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Abstract
This thesis focuses on developing efficient algorithmic tools for processing large datasets. In

many modern data analysis tasks, the sheer volume of available datasets far outstrips our

abilities to process them. This scenario commonly arises in tasks including parameter tuning

of machine learning models – e.g., Google Vizier (Golovin et al., 2017) and training neural

networks (Goel et al., 2017). These tasks often require solving numerical linear algebraic

problems on large matrices, making the classical primitives prohibitively expensive. Hence,

there is a crucial need to develop efficient algorithms that can compress the available datasets,

while preserving their essential structure. In other important settings, even collecting the

input dataset is extremely expensive, making it vital to design optimal data sampling strategies.

This is common in applications such as MRI acquisition (Lustig et al., 2007), and spectrum

sensing in cognitive radio networks (Ghasemi and Sousa, 2008). The fundamental questions

above are often dual to each other, and hence can be addressed using the same set of core

techniques. Indeed, exploiting structured Fourier sparsity is a recurring source of efficiency in

this thesis, leading to both fast methods for numerical linear algebra and sample efficient data

acquisition schemes.

One of the main results that we present in this thesis is the first Sublinear-time Model-based

Sparse Fourier Transform algorithm. Our algorithm achieves a nearly optimal sample com-

plexity for recovery of every signal whose Fourier transform is well approximated by a small

number of blocks (e.g., such structure is common in spectrum sensing). Our method matches

in sublinear time the result of Baraniuk et al. (2010a), which started the field of model-based

compressed sensing. Another highlight of this thesis includes the first Dimension-independent

Sparse FFT algorithm that, computes the Fourier transform of a sparse signal in sublinear

runtime in any dimension. This is the first algorithm that just like the FFT of Cooley and Tukey

is dimension independent and avoids the curse of dimensionality inherent to all previously

known techniques. Finally, we give a Universal Sampling Scheme for the reconstruction of

structured Fourier signals from continuous measurements. Our approach matches the classi-

cal results of (Slepian and Pollak, 1961; Landau and Pollak, 1961, 1962) on the reconstruction

of bandlimited signals via Prolate Spheroidal Wave Functions and extends these results to a

wide class of Fourier structure types.

Besides having classical applications in signal processing and data analysis, Fourier tech-

niques have been at the core of many machine learning primitives such as Kernel Matrix

Approximation. The second half of this thesis is dedicated to finding compressed and low-rank
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Abstract

representations to kernel matrices, which are the primary means of computation with large

kernel matrices for kernel methods in machine learning. We build on techniques in Fourier

analysis and achieve spectral approximation guarantees to the Gaussian kernel using an opti-

mal number of samples, significantly improving upon the classical Random Fourier Features of

Rahimi and Recht (2008). Finally, we present a nearly-optimal Oblivious Subspace Embedding

for high-degree Polynomial kernels which leads to nearly-optimal oblivious embeddings of

the high-dimensional Gaussian kernel. This is the first result that does not suffer from an

exponential loss in the degree of the polynomial kernel or the dimension of the input point set,

providing exponential improvements over the prior work, including the TensorSketch (Pham

and Pagh, 2013) and application of the celebrated Fast Multipole Method of Greengard and

Rokhlin (1986) to kernel approximation problem.

Keywords: Sparse Fourier Transform, Numerical Linear Algebra, Block Sparsity, Kernel Low-

Rank Approximation, Random Fourier Features, Sketching, Oblivious Subspace Embedding
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Zusammenfassung
Diese These konzentriert sich auf die Entwicklung effizienter Algorithmen zur Verarbeitung

großer Datenmengen. Bei vielen modernen Datenanalyse Aufgaben übertrifft das breite Vo-

lumen der verfügbaren Datensätze unsere Fähigkeit sie zu verarbeiten, bei weitem. Dieses

Szenario tritt häufig bei Aufgaben auf, sowie beispielsweise bei der Parametereinstellung von

Modellen für maschinelles Lernen – e.g., Google Vizier (Golovin et al., 2017), Training neurona-

ler Netze (Goel et al., 2017). Diese Aufgaben erfordern häufig die Lösung numerischer linearer

algebraischer Probleme, wodurch die klassischen Algorithmen unerschwinglich langsam wer-

den. Daher besteht ein entscheidender Bedarf an der Entwicklung effizienter Algorithmen,

mit denen die verfügbaren breiten Datensätze komprimiert werden können, während der

Lösungsraum unserer Probleme annähernd unverändert bleibt. In anderen wichtigen Situa-

tionen ist sogar das Sammeln des Eingabedatensatzes extrem teuer, weshalb es wichtig ist,

optimale Datenstichprobenstrategien zu entwickeln. Dies ist häufig der Fall bei Anwendungen

wie der MRT-Erfassung (Lustig et al., 2007), der “Spectrum Sensing” in kognitiven Funknetzen

(Ghasemi and Sousa, 2008). Tatsächlich sind die oben genannten Herausforderungen bei

der optimalen Probensammlung und der optimalen Datenkomprimierung häufig doppelt

miteinander verbunden und können daher mit denselben Techniken angegangen werden.

In der Tat ist die Nutzung der Fourier-Struktur eine wiederkehrende Quelle der Effizienz in

unseren Arbeiten, die sowohl zu schnellen Methoden für die numerische lineare Algebra als

auch zu effizienten Datenerfassungsschemata führt.

Eines der Hauptergebnisse, das wir in dieser Arbeit präsentieren, ist der erste sublinea-

re Zeit modellbasierte Sparse-Fourier-Transformation. Unser Algorithmus erreicht eine na-

hezu optimale Abtastkomplexität für die Wiederherstellung eines Signals, dessen Fourier-

Transformation durch eine kleine Anzahl von Blöcken gut angenähert wird. Eine solche Struk-

tur ist beispielsweise bei der Spectrum Sensing in kognitiven Funknetzen üblich. Unsere

Methode entspricht in sublinearer Zeit dem Ergebnis von Baraniuk et al. (2010a), mit dem das

Gebiet der modellbasierten komprimierten Abtastung begonnen wurde. Ein weiteres Highlight

dieser These ist der erste dimensionsunabhängige Sparse-FFT-Algorithmus, der die Fourier-

Transformation eines Sparse-Signals in sublinearer Laufzeit in einer beliebigen Dimension be-

rechnet. Dies ist der erste spärliche FFT-Algorithmus, der genau wie der FFT-Algorithmus von

Cooley und Tukey dimensionsunabhängig ist und den Fluch der Dimensionalität vermeidet,

der in allen bisher bekannten Techniken innewohnt. Schließlich geben wir ein universelles Ab-

tastschema für die Rekonstruktion von Signalen mit strukturierten Fourier-Transformationen

aus kontinuierlichen Messungen. Unser Ansatz entspricht den klassischen Ergebnissen von
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Zusammenfassung

(Slepian and Pollak, 1961; Landau and Pollak, 1961, 1962) zur Rekonstruktion bandbegrenzter

Signale über Prolate Spheroidal Wave Functions und erweitert diese Ergebnisse auf eine breite

Klasse von Fourier-Strukturtypen (wobei die klassische Einstellung bandbegrenzter Signale

ein Sonderfall ist).

Neben den klassischen Anwendungen der Fourier-Transformation in der Signalverarbeitung

und Datenanalyse standen Fourier-Techniken im Mittelpunkt vieler Methoden des maschi-

nellen Lernens wie der Kernel-Matrix-Approximation. Die zweite Hälfte dieser Arbeit befasst

sich mit der Suche nach komprimierter und niedrigrangiger Näherung für Kernelmatrizen.

Solche komprimierten Darstellungen sind das primäre Berechnungsmittel mit breiten Ker-

nelmatrizen für Kernelmethoden beim maschinellen Lernen. Wir bauen auf Techniken der

Fourier-Analyse auf und erzielen spektrale Approximationsgarantien für den Gaußschen Ker-

nel unter Verwendung einer optimalen Anzahl von Stichproben, wodurch die klassischen

Random-Fourier-Features (eine der beliebtesten Methoden für Kernel-Approximationen mit

niedrigem Rang) erheblich verbessert werden. Schließlich präsentieren wir eine nahezu op-

timale Oblivious-Subspace-Embedding für den hochgradigen Polynomkern, die zu nahezu

optimalen Einbettungen des hochdimensionalen Gaußschen Kerns führt. Dies ist das erste

Ergebnis, das nicht unter einem exponentiellen Verlust des Grads des Polynomkerns oder der

Dimension des Eingabepunktsatzes leidet und exponentielle Verbesserungen gegenüber frü-

heren Arbeiten bietet, einschließlich TensorSketch (Pham and Pagh, 2013) und der Anwendung

der berühmten Fast-Multipole-Methode von Greengard and Rokhlin (1986).

