remaining time before their specified de-
parture times (tf,k,i) [µt,k,i] (ii) ten times less weight
than the least weighted plugged EV that has not surpassed
its tf,k,i to plugged EVs that have surpassed their tf,k,i
[0.1 min

k|τt,k,i=0
µt,k,i] (iii) more weight, within plugged EVs that

have surpassed their tf,k,i, to plugged EVs with SoCs that are
far from their target SoC (SOCtf ,k,i) [νt,k,i].

The second objective is to minimize EV battery wearing.
As suggested in [15], the latter can be achieved by avoiding
frequent variations in EV charging power. This is given by,

K(i)∑
k=1

λt,k,iκt,k,i |Pt,k,i − Pt−1,k,i|
∆t

Emax , (13)

where the scaling factor λt,k,i ∈ [0, 0.5], given by,

λt,k,i =
1

2

t−1∑
t′=t0,k,i+1

|Pt′,k,i − Pt′−1,k,i|

t−1∑
t′=t0,k,i+1

Pmax
k,i

(14)

gives more weight to (i.e. penalizes more) EVs whose charging
powers have changed several times since being plugged. In
the worst case where the charging power varies between each
consecutive time-steps between 0 and Pmax

k,i since the EV was
plugged, λt,k,i will be equal to 0.5.

As a final note, observe that both (9) and (13) are of the
same nature, i.e. they are all in percentages, and, are scaled
by κt,k,i. This is done to ensure that for any EV, its battery
ageing objective can be weighted, thanks to λt,k,i, from zero
to half its ScC objective.

C. Centralised Full Optimization Problem

The centralised full optimization problem is given by,

min
pt,EV,qt,EV

σgrid ((4)) + σEV

∑
i∈C

((9) + (13))

s.t.
(1), ∀d = 1, ..., D
(5)− (7), ∀k = 1, ...,K(i), ∀i ∈ C
(8), ∀φ ∈ {a, b, c}, ∀i ∈ C

(15)

where σgrid and σEV are weights. Note that, minimizing (13)
smooths the EV active power charging profiles but also renders
the constraints (1) less prone to approximation errors. This is
because the less nodal injection changes there are between
successive iterations, the more the linearizations in (1) are
accurate.

III. DISTRIBUTED OPTIMIZATION

Solving the centralized problem (15) requires user informa-
tion from local EV aggregators, which might not be easily
accessible due to privacy and security concerns among the
EV owners. Also, the centralized approach might not be
easily scalable with respect to number of EV CSs. Thus,
following the approach in [16], we reformulate the centralized
optimization problem (15) by introducing a set of auxiliary
variables s̄

′φ

i,EV,t, ∀φ ∈ {a, b, c}, which mimic the behaviour
of original variables s̄φi,EV,t, ∀φ ∈ {a, b, c}. The augmented
problem is given by,

min
pt,EV,qt,EV,p

′
t,EV,q

′
t,EV

σgrid ((4)) + σEV

∑
i∈C

((9) + (13))

s.t.
(1), ∀d = 1, ..., D
(5)− (7), ∀k = 1, ...,K(i), ∀i ∈ C
s̄
′φ
i,EV,t =

∑K(i)
k=1 P

φ
t,k,i + jQφt,k,i, ∀φ ∈ {a, b, c}, ∀i ∈ C

s̄t,EV = s̄
′
t,EV

(16)
The problem in (16) is a standard sharing problem that is
separable in each component s̄

′φ

i,EV,t, ∀φ ∈ {a, b, c}. Using a
sequence of Lagragian multipliers yt and the scaled Lagragian
multipliers ut = yt/ρ, the last constraint of (16) can be moved
into the objective. The reformulated problem can be solved
using Algorithm 1 that exploits the iterative scaled-ADMM
sharing problem [17].

