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Summary 
This report is the third intermediate report of the StimDesign project which will finish in June next year. 
The focus is here solely on our two dimensional numerical developments. We report advances on the 
different building blocks of our numerical model: fracture mechanics solver with frictional contacts and 
cohesive forces, finite volume discretization for fluid flow and fully coupled hydro-mechanical solvers. 
This reports documents in depth the mathematical formulation as well as the numerical discretization. 
Notably a new scheme to account for both frictional contact of shear crack as well as opening mode is 
presented and tested on a series of tests examples. Tests of our implementation of algorithms based 
on hierarchical matrices for the acceleration of the solution of linear systems arising in the boundary 
element methods is also documented. We report significant speedup and reduction in memory 
requirements. Finally, two studies which have or will soon be submitted for publication are put in 
appendix. The first study investigate the effect of shear induced dilatancy on the transition from 
aseismic to seismic in the context of fluid injection in a planar fault. The second study investigates the 
possibility of remote activation / nucleation (in a frictional weakening zone) due to the stress transfer 
associated with the propagation of a purely aseismic crack due to fluid injection in a friction neutral 
layer. 
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SUMMARY
This report describe the theory and numerical implementation of numerical models for the simulation of
hydraulic stimulation in two and three dimensions. A C++ library for the solution of elasto-statics fracture
problems via a hyper-singular collocation boundary element method has been developed in both two
and three dimensions. The library also has specific routines for the construction and use of hierarchical
matrices for the solution of any type of boundary integral equations - direct H-LU as well as iterative
solvers are available. The use of a hierarchical matrix allows the solution of large boundary element
problems, paving the way to the modeling of realistic geological conditions. A series of verification tests
in both two and three dimensions validate the developed solver for fracture problems - very high accuracy
at reasonable cost is obtained in all cases. In two dimensions, a one-way coupled hydro-mechanical
solver allowing to model localized deformation along fractures (in the form of shear crack with frictional
contact as well as open cracks) has been developed. The solver allows for weakening of frictional contact
as well as cohesion. Besides verification tests, we show the capabilities of this solver in the context of
hydraulic stimulation of a rock with randomly oriented pre-existing fractures. The importance of the initial
stress state on the development of the hydraulically induced shear slip is notably highlighted. A fully
coupled hydromechanical solver allowing to study the nucleation of dynamic rupture (i.e. the transition
from seismic to aseismic slip) on a planar fault is then presented. Here again the code is sucessfully
benchmarked against existing solutions. It is then used to study the effect of fault dilatancy on the
transition from aseismic to seismic slip during fluid injection. The series of codes developed during this
project provide a robust basis for the modeling of hydraulic stimulation.
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Chapter 1

Introduction

The ultimate goal at the impetus of this project is to develop robust numerical solvers for the simulation of
hydraulic stimulation of fractured rock mass. The aim is to provide to the geothermal community a set of
tools to help designing hydraulic stimulation treatment - similar to what is currently available for hydraulic
fracturing in the oil and gas industry (Adachi et al. 2007, Lecampion et al. 2018). The problem calls
for an approach allowing to properly model the mechanical behavior (reactivation and/or propagation)
of fracture(s) in shear and opening deformation modes as well as fluid flow within the pre-existing and
newly created fractures. These hydro-mechanical phenomena are strongly coupled and non-linear and
exhibit a change of geometry in time (propagation of fractures). We refer to the review articles of Jung
(2013), Ghassemi (2012), Cornet (2016) for the description of the key mechanisms involved in hydraulic
stimulation. At minima, the numerical model must account for i) the mechanical deformation of the rock
mass in presence of fractures, ii) the fluid flow within the fracture(s), iii) the reactivation of pre-existing
fractures and their frictional behavior, and iv) the associated fracture permeability changes.

A large number of contributions have been made to develop numerical models for hydraulic stimula-
tion since the early works of Cundall (1982), Asgian (1989). Different numerical techniques have been
used:

• ad-hoc models not even satisfying the balance of momentum - e.g. Kohl & Mégel (2007),

• distinct element for mechanical deformation and finite difference for flow (Yoon et al. 2014)

• continuum domain methods:

– combining boundary element and finite differences explicitely modeling the fractures (McClure
& Horne 2011, Tao et al. 2011, McClure & Horne 2013, 2014, Verde & Ghassemi 2015, Kamali
& Ghassemi 2018)

– finite element or finite volume based schemes that may lump the presence of fracture in a
continnum approach (e.g. Yoon et al. 2014, Dempsey et al. 2015) or model them explicitely
(e.g. Fu et al. 2013, Ucar et al. 2017).

We refer to Hayashi et al. (1999) and White et al. (2017) for a review of currently available numerical
tools.

Modeling choices
Wemake the following approximations from the onset: i) we assume the rock matrix to be impermeable

(at the time-scale of injection), ii) we neglect thermally induced stresses1, iii) the reservoir is assumed to
be homogenous and its extent sufficient to be considered as infinite2.

1Note that these two approximations could be somehow relaxed but at the expence of significant computational cost (and some
specific numerical developments).

2Finite boundaries can be taken into account (if any) meshing them via boundary element like the fractures. Piece-wise varia-
tions of elastic properties could be similarly taken into account by meshing the boundaries between material and enforcing proper
continuity conditions.
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We assume that initially, a set of pre-existing fractures exist with orientation, length, hydraulic and me-
chanical properties statistics known. We also assume that the initial stress field is known. Furthermore,
we aim to rigourously account for the following phenomena:

• Elastic deformation of fractures under the action of both fluid pressurization, stress transfer between
neighboring fractures

• Fluid flow in fractures with evolution of hydraulic conductivity due to mechanical opening but also
slip

• Frictional contact on mechanically closed fractures with friction laws allowing to model the nucle-
ation of dynamic rupture events

• Further growth of pre-existing fractures under mixed mode loading (shear and opening mode)

It is important to recall that these different hydro-mechanical phenomena are extremely non-linear (and
fully coupled). Their numerical solution is challenging, and careful verification and validation of numerical
is mandatory - although seldomly done by most research groups. We thus put a strong emphasis on code
verification.

Numerical methods used
We have chosen to combine a displacement discontinuity boundary element method (for the solution of

the balance of momentum in an elastic rock mass) with finite volumemethods for the spatial discretization
of the flow equations. Moreover, the time integration is performed in a fully implicit manner therefore
allowing to take large time-steps accurately and robustly.

Our work, however, differs from the codes developed in Stanford and University of Oklahoma (which
also used boundary element for mechanics and finite difference for flow). In particular, we use piece-wise
linear (in 2D) and piece-wise quadratic (in 3D) displacement discontinuity elements compared to piece-
wise constant elements. This notably allows us to use non-uniform without losing accuracy and treat
fractures intersection accurately. The stresses computed around deforming fractures are also much
more accurate. Additionally, we use a continous linear interpolation for pore fluid pressure inside the
fracture - and our vertex centered finite volume scheme (which is very similar to a finite element method)
automatically capture the fluid flow partitioning between different fracture branches at fractures intersec-
tion. Finally, our scheme is fully coupled and implicit (compared to McClure & Horne (2013)).

Computer codes developed
We have developed two C++ codes for two respectively three dimensional configurations. We aim

to have minimal dependencies to external libraries. Our numerical developments use a light-weight
C++ library for scientific computing developed by InsideLoop3. This library allows to develop efficient /
optimized numerical code in C++ for shared memory machines. Note that we prototype algorithms in
Mathematica prior to coding them up in C++. We also use Mathematica for pre and post-processing.
We have collaborated with Stéphanie Chaillat-Loiseuille (ENSTA, France) and F. Fayard (InsideLoop)
to develop a kernel independent hierarchical matrices library for vectorial problems. All our codes are
under version control and hosted on the https://c4science.ch/ platform: an “infrastructure for scientific
code co-creation, curation, sharing and testing. Available to the entire Swiss universities community and
accessible to external collaborators”.

Organization of this report
We first present in details the boundary element solvers for mechanical deformation of fractures in 2D

and 3D: its theoretical foundation, numerical discretization and verification. We also test and discuss
the use of hierarchical matrices within our boundary element formulation in order to solve large scale
problems (up to 106 unknowns) at reasonable computational cost.

In chapter 3, we review the hydro-mechanical constitutive behavior of closed fracture and discuss the
chosen models. We also discuss the theoretical background for the modeling of fluid flow in fractures.

3avalaible under Apache License 2.0 at https://github.com/InsideLoop/InsideLoop
10/169
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An implicit one-way 2D hydro-mechanical solver for the simulation of hydraulic stimulation is pre-
sented in chapter 4 together with a series of verification tests as well as a series of simulation spanning
marginally pressurized and critically stressed conditions in a rock mass containing a large number of
randomly oriented fractures. This chapter will lead to two journal publications - one on the numerical
scheme, one on hydraulic reactivation of fractured rock mass.

Chapter discuss a fully coupled implicit 2D hydro-mechanical solver for the re-activation of a planar
fault due to fluid injection accounting for the stabilising effect of dilatancy on the nucleation of dynamic
rupture. This chapter corresponds to a paper published in J. Geophys. Res.- Solid Earth.

Conclusions and perspectives close this report in chapter 6.
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Chapter 2

Elastic solver for fractures at depth

The goal of this chapter is to summurize the fundamentals of boundary integral equations (BIE) for the
solution of fracture problem in elasto-statics with an emphasis on the so-called displacement discontinuity
formulation (also refeered to as the distributed dislocation techniques in the literature), and present our
implemented formulation. The theoretical basis mostly consists of a summary of the material described
in more details in different textbooks, notably Bonnet (1999), Hills et al. (1996) and Mogilevskaya (2014).
The emphasis is on the use of regularization of the BIE after integration which is the method that we use.

Let consider an elastic medium of domain Ω and boundary Γ with the stiffness tensor cijkl (with its
usual symmetry). The unit normal nnn is by convention taken positive toward the exterior of Ω. We denote
as σij and ϵij = 1/2(ui,j +uj,i) the stress and strain tensor under the hypothesis of small strain, while ui
denotes the displacement vector components. We use a Cartesian frame throughout defined by the basis
vector eeei, i = 1, 2, 3. We denote xxx = xieeei (yyy = yieeei ) as the coordinates vector. Einstein convention of
summation over repeated indices is used otherwise specified. The stresses are taken positive in tension.

By convention, we will denote xxx, respectively yyy, the location of the source, respectively the field
(receiver/observation) points. For a function g(xxx,yyy), we denote g,j̄ the derivatives with respect to the first
argument (i.e. the source point) and g,j the derivatives with respect to the second argument (i.e. the
field/observation point):

g,j̄(xxx,yyy) = ∂xjg(xxx,yyy)

g,j(xxx,yyy) = ∂yjg(xxx,yyy)

Note: Notations are only adapted slighlty from Bonnet (1999). Stresses and tractions are taken positive
in tension in this chapter.

2.1 The elasto-static problem

σij,j + fi = 0 in Ω

ti = σijnj = tgi on Γti

ui = ugi on Γui

Γui

∩
Γti = ∅ Γui

∪
Γti = Γ = ∂Ω

2.1.1 Maxwell-Betti theorem
Maxwell-Betti’s reciprocal theorem states the equivalence of the cross elastic energy between two states
belonging to the same material space (domain and elastic constants):

σ
(1)
ij ϵ

(2)
ij = σ

(2)
ij ϵ

(1)
ij
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Another statement is obtained after integration over the domain Ω and use of the divergence theorem,
i.e.: ∫

Γ

σ
(1)
ij u

(2)
j ni dSy −

∫
Ω

σ
(1)
ij,ju

(2)
i dVy =

∫
Γ

σ
(2)
ij u

(1)
j ni dSy −

∫
Ω

σ
(2)
ij,ju

(1)
i dVy

2.1.2 Fundamental Point force solution
The fundamental solution for a point force in the direction k located at xxx within Ω (often referred as the
Green’s function in elastostatics) is the solution to the following problem

σij,j + δikδ(yyy − xxx) = 0

σij = cijklϵkl = cijkl
1

2
(uk,l + ul.k) = cijkluk,l

with for the case of a full-space (Ω ≡ R3), the following boundary conditions

lim
y→∞

σij = 0 lim
y→∞

ui = 0

Note that point force Green function’s are known for a number of domain (full, half-space, bi-material) for
both isotropic elasticity as well as some form of anisotropy (e.g. transverse isotropy, orthotropy) in 2D
and 3D. For now - we just have to remember that such a solution exist.

We will write Uk
i (xxx,yyy) the ith displacement component at yyy (the field or observation point) due to a

point force in the direction k located at xxx (the source point). (This Green’s function is sometimes written
as Gij in elasticity textbooks (Mura, T. 1982)). Note that the first argument of Uk

i denotes the source
point while the second argument the field point.

Similarly we will write as Sk
ij(xxx,yyy) the ij component of the stress tensor σij at yyy due to a point force

in the direction k located at xxx. By definition of the elastic constitutive law, we have:

Sk
ij(xxx,yyy) = cijmnU

k
m,n(xxx,yyy)

and Sk
ij = Sk

ji by symmetry of the stress tensor.
We will also denote the traction solution vector T k

i , defined as the traction vector in the direction nnn
associated with the fundamental solution

T k
i (xxx,yyy) = Sk

ij(xxx,yyy)nj(yyy)

For any fundamental solution in elasto-statics, the global equilibrium reads:

κδik +

∫
Γ

T k
i (xxx,yyy) dSy = 0

with κ =

{
1 xxx ∈ Ω

0 xxx /∈ Ω

2.1.2.1 Isotopric full-space - Kelvin solution

For an isotropic material,

cijkl = G (δikδjl + δilδjk) + (K − 2/3G)δijδkl

2G = E/(1 + ν) 3K = E/(1− 2ν)

cijkl = G (δikδjl + δilδjk) +
2Gν

1− 2ν
δijδkl

The balance of momentum can be transformed into Navier equations:

Uk
i,ll +

1

1− 2ν
Uk
l,li + δikδ(y − x)/G = 0
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The displacement solution can be sought for in the following form:

Uk
i = 2(1− ν)gki,jj − gkj,ji

where gki is denoted the Galerkin tensor, which must be solution of the following fundamental bi-harmonic
equation [Show that by introducing the previous form of Uk

i in Navier eq]:

gki,jjll = −δikδ(y − x)

2G(1− ν)

The fundamental solution of the bi-Laplacian in 3D (f,jjll = δ) is −r/8π where r = ∥y− x∥, such that we
obtain:

gki =
r

16πG(1− ν)
δik

From this result, we can obtain the following form for the displacement solution due to a unit point force
at x in the direction k

Uk
i (x,y) =

1

16πG(1− ν)

1

r
(r,ir,k + (3− 4ν)δik)

where

r = ∥y − x∥

r,i =
(yi − xi)

r

The stresses follows from the isotropic elastic law as:

Sk
ij(x,y) = − 1

8π(1− ν)

1

r2
(3r,ir,jr,k + (1− 2ν)(δikr,j + δjkr,i − δijr,k))

It is important to note that the displacement and stresses are singular when y → x, respectively as
∥y−x∥−1 and ∥y−x∥−2. This is a result of the fact that the traction are prescribed at a single point. All
fundamental solutions are actually by nature singular when the observation and source point coincides.

2D plane elasticity Denoting r(xxx,yyy) =
√
(y1 − x1)2 + (y2 − x2)2 the Euclidian distance between y and

x in 2d, the point force fundamental solution is given by:

Uk
i (x, y) =

1

8πG(1− ν)
[r,ir,k − (3− 4ν)δik log r]

Sk
ij(x, y) = − 1

4π(1− ν) r
[2r,ir,jr,k + (1− 2ν) (δikr,j + δjkr,i − δijr,k)]

In 2D, the displacement is log singular when y → x, and the stresses are singular as ∥y − x∥−1.
Note that the displacement point force fundamental solution is tending to infinity at infinity (log). This

is due to the fact that the plane strain solution correspond to an infinite line of point force. In practice,
integration is up to a constant (which can be disregarded).

2.1.2.2 General properties for the point force fundamental solutions

One can use the Maxell-Betti identity for 2 elastic states corresponding to i) a point force at xxx in the
direction k and ii) a point force at yyy in the direction l. By doing so, one obtains the following symmetry
for any point force solution:

Uk
l (xxx,yyy) = U l

k(yyy,xxx)

which further implies the following relations:

cijklU
k
a,l̄(xxx,yyy) = Sa

ij(yyy,xxx)

cijklS
k
ab,l̄(xxx,yyy) = cabklS

k
ij,l(yyy,xxx)
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Note that more symmetrical relations hold in the case of an infinite space as the source and the
observation point can be exchanged by simple coordinate translation (full symmetry of source and ob-
servation point). Notably:

Sk
ij(xxx,yyy) = −Sk

ij(yyy,xxx)

Uk
i,l̄(xxx,yyy) = −Uk

i,l(xxx,yyy)

Sk
ij,l̄(xxx,yyy) = −Sk

ij,l(xxx,yyy)

2.1.3 Integral representation
Let now apply the Maxwell-Betti theorem, taking for system (1), the solution for a point-force at xxx in
direction k and dropping subscript (2) for the other system. We finally obtain the well-known boundary
integral representation for the displacement at any point xxx in the domain from the knowledge of the stress
and displacement on the boundary (plus a volume term in the presence of body forces):

κuk(xxx) =

∫
Γ

[
σij(y)Uk

j (x,y)− Sk
ij(x,y)uj(y)

]
ni(y) dSy +

∫
Ω

fi(y)Uk
i (x, y) dVy (2.1)

where κ = 1 for xxx ∈ Ω and 0 for xxx ̸∈ Ω (this definition comes from the integral of the Kronecker delta.
This integral representation tells us that if we known the traction vector and the displacement on the
boundary, then we can obtain the displacement at any point inside the body.

It is also important to note that the fundamental solution for displacement and stresses Sk
ij(xxx,yyy) tends

to infinity when x ∈ Γ such that the above integral representation is singular and thus undefined for x ∈ Γ.
It requires to be handled properly either by a regularization prior or after integration. We will come back
to that later.

Introducing, the traction vector (ti = σijnj) and its fundamental counterpart T k
i , we can re-write the

previous equation as:

κ uk(xxx) =

∫
Γ

[
ti(yyy)U

k
i (xxx,yyy)− T k

i (xxx,yyy)ui(yyy)
]
dSy +

∫
Ω

fi(yyy)U
k
i (xxx,yyy) dVy

A similar integral representation can be obtained for strain and stresses. Forxxx ∈ Ω, and not belonging
to Γ, the previous integral representation can be differentiated, denoting gi,j̄ the derivatives of gi(xxx,yyy)
with respect to its first argument (here xj):

uk,l(xxx) =

∫
Γ

[
σij(yyy)U

k
j,l̄(xxx,yyy)− Sk

ij,l̄(xxx,yyy)ui(yyy)
]
ni(yyy) dSy +

∫
Ω

fi(yyy)U
k
i,l̄(xxx,yyy) dVy

wich in turn, provide the following representation for the stress tensor

σij(xxx) =

∫
Γ

[
σab(yyy)cijklU

k
b,l̄(xxx,yyy)− cijklS

k
ab,l̄(xxx,yyy)ua(yyy)

]
nb(yyy) dSy

+

∫
Ω

fa(yyy)cijklU
k
a,l̄(xxx,yyy) dVy (2.2)

2.1.4 Fracture(s) at depth
In geomechanics we are interested in changes with respect to an initial state - noting σo

ij the correspond-
ing initial state (which is a solution of the balance of momentum when accounting for gravity and tectonic
loading etc.), we can re write the balance of momemtun as

σij,j − σo
ij,j = 0 =

(
σij − σo

ij

)
,j

Moreover - here - we are interested in the case of fracture(s) deformation at depth - such that the
domain of interest Ω will be either the full space (Ω ≡ R3) or the half-space (Ω ≡ R2×R+). For simplicity,
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in the following, we restrict to fractures in a full space. Extensions to account for other boundaries such
as a wellbore or a tunnel are possible - we refer to Bonnet (1999) for more details.

Several boundary element methods have been developed for fracture problem, notably the dual-BEM
or themulti-region approach whichmodel the two opposite fracture surfaces. Here we solely restrict to the
so-called displacement discontinuity method (also sometimes named the distributed dislocations tech-
nique). In that method, the primary kinematic variables are the displacement jump across the fracture.
We will denote Γ the mid-plane fracture surface having a unit normal ni and we denote n+i the normal of
the top surface Γ+, respectively n−i = ni the normal of the bottom surface, we have n+i = −n−i = −ni .

We write the displacement discontinuity di across the fracture as positive in overlap [consistent with
convetion used for dislocation]

di = u−i − u+i (= −∆ui)

The traction vector may also possibly be discontinuous between the two crack surfaces (that can be
the case when accounting for the effect of a fluid shear stress - but this is typically small and can be
neglected). We write ρi as such a traction discontinuity

ρi = (σ−
ij − σ+

ij)nj = t+i + t−i

However, expect in peculiar case (e.g. when accounting for a fluid shear stress ), the traction is contin-
uous across the fracture surfaces, such that

ρi = 0

The fracture is self-equilibrated in such cases. We will assume this is the case from now on.

2.1.5 Integral representation for fracture problem

Restricting to the case of a full space with fracture surface Γ, the boundary integral representation for
the stress tensor reads (accounting for an initial state of stress):

σij(xxx)− σo
ij(xxx) =

∫
Γ+

[
(σ+

ab(yyy)− σo
ab(yyy))cijklU

k
b,l̄(xxx,yyy)− cijklS

k
ab,l̄(xxx,yyy)u

+
a (yyy)

]
n+b (yyy) dSy

+

∫
Γ−

[
(σ−

ab(yyy)− σo
ab(yyy))cijklU

k
b,l̄(xxx,yyy)− cijklS

k
ab,l̄(xxx,yyy)u

−
a (yyy)

]
n−b (yyy) dSy

which with the notation for the jump of displacement and traction previously introduced becomes:

σij(xxx)− σo
ij(xxx) =

∫
Γ

ρi(yyy)cijklU
k
b,l̄(xxx,yyy)−

∫
Γ

cijklS
k
ab,l̄(xxx,yyy)da(yyy)nb(yyy) dSy

Restricting to the case of continous traction (ρi = 0) which is the typical case, we obtain the following
integral representation for the traction vector:

ti(xxx)− toi (xxx) = −nj(xxx)
∫
Γ

cijklS
k
ab,l̄(xxx,yyy)da(yyy)nb(yyy) dSy

In the case of a infinite space, we can use the relation Sk
ab,l̄

(xxx,yyy) = −Sk
ab,l(xxx,yyy) such that

σij(x)− σo
ij(x) =

∫
Γ

cijklS
k
ab,l(x, y)da(y)nb(y) dSy (2.3)

ti(x)− toi (x) = nj(x)
∫
Γ

cijklS
k
ab,l(x, y)da(y)nb(y) dSy (2.4)
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2.1.5.1 Interlude - link with a nuclei of strain

It is interesting for a moment to pause, and have a look at the integral
∫
Γ
cijklS

k
ab,l(x, y)da(y)nb(y) dSy. It

corresponds to the stress at point x due a distribution of displacement discontinuity da(y) located along
the fracture surface Γ of normal nb(y). da(y)nb(y) is akin to a point dislocation dipole.

It is interesting to make the link with a nuclei of strain in an infinite medium. A nuclei of strain ϵ∗ij(y) is
as its name suggest a strain located at y (can model a defect or when distributed a themal strain, plastic
strain etc.). The elastic constitutive relation - when accounting for a distributed eigenstrain is given by

σij = cijkl(ϵkl − ϵ∗kl)

In the absence of other body forces, the balance of momentum becomes:

σij,j − cijklϵ
∗
kl,j = 0

in other word the effect of a distributed eigenstrain is thus akin to a body force of intensity −cijklϵ∗kl,j .
For a DD on a plane of normal n, the eigenstrain becomes:(

1

2
(da(y)nb(y) + db(y)na(y))

)
The moment tensor in seismology is directly this quantity integrated on the slipping patch.

In a full space, the integral representation for displacement (2.1) without any other boundaries (hole,
fratures etc.) therefore reduces to

uk(xxx) =

∫
Ω

−cijmnϵ
∗
mn,j(y)Uk

i (x, y) dVy

where we have dropped the κ (full-space). Integrating by parts assuming ϵ∗mn goes to zero at infinity
(localized eigenstrain)

uk(x) =
∫
Ω

cijmnϵ
∗
mn(y)Uk

i,j(x,y) dVy

=

∫
Ω

ϵ∗ij(y)Sk
ij(x, y) dVy

we therefore see that the fundamental solution for the displacement uk at x due to a nuclei of strain ϵ∗ij
at y (i,e, ϵ∗ij(y) = ϵ∗ijδ(y) ) is nothing else than the stresses tensor given by a point force in the direction k
contracted with the eigenstrain. Similarly, the stress integral representation (2.2) in the absence of other
boundaries and body forces for the full-space refuces to

σij(x) = −
∫
Ω

cabmnϵ
∗
mn,b(y)cijklUk

a,l̄(x, y) dVy =

∫
Ω

cabmnϵ
∗
mn,b(y)cijklUk

a,l(x, y) dVy

=

∫
Ω

cijklϵ
∗
ab(y)Sk

ab,l(x,y) dVy

i.e. the fundamental stress tensor solution at x due to a point eigenstrain (nuclei of strain) at y can
be obtained by simple differentiation of the point force stress solution. Moreover, we also see that it is
completely similar to the previously obtained integral representation in the case of a fracture with dis-
placement discontinuity (2.3) - with difference that the term danb does not have the symmetric properties
of a strain tensor. However, due to the symmetric properties of the stress tensor, we can rewrite:

cijklS
k
ab,l(x,y)da(y)nb(y) = cijklS

k
ab,l(x, y)

(
1

2
(da(y)nb(y) + db(y)na(y))

)
= cijklS

k
ab,l(x, y)

(
1

2
(δamδbn + δbmδan)

)
da(y)nb(y)

i.e. cijklSk
ab,l(x, y) ×

1

2
(δamδbn + δbmδan) is the fundamental stress solution due to a displacement dis-

continuity tensor danb.
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2.1.5.2 Back to the integral representation - link with the solution of a Volterra edge dislocation

Let’s now return to the traction representation for a fracture (2.4) in order to make the link with dislocation.
After integration by parts - assuming that da = 0 at the crack tips (note - be careful for example when

modelling a surface breaking crack). One obtain for the stress tensor and traction vector

σij(x)− σo
ij(x) = −

∫
Γ

cijklS
k
ab(x, y) [da(y)nb(y)],l dSy

ti(x)− toi (x) = −nj(x)
∫
Γ

cijklS
k
ab(x, y) [da(y)nb(y)],l dSy (2.5)

Note that [da(yyy)nb(yyy)],l is the surface gradient of da(yyy)nb(yyy), i.e. the gradient with the component normal
to the surface removed. It is given by for a scalar function f

∇Sf = f,i − (f,jnj)ni

here as:

[da(y)nb(y)],l = da,l(y)nb(y)− nl(y) (da,i(y)ni(y))nb(y)
= da,l(y)nb(y)− nl(y)da,b(y) (2.6)

as ninb = δib.

Edge dislocation Now image the particular case of an edge dislocation: a semi-infinite constant dis-
placement discontinuity along the plane Γ of (constant) normal nb. In the dislocation literature the dis-
placement discontinuity is referred to as the Burgers vector (and written ba).

For example - in 2D taking nb = e2 in that case da(y) = daH(y1) where H is the Heaviside function.
Hence, the suface gradient becomes

[da(yyy)nb(yyy)],l = δ(y1) [δl1δb2dae2 − e2δb1δl2da]

and the stress at point x due to such a dislocation are given by:

σij(x)− σo
ij(x) = −

[
cijk1S

k
2a(x, 0)− cijk2S

k
1a(x, 0)

]
da

One can introduce the following notation for such a fundamental kernel (stress tensor induced by an
edge dislocation centered on the origin for a unit displacement jump)

sijk(x) = − [cijm1S
m
2k(x,0)− cijm2S

m
1k(x, 0)] (2.7)

such that the stresses induced by an edge dislocation with a Burgers vector bk

σij(x)− σo
ij(x) = sijk(x)bk

It is interesting to note that the dislocation solution is a combination of a number of point-forces, con-
tracted with the stiffness tensor.

2D Plane-strain case Using the 2D plane-strain point force solution, it is possible to obtain the analyt-
ical expression for the different component of sijk (i, j, k = 1, 2)

sijk =
2G

π(κ+ 1)
hijk =

E′

4π
gijk

h111 =
−x2(3x21 + x22)

r4
h112 =

x1(x
2
1 − x22)

r4

h221 =
x2(x

2
1 − x22)

r4
h222 =

x1(x
2
1 + 3x22)

r4

h121 =
x1(x

2
1 − x22)

r4
h122 =

x2(x
2
1 − x22)

r4
(2.8)

r2 = x21 + x22
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Figure 2.1: Schematic representation of elementary dislocated area as combination of point forces- taken
from Eshelby (1973).

We of course obtain the exact same expressions than the ones obtained from a direct solution of the
plane elasticity problem for a dislocation (see appendix 6).

Dislocation dipole Now, it is possible to combine two edge dislocation of opposite sign, one at the
origin and the other at ∆x1, taking the liming ∆x1 → 0, we obtain a dislocation dipole, and the corre-
sponding stress is related to the derivatives of sijk. For example,

π(κ+ 1)

2G
σdipole 2
22 (x1 − ξ, x2 = 0) = b2

(
1

x1 − ξ − dξ
− 1

x1 − ξ

)
≈ b2

dξ
(x1 − ξ)2

= b2
∂s222(x1 − ξ)

∂ξ

, in general
σab
ij = cijklS

k
ab,l(x, y)

for a dislocation dipole of normal nb and dd vector da. Note that we in fact recover the displacement
discontinuity tensor (see above) - prior to the integration by parts. [In 3D the dislocation dipole is replaced
by an infinitesimal dislocation loop.]

2.1.5.3 Case of a planar crack in 2D - dislocation density

Similarly than for the dislocation, we can particularize the traction integral representation (2.5) for a planar
crack in 2D located along the e1 axis (normal e2) of the infinite space. Similarly than for the dislocation,
the surface gradient reduce to

[da(yyy)nb],l = da,lδl1δb2 − δl2δb1da,b

and the integral representation for the traction vector becomes (in the case of the full space where the
point force solution is function of x− y

ti(x)− toi (x) = −nj(x)
∫
Γ(y2=0)

[
cijk1S

k
2a(x, y)− cijk2S

k
1a(x, y)

]
da,1(y) dSy

= nj(x)
∫
Γ(y2=0)

sijk(x− y)dk,1(y) dSy
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Figure 2.2: A fracture in 2D discretized with linear segments. The jump of displacement across the
fracture (displacement discontinuity) are the primary unknowns, and are approximately linearly along a
linear segment. Note that we don’t enforce continuity between the elements (which is beneficial when
modeling intersections between fractures). The elements used are so-called piece-wise linear element
P1 elements. The code also has P0 elements (piece-wise constant) implemented. Note that two conven-
tions are possible: i) positive stress in traction / positive DD in overlap, or ii) positive stress in compression
/ positive DD in opening.

i.e. the contribution is therefore the one of distributed dislocations. For a planar crack of length 2a on
y2 = 0 for nj(x) = e2, we obtain

t1(x1, x2)− t01(x1, x2) =
G

2π(1− ν)

∫ a

−a

h121(x1 − y1, x2)
∂d1
∂y1

dy1 +
G

2π(1− ν)

∫ a

−a

h122(x1 − y1, x2)
∂d2
∂y1

dy1

t2(x1, x2)− t02(x1, x2) =
G

2π(1− ν)

∫ a

−a

h221(x1 − y1, x2)
∂d1
∂y1

dy1 +
G

2π(1− ν)

∫ a

−a

h222(x1 − y1, x2)
∂d2
∂y1

dy1

which can further be specified for the case where x is on the crack plane (x2 = 0), using the previously
derived expressions of hijk (2.8):

t1(x1, x2 = 0)− t01(x1, x2 = 0) =
G

2π(1− ν)

∫ a

−a

1

x1 − y1

∂d1
∂y1

dy1 (2.9)

t2(x1, x2 = 0)− t02(x1, x2 = 0) =
G

2π(1− ν)

∫ a

−a

1

x1 − y1

∂d2
∂y1

dy1 (2.10)

We notably see that for a planar crack, the shear and opening tractions boundary integral equations
decouples - a shear DD does not induce any normal stress on the crack plane, and vice versa an opening
DD does not induce any shear stress on the plane. This is of course only the case for a planar crack.
Interestingly, the same results is also obtained for anisotropic material.

The integral representation (2.9)-(2.10) are singular integral equations when x1 is inside the fracture.
Knowing the tractions applied on the fracture plane, they can be solved to obtain the corresponding
normal / shear DD. Due to their singular nature (Cauchy singular to be precise), special care needs to be
used for their solution. The same singular nature extends to the case of non-planar cracks. In the case of
planar cracks, specific quadrature can be used to solve these boundary integral equations with spectral
accuracy. In the following, we focus on devising a collocation method based on the discretization of the
fracture with linear segment elements (in 2D) and triangular element (in 3D).

2.2 Numerical discretization - collocation - regularization after in-
tegration

We now turn to the solution of the general boundary integral equation (BIE) eq.(2.5) wich link the tractions
to the displacement discontinuities along the fracture. From the knowledge of the tractions ti along the
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fracture, our aim is to determine the displacement discontinuities. We recall that when x is inside the
fracture, the integral representation is singular, i.e. combining (2.5) and (2.6), we have the following
singular systems of BIE (i = 1, 2 in 2D, i = 1, 2, 3 in 3D):

ti(x)− toi (x) = −nj(x)
∫
Γ

cijklS
k
ab(x, y) [da,l(y)nb(y)− nl(y)da,b(y)] dSy x ∈ Γ

We focus in the following in the solution of this system of equations using the so-called displacement
discontinuity method (aka distributed dislocations techniques) - which is a collocation method.

2.2.1 Fracture Discretization
The first step is to discretize the fracture surface Γ into a set of elements / cells e.g. segments in 2D,
triangles or polygons in 3D. We only consider planar elements here (locally, the fracture curvature is
approximated by planar elements).

The surface mesh of Γ consists of N of such planar elements of surface Γe, i.e.

Γ ≈
∑

e=1,N

Γe

[note that even for large curvature the tessalation convegres toward Γ for a sufficiently large number of
elements]. The discretize BIE therefore becomes

ti(x)− toi (x) = −nj(x)
∑

e=1,N

∫
Γe

cijklS
k
ab(x, y) [da,l(y)neb − nel da,b(y)] dSy (2.11)

with nei the normal to element Γe. Note that we could also use directly the original BIE (2.4) (prior to
integration by parts), i.e.

ti(x)− toi (x) = nj(x)
∑

e=1,N

∫
Γe

cijklS
k
ab,l(x, y)da(y)neb dSy (2.12)

2.2.2 Choice of basis function / choice of collocation points
We now turn to the choice of the interpolation of the displacement discontinuity vector di over the dis-
cretized surface. One could think of using familiar continuous interpolation similar to what is typically
done in finite elements. Using continuous interpolation for such a Cauchy singular BIE is possible - but
discontinous interpolation are also often used (and we will mostly discussed discontinuous interpolation
in what follow). It is important to note that due to singular nature of the BIE, collocation can not be per-
formed at a point either located along an edge of the element (3D) or at one of the vertex (in 2D and 3D)
of the element.

Piece-wise constant element The lowest possible order of interpolation is the piece-wise constant
approximation. It implies that the displacement discontinuity are constant within one element. Such in-
terpolation is intrinsically discontinuous between elements. As a result, we have two respectively three
displacement discontinuities unknowns in 2D respectively 3D problems. We will therefore need to col-
locate the BIEs at one point within the element - the natural (and actually optimal) choice is to collocate
the BIEs at the element center.

Piece-wise polynomial element A straightforward generalization is to use a discontinous polynomial
interpolation of the DD vector within one element - without enforcing continuity between elements. For
example, in 2D a segment with linear or quadratic interpolation for di can be easily built. As the order
of the polynomial increase, the BIEs needs to be collocated at p + 1 points (where p is the order of the
polynomial). Example of elements are:
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• Piece-wise linear element (2D) - 4 unknowns per element (2 shear and 2 opening dd) - 2 collocation
points

• Piece-wise quadratic element (2d) - 6 unknowns per element (3 shear and 3 opening dd) - 3 collo-
cation points

• Piece-wise linear triangular element (3D) - 9 unkowns per element - 3 collocation points

• Piece-wise quadratic triangular element (3D) - 18 unknowns per element - 6 collocation points (see
Nikolskiy et al. (2015))

Even cubic triangular elements have been used (30 unknowns per element - 10 collocation points) ! see
e.g. Napier & Malan (2007). It is important to note that as the interpolation is discontinuous between
elements, the total number of unknowns is directly Ne × Ndof,e : number of elements times number of
unknowns (i.e. dofs) per elements.

Continuous polynomial element It is also possible to use continuous interpolation of the displacement
discontinuities between elements. In doing this, the total number of unknowns is of course less than when
using discontinous interpolation. However, careful choice of the collocation points is required (as the BIE
can not be collocated at the nodes without further regularization). Moreover, discontinous interpolation
between elements is a nice feature when dealing with fracture intersections notably (as well as sharp
corner boundaries).

2.2.3 Analytical integration over an element

We now restrict the discussion to piece-wise constant or piece-wise linear element in 2D for sake of
illustration. We see that equation (2.12) is a sum of integration over each element Γe. We therefore
needs to evaluate the following integrals

Iei (x) = nj(x)
∫
Γe

cijklS
k
ab,l(x, y)da(y)neb dSy

As the element Γe is planar, we can re-use what we have derived for the planar crack case and moreover,
perform a change of coordinates and perform the integration for a reference segment centered in the
origin of length 2 along the e1 axis. Denoting by ′ the coordinates of the source and receiver point in that
local reference system, the element integral becomes

Ie=R
i (x′) = nj(x′)

∫ 1

−1

sijk(x′ − y′)dk,1(y) dy′1

Piece-wise constant element For the piece-wise constant case this reduces to the simple expression,

Iei (x′) = −nj(x′)dk
∫ 1

−1

sijk,1(x
′
1 − y′1, x

′
2)[δ(y1 − 1)− δ(y1 + 1)] dy1

= −nj(x′)dk × [sijk(x
′
1 − 1, x2)− sijk(x

′
1 + 1, x′2)]

Note that a self-effect correction for elements located near the fracture tip has been proposed by
Ryder & Napier (1985)- It consists in adding to the tip element self-effect (normal-normal & shear-shear)
the quantity αE′/(4h) where h is the corresponding element size and α a pre-factor taken as 1/3 - see
also Gordeliy & Detournay (2011). We will refer to it as the “tip” correction. (it works well in both 2 and
3D).
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Figure 2.3: Reference displacement discontinuity segment - Piece-wise linear DD (so-called P1 element).
The normal dn = u−n − u+n and shear displacement discontinuity ds = u−s − u+s (positive in overlap) are
linearly evolving within an element. The normal n is n− with the classical convention of outward normal
to the elastic body. The integral equation is enforced at the collocation points (orange points): for a
piece-wise linear element at [−1/

√
2, 1/

√
2] , at 0 for a piece-wise constant element. For a piece-wise

linear element, the unknowns dofs are located at the nodes (-1,1).