Schlüsselwörter: Sparse-Fourier-Transformation, Numerische lineare Algebra, Block Schwach-

besetztheit, Kernel niedrigrangiger Näherung, Random-Fourier-Features, Sketching, Oblivious-

Subspace-Embedding
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Introduction

The design of efficient algorithms has always been at the core of computer science. The

unprecedented growth of scientific and Internet datasets over the past few decades necessi-

tates computational efficiency more than ever. Various notions of efficiency are of interest to

the computer science community, one of the most important of which is the computational

efficiency as time is a precious resource. Nonetheless, in general, efficiency can be measured

with respect to other metrics. In this thesis, we focus on developing “efficient” algorithmic

tools and techniques (in a broad sense) for solving large-scale problems in Signal Processing

and Machine Learning with provable, worst-case guarantees on their performance. In light of

this objective, we address the following two fundamental challenges in the field of big data

analysis, each targeting a different notion of efficiency:

Sample-efficient Estimation. In many modern data analysis tasks, collecting the input

dataset is extremely expensive, making it vital to design optimal data sampling strategies.

This is common in applications such as MRI acquisition (Lustig et al., 2007; Pruessmann

et al., 1999), and spectrum sensing in cognitive radio networks (Ghasemi and Sousa, 2008;

Baraniuk et al., 2010a; Hassanieh et al., 2014; Lin et al., 2011) as well as hyperparameter tuning

of machine learning models, where every data sample requires running a computationally

expensive training process – e.g., (Golovin et al., 2017; Hazan et al., 2018). These problems

typically reduce to learning an unknown function given some prior belief about the structure

of the function using the optimal number of samples. By far one of the most common ways to

impose structure on a function is through restricting its Fourier transform. Therefore, in many

scenarios, there is a crucial need to devise optimal sampling schemes for learning Fourier

structured functions – e.g., Fourier sparsity is a commonly studied structure.

Time/Memory-efficient Estimation. In other important data analysis settings, the sheer

volume of the available datasets far outstrips our abilities to process them. This scenario

commonly arises in tasks including parameter tuning of machine learning models (e.g., Google

Vizier (Golovin et al., 2017), a popular Google internal service for performing black-box

optimization), training neural networks (Goel et al., 2017), and Bayesian optimization (where

one seeks to maximize cumulative reward by balancing exploration and exploitation (Sutton

and Barto, 2018; Robbins, 1952; Srinivas et al., 2010)). These tasks often require solving
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numerical linear algebraic problems on typically large matrices, making the classical primitives

prohibitively expensive. Hence, there is a crucial need for developing efficient algorithms that

can compress the unwieldy datasets available, while approximately preserving their essential

structure.

The optimal sample collection and optimal data compression challenges above are often dual

to each other, and hence can be addressed using the same set of core techniques. Indeed,

exploiting structured Fourier sparsity is a recurring source of efficiency in this thesis, leading to

both fast methods for numerical linear algebra and sample efficient data acquisition schemes.

Fourier analysis is a major technical tool in many areas of computer science: applications

in signal processing (e.g. compression schemes such as JPEG and MPEG) are motivated

by the fact that Fourier transform concentrates the energy of natural signals, making them

compressible, in numerical linear algebra (e.g., sketching) it is applied as a fast method of

achieving anti-concentration of energy, and in many other areas it is a tool of choice due

to the availability of fast algorithms (Fast Fourier Transform, or FFT). In machine learning,

the Random Fourier Features method (Rahimi and Recht, 2008, test of time award winner at

NeurIPS’17) has been the de facto standard method for designing low-rank approximations to

kernel matrices. In all the above-mentioned applications, one usually applies the Fourier trans-

form to Fourier-sparse signals that furthermore often satisfy additional structural assumptions.

This thesis focuses on principled ways of exploiting structured sparsity in the above settings.

Following this, we summarize the contributions of this thesis and give a general outline of the

remaining chapters. We present our results in separate self-contained chapters that can be

read independently.

Overview of our Contributions

In this section, we give an overview of our results and techniques. The central focus of this

thesis is Fourier Sampling. First, we define the Fourier transform in the discrete regime, and

then we formulate our main contributions using this definition.

Definition 1 (Discrete Fourier transform). For every positive integers n and d and any function

x :Zd
n →C the Fourier transform of x is defined as the function x̂ :Zd

n →C given by,

x̂ f
def= ∑

t∈Zd
n

xt e−2πi f > t
n for every f ∈Zd

n .

In any applications of the Discrete Fourier Transform, the input signal x often satisfies sparsity

or approximate sparsity constraints: the Fourier transform x̂ of x has a small number of

coefficients k or is close to a signal with a small number of coefficients. To be precise, a

signal x is called k-sparse if its Fourier transform is supported on at most k frequencies, i.e.,

‖x̂‖0 ≤ k. In many applications, we often wish to reconstruct a sparse signal from a small

number of (inverse) Fourier samples. This is known as the sparse recovery problem, which
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aims at recovering a k-sparse signal x using a number of time domain samples that is nearly

linear in k. It was first shown in the celebrated work of Candes, Romberg, and Tao (Candès

et al., 2006a) that one can recover Fourier sparse signals seamlessly in any dimension with

high probability using optimal number of O(k log N ) samples, where N = nd is the size of

signal x. Their method works by observing the values of signal x on O(k log N ) i.i.d. uniform

samples from Zd
n and solving an `1 minimization program.

Underlying the analysis of Candès et al. (2006a) for showing that their sample optimal exact

sparse recovery method works, is the so-called Uncertainty Principle which says that it is

impossible to localize a signal both in time and frequency domains at the same time. Many

different versions of this principle have been studied since it was introduced by Heisenberg

(1930). The classical discrete uncertainty principle (Donoho and Stark, 1989), which has found

deep applications in signal processing, says that for any signal x and its Fourier transform x̂

the following holds,

‖x‖0 · ‖x̂‖0 ≥ N .

Additionally, it was shown by the seminal series of works of (Candès and Tao, 2006, 2005;

Donoho, 2006; Candès et al., 2006b) that robust recovery of approximately sparse signals

is possible by solving the same `1 optimization provided that the corresponding Fourier

measurement matrix satisfies a uniform notion of uncertainty principle known as the so-

called Restricted Isometry Property (RIP). In other words, if the Fourier matrix restricted to

the rows corresponding to the time domain samples satisfies the RIP of order 4k, then the

`1 minimization method stably recovers any approximately k-sparse signal with probability

one. A matrix A ∈Cq×n is said to satisfy the restricted isometry property (RIP) of order k with

constant δ for some δ ∈ (0,1), if for every vector y ∈Cn with ‖y‖0 ≤ k, it holds that

(1−δ)‖y‖2
2 ≤ ‖Ay‖2

2 ≤ (1+δ)‖y‖2
2.

By utilizing the results on RIP of Fourier matrices (Rudelson and Vershynin, 2008; Cheraghchi

et al., 2013; Bourgain, 2014; Haviv and Regev, 2017) it follows that picking O
(
k log2 k log N

)
rows of the Fourier matrix independently and uniformly at random results in a matrix that

satisfies the RIP of order k. Hence, robust recovery of an (approximately) Fourier sparse signal

is possible by observing its values on a subset of O
(
k log2 k log N

)
random points.

The `1 optimization and, in general, every currently known method that works based on

unstructured random samples has a slow superlinear, Ω(N ), runtime. On the other hand,

an exciting line of work on the Sparse Fourier Transform problem (Sparse FFT), developed

in the Theoretical Computer Science community, has been focused on achieving sublinear,

i.e., o(N ), runtime by using structured samples with limited independence. Very efficient

algorithms for the Sparse FFT problem have been developed in the literature. Initially, these

results were established for the purpose of demonstrating learnability of Boolean functions.

The first algorithms of this type were designed for the special case of Hadamard transform, i.e.,

the Fourier transform over the binary hypercube (Goldreich and Levin, 1989; Kushilevitz and

Mansour, 1993).
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Shortly thereafter, algorithms for the Sparse FFT in dimension one were proposed as well (Man-

sour, 1995; Gilbert et al., 2002; Akavia et al., 2003; Gilbert et al., 2005). All of those algorithms

are randomized and have a constant probability of success and the most efficient one (Gilbert

et al., 2005) computes the Sparse FFT in time k · (log N )O(1). Over the past few years, the topic

has been the subject of extensive research, resulting in many new developments including

the first deterministic algorithms (Iwen, 2010; Akavia, 2010), as well as the first practical al-

gorithm that outperforms the optimized software packages such as FFTW (Hassanieh et al.,

2012c). The fastest known algorithm for robust recovery of (approximately) k-sparse signals in

dimension one is due to Hassanieh et al. (2012b), and has a runtime of O
(
k log N log(N /k)

)
.