Algorithm 1 is iterative, with each iteration v composed
of three steps. First, each EV aggregator associated to node
i ∈ C solves, separately and in parallel, (17), then sends
the solutions to the grid aggregator. Once the grid aggregator
receives the solutions of all EV aggregators, it solves (18)
and updates the dual variables with (19). Finally, the grid
aggregator sends back to the distributed EV aggregators the
corresponding dual variables and its optimal solution (i.e.
s̄φ

v

i,EV,t, ∀φ ∈ {a, b, c} where the supercript v entails a value
at the v-th iteration). The procedure is repeated until the
convergence criterias are met, i.e. the primal ( (20) ) and dual (
(21) ) residual norms are below, respective, tolerance limits εpri

and εdual. Additionaly, the tuning parameter ρv is adaptively
updated using the technique presented in chapters 3.3-3.4 in
[17]. Finally, as (16) is linear, Algorithm 1 is guaranteed, in
principle, to converge to the optimal solution of (16) [17].

IV. COMPARATIVE SIMULATION

In order to illustrate the proposed method, a performance
comparison between three distributed control algorithms is
done. The first controller is the grid-aware distributed con-
troller (GADC) that uses all the steps in Algorithm 1 with
σgrid = 0.1 and σEV = 10. The second is a grid-unaware local
controller (GULC) that only solves the EV aggregator local
control problems (EV sub-problem) developed in this paper,
i.e. for each EV aggregator, ∀i ∈ C, (17) is solved locally with-
out the augmented Lagrangian term in the objective (i.e. with
objectives (9) + (13) subject to the same constraints). The third
is a myopic maximum power controller (MMPC) that simply
chargers any plugged EVs at maximum power until they reach
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Algorithm 1 ADMM to solve (16)

STOP = 0, v = 1, s̄0
t,EV = s̄

′0

t,EV = u0 = 0
while ∼STOP do

1. Solve EV Aggregator Problems (i.e. for each i ∈ C)

s̄
′φv

i,EV,t = arg min
s̄
′φ
i,EV,t

∀φ∈{a,b,c}

{
σEV ((9) + (13)) +

ρv

2

∥∥∥s̄′φi,EV,t − s̄
φv−1

i,EV,t + uφ
v−1

i

∥∥∥2

2

s.t.

(5)− (7) ∀k = 1, ...,K(i)

s̄
′φ

i,EV,t =
∑K(i)
k=1 P

φ
t,k,i + jQφt,k,i

(17)
2. Send all s̄

′φv

i,EV,t to Grid Aggregator
3. Solve Grid Aggregator Problem

s̄vt,EV = arg min
s̄t,EV

{
σgrid ((4)) +

ρv

2

∥∥∥ s̄
′v

t,EV − s̄t,EV + uv−1
∥∥∥2

2

s.t.

(1) ∀d = 1, ..., D
(18)

4. Update Dual Variable uv

uv = uv−1 + s̄
′v

t,EV − s̄vt,EV (19)

4. Check Convergence

STOP =
{∥∥∥s̄′vt,EV − s̄vt,EV

∥∥∥
2
≤ εpri

}
(20)

STOP = STOP and
{∥∥∥s̄vt,EV − s̄v−1

t,EV

∥∥∥
2
≤ εdual

}
(21)

5. Send back s̄φ
v

i,EV,t to EV Aggregators
6. Update ρv+1 and v ← v + 1

end while
return s̄vt,EV

their target SoCs. Note that both grid-unaware controllers
only find nodal active power EV injections and set reactive
power EV injections to zero as they do not have any incentive
to inject/absorb reactive power. The performance comparison
consists in finding first the optimal EV injections computed by
each controller, then, performing Monte-Carlo simulations for
each controller, using the latter optimal injections, to compute
the probabilities to violate grid operational and power quality
constraints. Specifically, the simulation consists in performing
a 24 hour (from 8:00AM to 7:55AM the next day) control
run with a 5 minute control resolution (i.e. ∆t = 5 mins) for
a summer weekday. At every time-step, the three controllers
first solve their EV power allocation problems (i.e. find s̄t,EV)
using the same inputs (i.e. initial EV SoC, arrival/departure
times and car model for all three controllers, and injection
scenarios for the GADC controller). Then, for the same time-
step, for each controller, a Monte-Carlo load-flow simulation
(MCLFS) with EV injections fixed to the controller optimum is