Piece-wise linear element Here again it is it is easier to perform the integration for a unit segment
along the e1 axis centered in the origin and of size 2, i.e. segment defined by y′

1 ∈ [−1, 1] (see Fig. 2.3).
The case of any segment orientation, size and position (of the segment as well as of the observation
point) can be deduced easily by a change of coordinates. Moreover, it is customary to denote in that
local frame of the element d1 as ds (s for shear) and d2 as dn (n for normal). Dropping the ′ for clarity.

The shear and normal component of the displacement discontinuity thus varies as:

ds(ξ) = N1(ξ)d
1
s +N2(ξ)d

2
s

dn(ξ) = N1(ξ)d
1
n +N2(ξ)d

2
n

with the usual 1D linear shape functions

N1(ξ) =
1− ξ

2
N2(ξ) =

1 + ξ

2

We thus have the stress at xi due to the shear, respectively normal, linear variation of displacement
discontinuity over the reference element as:

σs
ij(x

′
1, x

′
2) = −

∫ 1

−1

∂sij1
∂ξ

N1(ξ) dξ︸ ︷︷ ︸
σs1
ij

×d1s −
∫ 1

−1

∂sij1
∂ξ

N2(ξ) dξ︸ ︷︷ ︸
σs2
ij

×d2s

σn
ij(x

′
1, x

′
2) = −

∫ 1

−1

∂sij2
∂ξ

N1(ξ) dξ︸ ︷︷ ︸
σn1
ij

×d1n −
∫ 1

−1

∂sij2
∂ξ

N2(ξ) dξ︸ ︷︷ ︸
σn2
ij

×d2n

such that
Iei (x

′
1, x

′
2) = nj(x

′
1, x

′
2)σ

s
ij(x

′
1, x

′
2) + nj(x

′
1, x

′
2)σ

n
ij(x

′
1, x

′
2)

The different integrals σn1
ij etc. (there is a total of 4 × 3 = 12 integrals for the piece-wise linear DD

element) can be obtained analytically (note that the principal value should be taken when x′2 = 0). Note
however, that the integrals (e.g. σs1

xx etc.) are still singular for x′1 = ±1, x2 = 0 . This is why when solving
a fracture problem using N displacement discontinuity segment, we collocate the integral equations for
shear and normal tractions at points inside of the DD segments, i.e. located at±1/

√
2 in the unit segment

(a choice argued to be optimal - see discussion in Crawford & Curran (1982)).
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Figure 2.4: Influence of segment DD element e on element k. We perform a change of coordinates to
compute the influence of the element e displacement discontinuities on the normal and shear tractions
at the collocations points of element k. This change of coordinates is such that element e corresponds
to the reference unit element.

It is worthwhile to note that due to the symmetries of sijk, we have the following relations, which helps
reducing computational cost:

σn
xx = σs

xy σn
xy = σs

yy

instead of 12 integrals, we therefore only need to evaluate 6. These integrals can be obtained easily
using for example Mathematica. Recall that they are expressed in the coordinate system of the reference
element.

2.2.4 Assembly of the final system

Let’s now come back to the case of a plane-strain fracture (e.g. Fig.2.2) in an in-situ stress field σo
ij (in

the absence of a crack) with given normal and shear tractions tn and ts applied inside the fracture. To
construct the equations for shear and normal tractions at a given collocation point (xk1 , xk2) in element k
of normal nki (and tangent vector ski ), we use the stress field induced by a piece-wise linear dd element
e of normal ne centered in (x̄e1, x̄e2) in the global reference frame. Changing of coordinates such that
the element e corresponds to the unit reference element centered in the origin with normal along e′2 (as
discussed previously), and denoting as R the rotation matrix to switch from the local element e system
to the global system of coordinates, the normal and tangential unit vector for element k in that system
will be denoted as nkei and skei :

nkei = RT
ijn

k
j skei = RT

ijs
k
i

and the collocation point xki is x′ki in the reference frame of element e :

x′ki = RT
ij .(x

k
j − x̄ej)

such that the induced shear teks (xk) and normal tekn (xk) tractions by the linear variation of displacement
discontinuuity over element e at the collocation point xkm located in element k are

tes(x
k
m) = skei σ

s1
ij (x

′k
m)nkej d

1
s + skei σ

s2
ij (x

′k
m)nkej d

2
s + skei σ

n1
ij (x

′k
m)nkej d

1
n + skei σ

n2
ij (x

′k
m)nkej d

2
n

ten(x
k
m) = nkei σ

s1
ij (x

′k
m)nkej d

1
s + nkei σ

s2
ij (x

′k
m)nkej d

2
s + nkei σ

n1
ij (x

′k
m)nkej d

1
n + nkei σ

n2
ij (x

′k
m)nkej d

2
n
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To simplify the notation, we re-write

skei σ
sl
ij(x

′k
m)nkej = Kel

ss(x
k
m) l = 1, 2

skei σ
nl
ij (x

′k
m)nkej = Kel

sn(x
k
m) l = 1, 2

nkei σ
sl
ij(x

′k
m)nkej = Kel

ns(x
k
m) l = 1, 2

nkei σ
nl
ij (x

′k
m)nkej = Kel

nn(x
k
m) l = 1, 2

Finally, we can sum up the contributions of all elements in the mesh to the induced shear and normal
tractions at the collocation point xk located in element k in order to balance the in-situ tractions toi and
applied normal and shear tractions tn and ts inside the fracture at xk :

ts(xk)− tos(xk) =
N∑
e=1

2∑
l=1

(
Kel

ss(xk)dels +Kel
sn(xk)deln

)
tn(xk)− ton(xk) =

N∑
e=1

2∑
l=1

(
Kel

ns(xk)dels +Kel
nn(xk)deln

)
where in the previous equation there are no summation on repeated indices, i.e. de1s denotes the shear
displacement discontinuity at nodes 1 of element e, andKel

ss correspond to the corresponding contribution
on the shear traction at xk etc. We write the previous equations for shear and normal tractions at 2N
collocations point to obtain a system of 4N equations with 4N unknowns related to the shear and normal
displacement discontinuities in each piece-wise linear element DD.

Introducing the total vector of displacement discontinuity d (of size 4N ) obtained by stacking the
unknown as:

d = (de=1,l=1
s , de=1,l=1

n , ..., de,l=1
s , de,l=1

n , de,l=2
s , de,l=2

n ...)

and the total vector of applied tractions (and similarly in-situ tractions) at all the collocation points (2 per
elements)

t = (te=1,l=1
s , te,l=1

n , ...te,l=1
s , te,l=1

n , te,l=2
s , te,l=2

n ...)

we can schematically re-writte the elastic system of equations as:

t− to = Ed (2.13)

where E is a 4N × 4N matrix (in the case of P1 elements) containing the corresponding entries Kel
ss(xk),

etc . It is in general a fully populated (dense) matrix which is not symmetric. However, it is worth to note
that for the particular case of a straight crack the shear and normal component uncouples (Ksn = Kns =
0).

2.2.4.1 Extension to Quasi-dynamic

The boundary element method presented previously is restricted to quasi-static elasticity. Upon the
nucleation of a dynamic rupture, inertial effects are no more negligible. Rigorously, one would need to
switch to fully elastodynamic formulation. However, a quasi-dynamic approximation - originally proposed
by Rice (1993) - can be used to account for radiation of seismic waves in a simplified manner and
avoid unrealistic unbounder slip rates. It consists in adding a term related to slip and opening rates and
multiplied by the ratio between elastic modulus and wave-speeds on the right-hand side elasto-static
boundary integral equations (2.12) and () in the end , i.e. a so-called radiation damping term:

−1

2

[
G/cs 0
0 G/cp

]
· ∂
∂t

[
ds
dn

]
where cs and cp denote the shear and compressional wave speeds: cs =

√
G/ρ and cp =

√
(K + 4/3g)/ρ.

Such a quasi-dynamic approximation results in an additional diagonal term in the final elasticity equa-
tion. Note that as discussed in Rice (1993), mass scaling can be performed to relax time-step restrictions
when integrating through instabilities.
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2.2.5 Simple Examples in 2D
We focus on 2 simple examples: a griffith crack (uniformly pressurized crack) and a series of intersecting
crack - aka star-crack

2.2.5.1 Griffith Crack

The solution of a crack of length 2a centered of the origin of a 2D elastic infinite space in plane-strain
under remote far-field tension p/ or similarly uniformly pressurized is well known (see e.g. Sneddon, I.
N. (1946) and references therein). The fracture width w = −dy is notably given by:

w(x) =
4p

E′

√
a2 − x2 |x| ≤ a

and the mode I stress intensity factor is given by

KI = p
√
πa

We can compare thus the numerical results obtained either with P0 or P1 element - first for the case
of an uniform mesh (see Fig. 2.5). We see that P0 element with tip correction outperform P1 element
in that case. Interestingly, P1 element do not exhibit a larger convergence rate than P0 element (w.o
tip correction) but are always more precise- this is becasue even P1 element do not capture well the
near-tip square-root behavior which control convergence.

Local tip refinement - Piece-wise constant versus linear element It is interesting to test the case
where the mesh is refined near the fracture tip (in the last 25% of the crack) with either P0 (with tip
correction) or P1 element. The local relative error on the fracture width along the fracture is displayed in
fig. 2.6. One observe that P0 elment (even with tip correction) perform really badly on such a non-uniform
mesh, whereas P1 element actually benefit from such a mesh refinement. P0 elements can really be
used only with uniform mesh (and with the Napier-Ryder tip correction). P1 elements are more versatile
mesh wise. Note that the same results are observed in 3D.

2.3 Acceleration - a brief introduction to H -matrices
The boundary element method described previously -like all BEM - allows to reduce the problem dimen-
sion by one. However, the resulting matrices are fully populated - which is a striking difference compared
to domain based method such as the finite element method (for which the number of unknowns is sig-
nificantly larger but the final matrix is very sparse). The fact that the final BEM matrix is fully populated
has two negative consequences:

• The memory requirements are in O(N2)) and become large to the point that the system can not fit
in memory even for not so large cases- e.g. N = 105 unknowns requires 80GB of RAM (using 64
bits(8 Bytes)- i.e. 8 ∗ (105)2)

• A solution of the system via a direct solver scales in O(N3)) and a solution via an iterative solver
as O(kN2)) - where k is the number of iterations.

Profile of ty(x) in front of the fracture / approximation as Vcrack × tddy .
A number of different techniques have therefore emerged to address these limitations intrinsic to BIE

with the aim to solve problem of large size. All these techniques rely on the observation that for elliptic
operator, the fundamental kernel decays as the distance between the source and observation points
increases- such that the integral representation “smooth” out details for far-enough observation points.
As a result one can “lump” the influence of sources far from an observation points. The first technique to
use such an idea was coined as the panel clusteringmethod (see e.g. Hackbusch &Nowak (1989)) which
provide a fast way to perform matrix-vector product of the collocation matrix). Along similar lines, but in
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Figure 2.5: Griffith crack example - uniform mesh case. The dashed blue line correspond to a conver-
gence in N−1 while the yellow dashed line corresponds to N−2.
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Figure 2.6: Griffith crack (uniformly pressurized) - Local relative error on the fracture width - case of a
constant mesh refinement at the tip. The P0 elements fails miserably (even with tip correction) for such
a non-uniform mesh, whereas the P1 elements properly captured the width everywhere in the domain
(maximum of 2% of relative error compared to the analytical solution).
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Figure 2.7: Simple example of a hierarchical matrix of a BIE operator - the near-field contribution are
computed exactly (full-rank block), whereas the far-field contribution are stored as low-rank approximant
of the original matrix. this in a hierarchical way based on a geometric cluster tree. Sketch from François
Fayard (Inside Loop).

a more formal manner, the fast multipole method first derived by Rokhlin (1985) has been developled in
different context (e.g. Yoshida, K. et al. (2001), Margonari, M. & Bonnet M. (2005) amon many others). It
is based on a tree structure of sources / collocations points distances and a multipole moment expansion
of the integral equation. As such it requires specific development for each type of integral equations. In
parallel, hierarchical matrices have gained popularity - their are also based on a cluster tree of sources
/ collocations points distances in order to if the far-field effect can be approximated or the near effect
kept evaluated as usual. This is based on a solely geometric admissibility conditions. Then the far-field
“blocks” cluster of the collocation matrix are approximated using a low rank approximation - cheaper to
compute than a truncated SVD - a so-called adaptative cross approximation (see Hackbusch (2015),
Bebendorf (2005)). This is a purely algeabric technique that can be applied to any type of BIE (provided
that the kernel exhibit a smooth decay with distance). Hierarchical matrices allow a very significant
condensation of the memory required. Moreover, fast product vector algebra as well as so-called H-LU
decomposition have been developed which allow to either be used as direct solver or as pre-conditionner
when using iterative solvers.

Typically the construction of the hierarchical matrix scales in O(n logn), similarly for its dot product
and an iterative solver thus scales in O(k × n logn).

Admissibility condition The decision to store the influence either has full or low-rank block is based
on a geometrical admissibility condition with a dimensionless parameter η controlling the “agressivity” of
the approach. I.e. for two clusters of points A and B which satisfy

max (diam(A), diam(B)) ≤ η dist(A,B)

the 2 cross influence of the 2 clusters are deemed admissible and are thus approximated with a low-rank
approximation. In the previous, we have

diam(A) = maxi,j∈A

∥∥xi − xj
∥∥

dist(A,B) = mini∈A,j∈B

∥∥xi − xj
∥∥

[i.e. larger η result in more aggressive approximation]. Practically, when doing the cluster tree - which
is purely based on geometry - another parameter is the depth of the tree - the maximum number of
leaf (max_leaf_size). The smaller is the max_leaf_size the finer is the cluster tress and as a result
finer/better is the resulting the hierarchichal matrix.

Our current implementation of the construction of the cluster tree is not very optimal from a memory
point of view - such that for very large number of unknwons, max_leaf_size must be increased (to
minimize the memory required to build the cluster tree).
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Low rank approximation Another parameter of the algorithm is the tolerance ϵ of the low-rank ap-
proximation of the admissible matrix block performed via the Adaptive Cross Approximation algorithm
(see Hackbusch (2015), Bebendorf (2005) for details). This H − LU algorithm has in addition another
tolerance ϵLU controlling the precision of the final LU approximation obtained.

2.4 Our implementation
In collobaration with Inside Loop (F. Fayard) and S. Chaillat-Loiseuille (from ENSTA), we have devel-
oped an efficiency multithreaded C++ library implementing all the necessary algorithms for the use of
hierarchical matrices in the context of the boundary element method. The method is BIE agnostic and
can thus be used in different context easily. We have also developed in C++ a collocation based BIE
solver for quasi-static elasticity with either piece-wise linear and piece-wise constant displacement dis-
continuity element in 2D plane-strain configuration. We present in the subsquent section - a series of
verification tests and discuss the efficiency of the hierarchical matrix acceleration techniques. We have
also developed in C++, a collocation based BIE solver for quasi-static elasticity using triangular piece-
wise quadratic displacement discontinuity elements. We also present in what follow some verification
tests for this 3D solver.
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2.5 Two-dimensional Benchmarks
In this section, we present validation of our 2D plane-strain displacement discontinuity solver for fracture
problems. We also present a series of tests on the performance of the H-matrix approach. All the
simulations reported here have been performed on a personal laptop.

2.5.1 Circular arc crack
2.5.1.1 Geometry and reference solution

A crack in the form of a circular arc in an infinite plane is considered, under the assumption of plane
strain. The crack is defined by x = R cosϕ, y = R sinϕ, where R is the radius of the arc, ϕ ∈ [−θ, θ]
is the angle defining the location on the crack, and [−θ, θ] is the arc’s angular extent (Figs. 2.8 and
2.9). The infinite plane is subjected to a hydrostatic far-field tensile stress P . The plane strain Young’s
modulus of the medium is E′.

An analytical reference solution for the displacement jump (crack opening w(ϕ), ride v(ϕ)) is given
by Piva (1982):

w(ϕ) =
P R

E′ Re

[
4
√
2
e− 1

2 i(2θ+ϕ)
(
eiϕ − eiθ

) (
ei(θ+ϕ) − 1

)
(3− cos θ)

√
cosϕ− cos θ

]
(2.14)

v(ϕ) =
P R

E′ Im

[
4
√
2
e− 1

2 i(2θ+ϕ)
(
eiϕ − eiθ

) (
ei(θ+ϕ) − 1

)
(3− cos θ)

√
cosϕ− cos θ

]
(2.15)

The analytical expressions for the stress intensity factors (SIFs) are given in ?:{
KI

KII

}
=
P
√
πR sin θ

1 + sin2
(
θ
2

) ×{ cos
(
θ
2

)
sin
(
θ
2

) } (2.16)

2.5.1.2 Numerical solution without or with H-matrix approximation

We consider two arc crack configurations, corresponding to θ = 85◦, and θ = 175◦. P1 displacement
discontinuity (DD) elements have been used to discretize the circular arc crack. Figs. 2.8 and 2.9 show
the discretized crack, as well as a comparison of the DD solutions, obtained using the full (dense) DD
influencematrix, with the analytical solution (2.14) - (2.16). Themode I SIF has been obtained in the DDM
solution from the crack width at the inner edge of the tip element, averaged from the two DD elements
containing that edge.

The DDM solutions, obtained with the full (dense) influence matrix and with the H-mat low-rank ap-
proximation of the influence matrix, are compared in the following to investigate the efficiency and the
accuracy of the H-mat approach. Tables 2.1 and 2.2 list the relative errors of the DD solutions with re-
spect to the analytical solution (2.14) - (2.16) and the computational efficiency for the circular arc crack
problem with θ = 85◦. The H-mat parameters η and ε are varied to show its effects on the relative errors,
the storage requirements and the computation time. Similarly, tables 2.3 and 2.4 list the relative errors
and the computational efficiency for the circular arc crack problem with θ = 175◦, for varying H-mat pa-
rameters η and ε. For these examples, the maximum leaf size 32 was used for the H-mat approximation.
The results in tables 2.1 - 2.4 are listed for the case Ndof = 4× 104, corresponding to 104 P1 elements
used to discretize the crack.

Figures 2.10 and 2.11 show the relative errors, the matrix assembly time and the total solver time for
θ = 175◦, vs. the number of the degrees of freedom (DOFs). An example of the matrix compression
ratios is shown for η = 0.3 and η = 0.0001 in Fig. 2.12.

Several observations can be noted from these results:

• The example with θ = 175◦ is more severe than that with θ = 85◦, due to the fact that in the former
case, the two crack tips are close to each other. The geometry with θ = 175◦ is placing more
stringent requirements for the H-mat parameters η and ε.
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Figure 2.8: A numerical DD solution for the circular arc crack corresponding to θ = 85◦: (a) the circular
arc crack discretized with 50 DD P1 elements, (b) a comparison of the DD solution with 50 P1 elements
to the analytical solution, and (c) a comparison of the DD solution with 500 P1 elements to the analytical
solution.

type η ε Mean rel Mean rel Rel error H-mat Matrix constr. Total solver
error in w error in v in KI compr. ratio time (s) time (s)

Dense 8.5× 10−5 1.8× 10−3 1.3× 10−2 57.0 1275.3
H-mat 0.1 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 6.5× 10−2 22.1 143.5
H-mat 0.3 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 3.1× 10−2 11.5 42.7
H-mat 1.0 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 1.7× 10−2 7.8 18.1
H-mat 2.0 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 1.5× 10−2 6.7 13.6
H-mat 5.0 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 1.5× 10−2 6.4 14.6

Table 2.1: Effect of the H-mat parameter η on relative errors and computational efficiency for the DDM
solution of a circular arc crack problem, θ = 85◦. Maximum leaf size 32 was used for the H-mat. The
results are listed for the case Ndof = 4× 104. P1 elements were used.
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type η ε Mean rel Mean rel Rel error H-mat Matrix constr. Total solver
error in w error in v in KI compr. ratio time (s) time (s)

H-mat 0.3 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 3.1× 10−2 11.5 42.7
H-mat 0.3 10−3 8.5× 10−5 1.8× 10−3 1.3× 10−2 2.9× 10−2 10.9 40.0
H-mat 0.3 10−2 1.2× 10−4 1.9× 10−3 1.3× 10−2 2.7× 10−2 9.9 39.1
H-mat 0.3 10−1 8.1× 10−4 3.9× 10−3 1.2× 10−2 2.3× 10−2 7.8 35.0
H-mat 1.0 10−4 8.5× 10−5 1.8× 10−3 1.3× 10−2 1.7× 10−2 7.8 18.1
H-mat 1.0 10−3 8.3× 10−5 1.8× 10−3 1.3× 10−2 1.5× 10−2 6.5 15.2
H-mat 1.0 10−2 3.5× 10−4 1.9× 10−3 1.3× 10−2 1.3× 10−2 5.7 14.0
H-mat 1.0 10−1 1.2× 10−2 4.8× 10−2 8.7× 10−3 1.1× 10−2 4.6 12.0

Table 2.2: Effect of the H-mat parameter ε on relative errors and computational efficiency for the DDM
solution of a circular arc crack problem, θ = 85◦. Maximum leaf size 32 was used for the H-mat. The
results are listed for the case Ndof = 4× 104. P1 elements were used.

a

cb

Figure 2.9: A numerical DD solution for the circular arc crack corresponding to θ = 175◦: (a) the circular
arc crack discretized with 50 DD P1 elements, (b) a comparison of the DD solution with 50 P1 elements
to the analytical solution, and (c) a comparison of the DD solution with 500 P1 elements to the analytical
solution.
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type η ε Mean rel Mean rel Rel error H-mat Matrix constr. Total solver
error in w error in v in KI compr. ratio time (s) time (s)

Dense 6.3× 10−4 1.8× 10−3 2.1× 10−2 56.8 1646.2
H-mat 0.1 10−4 6.3× 10−4 1.8× 10−3 2.7× 10−2 7.3× 10−2 25.1 203.6
H-mat 0.3 10−4 1.2× 10−3 3.4× 10−3 3.7× 10−2 3.4× 10−2 13.2 56.1
H-mat 1.0 10−4 1.0× 10−3 2.9× 10−3 3.4× 10−2 1.8× 10−2 8.4 21.6
H-mat 2.0 10−4 6.3× 10−4 1.8× 10−3 2.9× 10−2 1.6× 10−2 6.9 15.0
H-mat 5.0 10−4 6.3× 10−4 1.8× 10−3 2.4× 10−2 1.6× 10−2 7.0 14.7

Table 2.3: Effect of the H-mat parameter η on relative errors and computational efficiency for the DDM
solution of a circular arc crack problem, θ = 175◦. Maximum leaf size 32 was used for the H-mat. The
results are listed for the case Ndof = 4× 104. P1 elements were used.

type η ε Mean rel Mean rel Rel error H-mat Matrix constr. Total solver
error in w error in v in KI compr. ratio time (s) time (s)

H-mat 0.1 10−4 6.3× 10−4 1.8× 10−3 2.7× 10−2 7.3× 10−2 25.1 203.6
H-mat 0.1 10−3 6.3× 10−4 1.8× 10−3 1.6× 10−2 7.1× 10−2 23.7 191.6
H-mat 0.1 10−2 5.7× 10−3 1.6× 10−2 4.6× 10−2 6.0× 10−2 18.8 182.3
H-mat 0.1 10−1 5.8× 10−3 1.6× 10−2 4.6× 10−2 5.9× 10−2 18.5 181.2
H-mat 0.3 10−4 1.2× 10−3 3.4× 10−3 3.7× 10−2 3.4× 10−2 13.2 56.1
H-mat 0.3 10−3 2.3× 10−3 6.3× 10−3 5.0× 10−2 3.2× 10−2 11.8 54.0
H-mat 0.3 10−2 3.9× 10−2 1.1× 10−1 4.5× 10−1 2.9× 10−2 10.7 54.2
H-mat 0.3 10−1 4.2× 10−1 1.2 5.0 2.5× 10−2 9.4 49.9
H-mat 2.0 10−4 6.3× 10−4 1.8× 10−3 2.9× 10−2 1.6× 10−2 6.9 15.0
H-mat 2.0 10−3 4.0× 10−3 1.1× 10−2 5.8× 10−2 1.4× 10−2 6.7 14.4
H-mat 2.0 10−2 5.8× 10−2 1.6× 10−1 6.6× 10−1 1.2× 10−2 5.0 12.5
H-mat 2.0 10−1 2.2× 10−1 5.1× 10−1 1.5 1.0× 10−2 4.2 11.1

Table 2.4: Effect of the H-mat parameter ε on relative errors and computational efficiency for the DDM
solution of a circular arc crack problem, θ = 175◦. Maximum leaf size 32 was used for the H-mat. The
results are listed for the case Ndof = 4× 104. P1 elements were used.
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a

b

Figure 2.10: Circular arc crack example (θ = 175◦, P1 elements): (a) mean relative error, and (b) relative
error in the mode I SIF, vs number of DOFs. H-mat parameters (η, ε) are listed for each data series.

36/169



a

b

Figure 2.11: Circular arc crack example (θ = 175◦, P1 elements): (a) matrix assembly cost in sec., and
(b) total solver cost in sec., vs number of DOFs. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.12: Circular arc crack example (θ = 175◦, P1 elements): H-matrix compression ratios vs number
of DOFs, for η = 0.3 and ϵ = 0.0001.

• One can find suitable values of η and ε to significantly reduce the storage (required for the influence
matrix) and the solver time, while keeping the solution accuracy at a level similar to that of the
solution with the dense influence matrix.

• The effect of decrease of parameter ε (for a fixed η) is consistent for both θ = 85◦, 175◦: it leads to
the increased accuracy of the solution, and to the increased solver time and the storage requirement
(via the increase in the H-matrix compression ratio).

• Choosing a too large value of ε can lead to divergent solutions, see Fig. 2.10. The solution for
the large numbers of DOFs diverges from the analytical solution for η = 0.3 and η = 0.1, and the
errors increase. On the other hand, for η = 0.3 and η = 0.0001, the numerical errors continue to
decrease.

• The effect of increase of parameter η (for a fixed ε) on the solution accuracy is less straightforward.
E.g. for θ = 175◦, table 2.3 shows a nonmonotone behavior of the relative errors for increasing η
and ε = 10−4. The efficiency of the solution (solver time and storage requirement, corresponding
to the H-matrix compression ratio) is consistently improved with increasing η for all cases.

2.5.2 Star crack
2.5.2.1 Geometry and reference solution

A crack in the form of a star in an infinite plane is considered, under the assumption of plane strain. The
crack is composed of n (n ≥ 2) straight crack segments of length a (crack wings) with one end at the
origin and the other end oriented radially from the origin, with an equal angle between the neighbour
crack segments. The crack is pressurized with a uniform pressure P . The plane strain Young’s modulus
of the medium is E′.

An analytical reference solution for the mode I SIF KI , the crack opening wo at the mouth of each
crack wing, and the workW done in opening the crack is given by Stallybrass (1970), ? in the following
form:

Kref
I

P
√
a
=

√
2πK (n) (2.17)
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wref
o

(P a/E′)
=

4
√
n sin

(
π
n

)√
1 + n

2π sin
(
2π
n

)K (n) (2.18)

W ref

(P 2a2/E′)
= nπ (K (n))

2 (2.19)

where

K (n) = 21−
2
n

1√
n
exp

(
− 1

π
I(n)

)
(2.20)

I(n) =

∫ π/2

0

log
[
1 + tan(y) sin

(
2π

n

)
csch

(
2π

n

)
tan(y)

]
dy (2.21)

For this report, the integral in Eq. (2.21) is computed numerically using software Mathematica.

2.5.2.2 Numerical solution for stress intensity factor (dense matrix)

First, we investigate the accuracy of the stress intensity factor computation in comparison to the analytical
solution (2.17). Three formulas have been used to compute the mode I SIF from the DDM solution,
obtained with the P1 displacement discontinuity elements:

K
(1)
I = E′

√
π

32

waver(a−∆s)√
∆s

(2.22)

K
(2)
I = E′

√
π

32

waver(a− 2∆s)√
2∆s

(2.23)

K
(3)
I =

√
2WE′

an
(2.24)

W =
P

2

∫
crack

w(s)ds (2.25)

where ∆s is the length of a single DD element. Above, K(i)
I for i = 1, 2 is the SIF computed using

the local near-tip crack width at the distance i × ∆s from the crack tip. In Eqs. (2.22) and (2.23), the
crack width waver(a − i∆s) for i = 1, 2 is the average of the two values of the crack width at the node
s = (a− i∆s), resulting from the P1 DD approximation.

The formula (2.24) computes the SIF from the integral of the crack width over the complete crack
(with n wings). This formula is obtained via the following relationships between the strain energy release
rate G and the workW done to open the crack (the strain energy of the system) (Stallybrass 1970, 1969,
Rooke & Sneddon 1969, ?): K2

I = E′G = E′ 1
n
dW
da .

Table 2.5 shows a comparison of the mode I SIF computed from Eqs. (2.22) - (2.24), for the star-
crack problem with n = 3. P1 DD elements were used to discretize the star crack. The full (dense) DDM
influence matrix was used. It is seen that the SIF computed from the local near-tip crack width (K(i)

I for
i = 1, 2) is less accurate than the SIF computed from the integral of the crack width over the complete
crack. Eq. (2.23) provides a more accurate approximation than Eq. (2.22). Note that the accuracy in
K

(1)
I and K(2)

I relates to the accuracy of the DDM solution in the crack tip, while the accuracy in K(3)
I

relates to the overall accuracy of the DDM solution over the crack since it involves integration of the crack
width over the complete crack (Eqs. (2.24) and (2.25)).
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# DD elts K
(1)
I

P
√
a

K
(2)
I

P
√
a

K
(3)
I

P
√
a

Rel error Rel error Rel error
(total) in K(1)

I in K(2)
I in K(3)

I

300 1.68407 1.65562 1.66785 9.2× 10−3 7.9× 10−3 5.5× 10−4

3000 1.68905 1.66541 1.66863 1.2× 10−2 2.0× 10−3 8.2× 10−5

9000 1.68943 1.66615 1.66871 1.2× 10−2 1.6× 10−3 3.2× 10−5

12000 1.68948 1.66624 1.66872 1.2× 10−2 1.5× 10−3 2.5× 10−5

Table 2.5: Comparison of the mode I SIF computed from the DDM solution of a star crack problem, n = 3,
from Eqs. (2.22) - (2.24). The full (dense) DDM influence matrix was used. The first column shows the
total number of P1 DD elements used to discretize the star crack. The relative errors are computed with
respect to the reference value given by Eq. (2.17), which for this problem is Kref

I

P
√
a
= 1.66876....

a b

Figure 2.13: A DD discretization of the star crack: (a) the star crack with n = 3 wings discretized with
the total of 60 DD P1 elements, (b) the star crack with n = 10 wings discretized with the total of 100 DD
P1 elements. Circles denote the locations of the end-nodes of the DD elements.
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type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

Dense 3.6× 10−5 1.6× 10−3 3.2× 10−5 42.0 729.2
H-mat 0.1 10−4 3.6× 10−5 1.6× 10−3 3.2× 10−5 8.1× 10−2 22.8 212.9
H-mat 0.3 10−4 3.6× 10−5 1.6× 10−3 3.2× 10−5 3.9× 10−2 12.1 58.0
H-mat 1.0 10−4 3.6× 10−5 1.6× 10−3 3.2× 10−5 1.9× 10−2 6.6 20.1
H-mat 2.0 10−4 3.7× 10−5 1.6× 10−3 3.2× 10−5 1.7× 10−2 6.0 14.4
H-mat 5.0 10−4 3.7× 10−5 1.6× 10−3 3.2× 10−5 1.7× 10−2 5.6 12.7
H-mat 0.1 10−1 3.2× 10−4 1.8× 10−3 1.9× 10−4 6.3× 10−2 15.9 183.8
H-mat 0.3 10−1 3.4× 10−4 3.5× 10−4 2.0× 10−4 2.8× 10−2 8.2 49.2
H-mat 1.0 10−1 1.2× 10−2 7.2× 10−3 4.3× 10−3 1.3× 10−2 4.4 15.6
H-mat 2.0 10−1 1.4× 10−2 7.2× 10−3 3.8× 10−3 1.2× 10−2 4.0 12.1
H-mat 5.0 10−1 4.6× 10−3 6.1× 10−3 3.5× 10−3 1.1× 10−2 3.7 10.7

Table 2.6: Effect of the H-mat parameter η on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 3. Maximum leaf size 32 was used for the H-mat. The results are
listed for the case Ndof = 3.6× 104. P1 elements were used (9000 DD elements total).

type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

H-mat 0.3 10−4 3.6× 10−5 1.6× 10−3 3.2× 10−5 3.9× 10−2 12.1 58.0
H-mat 0.3 10−3 3.8× 10−5 1.6× 10−3 3.3× 10−5 3.6× 10−2 10.6 50.5
H-mat 0.3 10−2 2.1× 10−5 1.5× 10−3 3.8× 10−6 3.4× 10−2 10.1 53.1
H-mat 0.3 10−1 3.4× 10−4 3.5× 10−4 2.0× 10−4 2.8× 10−2 8.2 49.2
H-mat 2.0 10−4 3.7× 10−5 1.6× 10−3 3.2× 10−5 1.7× 10−2 6.0 14.4
H-mat 2.0 10−3 2.1× 10−5 1.6× 10−3 2.3× 10−5 1.6× 10−2 5.2 13.5
H-mat 2.0 10−2 1.3× 10−4 1.5× 10−3 2.5× 10−5 1.3× 10−2 4.4 12.4
H-mat 2.0 10−1 1.4× 10−2 7.2× 10−3 3.8× 10−3 1.2× 10−2 4.0 12.1

Table 2.7: Effect of the H-mat parameter ε on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 3. Maximum leaf size 32 was used for the H-mat. The results are
listed for the case Ndof = 3.6× 104. P1 elements were used (9000 DD elements total).

2.5.2.3 Numerical solution without or with H-matrix approximation

We consider three star crack configurations, corresponding to n = 3, 4, 10. P1 displacement disconti-
nuity (DD) elements have been used to discretize the crack. Fig. 2.13 shows examples of discretized
cracks. For the H-mat low-rank approximation of the DD influence matrix, the maximum leaf size was
set to 32 for n = 3 and to 320 for n = 4, 10.

The DDM solutions, obtained with the full (dense) influence matrix and with the H-mat low-rank ap-
proximation of the influence matrix, are compared in the following to investigate the efficiency and the
accuracy of the H-mat approach. See Tables 2.6 - 2.11 and Figs. 2.14 - 2.25 for a detailed study of
the effects of the H-mat parameters (η, ε) on the accuracy of the solution for wo, K

(2)
I and K(3)

I , on the
computational time spent to assemble the influence matrix or its H-mat approximation, on the computa-
tional time spent to solve the linear system, and on the compression ratio achieved by using the low-rank
H-mat approximation.

Several observations can be made from these results:

• For all the star cracks tested (n = 3, 4, 10), the values η = 2, 5 and ε = 10−4 provide: conver-
gence to the analytical solution for the crack width and the stress intensity factor K(3)

I (Figs. 2.14,
2.15, 2.20, 2.23; Tables 2.6 - 2.11), and a significant reduction in the storage required to store the
influence matrix (Figs. 2.19, 2.22, 2.25; Tables 2.6 - 2.11).

• For n = 3, the use of the H-mat with η = 2, 5 and ε = 10−4 also leads to a significant reduction
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type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

Dense 3.4× 10−5 1.6× 10−3 3.1× 10−5 74.1 75486.8
H-mat 1.0 10−4 3.3× 10−5 1.6× 10−3 3.1× 10−5 1.1× 10−1 29.6 3483.19
H-mat 2.0 10−4 3.2× 10−5 1.6× 10−3 3.1× 10−5 6.9× 10−2 20.9 1528.9
H-mat 5.0 10−4 3.4× 10−5 1.6× 10−3 3.1× 10−5 5.4× 10−2 17.3 766.1
H-mat 10.0 10−4 3.4× 10−5 1.6× 10−3 3.1× 10−5 5.4× 10−2 16.6 800.4

Table 2.8: Effect of the H-mat parameter η on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 4. Maximum leaf size 320 was used for the H-mat. The results are
listed for the case Ndof = 4.8× 104. P1 elements were used (12000 DD elements total).

type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

H-mat 5.0 10−4 3.4× 10−5 1.6× 10−3 3.1× 10−5 5.4× 10−2 17.3 766.1
H-mat 5.0 10−3 9.3× 10−5 1.6× 10−3 3.3× 10−5 5.3× 10−2 15.7 801.4
H-mat 5.0 10−2 2.2× 10−4 1.8× 10−3 1.0× 10−4 5.1× 10−2 14.8 817.6
H-mat 5.0 10−1 3.7× 10−3 6.9× 10−4 9.5× 10−5 5.0× 10−2 14.0 810.3

Table 2.9: Effect of the H-mat parameter ε on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 4. Maximum leaf size 320 was used for the H-mat. The results are
listed for the case Ndof = 4.8× 104. P1 elements were used (12000 DD elements total).

type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

Dense 7.0× 10−5 3.9× 10−3 6.7× 10−5 53.1 948.6
H-mat 0.1 10−4 7.0× 10−5 3.9× 10−3 6.7× 10−5 9.5× 10−1 142.0 1065.8
H-mat 0.3 10−4 7.0× 10−5 3.9× 10−3 6.7× 10−5 7.5× 10−1 112.5 3827.0
H-mat 2.0 10−4 8.9× 10−5 3.9× 10−3 6.7× 10−5 1.3× 10−1 25.3 2028.7
H-mat 5.0 10−4 5.6× 10−5 3.9× 10−3 6.7× 10−5 8.4× 10−2 17.8 599.3
H-mat 0.3 10−1 2.0× 10−3 3.4× 10−3 4.0× 10−5 7.5× 10−1 111.1 3965.9
H-mat 2.0 10−1 1.6× 10−1 1.3× 10−3 1.0× 10−3 1.2× 10−1 21.3 2029.8
H-mat 5.0 10−1 2.0 5.5× 10−2 2.5× 10−3 7.6× 10−2 13.8 637.5

Table 2.10: Effect of the H-mat parameter η on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 10. Maximum leaf size 320 was used for the H-mat. The results
are listed for the case Ndof = 4× 104. P1 elements were used (10000 DD elements total).

type η ε Rel error Rel error Rel error H-mat Matrix constr. Total solver
in wo in K(2)

I in K(3)
I compr. ratio time (s) time (s)

H-mat 2.0 10−4 8.9× 10−5 3.9× 10−3 6.7× 10−5 1.3× 10−1 25.3 2028.7
H-mat 2.0 10−3 2.7× 10−3 3.8× 10−3 6.6× 10−5 1.3× 10−1 23.0 2006.0
H-mat 2.0 10−2 1.2× 10−2 3.7× 10−3 1.0× 10−4 1.3× 10−1 21.9 2031.9
H-mat 2.0 10−1 1.6× 10−1 1.3× 10−3 1.0× 10−3 1.2× 10−1 21.3 2029.8
H-mat 5.0 10−4 5.6× 10−5 3.9× 10−3 6.7× 10−5 8.4× 10−2 17.8 599.3
H-mat 5.0 10−3 7.4× 10−3 3.7× 10−3 7.1× 10−5 8.1× 10−2 17.0 622.9
H-mat 5.0 10−2 1.5× 10−1 1.1× 10−2 1.3× 10−4 7.9× 10−2 15.3 629.6
H-mat 5.0 10−1 2.0 5.5× 10−2 2.5× 10−3 7.6× 10−2 13.8 637.5

Table 2.11: Effect of the H-mat parameter ε on relative errors and computational efficiency for the DDM
solution of a star crack problem, n = 10. Maximum leaf size 320 was used for the H-mat. The results
are listed for the case Ndof = 4× 104. P1 elements were used (10000 DD elements total).
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Figure 2.14: Star crack example (n = 3, P1 elements): relative error in crack opening at the center, vs
number of DOFs: effect of parameter η (top) and parameter ε (middle, bottom). H-mat parameters (η, ε)
are listed for each data series.
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Figure 2.15: Star crack example (n = 3, P1 elements): relative error in the SIF K(3)
I computed using

Eqs. (2.24) and (2.25), vs number of DOFs: effect of parameter η (top) and parameter ε (middle, bottom).
H-mat parameters (η, ε) are listed for each data series.
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Figure 2.16: Star crack example (n = 3, P1 elements): relative error in the SIFK(2)
I computed using Eq.