The recent works of Indyk et al. (2014); Kapralov (2016) also show how to achieve the optimal

sample complexity of O(k log N ), in linear time, or in time k · (log N )O(1) at the expense of

poly(loglog N ) factors. More recently, Kapralov (2017) showed that it is possible to achieve

the optimal sample complexity of O(k log N ) in time k · (log N )O(1) for robust recovery of one

dimensional signals. Moreover, recent works of Price and Song (2015); Chen et al. (2016) have

considered this problem in the continuous setting as well.

The main idea behind the aforementioned algorithms is designing Fourier measurements

of the signal x that can “hash” the dominant positions of x̂ into a number of “buckets”. The

number of buckets is chosen to be a constant factor larger than the sparsity k to ensure that a

constant fraction of the large elements of x̂ are isolated. The idea of hashing is implemented via

filtering: one designs a filter that approximates a bucket in the Fourier domain and additionally,

has a small support in time domain (the support size of the filter directly influences the

sample complexity, thus, it is critical to optimize this factor). The Aliasing Filter, whose time

domain representation is the Dirac comb, has optimal performance from the point of view

of uncertainty principle, i.e., the support size of an aliasing filter in time domain is exactly

equal to the number of buckets it implements in the Fourier domain. However, designing a

Sparse FFT algorithm based on aliasing filters is difficult because frequencies belonging to the

same multiplicative subgroup get hashed together if such filters are used (we will elaborate

more on this later), making it impossible to reason about isolation of individual frequencies.

Therefore, all prior works mentioned in the above paragraph use filters that ensure isolation of

frequencies, but at the expense of having suboptimal performance in terms of uncertainty

principle. For example, the filters constructed in Hassanieh et al. (2012b), have a time domain

support that is larger than k (the ideal support size) by a factor ofΘ(log N ) in dimension one.

This effect is even more pronounced in higher dimensions, resulting in a logd N loss in sample

and time complexities, causing all prior techniques to suffer from the curse of dimensionality.

One of our contributions is resolving this curse of dimensionality.

On a technical level, the curse of dimensionality that appears in all prior Sparse FFT techniques

is connected to a similar phenomenon observed in the state-of-the-art methods for the kernel

approximation problem. In particular, the application of the celebrated Fast Multipole Method

of Greengard and Rokhlin (1986) to kernel approximation problem, while very efficient in low

dimensions, suffers from an exponential loss in the dimensionality of the input datasets. A

notable contribution of this thesis is the first kernel approximation method that lifts the curse
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of dimensionality for the Polynomial and Gaussian kernels.

In what follows we outline our main contributions.

Sample-optimal Model-based Fourier Transform in Sublinear-time. In Chapter 1 we present

the first algorithm that achieves a nearly optimal sample complexity for recovery of signals

whose Fourier transforms are well approximated by a small number of blocks (such structure

is common in, for example, DNA microarrays (Stojnic et al., 2009), as well as spectrum sensing

in cognitive radio networks (Ghasemi and Sousa, 2008; Lin et al., 2011)). The Block-sparse

model was introduced by the seminal work of Baraniuk et al. (2010a), which started the field

of model-based compressed sensing. Although the model-based framework of Baraniuk et al.

(2010a) achieves an optimal sample complexity with non-adaptive algorithms, their result

uses Gaussian measurements which are very slow to work with. Surprisingly, in stark contrast

to the extensive work on exploiting model-based sparsity with general linear measurements,

for over a decade, there has been no existing algorithm exploiting such structure using Fourier

measurements. In this thesis we present the first such algorithm that runs in sublinear time.

Moreover, we show, in Chapter 1, that adaptivity is essential for obtaining the sample complex-

ity gains due to exploiting structure beyond sparsity, answering the important open question

on Model-based Restricted Isometry Property of Fourier measurement matrices negatively.

To be precise, a signal y : Zn → C is called (k0,k1)-block sparse if its support is the union of

k0 intervals of length k1. We give an algorithm that for any input signal x :Zn →C outputs a

signal χ̂ :Zn →C such that,∥∥x̂ − χ̂∥∥
2 ≤ (1+ε) min

ŷ is (k0,k1)-block sparse
‖x̂ − ŷ‖2

using O∗ (
k0k1 +k0 logk0 logn

)
accesses to x and similar runtime up to logn factors, which

matches the result of Baraniuk et al. (2010a), in sublinear time.

The number of permitted sparsity patterns by the block-sparse model is far lower than the

number of arbitrary sparsity patterns,
( n

k0k1

)
. One might hope that this restriction would

translate into a considerably stronger uncertainty principle for such structured signals, hence,

leading to a reduction in the sample complexity of recovery algorithms. However, this view is

not correct ‘as is’ because, the energy of a block-sparse signal that contains one block of length

k1 in the Fourier domain is very far from being uniform in the time domain and, in fact, can

be fully concentrated on a 1
k1

fraction of the time domain. Note that the uncertainty principle

intuitively works because a k-sparse signal is a superposition of k (pairwise orthogonal) single

tone waves in the time domain where the energy distribution of each single tone is completely

flat over the time, hence, their superposition cannot be too concentrated. On the other hand,

a (k0,k1)-block sparse signal is a superposition of k0 blocks, where the energy distribution

of each block in the time domain is very far from being flat, thus, one cannot hope that a

significantly stronger uncertainty principle would naively hold for block-sparse signals.
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The blocks of a block-sparse signal can behave very differently in time domain: the energy

of some blocks could be spread out over the time domain while the others are completely

concentrated in a specific region. So, by sampling the signal at any specific region of the time

domain, we can learn a nontrivial amount of information about a block only if a nontrivial

fraction of the energy of that block lies in that region. Consequently, in order to learn the

location of any specific block using optimal number of samples, our sampling distribution

must favor the time domain regions that contain a large fraction of the energy of that block. In

order to recover the signal, we need to distribute our samples such that for almost every block

we have enough number of samples from the regions that contain a nontrivial fraction of its

energy, and we have to do so without even knowing the energy distribution of the blocks in time

domain. We tackle this challenge by designing a novel energy-based importance sampling

scheme.

Dimension-independent Sparse Fourier Transform. Another highlight of this thesis, pre-

sented in Chapter 2, includes the first Dimension-independent Sparse FFT algorithm that

computes the Fourier transform of a sparse signal in sublinear runtime in any dimension. The

state-of-the-art in high dimensional sparse Fourier transform poses an interesting conundrum:

algorithms with optimal runtime are known for one dimensional discrete Fourier transform,

see (Hassanieh et al., 2012b), but in the multi-dimensional setting, the runtime scales ex-

ponentially in the dimension. Given that FFT itself is dimension-insensitive, this strongly

suggests that exciting new algorithmic techniques can be developed for the high-dimensional

version of the problem. In this thesis, we design the first approach to high dimensional Sparse

FFT that does not suffer from the curse of dimensionality.

More precisely, for any signal x :Zd
n →Cwhose Fourier transform is k-sparse, i.e., ‖x̂‖0 ≤ k, our

algorithm computes x̂ using k3 ·poly
(
log N

)
runtime and samples in any dimension d . This is

the first Sparse FFT algorithm that just like the FFT of Cooley and Tukey is dimension inde-

pendent, and avoids the curse of dimensionality inherent to all previously known techniques.

Recall that prior works on Sparse FFT have primarily focused on efficiently implementing

hashing-based ideas using Fourier measurements. The filters used for emulating the hashing

of the Fourier spectrum are, however, significantly suboptimal in high dimension causing the

prior techniques to suffer from the curse of dimensionality.

The main technical innovation that allows us to avoid exponential dependence on the dimen-

sion is a new family of filters for isolating a subset of frequencies in the Fourier domain for a

sparse signal x̂ using few samples in time domain. We refer to the family of filters as “adaptive

aliasing filters”. The aliasing filters have optimal performance in any dimension from the point

of view of the uncertainty principle. However, the presence of multiplicative subgroups in

Zd
n has been a hurdle in designing algorithms using these filters in the past because frequen-

cies that belong to the same subgroup get hashed together if such filters are used. This is

precisely the reason we needed to design an adaptive approach to find frequencies that can be

isolated cheaply using aliasing filters, leading to the first dimension-independent Sparse FFT
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algorithm.

Near-optimal Recovery of Signals with Simple Fourier Transforms. We set forth in Chap-

ter 3, a Universal Sampling Scheme for the reconstruction of structured signals from continu-

ous Fourier measurements. Classically, the most standard example of such Fourier structured

signals is the class of Bandlimited signals, meaning that the Fourier transform of the signal of

interest is only non-zero on frequencies contained in a bounded interval around the origin.