performed. All three MCLFS pertaining to the same time-step
use the same newly (i.e. different than the input scenarios used
to solve the GADC problem of the same time-step) randomly
sampled scenarios for non-EV nodal power injections. Recall
that, MCLFS consists in carrying out a large number of load-
flow computations with different nodal power injections and
outputs cumulative distributions functions (CDFs) of the grid
state variables. To recap: the output of the simulation for each
controller is, therefore, the optimal EV power allocations for
all EV aggregators along with their performance vis-a-vis (i)
grid operational and power quality constraints violations under
stochastic non-EV injections, and (ii) meeting EV user needs
(i.e. reaching target SoC at EV unplugging).

A. Grid model and data used in the simulation

The simulation is done the on the IEEE34 feeder [8],
where the voltage regulators are omitted in order to worsen
voltage control problems. Fig. 1 shows the network topology
and resource allocation. It is worth mentioning that in this
simulation 50%, 25% and 25% of single-phase EV chargers
are respectively connected to phases a,b and c of the electrical
grid. The base voltage and power are respectively set to
24.9kV and 1 MVA. The grid security bounds are set to
Enom = 1 p.u., β = 0.05, δinv = 0.5%, δhom = 0.75%,
Smax

0 = 1.5 p.u. and the amapcity limits found in [8] scaled by
a factor of 6. Fig. 2 shows all the aggregated (i.e. summed over
all nodes and phases) non-EV load (negative) and generation
(in the form of postive PV injections) daily active power
profiles already sub-clustered for a summer weekday. Each
aggregated profile is first disaggregated to different nodes by
simply scaling the profiles in Fig. 2 using the maximum active
nodal power injection limits shown in Table I. With all the
disaggregated profiles, for every node, for every time-step, a
multivariate PDF is computed using the technique explained
in II-A1. These PDFs are used to generate the non-EV
active power injection scenarios for the GADC controller and
the MCLFS. Indeed, using the scenario-reduction technique
presented in [18], the number of scenarios D used by the
GADC controller at every time-step is set to 75 and the
number of load-flow computations used in each MCLFS is
set to 250. Note that, reactive power injection scenarios are
inferred from the active power injection scenarios using power
factors sampled from the typical ranges (

[
PFmin, PFmax

]
)

given in Table I. Furthermore, to get the injections per phase,
the total three phase nodal sampled active and inferred reactive
injection scenarios are split pseudo-equally with an intra-phase
unbalance randomly chosen between 0 and 20%. Finally, note
that the values in Table I were chosen in a way to create no
grid operational and power quality constraint violations when
EV injections are null.

B. EV users model and data used in the simulation

Even though the method is built to accommodate any
random EV user behaviours (i.e. random arrival/departure
time, target SoC and car model), in this simulation, they
are synthesized to stress test the algorithm. Building on that,
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Fig. 1. Network graph with resource placement. R is a resource node. Z is
a zero-injection node. C is a resource node also containing EV CSs.

Fig. 2. Aggregated PV (positive) and load (active) active power profiles for
the simulated summer weekday.

we categorize all CSs connected to a node i ∈ C into
three groups: home, work and roadside. Home chargers are
considered as CSs placed in residential buildings/areas that
only support AC charging (i.e. three-phase (AC 3ph) and/or
single-phase (1ph)). Work chargers are considered as CSs
placed in industrial buildings/areas that, also, only support
AC charging. Roadside chargers, however, are considered
to only support DC charging. We assume that, all vehicles
connected to single-phase AC chargers are Jaguar i-Pace,
all vehicles connected to three-phase AC chargers are Tesla
Model S, and, all vehicles connected to DC chargers are
Nissan Leaf Plus. This is done to include real EV charging
efficiencies, maximum powers and battery energy capacities
in the simulation (see Tab. IIIa for values). Depending on

TABLE I
MAXIMUM THREE PHASE NODAL INJECTIONS AND POWER FACTOR RANGE

PER NON-EV RESOURCE.