(2.23), vs number of DOFs: effect of parameter η (top) and parameter ε (bottom). H-mat parameters
(η, ε) are listed for each data series.
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Figure 2.17: Star crack example (n = 3, P1 elements): the relative errors in the SIF K(3)
I obtained from

the H-matrix solutions with respect to the values of K(3)
I obtained using the full DDM matrix, vs number

of DOFs. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.18: Star crack example (n = 3, P1 elements): matrix assembly cost in sec. (top), and total
solver cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N3 (gray), N2 (orange)
and N logN (black) growth rates. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.19: Star crack example (n = 3, P1 elements): H-matrix compression ratios vs number of DOFs
for η = 5.0 and ε = 0.0001 (top), and H-matrix compression ratios vs number of DOFs for several values
of parameters η and ε (middle, bottom).
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Figure 2.20: Star crack example (n = 4, P1 elements), relative errors vs number of DOFs for: crack
opening at the center (top), SIF K

(3)
I computed using Eqs. (2.24) and (2.25) (middle), and SIF K

(2)
I

computed using Eq. (2.23) (bottom). H-mat parameters (η, ε) are listed for each data series.
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Figure 2.21: Star crack example (n = 4, P1 elements): matrix assembly cost in sec. (top), and total
solver cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N2 (orange) and N logN
(black) growth rates. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.22: Star crack example (n = 4, P1 elements): H-matrix compression ratios vs number of DOFs.
H-mat parameters (η, ε) are listed for each data series.
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Figure 2.23: Star crack example (n = 10, P1 elements), relative errors vs number of DOFs for: crack
opening at the center (top), SIF K

(3)
I computed using Eqs. (2.24) and (2.25) (middle), and SIF K

(2)
I

computed using Eq. (2.23) (bottom). H-mat parameters (η, ε) are listed for each data series.
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Figure 2.24: Star crack example (n = 10, P1 elements): matrix assembly cost in sec. (top), and total
solver cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N2 (orange) and N logN
(black) growth rates. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.25: Star crack example (n = 10, P1 elements): H-matrix compression ratios vs number of
DOFs. H-mat parameters (η, ε) are listed for each data series.
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in the computation time (Fig. 2.18). For n = 4 and n = 10, the advantage of the use of H-mat in
the solver time is only seen at larger number of the degrees of freedom, i.e. for Ndof ≥ 4 × 104

(Figs. 2.21 and 2.24). It is possible that for n = 4, 10, the advantage could be observed for even
larger numbers of the degrees of freedom, which however were not feasible to use in the present
computations due to the memory limit.

• Fig. 2.17 shows the relative errors in the SIFK(3)
I obtained from the H-matrix solutions with respect

to the values ofK(3)
I obtained using the full DDM matrix, vs the number of the degrees of freedom.

The results correspond to n = 3. These relative errors represent the error due to the H-matrix
approximation of the DDM influence matrix. (I.e. these errors do not include the approximation
error due to the DDM discretization of the crack.) For all numbers of the degrees of freedom
tested, these relative errors are below 10−6 for η = 0.1, 2, 5, 10 and ε = 10−4 . Naturally, the
relative errors due to the H-matrix approximation increase with increasing η for a fixed ε = 10−4,
since the H-matrix approximation becomes more aggressive. These relative errors slightly grow
as the size of the linear system increases, within the limits for the numbers of degrees of freedom
in the tested cases.

• By increasing η (for a fixed ε = 10−4), the efficiency of the solution (solver time and storage re-
quirement, corresponding to the H-matrix compression ratio) is improved. At some threshold value
of η, however, the efficiency no longer shows a significant improvement, and there is no significant
advantage in a further increase of η. For example, for n = 3, there is a significant improvement in
the solver time and the compression ratio due to the increase from η = 0.1 to η = 2, but no such a
significant improvement due to the increase from η = 2 to η = 10 (Figs. 2.18 and 2.19). Similarly,
for n = 4, there is an improvement in the solver time and the compression ratio due to the increase
from η = 2 to η = 5, but no significant improvement due to the increase from η = 5 to η = 20 (Figs.
2.21 and 2.22). For this problem it is optimal to use the values around η = 2, 5 (for ε = 10−4), for
accuracy and efficiency.

• Choosing a too large value of η (e.g. η = 20) can lead to a divergent solution at large numbers of
DD elements, see Figs. 2.14, 2.15.

• By decreasing ε (for a fixed η), the accuracy of the solution is increased. At the same time, in this
problem, the solver time and the H-mat compression ratio do not grow significantly by decreasing
from ε = 0.1 to ε = 10−4, for all n tested. Therefore, for this problem it is optimal to use ε = 10−4,
for accuracy and efficiency.

• Choosing a too large value of ε (e.g. ε = 0.1) can lead to a divergent solution at large numbers of
DD elements, see Figs. 2.14, 2.15, 2.20, 2.23.

• In summary, one can find suitable values of η and ε to significantly reduce the storage (required for
the influence matrix) and the solver time, while keeping the solution accuracy at a level similar to
that of the solution with the dense influence matrix.

2.5.3 Two parallel cracks
2.5.3.1 Geometry and reference solutions

Two parallel cracks of length 2a at the distance h in an infinite plane are considered, under the assumption
of plane strain. The infinite plane is subjected to a far-field tensile stress P acting orthogonal to the
traction-free cracks. The plane strain Young’s modulus of the medium is E′.

No exact solution is available for this problem. An approximate reference solution for the mode I SIF
is given in Tada et al. (2000):

KI

P
√
πa

= FI(s) (2.26)

s =
a

a+ h
2

, FI(s) = 1− 0.293 s
[
1− (1− s)

4
]

(2.27)
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# DD elts K
(1)
I

P
√
πa

K
(2)
I

P
√
πa

(total)
16000 0.8533 0.8414
24000 0.8534 0.8416
40000 0.8535 0.8417

Table 2.12: Comparison of the mode I SIF computed from the DDM solution for the problem of two
parallel cracks, h/a = 2, from Eqs. (2.22) and (2.23). The full (dense) DDM influence matrix was used.
The first column shows the total number of P1 DD elements used to discretize the two cracks.

The accuracy of the approximation for FI is stated to be better than 1% Tada et al. (2000). There are
also tabulated numerical values for the case of two cracks in Gorbatikh et al. (2007), including reference
numerical results from two other works. The difference between the results from Tada et al. (2000) and
Gorbatikh et al. (2007) is of the order of few percent for h/a ≥ 1 and is larger for h/a < 1. For studying the
efficiency and convergence properties of the H-mat approach for this problem, we will use the solution
from the present method obtained with the full (dense) DDM matrix and the finest tested mesh.

2.5.3.2 Numerical solution for stress intensity factor (dense matrix)

First, we investigate the accuracy of the stress intensity factor computation in comparison to available
reference solutions, see Table 2.12. Similarly to the case of the star crack, Eqs. (2.22) and (2.23)
have been used to compute the mode I SIF from the DDM solution, obtained with the P1 displacement
discontinuity elements. P1 DD elements were used to discretize the cracks. The full (dense) DDM
influence matrix was used. For the case h/a = 2, the reference values are: KI

P
√
πa

≈ 0.8627 (Tada et al.
2000), KI

P
√
πa

≈ 0.8374 (Gorbatikh et al. 2007). The obtained values from the present method are in
agreement with the reference values.

It was observed for the star crack problem, that Eq. (2.23) provides a more accurate approximation
than Eq. (2.22). In the following, we use Eq. (2.23) to compute the mode I stress intensity factor.

2.5.3.3 Numerical solution without or with H-matrix approximation

Weconsider the two cracks corresponding to h/a = 2. P1 displacement discontinuity (DD) elements have
been used to discretize the cracks. First, the problem has been solved using η = 1, 5; ε = 10−4, 10−1;
and the maximum leaf size for the H-mat low-rank approximation set to 32. Then, to show the effect of
the maximum leaf size on the compression of the influence matrix, the problem was solved using η = 5,
ε = 10−4, and the maximum leaf size set to 320. The numbers of degrees of freedom were increased
from 160 to 4 × 105 (for the maximum leaf size 32) and to 106 (for the maximum leaf size 320). The
results of these simulations are shown in Figs. 2.26 - 2.29.

Fig. 2.26 shows the computed mode I SIFK(2)
I , the relative error inK(2)

I with respect to the numerical
value obtained for K(2)

I using the present DDM with the full (dense) matrix, and the mean relative error
in the crack width computed with respect to the solution obtained with the present DDM with the full
(dense) matrix. Fig. 2.27 shows the effects of the H-mat parameters on the computational time spent to
assemble the influence matrix or its H-mat approximation, and on the computational time spent to solve
the linear system. Figs. 2.28 and 2.29 show the effects of the H-mat parameters on the compression
ratio achieved by using the low-rank H-mat approximation, including the effect of the maximum leaf size.

Several observations can be made from these results:

• For the case tested (h/a = 2), the values η = 1, 5 and ε = 10−4 provide convergence in the stress
intensity factor K(2)

I , while the same values of η with ε = 10−1 lead to divergence of the results
(Fig. 2.26).

• Fig. 2.27 shows a significant reduction in computational time due to the use of the H-matrix ap-
proximation. For the simulations with the full matrix, the time spent for matrix assembly grows as
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Figure 2.26: Two parallel cracks (h/a = 2, P1 elements), numerical results vs number of DOFs for: mode
I SIFK(2)

I (top), the relative error in K(2)
I with respect to the numerical value obtained with the full matrix

and Ndofs = 5 × 103 (middle), and the mean relative error in crack width with respect to the solution
obtained with the full matrix and Ndofs = 5 × 103 (bottom). H-mat parameters (η, ε) are listed for each
data series. The maximum leaf size for H-mat simulations was set to 32, unless noted otherwise.
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Figure 2.27: Two parallel cracks (h/a = 2, P1 elements): matrix assembly cost in sec. (top), and total
solver cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N3 (gray), N2 (orange)
andN logN (black) growth rates. H-mat parameters (η, ε) are listed for each data series. The maximum
leaf size for H-mat simulations was set to 32, unless noted otherwise.
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Figure 2.28: Two parallel cracks (h/a = 2, P1 elements): H-matrix compression ratios vs number of
DOFs. H-mat parameters (η, ε) are listed for each data series. The maximum leaf size for H-mat
simulations was set to 32.
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Figure 2.29: The effect of the maximum leaf size on the H-mat compression ratios for two parallel cracks
(h/a = 2, P1 elements): H-matrix compression ratios vs number of DOFs. H-mat parameters (η, ε) are
listed for each data series. The maximum leaf size for H-mat simulations was set to 32, unless noted
otherwise.

N2, and the total solution time (including time in the linear solver) grows roughly as N3 for large
numbers of degrees of freedomN . For the simulations with H-matrix approximation, the time spent
for matrix assembly grows roughly as N logN , and the growth rate for the total solution time for
large N is between N2 to N logN . In particular, the total solution time for N = 4× 104 (i.e. 5× 103

P1 elements per crack) is 442 sec. with the full matrix and 13 sec. with the H-matrix with η = 5,
ε = 10−4, and the maximum leaf size set to 32.

• Fig. 2.28 shows a significant reduction in storage required for the influence matrix. E.g. for N =
4 × 104 (i.e. 5 × 103 P1 elements per crack), the compression ratio of the influence matrix for all
tested values of ηand ε is around 1-2%.

• The use of the H-matrix approximation allowed for using much larger numbers of degrees of free-
dom in the problem, i.e. much finer meshes on the cracks. E.g., the largest number of degrees of
freedom that was used with the full matrix was N = 4 × 104 (i.e. 5 × 103 P1 elements per crack).
With the H-matrix, it was possible to run the simulations using N = 4 × 105 (i.e. 50 × 103 P1 ele-
ments per crack) when the maximum leaf size was set to 32, and using N = 106 (i.e. 125× 103 P1
elements per crack) when the maximum leaf size was set to 320.

• The effect of the maximum leaf size of the H-matrix is shown in Figs. 2.26, 2.27 and 2.29. By
increasing the maximum leaf size from 32 to 320 (with η = 5, ε = 10−4), there was no significant
change of the accuracy of the solution (Fig. 2.26) and no significant change in the computational
time (Fig. 2.27). Naturally, the compression ratio of the H-matrix increased with the larger maximum
leaf size. On the other hand, by setting the maximum leaf size to 320, it was possible to run the
simulation with N = 106, while a simulation with the maximum leaf size set to 32 and N = 106

could not proceed due to the memory limit.

• There is no significant difference in the total solution time between the H-matrix simulations with
η = 1 and η = 5, and no difference in the accuracy of the SIF. In fact, the values of SIF K

(2)
I

computed using η = 1, 5 and ε = 10−4 are found to be exactly the same, see Fig. 2.30 (top). In
a further test with N = 400, 16× 103, it was found that the values of the SIF K(2)

I computed using
η = 1, 5, 10 and ε = 10−4, 10−1 are exactly the same, see Fig. 2.30 (middle, bottom).

• Fig. 2.31 shows the relative errors in the SIF K
(2)
I obtained from three H-matrix solutions with

respect to the values of K(2)
I obtained using the full DDM matrix, vs the number of the degrees of

freedom. These relative errors represent the error due to the H-matrix approximation of the DDM
influence matrix. For all numbers of the degrees of freedom tested, these relative errors are below
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10−6. Naturally, the relative errors due to the use of H-matrix are lower when the maximum leaf
size is larger (320), since in this case the H-matrix approximation is less agressive.

• In summary, one can find suitable values of η and ε to significantly reduce the storage (required for
the influence matrix) and the solver time, while keeping the solution accuracy at a level similar to
that of the solution with the dense influence matrix.

2.5.4 Array of parallel cracks
2.5.4.1 Geometry and reference solutions

An array of n (n ≥ 2) parallel cracks of length 2a in an infinite plane is considered, under the assumption
of plane strain. The spacing between the neighbour cracks is h. The infinite plane is subjected to a
far-field tensile stress P acting orthogonal to the traction-free cracks. The plane strain Young’s modulus
of the medium is E′.

We consider below the case when h/a = 4. As the number of cracks increases, the SIF of the
middle crack should approach the SIF value for an infinite stack of parallel cracks. A relevant reference
numerical solution (not restricted to large or small values of h/a) can be found in Sih (1973) (p. 1.2.6-16)
as a tabulated value:

Kref
I

P
√
πa

= 0.7896 (h/a = 4) (2.28)

2.5.4.2 Numerical solution without or with H-matrix approximation

We consider an increasing number of parallel cracks: n = 21, 41, 81, with h/a = 4. P1 displacement
discontinuity (DD) elements have been used to discretize the cracks. The maximum leaf size for the H-
matrix low-rank approximation has been set to 320. Eq. (2.23) was used to compute the mode I stress
intensity factor.

First, the problem has been solved for n = 21 using the full DDM matrix and the H-matrix approxima-
tion with several values of η and ε. Fig. 2.32(top) shows the computed mode I SIF K(2)

I for the middle
crack of the array, vs the number of the degrees of freedom. Fig. 2.32(bottom) shows the relative error
in K(2)

I for the middle crack, obtained using H-matrix, with respect to the numerical value of K(2)
I for the

middle crack, obtained using the full DDM matrix with the same mesh. These relative errors represent
the error due to the H-matrix approximation of the DDM influence matrix. Fig. 2.33 shows the effects of
the H-mat parameters on the computational time spent to assemble the influence matrix or its H-mat ap-
proximation, and on the computational time spent to solve the linear system. Fig. 2.34 shows the effect
of the H-mat parameters on the compression ratio achieved by using the low-rank H-mat approximation.

Several observations can be made from these results for 21 cracks (n = 21):

• For the case tested (h/a = 4), the values η = 1, 5, 10 and ε = 10−4 provide convergence in the
stress intensity factor K(2)

I (Fig. 2.32).

• The relative errors due to the H-matrix approximation decrease with decreasing η for a fixed ε =
10−4 (Fig. 2.32(bottom)). These relative errors do not grow as the size of the linear system in-
creases, for the tested cases. For all numbers of the degrees of freedom tested, these relative
errors are below 10−5 for ε = 10−4. The relative errors due to the use of the H-matrix increase for
the increase from ε = 10−4 to ε = 10−1, for a fixed η = 5.

• Fig. 2.33 shows a significant reduction in computational time due to the use of the H-matrix ap-
proximation. For the simulations with the full matrix, the total solution time (including time in the
linear solver) grows roughly as N3 for large numbers of degrees of freedom N . For the simula-
tions with H-matrix approximation, the growth rate for the total solution time for large N is between
N2 to N logN . In particular, the total solution time for N = 4.2 × 104 (i.e. 500 P1 elements per
crack) is aproximately 43 minutes with the full matrix and about 8 sec. with the H-matrix with η = 5,
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Figure 2.30: Two parallel cracks (h/a = 2, P1 elements), numerical results vs number of DOFs for:
difference in mode I SIFK(2)

I between the solutions computed with η = 1, 5 and ε = 10−4 (top), difference
in mode I SIFK(2)

I between the solutions computed with η = 0.1, 0.3, 1, 10, 20 and η = 5, using ε = 10−4

(middle), and difference in mode I SIF K(2)
I between the solutions computed with η = 0.1, 0.3, 1, 10, 20

and η = 5, using ε = 10−1 (bottom). The maximum leaf size for H-mat simulations was set to 32. In the
middle and bottom figures, only the simulations with N = 400 and N = 16× 103 are shown.
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Figure 2.31: Two parallel cracks (h/a = 2, P1 elements): the relative errors in the SIFK(2)
I obtained from

the H-matrix solutions with respect to the values of K(2)
I obtained using the full DDM matrix, vs number

of DOFs. H-mat parameters (η, ε) are listed for each data series. The maximum leaf size for H-mat
simulations was set to 32, unless noted otherwise.

ε = 10−4. There is no significant difference in the time spent for matrix assembly between the
simulations with the full matrix and with the H-matrix, for this test case.

• Fig. 2.34 shows a significant reduction in storage required for the influence matrix. E.g. for N =
4.2× 105 (i.e. 5× 103 P1 elements per crack), the compression ratio of the influence matrix for all
tested values of ηand ε is around 0.5%.

• The use of the H-matrix approximation allowed for using much larger numbers of degrees of free-
dom in comparison to those feasible with the full matrix simulations. I.e., much finer meshes on
the cracks can be used with the H-matrix approximation. E.g., the largest number of degrees of
freedom that was used with the full matrix corresponded to 500 P1 elements per crack. With the
H-matrix, it was possible to run the simulations using 104 P1 elements per crack, i.e. with the total
size of the linear system equal to N = 8.2× 105.

• There is no significant difference in the total solution time between the H-matrix simulations with
the tested values of η and ε.

• In summary, one can find suitable values of η and ε to significantly reduce the storage (required for
the influence matrix) and the solver time, while keeping the solution accuracy at a level similar to
that of the solution with the dense influence matrix.

Finally, Fig. 2.35 shows the mode I SIF for each crack in the array computed for the arrays with 21, 41
and 81 cracks, using fine meshes. It can be seen that, as the number of cracks increases, the SIF for the
middle crack in the array, corresponding to (crack number)/n ≈ 0.5, approaches the SIF for an infinite
array of cracks from Eq. (2.28).

2.5.5 Performance of the GMRes iterative linear solver
In this section we investigate the performance of the generalized minimal residual method (GMRes),
an iterative linear solver. It is tested on the example of two parallel cracks with h/a = 2, discretized
with P1 DD elements. The problem formulation follows that of Section 2.5.3. The two-crack problem
is solved using the DDM with the H-matrix approximation of the DD influence matrix. The H-matrix has
been constructed using η = 5, ε = 10−4, and the maximum leaf size set to 32. To solve the resulting
linear system, the GMRes is used.

A preconditioner for the GMRes solver is chosen between the LU preconditioner and the Jacobi
preconditioner. The creation of the LU preconditioner involves additional parameters (ηprec,εprec). The
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Figure 2.32: Array of 21 parallel cracks (n = 21, h/a = 4, P1 elements), numerical results vs number of
DOFs for: mode I SIF K(2)

I /(P
√
πa) for the middle crack (top), the relative error in K(2)

I for the middle
crack with respect to the corresponding numerical value obtained with the full matrix (bottom). H-mat
parameters (η, ε) are listed for each data series.
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Figure 2.33: Array of 21 parallel cracks (n = 21, h/a = 4, P1 elements): matrix assembly cost in sec.
(top), and total solver cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N3 (gray),
N2 (orange) and N logN (black) growth rates. H-mat parameters (η, ε) are listed for each data series.
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Figure 2.34: Array of 21 parallel cracks (n = 21, h/a = 4, P1 elements): H-matrix compression ratios vs
number of DOFs. H-mat parameters (η, ε) are listed for each data series. The maximum leaf size for
H-mat simulations was set to 320.
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Figure 2.35: Array of n parallel cracks (h/a = 4, P1 elements): mode I SIF for each crack in the array,
vs the crack number. The results are shown for the arrays with 21, 41 and 81 cracks. The results were
obtained using H-matrix with η = 5, ε = 10−4 and the total number of degrees of freedom equal to 84×104

(for n = 21), 82× 104 (for n = 41), and 81× 104 (for n = 81). The dashed black line corresponds to the
reference value for an infinite array of cracks from Sih (1973), Eq. (2.28).
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LU preconditioner is based on a crude H-matrix approximation of the original DDM influence matrix,
corresponding to the pair (ηprec,εprec). We construct such an H-LU preconditioner using

ηprec = η, εprec ≥ ε.

In the following examples, the H-LU preconditioner is constructed using εprec = 10−3 and 10−1.
Two additional parameters in the GMRes are the maximum number of iterations (set to 103) and the

maximum number of restarts of iterations (set to 200).
The observations are summarized as follows:

• Fig. 2.36 shows the relative error in K(2)
I with respect to the corresponding numerical value ob-

tained with the full matrix. The figure includes the results from four H-matrix simulations: one with
the direct linear solver, two with the GMRes solver and the H-LU preconditioner, and one with the
GMRes solver and the Jacobi preconditioner. These results represent the error in the solution due
to the use of the H-matrix (for the simulation with the direcr linear solver), and a combined approx-
imation error due to the use of the H-matrix and the GMRes solver (for the simulations with the
GMRes solver). It can be seen that the approximation error due to the use of the GMRes solver is
negligible in comparison to the approximation error due to the H-matrix approximation itself, in this
example.

• Fig. 2.37 shows the number of the GMRes iterations used in the simulations. It is seen that with
the H-LU preconditioner, the GMRes converges within a few iterations for moderate numbers of
degrees of freedom. For the GMRes-HLU simulations with the two largest numbers of the de-
grees of freedom, the solution may have not converged since the GMRes reached the maximum
preset number of iterations, 103. The number of iterations with the Jacobi preconditioner steadily
grows as the size of the linear system grows. However, simulations with the Jacobi preconditioner
were only run with moderate numbers of degrees of freedom, due to the memory limit and a large
computational time required for larger numbers of the degrees of freedom.

• Fig. 2.38 shows the total solver time and the time spent for preconditioner creation. For this exam-
ple, the solutions with the H-matrix and the GMRes solver with the H-LU preconditioner took similar
times as the solutions with the H-matrix and the direct linear solver, except for those simulations in
which the GMRes reached the maximum number of iterations. For the largest numbers of degrees
of freedom, for which the GMRes may have not converged, the solution with the H-matrix and the
direct linear solver is the fastest.

• The GMRes simulations with the Jacobi preconditioner took more time than the GMRes simulations
with the H-LU preconditioner, for this example.
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Figure 2.36: Two parallel cracks (h/a = 2, P1 elements): the relative error in K(2)
I with respect to the

corresponding numerical value obtained with the full matrix and the same number of DOFs, vs number
of DOFs. H-mat parameters (η, ε) are listed for each data series. The maximum leaf size for H-mat
simulations was set to 32.
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Figure 2.37: Two parallel cracks (h/a = 2, P1 elements): the number of iterations of the GMRes solver,
vs number of DOFs. H-mat parameters were set to η = 5, ε = 10−4; the maximum leaf size was set to
32.
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Figure 2.38: Two parallel cracks (h/a = 2, P1 elements): total solver cost in sec. (top), and precondi-
tioner creation cost in sec. (bottom), vs number of DOFs. Dashed lines correspond to N3 (gray), N2

(orange) and N logN (black) growth rates.
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2.6 Three dimensional benchmarks
In this section, we present two verification tests of our three-dimensional displacement discontinuity
solver based on quadratic triangular elements. We also discuss the performance of the H-matrix ap-
proximation for these two tests.

It is important to point out that the field of displacement discontinuities are interpolated by a quadratic
polynomial over each element but are discontinuous between element - similar to the interpolation used
in two dimensions. Although more computationally expensive, the use of piece-wise quadratic element
has obvious advantage when dealing with fractures intersection. Finally, we recall that the influence
integrals for such a quadratic displacement discontinuity element have been obtained analytically for
isotropic material (Mogilevskaya & Nikolskiy 2014, Nikolskiy et al. 2015)- hence the numerical error is
solely function of the mesh discretization and the location of the collocation points where the elasticity
equation is enforced in a strong manner.

Two different benchmarcks are presented: 1) a penny-shaped crack under uniform tensile loading
and 2) a bowl-shaped crack under uniform normal pressure. Both tests consider a infinite linear elastic
isotropic medium. The numerical and analytical solutions are compared for the crack opening displace-
ments, the stresses ahead of the crack front and the Stress Intensity Factor.

In order to reduce its memory requirement, the coefficient matrix of the system can be replaced by
its herarchical approximation (HMat). The gain in terms of performance of memory is shown for the two
benchmarks as well as the relationship between the level of aproximation and the quality of the solution.

The numerical solution of the linear system can be obtained using either a direct or an iterative solver.
The first employs the LU decomposition while the latter, is the generalized minimal residual method (GM-
res). The convergence of this solver is accelerated by preconditioning the coefficient matrix of the system.
Two preconditioners are tested: the LU decomposition of the HMat and the Jacobi preconditioner. All
the numerical results that are presented below are obtained by using a GMRes with a Jacobi precondi-
tioner because the results obtained with all these solvers are equivalent up to the chosen convergence
tolerance of GMRes (10−12).

2.6.1 A penny-shaped crack
2.6.1.1 Solution Verification

Fracture width For a radial planar (penny-shaped) crack of radius R, loaded with an uniform pressure
p, the crack width w, equal to the normal displacement jump dn, is given by (Sneddon, I. N. 1946, Green
& Sneddon 1950):

E′

pR
w(r) =

√
1−

( r
R

)2
where E′ = E/(1−ν2) is the plane strain Young’s modulus, E is the Young’s modulus, ν is the Poisson’s
ratio and r is the radius of the computational point at which the crack width is computed.

We present first the numerical solution for the crack opening obtained with non structured mesh made
of 1276 elements. Figure 2.39 shows the comparison between the numerical and analytical solutions
as a function of the normalized distance x/R from the crack front. For x/R → 0 the analytical solution
is zero while its derivativeis singular of order O (1/

√
x). The quadratic interpolation of the displacement

discontinuities over the element at the front can not capture such singularity in the first derivative and this
results in a larger error also in the crack opening. For x/R → 1, the analyticalsolution and its derivative
are finite and numerical solution show the same behaviour (wcenter is the crack width at the center of the
domain).

2.6.1.2 Mesh Refinement

A better description of the elastic field closer to the crack front can be reached by refining the mesh. We
compare in Fig. 2.40 the solution for the crack opening for two distincts unstructured meshes: i) a mesh
with a uniform mesh size and ii) a mesh with a refinement near the crack front. The two meshes have
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Figure 2.39: Penny-shaped crack example: normalized crack width w/wcenter, as a function of the nor-
malized distance from the crack front x/R. The continuous orange curve represents the analytical solu-
tion. The blue line represents its asymptotic expansion for x/R→ 0.
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Figure 2.40: Penny-shaped crack example: relative error of the crack width, obtained using a uniform
and a non-uniform mesh refined at the crack front. The size of the linear system is the same for both
meshes

the same total number of unknowns (14220) but have different number of vertices. We do not see the
benefit of using a refined mesh near the crack front - for the same number of unknowns, except for a
slightly lower relative error near the crack front.

Stresses ahead of the crack tip The numerical solution for the stresses has been verified against the
analytical solution in the surrounding of the crack(Green & Sneddon 1950). The relative error for the
stress componentσxx is computed at a series of points. These observation points are located along a
line ahead of the crack tip. Their positions are represented by blue dots in Figure 2.41a. The results are
shown in Figure 2.41b. The reference system is such that the z axis is orthogonal to the crack plane and
the y axis is parallel to the axis r/R in the Figure 2.41 b). The analytical solution in terms of stresses is
singular at the crack front and the relative error is increasing as it approaches r/R = 0 in the reference
system fo the Figure 2.41b. The vertical lines in Figure 2.41 b) are placed at the normalized distances Sr

and Su from the front. Considering as “element at the front” each element that have two vertices at the
front, we estimate the size of each of them as the difference between the radial position of the node not
at the front and the radius R of the crack. After normalization with the crack radius, we take the average
value between all the elements at the front. For the refined mesh at the front such a value is Sr = 0.047
and for the uniform mesh Su = 0.082 (2.41b). The figure shows that the mesh refined at the crack front
provides a slightly less error closer to the crack front while the uniform mesh has a slightlylower error for
r/R ≳ Su.

2.6.1.3 Efficiency of the H-matrix approximation

Numerical solutions are obtained using a series of unstructured uniform meshes shown on the Figure
2.43. The elastic parameters used areG = 1000 (shear modulus) and ν = 0.1 and a crackradiusR = 1.5.
The H-matrix parameters ε = 10−5 (and a max_leaf_size of 500 to construct the cluster tree) has been
used for all the simulations whereas the admissibility parameter η has been varied. Figure 2.44 a) shows
the compression ratio achieved for each simulation vs. number of degrees of freedom. The larger η, the
lower the compression ratio, e.g. the lower is the memory requirement for the storage of the system
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Figure 2.41: Penny-shaped crack example: The location of the observation points at which the stresses
are estimated is equal for the two meshes and they are displayed by blue dots. a) Relative error for the
stress component σxx (compared against the analytical solution of Green & Sneddon (1950)) for the two
unstructured meshes considered previously. b) The values S1and S2are the average size of the elements
at the front.
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Figure 2.42: Penny-shaped crack example: Normalized stresses σxx/p ahead of the crack front are
compared against the analytical solution of Green & Sneddon (1950). The stresses are computed at the
same locations ahead of the crack tip for an uniform mesh and a refined mesh. The two meshes have
the same number of unknowns.

of equations. On the other hand, a larger value of η leads to a coarser approximation of the boundary
integral equations. It is important to control quantitatively how η affects the accuracy of the solution.
Figure 2.44 b) and c) are showing respectively the L2 norm of the absolute error in the crack width and
the relative error of the Stress Intensity Factor (SIF)KI . The first is computed as follows:

L2 (Relative error onw) =
1∑=NoP

p=1 p

√√√√=NoP∑
p=1

(
wp − wanalytical

wcenter

)2

where NoP is the total number of nodes, NoP = 6NoE, (NoE is the total number of elements). The
mode I SIF is computed using the asymptotic solution for the crack width at the crack front:

w (r) =

(
32

π

)1/2
KI

E′

√
R− r R− r ≪ 1

Then the mode I SIF is obtained from the crack width near the crack front as:(
32

π

)1/2

KI = lim
r→R

w (r)E′
√
R− r

≈ wp (r)E
′√

R− rp

where rp is the orthogonal distance from the designated node p to the front, wp is the numerical nodal
value of the crack width. The optimal position of p is a-priori unknown. The asymptotic solution suggest
that p should be chosen as the limit at the crack front. However, the closer is the point to the front, the
higher isthe error on wp. If p is chosen as the barycenter of the triangular element, as for the triangle IJK
in figure 2.45 the estimation of KI is affected by the higher error of the solution at the front . A better
estimation is achieved by choosing the node for the estimatino of KIas the node the of the element the
furthest away from the front . Figure 2.45 shows the chosen node and the chosen distance to the front for
elements ELF, ELH, and ABC respectively. Finally, for a given mesh the relative error of KI is computed
as follows:
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max

{
wp (r)E

′√
R− rp

√
π

32
−KI−analytical

}
where:

KI−analytical = 2p

√
R

π

Figure 2.44d shows that by increasing the number of unknowns (N ) as well as η,the creation time
of the H matrix approximation follows the N log (N) asymptote while for small values of N or for small
values of η, the complexity isO

(
N2
)
and the time needed for solving the linear system is shown in Figure

2.44e. This result show that one can use a large value of η (e.g. η = 10) without any reduction in the
accuracy of the numerical solution. Beside the reduction in memory requirements, the computational
cost is also reduced.

2.6.2 A bowl shaped crack
We now turn to the case of a non-planar 3D crack. Although under uniform pressure, this example
activate elastic coupling between shear and normal displacement discontinuities.

2.6.2.1 Solution Verification

A bowl-shaped crack of radius R = 1.5 and α = 60◦ (see 2.46) has been discretized with 890 triangular
elements, leading to a final system of 14760 unknowns. The parameters that characterize the isotropic
linear elastic medium are taken as G = 1000 (Shear modulus) and ν = 0.1. The crack is subjected to a
uniform unit pressure. The solution has been compared against a numerical solution obtained with an
axisymmetric displacement discontinuity code (Gordeliy & Detournay 2011). The comparison between
the analytical and numerical solution in terms of crack opening is shown in Figure 2.47 while Figure 2.48
shows the the relative difference of the opening as a function of the distance r from the center of the
crack. The relarive difference is larger at the crack front because the mesh is relatively coarse and the
aspect ratio of some of the triangle is large (see Fig. 2.46b).

2.6.3 Summary
The two verification examples presented above validate the (very) good accuracy of our three dimen-
sional elastic solver for fracture. We also see the benefit in term of computation cost of using a H-matrix
approximation. It is important to point out that all the simulations reported above have been performed
on a laptop with 8Gb of RAM (mac book Pro late 2017).
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Figure 2.43: Penny-shaped crack example: series of uniformly unstructuredmeshes with increasing
resolution (from bottom to top).
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Figure 2.44: Penny-shaped crack example: a) Compression ratio of the hierarchical matrix,b) L2 nu-
merical norm of the absolute error of the crack opening w, c) maximun relative error on the SIF KI , d)
H-matrix creation time vs. number of unknows, e) time required for the solution of the linear system
using GMRes. Results for different number of unknowns (see Fig. 2.43 for the different meshes), and
different values of the admissibility condition parameter η.
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element with two nodes at the front). The distance from the designated point used for computing KI is
taken orthogonal to the edge at the front. This will lead to 2 different values of KI for elements EFL and
ELH. The distance from point E to the front and the crack opening at this point lead to a better estimation
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(e.g. point G for the triangle IJK). Elements with large aspect ratio (e.g. element ABC) should be avoided.
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Motivation
 

Hydraulic fractures are mainly employed in geomaterials in 
order to increase the productivity of wells. They are used in 
geothermal energy and oil and gas production to increase the 
permeability of porous formation either for enhanced fluid pro-
duction or storage (CO2 storage). 

They are created by engineering fluid injection from deep 
wellbores. The propagation of an hydraulic fracture is a coupled 
nonlinear problem where the elasticity of the rock is coupled 
with the fluid flow through the fracture channel and the porous 
formation. The coupling with the fluid flow requires the elasticity 
to be solved multiple times and so, a very fast and efficient 
solver for linear elastic fracture propagation is required.
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Figure 8: Cross-section  of a 
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space.
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widths (w) obtained with the axisymmetric Displacement Discontinuity code 
[2] and the present code Hfp-3D.  

 Bowl-shaped crack (Mixed Mode Fracture)
 

A bowl-shaped crack of radius R = 1.5 and α=60º (see Figure 8) has been discretized with 890 triangular elements (see figure 9), leading to a system with 14760 unknowns. The elastic parameters that characterize 
the isotropic and elastic medium are G=1000 (shear modulus) and ν=0.1 (Poisson’s ratio). The crack has been loaded with a uniform unit pressure. The solution obtained with the presented code, has been compared 
against a numerical solution obtained with an axisymmetric Displacement Discontinuity method. The comparison between the normal opening and the relative error is shown in figures 10 and 11 respectively.

Stress verification 
 The numerical solution for the stress has been verified against the 

analytical solution for the stress around the penny shaped crack [1].

Crack opening verification
The numerical solution for the crack opening has been ob-

tained for a uniform mesh and a non-uniform mesh refined at 
the crack front.
These results suggest that it is more efficient to use a non-uni-

form mesh refined at the crack front than a uniform mesh, for the 
same number of unknowns : 14220.