The seminal line of work by Slepian and Pollak (1961); Landau and Pollak (1961, 1962), who

presented a set of explicit basis functions known as the prolate spheroidal wave functions,

can be used to optimally interpolate bandlimited functions over a finite interval in time do-

main. It follows from the properties of these basis functions that the energy of a bandlimited

function is more concentrated towards the endpoints of an interval in the time domain than

the middle of the interval. Therefore, to efficiently interpolate a bandlimited function on an

interval, one needs to employ non-uniform sampling schemes that sample near the edges of

the interval more densely than the middle. Recall that this is in sharp contrast with the discrete

setting, where a uniform sampling distribution works optimally for recovering Fourier sparse

signals. Rokhlin et al. (2001) combines the prolate spheroidal wave functions with numerical

quadrature methods to obtain a very efficient method for bandlimited reconstruction.

While the aforementioned line of work is beautiful and powerful, in today’s world, we are

interested in far more general Fourier structures than bandlimited functions. For example,

there is a widespread interest in Fourier-sparse or Multiband (Block-sparse) signals. More

generally, in statistical signal processing, a prior distribution which is specified by some

probability measure is assumed on the frequency content of the signals of interest. However,

despite its clear importance, the problem of fitting continuous signals under the most common

Fourier transform priors is not theoretically well understood, even 50 years after the ground-

breaking work of Slepian, Landau, and Pollak on the bandlimited problem.

In this thesis, we address this problem far more generally. Formally, our algorithm solves the

following function fitting problem.

Problem 1 (Recovery of signals with constrained Fourier transforms). Given a known prob-

ability measure µ on R, define the inverse Fourier transform of a function g (ξ) with respect

to µ as
[
F∗
µ g

]
(t )

def= ∫
R g (ξ)e2πiξt dµ(ξ) for any t ∈ [0,T ]. Suppose we can observe y(t )+n(t ),

where n(t) is some fixed noise function and y =F∗
µ x for some frequency domain function

x(ξ). Then, for error parameter ε, our goal is to recover an approximation ỹ by observing

y(t )+n(t ) on a small number of points t1, t2, · · · tq ∈ [0,T ] satisfying,

‖y − ỹ‖2
T ≤ ε‖x‖2

µ+C‖n‖2
T ,

where ‖x‖2
µ

def= ∫
R |x(ξ)|2 dµ(ξ) and ‖z‖2

T
def= 1

T

∫ T
0 |z(t )|2d t , so that ‖y − ỹ‖2

T is our mean squared

error and ‖n‖2
T is the mean squared noise level. C ≥ 1 is a fixed positive constant.
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Surprisingly, we show that a universal non-uniform sampling strategy can be used to solve

the above problem using a number of samples proportional to the statistical dimension of the

allowed power spectrum µ. We prove that, in nearly all settings, this natural measure tightly

characterizes the sample complexity of signal reconstruction. Our approach matches the clas-

sical results of (Slepian and Pollak, 1961; Landau and Pollak, 1961, 1962) on the reconstruction

of bandlimited signals, and extends these results to a wide class of Fourier structure types

(with the classical setting of bandlimited signals being a special case).

Our main technical tool is an extension of a powerful result from the randomized numerical

linear algebra literature to continuous Fourier operators: every matrix contains a small subset

of columns that span a near-optimal low-rank approximation to that matrix. By extending this

result to continuous linear operators, we prove that the smoothness of a signal whose Fourier

transform has ‖x‖2
µ bounded is tightly captured by the smoothness of an O(sµ,ε)-Fourier sparse

function, where sµ,ε is the statistical dimension of class of functions that are constrained by

prior µ. This lets us reduce every Fourier prior to Fourier sparsity, thus, Problem 1 reduces to

recovery of Fourier sparse signals using a small number of continuous measurements in the

time domain. Now, a continuous version of the uncertainty principle plays a central role. By

this principle, a function that is O(sµ,ε)-sparse in the Fourier domain cannot be too spiky in

the time domain, therefore, Õ
(
sµ,ε

)
samples is sufficient for interpolating such functions to

high precision, hence, this recovery problem can be solved using Õ
(
sµ,ε

)
samples.

Near-optimal Random Fourier Features. Besides classical applications of the Fourier trans-

form in signal processing and data analysis, Fourier techniques have been at the core of many

machine learning primitives such as Kernel Matrix Approximation. The Random Fourier

Features method (Rahimi and Recht, 2008, test of time award winner at NeurIPS’17) has been

the de facto standard method for solving the kernel matrix approximation problem via Fourier

sampling. The second half of this thesis (Chapters 4 and 5) is mainly focused on finding

compressed and low-rank representations to kernel matrices, which are the most fundamental

and widely used structured objects in kernel-based learning.

More precisely, given a kernel matrix K ∈ Rn×n , defined as Ki , j
def= k(xi ,x j ) for an arbitrary

dataset x1,x2, · · ·xn ∈ Rd and kernel function k : Rd ×Rd → R, we aim at finding a low-rank

matrix Z ∈Rm×n with small m that spectrally approximates the regularized kernel K +λI – that

is1,

(1−ε) (K +λI ) ¹ Z>Z +λI ¹ (1+ε) (K +λI ) , for ε,λ≥ 0. (1)

Such compressed representations are the primary means of computation with large kernel

matrices for kernel methods. In Chapter 4, we build on techniques in Fourier analysis and

achieve spectral approximation guarantees to the Gaussian kernel using a (near) optimal

number of samples, m, which is nearly linear in the statistical dimension of the kernel matrix

– i.e., m =O(sλ log sλ), where sλ
def= tr

(
K (K +λI )−1), in any constant dimension, significantly

1For any two Hermitian matrices of order n, A and B we say that A ¹ B if B − A is positive semi-definite
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improving upon the classical random Fourier features of Rahimi and Recht.

The Fourier features method is essentially a consequence of the Bochner’s theorem: for any

shift invariant kernel function k(·), the kernel matrix can be decomposed as K =F∗ΣF where

F :Rn → L2
(
Rd

)
is the d-dimensional Fourier transform operator restricted to columns cor-

responding to the dataset x1,x2, . . .xn , that is, [Fα] (ξ)
def= ∑n

j=1α j · e−2πiξ>x j for every α ∈Rn

and ξ ∈ Rd , and Σ : L2
(
Rd

) → L2
(
Rd

)
is a diagonal operator whose diagonal is a probabil-

ity distribution corresponding to the Fourier transform of the kernel function k(·), that

is,
[
Σg

]
(ξ)

def= k̂(ξ) · g (ξ) for every g ∈ L2
(
Rd

)
and ξ ∈ Rd . The classical Fourier features

method (Rahimi and Recht, 2008) approximates the kernel matrix K =F∗ΣF by sampling

frequencies (diagonal entries of the operator Σ) according to the probability distribution k̂(ξ).

However, we prove that this sampling distribution is significantly suboptimal for achieving the

spectral approximation guarantee of (1).

It is a well-known fact in randomized numerical linear algebra that sampling the columns

of a discrete matrix according to the ridge leverage scores distribution works near-optimally

for achieving bounds of type (1) (with a number of samples that is nearly proportional to the

statistical dimension of the matrix). First, we extend the ridge leverage scores sampling results

to continuous operators. Then, we propose a simple distribution that tightly upper bounds the

ridge leverage scores of the operatorΣ1/2F , and sample the Fourier features from it. Intuitively,

the leverage score of a frequency ξ, measures how much the energy of a function that is in

the column span of the restricted Fourier operator Σ1/2F can be concentrated on frequency

ξ. Our main technical contribution is to reformulate the leverage score as the solution of

two dual optimization problems. Then, by carefully constructing suitable test functions that

have (nearly) optimal performance from the uncertainty principle viewpoint, we are able to

give tight upper and lower bounds on the ridge leverage scores, and correspondingly on the

sampling performance of classical and our modified Fourier features sampling.