Node Max [ kW ] PFmin PFmax

7 112.500 ± 0.800 ± 0.867
15 262.500 ± 0.800 ± 0.867
18 337.500 ± 0.800 ± 0.867
23 262.500 ± 0.800 ± 0.867
25 187.500 ± 0.800 ± 0.867

(a) PV Generation Nodes

Node Max [ kW ] PFmin PFmax

10 157.500 0.930 1.000
11 315.000 0.930 1.000
20 472.500 0.930 1.000
26 525.000 0.930 1.000
29 288.750 0.930 1.000

(b) Load Nodes

the group, the synthesized EV user behaviours are different.
Namely, we assume that home chargers are only active at
night from 5:00PM to 7:55AM the next day, a quarter of the
work chargers are active from 8:30AM to 7:00PM as they are
considered reserved for company employees while the rest
are active from 9:00AM to 5:30PM as they are considered
reserved for visitors, and roadside chargers have two charging
sessions, respectively, from 8:00AM to 10:00AM (i.e. fast
charging before arriving at work) and 12:00PM to 7:00PM
(i.e. afternoon fast charging). The number of CSs per node, the
charging modes, the exact arrival and departure EV times and,
the initial and target EV battery SoCs are all randomly sampled
from the ranges given in Tables IIIb-IIIc. In Tables IIIb-IIIc
we distinguish between planned departure time (tf,k,i) and
actual departure time to account for users that keep their EVs
plugged after their announced departure times; we assume that
this behaviour is only present for work and roadside chargers
as users charging at home usually leave punctually to go to
work every morning during a weekday.

C. Results of the simulation

1) From the grid perspective: Figs. 3 and 4 show the
post-MCLFS probabilities to violate, respectively, the grid
operational and power quality constraints for all time steps and
control algorithms used in the simulation. It can be observed
that the GADC algorithm guarantees close-to-no violations.
Indeed, minor violations arise as power-flow equations are
linearised which entails discrepancies between the linearised
state and the real one. On the other hand, the GULC and
MMPC optimal EV nodal power injections create several vio-
lations. When it comes to grid operational constraints, Fig. 3a,
Fig. 3b and Fig. 3c show that, respectively, nodal voltage
magnitude, branch current magnitude and slack node apparent
power violations are practically guaranteed for both grid-
unaware controllers during night-time home charging. When it
comes to power quality, for both grid-unaware controllers, the
negative- and zero-sequence components constraints are also
violated mostly at night. This is explained by the presence
of a large number of users that plug their single-phase EVs
into the grid and thus creating high voltage unbalances. Even
though it still performs badly, it can be observed that the
GULC controller sometimes incurs lower constraint violation
probabilities compared to the MMPC controller. This can be
explained by the smoothing effect of EV charging that arises
due to the GULC objectives. In summary, from Figs. 3 and 4,
it is safe to conclude that grid-unaware EV charging largely
jeopardizes the safe operation of the grid.

2) From the EV users perspective: Fig. 5 shows, using a
boxplot representation, the difference between all target SoCs
and the actual ones at time of departure. Fig. 5a represents a
base-case as the MMPC algorithm charges EVs at full power.
The reason why there are some unachieved charging targets is
due to the fact that initial and desired SoCs are randomly sam-
pled. Thus sometimes it is simply not possible to achieve the
desired SoC during the time window where the EV is plugged.
Fig. 5b shows that the GULC controller behaves similarly
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TABLE II
EV SIMULATED ENVIRONEMENT

Charging Mode Car Model Pmax
k,i [kW] Emax

k,i [kWh] ηk,i

AC 1ph Jaguar iPace 7.4 84.7 0.92
AC 3ph Tesla Model S 17 100 0.85

DC Nissan Leaf Plus 50 64 0.95

(a) EV considered car models

Nodes Category Charging Mode Smax
k,i [kVA] K(i)

{30, 28, 25} Home AC 1ph or AC 3ph 3.3 or 7.4 [60; 120]
{16, 12} RoadSide DC 50 [40; 60]
{4, 18} Work AC 1ph or AC 3ph 7.4 or 17 [50; 100]