Figure 1: Comparison of the σxx with the analytical solution [1]. The inset of 
the figure is showing the location of the observation points (in blue) at which 
the stresses have been computed.

Uniform convergence studies
The numerical solution has been obtained for a penny shaped crack of a 

radius R=1.5, using a series of different meshes shown on the Figure 3. The 
elastic parameters used are G=1000 (shear modulus) and ν=0.1 (Poisson 
ratio). ε=10-5 and M=500 has been assumed for all the computations. The fig-
ures below are showing  the L2 norm of the relative error in the crack width 
(Figure 5), the relative error of stress intensity factor (Figure 6),  the creation 
time of the H matrix approximation (Figure 7) and the compression ratio 
achieved in each simulation vs. number of degrees of freedom (Figure 4).  
This result show that one can use a large value of η (e.g. η=10) without any re-
duction in the accuracy of the numerical solution. Beside that the computation-
al cost and the storage requirements are significantly reduced.
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Figure 4: Compression ratio of the hierarchical matrix. Figure 3: series of different uniformly distributed meshes.
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Figure 2.46: Cross-section of a bowl-shaped crack in an infinite space (left), a)lateral view and b) top
view of the discretized bowl-shaped crack.
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Motivation
 

Hydraulic fractures are mainly employed in geomaterials in 
order to increase the productivity of wells. They are used in 
geothermal energy and oil and gas production to increase the 
permeability of porous formation either for enhanced fluid pro-
duction or storage (CO2 storage). 

They are created by engineering fluid injection from deep 
wellbores. The propagation of an hydraulic fracture is a coupled 
nonlinear problem where the elasticity of the rock is coupled 
with the fluid flow through the fracture channel and the porous 
formation. The coupling with the fluid flow requires the elasticity 
to be solved multiple times and so, a very fast and efficient 
solver for linear elastic fracture propagation is required.
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Figure 2: Relative error in crack width, obtained using a uniform 
and a non-uniform mesh refined at the crack front.  

Solver Description
 

The solver uses a displacement discontinuity Boundary Element Method (BEM) to solve for quasi-static elasticity. It allows to discretize only 
the 3D fracture surfaces avoiding the discretization of the surrounding 3D space required by other techniques such as Finite Element Method 
(FEM). On one hand this is an advantage because the resulting matrix, that has to be inverted to solve the linear problem, is much smaller com-
pared to the one obtained via FEM (given the same goal error of the numerical solution). On the other hand, the major drawbacks of BEM are 
that the influence matrix is fully populated and, in the general case, non-symmetric. The first drawback leads to a large memory cost and the 
latter to an increase of the computational cost of the solution. The implementation described here tackle both problems by taking advantage from 
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Finally, the results presented here have been obtained using piece-wise quadratic triangular DDs element and ran on MacBook Pro (2017) i5 
2.3GHz with 8GB of RAM.

Figure 10: Bowl-shaped crack. Comparison of the crack normal opening 
(w) scaled with the crack radius R with a numerical solution obtained with an 
axisymmetric Displacement Discontinuity code [2].  

Figure 8: Cross-section  of a 
bowl-shaped crack in an infinite 
space.

Figure 11: Bowl-shaped crack. Relative difference between the crack 
widths (w) obtained with the axisymmetric Displacement Discontinuity code 
[2] and the present code Hfp-3D.  

 Bowl-shaped crack (Mixed Mode Fracture)
 

A bowl-shaped crack of radius R = 1.5 and α=60º (see Figure 8) has been discretized with 890 triangular elements (see figure 9), leading to a system with 14760 unknowns. The elastic parameters that characterize 
the isotropic and elastic medium are G=1000 (shear modulus) and ν=0.1 (Poisson’s ratio). The crack has been loaded with a uniform unit pressure. The solution obtained with the presented code, has been compared 
against a numerical solution obtained with an axisymmetric Displacement Discontinuity method. The comparison between the normal opening and the relative error is shown in figures 10 and 11 respectively.

Stress verification 
 The numerical solution for the stress has been verified against the 

analytical solution for the stress around the penny shaped crack [1].

Crack opening verification
The numerical solution for the crack opening has been ob-

tained for a uniform mesh and a non-uniform mesh refined at 
the crack front.
These results suggest that it is more efficient to use a non-uni-

form mesh refined at the crack front than a uniform mesh, for the 
same number of unknowns : 14220.

Figure 1: Comparison of the σxx with the analytical solution [1]. The inset of 
the figure is showing the location of the observation points (in blue) at which 
the stresses have been computed.

Uniform convergence studies
The numerical solution has been obtained for a penny shaped crack of a 

radius R=1.5, using a series of different meshes shown on the Figure 3. The 
elastic parameters used are G=1000 (shear modulus) and ν=0.1 (Poisson 
ratio). ε=10-5 and M=500 has been assumed for all the computations. The fig-
ures below are showing  the L2 norm of the relative error in the crack width 
(Figure 5), the relative error of stress intensity factor (Figure 6),  the creation 
time of the H matrix approximation (Figure 7) and the compression ratio 
achieved in each simulation vs. number of degrees of freedom (Figure 4).  
This result show that one can use a large value of η (e.g. η=10) without any re-
duction in the accuracy of the numerical solution. Beside that the computation-
al cost and the storage requirements are significantly reduced.
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Figure 9: Lateral view a) and top 
view b) of the discretized 
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Figure 7: Hmat creation time vs. number of unknows.Figure 6: Max of the relative error on the stress intensity factor KIFigure 5: L2  norm of the error of the crack opening.
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Figure 4: Compression ratio of the hierarchical matrix. Figure 3: series of different uniformly distributed meshes.
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Figure 2.47: Bowl-shaped crack example: comparison of the crack normal opening w scaled with the
crack radius R with a numerical solution obtained with an axisymmetric Displacement Discontinuity code
(Gordeliy & Detournay 2011).
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Figure 2.48: Bowl-shaped crack example. Relative difference between the crack widths w obtained with
the axisymmetric displacement discontinuity code of Gordeliy & Detournay (2011) and the present code
Hfp-3D.
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Chapter 3

Hydro-mechanical behavior of
fractures

Convention
It is important to recall that if the stresses are taken positive in tension, the displacement discontinuity di
are then positive in overlap (di = u−i − u+i ) in the elasticity equation. On the other hand, if the stresses
are taken positive in compression, the displacement discontinuity di is then positive in opening (di =
u+i − u−i ). We use this second convention in the subsequent section: stress positive in compression
and displacement discontinuity positive in opening (and the shear displacement discontinuity is positive
in a clock-wise rotation). Moreover, in some cases, we will use the following notation for the normal
and shear components of traction and displacement discontinuity:

tn = σ ts = τ

dn = w ds = δ

3.1 Mechanical behavior of joint/fracture interface

3.1.1 Kinematics description
We do not model the micro-scale details of the interface (surface roughness), the macroscopic kinematic
variable is locally the displacement discontinuity

di = u+i − u−i

taken positive in opening. Such a displacement jump can be taken from the mid-plane of the top and
bottom fracture surfaces (which may exhibit roughness). Contact will therefore first occur between the
top and bottom asperities when dn has a positive (albeit small) value - i.e. wc,m.

The (Signorini) contact conditions can thus be written as: [We need to choose another notation than
wc - to differentiate with critical width during debonding]

dn − wc ≥ 0 t′n ≥ 0 (dn − wc)t
′
n = 0

However, when in contact, under increasing compressive stress, the fracture / joint close further. In
lab experiments of joint closure, a non-linear relation between joint closure, i.e. wc and effective normal
stress is typically observed. This can be accounted for via making the fracture closure wc decreases
from its initial (maximum) value wc,m when the asperities becomes first in contact to zero at infinitely
large compressive effective normal stress.

Note that such a “closure” below wc,m is somehow reversible upon reversal of effective normal stress
- hence the idea to treat the closure / contact behavior via a non-linear spring. This choice is prominent
in the rock mechanics literature. However, there seems to be confusion with respect to the initial opening
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of the joint - and some authors do appear to allow for a degree of interpenetrability - i.e. letting dn to
become slightly negative and contact to be activated at dn = 0 (somehow thaking the distance between
the greatest asperities of the 2 surfaces to define the displacement jump.

Here, to be consistent with a flow model within the fracture and associate permeability change with
dn, we do not allow for any interpenetrability - i.e. dn ≥ 0 but do activate contact when dn = wc,m upon
closure. Moreover wc,m may be taken as a history variable dependent on how the fracture was created
(and may have evolved). Notably for fresh / new fractures wc,m should follow the maximum opening
displacement below encounter during decohesion and be equal to wc at full de-cohesion.

3.1.2 Behavior when in contact
The contact is therefore first obtained when dn = wc,m , then dn can falls all the way to zero (but can not
become negative). The effective normal/contact stress (/pressure) is then necessarily compressive.

Most if not all joint/frature model in the literature account for both a elastic ḋei (often non-linear) de-
formation of the fracture (under compressive stress) and inelastic/slip deformation1. Such models are
typically developed to formulate joint element in finite element code, the rate of the displacement dis-
continuity vector ḋi is decomposed in an elastic and “slip” component (which will be related to slip and
dilatancy linking to Mohr-Coulomb frictional contact):

ḋi = ḋei + ḋsi

and the rate of effective contact traction are related to the rate of dd

ṫ′i = −Dḋei D =

(
ks(t

′
n) 0

0 kn(t
′
n)

)
where the minus comes from the convention of positive DD in opening, and positive stress in compres-
sion, such that an increase in compressive stress results in a decrease of the displacement discontinuity
(i.e. the displacement discontinuity goes into overlap). The normal stiffness is highly normal effective
stress dependent, and a well accepted model is due to Bandis et al. (1981), Nguyen & Selvadurai (1998)

kn = kni

(
kniwc,m + t′n
kniwc,m

)2

where wc,m is the maximum fracture closure and kni the stiffness at zero effective normal stress. For
uncorrelated fracture, the evolution of stiffness appears linear with t′n instead of quadratic (Cornet 2015b,
Bandis et al. 1983). Similarly, the shear stiffness ks is also function of effective tractions - typically shear
stiffness is much lower than normal stiffness at low effective stress, and becomes of the same order at
large compressive effective stress.

It is important to note that these contact stiffness tends to zero when contact is “lost” i.e. when
dn > wc.m and t′n ≤ 0

3.1.2.1 Frictional slip

When in contact, where
dn ≤ wc,m (dn ≥ 0) t′n > 0

Frictional slip can occur. We use a Mohr-Coulomb criteria for the onset of non-reversible slip

𝟋2(ts, t
′
n) = |ts| − c(κ, κm)− f(η, ηm)t′n ≤ 0

where typically for pre-existing joint / fractures in contact, cohesion is null. Using a non-associative flow
rule in order to account for a dilation angle lower than the friction angle (as typically observed), one has
if 𝟋2 = 0

ḋss = λ× sign(ts) ḋsn = λ tanψ(η)
1The term elastoplastic is not appropriate for frictional contact as shear slip is reversible via load reversal.
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and we can write λ = |ḋss| . Note that 𝟋2|ḋss| = 0 (i.e. if |ḋss| > 0,𝟋2 = 0 and if 𝟋2 < 0 then |ḋss| = 0).
and the “consistency condition”

𝟋̇2|ḋs| = 0

which states that if |ḋss| > 0 then the state of traction remains on the yield surface.

3.1.3 Cohesive failure of potential ’slip’ lines / fractures
Note that in the following, we neglect elastic deformation of the fracture and write ḋsi instead of ḋi.

3.1.3.1 Constitutive relations for the displacement discontinuity locus

Our aim is to combine Coulomb friction on pre-existing fractures with the possibility of having the cre-
ation of new fractures using a mixed mode cohesive zone type approach. For quasi-brittle materials like
rocks, the energy dissipation associated with the creation of new fractures surfaces or frictional weak-
ening tend to concentrate in a narrow region (process zones) - such processes are often modeled by
reducing the process zone to a surface where displacement discontinuity are permitted and a soften-
ing traction-separation law constitutively relates traction to displacement discontinuity. Such a cohesive
zone approach is very popular in fracture mechanics in both mode I and II (Barenblatt 1962, Dugdale
1960, Elices et al. 2002, Needleman 2014, Camacho & Ortiz 1996, Snozzi & Molinari 2013). In parallel,
frictional contact laws (with or without associated dilatancy, with or without softening) are also commonly
used (Ida 1972, Palmer & Rice 1973, Maier et al. 1993, Plesha et al. 1989, Carol et al. 1997, Stupkiewicz
& Mróz 2001).

Here, in the context of the displacement discontinuity methods, we use a cohesive interface “yield”
criteria combining a Mohr-Coulomb criteria with a tensile cut-off - allowing for softening/hardening - ex-
pressed in terms of the effective normal t′n = tn − p and shear ts tractions acting on the displacement
discontinuity segment:

𝟋1(ts, t
′
n) = −σc(κ, κm)− t′n ≤ 0, 𝟋2(ts, t

′
n) = |ts| − c(κ, κm)− f(η, ηm)t′n ≤ 0, (3.1)

where f(η, ηm) is the friction coefficient function of a softening variable η (and its maximum value ob-
tained during the loading history ηm), σc(κ, κm) and c(κ, κm) are the tensile strength and cohesion
respectively, both function of another softening variable κ (and its maximum value obtained during the
loading history κm). A graphical Mohr-like representation of such yield criteria is given in Figure 3.1.

In order to define uniquely which yield function the tractions must satisfy in the vicinity of the corner
point (𝟋1 = 𝟋2) of this composite yield surface, we introduce a function h(ts, t′n) in the traction space
(see Figure 3.1) defined as (e.g. following an approach to the one used in Flac Itasca Consulting Group
(2010))

h(ts, t
′
n) = |ts| − βσc(κ)− αc(η)(σc(κ) + t′n), (3.2)

where βσc and αc(η) are two scalars (which evolve with softening) defined as

βσc = c(κ, κm)− f(η, ηm)σc(κ, κm)

αc(η) =
√
1 + f(η, ηm)2 − f(η, ηm)

In the case where the trial tractions violate both criteria simultaneously (𝟋1(ts, t
′
n) > 0 and 𝟋2(ts, t

′
n) > 0

), tensile failure (𝟋1 = 0) is chosen to occur if h(ts, t′n) < 0 while shear failure (𝟋2 = 0) is chosen if
h(ts, t

′
n) > 0. Note that if h(ts, t′n) = 0, we enforce both criteria and compute the corresponding shear

and opening displacement. Importantly, in the case where the cohesion and tensile strength are equal
to zero, then we strictly enfore both criteria 𝟋1 = 𝟋2 = 0 and let both shear and normal displacement
discontinuity evolves to ensure zero shear and normal effective stress.

Another simpler choice to choose which criteria to use is to simply to always enforce tensile failure if
𝟋1(ts, t

′
n) > 0 and 𝟋2(ts, t

′
n) > 0.
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|ts| |ts|

Figure 3.1: Yield limit composed of a cohesive-frictional line and a tensile cut-off (left). After ultimate soft-
ening, the interface is purely frictional (zero cohesion/tensile strength) with a residual friction coefficient
(left).

Evolution of displacement discontinuities

Mode I prior complete softening If 𝟋1 > 0, we must enforce 𝟋1(ts, t
′
n) = 0, using the concept of

an associate flow rule - but allowing for crack unloading/closure, we obtain the following constraints in
the case where the sole mode I criteria is active:

𝟋1 = 0 |ḋn| ≥ 0 |ḋs| = 0 (3.3)

which just state that if𝟋1 = 0, the interface can open or close |ḋn| > 0, but the rate of shear displacement
discontinuity is zero. Moreover, if 𝟋1 = 0, we also write a consistency condition 𝟋̇1|ḋn| = 0 stating that if
|ḋn| > 0, the traction state should remain on the yield surface F1, while if the traction moves away from
the yield surface one has |ḋn| = 0. It is important at this stage to note that the evolution of the critical
tensile strength with softening variable will in fact dictate a traction separation law as 𝟋1 = 0 imply
t′n = −σc(κ, κm)2. In fact, the evolution of σc(κ, κm) will model both softening and reversible unloading
/re-loading when κ < κm. The simplest evolution of σc is one of linear softening from κ = 0 to κc , and a
linear reversible unloading/reloading branch, i.e.:

σc(κ, κm)

σc,p
=


1− κ/κc

(1− κm/κc)κ/κm

0

κ < κc &κ = κm

κ < κc &κ < κm

κ ≥ κc

(3.4)

where κm correspond to the maximum value of the internal softening variable κ, and κc is a critical value
above which the tensile strength is zero. σc,p correspond to the initial / peak tensile strength. In the
pure mode I case, κ is typically taken as the opening displacement discontinuity (Another less common
choice is the accumulated irreversible work (Carol et al. 1997)). Such a simple linearly softening traction
separation law is often used in cohesive zone models.

Mode I at full softening: corner mode It is important to point that if the tensile strength and the
cohesion is zero, if both yield criteria are active, then one must set

𝟋1 = 0 |ḋn| ≥ 0 𝟋2 = 0 |ḋs| ≥ 0 (3.5)

2the minus sign is due to convention of positive stress in compression
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Mode II / frictional In this case where the trial state may exhibit𝟋2 > 0, the softeningMohr-coulomb
model must be enforced𝟋2(ts, t

′
n) = 0. Similarly, accounting for the fact that the dilation angle is typically

less than the friction angle, using the concept of a non-associated flow rule for dilatancy, we obtain the
following constraints

𝟋2 = 0 |ḋs| > 0 |ḋn| = |ḋs| tanψ(η) (3.6)
which just state that if 𝟋2 = 0, the interface will exhibit shear slip and an associated dilation. Similarly if
𝟋2 = 0, we also write a consistency condition 𝟋̇2|ḋs| = 0 stating that if |ḋs| > 0, the traction state should
remain on the yield surface 𝟋2.

Softening First, let’s assume the case of a constant friction coefficient and focus on the softening
of cohesion. The simplest choice is to evolve the cohesion in a similar way than the tensile strength, i.e.
keeping the ratio c/σc constant. Such a choice makes physically sense.

c(κ, κm)

cp
=


1− κ/κc

(1− κm/κc)κ/κm

0

κ < κc &κ = κm

κ < κm

κ ≥ κc

(3.7)

where cp is the original peak cohesion. We obtain a similar traction-separation law than a number of
proposed cohesive zone models (Camacho & Ortiz 1996, Snozzi & Molinari 2013). It is important to
note that under shear traction controlled loading (and constant effective normal stress), upon un-loading
shear slip will revert as long as 𝟋2 = 0 which will be the case until one reach c(κ = 0, κm) = 0 along the
unloading branch.

Now turning to the weakening of friction, we use here a simple linear weakening of friction with the
absolute value of shear slip - i.e. η = |ds|. However, if unloading (or load reversal) occurs prior to having
reaches residual friction, we assume that the friction coefficient does not further evolve if the absolute
value of slip falls below the maximum experienced value of slip during the loading history ηm = |ds|m =
δm,

f(|ds|, δm) =


fp − fp−fr

δc
|ds|

fp − fp−fr
δc

δm,

fr,

|ds| ≤ δc & |ds| = δm

|ds| ≤ δc & |ds| < δm

|ds| > δc

(3.8)

where δc is the critical length for frictional weakening which is typically in the order of the surface asper-
ities size. More complex evolution of friction under cyclic loading have been proposed (Stupkiewicz &
Mróz 2001) but are not considered here as reverseal of shear stress is unlikely to happen in geothermal
reservoir. We expect that the weakening of friction occurs over a lengthscale larger than the one associ-
ated with tensile or purely cohesive shear strength κc. Similarly than the friction coefficient, the dilatancy
angle also decreases with shear slip and goes to zero above critical slip (i.e. critical state of the surface
with no more induced dilation). Here again, cyclic loading is unlikely, and we therefore use a similar law
than for the evolution of the friction coefficient

tanψ(|ds|, δm) =


tanψp × (1− |ds|/δc)
tanψp × (1− δm/δc),

0

|ds| ≤ δc & |ds| = δm

|ds| ≤ δc & |ds| < δm

|ds| > δc

(3.9)

Arguably, one expectes a reversal of dilation upon slip reversal - which is not captured by the evolution
chosen here (see Stupkiewicz & Mróz (2001) for more discussion).

Softening variable κ The softening variable κ reduces either to dn respectively |ds| in pure mode
I, repesctively mode II. In mixed mode, the normal and shear displacement discontinuity are combined

κ =
√
ζ2d2s + d2n

where ζ is a phenomological variable accounting for the relative intensity of shear and normal displace-
ment discontinuity on softening. Physically ζ > 1, such that pure shear slip more strongly reduces tensile
strength and cohesion of the interface as compared as to an opening.
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3.1.4 LEFM with frictional contact
In this model cohesive forces are neglected, the propagation of fractures follow the principle of linear
elastic fracture mechanics combined with a Coulomb friction law for contact.

3.2 Fluid Flow in fractures
We assume that the rock matrix is much less permeable than the fractures present in the medium. The
flow is thus confined inside the fractures and is akin to thin-film lubrication flow (Szeri 2010). The mass
conservation can be width averaged over the “hydraulic” aperture wh (which is equal to the fracture width
when the fracture is open), one obtains

∂ρwh

∂t
+∇x,y · ρwh�v+ 2ρvleak = δ(xinj)ρQinj(t)

where ρ is the fluid density, v̄ the average fluid velocity across the gap, vleak the rate of fluid leaking out in
the matrix, Qinj is the injection rate and xinj the location of the injection point. The operator ∇x,y· is the
divergence in the 2D curvilinear coordinate of the fracture surface: it reduces to ∂/∂x in 2D. Note that
for a weakly compressible liquid (i.e. water in liquid form), one can use the following simplified equation
of state for density in the iso-thermal case:

ρ ≈ ρo(1 + β(p− po))

where ρo is the fluid density at pressure po and β is the fluid compressibility (i.e. in the order 5×10−10 Pa−1

for water). We therefore see that because pressure variation are at most in MPa, the term β(p − po) is
in the order of 10−3. Such that ρ ≈ ρo, but ∂tρ = ρocf∂tp may not be necessarily negligible compared to
ρ∂twh/wh. On the other hand, we neglect the spatial variation of density compared to spatial variation
of velocity, i.e. ∇x,y · ρwh�v ≈ ρo∇x,y · wh�v , i.e. β(p − po) ≪ 1 , such that ρ�v ≈ ρo�v - a condition
always met for liquid for which β = O(10−10)Pa−1 and (p − po) = O(106)Pa. Note that more generally,
for closed fracture, the term β is akin to a storage coefficient of a porous material and is the sum of the
pore-compressibility and the fluid compressibility times the porosity.

Neglecting leak-off in the surrounding rock mass, we therefore rewrite the width averaged isothermal
conservation of mass as

whcf
∂p

∂t
+
∂wh

∂t
+∇x,y · wh�v = δ(xinj)Qinj(t)

In the previous formulation, wh is the hydraulic aperture of the fracture / fault. It is equal to the mechanical
aperture when the fracture is fully open, but when the fracture is mechanically closed, a residual aperture
for fluid flow still exists (related to contact between asperities). See e.g. (Witherspoon 1980) etc. In a
sense, on can write:

wh = wo + w (3.10)

with w the mechanical opening and wo a hydraulic opening at closure, i.e. wo ≈ O(10−4) m.

Darcy / Poiseuille like flow Similarly, one can width averaged the momentum equation and under the
assumption of small Reynolds number, for flow between parallel plates (fracture of width w, i.e. open
fracture), one recover the well-known Poiseuille like law.

v̄ = − w2

12µ
(∇p+ ρg)

where g is thestandard Earth’s gravity vector (9.8066). Note that in the case where the pore-pressure
is initially under hydrostatic conditions (po = −ρgy in a frame where ey is directed against the gravity
vector), we can rewrite p + ρg cosα = p − po . Similarly, if the pore-pressure is initially over-pressured
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(still with a vertical gradient, i.e. po = −Gpy), assuming there is no fluid flow initially, the driving pressure
gradient is also p− po. We therefore write

v̄ = − w2

12µ
∇(p− po)

A number of extension exist when the width is small and of the level of the aperture roughness. One
can also generalize that law to the mechanically closed state easily by writing Darcy’s law for the closed
fracture / fault:

v̄ = −kf
µ
∇(p− po)

where kf is the frature permeability. When mechanically closed, decrease of permeability with normal
stress is typically observed and is highly non-linear. It is associated with increase of contact area with
closure. Similarly, shear slip along closed fracture may increase fracture permeability (or in some time
decrease it). This shear-induced permeability increase is typically associated with dilatancy - while de-
creases is often related to compaction.

3.2.1 Permeability models
A constant fracture permeability model would be - assuming Poiseuille’s law

k =
ω2
o

12

where ωo is the initial hydraulic aperture.
The fracture permeability κ is known to strongly evolve as function of mechanical deformation (open-

ing, slip etc.). The simplest model choice is to assume Poiseuille’s law and use the the current width
hydraulic aperture, i.e.

k =
w2

h

12
(3.11)

such that the evolution of mechanical opening are directly reflected in permeability increases. Such an
approximation is clearly valid for open fracturesWitherspoon (1980) - and used in all Hydraulic Fracturing
simulators. For mechanically closed fracture (i.e. under compressive stress), shear-induced dilation
will also increase fracture permeability. Note that for small mechanical aperture, additional “friction” is
observed such that Poiseuille’s law is often corrected (Zimmerman & Bodvarsson 1996, Renshaw 1995,
Witherspoon 1980, Lomize 1951, Louis 1969) to lower the fracture permeability due to surface roughness.

Note that some authors takes the fracture permeability as function of effective normal stresses (usu-
ally via an decreasing exponential) for the case of mechanically closed fracture (e.g. Rice (1992a))

k = k∗e
−σ′/σ∗

Such a dependence can actually be recovered using a non-linear elastic relation between effective stress
and opening - e.g. Bandis-type model which is valid in the realm of mechanically closed fractures e.g.
Nguyen & Selvadurai (1998):

σ′ = kni
v

1− v/vm

where v denotes the fracture/ ’closure’ (zero when σ′ = 0) and vm the maximum joint closure - in such a
notation ’the aperture’ taken from full closure is vm − v, such that using the lubrication law, the fracture
permeability reads

k =
1

12
v2m

(
knivm

knivm + σ′

)2

which actually has a very similar form than a decaying exponential as can be seen on Figure 3.2.
At the current stage, we neglect mechanically the elastic joint/fracture deformation under compressive

stress. We thus do not model the non-linear elastic responce of the fracture/joint under closure stress,
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Figure 3.2: Permeability evolution with effective normal stress (case of closed fractures)- Exponential
decay models (with κo = κ∗) - and Bandis type relation (with κo = v2m/12, and σ∗ = knivm).

and as such the evolution of permeability with increasing closure stress. One possibility to account for
such effect is to assimilate ωo as vm − v and uses a Bandis-like dependence of ωo with closure stress.
Note that our numerical scheme allows for extremely strong non-linearity of permeability with opening
and slip, and as such any type of law could be implemented besides eq.(3.11).
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Chapter 4

One-way coupled hydro-mechanical
solver for the stimulation of fractured
rock mass
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The upper crust of the Earth is essentially composed of fractured rock (Seeburger & Zoback 1982,
Zoback 2010). A combination of chemical and mechanical processes at depth leads to a complex pattern
of discontinuities. Pre-existing faults and fractures are commonly found on all scales, from microscopic
scale, e.g. microfractures, to continental scale (Cornet 2015b). In thegeological literature, fractures (also
denoted joints) are distinguished from faults depending on the type of deformation they have withstanded
in the past. It is well known that the presence of these discontinuities exerts a profound effect on the
physical properties of the hosting rock (Brace 1960, Hadley 1976, Budiansky B. & O’Connell R. 1976).
There presence and behavioris alsoof great importance for many engineering applications (e.g. deep
geothermal energy extraction, hydrocarbons recovery to cite few) . We present in the following a robust
numerical solver for the simulation of 2-dimensional hydraulic stimulation of fractured rock mass with
the capability of accounting for a large number of pre-existing fracture, possible weakening of fracture
properties with deformation allow to nucleate seismic slip. We report hereunder the details of this solver,
present a number of verification tests and then discuss some preliminaries simulation results for the
stimulation of a randomly set of fractures in both marginally pressurized and critically stressed conditions.

4.1 Numerical solver description
This numerical solver is capable of modeling mixed mode driven fractures propagation along pre-existing
cohesive material discontinuities/interfaces - either driven by fluid injection or mechanical loading. These
discontinuities represent the locus of deformations (irreversible or reversible)and their positions as well as
their lengths and orientations in the infinite, isotropic, homogeneous and liner elastic medium is supposed
be known a priori (through a statistical probability distribution, for instance, in the case of Discrete Fracture
Network). In addition to this, we suppose the permeability of the host elastic medium is considerably
smaller than the longitudinal permeability of the pre-existing discontinuities (reasonable assumption for
very fine materials such as granite). As a result,fluid flow can only occur within such discontinuities
(which implies that a given distribution of their initial hydraulic apertures must be known a priori).

We model the fracture(s) behavior within the framework of continuum mechanics. Stresses and de-
formations along such interfaces are related between each others through plane elasticity equations (see
chapter 2) combined with cohesive interface constitutive laws (yield criteria - see chapter 3). This mod-
eling perspective is valid for quasi-brittle materials (like rocks) where irreversible deformation is known
to localized in fractures and shear bands. The subsequent evolution of these fractures can be modeled
using softening traction-separation constitutive laws are valid (Maier et al. 1993).

In the following, we focus on the case of shear and opening fractures driven by fluid injection.
Upon fluid injection in a specific pre-existing discontinuity, fluid flow changes the local effective normal

stress (through Terzaghi’s principle). If the pore pressure increase is such to activate a crack (i.e. violating
locally the fracture/joint yield criteria), then the crack starts to propagate paced by fluid flow diffusion.

In this solver, however, we assume that elastic deformations occurring during crack propagation do
not affect fluid flow (i.e. fracture flow transmissivity are assumed constant), leading to a one way coupled
modeling approach. Tractions along pre-existing discontinuities thus change in response of i) change
of far field/remote stresses, ii) stress interactions between multiple propagating fractures and ii) local
changes of effective normal stress due to fluid flow.

We couple a displacement discontinuity method for elasticity with a finite volume scheme for fluid
flow. Upon discretization of the pre-existing discontinuities into Nelts straight elements, the elasticity
equations that relate tractions to displacement discontinuities reduce to a 4Nelts×4Nelts linear system of
equations (for piecewise linear approximation of displacement discontinuities). Tractions are expressed
at collocation points, whereas displacement discontinuities are evaluated at mesh nodes (for Nelts finite
elements, we have N = Nelts + 1 number of nodes). Fluid flow is interpolated via linear and continuous
shape functions over each element. A finite volume scheme is used to solve numerically the width
averaged fluid mass conservation equation. For stability issues, a backward Euler (implicit) scheme is
used for time-integration.

The algorithm devised marches in time, from tn to tn+1 = tn +∆t. For sake of compactness, we use
the notation of Xn+1 = Xn + ∆X for referring to a generic time and space dependent variable X(x, t)
at current time tn+1. Starting from a known solution at time n, the primary unknowns over a time step
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Figure 4.1: Sketch of displacement discontinuities and fluid pressure variation along three mesh ele-
ments converging in one generic node i. The former vary linearly and discontinuously between adjacent
elements, whereas the latter is continuous at mesh node i. The control volume for finite volume scheme
is centred at pressure node i inside which the fluid is conserved. Note that this numerical scheme can
be easily extended to the case in which more than three elements intersect at node i (and obviously to
the case in which only two elements converge at pressure node).

are the current pressure pn+1, the current tractions tn+1
i along the pre-existing discontinuities and the

corresponding displacement discontinuities dn+1
i (or increment of displacement discontinuities ∆di for

incremental type of solution).
Since this hydro-mechanical numerical solver is one-way coupled, we solve first the fluid flow problem

for the current pore pressure pn+1, and then use it to solve the mechanical problem for the corresponding
current tractions and displacement discontinuities.

4.1.1 Fluid flow solver
Starting from an initial condition denoted by the subscript o, the increment of pore pressure ∆p is cal-
culated on N mesh nodes via a finite volume scheme. For sake of completeness, we recall here the
discretization of the width averaged fluid mass conservation equation that govern the fluid flow within the
pre-existing conductive fractures (here supposed way more permeable that the hosting rock mass). Re-
stricting to the 2-dimensional case, the one-dimensional width averaged fluidmass conservation equation
in absence of any sourse terms reads (see e.g. 3 for details)

whβ
∂p

∂t
+
∂w

∂t
+
∂q

∂x
= 0, (4.1)

where wh is the fracture hydraulic width, β is the fluid compressiblity, w the fracture aperture and q is the
uni-dimensional Darcy’s flux given by

q = −wh · kf
µ

∂(p− po)

∂x
(4.2)

In equation (4.2), kf is the longitudinal fracture permeability and µ is the fluid viscosity.
Upon discretization of the fracture with linear elements, pore pressure is supposed to vary linearly

and continuously between adjacent elements, with pressure nodes located at the vertexes of the dis-
placement discontinuity elements (see Figure 4.1).

Equation (4.1) is integrated over each control volume centred on pressure nodes (see Figure 4.1).
The generic control volume centred on pressure node i is denoted as CVi. This control volume can then
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be subdivide into nei sub-control volumes, being nei the number of mesh elements connected to node i,
i.e.

CVi =

nei∪
j=1

CVij

Upon application of integral conservation law for CVi combined with divergence theorem, fluid mass
conservation equation reads ∫

CVi

∂w

∂t
dx︸ ︷︷ ︸

1

+

∫
CVi

whβ
∂p

∂t
dx︸ ︷︷ ︸

2

+

nei∑
j=1

qij = 0, (4.3)

where the fluxes qij entering the control volume CVi via sub-control CVij are easily obtained from the
Poiseuille law, knowing that the pressure gradient is constant over each mesh element:

qij = wh,CVij

kCVij

µ

(pj − poj)− (pi − poi )

hij
wh,CVij = (wi + wj)/2 (4.4)

In equation (4.4), wh,CVij and kCVij are respectively the opening and permeability at the ends of each
sub-control volume CVij , pi and pj are the nodal pressure values at i and j and finally hij is the euclidean
distance between node i and node j. The fluxes therefore enter into each control volume from the middle
of each mesh element.

When aggregating the conservation over all the control volumes (their total number coincides with
mesh nodes N ), the effect of fluxes entering the different control volume results in a banded matrix L
whose components are given by

Lij(w) = −wh,CVij

kCVij

µ·hij
, i ̸= j

Lij(w) =
∑

j=1,...,nei
wh,CVij

kCVij

µ·hij
, i = j

(4.5)

In the case of one planar fracture, the matrix L is a 4-banded diagonal matrix, whose size corresponds
to the number of nodes in the mesh, i.e. N ×N . The integrals 1 and 2 of equation 4.3 over CVi can be
split over each sub-control volumes CVij , i.e.∫

CVi

∂w

∂t
dx =

nei∪
j=1

∫
CVij

∂w

∂t
dx (4.6)

∫
CVi

whβ
∂p

∂t
dx =

nei∪
j=1

∫
CVij

whβ
∂p

∂t
dx (4.7)

By applying a Cavalieri-Simpson rule for space integration and backward Euler scheme for the time
derivative (finite difference), the integral in (4.7) reduces to

∫
CVij

whβ
∂p

∂t
dx→

∫ hij/2

0

whβ
∂p

∂t
dx ≈ hij

12
β

[(
whi + 3wh

i+1
4

+
1

2
wh

i+1
2

)
∆pi +

(
wh

i+1
4

+
1

2
wh

i+1
2

)
∆pj

]
(4.8)

where the subscript i refers to value at node i, i + 1/2 refers to values at the ends to each sub-control
volume (i.e. middle of each element), i+ 1/4 refers to values at middle of each sub-control volume and
finally j refers to values at next node j. For instance, the pressure values at i + 1/2 and i + 1/4 are
respectively given by

∆pi+ 1
2
=

∆pi +∆pj
2

, ∆pi+ 1
2
=

3∆pi +∆pj
4

By combining the integral (4.8) over each sub-control volume CVij of each mesh nodes, a pressure
matrix of size N ×N can be assembled, i.e. the second term of equation 4.3 can be rewritten as
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Vp(w) · ∆p
∆t

By applying the same procedure, the integral (4.6) reduces to

∫
CVij

∂w

∂t
dx→

∫ hij/2

0

∂w

∂t
dx ≈ hij

12

[
∆wi + 4∆wi+ 1

4
+∆wi+ 1

2

]
=
hij
24

[9∆wi + 3∆wj ] , (4.9)

which leads to amassmatrix of sizeN×2N due to piecewise nature of linear displacement discontinuities
over each element. The first term of equation 4.3 can thus be rewritten as

Vw · ∆w
∆t

Since we use an implicit scheme in time, we are not restricted by the Courant-Friedrichs-Lewy con-
ditions (typically denoted as CFL condition), which otherwise would lead to a critical time step above
which the numerical solution loose its stability. Upon discretization, the fluid mass balance conservation
equation in absence of dilatancy term reads

Vp(dn+1
n ) ·∆p+∆t× L(dn+1

n ) ·∆p = ∆tS−∆t× L(dn+1
n ) · (pn − po), (4.10)

which can be re-written in the form of a system of equations for the vector of nodal unknowns ∆p

Ap.∆p = bp (4.11)

where Ap = Vp(dn+1
n ) + ∆t × L(dn+1

n ) is the matrix of coefficient, whereas bp = ∆tS −∆t × L(dn+1
n ) ·

(pn − po) is the right hand side vector that contains the source term S in case of continuous injection.
Note that the matrices Vp and L in equation 4.10, both function of the current value of fractures widths
dn = w, are sparse matrices (specifically tri-banded diagonal matrices). For this reason they are stored
in memory as such. We solve the system (4.11) for the increment of pore pressure ∆p over a given time
step usingthe Pardiso solver shipped with the intel MKL1 to Once the numerical solution of system 4.11
is obtained, the new pore pressure pn+1 = pn +∆p can be calculated at all mesh nodes. This current
pore pressure is then used to solve the mechanical problem, i.e. elasticity combined with yield criteria.
As previously mentioned, elasticity is collocated at points whose locations lie inside the displacement
discontinuity element (collocation points), whereas pore pressure is discretized at mesh nodes. Since
we use linear and continuous shape functions for pore pressure, we can always move the nodal pore
pressure values pi to collocation points p(ξi) via a simple linear transformation

p(ξi) =
∑
i=1,2

Ni(ξi)pi, (4.12)

where Ni are the linear shape functions on the reference element

N1(ξ) =
1− ξ

2
N2(ξ) =

1 + ξ

2
,

with ξj = ±
√
2
2 the position of the collocation points in the reference element. Equation 4.12 can be

expressed in matrix form as

pcoll = Npcp,

where Npc is a 2Nelts × Nnodes matrix for the transfer of the value of pressure from node to collocation
points.