Oblivious Sketching of High-degree Polynomial Kernels. Finally, another highlight of this

thesis is a nearly-optimal Oblivious Subspace Embedding for the high-degree Polynomial

kernel. The state-of-the-art method on sketching the Polynomial kernel is the TensorSketch

(Pham and Pagh, 2013; Avron et al., 2014), whose runtime and sketching dimension scale

exponentially in the degree of the kernel. In Chapter 5, we circumvent this exponential loss

by proposing the first oblivious sketching solution for the Polynomial kernel that satisfies the

spectral approximation guarantee of (1), with a target dimension that is linear in the statistical

dimension of the kernel matrix and polynomial in the degree of the kernel. We prove that

our sketch leads to the first nearly-optimal oblivious embedding of the high-dimensional

Gaussian kernel with a target dimension that is linear in the statistical dimension of the

kernel matrix. This is the first result that does not suffer from an exponential loss in the

degree of the polynomial kernel or the dimension of the input point set, providing exponential

improvements over the prior work, including the application of the celebrated Fast Multipole

Method of Greengard and Rokhlin (1986) to kernel approximation problem.
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Organization. The remaining chapters of this thesis contain our full results on the above-

mentioned problems. Each chapter has its own introduction that is the basis for the corre-

sponding problem of interest and covers the prior works and approaches that were previously

used in the literature to tackle it. For completeness, we also include an appendix for each

chapter, if need be, to present the basic tools that we borrowed from the literature to design

and analyze our algorithms.
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1 Sample-optimal Model-based Fourier
Transform in Sublinear-time

This chapter is based on a joint work with Volkan Cevher, Michael Kapralov, and Jonathan

Scarlett . It has been accepted to the 49th Annual ACM SIGACT Symposium on Theory of

Computing (Cevher et al., 2017, STOC).

1.1 Introduction

The discrete Fourier transform (DFT) is one of the most important tools in modern signal

processing, finding applications in audio and video compression, radar, geophysics, medical

imaging, communications, and many more. The best known algorithm for computing the

DFT of a general signal of length n is the Fast Fourier Transform (FFT), taking O(n logn) time,

which matches the trivialΩ(n) lower bound up to a logarithmic factor.

In recent years, significant attention has been paid to exploiting sparsity in the signal’s Fourier

spectrum, which is naturally the case for numerous of the above applications. By sparse, we

mean that the signal can be well-approximated by a small number of Fourier coefficients.

Given this assumption, the computational lower bound of Ω(n) no longer applies. Indeed, the

DFT can be computed in sublinear time, while using a sublinear number of samples in the

time domain (Gilbert et al., 2014, 2008).

The problem of computing the DFT of signals that are approximately sparse in Fourier domain

has received significant attention in several communities. The seminal works of (Candès

and Tao, 2006; Rudelson and Vershynin, 2008) in compressive sensing first showed that only

k logO(1) n samples in time domain suffice to recover a length n signal with at most k nonzero

Fourier coefficients. A different line of research on the Sparse Fourier Transform (sparse FFT),

with origins in computational complexity and learning theory, has resulted in algorithms that

use k logO(1) n samples and k logO(1) n runtime (i.e., the runtime is sublinear in the length of

the input signal). Many such algorithms have been proposed in the literature (Goldreich and

Levin, 1989; Kushilevitz and Mansour, 1993; Mansour, 1995; Gilbert et al., 2002; Akavia et al.,

2003; Gilbert et al., 2005; Iwen, 2010; Akavia, 2010; Hassanieh et al., 2012c,b,a; Lawlor et al.,

11
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2013; Pawar and Ramchandran, 2013; Heider et al., 2013; Indyk et al., 2014; Indyk and Kapralov,

2014; Boufounos et al., 2015; Kapralov, 2016; Price and Song, 2015; Chen et al., 2016; Kapralov,

2017; Nakos et al., 2019); we refer the reader to the recent surveys of Gilbert et al. (2014, 2008)

for a more complete overview.

The best known runtime for computing the k-sparse FFT is due to Hassanieh et al. (2012b),

and is given by O(k logn log(n/k)), asymptotically improving upon the FFT for all k = o(n).

The recent works of Indyk et al. (2014); Kapralov (2016) also show how to achieve the sample

complexity of O(k logn), which is essentially optimal, in linear time, or in time k logO(1) n at

the expense of poly(loglogn) factors. More recently, Kapralov (2017) showed that it is possible

to achieve the optimal sample complexity of O(k logn) in time k logO(1) n. Intriguingly, the

aforementioned algorithms are all non-adaptive. That is, these algorithms do not exploit

existing samples in guiding the selection of the new samples to improve approximation quality.

In the same setting, it is also known that adaptivity cannot improve the sample complexity by

more than an O(loglogn) factor (Hassanieh et al., 2012b).

Despite the significant gains permitted by sparsity, designing an algorithm for handling

arbitrary sparsity patterns may be overly generic; in practice, signals often exhibit more

specific sparsity structures. A common example is block sparsity, where significant coefficients

tend to cluster on known partitions, as opposed to being unrestricted in the signal spectrum.

Other common examples include tree-based sparsity, group sparsity, and dispersive sparsity

(Baraniuk et al., 2010a; Baldassarre et al., 2016; Bach, 2010).

Such structured sparsity models can be captured via the model-based framework of Baraniuk

et al. (2010a), where the number of sparsity patterns may be far lower than
(n

k

)
. For the

compressive sensing problem, this restriction has been shown to translate into a reduction in

the sample complexity, even with non-adaptive algorithms. Specifically, one can achieve a

sample complexity of O(k+ log |M |) with dense measurement matrices based on the Gaussian

distribution, where M is the set of permitted sparsity patterns. Reductions in the sample

complexity with other types of measurement matrices, e.g., sparse measurement matrices

based on expanders, are typically less significant (Indyk and Razenshteyn, 2013; Bah et al.,

2014). Other benefits of exploiting model-based sparsity include faster recovery and improved

noise robustness (Baraniuk et al., 2010a; Bah et al., 2014).

Surprisingly, in stark contrast to the extensive work on exploiting model-based sparsity with

general linear measurements, there are no existing sparse FFT algorithms exploiting such

structure. In this chapter we present the first such algorithm (Cevher et al., 2017), focusing on

the special case of block sparsity. Even for this relatively simple sparsity model, achieving the

desiderata turns out to be quite challenging, needing a whole host of new techniques, and

intriguingly, requiring adaptivity in the sampling scheme.

To clarify our contributions, we describe our model and the problem statement in more detail.
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Model and Basic Definitions: The Fourier transform of a signal X ∈Cn is denoted by X̂ , and

defined as

X̂ f =
1

n

∑
i∈[n]

Xiω
− f t
n , f ∈ [n],

where ωn is the n-th root of unity. With this definition, Parseval’s theorem takes the form

‖X ‖2 = n‖X̂ ‖2
2.

We are interested in computing the Fourier transform of signals that, in frequency domain, are

well-approximated by a block sparse signal with k0 blocks of width k1, formalized as follows.

Definition 1.1.1 (Block sparsity). Given a sequence X ∈Cn and an even block width k1, the

j -th interval is defined as I j =
(
( j −1/2)k1, ( j +1/2)k1

]∩Z for j ∈ [ n
k1

]
, and we refer to X̂ I j as

the j -th block. We say that a signal is (k0,k1)-block sparse if it is non-zero within at most k0 of

these intervals.

Block sparsity is of direct interest in several applications (Baraniuk et al., 2010a,b); we highlight

two examples here: (i) In spectrum sensing, cognitive radios seek to improve the utilization

efficiency in a sparsely used wideband spectrum. In this setting, the frequency bands being

detected are non-overlapping and predefined. (ii) Audio signals often contain blocks cor-

responding to different noises at different frequencies. Such blocks may be non-uniform,

and can be modeled by the (k,c) model in which k coefficients are arbitrarily spread across c

different clusters. It was argued in (Cevher et al., 2009) that any signal from the (k,c) model is

also (3c,k/c)-block sparse in the uniform model.

Our goal is to output a list of frequencies and values estimating X̂ , yielding an `2-distance to

X̂ not much larger than that of the best (k0,k1)-block sparse approximation. Formally, we say

that an output signal X̂ ′ satisfies the `2/`2 block-sparse recovery guarantee if

‖X̂ − X̂ ′‖2 ≤ (1+ε) min
Ŷ is (k0,k1)-block sparse

‖X̂ − Ŷ ‖2

for an input parameter ε> 0.

The sample complexity and runtime of our algorithm are parameterized by the signal-to-noise

ratio (SNR) of the input signal, defined as follows.

Definition 1.1.2 (Tail noise and signal-to-noise ratio (SNR)). We define the tail noise level as

Err(X̂ ,k0,k1) := min
S⊂[ n

k1
]

|S|=k0

∑
j∈[ n

k1
]\S

‖X̂ I j ‖2
2, (1.1)

and its normalized version as µ2 := 1
k0

Err2(X̂ ,k0,k1), representing the average noise level per

block. The signal-to-noise ratio is defined as SNR := ‖X̂ ‖2

Err2(X̂ ,k0,k1)
.