(b) EV user synthesized behaviour

Nodes t0,k,i tf,k,i Actual Departure Time SOCt0,k,i,k,i SOCtf,k,i,k,i

{30, 28, 25} [5:00PM; 11:00PM] [6:00AM; 7:55AM] tf,k,i [0.15; 0.45] [0.95; 1.00]

{16, 12} Session 1 - [8:05AM; 10:00AM]
Session 2 - [12:00PM; 7:00PM]

[8:35AM; 11:00AM]
[12:35PM; 8:00PM]

tf,k,i + [0-20] mins
[0.15; 0.35]
[0.10; 0.35]

[0.60; 0.80]

{4, 18} Visitors− [9:00AM; 5:30PM]
Employees− [8:30AM; 11:00AM]

t0,k,i + [30-90] mins
[5:00PM; 7:00PM]

tf,k,i + [0-30] mins
[0.15; 0.50]
[0.30; 0.55]

[0.25; 0.80]
[0.75; 0.9]

(c) EV user synthesized behaviour - continued

to the ideal MMPC control from the EV user perspective.
However, their optimal EV injections were different which
explains why they incurred different grid constraint violations.
This entails that the GULC controller smooths the charging
process while still achieving close-to-ideal outcomes for EV
users. Fig. 5c, however, shows that the GADC does not give
the same guarantees. This is especially true for home chargers
that on average provide EVs 10% and 20% less energy. This
behaviour is in accordance to the probability violations, and
lack there of in the case of GADC, shown in Figs. 3-4. It can
be physically explained by two factors: (i) the high-loading
conditions that happen at night-time when the simulated grid
has no generating units, and (ii) the fact that in this simulation
EV node placement and maximum number of connected EVs
per node were chosen at random. This explains the sub-optimal
performance of the GADC controller from the EV user’s
perspective. Indeed, the grid is simply not designed for such
simulated high power unbalanced EV load demand. Therefore,
as a final note, we believe that with proper CS placement
planning together with the deployment of our proposed method
(i.e. GADC controller), the network will remain safe and the
EV user needs would be better fulfilled.

V. CONCLUSION

The paper proposed a grid-aware distributed control
(GADC) for EV CSs connected to electrical grids of generic
topologies. It uses ADMM to distribute a separably formulated
problem into local ones, solved at the EV aggregators level,
and a central grid aggregator problem that ensures the non-
violation of the grid operational and power quality constraints
while taking into account all the solutions coming from the
EV aggregators’ problems. The scenario-based grid aggregator
problem relies on a linearisation of the power-flow equations
and is formulated for a generic three phase power grid.
Therefore, it also takes into account voltage unbalances and
guarantees proper power quality subject to the E50160 std.
bounds. The performance of the method is illustrated on
the IEEE-34 feeder by comparing it with two grid-unaware
controllers. It is shown that the grid-unaware controllers may

(a) Nodal voltage magnitudes

(b) Slack apparent power magnitudes

(c) Branch current magnitudes
Fig. 3. Post-LFMCS probabilities to violate grid operational constraints
during the simulated 24 hours - ABC domain
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(a) Ratio of zero- and positive- sequence nodal voltage magnitudes

(b) Ratio of negative- and positive- sequence nodal voltage magnitudes
Fig. 4. Probabilities to violate grid constraints during the simulated 24 hours
- sequence domain
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(c) GADC
Fig. 5. Difference between desired SoC at departure and actual one, for all
nodes with CSs and for each simulated control algorithm

provide a better service to EV users in terms of meeting de-
sired battery energy levels at the expense of severely violating
the grid security and power quality constraints. From the grid
perspective the proposed GADC kept the power grid within the
safe operational bounds and, in most cases, was also beneficial
to EV users. It is clear that the developed method can help
grid operators manage weak grids, that accommodate heavy
EV loads, as best as they can. Future works plan to first,
investigate the possibility of including model predictive control
into the EV sub-problems, and, second, perform experimental
validations of the GADC controller on a real-scale microgrid.
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