1The Pardiso solver is a specific direct solver for the numerical solution of large sparse symmetric and unsymmetric linear
systems of equations.
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4.1.2 Mechanical solver
Once the fluid flow problem is solved at the beginning of each time step, the algorithm moves to the
mechanical problem in order to obtain the current tractions tn+1

i and the corresponding displacement
discontinuities dn+1

i .
The algorithm that we have devised is composed of two nested loops. The outer loop iterates to

check i) yielding criteria with current softening variables at every collocation points of the mesh (implicit
tracking of cracks’ fronts) and ii) the inter-penetrability constraint at every mesh nodes. For a given iter-
ation of the outer loop, the non-linear mechanical problem is solved using a fixed point iterative scheme
for the effective tractions t′i and increment of displacement discontinuities ∆di. Note that we solve the
mechanical problem in term of effective tractions and not total tractions. This simplifies the implementa-
tion of the scheme, as the constraints dictated by the yield criteria are already written in terms of effective
tractions. The current total tractions tn+1

i are then calculated by simply adding the current pore pressure
pn+1 to the obtained current effective tractions.

The outer loop allows to define which elements of the mesh are yielded (either in mode I or in mode
II) and which elements do not satisfy the inter-penetrability condition, whereas the inner loop solves
iteratively the equilibrium elastic problem accounting for the possible softening of failure properties of the
fractures.

Tractions and displacement discontinuities are related to each others through the quasi-static elas-
ticity equation, which can be expressed in discretized form as

tni +∆ti = toi + EH(dni +∆di), (4.13)

where EH is the hierarchical representation of the elasticity matrix (possibly using a hierarchical matrix
representation). Note that one can always recover the fully populated elasticity matrix by simply setting
ηH = 0 before the construction of the hierarchical matrix (such that the admissibility condition is never
satisfied).

Since we solve the mechanical problem in terms of effective tractions t′i , we rewrite the discretized
elasticity equations 4.13 as

t′,n+1
i = toi + EH(dni +∆di)− pn+1

coll , (4.14)

where the effective tractions are evaluated at collocation points, whereas displacement discontinuities
are evaluated at mesh nodes. Since we use piecewise linear displacement discontinuities, the number
of unknowns is 8Nelts (half related to effective tractions and half related to increment of displacement
discontinuities), for 4Nelts elasticity equations. In order to solve the mechanical problem, additional
equations must be taken into account. These equations are given by the cohesive interface constitu-
tive relations for the displacement discontinuities locus as they dictate the constraints for the primary
unknowns of the mechanical problem. At each iteration of the outer loop, the algorithm identifies a set
of elements Na,I (or collocation points) that are active in mode I, a set of elements Na,II (or collocation
points) that are active in mode II, a set of inactive elements Ninact (or collocation points) and finally a
set of elements that violate the inter-penetrability constraint Ninterp. For each set of elements, different
constraints have to be set, either in terms of tractions or in terms of deformations. We report hereunder
the differentconstraints that must be applied to one node (for constraints in terms of deformations) or to
one collocation point (for constraints in terms of effective tractions) of one mesh element. This element
may belong to one of each previously discussed set of elements.

• Active set of elements Na,I - mode I

If the local tractions at current time are such that 𝟋1(tn+1
s , t′,n+1

n ) > 0 along Na,I elements (and mode
I failure occur), then the algorithm enforces 𝟋1(tn+1

s , t′,n+1
n ) = 0 and |ḋs| = 0. The set of discretized

equations for one node or collocation point of an active tensile element are

t′,n+1
n = −σc(κn+1, κn+1

m ), |∆ds| = 0,

which can be rewritten in matrix form as
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[
0 0
0 1

] [ ∣∣tn+1
s

∣∣
t′,n+1
n

]
=

[
0

−σc(κn+1, κn+1
m )

]
,

[
1 0
0 0

] [
|∆ds|
|∆dn|

]
=

[
0
0

]
• Active set of elements Na,II - mode II

If the local tractions at current time are such that 𝟋2(tn+1
s , t′,n+1

n ) > 0 along Na,II elements (and mode
II failure occur), then the algorithm enforces 𝟋2(tn+1

s , t′,n+1
n ) = 0 and |ḋn| = |ḋs|tanψ(η, ηm). The set of

discretized equations for one node or collocation point of an active shear element is

tn+1
s = c(κn+1, κn+1

m ) + f(ηn+1, ηn+1
m )t′,n+1

n , |∆dn| = |∆ds| tan(ψ(ηn+1, ηn+1
m )),

which can be rewritten in matrix form as

[
1 −f(ηn+1, ηn+1

m )
0 0

] [ ∣∣tn+1
s

∣∣
t′,n+1
n

]
=

[
c(κn+1, κn+1

m )
0

]
,

[
0 0

−tan(ψ(ηn+1, ηn+1
m )) 1

] [
|∆ds|
|∆dn|

]
=

[
0
0

]
• Inactive set of elements Nincact

If the local tractions at current time are such that both yielding criteria are strictly satisfied, i.e. 𝟋1(tn+1
s , t′,n+1

n ) <
0 and 𝟋2(tn+1

s , t′,n+1
n ) < 0, along Ninterp elements, then the rate of displacement discontinuities must be

zero. In discretized form, this reads

|∆di| = 0, i = s, n

or equivalently in matrix form [
1 0
0 1

] [
|∆ds|
|∆dn|

]
=

[
0
0

]
• Elements that violate theinter-penetrability condition

Inter-penetration of matter is physically not admissible. If the normal displacement discontinuity on one
node is lower than the minimum admissible value w̄m, then the following constraint has to be applied

dn+1
n = w̄m (4.15)

Since we solve the mechanical problem in terms of increment of displacement discontinuities, equa-
tion 4.15 can be rewritten in matrix forms as[

1 0
0 1

] [
|∆ds|
|∆dn|

]
=

[
0

w̄m − dnn

]
(4.16)

By considering all the nodes as well as all the collocation points of the mesh and knowing that the
displacement discontinuities vary discontinuously between adjacent elements, these constraints provide
a set of 4Nelts equations that can be used to solve the mechanical problem. Gathering together the
4Nelts elasticity equations written in terms of effective tractions 4.14 with the constraints in terms of
effective tractions and displacement discontinuities previously discussed, we can assemble the following
8Nelts × 8Nelts system of equations[

EH I
A4 A3

] [
∆di
t′,n+1
i

]
=

[
toi + Edn

i − pn+1
coll

ā

]
(4.17)

where I is a 4Nelts × 4Nelts identity matrix, ā is a 4Nelts × 1 null vector that contains the current strength
parameters (cohesion c(κn+1, κn+1

m ) and tensile strength σc(κn+1, κn+1
m )) on active elements and even-

tually the inter-penetrability constraint 4.16, and finally A4 and A3 are sparse block matrices that contain
the constraints in term of displacement discontinuities and effective tractions, respectively. The pattern
of these block matrices is not known a priori, but evolves in time based on yielding evolution during cracks
propagation. Note that the system of equations 4.17 is non linear since the softening parameters (and
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hence the yielding properties)depend on current deformations. Furthermore, its matrix of coefficient is
not diagonal dominant as well as it is non-symmetric. Since all the sub-blocks composing the matrix of
coefficient are square matrices, the system (4.17) is a square system of equations. Although the blocks
A4 and A3 are singular sparse matrices, the inverse of the finalmatrix exist, i.e. the final matrix has
always full rank.

It is worth mentioning that the hierarchical decomposition of the mesh domain involved in the H-
matrix construction may lead to a permutation of the degrees of freedom, which consequently leads to
a feedback on the other blocks composing the matrix of coefficient as well as on the right hand side.
Therefore, the proper permutations or back-permutations must be applied during its resolution.

The non-linear system of equations (4.17) can be solved via direct or iterative method. The former
requires the inversion of the matrix of coefficient, which we want to avoid as the computational complexity
scales as O(n3) (being n the dofs of the problem), whereas the latter requires at most k matrix-vector
multiplication, i.e. O(k ·n2) with k the number of iterations (generally k ≪ n). We solve such a non-linear
system of equations with generalized minimal residual method (GMRES) iterative solver, which is one
of the Krylov subspace iterative method. This iterative solver is part of the InsideLoop C++11 library (via
an API to the intel MKL).

Since the matrix of coefficient that arise from gathering together the four sub-blocks is highly sparse
and non-symmetric, a good preconditioner must be considered during the iterative resolution of (4.17).
In the next section, we discuss infull details the block preconditioning we have developed for a faster
solution of system (4.17).

4.1.3 Preconditioning & solution of the tangent system
The final linear system of equations 4.17 is unfortunately ill-conditioned. Its matrix of coefficient, in fact,
is very sparse and highly non-symmetric. For sake of simplicity and compactness, we rewrite the system
4.17 as [

EH I
A4 A3

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
y1
y2

]
︸ ︷︷ ︸

y

(4.18)

where x is the vector of current unknowns (increment of displacement discontinuities and effective trac-
tions) and y is the right hand side vector. We denote the matrix of coefficient as A.

In Figure 4.2, we show an example of spectral properties of A arising from the following case: a
planar fracture is discretized with 100 equal-sized elements, 6 of them are active in mode II while the
others are inactive and they satisfy inter-penetrability constraint.

As one can see, the eigenvalues of A are spread over a wide range on the complex plane, both
in the real and in the imaginary axis. The spectral radius for such an example is indeed ρ(A) ∼ 56.3,
implying slow convergence properties during iterative solution of system 4.18. In order to improve the
spectral properties of matrixA, i.e. clustering its eigenvalues around unity in the spectral plane, we need
to introduce a preconditioning matrix P such that the product P−1A (left preconditioner) or AP−1 (right
preconditioner) is as much closed to identity matrix I as possible. Because of the block nature of the final
matrix A, the preconditioning matrix P (or its inverse) is also composed by blocks, each of them properly
chosen such to improve the conditioning of the final system of equations. We will thus talk about block
preconditioners.

The choice of a good preconditioner may or may not stem from the nature of the problem under
investigation. Preconditioners based on algebraic techniques, for instance, require little knowledge of
the problem and can be used in a black-box fashion. Examples of these preconditioners are incomplete
LU factorization of the system matrix or algebraic multilevel methods. These preconditioners, however,
are not robust for system matrices that are far from being diagonally dominant (see Benzi (2002)), which
is the case of the matrix A. The incomplete lower-upper factorization (ILU) of the system matrix, for
instance, may require storing many fill-ins that are small in absolute value and, therefore, contribute
little to the quality of the preconditioner itself, while making it expensive to compute and to use. The
preconditioner for the linear system 4.18, therefore, must be tailored based on the nature’s knowledge
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Figure 4.2: Example of spectral properties of the matrix of coefficient A. This matrix results from a
discretization of a planar fracture with 100 equal-sized elements, 6 of them active in mode II, while the
others are inactive (and satisfy the inter-penetrability condition).

of the problem as well as on the pattern of the final matrix A, similar to what is done for saddle point
problems (see Benzi et al. (2005), Cao (2008, 2009), Li et al. (2010) among others).

Starting from the observation that if the sub-block matrix A3 is null, then the system of equations
4.18 is exactly equivalent to the one that arise from non-symmetric saddle point problem (for which
several preconditioner are available in literature), we developed an ad-hoc preconditioner that suites our
mechanical problem. Note that the block A3 is null only when all the elements of the mesh are inactive
in both modes, i.e. when there are no deformations along computational mesh, and at the same time
they satisfy the inter-penetrability condition. Beside this specific scenario, the matrix A3 is not null and it
is typically characterized by an high level of sparsity.

We adapt a preconditioner that is tailored for saddle point problems to our specific problems. We
introduce an upper-triangular block preconditioner applied on right side. The system of equations 4.18
can thus be rewritten as

AP−1
up u = y, u = Pupx (4.19)

where P−1
up is an upper-triangular block preconditioning matrix defines as

P−1
up =

[
D−1

e −D−1
e S−1

0 S−1

]
, (4.20)

where De is the diagonal of the hierarchical elastic matrix EH and S = A3 −A4D−1
e is the Schur comple-

ment of system 4.18 with respect to EH. As far as the matrix Pup is concerned, it can be easily obtained
from the relation P−1

up Pup = I (which comes from the definition of right preconditioning), which leads to

Pup =

[
De I
0 S

]
(4.21)

Although the problem is reduced to solve two systems of equations instead of one (with respect to
the non-preconditioning case), the effect of preconditioner is such that their resolutions is way faster than
the resolution of system 4.18. Note that if De = EH , then the spectrum of P−1

upA is ρ(P−1
upA) = {1} and

the preconditioned matrix has minimum polynomial of degree 2, so that the GMRES would converge in
at most 2 iterations. In practice, however, we do not want to compute the inverse of the elasticity matrix
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( ∼ O(n3) in case of fully populated elasticity matrix), so we make use of the non-local property of the
elastic kernel to approximate De as diag(EH). The diagonal of the elasticity matrix (or its hierarchical
approximation) contains the elastic self-effects, which are certainly the most relevant (and for this reason
they are never approximated by the hierarchical matrix). By taking the diagonal of the elasticity matrix,
the inverse of De is relatively cheap and thus fast to compute. This choice is motivated by the fact that
for saddle point problems, it has been mathematically proved that if the upper-left block (1,1) of the final
matrix of coefficient is diagonal dominant, then taking its diagonal as (1,1) block of preconditioning matrix
would lead to a good clustering of the eigenvalues around 1, 1

2 (1 +
√
5) and 1

2 (1 −
√
5). This, however,

does not prevent the preconditioned matrix from having its eigenvalues on both sides of the imaginary
axis (see Benzi (2002) for details).

Note that, in case of hierarchical approximation of elasticity matrix is used, its diagonal is never
approximated (i.e. it is always stored), as the self-effects are the most meaningful terms for non-local
elasticity.

Upon application of the preconditioners 4.20 and 4.21, the systems of equation 4.19 reduce to

[
EHD−1

e −EHD−1
e S−1 + S−1

A4D−1
e −A4D−1

e S−1 + A3S−1

] [
u1

u2

]
=

[
y1
y2

]
︸ ︷︷ ︸

1

,

[
De I
0 S

] [
x1
x2

]
=

[
u1
u2

]
︸ ︷︷ ︸

2

(4.22)

As one can notice from system 1 of equation 4.22, the inverse of the Schur complement is needed
for its resolution, setting thus a tight computational constraint. We overcome it by using the following
change of variable

z2 = S−1u2

such that the system 1 of 4.22 can be rewritten as[
EHD−1

e −EHD−1
e + I

A4D−1
e −A4D−1

e + A3

]
︸ ︷︷ ︸

Ap

[
u1

z2

]
=

[
y1
y2

]
(4.23)

We define the matrix of coefficients of system 4.23 as Ap. In order to highlight the effect of precon-
ditioner, we show in Figure 4.3 the spectral properties of the preconditioned matrix Ap that arises from
the same example previously reported.

As one can see from Figure 4.3, upon application of the right preconditioner to matrix A, the resulting
preconditioned matrix Ap is characterized by better spectral properties. Its eigenvalues, in fact, are
spread over a more narrow range (compared to the non-preconditioned case) and more importantly all
the eigenvalues lay on the real axis, i.e. they are all real values. The spectral radius in this particular
case is ρ(Ap) ∼ 1.64, roughly 3% compared to the one of A. A faster convergence during the iterative
solution of system 4.23 is thus expected.

Note again that the system 4.23 does not include the permutations and back-permutations that even-
tually must be applied if hierarchical representation of elasticity matrix is used.

Once the preconditioned system 4.23 is solved via GMRES iterative solver in terms of u1 and z2, the
solution of the system 2 of 4.22, which represent the final solution of the mechanical problem, can be
easily obtained by performing the proper block matrix-vector multiplication:

x2 = z2, x1 = D−1
e (u1 − z2)

Note that the numerical resolution of the preconditioned mechanical problem does never involve any
matrix inversions, allowing a faster convergence of the GMRES, while keeping the computational cost
relatively low. Once the convergence of the GMRES in terms of increment of displacement discontinuities
∆di and effective tractions t′,n+1

i is achieved within a given tolerance, the current deformations and total
tractions can be easily calculated via

dn+1
i = dni +∆di, tn+1

i = t′,n+1
i + pn+1

coll
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Figure 4.3: Example of spectral properties of the preconditioned matrix of coefficient Ap. This matrix
results from exactly the same example of Figure 4.2, but it has been applied the right block preconditioner.

The algorithm then checks again the yielding criteria and the inter-penetrability condition and it moves
to the next time step if all the elements of the computational mesh satisfy simultaneously all constraints.

4.1.4 Adaptive time stepping
When dealing with the modeling of crack(s) propagation in isotropic or anisotropic material, an adaptive
time stepping is a numerical technique of great importance. The combination of in-situ stress, frictional
properties and loading conditions might lead to very fast (seismic) or very slow (aseismic) cracks prop-
agation. Being able to adapt the time stepping such to minimize the run time of the numerical solver
and at the same time ensuring the stability of the numerical solution is a must. Typically time step adap-
tation has not an unique recipe for every numerical solver, but it must be calibrated based on physical
phenomena that take place in the problem under investigation.

In this specific context, we can identify two main physical governing phenomena: i) fluid flow within
the pre-existing fractures and ii) mechanical problem (elasticity). Starting from the physics of these two
phenomena, we can build the time step adaptation that suit our problems as well as we can identify the
maximum and the minimum time step among which the new time step must fall between, i.e.

∆tmin ≤ ∆tnew ≤ ∆tmax

For a forward Euler time integration scheme (explicit scheme), the numerical solution of the width
averaged fluidmass conservation equation is constrained by theCFL condition, i.e. the numerical solution
is stable if and only if the time step is smaller than a critical value defined as

∆tc = min
(
h2i
2α

)
, i = 1, . . . Nelts, (4.24)

where h is the mesh element size and α is the hydraulic diffusivity of the fracture.
Since we use a backward Euler time integration scheme (implicit scheme), we do not have to strictly

satisfy condition 4.24. However, we can certainly imagine that the time step can not be three (or more)
orders of magnitude larger than the critical one. We can thus introduce the following criterion for the
maximum time step
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∆tmax = ηt∆tc,

where ηt is a user-defined constant parameter (typically 5 < ηt < 100). The new time step ∆tnew,
therefore, must always be smaller than ∆tmax.

As far as the minimum time step ∆tmin is concerned, typically it is related to the wave speed in the
material, i.e.

∆tmin ∼ max
(
hi
Vp

)
, i = 1, . . . Nelts

where Vp is the p-wave velocity of the medium. For granite, for instance, a typical value of Vp is ∼ 6
Km/s. The new time step ∆tnew, therefore, must always be larger than ∆tmin.

Since the main purpose of this numerical solver is the modeling of fractures propagation, the time step
must be adapted based on current crack(s) velocity. For each potential fracture propagation, indeed, we
can calculate the current increment of velocity ∆vfrac,i over a given time step, that in turn can be used
to calculate the theoretical new time step suited to each fracture

∆tnew,fraci = ξt
hm,i

∆vfrac,i
, i = 1, . . . Nfracs

where ξt is another user-defined constant parameter (ξt ≥ 1) and hm,i is the minimum element size of
the generic fracture i. The new time step is then given by the mean value of all the new time steps related
to each fracture, i.e.

∆tnew = (
∑
i

∆tnew,fraci)/Nfracs

If no fracture propagation occurs, then the new time step ∆tnew is set to its maximum value ∆tmax.
With this adaptive time stepping, we expect that when cracks start to accelerate, for instance due

to friction weakening along cohesive interfaces, the time step decreases (up to its minimum value),
capturing thus the dynamic cracks propagation accurately. Vice-versa, when cracks propagation occur
slowly, for instance during aseismic crack propagation, the time step increases. As one can notice, this
time stepping adaptation technique depends only on two parameters, ηt and ξt, which allow a generic
user to be more (or less) aggressive in the time step adaptation.

4.1.5 Implementation details
This numerical scheme has been coded up in C++. A combination of run-time polymorphism and class
hierarchy brings flexibility and allows a generic user to easily specificy a newsoftening law or friction
models if needed. The code architecture has been designed with the purpose of fulfilling both functional
(i.e. the code has to do what it is supposed to do) and non functional requirements (e.g. reliability,
scalability , mantainability and performance), without going into deep abstraction solutions (mainly for
a better readability). Classes and interfaces have been designed in a way to make the code easier to
maintain and at the same time easier to generalise.

Upon generation of a .json configuration file in which the solver name must be provided (among other
input data), the code calls the specific solver, reads all the input data and then starts the computations.
Thanks to the usage of matID2 and fracID3, heterogeneous material properties can be easily set, even
when multiple pre-existing fractures are considered.

All the sparse matrices described in the previous sections are stored in memory as such. As far as
the storage of the hierarchical elasticity matrix, the entries of inadmissible blocks are stored in memory,
whereas the ones of admissible blocks are stored in low rank format.

2matID is an array of integers that must be input in the configuration file. One entry of it represents the mapping of one element
of the computational mesh to a specific material property.

3fracID is an array of integers that must be input in the configuration file. One entry of it represents the mapping of one element
of the computational mesh to a specific fracture.
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Figure 4.4: Sketch of verification test 1: a branched fault is embedded in an infinite, homogenous,
isotropic and linear elastic material and it is subjected to a compressive remote stress σ. The fault is
frictional neutral, with friction coefficient f = 0.6. All the input data related to geometry and material are
reported in the figure.

The solution of the final preconditioned system of equations is obtained via GMRES, which uses an
ad-hoc functor written for this specific block partitioned solver.

Before moving to the next time step, the algorithm writes a binary json file (.ubjson format) with the
current solution and then it moves to the time stepping adaptation to identify the next time step.

4.2 Verification tests

When developing numerical solvers for addressing physical problems, it is of great importance to repro-
duce existing problems whose solution is available in closed form or whose solution has already been
verified with other numerical solvers.

We report hereunder some tests we have performed with the one-way coupled hydro-mechanical
solver previously discussed. These tests allow to verify the numerical solver, testing all its capabilities
as well as its performance.

4.2.1 Test #1 : Branched fault subjected to compressive far field stress

This test consists in determining the distribution of tractions and slip on a branched fault under remote
compressive stress (see Figure 4.4). The fault is located in an infinite, homogenous, isotropic and linear
elastic medium, with neutral frictional properties (i.e. the friction coefficient f is constant all along the
fault). Although this static problem is purely frictional and dry, it is a good test for the algorithm devised
and its convergence in terms of fracture front position (implicitly obtained with the outer iterative loop).

Maerten et al. (2010) have solved numerically this problem and they have validated their numerical
results by comparing them with numerical results obtained with other numerical solvers (see Maerten
et al. (2010) for more details). Albeit the available solution is not analytical, it can be used to verify our
numerical results.

We solve numerically this problem by discretizing the whole branched fault with 5000 straight ele-
ments (notably 3000 straight elements for the main branch of length 4a, and 2000 straight elements for
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Figure 4.5: Comparison between numerical results in terms of slip ds and tractions ti distribution along
the branched fault obtained with our one-way coupled HM solver and the ones of Maerten et al. (2010).

the secondary branch of length 2a). The hierarchical elasticity matrix adopted for this problem has been
obtained with the following input data

ηH = 3, ϵACA = 10−6, Nleaf = 103,

obtaining a compression ratio of

T (EH) ≈ 0.341

Figure 4.5 shows the comparison between our numerical results and the ones of Maerten et al. (2010).
Mode precisely, the two plots on the left column represent the numerical solution in terms of slip (top)
and tractions (bottom) along the main fault branch of length 4a, whereas the corresponding numerical
results related to the secondary branch of length 2a are reported in the plots on the right column. As one
can see, a good match between our numerical results and the ones of Maerten et al. (2010) is obtained.
The position of the shear crack tip on the secondary fault branch is accurately captured, as well as the
tractions distribution along it.

4.2.2 Test #2 : Fluid injection into a frictional weakening planar fault

The second validation test has been performed in order to check whether the frictional non-linearity dur-
ing crack propagation is well captured by our numerical solver. Fluid is injected into an infinite planar
fault with weakening frictional properties, activating ultimately a shear crack (see Figure 4.6). The fault
is embedded in an homogenous, isotropic and linear elastic infinite material, whose permeability is sup-
posed to be considerably smaller than the fault longitudinal permeability. Fluid flow only occurs along
the fault plane from a source injection located at the middle of the fault in the 2D space - more precisely
a line-source in the out-of-plane direction to satisfy plane-strain conditions. Prior fluid injection, the fault
is subjected to a uniform initial in-situ stress and pore pressure field. Note that, since we do not account
for fault dilatant behaviour, the fluid flow problem is not affected by the mechanical problem, i.e. the
problem is only one-way coupled.

This specific problem has been deeply investigated by Garagash & Germanovich (2012) (we refer
to their paper for full details about the problem formulation and scaling analysis). Their semi-analytical
solution can thus be used to benchmark the numerical solution obtained with our one-way coupled HM
solver.
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Figure 4.6: Sketch of validation test 2: injection of fluid in a frictional weakening planar fault. The fault
is embedded in an infinite, isotropic, homogenous and linear elastic material and it is subjected to a
uniform stress distribution, denoted by σo = tn,o and τo = ts,o. The friction coefficient is supposed to
weaken during shear deformations, from its peak value fp to its residual value fr over a characteristic
slip distance δr. This problem has been deeply investigated by Garagash & Germanovich (2012). We
refer to their paper for full details.

Although the problem is only one-way coupled and pore pressure evolution can be analytically ob-
tained from the solution of the linear diffusion equation in a fault characterized by constant hydraulic
diffusivity α

p(x, t) = po +∆P · Erfc
∣∣∣∣ x√

4αt

∣∣∣∣ ,
in our numerical solutions the fluid flow problem is solved numerically via a finite volume scheme. The
fault has been discretized with 1000 straight equal-sized elements and the fully populated elasticity matrix
is considered (i.e. ηH = 0).

In Figure 4.7 we report the benchmark of our numerical results against the semi-analytical ones of
Garagash & Germanovich (2012), both in terms of dimensionless half-crack length a/aw (left) and di-
mensionless peak slip accumulated in the middle of the fault δ|x=0/δw (right). Notably, we report only the
benchmark for the case of an ultimately stable fault characterized by a stress criticality of τo/τp = 0.55,
subjected to a moderate overpressure ∆P/σ′

o = 0.5. This allows to verify both the aseismic crack prop-
agation and the dynamic event followed by an arrest that necessarily occur due to frictional weakening
nature of the fault. As one can see from Figure 4.7, our numerical results match very well the semi-
analytical results of Garagash & Germanovich (2012) both in terms of half-crack length and peak slip at
the middle of the fault. The nucleation time of the dynamic rupture is accurately hit as well as its arrest
that occur when the shear crack catches up with the fluid front.

4.2.3 Test #3 : Loading/Unloading test
We report here an ad-hoc test we have performed in order to check all the possible constraints related to
a mixed mode dry fracture propagation along a weakening cohesive interface. Notably, during the time
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Figure 4.7: Benchmark of numerical results obtained with one-way coupled HM solver (black curve)
against semi-analytical ones of Garagash & Germanovich (2012) (light grey curve), in terms of time
evolution of normalized half crack length a/aw (left) and normalized peak slip δ/δw at the center of the
planar fault x = 0 (right). The fault is an ultimately stable fault characterized by a stress criticality of
τo/τp = 0.55, subjected to a moderate overpressure ∆P/σ′

o = 0.5. The friction weakening ratio is
fr/fp = 0.6, so that δr/δw = 0.4.

evolution of this test, all the possible constraints related to tractions or deformation are activated. The
numerical solution therefore should be in agreement with what we expect a priori.

A planar fracture is embedded in an infinite, homogeneous, isotropic and linear elastic material. Nor-
mal and shear tractions are applied on the fracture plane due to the far field stress state defined by the
components σyy and σxy (see Figure 4.8). The frictional strength along the fracture weakens with shear
deformation, except along a finite small patch over which the friction coefficient is at its residual value
0.6 and the cohesion is null. A mechanical force is then applied over a finite length along the fracture,
such that its length of application is slightly larger than the frictional weak layer (see Figure 4.8). At time
to = 0, the mechanical force is null, then it increases for t > 0 (in tension), up to reach a critical time tc
after which it turns into a compression mechanical force (change of sign). This mechanical force is thus
the driving force of a mixed mode fracture propagation.

At initial time to = 0, a small (central) portion of the fracture is not in equilibrium with far field stress
state, due to the lower shear strength associated with lower friction coefficient (with respect to the rest
of the fracture- see ‘weak layer’ in Figure 4.8) and null cohesion. Therefore, a shear crack starts to
propagate driven by the tensile force (loading process - see time snapshots of slip distribution in Figure
4.9-top). Since in this test dilatancy is considered during the shear crack propagation (with a constant
dilatant angle tan(ψ) = 0.3), the normal displacement discontinuities induced by dilatancy are always
a fixed fraction of the shear displacement discontinuities. It is worth mentioning that the displacement
discontinuities profiles are symmetric with respect to x = 0 due to the symmetry of mechanical properties
and loading conditions with respect to fracture centre.

As time increases, the tensile mechanical force reduces the compressive normal stress applied in the
fracture, up to induce at time t ≃ 1.15 a tensile opening (which is embedded within the shear crack). As
expected, the normal tractions within the opening mode crack vanish (see Figure 4.10-left), whereas the
corresponding slip keep accumulating locally on the fracture (see Figure 4.10-right). When time t reaches
tc = 1.5, then the force turns into compressive (unloading) and crack closure is expected followed by
an arrest of shear crack. From Figure 4.10, one can notice that the contact condition upon closure is
reached at t ≃ 1.95, after which the normal tractions in the fracture centre start to build up linearly (as
the mechanical force evolves linearly) and the corresponding displacement discontinuities is set to the
minimum value 0.04 (satisfying thus the inter-penetrability constraint - see Figure 4.9-bottom).

All the constraints previously discussed are enforced correctly.
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Figure 4.8: Sketch of validation test 3: a planar dry fracture is embedded in an infinite, homogenous,
isotropic and linear elastic medium, subjected to a stress state denoted by σyy and σxy. The fracture is
characterized by frictional weakening properties, except in a small weak zone near its centre where the
friction coefficient is constant (fweak = 0.6). A time dependent mechanical force is applied to a given
fracture zone such that during the loading process a mixed mode fracture propagation is induced. After
tc = 1.5 (unloading), the mechanical force tends close back the fracture.

4.3 Fluid injection into aDiscrete Fracture Network: critically stressed
vs marginally pressurized case

Wellbore images at depth typicallyshow the presence of pre-existingfractures (Zoback 2010). Further
analysis shows that fracture lengths are typically spread out over several length scales (from microns to
hundreds of kilometers) and fracture length statistics can be modelled by power-law distribution Bonnet
et al. (2001).

In the context of deep geothermal energy, pre-existing fractures/faults at depth represent the only
pathway for fluid circulation between injection and extraction well. Generally, the stimulation of deep
fractured reservoirs can be achieved by injecting fluid at high pressure and thus creating new opening
mode fractures (hydraulic fracturing), or by re-activating the pre-existing fractures at depth via hydro-
shearing stimulation. In the latter case, fluid is injected at pressure below the minimum principal effective
stress at depth with the ultimately purpose of re-activating mode II cracks. A combination of shear-
induced dilatancy and linkage between different fractures is responsible for permeability enhancement,
allowing thus the circulating fluid to sweep a larger volume.

In this respect, our HM numerical solver is able to simulate hydro-shearing stimulation of a fractured
rock mass. In this section, we describe how we generate the pre-existing fracture networkat depth, the
governing dimensionless parameters and two demonstrative examples.

4.3.1 Discrete Fracture Network generation

Quantitatively, a DFN can be defined with the following mathematical expression (restricting to the 2-
dimensional case) (Davy et al. 2006)
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Figure 4.9: Time evolution of slip ds (top) and opening dn (bottom) along the fracture during loading and
unloading process. The vertical black lines delineate the application zone of the mechanical force.

N2d(L, l, θ, ϕ . . . )dldθ . . . ,

which represents the number of fractures contained in an area of typical size L, with length between l and
l+ dl, orientations in θ and dθ, positions in ϕ and dϕ, and a set of other properties (denoted by dots . . . ).
Several fracture distribution models have been introduced in literature (lognormal distribution, gamma
law, exponential, power law among others - see Bonnet et al. (2001), Lei et al. (2017) for well done
reviews), leading to a not unique choice of the expression for N2d. Each distribution model, however,
must contain scaling relations that enable to capture appropriately the multi-scale nature of the problem.
In this contribution, we adopt a distribution model that contains two scaling laws: the fractal density (given
by the fractal dimension D2d) and a power-law distribution for fracture length generation (exponent a)
with cut-off for minimum and maximum fracture lengths (denoted by lmin and lmax respectively). This
choice has been demonstrated in numerous studies at different scales and in different tectonic settings
(Hatton et al. 1994, Sornette et al. 1993, Anders & Wiltschko 1994, Kranz 1983, Walmann et al. 1996).

Assuming fracture lengths, positions (or density) and orientations independent entities, we can write
the fracture distribution model as

N2d(L, l, θ, ϕ) = α(θ, ϕ)LD2d l−a, for l ∈ [lmin, lmax]

where α(θ, ϕ) is the fracture density term, which depends on their orientations and positions. Note that
the only intrinsic characteristic length scales in this model are the smallest lmin and the largest lmax

fracture lengths. The exponents D2d and a quantify the scaling aspects of the DFN (Lei & Wang 2016,
Lei & Gao 2018): the former govern the fracture density, whereas the latter govern the length distribution.
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Figure 4.10: Time evolution of normal traction tn (left) and slip ds (right) at the fracture centre, i.e. at
x = 0.

According to extensive outcrop data,D2d typically varies between 1.5 and 2.0, whereas a ranges between
1.2 and 3.5 (Bonnet et al. 2001). In this preliminary investigation, we assume that fractures are uniformly
distributed within the region of interest L×L4 (with random locations and orientations). This assumption
implies that the fractal dimension D2d equals the Euclidean dimension, i.e. D2d = 2 (homogenous and
isotropic case).

By removing the system-size effect, the density distribution model reduces to

n2d(l, θ, ϕ) =
N2d(L, l, θ, ϕ)

LD2d
, for l ∈ [lmin, lmax]

which can be scaled by l1−a
minα

−1+a to obtain the probability density function (pdf)

f2d(l) =
−1 + a

l1−a
min

l−a, for l ∈ [lmin, lmax] (4.25)

This probability density function represents the scaling law for fracture lengths for a given DFN. Typ-
ically, this law must be spanned at least for two order of magnitudes.

In order to generate the set of pre-existing fractures, we use ADFNE, an open source library (written
in Matlab) for DFN generation (Alghalandis 2017), replacing the original exponential distribution for frac-
ture lengths with power law distribution of type 4.25. For a given set of DFN properties, initial and end
coordinates of each fracture are obtained. A pre-processing script written in Mathematica is then used to
mesh all the generated fractures, with the possibility of i) controlling the mesh element size per fracture,
ii) inserting automatically a mesh node at each fracture intersection and finally iii) set a minimum number
of elements per fracture.

4.3.2 Scaling & dimensionless governing parameters

The unknowns of the problem are i) distribution of tractions ti(x, t), ii) distribution of displacement dis-
continuities di(x, t) and iii) pore pressure evolution p(x, t) or equivalently the over-pressure evolution
∆p(x, t) = p(x, t)− po along the DFN.

Upon fluid injection into a DFN and activation of a shear crack, the shear stress within the slipping
patch must equal the frictional shear resistance (𝟋2(tn+1

s , t′,n+1
n ) = 0). If we consider a cohesionless

DFN with a constant friction coefficient, this constraint reads

ts(x, t) = f · t′n = f · (tn(x, t)− po −∆p(x, t)), |x| < a,

4Note that this assumption may not reflect most of the real cases, in which discrete set of joints of fracture with given orientations
are observed. However, it can be easily relaxed to account for more complex configurations.
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where a is half length of the slipping patch for a given fracture of the DFN. Under this conditions, the
quasi-static equilibrium equation related only to the shear degrees of freedom reads in the most general
case

tks,p − f∆p(x, t)− tks,o = −E
′

4π

∑
k

∫ ak(t)

−ak(t)

∂ds(s, t)

∂s

ds

x− s
, k = 1, ..., Nfracs,

where tks,p = f · t′,kn,o = f(tkn − po) is the (peak) shear strength of each pre-existing fracture k at ambient
condition (i.e. prior pressurization), f is the friction coefficient, tks,o is the ambient shear stress of each
fracture and E′ is the plane-strain elastic modulus. Note the subscript k refers to distinct fractures in
the DFN. Using tks,p and ds,w =

tks,p
E′ L to normalize the stress and the slip respectively, we rewrite the

condition of elastic equilibrium in the normalized form as

(
1−

tks,o
tks,p

)
− ∆p(x, t)

t′,kn,o
= − 1

2π(ak/L)

∑
k

∫ +1

−1

∂ds(akx+ xo,k, t)/ds,w
∂q

dq

z − q
, k = 1, ..., Nfracs

(4.26)
where ak = (ak+ − ak−)/2 and xo,k = (ak+ + ak−)/2. Note that the integral in equation 4.26 has been
mapped to the interval [−1, 1] via the transformation x = akz + xo,k and s = akq + xo,k.

In equation (4.26), we can identify the stress criticality ratio Λ =
tks,o
tks,p

, which denotes how far a given
fracture k, with a certain orientation with respect to far field stress, is from failure prior the fluid injection.
The dimensionless ratioT = (1− Λ) represents thus the understress of each fracture.

As far as the fluid flow is concerned, upon introduction of the following characteristic scales for spatial
coordinate, time and increment of pore pressure respectively

x =
L

2
X, t =

L2

4α
Θ (p− po) = t′,kinj

n,o Π, (4.27)

the normalized fluid mass conservation equation (4.1) (in absence of dilatancy term) reads

∂Π

∂Θ
− ∂2Π

∂X2
= 0 (4.28)

In equation (4.27), t′,kinj
n,o is the effective normal stress at ambient condition of the fracture in which

fluid is injected.
The normalized injection condition, instead, reads

Π =
∆P

t
′,kinj
n,o

(4.29)

From this scaling analysis, we can deduce that the equations (4.26), (4.28) and (4.29) govern the
solution for the normalized slip ds/ds,w, shear stress ts/ts,p, fluid over-pressure∆p/t′n,o and crack length
a/L for each fracture k of the DFN. These quantities are function of normalized coordinate 2x/L, stress
criticality Λ (or equivalently fracture understress T) and normalized maximum overpressure ∆P/t

′,kinj
n,o

at the fracture in which fluid is injected.