Throughout the paper, we assume that both n and k1 are powers of two. For n, this is a

standard assumption in the sparse FFT literature. As for k1, the assumption comes without
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too much loss of generality, since one can always round the block size up to the nearest power

of two and then cover the original k0 blocks with at most 2k0 larger blocks, thus yielding a

near-identical recovery problem other than a possible increase in the SNR. We also assume

that n
k1

exceeds a large absolute constant; if this fails, our stated scaling laws can be obtained

using the standard FFT.

We use O∗(·) notation to hide loglogSNR, loglogn, and log 1
ε factors. Moreover, to simplify the

notation in certain lemmas having free parameters that will be set in terms of ε, we assume

throughout the chapter that ε=Ω( 1
polylogn

)
, and hence log 1

ε =O(loglogn). This is done purely

for convenience, and since the dependence on ε is not our main focus; the precise expressions

with log 1
ε factors are easily inferred from the proofs. Similarly, since the low-SNR regime is

not our key focus, we assume that SNR ≥ 2, and thus logSNR is positive.

Contributions: We proceed by informally stating our main result; a formal statement is given

in Section 1.5.2.

Theorem 1.1.1. (Upper bound – informal version) There exists an adaptive algorithm for ap-

proximating the Fourier transform with (k0,k1)-block sparsity that achieves the `2/`2 guarantee

for any constant ε, with a sample complexity of O∗ ((
k0k1 +k0 log(1+k0) logn

)
logSNR

)
, and a

runtime of O∗ (
k0k1 log3 n logSNR

)
.

Note that while we state the result for ε = Θ(1) here, the dependence on this parameter is

explicitly shown in the formal version.

The sample complexity of our algorithm strictly improves upon the sample complexity of

O(k0k1 logn) (essentially optimal under the standard sparsity assumption) when log(1 +
k0) logSNR ¿ k1 and logSNR ¿ logn (e.g., SNR =O(1)).

Our algorithm that achieves the above upper bound crucially uses adaptivity. This is in stark

contrast with the standard sparse FFT, where we know how to achieve the optimal O(k logn)

bound using non-adaptive sampling (Indyk et al., 2014). While relying on adaptivity can be

viewed as a weakness, we provide a lower bound revealing that adaptivity is essential for

obtaining the above sample complexity gains. We again state an informal version of our lower

bound, which is formalized in Section 1.6.

Theorem 1.1.2. (Lower bound – informal version) Any non-adaptive sparse FFT algorithm that

achieves the`2/`2 sparse recovery guarantee with (k0,k1)-block sparsity must useΩ
(
k0k1 log n

k0k1

)
samples.

To the best of our knowledge, these two theorems provide the first results along several im-

portant directions, giving (a) the first sublinear-time algorithm for model-based compressed

sensing; (b) the first model-based result with provable sample complexity guarantees in the

Fourier setting; (c) the first proven gap between the power of adaptive and non-adaptive
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sparse FFT algorithms; and (d) the first proven gap between the power of structured (Fourier

basis) and unstructured (random Gaussian entries) measurement matrices for model-based

compressed sensing.

To see that (d) is true, note that the sample complexity O(k0 logn +k0k1) for block-sparse

recovery can be achieved non-adaptively using Gaussian measurements (Baraniuk et al.,

2010a), but we show that adaptivity is required in the Fourier setting.

Dependence of our results on SNR. The sample complexity and runtime of our upper bound

depend logarithmically on the SNR of the input signal. This dependence is common for

sparse FFT algorithms, and even for the case of standard sparsity, algorithms avoiding this

dependence in the runtime typically achieve a suboptimal sample complexity (Hassanieh

et al., 2012c,b). Moreover, all existing sparse FFT lower bounds consider the constant SNR

regime, e.g., (Ba et al., 2010; Price and Woodruff, 2011; Hassanieh et al., 2012b).

We also note that our main result, as stated above, assumes that upper bounds on the SNR

and the tail noise are known to within a constant factor (in fact, such tightness is not required,

but the resulting bound replaces the true values by the assumed values). These assumptions

can be avoided at the expense of a somewhat worse dependence on logSNR, but we present

the algorithm in the above form for clarity. The theoretical guarantees for noise-robust

compressive sensing algorithms often require similar assumptions (Foucart and Rauhut,

2013).

Our Techniques: At a high level, our techniques can be summarized as follows:

Upper bound. The high-level idea of our algorithm is to reduce the (k0,k1)-block sparse signal

of length n to a number of downsampled O(k0)-sparse signals of length n
k1

, and use standard

sparse FFT techniques to locate their dominant values, thereby identifying the dominant

blocks of the original signal. Once the blocks are located, their values can be estimated

using hashing techniques. Despite the high-level simplicity, this is a difficult task requiring a

variety of novel techniques, the most notable of which is an adaptive importance sampling

scheme for allocating sparsity budgets to the downsampled signals. Further details are given

in Section 1.2.

Lower bound. Our lower bound for non-adaptive algorithms follows the information-theoretic

framework of Price and Woodruff (2011), but uses a significantly different ensemble of struc-

tured approximately block-sparse signals occupying only a fraction O
( 1

k0k1

)
of the time domain.

Hence, whereas the analysis of Price and Woodruff (2011) is based on the difficulty of identi-

fying one of (roughly)
(n

k

)
sparsity patterns, the difficulty in our setting is in non-adaptively

finding where the signal is non-zero – one must take enough samples to cover the various

possible time domain locations. The details are given in Section 1.6.

Interestingly, our upper bound uses adaptivity to circumvent the difficulty exploited in this

lower bounding technique, by first determining where the energy lies, and then concentrating
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the rest of its samples on the “right” parts of the signal.

Notation: For an even number n, we define [n] := (− n
2 , n

2

]∩Z, where Z denotes the integers.

When we index signals having a given length m, all arithmetic should be interpreted as

returning values in [m] according to modulo-m arithmetic. For x, y ∈C and ∆ ∈R, we write

y = x±∆ to denote |y−x| ≤∆. The support of a vector X is denoted by supp (X ). For a number

a ∈R, we write |a|+ := max{0, a} to denote the positive part of a.

Organization: The paper is organized as follows. In Section 1.2, we provide an outline of our

algorithm and the main challenges involved. We formalize our energy-based importance sam-

pling scheme in Section 1.3, and provide the corresponding techniques for energy estimation

in Section 1.4. The block-sparse FFT algorithm and its theoretical guarantees are given in

Section 1.5, and the lower bound is presented and proved in Section 1.6. Several technical

proofs are relegated to the appendices.

1.2 Overview of the Algorithm

One of our key technical contributions consists of a reduction from the (k0,k1)-block sparse

recovery problem for signals of length n to O(k0)-sparse recovery on a set of carefully-defined

signals of reduced length n/k1, in sublinear time. We outline this reduction below.

A basic candidate reduction to O(k0)-sparse recovery consists of first convolving X̂ with a filter

Ĝ whose support approximates the indicator function of the interval (−k1/2,k1/2], and then

considering a new signal whose Fourier transform consists of samples of X̂ ?Ĝ at multiples of

k1. The resulting signal Ẑ of length n/k1 (a) naturally represents X̂ , as every frequency of this

sequence is a (weighted) sum of the frequencies in the corresponding block, and (b) can be

accessed in time domain using a small number of accesses to X (if G is compactly supported;

see below).

This is a natural approach, but its vanilla version does not work: Some blocks in X̂ may entirely

cancel out, not contributing to Ẑ at all, and other blocks may add up constructively and

contribute an overly large amount of energy to Ẑ . To overcome this challenge, we consider

not one, but rather 2k1 reductions: For each r ∈ [2k1], we apply the above reduction to the

shift of X by r · n
2k1

in time domain, and call the corresponding vector Z r . We show that all

shifts cumulatively capture the energy of X well, and the major contribution of this work is an

algorithm for locating the dominant blocks in X̂ from a small number of accesses to the Z r ’s

(via a novel importance sampling scheme).

Formal definitions: We formalize the above discussion in the following, starting with the

notion of a flat filter that approximates a rectangle.

Definition 1.2.1 (Flat filter). A sequence G ∈ Rn with Fourier transform Ĝ ∈ Rn symmetric
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about zero is called an (n,B ,F )-flat filter if (i) Ĝ f ∈ [0,1] for all f ∈ [n]; (ii) Ĝ f ≥ 1− (1
4

)F−1 for

all f ∈ [n] such that | f | ≤ n
2B ; and (iii) Ĝ f ≤

(1
4

)F−1( n
B | f |

)F−1 for all f ∈ [n] such that | f | ≥ n
B .

The following lemma, proved in Appendix A.1.1, shows that it is possible to construct such a

filter having O(F B) support in time domain.