Since we are dealing with a discrete set of pre-existing fracture, each of them characterized univocally
by a given orientation θ with respect to far field stress, the stress criticality Λ is not an unique parameter
for the DFN. Actually, it can be expressed as a function of fracture orientation θ as well as effective
stress anisotropy parameter κ = σ′

xx/σ
′
yy(being σ′

xxand σ′
yythe far field effective principle stresses). By

expressing the effective tractions at ambient condition as

t′n,o = n2xσ
′
xx + (nxny + nynx)σ

′
xy + n2yσ

′
yy, t′s,o = sxnxσ

′
xx + (sxny + synx)σ

′
xy + synyσ

′
yy,

where n = (nx, ny) and s = (sx, sy) are the orthonormal vectors of each mesh element, the stress
criticality Λ reduces to
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Figure 4.11: Stress criticality evolution as a function of fracture orientation θ and increasing values of
effective stress anisotropy ratio κ, for a fixed value of friction coefficient f = 0.6 (or critical internal
friction angle ϕc ≃ 0.54 radiants). The grey vertical line corresponds to the critical fracture orientation
θc = π/4 + ϕc

2 .

Λ =
(κ− 1)

f

Cot(θ)
(κCot(θ)2 + 1)

In Figure 4.11, we can see the evolution of stress criticality Λ in function of fracture orientation θ
(expressed in radiants) and increasing effective stress anisotropy κ (denoted by the arrow), for a given
value of friction coefficient f (specifically f = 0.6).

As expected, for the limiting value of κ = 1 all the fractures in the DFN are far from being critically
stressed, i.e. their criticality is null regardless they orientation with respect to the far field stress. Inter-
estingly, for increasing value of κ, the critical fracture orientation θc(value at which the stress criticality is
maximum) migrates from θ = π/4 to θ = π/4 + ϕ

2 (see grey vertical line), ϕ is the internal friction angle
whose value is given by

ϕ = arctan(f)

Although it is well known in geotechnical engineering that the critical orientation for a Mohr-Coulomb
type of soil is θc = π/4+ ϕ

2 (Knappett & Craig 2012, Lancellotta 2012), when dealing with stress criticality
of a DFN the picture slightly change. This is strictly related to its definition, which is the ratio of shear
stress and peak shear strength of each fracture. The migration of critical fracture orientation (which
is somehow related to the skewness of each curve in Figure 4.11) is thus governed by the following
dimensionless parameter

Υ =
(k − 1)

f
=

(σ′
xx − σ′

yy)

fσ′
yy

,

which quantifies the level of effective stress anisotropy with respect to the frictional strength of the DFN.
The higher is Υ, the more we expect that the critically stressed fractures are oriented at θ = π/4 + ϕ

2 .
In the next two sections, we report two illustrative examples of fluid injection into a DFN, in which the

pre-existing fractures are characterized by a way larger permeability compared to the one of the host
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Figure 4.12: Stress criticality Λ of each fracture composing the DFN (left). On the right, all the uniform
tractions distribution of each fracture are reported in the Mohr-Coulomb plane. Because of the relative
low value of effective stress anisotropy ratio κ = σ′

xx/σ
′
yy = 2, the Mohr circle is not closed to the yielding

surface (red lines), leading thus to a marginally pressurized type of DFN. The light red area of the plot on
the right corresponds to the (inadmissible) zone in which a mode II type of failure is reached, whereas
the light grey zone corresponds to the mode I failure zone. The dashed blue lines correspond to the
function h(ts,, t′n) defined in equation X.

elastic medium. For a given value of friction coefficient f (here supposed to be constant during DFN
pressurization) and a given value of normalized injection over-pressure∆P/t

′,kinj
n,o = 0.5, we vary κ such

that the pre-existing fractures at ambient conditions are either critically stressed (large κ) or marginally
pressurized (relatively low κ), depending on their orientations with respect to far field stress.

4.3.3 Fluid injection into a marginally pressurized DFN
We consider a DFN composed of 251 fractures whose positions and orientations are uniformly distributed
within the elementary area of characteristic size L = 2 (see Figure 4.12). The lengths of the fractures
have been obtained through the power law distribution introduced in section 4.3.1, with the following
input data

a = 1.2, D2d = 2, lmin = 0.1, lmax = 10

The DFN is subjected to a compressive far field stress (see Figure 4.12-right), whose components
are

σ
∼
=

[
σ′
xx σ′

xy

σ′
yx σ′

yy

]
=

[
1 0
0 0.5

]
, (4.30)

such that the effective stress anisotropy ratio is κ = 2. We suppose that the friction coefficient re-
mains constant during the shear crack propagation (f = 0.6), which implies that slipping patch along
the DFN propagates always a-seismically, regardless the local stress criticality of each fracture. Fluid is
injected in the middle of the elementary area, i.e. at (xinj , yinj) = (1, 1) - see Figure 4.12-left, control-
ling the pressure such that it remains always lower than the minimum principal effective normal stress
(∆P/t′,kinj

n,o = 0.5).
Upon discretization of all the fractures with 11376 straight finite elements, we solve this problem with

our one-way coupled HM solver. Due the large number of elements in the computational mesh (which
implies 91008 degrees of freedom), a hierarchical elasticity matrixis used with the following parameters
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ηH = 5, ϵACA = 10−6, Nleaf = 1000,

obtaining a compression ratio of (the ratio of the storage of the resulting hierarchical matrix compared to
the fully populated original matrix)

T (EH) = 0.253

Thanks to this compression, all the simulations reported in the following have been obtained with a
laptop whose specific characteristics are

Processor: 2.9 GHz Intel Core i5, Memory: 8GB 1867 MHz DDR3

In Figure 4.12, we can observe the stress criticality Λ of each fracture as well as the position of the
local (uniform) effective stress state at ambient condition (i.e. prior pressurization) of each fracture in
the Mohr-Coulomb plane. By only looking at the Mohr circle in Figure 4.12-right, one can have an idea
of the ’global’ stress criticality of the DFN. Due to a moderate value of stress anisotropy ratio κ, all the
fractures are marginally pressurized, even those whose orientations are close to the critical orientation
of θc = π/4 + ϕ/2.

Since the fracture orientations are uniformly distributed within the area L×L, the position of the stress
state of each fracture along the Mohr circle span all angles.

At time t = 0, all the fractures are in equilibrium with the compressive stress state 4.30. Fluid is
then injected under constant pressure at time t > 0 in order to activate a shear crack. Due to the pore
pressure evolution within the pre-existing fractures, the shear crack propagates along them. The ending
time of the simulation corresponds to the time at which the over-pressure front reaches the boundary of
the elementary area.

In Figure 4.13, we include time snapshots of pore pressure evolution within the DFN. Since these
time snapshots are expressed in terms of

√
4αt, their values give an approximate idea of where the fluid

over-pressure front is located within the region L × L (obviously we do not know exactly its position as
it strictly depends on the percolation property of the DFN). In Figure 4.14, we report the corresponding
snapshots slipping patch, denoted by the red color. As expected, the slipping patch lays always within
the pressurized region as a result of relatively low stress criticality of each fracture. Notably, when the
fluid front reaches the boundary of domain, the slipping patch remains small and is locatedclose to the
injection point. It is interesting to note that the upper evolution of the slipping patch is stopped by a
fracture with very low stress criticality (nearly horizontal fracture - see Figure 4.14). On the other hand,
the lower evolution of the slipping patch is followed by a branching out into another fracture with relatively
large stress criticality.

4.3.4 Fluid injection into a critically stressed DFN
We show here the numerical results of fluid injection into a critically stressed DFN. The computational
mesh as well as the input parameters are exactly the same as the ones of the previous case. However,
the DFN in this case is subjected to a compressive stress state which reads

σ
∼
=

[
σ′
xx σ′

xy

σ′
yx σ′

yy

]
=

[
1.541 0
0 0.5

]
,

leading to an effective stress anisotropy ratio of κ = 3.082. As one can notice from Figure 4.15, all
the fractures whose orientation with respect to the compressive stress state tends to the critical value
θc = π/4 + ϕ/2 are critically stressed, else they are marginally pressurized, i.e. their initial effective
stress state is far from Mohr-Coulomb yielding surface. The injection point is the same as the one of the
previous example (see Figure 4.15-left). As a large number of fracture are critically stressed, we thus
expect that a small pore pressure perturbation will lead to a fast growth of the slipping patch (way faster
than fluid diffusion front).

As one can see from the comparison of Figures 4.16 and 4.17, right after fluid injection, the slipping
patch evolves rapidly, much faster than fluid diffusion front. As the slipping patch propagates, the stress
state changes within the elementary area, activating remotely other fractures. At

√
4αt ≃ 0.37, the pres-

surized zone is still confined near theinjection point, while the slipping patch is way ahead. The slipping
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patch evolution is driven by stress interaction between fractures. It is worth noting that all the fractures
activated are characterized by a high stress criticality Λ. The relative position between theslipping patch
and thefluid front position is, therefore, reversed with respect to the case of a marginally pressurized
DFN.
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Figure 4.13: Time snapshots of over-pressure evolution in a marginally pressurized DFN (κ = 2).
Fluid is injected into one fracture kinj of the DFN, controlling the pressure at injection point (located
at (xinj , yinj) = (1, 1)). Notably, fluid is injected at moderate over-pressure ∆P/t

′,kinj
n,o = 0.5 and it is

always lower than the minimum principal effective normal stress. The friction coefficient f is constant
and equal to 0.6, as well as the hydraulic conductivity α of all the fractures, i.e. we neglect shear-induced
dilatancy or fracture increase of permeability during crack propagation.
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Figure 4.14: Time snapshots of slipping patch evolution (red lines) in a marginally pressurized DFN
(κ = 2). These snapshots correspond to the same of Figure 4.13 for a better comprehension of the
relative position between fluid front and slipping patch front.112/169



Figure 4.15: Stress criticality Λ of each fracture composing the DFN (left). On the right, all the uniform
tractions distribution of each fracture are reported in the Mohr-Coulomb plane. Because of the relative
large value of effective stress anisotropy ratio κ = σ′

xx/σ
′
yy = 3.082, the Mohr circle is very closed to

the yielding surface (red lines), leading thus to a critically stressed type of DFN. The light red area of
the plot on the right corresponds to the (inadmissible) zone in which a mode II type of failure is reached,
whereas the light grey zone corresponds to the mode I failure zone. The dashed blue lines correspond
to the function h(ts,, t′n) defined in equation X.

113/169



Figure 4.16: Time snapshots of over-pressure evolution in a critically stressed DFN (κ = 3). Fluid
is injected into one fracture kinj of the DFN, controlling the pressure at injection point (located at
(xinj , yinj) = (1, 1)). Notably, fluid is injected at moderate over-pressure ∆P/t

′,kinj
n,o = 0.5 and it is

always lower than the minimum principal effective normal stress. The friction coefficient f is constant
and equal to 0.6, as well as the hydraulic conductivity α of all the fractures, i.e. we neglect shear-induced
dilatancy or fracture increase of permeability during crack propagation.
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Figure 4.17: Time snapshots of slipping patch evolution (red lines) in a critically stressed DFN (κ =
3). These snapshots correspond to the same of Figure 4.16 for a better comprehension of the relative
position between fluid front and slipping patch front.
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Chapter 5

Fully coupled hydro-mechanical
solver for planar fault -
Effect of dilatancy on the nucleation of
dynamic rupture induced by fluid
injection
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This chapter studies the effect of dilatancy on shear crack propagation along a planar pressurized
fault. A pre-existing planar fault is embedded in an infinite, homogeneous, isotropic and linear elastic
medium and it is subjected to hydro-shearing stimulation. Fluid is directly injected into the fault at a
pressure below the local minimum principal effective normal stress at ambient condition with the specific
purpose of activating a shear crack. Aseismic crack growth may or may not lead to the nucleation
of a dynamic rupture depending on in-situ conditions, frictional properties of the fault and the value of
overpressure. In particular, a fault is coined as unstable if its residual frictional strength τr is lower than
the in-situ background shear stress τo. We study here how fault dilatancy associated with slip affect shear
crack propagation due to fluid injection. We use a planar bi-dimensional model with frictional weakening
and assume that fluid flow only takes place along the fault (impermeable rock / immature fault). Dilatancy
induces an undrained pore-pressure drop during crack acceleration, locally strengthening the fault. We
introduce an undrained residual fault shear strength τur (function of dilatancy) and show theoretically that
under the assumption of small scale yielding, an otherwise unstable fault (τr < τo) is stabilized when
τur is larger than τo. We numerically solve the complete coupled hydro-mechanical problem and confirm
this theoretical estimate. It is important to note that the undrained residual strength is fully activated
only if residual friction is reached. Dilatancy stabilizes an otherwise unstable fault if the nucleation of
an unabated dynamic rupture -without dilatancy- is affected by residual friction, which is the case for
sufficiently large injection pressure. We also discuss the effect of fault permeability increase due to slip.
Our numerical results show that permeability increases lead to faster aseismic growth but do not impact
the stabilizing effect of dilatancy with respect to dynamic rupture.

This chapter is a modified version of a scientific article published in the Journal of Geophysical Re-
search: Solid Earth:
Ciardo, F., & Lecampion, B. (2019). Effect of dilatancy on the transition from aseismic to seismic
slip due to fluid injection in a fault. Journal of Geophysical Research: Solid Earth, 124, 3724-3743.
https://doi.org/10.1029/2018JB016636

5.1 Introduction
Seismic and aseismic ruptures associated with anthropogenic fluid injection at depth have been observed
in variety of settings (Healy et al. 1968, Hamilton & Meehan 1971, Scotti & Cornet 1994, Cornet et al.
1997, Shapiro et al. 2006, Ellsworth 2013, Skoumal et al. 2015, Bao & Eaton 2016) to cite a few. Indus-
trial applications involved range from waste water disposal to the stimulation of enhanced geothermal
systems and hydraulic fracturing.

Injection of fluid into the sub-surface alters the local stress state. Pre-existing fractures/faults or
intact rock mass can fail due to the local reduction of effective stresses associated with pore pressure
increase. Shear fractures can thus be activated and propagate along favourably oriented planes of
weaknesses/faults. In some cases, the aseismic slip may lead to the nucleation of a dynamic rupture
(seismic event). A necessary ingredient for such a transition from aseismic to seismic slip is the reduction
of fault frictional strength with slip, i.e. when the frictional resistance decreases faster than the elastic
unloading associated with slip (Cornet 2015a).

The transition from the activation of aseismic slip to the nucleation of a seismic event due to fluid
injection has been discussed theoretically (Garagash & Germanovich 2012) and observed in-situ (Scotti
& Cornet 1994, Cornet et al. 1997, Guglielmini et al. 2015, Wei et al. 2015, Cornet 2016). We investigate
here the effect of fault/fracture dilatancy associated with slip on the transition from aseismic crack prop-
agation to seismic slip in the context of fluid injection. The physical mechanism of dilatancy associated
with sliding over fault’s asperities leads to a pore pressure drop under undrained conditions and thus to
a fault strengthening denoted as dilatant hardening (Segall & Rice 1995, Segall et al. 2010, Rudnicki &
Chen 1988). Strong dilatant behavior has been observed during aseismic crack propagation in scaled
laboratory experiments by Lockner & Byerlee (1994), Samuelson et al. (2009) and inferred during field
experiment of the stimulation of geothermal reservoir (Batchelor & Stubs 1985) suggesting that dilatancy
possibly plays an important role on shear fracture propagation in some cases.
Although the concept of dilatant hardening associated with undrained conditions has been studied on
saturated rock masses (Rice 1975) as well as on frictional weakening faults loaded by tectonic strain
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Figure 5.1: Model of frictional weakening dilatant fault & loading conditions. Zoom represents schemat-
ically the dilatant process that occur during shear fracture propagation.

(Rudnicki, J. W. 1979, Segall & Rice 1995, Shibazaki 2005, Segall et al. 2010), the quantification of its
effect on the transition from aseismic to seismic slip propagation in association with fluid injection remains
elusive.

The interplay between fluid injection, in-situ conditions, frictional properties and evolution of the hy-
draulic properties of fault present a highly coupled problem leading to a wide range of possible behaviour
even under ’simple’ homogeneous in-situ conditions (Garagash & Germanovich 2012, Viesca & Rice
2012, Zhang et al. 2005). In this paper, we extend previous work to account for fault dilatancy and quan-
tify its impact on the propagation of a shear crack induced by a constant pressure injection. For simplicity,
we reduce to a 2D configuration and model the fault / joint as a planar thin strip where both shear slip
and fluid flow are localized. We adopt a simple linear weakening slip-dependent friction law Ida (1972)
combined with a non-associated flow rule to account for dilatancy, assume isothermal conditions and
neglect poroealastic stress changes in the surrounding rock. We pay particular attention to the verifica-
tion of our numerical solver and discuss the different type of crack propagation (aseismic/seismic) as a
function of in-situ and injection conditions. We also put in perspective our results at the light of theoretical
arguments under the small-scale yielding approximation (Rice 1968, Palmer & Rice 1973).

5.2 Problem formulation

We consider an infinite planar fault in an infinite homogeneous isotropic elastic medium (see Figure 5.1)
under plane-strain conditions. We also assume that the host rock has a much lower permeability than
the fault. As a result, the fluid flow only occurs along the fault plane from a source injection located
at the middle of the fault in the 2D space - more precisely a line-source in the out-of-plane direction to
satisfy plane-strain conditions. Furthermore, we assume a uniform initial in-situ stress and pore pressure
field prior to the start of the injection. Such a homogeneous model is obviously only valid for small fault
slippage length compared to the background in-situ gradient but it allows to isolate and understand the
different type of responses in a clearer way. Although different type of injection conditions, either away
or directly on the fault, can be investigated, we restrict here to the case of a constant pressure injection
from a point source directly in the fault.
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5.2.1 Equilibrium, activation and dilatancy of slip-weakening fault
We consider the occurrence of a mode II shear crack of length 2a on the fault plane due to a constant
pressure fluid injection. Initially, we assume the fault to be in static equilibrium with the uniform in-situ
stress state. Upon activation of slip due to the increase of fluid pressure along the fault, the bi-dimensional
quasi-static elastic equilibrium can be written as the following integral equations relating fault tractions
and displacement discontinuities in the local normal and tangential frame along the fault plane (using the
convention of summation on repeated indices):

ti(x, t) = toi (x) +

∫ a

−a

Kij(ξ, x)dj(ξ, t)dξ, for i, j = n, s (5.1)

where ti = σijnj is the current traction vector acting along the fault, toi its value under the initial in-situ
stress and dj denotes the vector of displacement discontinuities on the fault:

dj = u+j − u−j (5.2)

The quasi-static fundamental elastic displacement-discontinuity tensor Kij is known in closed-form for
a bi-dimensional infinite medium (see e.g. Gebbia (1891), Crouch & Starfield (1983), Hills et al. (1996)).
It is worthwhile to recall that for a planar crack, the shear and normal boundary integration uncouples
as Ksn = Kns = 0. As a result, shear slip does not induce any changes in the normal stress along
the planar fault. However, if shear slip induces plastic dilatancy, the corresponding normal displacement
discontinuity associated with dilatancy modify the normal stress along the fault. We note that the use of a
quasi-static approach will obviously overshoot any finite dynamic rupture. Although a quasi-dynamic ap-
proximation (Rice 1993) would provide more realistic results without the expense of a complete dynamic
simulation, we restrict our-self mostly to the nucleation of a dynamic rupture for which a quasi-static
approximation is granted.

We adopt the convention of normal stresses positive in compression. The normal and shear com-
ponents of the traction vector on the fault plane ti = (tn, ts) (in the local s − n reference system on
Figure 5.1) will be noted as σ = −tn = −(niσijnj) and τ = siσijnj for the normal and shear component
respectively. We will also write the normal displacement discontinuities as dn = w (positive for opening)
and the shear displacement discontinuities (slip) as ds = δ (positive in a clockwise rotation).

5.2.1.1 Activation and plasticity

We assume that the fault obeys a Mohr-Coulomb yield criterion without cohesion, accounting for a slip
weakening of friction. The yield criterion is:

𝟋(τ, σ′) = |τ | − f(δ)σ′ ≤ 0, (5.3)

where f(δ) = tan (ϕ (δ)) is the friction coefficient (ϕ the corresponding friction angle), which is supposed
to weaken linearly with slip δ, from a peak value fp to a residual value fr for slip larger than δr (see Figure
5.2-bottom-left). σ′ = σ− p(x, t) > 0 is the local effective normal stress acting on the fault plane. We will
write the initial in-situ conditions (prior to fluid injection) as σ′

o = σo − po and τo for the ambient effective
normal stress and shear stress respectively.

The fault is activated when the injection overpressure is sufficient to reach the Mohr-Coulomb criterion
at peak initial friction (see Figure 5.2-top), and shear slip starts to occur on the fault. We model the
fault as rigid plastic and account for a possible dilatant behavior. Using a non-associative flow rule, the
rate of displacement discontinuities (denoted with a dot) derive from a plastic potential function of the
corresponding effective tractions when the yield criterion is satisfied (i.e. 𝟋 = 0):

ḋi = λ
∂G

∂t′i
(5.4)

The (scalar) plastic multiplier λ is either greater than zero as long as the local stress state satisfies the
Mohr-Coulomb yield criterion 5.3, or equals to zero for non-yielded stress state (for which 𝟋(τ, σ′) < 0
and the fault is not activated). Plastic slip takes place along the yielding surface (see plastic strain vector
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Figure 5.2: The Mohr-Coulomb plot (top) illustrates the evolution of the yielding surface 𝟋 (τ, σ′) with
weakening of friction coefficient as well as the evolution of plastic displacement discontinuity vector ḋj
with slip after shear fracture activation due to fluid over-pressure ∆P . The linear evolution of friction
coefficient f = tan(ϕ) (left) and dilatancy angle tan(ψ) (right) with slip δ are displayed in the bottom plots.

in Figure 5.2-top). This can be summarized by the following set of conditions (Lubliner, J. 2005, Maier
et al. 1993):

λ ≥ 0, 𝟋 (τ, σ′) ≤ 0, λ𝟋 (τ, σ′) = 0 (5.5)
In order for plastic flow to occur, the tractions on the fault must persist on the yield surface 𝟋 = 0, while
upon unloading plastic flow stops as soon as 𝟋 < 0. This requirement is often denoted as a consistency
condition and written as

λ𝟋̇ (τ, σ′) = 0, (if 𝟋 (τ, σ′) = 0) (5.6)
It allows to obtain the plastic multiplier λ (see e.g. (Lubliner, J. 2005, Simo & Hughes 1997) for more
details).

We use a non-associated Mohr-Coulomb criterion with a dilatancy angle ψ decreasing with accumu-
lated slip δ. We write the plastic potential as

G (τ, σ′
n) = |τ | − tan (ψ (δ))σ′ (5.7)

As a result, the rate of slip and opening displacement discontinuity are related to each other as:

ḋs = δ̇ = λsign(τ) (5.8)
ḋn = ẇ = λ tan (ψ(δ)) (5.9)

We assume that the dilatancy coefficient (tangent of the dilatancy angle ψ) decreases linearly with slip
from an initial peak value tanψp to zero: the fault is assumed to reach a critical state (where the dilatancy
angle is zero) over the same slipping distance δr at which it reaches residual friction (see Figure 5.2-
bottom-right). Such a choice is consistent with experimental observations that a critical state (where
no change of volume occur) is reached after sufficient plastic deformation for most rocks and granular
material. Integration of 5.8-5.9 provides the following quadratic evolution of fracture width due to the
dilatancy induced by slip:

w (δ) =

∫ δ

0

tan (ψ (δ′))dδ′ =

2∆w

(
δ

δr

)
−∆w

(
δ

δr

)2

δ < δr

∆w δ > δr

(5.10)
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where ∆w denotes here the maximal / final dilatant opening at residual friction:

∆w =

∫ δr

0

tan (ψ (δ′))dδ′ = tan (ψp)
δr
2

(5.11)

A similar law for the dilatancy evolution with frictional slip has been proposed by Rudnicki & Chen (1988)
to model uplift in sliding over asperities of a long homogeneous slab subjected to shear and normal
mechanical loadings. Initially, the fault is supposed to have a constant uniform ’hydraulic aperture’ ωo

which can be considered as the fault gouge thickness in such a model. The ratio between the maximal

dilatant increment of fracture width∆w and this initial aperture ωo defines a dilatant strain ϵd =
∆w

ωo
which

can be related to the maximum change of fault porosity due to slip. Such a quantity will directly appear
in the hydro-mechanical coupling.

Dilatancy is known to be function of effective normal stress - with lower dilatancy angle typically
measured under larger confinement (Matsuki et al. 2010, Barton et al. 1985). Measured value of the
peak dilatancy angle (at small slip) ranges from ∼ 40◦ at 5 MPa of confinement to ∼ 6◦ at 30 MPa
for Inada granite (Matsuki et al. 2010), leading to values of ϵd in a range of 10−3 − 10−2. Laboratory
experiments on quartz fault gouge (Samuelson et al. 2009) provides value of ϵd in the range 10−4−10−3

at effective confinement up to 20 MPa, values which appears of similar order than the one measured at
larger confinement (Marone et al. 1990).

In what follows, for sake of simplicity, we do not explicitly account for the complete details of the
dependence of dilatancy with normal effective stresses. The peak dilatancy angle can be implicitly taken
to be a function of the level of in-situ confinement prior to injection. Moreover, we acknowledge that a
relatively large range of possible value of the dilatant strain ϵd may exist from 10−4 to 10−2.

5.2.1.2 Slip weakening and nucleation length-scale

Following Uenishi & Rice (2003), Garagash & Germanovich (2012), we introduce a characteristic nucle-
ation patch length-scale aw

aw =
E′

2τp
δw (5.12)

to scale the crack length. This characteristic nucleation length-scale is obtained by normalizing the slip

δ and shear stress τ in the elasticity equation 5.1 by δw =
fp

fp − fr
δr and τp = fpσ

′
o, respectively. δw de-

notes the amount of slip at which the friction coefficient goes to zero if an unlimited linear slip-weakening
friction law is considered (see Figure 5.2-bottom-left). Typically δw is of the order the fault’s asperities
and thus ranges between 0.1 mm to 10 mm. τp = fpσ

′
o defines the peak frictional strength at ambient

conditions, its difference from the ambient shear stress τo quantify the fault stress criticality. Such a peak
fault shear strength can vary widely with depth, fault orientation as well as hydrogeological conditions
(normally pressurized versus over-pressured formations) and thus can range between a fraction to hun-
dred of MegaPascals. We thus deduce that the range of characteristic patch length-scale aw (e.g. for
a crystalline rock with E′ ∼ 60 GPa) can approximately ranges between tens of centimeters to tens of
meters depending on geological conditions.

5.2.2 Fluid flow
Under the assumption of much smaller rock permeability compared to the longitudinal fault permeability,
the fluid flow is confined within the fault zone. This case corresponds to an immature fault with little
accumulated slip for which the extent of the damage zones around the fault core remains limited. For
active and mature fault, the permeability structure around the fault can not be neglected. Much larger
permeabilities have indeed been measured in the damage zone (that can have decameters thickness) of
active mature fault compared to the fault gouge unit (Lockner et al. 1999). Here, we restrict to the case
of an immature / young fault for which the flow is confined in the gouge. Such a hypothesis could also
be valid for inactive mature fault that would have exhibited a plugging of their damage zone permeability
(e.g. via long term thermo-hydro-chemical effects).
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The mass balance equation width-averaged across the fault hydraulic aperture wh of the gouge layer
thus reduces to:

∂ρwh

∂t
+
∂ρwhV

∂x
= 0, (5.13)

where ρ is the fluid density and V is the averaged fluid velocity. The fault hydraulic aperture wh =
ωo+w(δ) is the sum of its initial value ωo and the additional dilatant aperture function of slip (see eq. 5.10).

By combining fluid compressibility (taken as liquid water) and pore compressibility of the fault gouge
in an unique parameter β

[
M−1TL2

]
, the width averaged fluid mass conservation 5.13 along the fault

(x-axis) reduces to

whβ
∂p

∂t
+ tan(ψ(δ))

∂δ

∂t
+
∂q

∂x
= 0, (5.14)

where q = whV is the uni-dimensional local fluid flux given by Darcy’s law:

q = −whkf (δ)

µ

∂p

∂x
, (5.15)

with µ the fluid viscosity
[
ML−1T−1

]
and kf (δ) the fault intrinsic permeability

[
L2
]
. The hydraulic diffu-

sivity of the fault α
[
L2/T

]
is defined as:

α =
kf
µβ

(5.16)

In particular, the location of the fluid / pressure front evolves as
√
4αt for such type of diffusion problem

(Carslaw & Jaeger 1959).
In conjunction with the increase of the fault aperture with dilatant slip 5.10, the longitudinal fault per-

meability may also evolve with shear slip. A number of different models have been proposed in the
literature for the evolution of permeability with slip, from using the cubic law for the fault transmissivity
(product of permeability kf = w2

h/12 and hydraulic aperture wh), to an exponential dependence of per-
meability with normal stress, or Cozeny-Karman type relations. Here, we first make the assumption of a
constant fault permeability kf = ω2

o/12 before relaxing such an approximation in section 5.6 in order to
properly gauge its effect.

It is important to note that even in the absence of permeability evolution, the changes of hydraulic
aperture induced by dilatancy still impact the fluid flow in a non-trivial and non-linear way. This is no-

tably due to the sink term tan(ψ(δ))
∂δ

∂t
associated with slip induced dilatancy. Fluid flow can not be

uncoupled from mechanical equilibrium and fault slip, contrary to the case of zero dilatancy (Garagash &
Germanovich 2012), where for a constant pressure injection ∆P , the pore pressure on the fault plane is

simply given by p(x, t) = po+∆PErfc
∣∣∣∣ x√

4αt

∣∣∣∣. No simple analytical solution does exist for this complete
non-linear hydro-mechanical coupling.

The effect of slip induced dilatancy leads to a pore-pressure drop under undrained conditions (denoted
here as ∆pu). At large slip rate, the change of hydraulic width from its initial value up to its maximum
value ωo + ∆w 5.11 will be sudden. In such an undrained limit the fluid has no time to flow and the
associated pore pressure change can be directly obtained from mass conservation 5.14:

∆pu = −∆w

ωoβ
= −ϵd

β
(5.17)

This undrained pore-pressure drop will be localized at the crack tips, where frictional slip weakening
occurs. From the previously discussed range of the dilatant strain ϵd ∈ [10−4−10−2], for a compressibility
coefficient β between the one of liquid water and usual pore compressibility (β ∈ [5 − 100] 10−10Pa−1),
we obtain a range of values [0.01 − 20] MPa for such an undrained pore-pressure drop. The previous
estimate corresponds to the maximum possible amount of undrained pore-pressure drop (sudden slip
from zero to δr). A re-strengthening of the fault is thus expected as the effective normal stress increase
locally as a result of this undrained pore-pressure drop. Similar dilatant hardening is typically observed
in fluid-saturated porous medium subject to undrained loading (Rice 1975, Rudnicki, J. W. 1979). It is
important to underline that such re-strengthening effect is less pronounced for “mature” faults, for which
pore fluid diffusion normal to fault plane (across the permeable units of damaged zone) may prevail
against fluid diffusion along the fault gouge unit.
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5.2.3 Initial and injection conditions

Initially, the (peak) fault strength τp = fpσ
′
o at ambient condition is everywhere larger than the in-situ

shear traction on the fault τo. In other words, the fault is initially stable (i.e. 𝟋(τo, σ
′
o) < 0) and locked

before the start of fluid injection. We consider here the case of a constant over-pressure ∆P at the
injection point:

p(x = 0, t) = po +∆P, (5.18)

We assume that the choice of the injection over-pressure∆P is such that the minimum principal effective
stress σ′

n always remain compressive (positive) such that no hydraulic fracture type failure occurs: i.e.
∆P < σ′

o. A constraint often enforced in practice for large scale injection but also sometimes during
hydraulic stimulation of geothermal reservoirs. We investigate here the activation of a shear crack that
would occur if the overpressure ∆P at the injection point is sufficient to lower the effective normal stress
and reach Mohr-Coulomb failure. Such a minimum over-pressure ∆P for activation is directly related to
the fault criticality:

∆P

σ′
o

≥ 1− τo
τp

(5.19)

The ratio τo/τp represents the stress criticality of the fault at ambient condition (quantifying how far the
fault is from failure). For a critically stressed fault (τo/τp ∼ 1), slip is activated for small over-pressure.
On the other hand, a fault whose initial uniform stress state is much lower than its peak frictional strength
(τo/τp ≪ 1) requires a larger over-pressure to activate a shear crack, and is sometimes referred to as a
marginally pressurized fault.

5.3 Activation and transition between aseismic and seismic slip

5.3.1 Case of a non-dilatant fault

We first briefly recall the results obtained for the case of a non-dilatant fault by Garagash & Germanovich
(2012) using the the same linear frictional weakening model. This summary is required in order to prop-
erly put in perspective the effect of a dilatant fault behavior.

After activation of aseismic slip, there exist two ultimate fault stability behaviors depending on the
relative value of the residual strength (defined at ambient condition) τr = frσ

′
o compared to the in-situ

background shear stress τo. Notably, if the residual frictional strength τr exceeds the ambient shear
stress τo, the fault is ultimately stable. On the other hand, for a residual frictional strength τr lower than
τo, the fault is unstable. Figure 5.3 summarizes the different behaviors, as a function of the dimensionless
fluid over-pressure ∆P/σ′

o, stress criticality τo/τp and relative value of τr with respect to the initial shear
stress τo. Region 1 on Figure 5.3 corresponds to the trivial case of an injection without activation of any
slip.

For an ultimately stable fault (for which the residual strength τr is larger than the ambient shear stress
τo), it can be shown that for an over-pressure sufficient to activate slip, at large time / large crack length
the shear crack grows quasi-statically (aseismically) as long as the fluid injection continues (regions 2
and 3 on Figure 5.3). However, because of the weakening of its frictional properties, an ultimately stable
fault may host an episode of seismic slip followed by an arrest (region 2 on Figure 5.3). Such a ’seismic
event’ depends on both the stress-criticality and the amount of over-pressure. For a moderate over-
pressure (sufficient to activate slip), the shear-crack first lags behind the fluid diffusion front and, due to
the interplay between fluid pressurization and frictional weakening, a dynamic event nucleate and grows
until it catches up the fluid pressure diffusion front ahead of which the over-pressure is minimal. The
subsequent propagation is then a-seismic and tracks the fluid front as long as injection continues. In
other words, depending on the value of fluid over-pressure applied in the middle of the fault, the local
accumulation of slip during the (aseismic) crack propagation varies. If the fluid over-pressure induces a
large local slip accumulation during the aseismic propagation (such that it exceeds the residual slip δr),
the fault never exhibits a dynamic event (strictly aseismic propagation - region 3), otherwise a nucleation
of a dynamic rupture episode occurs (region 2 in Figure 5.3) .
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Figure 5.3: Phase diagram of (Garagash & Germanovich 2012) that describes the different regimes of
propagation for a non-dilatant fault, as a function of the dimensionless fluid over-pressure ∆P/σ′

o and
stress criticality τo/τp. Region 1 corresponds to the trivial case of an injection without fault re-activation.
Regions 4a, b, c corresponds to the unstable fault case for which an unabated dynamic rupture occurs as
the residual shear strength (defined at ambient conditions) is lower than the in-situ shear stress (τr < τo).
Regions 2 and 3 corresponds to the case of ultimately stable faults (τr > τo) for which most of the crack
growth is aseismic although transient seismic slip may occur (region 2).

The situation is different for unstable fault (τr < τo) - regions 4a, b, c on Figure 5.3. It can be proved
that an unabated dynamic rupture will always occur when τr < τo. The nucleation length (and time of
nucleation) depends again on stress criticality, the value of over-pressure and in some cases (region 4c)
on the value of the residual friction fr. For criticality stress fault (region 4a - τo/τp ∼ 1), the nucleation
patch size ac is independent of the overpressure ac = 0.579 aw (Garagash & Germanovich 2012). In
these cases, even a small over-pressure is sufficient to nucleate a dynamic rupture and the fluid front
lies well within the crack when the unabated instability occurs. For unstable but marginally pressurized
fault (moderate stress criticality), subjected to a moderate value of over-pressure, a transient seismic
event may occur and then arrest when the crack front catches up with the fluid front. However, here
(region 4b in Figure 5.3) a re-nucleation always occurs (affected by residual friction) leading then to an
unabated dynamic rupture. For larger of over-pressure, a single nucleation of an unabated dynamic
rupture occur (region 4c).

5.3.2 Effect of dilatancy

5.3.2.1 Undrained fault response

At high slip rate, the undrained response associated with dilatancy causes a pore-pressure drop 5.17.
Scaling the fluid pressure by effective normal in-situ stress, we express the undrained response via the
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following dimensionless undrained pressure change

∆pu
σ′
o

= − ϵd
βσ′

o

(5.20)

The dimensionless ratio
ϵd
βσ′

o

quantifies the effect of dilatancy in terms of pore pressure drop under

undrained conditions with respect to the initial confining stress. For a realistic range of effective in-
situ normal stress of [1-200] MPa, whose extremes may represent the case of normally pressurized and
over-pressurized fault located approximately between 0.1 and 5 Km below the Earth’s surface, and for the
previously reported range for undrained pore-pressure drop ϵd/β, the dimensionless dilatancy parameter
ϵd
βσ′

o

ranges between 0.01 (deeper conditions/low dilatancy) and 20 (shallow conditions / large dilatancy).

Dilatancy is mobilized in the frictional weakening zone. Moreover, it’s impact on pore-pressure is
modulated by the slip rate ∂δ/∂t (see eq. 5.14). In proximity of a dynamic event when the slip rate
increases rapidly, the undrained pore pressure drop leads to a local strengthening at the crack tip (dilatant
hardening). In the case where the slip rate and crack velocity is larger than the fluid flux, the undrained
dilatant pore-pressure drops will be at its maximum 5.17 and will persist inside the crack away from the
crack tip. We can thus quantify the associated strengthening by adding its effect to the fault residual
strength - defining an undrained residual shear strength τur as:

τur = τr − fr∆pu = τr

(
1 +

ϵd
βσ′

o

)
(5.21)

From the ranges of value previously discussed, we see that the undrained shear strength can be from
1.01 to 2 times larger than the drained residual strength.