Lemma 1.2.1. (Compactly supported flat filter) Fix the power of two integer n, integer B < n,

and even integer F ≥ 2. There exists an (n,B ,F )-flat filter Ĝ ∈ Rn , which (i) is supported on a

length-O(F B) window centered at zero in time domain, and (ii) has a total energy satisfying∑
f ∈[n] |Ĝ f |2 ≤ 3n

B .

Throughout the paper, we make use of the filter construction from Lemma 1.2.1, except where

stated otherwise. To ease the analysis, we assume that G and Ĝ are pre-computed and can be

accessed in O(1) time. Without this pre-computation, evaluating Ĝ is non-trivial, but possible

using semi-equispaced Fourier transform techniques (cf., Section 1.4.2).

With the preceding definition, the set of 2k1 downsampled signals is given as follows.

Definition 1.2.2 (Downsampling). Given integers (n,k1), a parameter δ ∈ (
0, 1

20

)
, and a signal

X ∈Cn , we say that the set of signals
{

Z r
}

r∈[2k1] with Z r ∈C n
k1 is a (k1,δ)-downsampling of X

if,

Z r
j = 1

k1

∑
i∈[k1]

(
G ·X r )

j+ n
k1

·i , j ∈
[ n

k1

]
for an

(
n, n

k1
,F

)
-flat filter with F = 10log 1

δ and support O
(
F n

k1

)
, where we define X r

i = Xi+ar

with ar = nr
2k1

. Equivalently, in frequency domain, this can be written as,

Ẑ r
j = (

X̂ r ?Ĝ
)

j k1
= ∑

f ∈[n]
Ĝ f −k1· j X̂ f ω

ar · f
n , j ∈

[ n

k1

]
(1.2)

by the convolution theorem and the duality of subsampling and aliasing (see Appendix A.3).

By the choice of F , we immediately obtain the following lemma, showing that we do not

significantly increase the sample complexity by working with {Z r }r∈[2k1] as opposed to X itself.

Lemma 1.2.2. (Sampling the downsampling signals) Let {Z r }r∈[2k1] be a (k1,δ)-downsampling

of X ∈ Cn for some n,k1,δ. Then for any i ∈ [n/k1] and any r ∈ [2k1], the entry Z r
i can be

computed in O
(

log 1
δ

)
time using O

(
log 1

δ

)
samples of X .

This idea of using 2k1 reductions fixes the above-mentioned problem of constructive and

destructive cancellations: The 2k1 reduced signals Z r (r ∈ [2k1]) cumulatively capture all the

energy of X well. That is, while the energy |Ẑ r
j |22 can vary significantly as a function of r , we

can tightly control the behavior of the sum
∑

r∈[2k1] |Ẑ r
j |22. This is formalized in the following.

Lemma 1.2.3. (Downsampling properties) Fix n,k1, a parameter δ ∈ (
0, 1

20

)
, a signal X ∈Cn ,

and a (k1,δ)-downsampling {Z r }r∈[2k1] of X . The following conditions hold:
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1. For all j ∈ [ n
k1

],

∑
r∈[2k1] |Ẑ r

j |2
2k1

≥ (1−δ)‖X̂ I j ‖2
2 −3δ ·

‖X̂ I j∪I j−1∪I j+1‖2
2 +δ

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

 .

2. The total energy satisfies (1−12δ)‖X̂ ‖2
2 ≤

∑
r∈[2k1] ‖Ẑ r ‖2

2

2k1
≤ 6‖X̂ ‖2

2.

The proof is given in Appendix A.1.2.

Location via sparse FFT: We expect each Z r (r ∈ [2k1]) to be approximately O(k0)-sparse, as

every block contributes primarily to one downsampled coefficient. At this point, a natural step

is to run O(k0)-sparse recovery on the signals Z r to recover the dominant blocks. However,

there are too many signals Z r to consider! Indeed, if we were to run O(k0)-sparse recovery on

every Z r , we would recover the locations of the blocks, but at the cost of O(k0k1 logn) samples.

This precludes any improvement on the vanilla sparse FFT.

It turns out, however, that it is possible to avoid running a k0-sparse FFT on all 2k1 reduced

signals, and to instead allocate budgets to them, some of which are far smaller than k0, and

some of which may be zero. This will be key in reducing the sample complexity.

Before formally defining budget allocation, we present the following definition and lemma,

showing that we can use fewer samples to identify fewer of the dominant coefficients of a

signal, or more samples to identify more dominant coefficients.

Definition 1.2.3. (Covered frequency) Given an integer m, a frequency component j of a signal

Ẑ ∈Cm is called covered by budget s in the signal Ẑ if |Ẑ j |2 ≥ ‖Ẑ‖2
2

s .

Lemma 1.2.4. (LOCATEREDUCEDSIGNAL guarantees – informal version) There exists an

algorithm such that if a signal X ∈Cn , a set of budgets {sr }r∈[2k1], and a confidence parameter p

are given to it as input, then it outputs a list that, with probability at least 1−p, contains any

j ∈ [ n
k1

] that is covered by budget sr in signal Ẑ r for some r ∈ [2k1], where {Ẑ r }r∈[2k1] denotes the

(k1,δ)-downsampling of X . Moreover, the list size is O
(∑

r∈[2k1] sr
)
, the number of samples that

the algorithm takes is O
(∑

r∈[2k1] sr logn
)
, and the runtime is O

(∑
r∈[2k1] sr log2 n

)
.1

The formal statement and proof are given in Appendix A.8, and reveal that sr essentially

dictates how many buckets we hash Ẑ r into in order to locate the dominant frequencies (e.g.,

see (Hassanieh et al., 2012b; Indyk et al., 2014)).

Hence, the goal of budget allocation is to approximately solve the following covering problem:

Minimize{sr }r∈[2k1]

∑
r∈[2k1]

sr subject to
∑

j is covered by sr

in Ẑ r for some r∈[2k1]

‖X̂ I j ‖2
2 ≥ (1−α) · ‖X̂ ∗‖2

2, (1.3)

1As stated in the formal version, additional terms in the runtime are needed when it comes to subtracting off a
current estimate to form a residual signal.
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2k1

k0

(a) Spiky energies (b) Flat energies (c) Mixed energies

Figure 1.1 – Three hypothetical examples of matrices with (r, j )-th entry given by |Ẑ r
j |2, i.e.,

each row corresponds to a single sequence Z r , but only at the entries corresponding to the k0

blocks in X .

for a suitable constant α ∈ (0,1), where sr is the budget allocated to Ẑ r , and X̂ ∗ is the best

(k0.k1)-block sparse approximation of X̂ . That is, we want to minimize the total budget while

accounting for a constant proportion of the signal energy.

Challenges in budget allocation: Allocating the budgets is a challenging task, as each block

in the spectrum of the signal may have very different energy concentration properties in

time domain, or equivalently, different variations in |Ẑ r
j |2 as a function of r . To see this more

concretely, in Figure 1.1, we show three hypothetical examples of such variations, in the case

that k0 = 2k1 = 6 and all of the blocks have equal energy, leading to equal column sums in the

matrices.

In the first example, each block contributes to a different Z r , and thus the blocks could be

located by running 1-sparse recovery separately on the 2k1 downsampling signals. In stark

contrast, in the second example, each block contributes equally to each Z r , so we would be

much better off running k0-sparse recovery on a single (arbitrary) Z r . Finally, in the third

example, the best budget allocation scheme is completely unclear by inspection alone! We

need to design an allocation scheme to handle all of these cases, and to do so without even

knowing the structure of the matrix.

While the examples in Figure 1.1 may seem artificial, and are not necessarily feasible with

the exact values given, we argue in Appendix A.7 that situations exhibiting the same general

behavior are entirely feasible.

Importance sampling: Our solution is to sample r values with probability proportional to

an estimate of ‖Ẑ r ‖2
2, and sample sparsity budgets from a carefully defined distribution (see

Section 1.3, Algorithm 1). We show that sufficiently accurate estimates of ‖Ẑ r ‖2
2 for all r ∈ [2k1]

can be obtained using O(k0k1) samples of X via hashing techniques (cf., Section 1.4); hence,

what we are essentially doing is using these samples to determine where most of the energy of

the signal is located, and then favoring the parts of the signal that appear to have more energy.

This is exactly the step that makes our algorithm adaptive, and we prove that it produces a

total budget in (1.3) of the form O(k0 log(1+k0)), on average.
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Ideally, one would hope to solve (1.3) using a total budget of O(k0), since there are only

k0 blocks. However, the log(1 + k0) factor is not an artifact of our analysis: We argue in

Appendix A.7 that very different sampling techniques would be needed to remove it in general.

Specifically, we design a signal X for which the optimal solution to (1.3) indeed satisfies∑
r∈[2k1] sr =Ω(k0 log(1+k0)).