On the other hand, the shear-induced dilation impact (via the non-associated flow rule 5.9) the dis-
tribution of normal stress along the fault through the effect of corresponding opening displacement dis-
continuity in the elasticity equation 5.1. Inside the crack, the opening of the fault leads to an increase of
compressive normal stress, whereas ahead the crack tips it induces tensile stresses therefore reducing
the fault frictional strength. There is thus an interplay between the non-local stress-induced perturba-
tion due to fault opening and dilatant hardening. The tensile stresses ahead of the tip have however a
lower magnitude than the undrained pore-pressure drop. For instance, if we suppose that the weakening
region is small compared to the whole crack size (small scale yielding conditions), the mechanical open-
ing is uniform and equal to ∆w along the whole crack. We can thus estimate the tensile normal stress
ahead of the crack front using the solution for an edge dislocation (e.g. (Hills et al. 1996)) of intensity
∆w. Scaling the distance x̂ from the dislocation by the nucleation lengthscale aw, we have

∆σ = − E′

4πaw

∆w

x̂/aw
(5.22)

The corresponding stress intensity for such a singular field is thus E′∆w/(4πaw). For a maximum incre-
ment of dilatant width ∆w of the order of few millimeters and corresponding estimate of the nucleation
patch size aw gives an order of magnitude of about ∼ 1 MPa or less for such stress perturbation.
Taking the ratio of such stress intensity with the estimate of the undrained pore-pressure drop 5.17, af-
ter re-arranging, one obtain E′βωo/(4πaw) which will be always smaller than one as E′β ≃ O(10) and
ωo/aw ≃ O(10−2). We therefore conclude that the mechanical effect of dilatancy induced tensile stresses
ahead of the crack tip is lower than the undrained pore pressure change ∆pu. The dilatant hardening
effect dominates. This is confirmed by our fully coupled numerical simulations (see section 5.5).

5.3.2.2 Small scale yielding & stability condition

Following the work of Garagash & Germanovich (2012), we extend their ultimate stability condition to
account for the effect of dilatant hardening. This stability condition can be obtained under the assumption
of small scale yielding (s.s.y) which holds when the shear crack of half-length a is sufficiently larger than
the characteristic length scale aw such that all the frictional weakening occurs in a small zone near the
crack tip. Such a localization of the frictional weakening in a small zone near the crack tip can be observed
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on our numerical results (see section 5.5.1). Under such assumption, the fracture energy Gc (Rice 1968,
Palmer & Rice 1973) for the linear frictional weakening model can be estimated as:

Gc =

∫ δ

0

τ(δ)− τr dδ ≃
δr
2
(fp − fr)× σ′(a) (5.23)

under the assumption that the effective normal stress σ′(a) is constant within the weakening region.
The condition for quasi-static crack growth of such a shear crack reduces to the classical linear elastic
fracture mechanics criteria. The driving force for propagation G (the energy release rate) must equal Gc

for quasi-static growth to occur. A criteria which for such a shear crack reduce to:

G =
K2

II

E′ = Gc, (5.24)

where KII is the stress intensity factor for the given loading and crack size.
As all the crack -besides the small weakening zone at the tips- is at residual frictional strength, the

stress intensity factor can be obtained by superposition of the effect of the loading of the crack by i) the
residual frictional strength at ambient condition τr = frσ

′
o minus the far-field in-situ shear stress τo (which

are both uniform along the crack) and ii) the effect of the over-pressure due to the fluid injection on the
decrease of shear strength fr∆p(x, t). The stress intensity factor for such a configuration is thus given
as (Rice 1968, Tada et al. 2000)

KII = (τo − τr)
√
πa+ fr

√
a

π

∫ +a

−a

∆p (x, t)√
a2 − x2

dx︸ ︷︷ ︸
∆KII(a,t)

(5.25)

On the contrary to the non-dilatant case, the exact solution for the over-pressure∆p (x, t) evolution along
the fault is not known analytically. It is the complete solution of the coupled hydro-mechanical problem
in the dilatant case. However, in order to obtain an ultimate stability condition for large crack length, it
can be approximated as follow. If the shear crack a is much larger than both the slipping patch length
scale aw (which is required for the s.s.y approximation to be valid) and the diffusion length scale

√
4αt,

the over-pressure can be approximated as the sum of a point source term of intensity∆P for the effect of
the injection (as a≫

√
4αt) and the response of the undrained pore-pressure drop. Moreover, if the crack

velocity is much larger than the fluid velocity - which would be true in all cases if the crack accelerates -
the undrained pore-pressure drop can be assumed to remain constant and equal to ∆pu (eq. 5.17) over
the entire crack. Under those conditions, the stress intensity factor reduces to:

KII ≃ (τo − τr)
√
πa+

fr∆P√
πa

+
τr∆pu
σ′
o

√
πa

≃ (τo − τur )
√
πa+ fr

∆P√
πa

(5.26)

where the undrained shear strength previously introduced appear. This expression is strictly similar
to the one derived in Garagash & Germanovich (2012) pending the replacement of the residual shear
strength τr by its undrained counterpart τur = τr(1 + ϵd/(βσ

′
o)) 5.21. As previously anticipated the effect

of dilatancy is akin to an increase of the residual shear strength.
The reasoning of Garagash & Germanovich (2012) for the ultimate stability can thus be directly trans-

posed to the dilatant case. In the limit of infinitely large crack a → ∞, one directly see that the stress
intensity factor tends to either +∞ if τo > τur and −∞ if τo < τur . In other words, if the initial shear stress
τo is larger than the undrained residual strength, the fault is ultimately unstable as the stress intensity
factor diverges for large crack length: the nucleation of a dynamic rupture will thus always appear. On
the other hand, the fault is ultimately stable when τo < τur . We therefore see that as the undrained resid-
ual shear strength τur is larger than τr, sufficient dilatancy may stabilize a fault that otherwise would be
unstable. The minimal/critical amount of dilatancy ϵcd required for such a stabilization to occur is simply
given as:

ϵcd = βσ′
o

(
τo
τr

− 1

)
= βσ′

o

(
τo
τp

fp
fr

− 1

)
(5.27)
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It is interesting to note that it directly depends on the residual stress criticality τo/τr, and the in-situ
effective normal stress.

It is important to note that - obviously - in the ultimately stable case (τur > τo) the stress intensity
factor does not tend to −∞ in reality as the propagation can only occur for G = Gc. Upon continuous
fluid injection, a stable quasi-static growth will occur and will be modulated by the fluid diffusion: i.e
the crack will decelerate for large crack length at constant injection. It is actually possible to devise an
approximated solution for such a quasi-static growth by hypothesizing that the crack length evolves as
a factor of the fluid front: a = γ

√
4αt. An approximation of the pore-pressure evolution accounting for

the undrained pore-pressure drop at the tip can be obtained and used in eqns. 5.24 and 5.25 to obtain
an estimate of γ. Such an approximated solution is detailed and compared to our numerical results in
Supporting Information in section 5.8.5. Such a refined (but still largely approximated) solution for the
pore-pressure evolution gives the exact same limit for the stability condition at large crack length as well
as critical dilatancy than the simpler profile postulated previously.

To conclude, before moving to the complete numerical solution of the problem, a word of caution is
required with respect to the stability condition τo < τur . Such a stability condition holds on the premise that
most of the crack is at residual friction pending a small weakening zone (s.s.y approximation). It is valid for
sufficiently large crack length compared to aw and peak slip larger than δr. Only under this assumption,
the maximum undrained pore-pressure 5.20 can be achieved. If a dynamic rupture nucleates for slip
smaller than the residual δr, the s.s.y is invalid: the undrained pore-pressure response will not be fully
activated and thus not sufficient to quench the nucleation of a dynamic rupture. However, upon reaching
larger crack length (and thus residual friction), the complete undrained pore-pressure will ultimately kicks
in such that a dynamic rupture should arrest if the ultimate undrained s.s.y stability condition (τur > τo) is
satisfied.

5.4 Numerical scheme description

Although approximation of the complete problem have allowed to highlight the stabilizing effect of dila-
tancy on the nucleation of a dynamic rupture associated with fluid injection, a full numerical solution is
needed to investigate the complete parametric space and test the concept of a critical dilatancy.

The complete problem described in section 5.2 is fully coupled due to the dilatant fault behavior as
well as non-linear due to the evolution of the fault hydraulic width (even if the fault permeability remains
constant). It also involves the tracking of the moving crack tips. The shear crack evolves in space
and time along the fault, paced by pore pressure evolution. Equation 5.1, which links tractions ti on
the fault plane with displacement discontinuities dj , evolves in time due to the moving crack domain Γ.
The developed numerical scheme solve this coupled problem by determining simultaneously the plastic
multipliers λ in the ’active’ zone of the domain (i.e. where 𝟋(τ, σ′

n) = 0) through equations 5.1-5.8-5.9
and the increment of pore pressure ∆p along the whole fault (through equation 5.14 and Darcy’s law
5.15). We then recompute the increment of tractions (due to both increment of slip and the associated
increment of hydraulic width) along the rest of the domain via the non-local elasticity equation 5.1. We
have chosen a backward-Euler (implicit) time integration scheme for stability and robustness. A choice
that stems from the restrictive CFL condition on the time-step for diffusion problem (e.g. (Quarteroni et al.
2000)) - which even deteriorates for strong non-linear variation of permeability similar to the hydraulic
fracturing case (Lecampion et al. 2018).

We discretize the elasticity equations using the displacement discontinuity method (Crouch & Starfield
1983, Bonnet M. 1995) with piece-wise linear element (Crawford & Curran 1982). Because of the singu-
lar nature of the elastic kernel, the integral equation is collocated at points inside the displacement dis-
continuity segments. Knowing the effect in terms of traction of a single piece-wise linear displacement
discontinuity, the problem reduces to the one of determining the distribution of displacement disconti-
nuities that generates tractions along the fault such that equilibrium with initial tractions and the failure
criterion is satisfied (Crouch & Starfield 1983). The fluid flow equation combining fluid mass conserva-
tion and Darcy’s law is discretized via a vertex centered finite volume scheme. The fluid pore-pressure
is assumed to vary continuously and linearly between element vertex.

In all the simulations reported here, the fault is discretized by N straight equal-sized elements (of
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size h) - with a total mesh extent of 20 × aw. We therefore have 2Na unknown shear displacement
discontinuities (more precisely the plastic multiplier) for the Na active elements, and N +1 unknowns for
pore-pressure for all the element in the grid. After discretization, we obtain a non-linear system of size
2Na +N + 1, whose unknowns are composed of the plastic multipliers λ (which are linked to increment
of slip ∆δ through equation 5.8) in the Na active yielded elements, and increment of fluid pressure ∆p at
every nodes of the grid (N + 1 unknowns). The size of such a non-linear system evolves with the shear
crack propagation as more elements yield mechanically. The non-linearities of such a system are related
to shear induced dilatancy and frictional weakening. For a given set of active elements, we use a fixed
point iterative scheme to solve for this non-linear system - ending iterations when subsequent estimates
of both the increment of slip and pore-pressure are within a relative tolerance of 10−6.

The yielding/active set of element is then re-checked using the Mohr-Coulomb criteria. It is worth
noting that an element is at failure when the Mohr-Coulomb criteria is reached for both collocation points
in the piece-wise linear displacement discontinuity element.

Over one time-step, such a fully implicit algorithm thus solves the coupled problem by means of
two nested loops. The outer loop identify the shear crack position by enforcing implicitly the friction
weakening Mohr-Coulomb criterion 5.3 along the whole fault. The inner loop solve the aforementioned
coupled non-linear hydro-mechanical system of equations for a trial set of active/yielded elements.

Full details about the numerical solver are included in section 5.8.1.
For numerical efficiency, the time step is adjusted based on the current crack velocity vn, which is

calculated via finite difference:
∆tn+1 = ζ

h

vn
, (5.28)

where h is the element size and ζ is a user-defined constant parameter. This allows to better capture the
response of the system during high slip rate, and increase time-step size during slow a-seismic growth.
However, a constraint is required to avoid a too small time step that would necessarily occur when
the shear crack is approaching a dynamic instability, for which the slip rate and crack velocity diverge.
Notably, in our simulation, if the variation is such that∆tn+1 < 0.8∆tn, we set∆tn+1 = 0.8∆tn. Similarly,
time-step should remain reasonable in order to avoid sampling the pore pressure evolution too coarsely.
In our simulations, if ∆tn+1 > 3∆tn, then the time step change is constrained to ∆tn+1 = 3∆tn, and the
initial time-step is taken as a small fraction of the characteristic diffusion time scale.

Thanks to the semi-analytical results of Garagash & Germanovich (2012) for the non-dilatant case,
we have performed a thorough benchmarking of this numerical solver. Some of these verifications are
described in the Supporting Information together with a mesh convergence study (see sections 5.8.2
and 5.8.3). Notably, our mesh convergence study have shown that the mesh size h must be such that
at least 15 elements cover the characteristic lengthscale aw to obtain accurate results (i.e. h ≤ aw/15).
All the simulations reported herein have been performed with h = aw/25.

5.4.1 Characteristic scales for dimensionless governing problem
By introducing properly chosen characteristic scales to normalize the governing equations, relevant phys-
ical processes can be systematically investigated. As already stated in Section 5.2.1.2, we follow the
scaling of Uenishi & Rice (2003) and Garagash & Germanovich (2012) in order to normalize the elas-
ticity equation 5.1 and friction weakening Mohr-Coulomb criterion 5.3. We thus scale the slip δ and the
tractions ti by the slip weakening scale δw and the peak fault strength τp = fpσ

′
o, respectively. By doing

so, one can identify the nucleation patch length-scale aw (see equation 5.12), which is used to scale all
the spatial variables: half crack length a and longitudinal spatial coordinate x. We scale the time t by
the characteristic fluid diffusion timescale a2w/(4α). The characteristic scale for the fluid over-pressure,
is taken as the in-situ effective normal stress σ′

o. Upon scaling the governing equations with the previous
characteristic scales, the normalized solution is given by δ/δw, τ/τp, σ/σ′

o, (p− po)/σ
′
o and 2a/aw and is

function of only the following four dimensionless parameters (besides space and time):

• normalized injection over-pressure ∆P/σ′
o

• dimensionless frictional weakening ratio fr/fp

• fault stress criticality τo/τp at in-situ conditions (prior injection)
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Figure 5.4: Time evolution of normalized half crack length a/aw (top-left) and normalized peak slip δ/δw
at the middle of the fault (top-right), i.e. at x = 0, for an otherwise unstable fault (τo/τp = 0.75), subjected
to moderate over-pressure ∆P/σ′

o = 0.5. The friction weakening ratio considered here is fr/fp = 0.6.
The corresponding time evolution of normalized crack velocity vaw/α is showed in the plot at the bottom.
We vary the dimensionless dilatancy parameter

ϵd
βσ′

o

below and above the critical stabilizing value- which

is ϵd,c/(βσ′
o) = 0.25 in this particular case. Red dots point the onset of unabated dynamic ruptures (color

online).

• dimensionless dilatancy coefficient ϵd/(βσ′
o)

All the numerical results of the following sections have been obtained and will be presented in dimen-
sionless form. For all simulations, we fix the dimensionless frictional weakening ratio to fr/fp = 0.6 and
explore the effect of the remaining dimensionless parameters: ∆P/σ′

o, τo/τp and ϵd/(βσ′
o).

5.5 Dilatant hardening effect on a fault characterized by constant
permeability

5.5.1 Case of unstable fault without dilatancy τo > τr

We first investigate numerically the effect of dilatancy on otherwise unstable fault, i.e. for which the in-situ
shear stress is larger than the residual shear strength and the nucleation of a run-away dynamic rupture
is always expected in the absence of dilatancy. We display the time-evolution of the different variables
(crack length, maximum slip) using the square root of dimensionless time

√
4αt/aw as the x-axis. Such

a choice stems from the fact than the injection is diffusion controlled and
√
4αt/aw is directly the ratio

between the diffusion front over the nucleation lengthscale.
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Figures 5.4-top-left and 5.4-top-right display the time evolution of half-crack length and peak slip
for different values of the dimensionless dilatancy coefficient ϵd/(βσ′

o) for the case of a rather critically
stressed fault τo/τp = 0.75 and a moderate injection over-pressure ∆P/σ′

o = 0.5. The theoretical esti-
mate of the critical dilatancy sufficient 5.27 to stabilize the fault is ϵd,c/(βσ′

o) = 0.25 in that particular case.
We clearly observe that an increase of dilatancy delays the occurrence of a dynamic rupture (highlighted
by a red dot on these plots) for values below the critical dilatancy. However, for values of dilatancy equal
or larger than the critical one, no nucleation is observed: the propagation is always aseismic. This can be
better observed on the time evolution of crack velocity (Figure 5.4-bottom), where we see how dilatancy
larger than the critical value kills the acceleration preceding the nucleation of a dynamic rupture.

Figure 5.5 displays the profile along the fault of the fluid over-pressure, friction coefficient, shear slip,
effective normal stress and shear fault strength at different times for two distinct values of dilatancy, below
and above the critical value. For insufficient dilatancy (left panel on figure 5.5), although an undrained
pore-pressure drop can be seen in the weakening zone close to the crack tip, it is not strong enough
to stabilize the fault and the last profiles reported in these plots is right before the nucleation of an
unabated dynamic rupture. For this particular case without any dilatancy the nucleation occurs early
and is not influenced by residual friction. We see that a dilatancy lower than the critical value delays
the occurrence of nucleation which is now occurring when a significant part of the crack is at residual
friction. For a value of dilatancy larger than the critical one (right panel on figure 5.5), the crack growth is
always quasi-static. The undrained pore-pressure drops is now well developed and its minimum reaches
the critical value ∆pu/σ

′
o = −ϵd,c/(βσ′

o) = −0.25 locally at the tip. The local fault re-strengthening
can be observed on the corresponding effective normal stress profiles as well as on the corresponding
shear strength versus slip results of our simulation (Figure 5.5). Under undrained conditions, near the
crack tips dilatancy leads to a slip hardening phase before the onset of weakening, a response often
observed in healed fault rocks. Brantut & Viesca (2015) used a non-monotonic, piecewise linear slip-
dependent strength constitutive law (accounting for a strengthening phase followed by a weakening
phase) to investigate earthquake nucleation in healed rocks. They solved semi-analytically an uncoupled
problem for which stress perturbation is obtained through a mechanical loading whose time and space
dependency is known analytically. They notably show that the strengthening phase that occur before
the slip weakening phase considerably increases the critical nucleation size. This is in line with our
numerical results for increasing values of dilatancy parameter (see Figure 5.5-(e) and the crack length at
nucleation time for increasing values of dilatancy in Figure 5.4). We can also observe on these profiles
that the weakening zone at the crack tip is small such that the stability condition derived previously under
the assumption of small scale yielding is valid.

These simulations confirm the fact that dilatancy can stabilize an otherwise unstable fault if it is above
the critical theoretical dilatancy previously derived in section 5.3.2.2. It is worth noting that this would
have been difficult to demonstrate solely numerically even with very long simulations.

Effect of the injection over-pressure ∆P For the same value of stress criticality τo/τp = 0.75, plac-
ing ourselves at critical dilatancy (ϵd,c/(βσ′

o) = 0.25 in that case), we test the influence of the amount of
over-pressure. Figure 5.6 displays the time evolution of crack length and peak slip for different amount of
injection over-pressure∆P . As expected the larger the injection over-pressure, the faster the crack grows
and the propagation remains quasi-static (aseismic). However, an interesting situation occurs for lower
value of over-pressures (here ∆P/σ′

o = 0.4 and lower) where the nucleation of an unrestricted dynamic
rupture is observed. This somehow invalidates the existence of an universal value of stabilizing dilatancy
independent of the over-pressure. However, we can clearly see that, for these low over-pressure cases,
the peak-slip at the instant of nucleation is lower than the residual slip. In other words, the whole crack
is weakening and has not yet reached residual friction. As a result, the undrained pore-pressure is not
fully developed and not sufficient to stabilize the fault via dilatant hardening. In these cases, the small
scale yielding assumption (small weakening zones at the crack tip) is invalid and the stability condition
previously derived for large crack length compared to the characteristic nucleation patch size does not
hold. It is worth noting that the nucleation of an unrestricted dynamic rupture is a consequence of the
assumption of quasi-static elastic equilibrium. The shear crack velocity at nucleation time diverges in-
stantaneously. Such an unbounded slip rate at nucleation will disappears if inertial terms are accounted
for (full elastodynamic or quasi-dynamic formulation): energy dissipation via radiation of elastic waves
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Figure 5.5: Spatial profile of a) dimensionless pore pressure, b) friction coefficient, c) slip, d) effective
normal stress for a critically stressed dilatant fault (τo/τp = 0.75), subjected to a moderate overpressure
∆p/σ′

o = 0.5, at different (normalized) time snapshots. Sub-figures (e) show the evolution of normalized
shear strength with slip, at the same time snapshots. Results for two dimensionless dilatancy parameters
are reported: left) ultimately unstable fault for which ϵd/βσ′

o is lower than the critical stabilizing value for
that particular set of parameter (ϵd,c/βσ′

o = 0.25), right) ultimately stable for a dimensionless dilatancy
above the stabilizing value. Red curves (color online) denote the numerical results at nucleation time for
the unstable case (left).

always ensure a finite crack velocity. In Figure 5.7, we show that using a quasi-dynamic formulation (with
a rather large damping for illustrative purpose) the slip rate remains bounded and the crack propagation
eventually slows down at later time compared to the quasi-static formulation where a divergence of the
slip rate occurs at nucleation.
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Figure 5.6: Effect of dimensionless overpressure ∆P/σ′
o on a critically stressed dilatant fault (τo/τp =

0.75), in terms of time evolution of dimensionless half crack length a/aw and dimensionless peak
slip δ/δ|x=0. The dimensionless dilatancy parameter equals the critical value for such configuration:
ϵd,c/(βσ

′
o) = 0.25.

Figure 5.7: Time evolution of normalized half crack length and peak slip under quasi-static (QS) and
quasi-dynamic (QD) approximation of elastic equilibrium. The latter is obtained by adding a seismic
radiation damping term proportional to slip rate to elasticity equations in order to take into account en-
ergy dissipation through seismic waves orthogonal to fault plane during high slip rate (Rice 1993). The

radiation damping term in normalized form reads
Gδw4α

2csτpa2w
, being cs the shear wave speed and G the

shear modulus. We use here a very large value of 40 for such a dimensionless damping term, therefore
over-damping the dynamic rupture.

In summary, if residual friction is reached during a-seismic crack propagation, the dilatant hardening
effect stabilizes the fault for τur > τo and the shear crack always propagates quasi-statically. This always
occurs for sufficiently large values of over-pressure ∆P , which promotes larger initial aseismic slip rate
thus maximizing the effect of dilatant hardening (i.e. sink term associated with dilatancy in the fluid mass

conservation (5.14) is proportional to slip rate - tan(ψ(δ))
∂δ

∂t
). On the contrary, a lower over-pressure

significantly slows down the initial aseismic crack growth and the beneficial effect of dilatancy can not
develop sufficiently to avoid the nucleation of a dynamic rupture even when τur > τo. If inertia effects are
included during crack acceleration (fully dynamic or quasi-dynamic elastic equilibrium), the slip rate will
remain bounded and the full effect of dilatant hardening would eventually kick in for sufficient crack length
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Figure 5.8: Numerical estimation of the minimum amount of over-pressure required to activate the full
benefit of dilatant hardening and stabilize an otherwise unstable fault (τr < τo) for different stress criticality
between the ultimately stable limit (τr/τp = fr/fp = 0.6 in that case) and the undrained dilatant residual
strength (τur /τp = 1.25τr/τp = 0.75 in that case). The black filled circle denotes the maximum value
of over-pressure below which a finite dynamic event always nucleate (for over-pressure above the slip
activation limit), while the empty circle corresponds to the minimum normalized over-pressure required to
stabilize such a fault (aseismic slip only for larger over-pressure). The minimum over-pressure required
for slip activation (∆P/σ′

o = 1−τo/τp) is also displayed as empty square/continuous line. Stress criticality
τo/τp larger than τur /τp always result in the nucleation of unrestricted dynamic rupture for any value of
over-pressure larger than the activation limit.

(larger than ac) - therefore leading to an arrest of the dynamic rupture due to sufficient dilatancy (τur > τo).
Full elastodynamic simulations would be needed to confirm that the dynamic rupture would indeed arrest
upon full activation of dilatant hardening under those conditions of low injection over-pressure and large
dilatancy.

For a given set of parameters, the exact minimum value of over-pressure required to fully stabilize
the fault can not be estimated analytically, but can be estimated numerically via a series of simulations
varying the injection over-pressure. Figure 5.8 displays such an estimation for different stress criticality
τo/τp below or equal to the undrained residual strength - i.e. the domain where dilatant hardening can
stabilize an otherwise unstable fault. More precisely, Figure 5.8 displays both the maximum overpres-
sure for which a nucleation of finite dynamic event occur and the minimum over-pressure for which the
propagation is solely aseismic (the fault is stabilized). A linear increase of the required over-pressure as
the stress criticality decreases can be clearly observed. This can again be understood as a larger driving
force is required to reach residual friction for lower stress criticality.

5.5.2 Case of an ultimately stable fault even without dilatancy (τo < τr)
We now turn to the case of ultimately stable fault (τo < τr), where only a transient seismic episode
occurs for moderate over-pressure (region 2 of Figure 5.3) while crack growth is strictly aseismic for
large over-pressure (region 3 of Figure 5.3).

For a configuration representative of region 2 in Figure 5.3 (τo/τp = 0.55,∆P/σ′
o = 0.5) a transient

seismic episode occurs for a low accumulated slip: the residual friction is not yet reached anywhere in
the crack. Such a seismic event is directly linked with the crack ”catching” up the fluid front in association

134/169



Figure 5.9: Time evolution of normalized half crack length a/aw and normalized peak slip δ/δw at the
middle of the fault, i.e. at x = 0, for an ultimately stable fault (τo/τp = 0.55 and τo < τr, for fr/fp = 0.6),
subjected to moderate over-pressure ∆P/σ′

o = 0.5. We span several dilatancy cases by varying the
dimensionless dilatancy parameter ϵd/(βσ′

o). Red dots denote the onset of dynamic event, which is
always characterized by a nucleation followed by an arrest (red arrow). The run-out distance increases
with increase values of dimensionless dilatancy parameter ϵd/βσ′

o.

with frictional weakening. Figure 5.9 displays the crack evolution and peak slip for such configuration
for different values of dilatancy. Increasing dilatancy slow down the initial quasi-static crack growth and
thus delay the nucleation of this finite seismic slip episode. Interestingly, because with larger dilatancy,
the quasi-static crack lags even more behind the fluid diffusion front prior to nucleation, the dynamic
run-out increases for larger dilatancy. After this finite seismic slip episode, upon continuous injection, the
shear crack propagates quasi-statically on par with the evolution of the diffusion front a ∝

√
4αt. Larger

dilatancy slows down the quasi-static crack growth. The corresponding profiles of over-pressure, friction
coefficient, slip and effective normal stress along the fault at different time snapshots are reported in
Figure 5.10. The finite seismic episode can be clearly seen where we observe that prior to nucleation
the weakening zone occupies the whole crack. Because the fault is ultimately stable, beside the seismic
episode, the fault propagates quasi-statically: due to the low slip rate, dilatancy does not significantly
alter the pore-pressure profile although the effect can be observed on the effective normal stress profiles
(see Figure 5.10).

Finally for large over-pressure (region 3 of Figure 5.3), the crack growth is always quasi-static (aseis-
mic). Results for such aseismic growth are reported in section 5.8.6. For similar stress and fault strength
conditions, an increase of the fault dilatancy slows down the crack velocity as expected.

5.6 Effect of shear-induced permeability changes
The results presented so far are based on the assumption of a constant fault permeability - although in
our numerical results the fault transmissivity whkf is changing in conjunction with the dilatant behavior.
Experimental (Makurat et al. 1985, Lee & Cho 2002, Li et al. 2008, e.g.) and field evidences (Evans,
Genter & Sausse 2005, Evans, Moriya, Niitsuma, Jones, Phillips, Genter, Sausse, Jung & Baria 2005)
have shown that deep fractures under fluid induced slip exhibit an increase of fault permeability (Cornet
2015a, Evans, Genter & Sausse 2005, Evans, Moriya, Niitsuma, Jones, Phillips, Genter, Sausse, Jung
& Baria 2005, McClure & Horne 2014). It is important to note that, although possibly significant, the
increase of permeability with slip remains small compared to the drastic increase observed when the
fracture opens (i.e. when the effective normal stress becomes tensile) such as in hydraulic fracturing.
Like previously, we restrict here to the case of compressive effective normal stress, where permeability
changes with slip are strictly associated with shear-induced dilatancy.

Several empirical models have been proposed and used in literature for permeability evolution. Some
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Figure 5.10: Spatial profiles of dimensionless pore pressure (a), friction coefficient (b), slip (c) and ef-
fective normal stress (d) at different (normalized) time snapshots, for an otherwise ultimately stable fault

(τo/τp = 0.55 - fr/fp = 0.6), subjected to a moderate over-pressure
∆P

σ′
o

= 0.5. Two dimensionless

dilatancy parameters are considered:
ϵd
βσ′

o

= 0.1 and
ϵd
βσ′

o

= 0.3. Red lines refer to numerical results at

nucleation time of a dynamic rupture. Since the background shear stress τo is lower than the residual
fault strength τr at ambient conditions, the dynamic event is always followed by an arrest.

of them account for porosity changes, while some others include explicit dependency on effect stress
changes (see e.g. (Rutqvist & Stephansson 2003) for a review). For example, Rice (1992b) used an ef-
fective stress-dependent permeability law, in which the permeability is a non-linearly decreasing function
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Figure 5.11: Effect of permeability increase on a critically stressed (τo/τp = 0.75, fr/fp = 0.6) dilatant
fault under moderate over-pressure (∆P/σ′

o = 0.5): time evolution of normalized half crack length a/aw
and corresponding peak slip δ|x=0/δw. The dimensionless dilatancy parameter ϵd/(βσ′

o) is set to the
corresponding critical stabilizing value (5.27), equal here to 0.25. The effect of permeability evolution
following the slip dependent law (5.31) is investigated for five different values of the parameters (a, b)
spanning small and large permeability increase from 1.5 to ∼ 60 times the initial fault permeability.

of the local (compressive) effective normal stress:

kf = k∗e
(−σ′/σ∗), (5.29)

where k∗ is the maximum fault permeability
[
L2
]
and σ∗ is a normalizing stress level

[
ML−1T−2

]
which

ranges between 3 to 40 MPa Rice (1992b) - see also (Seront et al. 1998). Another common choice is to
use the cubic law for the fault transmissivity (kfwh), relating the fault permeability directly to the changes
of aperture - i.e. a parallel plate idealization of the fluid flow in the fault (Bawden et al. 1980, McClure &
Horne 2014, Ucar et al. 2018, e.g.):

kf (δ) =
wh (δ)

2

12
(5.30)

Under this assumption, the maximum constant fault permeability that is exerted when the slip δ is larger

than the critical value δr is directly function of dilatant strain ϵd as kf,max =
ω2
o

12
(1+ϵd)

2. Such a maximum
increase of longitudinal permeability with respect to its initial value ω2

o/12 is actually rather small since
the dilatant strain ϵd ranges between 10−4 − 10−2. This is clearly in contradiction with experimental and
field evidences which mention much larger permeability increase (Makurat et al. 1985, Evans, Genter &
Sausse 2005, Evans, Moriya, Niitsuma, Jones, Phillips, Genter, Sausse, Jung & Baria 2005).

In order to investigate cases in which fault dilatancy induces significant increases of fault permeability
with inelastic deformations (for instance due to change of fault porosity, for which∆kf ∝ ∆φ7−8 for dense
rocks - see Bernabé et al. (2003)), we generalize the fault permeability evolution law as

kf =
ω2
o

12

(
1 + a

w(δ)

ωo

)b

, (5.31)

where a and b are two constant parameters. Note that when a = 1 and b = 2, the fault transmissivity obeys
the cubic law. By varying these two parameters, one can obtain ten-fold permeability increase associated
with shear slip at maximum dilatancy compared to the initial value ω2

o/12. We use this permeability law
5.31 to gauge the impact of permeability change with slip on the stabilization by dilatancy of an otherwise
unstable fault. In particular, our aim is to see if an increase of permeability affect the stabilizing effect of
the undrained pore pressure drop associated with dilatancy.

We focus on the case of an otherwise unstable fault τo/τp = 0.75 (fr/fp = 0.6) and a moderate
over-pressure case ∆P = 0.5 with a dilatancy equal to the critical stabilizing value ϵd,c/(βσ′

o) = 0.25 for
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these conditions. Figure 5.11 displays the crack length and peak slip evolution for the case of a constant
permeability as well as for different values of a and b for the permeability evolution law 5.31. We span
a = 1, b = 2 (cubic law) and a = 2, b = 3, 5, 8, and 10 which entails respectively a 1.5 (cubic law), 3.3,
7.6, 25.6 and 57.6 fold increases of permeability at maximum dilatancy.

We observe that although the increase of permeability directly enhance the crack velocity, the prop-
agation always remains aseismic. The permeability increase has a very significant effect on aseismic
growth and this effect increases with the value of b as expected. For example, for the strongest per-
meability variation with dilatancy (a = 2, b = 10 resulting in kf,max/kfo ∼ 57.6), we observe a ∼ 550%
increase in crack length at

√
4αt/aw = 0.27 compared to the constant permeability case (see Figure 5.11).

A difference that will obviously continue to grow with time. For such a evolution of permeability with slip
5.31, the permeability profile is similar to the dilatancy strain: constant at is maximum value all along
the crack except in the weakening zone near the tip - see Figure 5.12. The large permeability increases
with slip, however, do not modify the stabilizing effect of undrained dilatant hardening. As the permeabil-
ity accelerates quasi-static crack growth, the undrained pore-pressure response remains strong at the
crack tip (see the pore-pressure profiles in Figure 5.12). Moreover, due to the quasi-static acceleration
with increasing permeability, residual friction is reached earlier such that the undrained shear strength is
fully mobilized - even possibly for smaller value of over-pressure compared to the constant permeability
case. Note that similar results are obtained with other type of permeability evolution (such as the one
described by eq. 5.29) as reported in Figures 5.21 and 5.22 of the Supporting Information (see section
5.8.7). In conclusions, in the case of an impermeable surrounding, the increase of permeability with slip
along the fault does not affect the ultimate stability condition (τo < τur ).

5.7 Conclusions

We have investigated the effect of dilatancy on the transition from seismic to aseismic slip due to sus-
tained fluid injection regulated at a constant pressure in a fault. Although simple in its nature (planar
bi-dimensional fault, uniform in-situ stress and rock properties, linear weakening friction), the model in-
vestigated properly couples, via non-associated plasticity, the hydro-mechanical interplay between slip,
dilatancy, frictional weakening and fluid flow. We have developed a robust fully implicit numerical scheme
- which properly reproduces existing semi-analytical solutions for the case of non-dilatant fault (Garagash
& Germanovich 2012). We notably would like to emphasize the necessity of numerical model verification
for such type of non-linear fracture propagation problem which -similarly to hydraulic fracturing problem-
necessitates to resolve multiple scales (weakening zone and diffusion lengthscale here).

We have shown that dilatant hardening can stabilize an otherwise unstable fault (τo > τr), as long
as the weakening of friction occurs in a small zone near the tip of the shear crack (small scale yielding).
This is captured by an ultimate stability condition defined with an undrained residual strength τur = τr(1+
ϵd/(βσ

′
o)) function of the dilatant strain of the fault at critical state (when dilatancy saturates). We have

demonstrated theoretically that under the assumption of small scale yielding, dilatancy ultimately stabilize
the fault if τo < τur . In other words, for a given fault criticality, there exists a critical dilatancy above which
the fault will remain stable and shear slip is solely aseismic. However, the hypothesis behind small scale
yielding (small frictional weakening zone near the crack tips) must be satisfied for such a ultimate stability
condition to hold. This is the case if and only if the injection over-pressure is sufficient to propagate quasi-
statically the shear crack / slipping patch fast enough to reach residual friction and activate the beneficial
effect of dilatancy prior to the crack reaching the nucleation length of the non-dilatant case. For injection
pressures below a limiting value, the crack propagates too slowly initially. The nucleation of a dynamic
rupture occurs prior to reaching residual friction such that the maximum dilatancy is not activated prior to
nucleation. For such small injection over-pressure, dilatancy cannot prevent the nucleation of a dynamic
rupture for an unstable fault (τo > τr) even for large dilatancy τo < τur (see Figure 5.8 for the evolution
of the minimum overpressure). However, such a dynamic rupture for low over-pressure and a-priori
sufficient dilatancy (τo < τur ) - which occurs prior to reaching residual friction - will eventually arrest as
the dilatant hardening effect kicks in for sufficient crack length. Although observed with quasi-dynamic
damping (see Supplemental Information), a fully elastodynamics simulation would be required to confirm
such arrest.
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Figure 5.12: Spatial profiles of dimensionless pore pressure, friction coefficient, slip, effective nor-
mal stress and fault longitudinal permeability (in linear-log scale) at a given normalized time snapshot√
4αt/aw = 0.27, for unstable fault (τo/τp = 0.75 - fr/fp = 0.6), subjected to a moderate over-pressure

∆P

σ′
o

= 0.5 and a dimensionless dilatancy parameter equal to the critical value, i.e.
ϵd,c
βσ′

o

= 0.25. The

different numerical results are obtained with different fault permeability evolution laws: i) constant per-

meability kf =
ω2
o

12
, ii) slip-dependent permeability law kf =

ω2
o

12

(
1 + a

w(δ)

ωo

)b

, with a = 1&b = 2 (cubic

law for fault transmissivity) and a = 2&b = 3, 5, 8, 10.

For an ultimately stable fault (τo < τr), our numerical results indicate that dilatancy delays the oc-
currence of a finite episode of dynamic slip for moderate overpressure. Such a finite seismic event is
associated with the abrupt catch up of the diffusion front by the crack front and the fact that the residual
friction has not yet reached all along the crack. For large over-pressure and stable fault, an increasing
dilatant behavior simply slows down the quasi-static propagation (strictly aseismic slip).

Permeability increases with slip leads to faster aseismic crack growth for the different permeability
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evolution tested. However, it does not affect the critical dilatancy stabilizing an otherwise unstable fault.
It appears evident that the details of the slip-permeability law greatly influence aseismic growth - a dis-
cussion on the most appropriate permeability model clearly require more investigation and necessarily
better controlled hydro-mechanical laboratory experiments for sufficient slippage length.

The strengthening effect of dilatancy discussed here must be put perspective with some well-known
dynamic weakening mechanisms that may occur as the crack accelerates: notably, thermal pressur-
ization and flash heating of asperities. Although the effect of these weakening mechanisms have been
already studied (Garagash & Rudnicki 2003, Segall & Rice 2006, Rice 2006, Garagash & Germanovich
2012) in the scope of earthquake nucleation via remote loading, a complete investigation of such com-
petition would be required in the context of fluid injection. This is out of the scope of this paper. We
note however that both of these dynamic weakening mechanisms requires dynamic slip rates (m/s and
above) while dilatant hardening is activated quasi-statically. A probably more important point with respect
to the stabilizing effect of dilatant hardening is related to the assumption of an impermeable host rock.
Although possibly acceptable for young fault/fractures, this is highly doubtful for most mature fault struc-
ture. With a permeable surrounding (of say hydraulic diffusivity αr), the undrained pore-pressure drop
associated with the fault dilatant behavior may be short-lived as fluid will be sucked in the fault and re-
pressurize it. The importance of dilatant hardening will directly depend on the ratio between the changes
due to dilatancy (which scales with slip rate) and the influx of fluid from the rock mass (which scales as
αr/hw with hw ≈ ωo the gouge thickness). A thorough investigation for the case of injection induced slip
is required to clarify that competition further, along the lines of Segall & Rice (1995), Segall et al. (2010)
in the context of the seismic cycle. In the sequel, we have also used a simple linear weakening friction
law compared to a more elaborate rate-state model. It is nevertheless worthwhile to note that some work
(Uenishi & Rice 2003, Viesca 2016b,a) have demonstrated a correspondence between linear weakening
friction and rate and state at the onset of nucleation. Investigations of the combined effect of rate and
state and dilatancy in the case of fluid injection combined with proper scaling and stability analysis would
surely produce a more refined understanding of the mechanisms of induced seismicity.

Finally, we conclude by recalling the decreases of dilatancy with confinement, such that the effect
of dilatant hardening is likely to be more prominent mostly at shallow depths. Additional experimental
data of fault dilatant behavior in conjunction with frictional properties would enable to further decipher its
impact on fluid induced a-seismic and seismic slip with the help of the type of model presented here.

5.8 Supporting Information

5.8.1 Fully implicit hydro-mechanical solver for frictional planar fault: algorithm
description

We report here the details of the hydro-mechanical solver developed for purely shear crack propagation
along the planar dilatant fault. This solver includes the propagation of a frictional shear crack paced by
fluid flow, shear induced-dilatancy and possibility of nucleation of dynamic rupture due weakening nature
of friction coefficient along the fault. We use displacement discontinuity method with piece-wise linear
displacement discontinuities (see section ??) to discretize elasticity equations 5.1 and a finite volume
scheme (see section ??) for discretization of fluid mass conservation equation in the fault 5.14. In this
scheme, the fault is discretized with finite sized straight elements (see section ??) and time integration
is performed via Backward-Euler scheme1. Fracture front is tracked by solving for the set of element
satisfying the Mohr-Coulomb criterion 5.3, here with zero cohesion. Note that this solver does not include
tensile failure, i.e. the injection over-pressure is set such that the effective normal stress remain always
compressive.
The algorithm marches in time, from tn to tn+1 = tn +∆t. The solution at each time step consists of the
set of yielded / active element Aelm (of lengthNa), displacement discontinuities on yielded elements and
fluid pressure at all N mesh nodes. For sake of compactness, we use the notation of Xn+1 = Xn +∆X
for referring to a generic time and space dependent variableX(x, t) at time tn+1 (and we denote the initial
state with the superscript o). Furthermore, normal and shear displacement discontinuities hereunder are

1This ensures stability and no restriction given by the Courant-Friedrichs-Lewy condition.
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respectively denoted as dn and ds (instead of w and δ), whereas normal and shear tractions are denoted
as tn and ts, respectively (instead of σ and τ ) .
For a given trial set of active elements, the discretized hydro-mechanical equations at current time read:

• Elasticity (quasi-static formulation):

E · (dn +∆d) = tn +∆t− to (5.32)

or in incremental form
E ·∆d = ∆t (5.33)

• Mohr-Coulomb criterion (with frictional weakening) enforced at collocation points, and the dilatancy
relation:

∆ts + tns = f (dn
s +∆ds) (tnn +∆tn − pn

coll −∆pcoll) (5.34)
∆dn = ∆dstan (ψ(dn

s +∆ds)) (5.35)

• Discretized fluid flow equation (over the whole mesh) where the pressure unknowns are located at
the mesh nodes N :

Vw

(
∂dn
∂ds

∣∣∣∣n+1
)
·∆dn +Vp(dn+1

n ) ·∆p+∆t× L(dn+1
n ) ·∆p = −∆t× L(dn+1

n ) · (pn − po) (5.36)

All the finite volume matrices in equation 5.36 are defined in section ??. Note that, in order to couple
the dilatancy term in the fluid mass conservation equation with the elasticity equations related to only
shear degrees of freedom, a chain rule must be applied to the time derivative of the opening dn, such
that

∂dn
∂t

= dn,s ·
∂ds
∂t

with dn,s =
∂dn
∂ds

, (5.37)

The term dn,s can then be obtained analytically from equation 5.10 and, upon integration over each
control volume, the dilatancy matrix Vw can be easily assembled (note again the change of notation, for
which w = dn and ds = δ).

Since the elasticity equations are collocated at points inside the displacement discontinuity element
(see Figure 4.1), whereas fluid pressure is discretized at nodal points, equation 5.35 must be expressed
in terms of nodal increment of pore pressure in order to couple it with fluid flow. The pore pressure
increment at a collocation point ∆p(ξj) is obtained from the nodal pore pressure increments ∆pi, via the
definition of the linear shape functions (see equation ??):

∆p(ξj) =
∑
i=1,2

Ni(ξj)∆pi, (5.38)

where ∆pi denotes the value of the over-pressure at node i. Equation 5.38 can be expressed in matrix
form as

∆pcoll = Npc∆p, (5.39)

where Npc is a 2Na ×N matrix for the transfer of the value of pressure from node to collocation points.
The set of discretized equations previously introduced can be re-arranged to yield a non-linear system
in terms of the increments of shear displacement discontinuity and increment of pore pressure along the
planar fault (for which the elastic equations for shear and normal degree of freedom uncouple):[

Ess fn+1 × Npc

Vw(d
n+1
n,s ) · tan

(
ψn+1

)
Vp(dn+1

n ) + ∆t× L(dn+1
n )

] [
∆ds

∆p

]
=

[
sign

(
tn+1
s

) (
fn+1

(
tn+1
n − pn

))
− tns

−∆t× L
(
dn+1
n

)
· (pn − po)

]
(5.40)

where tan(ψn+1) and fn+1 are identity matrices containing respectively the current dilatancy angle and
current friction coefficient at the nodal points (they are both functions of the current shear slip dn+1

s ), and
the current normal stress is simply given by

tn+1
n = tnn + Enntan

(
ψn+1

)
∆ds (5.41)
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The system of equations 5.40 is non-linear as both dilatancy, friction and permeability evolves with slip.
Starting from a known solution at time n (denote as Ln) and thus from a given active set of elements
An

elm, we solve it2 via fixed point iterations combined with an under relaxation scheme, upon application
of the following boundary condition due to injection condition:

∆p(x = 0, t) = po +∆P − pn(x = 0, t) (5.42)

Convergence is reached when the relative difference between successive estimate of slip and fluid pres-
sure increment falls below a fixed tolerance (typically tol = 10−6). Upon convergence of this non-linear
hydro-mechanical system, we check the Mohr-Coulomb criterion on the full mesh (re-computing shear
and effective normal tractions on the full mesh) and modify accordingly the set of active elements. This is
done through an iterative checking loop, whose convergence is reached when the set of active elements
do not change between two successive iterations or when the current slippage length sln+1 coincides
with the length of the fault. The algorithm devised is thus composed of two nested iterative loops. The
outer loop allows to determine the current shear crack position by checking the active set of elements (for
which 𝟋(ts, t

′
n) = 0) at current time n+ 1, whereas the inner one is used to solve the non-linear system

of equations 5.40. Upon convergence of the two loops, the new numerical solution Ln+1 is obtained and
the algorithm move to the next time step.

2Note that the non-linear system 5.40 can be solved equivalently for the plastic multiplier λ, instead of for increment of displace-
ment discontinuities. This can be achieved by replacing the vector ∆ds with the vector λ · sign

(
tn+1
s

)
containing all the plastic

multiplier of the active elements Na.
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Hereunder, we sum up the algorithm devised for a better comprehension:
Store the primary variable from previous time tn: Ln = (tni , p

n, dni , sl
n,An

elm,∆t
n+1, vn)

Set sln+1 = sln & tn+1 = tn

While (tn+1 ≤ tmax & sln+1 ≤ slmax)
Set j = 0
Set Ln+1

j = Ln

While(𝟋(ts,j , t
′
n,j)

n+1 ≤ 0 everywhere & j < jmax)
j = j + 1
Determine An+1

elm,j from Ln+1
j , i.e. elements for which 𝟋(ts,j , t

′
n,j)

n+1 ≥ 0
Set k = 0, ∆di,k = 0, ∆pk = 0
While(k ≤ kmax & err∆di > tol & err∆p > tol)
k = k + 1
Determine dn+1

i,k = dn+1
i,j +∆di,k

Build Vw, Vp, L, Npk with current deformations
Solve the system 5.40 to get ∆ds,k+1 and ∆pk+1

Calculate new pressure pn+1
k+1 = pn+1

k +∆pk+1

Calculate new increment of opening DD ∆dn,k+1 using flow rule
Calculate new stress state along the fault via elasticity equations and 5.41
Under relaxation:

∆pk+1 = (1− ω)∆pk + ω∆pk+1 & ∆di,k+1 = (1− ω)∆di,k + ω∆di,k+1

Compute errors on increments

err∆di = ||∆di,k+1 −∆di,k||/||∆di,k+1|| and err∆p = ||∆pk+1 −∆pk||/||∆pk+1||

Update: ∆di,k = ∆di,k+1 & ∆pk = ∆pk+1

End while
Set new trial solution Ln+1

j+1 = (tn+1
i,k , pn+1

k , dn+1
i,k , sln,An+1

elm,j ,∆t
n+1, vn)

Determine An+1
elm,j+1 from Ln+1

j+1

Determine sln+1 from An+1
elm,j+1

Update Ln+1
j = Ln+1

j+1

End while
Calculate vn+1 = sln+1−sln

∆tn+1 via finite difference.
Calculate new time step ∆tn+2

Update variables, i.e. Ln = Ln+1
j+1

End while
Algorithm 1: Fully implicit H-M solver for frictional fluid driven crack.

In the Algorithm 1, slmax is the extension of the whole fault, jmax is the maximum number of iterations
for the determination of shear crack position and ω is the under-relaxation parameter (0 ≤ ω ≤ 1).

5.8.2 Verification of the numerical scheme: benchmark for the non-dilatant case
The governing problem is uncoupled when elasticity does not affect fluid flow along the fault and vice-
versa. This scenario occurs for a non dilatant fault, i.e. when the fault hydraulic aperture does not
change during crack propagation, i.e. wh = ωo. The pore pressure evolution in such a case is given
by the solution of the linear diffusion equation in a fault characterized by constant hydraulic diffusivity

α =
kf
µβ

(Carslaw & Jaeger 1959):

p (x, t) = po +∆P · Erfc
∣∣∣∣ x√

4αt

∣∣∣∣ (5.43)

This pore pressure evolution along the fault is linked to elasticity through the shear weakening Mohr-
Coulomb criterion (one way coupling): the change of local effective normal stress associated with pore
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Figure 5.13: Benchmark of numerical results against semi-analytical ones of Garagash & Germanovich
(2012) in terms of time evolution of normalized half crack length a/aw and normalized peak slip δ/δw at
x = 0, for a non-dilatant fault subjected to moderate overpressure ∆P/σ′

o = 0.5 and three initial stress
conditions: i) τo/τp = 0.75 (unstable fault), ii) τo/τp = 0.55 (ultimately stable fault) and iii) τo/τp = 0.51

(ultimately stable fault). The friction weakening ratio is
fr
fp

= 0.6, so that
δr
δw

= 0.4. The red dots denote

the nucleation/onset of an unabated dynamic rupture, whereas the red arrows denote the nucleation of
dynamic event followed by an arrest.

pressure increment reduces locally the fault frictional strength, affecting in turn elasticity.

Garagash &Germanovich (2012) investigated extensively this particular case. Semi-analytical results
are thus available, allowing to verify the numerical scheme. This is of great importance for these kind
of non-linear (coupled) problems. Indeed, the dynamic instability that may occur during shear crack
propagation due to weakening nature of friction coefficient may lead to numerical errors.

We show in Figure 5.13 the benchmark of our numerical results against the semi-analytical ones of
Garagash & Germanovich (2012), both in terms of dimensionless half-crack length a/aw and dimension-
less peak slip accumulated in the middle of the fault δ|x=0/δw. Notably, we chose three scenarios by

changing the stress criticality τo/τp, while keeping a moderate over-pressure
∆P

σ′
o

= 0.5 and a friction

weakening ration of fr/fp = 0.6, in order to test the numerical solver for different regimes of propagation:
i) purely aseismic slip (τo/τp = 0.51), ii) aseismic crack propagation with nucleation and arrest of dynamic
event (τo/τp = 0.555) and iii) aseismic slip followed by an unabated dynamic rupture (τo/τp = 0.75). We
can observe in Figure 5.13 that our numerical results match perfectly with the semi-analytical ones of
Garagash & Germanovich (2012). The discrepancy in terms of half-crack length a/aw between the nu-
merical solutions and the semi-analytical ones is of the order of the element size h, the latter adopted
such to have 25 elements within the frictional weakening zone (i.e. aw/h = 25 - see the mesh conver-
gence study reported in the following pages for relative error estimation). In Figure 5.14, the benchmark
in terms of normalized slip δ/δw and shear stress τ/τp profile is reported (only for the case of aseismic
crack propagation with nucleation and arrest of dynamic event). Again, we observe that the numerical
results match the semi-analytical results of Garagash & Germanovich (2012) with good accuracy.

All the numerical results in terms of time evolution of half crack length a/aw show a step-like behaviour.
This is intrinsically related to the modeling of the fault as a sum of adjacent finite elements of equal size h.
Indeed, in one increment of time, the pore pressure perturbation might not be enough to activate further
elements - i.e. to induce 𝟋 (τ, σ′

n) = 0. Time-stepping management as well as mesh resolution play an
important role on this kind of step-like crack propagation. For a given increment of time ∆t, the finer is
the mesh the smaller are these steps. A local dynamic mesh refinement at the crack tips can reduce
significantly this behaviour, although the computational cost might considerably increase.
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Figure 5.14: Benchmark of numerical results against semi-analytical ones of Garagash & Germanovich
(2012) in terms of normalized slip δ/δw and shear stress τ/τp profiles, for a non-dilatant ultimately stable
fault subjected to moderate over-pressure ∆P/σ′

o = 0.5. The stress criticality is τo/τp = 0.55 and the
friction weakening ratio is fr/fp = 0.6.

5.8.3 Mesh convergence study

In order to check the accuracy of our numerical results, we have performed a mesh convergence study.
Similarly to cohesive zone models for fracture propagation, the non linearity of the problem lies in a small
zone near the crack tips. As already mentioned in section 5.2.1.2, such a small zone is approximately
defined by the characteristic nucleation length-scale aw, over which the friction coefficient weakens from
a peak value to its residual value during crack propagation. It is of great importance, therefore, to have
enough mesh resolution within that length-scale so as to be able to capture the non-linearity with good
accuracy. A local dynamic mesh refinement at the crack tips can help in doing it, although the computa-
tional cost might considerably increase.

Since semi-analytical results of Garagash & Germanovich (2012) for non-dilatant frictional weakening
fault are available, we have performed a mesh convergence study for the following test case: ultimately
stable fault τo/τp = 0.55 (for a friction weakening ratio of fr/fp = 0.6), subjected to moderate overpres-

sure
∆P

σ′
o

= 0.5 (and
ϵd
βσ′

o

= 0. - no dilatancy, uncoupled problem). Notably, we run bunch of simulations

with the same initial configuration, while changing the total number of equal-sized elements (of size h)
in a given mesh. The nucleation length-scale aw is thus fixed for all the simulations (as it depends on
friction weakening length-scale δw, initial stress conditions and elastic property of the medium, which are
kept constant for all the simulations), while the element size h varies. In this way, we investigated the
fault response in terms of half-crack length a/aw and peak slip at the middle of the fault δ|x=0/δw as a
function of the ratio aw/h, which indicates the number of elements within the non-linear length-scale.

Figure 5.15 shows the relative error in terms of normalized peak slip δ|x=0/δw at a given normalized
time

√
4αt/aw = 2., between the numerical results and the semi-analytical result of Garagash & Ger-

manovich (2012), as a function of the number of elements within the nucleation length-scale aw. We
observe, not surprisingly, that the higher is the number of elements withing aw, the lower is the relative
error. For aw/h > 25, the relative error is below 1%, up to reach 0.1% for aw/h = 50. The non-monotonic
decrease of the relative error for increasing values of aw/h is related to step-like behaviour of the nu-
merical solutions that inevitably appear for low values of aw/h (already discussed in section 5.8.2). This
intrinsic behaviour is, in fact, more pronounced for decreasing values of aw/h, for which the accuracy
deteriorates considerably.
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Figure 5.15: Evolution of relative error in terms of normalized peak slip δ|x=0/δw at normalized time√
4αt/aw = 2, as a function of number of elements within the nucleation length scale aw. The test

case investigated is a non-dilatant ultimately stable fault (τo/τp = 0.55 and fr/fp = 0.6), subjected to

moderate overpressure
∆P

σ′
o

= 0.5. Semi-analytical results of Garagash & Germanovich (2012) in terms

of normalized half crack length and peak slip at the fault center are available, allowing to calculate the
relative error.

5.8.4 Case of otherwise unstable fault τo > τr - Nucleation and Arrest

In the case of zero dilatancy, for unstable fault with relatively low stress criticality, under moderate over-
pressure (region 4,b in Figure 5.3), a finite seismic episode occurs prior to the nucleation of dynamic
rupture. We investigate the effect of different dilatancy in such a configuration (τo/τp = 0.65, ∆P/σ′

o =
0.5, fr/fp = 0.6). Figure 5.16 displays the time evolution of crack length and peak slip for different level
of dilatancy.

Interestingly, the ’transient’ seismic episode which is linked to the fact that the fluid front is ini-
tially ahead of the slipping patch (see Figure 5.17 - comparison between pore pressure and slip pro-
file at

√
4αt/aw = 0.5) does not disappear even for a dilatancy larger than the theoretical critical value

ϵd,c/βσ
′
o = 1/12 in this case. Indeed such a seismic episode occurs with little accumulated slip and its

nucleation is not influenced by residual friction: in such cases, the maximum dilatancy is not mobilized
and no undrained strengthening of the fault occur. This can well be grasped by looking at the pore pres-
sure profiles in Figure 5.17 at dimensionless time

√
4αt/aw = 1, i.e. at a given time after the arrest of the

seismic episode. The pore pressure drop is not fully developed due to the limited slip rate associated
with crack propagation. However, the subsequent re-nucleation is increasingly delayed as the dilatancy
increases (see Figure 5.16 for

ϵd
βσ′

o

= 0.05) and do not occur for values of dilatancy equal of above the

critical value (case of
ϵd
βσ′

o

= 1/10). Note that for such configurations, the nucleation of the unabated

dynamic rupture occurs when a significant portion of the crack size is at residual friction, the weakening
zone is small and confined near the tip (see friction coefficient profile in Figure 5.17 at

√
4αt/aw = 2.2 -

case of
ϵd
βσ′

o

= 0.05). In such cases, the s.s.y assumption is valid, the maximum dilatancy is active and

the theoretical estimate for the critical dilatancy / undrained shear strength is valid.
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Figure 5.16: Evolution of normalized half crack length a/aw and normalized peak slip δ|x=0/δw with nor-
malized time

√
4αt/aw for a frictional weakening dilatant fault. The fault is subjected to an initial uniform

background shear stress τo/τp = 0.65 (unstable fault in the non-dilatant case for a friction weakening
ratio of fr/fp = 0.6 - with relative low stress criticality though) and a moderate constant over-pressure
∆P

σ′
o

= 0.5 applied in the middle of the fault. Two dimensionless dilatancy parameters are considered:
ϵd
βσ′

o

= 0.05 <
τo
τr

− 1 =
ϵd,c
βσ′

o

and
ϵd
βσ′

o

= 0.1 >
τo
τr

− 1 =
ϵd,c
βσ′

o

. Grey dotted lines denote semi-analytical

results of Garagash & Germanovich (2012), whereas red dots denote nucleation of dynamic rupture.

5.8.5 Approximated solution for quasi-static growth assuming a ∝
√
4αt

The numerical results showed in section 5.5.1 and 5.5.2 suggest that when the shear crack propagation
is stable for large crack length, it appears to be synchronized with the fluid front position: i.e. a = γ

√
4αt

for a≫ aw - at least for the constant permeability case. Following the approximated small scale yielding
solution obtained for the non-dilatant case (Garagash & Germanovich 2012), we make some further
assumptions in order to extend it to account for dilatancy. The main difficulty lies in the determination
of the pore-pressure changes in the dilatant case. With an approximated pore-pressure perturbation
solution in hand, we can use the small scale yielding approximation of the fracture energy 5.23 and the
expression of the stress intensity factor 5.25 to estimate γ from the quasi-static propagation condition.

We make from the onset the hypothesis that a = γ
√
4αt, and that the permeability remains constant

with slip. We further assume that the increment of hydraulic width with dilatancy is rather small such that
wkf ≈ wokf . In other words, we assume the fault hydraulic conductivity to remain constant. Under the
small scale yielding approximation, we approximate the sink term due to dilatancy by two moving sink of
intensity ϵd at the crack tips.

By scaling the variables of equation 5.14 with the following characteristic scales

Π = p(x,t)
∆P , ξ = x

ℓd(t)
, γ = a

ℓd(t)

where ℓd =
√
4αt, the fluid flow equation reduces to the following ODE when γ is assumed to remain

constant

− 1

4

∂2Π

∂ξ2
− 1

2
ξ
∂Π

∂ξ
+

1

2
ξ · ϵd

β ·∆P
· (δdirac (ξ − γ) + δdirac (ξ + γ)) = 0 (5.44)

We note in the previous equation 5.44 the presence of twomoving sink terms that represent the undrained
fault response occurring at small end zone of crack tips. With the following dimensionless boundary
conditions

Π(0) = 1, Π(∞) = 0, (5.45)
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Figure 5.17: Spatial profiles of dimensionless pore pressure (a), friction coefficient (b), slip (c) and
effective normal stress (d) at different (normalized) time snapshots, for an otherwise unstable fault
(τo/τp = 0.65 - relative low stress criticality for fr/fp = 0.6), subjected to a moderate over-pressure
∆P

σ′
o

= 0.5. Two dimensionless dilatancy parameters are considered:
ϵd
βσ′

o

= 0.05 <
τo
τr

− 1 =
ϵd,c
βσ′

o

and
ϵd
βσ′

o

= 0.1 >
τo
τr

− 1 =
ϵd,c
βσ′

o

. Red lines refer to numerical results at nucleation time of an unabated

dynamic rupture.
equation 5.44 can be solved analytically:

Π(ξ, γ) = 1− Erf(ξ)− eγ
2√
πγΓd·

(−Erf(γ) (1 + Erf(ξ)) + (Erf(γ)− Erf(ξ)) ·H(−γ + ξ) + (Erf(γ) + Erf(ξ)) ·H(γ + ξ)) , (5.46)
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Figure 5.18: Comparison between numerical results and results associated with approximated solution
for quasi-static crack growth (a ∝

√
4αt) in terms of time evolution of normalized half-crack length a/aw.

The case investigated is a critically stressed fault (τo/τp = 0.75), subjected to moderate over-pressure
∆P/σ′

o = 0.5 and two values of dimensionless dilatancy parameter
ϵd
βσ′

o

= 0.25− 0.3.

where H is the Heaviside step function and Γd =
ϵd

β ·∆P
=

ϵd
βσ′

o

σ′
o

∆P
is a dimensionless parameter

capturing the effect of the undrained pore pressure drop with respect to the injection fluid over-pressure.
Note that the dimensionless over-pressure at the tip simplify to:

Π(γ, γ) = Erfc (γ)
(
1− γ

√
π eγ

2

ΓDErf (γ)
)

(5.47)

Equation 5.46 thus allows to calculate analytically the SIF (through equation 5.25):

KII = τp
√
ℓd ×

(√
π

(
τo
τp

− fr
fp

)
+
fr
fp

∆P

σ′
o

∆kII(γ,Γd)

)
(5.48)

∆kII(γ,Γd) =
√
π − 4γ

π

(
1 + γ

√
π eγ

2

ΓDErfc (γ)
)

pFq({1/2, 1}, {3/2, 3/2},−γ2) (5.49)

where pFq denotes the generalized hypergeometric function. Note that interestingly, in the limit of large
crack length (i.e. large γℓd), we recover the exact same limit than the simpler approximation of the
superposition of a point source with an uniform undrained pore-pressure drop used in section 5.3.2.2:

lim
a→∞

KII = ∞
(
τo −

ϵd
βσ′

o

fr − τr

)
= ∞ (τo − τur ) , (5.50)

and therefore the same critical value of dilatancy 5.27 required to stabilize an otherwise unstable fault.
Under such a small scale yielding approximation, assuming that the over-pressure is uniform in the

weakening zone and equal to its value at the crack tip, the fracture energy Gc (see eq. 5.23) can be
approximated as

Gc = (fp − fr)
δrσ

′
o

2

(
1− ∆P

σ′
o

×Π(γ, γ)

)
(5.51)
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Figure 5.19: Comparison between numerical results and results associated with approximated solution
for quasi-static crack growth (a ∝

√
4αt) in terms of pore pressure profiles. The case investigated is

a critically stressed fault (τo/τp = 0.75), subjected to moderate over-pressure ∆P/σ′
o = 0.5 and a di-

mensionless dilatancy parameter
ϵd
βσ′

o

= 0.3. The relative (and constant) position between crack tip and

fluid front (γ =
a

ℓd(t)
) is 2.48 and 3, which correspond to a dimensionless time of

√
4αt/aw = 1 and

√
4αt/aw = 2, respectively.

The quasi static propagation condition (24) can thus be re-written as:

aw
ℓd

(
fp − fr
fp

)2(
1− ∆P

σ′
o

×Π(γ, γ)

)
=

{√
π

(
τo
τp

− fr
fp

)
+
fr
fp

∆P

σ′
o

∆kii(γ,Γd)

}2

(5.52)

The previous equation can be solved for γ for a given set of problem parameters (τo/τp, fr/fp, ∆P/σ′
o, ϵd/(βσ

′
o))

and a given value of aw/ℓd. Although, we made the assumption of a time-independent γ to obtain the
pore-pressure profile, we can relax it to see its evolution with aw/ℓd. The obtained approximated solution
captures the order of magnitude of the aseismic shear crack propagation as can be seen on Figure 5.18.
However, it is not precise enough essentially due to i) the impact of the change of hydraulic conductivity
with slip which prevent to properly captured the pore-pressure profile (as can be seen on Figure 5.19)
and ii) the fact that the pore-pressure is clearly not uniform in the weakening zone which impact the
estimation of the fracture energy in the small scale assumption.

5.8.6 Dilatancy effect on purely aseismic crack propagation
In Figure 5.20 we show the numerical results for an ultimately stable dilatant fault (τo/τp = 0.55) sub-
jected to large overpressure ∆P/σ′

o = 0.75. The dilatancy ratio ϵd/βσ′
o varies in order to investigate the

effect of dilatancy during the aseismic crack propagation. As one can observe from the time evolution of
half-crack length a/aw or from the time evolution of peak slip δ|x=0/δw, dilatancy slows down the aseis-
mic propagation. Although the undrained fault response is not well pronounced at crack tips due to its
aseismic propagation, it is enough to further slow down the crack velocity.

5.8.7 Effect of shear-induced permeability changes: case of effective stress-
dependent permeability

We report in Figure 5.21 the numerical results in terms of half crack length a/aw and peak slip δ|x=0/δw
at the centre of a critically stressed fault (τo/τp = 0.75) as function of normalized time

√
4αt/aw, both

obtained using the effective stress-dependent permeability law 5.29. The normalized dilatancy ratio
ϵd
βσ′
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Figure 5.20: Dilatancy effect on normalized crack length a/aw and peak slip δ/δw at x = 0 for a frictional
weakening fault subjected to large overpressure ∆P/σ′

o = 0.75. The fault is ultimately stable in the
hypothetical absence of dilatancy as the uniform background shear stress τo = 0.55 · τp is lower than the
fault residual strength at ambient conditions τr, for a friction weakening ratio of fr/fp = 0.6. Under such
stress criticality and large over-pressure, the fault always exhibits seismic crack propagation (zone 3 of
Figure 5.3). However, the crack velocity slows down for increasing values of dimensionless dilatancy
parameters.

Figure 5.21: Effect of permeability increase on a critically stressed (τo/τp = 0.75, fr/fp = 0.6) dilatant
fault in terms of time evolution of normalized half crack length a/aw and peak slip δ|x=0/δw. The dimen-
sionless dilatancy parameter ϵd/(βσ′

o) is taken here equal to the critical stabilizing value 0.25. Under
such conditions a fault with constant fault permeability kf = ω2/12, subjected to moderate overpres-
sure ∆P/σ′

o = 0.5, never exhibit seismic slip. An effective stress-dependent permeability law has been
considered (kf = k∗e

(−σ′/σ∗)), with four different ratios of σ′
o/σ∗ spanning low and large permeability

increase.

is kept constant at critical stabilizing value 0.25 as well as the overpressure at injection point ∆P/σ′
o at

the moderate value 0.5, whereas the dimensionless ratio σ′
o/σ∗ varies in order to span low and large

fault permeability increase during shear crack propagation (by calibrating different values of k∗).
As already mentioned in section 5.6, these numerical results are qualitatively similar to the ones of Figure
5.11. Large increase of permeability associated with strong reduction of effective normal stress enhance
the crack velocity, but the crack propagation always remains quasi-static. The peak slip that the fault can
experience is always aseismic even for large increase of fault permeability (see Figure 5.22-right, case
σ′
o/σ∗ = 8.).
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In Figure 5.22 the profiles of normalized pore-pressure, slip, friction coefficient, effective normal stress
and permeability are reported, all obtained at normalized time snapshot

√
4αt/aw = 0.4. Although the

maximum permeability in the case of σ′
o/σ∗ = 8 is nearly two order of magnitude larger than its initial

value at ambient conditions, the undrained fault response at crack tips remains strong, preventing the
crack velocity from diverging.
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Figure 5.22: Spatial profiles of dimensionless pore pressure, friction coefficient, slip, effective nor-
mal stress and fault longitudinal permeability (in linear-log scale) at a given normalized time snapshot√
4αt/aw = 0.4, for unstable fault (τo/τp = 0.75 - fr/fp = 0.6), subjected to a moderate over-pressure

∆P

σ′
o

= 0.5 and a dimensionless dilatancy parameter equal to the critical value, i.e.
ϵd,c
βσ′

o

= 0.25. The differ-

ent numerical results are obtained with different fault permeability evolution laws: i) constant permeability

kf =
ω2
o

12
, ii) effective stress-dependent permeability law kf = k∗ · e(−σ′/σ∗), with σ′

o/σ∗ = 1− 2− 5− 8.
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Chapter 6

Conclusions and perspectives

We summurize here the achievements of this project, what remains to be done to achieve the final goals
and discuss perspectives with respect to the use of the developed tools.

Achievements

1. 2D and 3D efficient BEM solvers for fracture mechanics problem with an extensive suite of veri-
fication tests. The use of hierarchical matrices allows to perform simulation with a large number
of unknowns and thus model realistic geological configurations (e.g. with a large number of pre-
existing fractures).

2. Finite volume solver for flow in a 2D pre-existing fracture network.

3. 2D hydromechanical solver for the simulation of hydraulic stimulation of a pre-existing fracture net-
works (with the restriction of no change of permeability during slip). This solver can help testing
scenario for the re-activation of a fractured rock mass depending on stress and fracture/joint fric-
tional properties (critically stressed versus marginally pressurized, effect of DFN statistics etc )
and directly provide qualtitative estimate of micro-seismic activity location. This solver use a fully
implicit scheme.

4. 2D fully coupled hydromechanical solver for injection/ pressurization of a planar fault -include the
effect of dilatancy on the nucleation of dynamic rupture. This solver use a fully implicit scheme.

Remaining work

1. Development of a solver for flow in a 3D pre-existing fracture network. This implies the development
of 2D finite element lubrication type solver with variable fracture flow transmissivity.

2. Finalization of a fully coupled hydromechanical solver for the stimulation of a pre-existing fracture
network including permeability changes and further growth of fractures in 2D. Two options are
possible to reach this goal and both are worth testing: i) enhance the one-way coupled implicit
solver which would results in a large tangent system (and require the development of a specific
iterative solver and the corresponding preconditioners), ii) explore the computational efficiency of
a fully explicit scheme (which require limited implementation effort but would necessarily need the
use of very small time-steps). Additionally, an algorithm for the further propagation of fractures
(following the one described in Nikolskiy et al. (2019)) can be then plugged in.

3. Development of a fully coupled hydromechanical solver for the stimulation of a pre-existing fracture
network including permeability changes in 3D. Here, the alogrithm developped for the 2D one-way
coupled solver could be directly extended to 3D once the flow solver is available (point 1 above).
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Outlook
The 2D one-way coupled hydromechanical solver (keeping in mind its restriction of constant flow trans-

missivity) can readily be used to test field injection scenario and also revisit documented field tests. When
available, the 3D version will further enhance the possible configurations that can be modelled and open
the door to quantitative comparison with laboratory experiments, mid-scale field experiments (such as
the ones planned in the Bedretto underground lab) as well as large scale injection (e.g. Haute-Sorne
project).
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Volterra edge dislocation in plane
elasticity

We recall the derivation of the solution of a edge dislocation in plane elasticity - see e.g. Nemat-Nasser &
Hori (1999) for more details. In the absence of body forces, the balance of momentum in plane elasticity
reduces to:

σ11,1 + σ12,2 = 0

σ12,1 + σ22,2 = 0

For an isotropic material of shear modulus G and Poisson’s ratio ν, the constitutive relations reduce to:

2Gϵ11 =
κ+ 1

4
σ11 +

κ− 3

4
σ22

2Gϵ22 =
κ− 3

4
σ11 +

κ+ 1

4
σ22

2Gϵ12 = σ12

where κ = 3− 4ν is the plane-strain Kolosov constant (κ = (3− ν)/(1+ ν) in plane-stress). It is usual to
define the Airy’s stress function U such that

σ11 = U,22

σ22 = U,11

σ12 = − U,12

The elastic Beltrami-Mitchell equations then reduce to:

∇4U = 0

It is convenient to use complex variables:

z = x1 + ıx2

z̄ = x1 − ıx2

such that x1 = z+z̄
2 and x2 = − ı

2 (z − z̄), and the derivatives become:

∂x1 = ∂z + ∂z̄

∂x2 = ı (∂z − ∂z̄)

∂x2
1

= ∂z2 + ∂z̄2 + 2∂zz̄

∂x2
2

= − ∂z2 − ∂z̄2 + 2∂zz̄

∂x1x2 = ı (∂z2 − ∂z̄)
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The bi-harmonic function U can thus be expressed in terms of two analytic functions (Muskhelisvhili’s
potentials):

U = Re

{
z̄ϕ(z) +

∫ z

ψ(z′)dz′
}

such that the stresses components are given by:

σ11 + σ22 = 4Re {ϕ′(z)}
σ22 − σ11 + 2ıσ12 = 4 (z̄ϕ′′(z) + ψ′(z))

while the displacement are given by:

2G(u1 + ıu2) = κϕ(z)− zϕ̄′(z)− ψ̄(z)

Moreover the resultant t = t1 + ıt2 along an arc AB (F =
∫
σijnj)) is given by:

t = −(ϕ+ zϕ̄′ + ψ̄)

.
Setting ϕ = A ln z and ψ = B ln z, the displacement and traction around a loop surrounding the origin

gives:

t1 + ıt2 = 2π(A− B̄) = 2π(A1 −B1) + 2πı(A2 +B2)

2G(u1 + ıu2) = 2πı(−κA2 +B2) + 2πı(κA1 +B1)

Note that we can therefore obtain the solution of a dislocation where for such a loop surrounding the
origin, t1 + ıt2 = 0 and u1 + ıu2 = b1 + ıb2 as well as the solution for a point force (t1 + ıt2 = P1 + ıP2

and u1 + ıu2 = 0):

• Point force

A1 =
P1

2π(κ+ 1)
A2 =

P2

2π(κ+ 1)

B1 = − κP1

2π(κ+ 1)
B2 =

κP2

2π(κ+ 1)

• Edge dislocation

A1 =
b2G

2π(κ+ 1)
A2 = − b1G

2π(κ+ 1)

B1 =
b2G

2π(κ+ 1)
B2 =

b1G

2π(κ+ 1)

Dislocation solution
The solution for a dislocation at the origin (dislocation in [0,∞[) with a Burgers vector b = b1 + ıb2

1 is
given by the following potentials (see e.g. Nemat-Nasser & Hori (1999), Barber (1992)):

ϕ = − ıGb

π(κ+ 1)
log z ψ =

ıGb̄

π(κ+ 1)
log z

The stresses induced by such a dislocation can be schematically written as follow (Hills et al. 1996):

σij = sijkbk

1Note that the convention for dislocation is of positive b1 for an overlap / positive stress in tension.
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where e.g. sij1 are the σij stresses due to a ’glide’ dislocation (b2 = 0, shear dislocation along x2 = 0),
and similarly sij2 denotes the stresses due to a ’climb’ dislocation (b1 = 0, opening dislocation cut along
x2 = 0). The fundamental solution sijk is given by:

sijk =
2G

π(κ+ 1)
hijk =

E′

4π
gijk

h111 =
−x2(3x21 + x22)

r4
h112 =

x1(x
2
1 − x22)

r4

h221 =
x2(x

2
1 − x22)

r4
h222 =

x1(x
2
1 + 3x22)

r4

h121 =
x1(x

2
1 − x22)

r4
h122 =

x2(x
2
1 − x22)

r4

h221 = h122 h121 = h112

The relations between the different components of hijk can be exploited to reduce computational cost.
This dislocation solution is then integrated analytically for a linear variation of displacement discontinuity
over a finite segment. We do not list here these integrals - they have been derived using Mathematica
analytical capabilities and then coded up in C++.
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3D dislocation solutions

Solution in 3D do also exist. Restricting to the elastic full space, the infinitesimal dislocation loop solu-
tion can be found in Hills et al. (1996). The solution for a bounded displacement discontinuity over a
planar area can be found in Rongved, L. (1957) among others. See also Nikolskiy et al. (2015, 2016),
Mogilevskaya & Nikolskiy (2014) for quadratic triangular displacement discontinuity element and ref-
erences therein. Solutions for the isotropic half-space, transversely isotropic halfspace do also exist
(Steketee 1958, Pan et al. 2014, among many others).

Triangular quadratic element We have implement the quadratic triangular displacement discontinuity
element described in Mogilevskaya & Nikolskiy (2014), Nikolskiy et al. (2015)
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