Iterative procedure and updating the residual: The techniques described above allow us to

recover a list of blocks that contribute a constant fraction (e.g., 0.9) of the signal energy. We use

O(logSNR) iterations of our main procedure to reduce the SNR to a constant, and then achieve

(1+ε)-recovery with an extra “clean-up” step. Most of the techniques involved in this part are

more standard, with a notable exception: Running a standard sparse FFT with budgets sr on

the reduced space (i.e., on the vectors Z r ) is not easy to implement in k0k1 poly(logn) time

when Z r are the residual signals. The natural approach is to subtract the current estimate χ̂

of X̂ from our samples and essentially run on the residual, but subtraction in k0k1 poly(logn)

time is not easy to achieve. Our solution crucially relies on a novel block semi-equispaced FFT

(see Section 1.4.2), and the idea of letting the location primitives in the reduced space operate

using common randomness (see Appendix A.8).

1.3 Location via Importance Sampling

As outlined above, our approach locates blocks by applying standard sparse FFT techniques

to the downsampled signals arising from Definition 1.2.2. In this section, we present the

techniques for assigning the corresponding sparsity budgets (cf., (1.3)).

We use a novel procedure called energy-based importance sampling, which approximately

samples r values with probability proportional to ‖Ẑ r ‖2. Since these energies are not known

exactly, we instead sample proportional to a general vector γ= (γ1, . . . ,γ2k1 ), where we think

of γr as approximating ‖Ẑ r ‖2. The techniques for obtaining these estimates are deferred to

Section 1.4.

The details are shown in Algorithm 1, where we repeatedly sample from the distribution

w r
q , corresponding to independently sampling r proportional to γr , and q from a truncated

geometric distribution. The resulting sparsity level to apply to Z r is selected to be sr = 10 ·2q .

According to Definition 1.2.3, sr = 10 ·2q covers any given frequency j for which |Ẑ r
j |2 ≥

‖Ẑ r ‖2
2

10·2q .

The intuition behind sampling q proportional to 2−q is that this gives a high probability

of producing small q values to cover the heaviest signal components, while having a small

probability of producing large q values to cover the smaller signal components. We only want

to do the latter rarely, since it costs significantly more samples.

We first bound the expected total sum of budgets returned by BUDGETALLOCATION.

Lemma 1.3.1. (BUDGETALLOCATION budget guarantees) For any integers k0 and k1, any non-

negative vector γ ∈ R2k1+ , and any parameters p ∈ (
0, 1

2

)
and δ ∈ (0,1), if the procedure BUD-
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Algorithm 1 Procedure for allocating sparsity budgets to the downsampled signals

1: procedure BUDGETALLOCATION(γ,k0,k1,δ, p)
2: S ←;
3: for i ∈ {1, . . . , 10

δ k0 · ln 1
p } do

4: Sample (ri , qi ) ∈ [2k1]× {1, . . . , log2
10k0
δ } with probability w r

q = 2−q

1−δ/(10k0)
γr

‖γ‖1

5: S ← S ∪ {(ri , qi )}

6: for r ∈ [2k1] do
7: q∗ ← max(r,q ′)∈S{q ′} . By convention, max;=−∞
8: sr ← 10 ·2q∗

9: return s = {sr }r∈[2k1]

GETALLOCATION in Algorithm 1 is run with inputs (γ,k0,k1,δ, p), then the total sum of returned

budgets, {sr }r∈[2k1], satisfies
∑

r∈[2k1] sr ≤ 400 k0
δ log2

10k0
δ ln 1

p with probability at least 1− p.

Moreover, maxr∈[2k1] sr ≤ 100k0
δ . The runtime of the procedure is O

(k0
δ log 1

p +k1
)
.

Proof. Each time a new (r, q) pair is sampled, the sum of the sr values increases by at most

10 ·2q , and hence the overall sum of budgets is upper bounded as follows,

∑
r∈[2k1]

sr ≤ 10 ·
10
δ

k0·ln 1
p∑

i=1
2qi ,

where qi for every i ∈
{

1,2, · · · 10
δ k0 · ln 1

p

}
are iid copies of a random variable q that takes values

in the set
{

1,2, · · · log2
10k0
δ

}
according to the probability distribution Pr[q = t ] = 2−t

1−δ/(10k0) .

Since 2qi are positive and bounded random variables with 2qi ≤ 10k0
δ we can apply Chernoff

inequality to bound the sum S :=∑ 10
δ

k0·ln 1
p

i=1 2qi . First note that,

E[S] = E
 10

δ
k0·ln 1

p∑
i=1

2qi


= 10

δ
k0 · ln

1

p
·E[2q ]

=
10
δ k0 · ln 1

p · log2
10k0
δ

1−δ/(10k0)
.

Because the number of iid copies in the summation S is larger than the maximum value of the

random variable 2q by an ln 1
p factor, by Chernoff bound, the sum is no larger than 3 times its

expected value with probability at least 1−p,

Pr

S ≥ 3 ·E
[ 10

δ
k0·ln 1

p∑
i=1

2qi

]≤ p.
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Therefore,
∑

r∈[2k1] sr ≤ 30 ·E[S] ≤ 400 k0
δ log2

10k0
δ ln 1

p with probability at least 1−p.

Moreover, maxr∈[2k1] sr = max2qi ≤ 100k0
δ due to the range of q from which we sample.

Runtime: Note that sampling from w r
q amounts to sampling q and r values independently,

and the corresponding alphabet sizes are O
(

log k0
δ

)
and O(k1) respectively. The stated runtime

follows since we take O
(k0
δ log 1

p

)
samples, and sampling from discrete distributions can be

done in time linear in the alphabet size and number of samples (Hagerup et al., 1993). The

second loop in Algorithm 1 need not be done explicitly, since the maximum q value can be

updated after taking each sample.

As we discussed in Section 1.2, the logk0 term in the number of samples would ideally be

avoided; however, in Appendix A.7.2, we argue that even the optimal solution to (1.3) can

contain such a factor.

We now turn to formalizing the fact that the budgets returned by BUDGETALLOCATION are such

that most of the dominant blocks are found. To do this, we introduce the following notion.

Definition 1.3.1 (Active frequencies). Given integers n,k0,k1, a signal X ∈Cn , a non-negative

vector γ ∈R2k1+ , a parameter δ ∈ (0,1), and a (k1,δ)-downsampling {Z r }r∈[2k1] of X , the set of

active frequencies S̃ is defined as,

S̃ =
{

j ∈
[ n

k1

]
:

∑
r∈[2k1]

(
|Ẑ r

j |2 ·
γr

‖Ẑ r ‖2
2

)
≥ δ ·

∑
r∈[2k1] ‖Ẑ r ‖2

2

k0

}
. (1.4)

Observe that if γr = ‖Ẑ r ‖2
2, this reduces to

∑
r∈[2k1] |Ẑ r

j |2 ≥ δ ·
∑

r∈[2k1] ‖Ẑ r ‖2
2

k0
, thus essentially

stating that the sum of the energies over r ∈ [2k1] for the given block index j is an Ω
(
δ
k0

)
fraction of the total energy. Combined with Lemma 1.2.3, this roughly amounts to ‖X̂ I j ‖2

2

exceeding anΩ
(
δ
k0

)
fraction of ‖X̂ ‖2

2.

To formalize and generalize this intuition, the following lemma states that the frequencies

within S̃ account for most of the energy in X , as long as eachγr approximates ‖Ẑ r ‖2
2 sufficiently

well.

Lemma 1.3.2. (Properties of active frequencies) Fix integers n,k0,k1, a parameter δ ∈ (
0, 1

20

)
,

a signal X ∈ Cn , and a (k1,δ)-downsampling {Z r }r∈[2k1] of X . Moreover, fix an arbitrary set

S∗ ⊆ [ n
k1

]
of cardinality at most 10k0, and a vector γ ∈R2k1 satisfying,

∑
r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ≤ 40δ

∑
r∈[2k1]

‖Ẑ r ‖2
2. (*)

Fix the set of active frequencies S̃ according to Definition 1.3.1, and define the signal X̂ S̃ to

equal X̂ on all intervals {I j ; j ∈ S̃} (see Definition 1.1.1), and zero elsewhere. Then ‖X̂S∗\S̃‖2
2 ≤

100
p
δ‖X̂ ‖2

2.
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1.3. Location via Importance Sampling

The proof of Lemma 1.3.2 is given in Appendix A.2.

What remains is to show that if j is active, then j is covered by some sr in Ẑ r with high constant

probability upon running Algorithm 1. This is formulated in the following.

Lemma 1.3.3. (BUDGETALLOCATION covering guarantees) Fix integers n,k0,k1, parameters

δ ∈ (0,1) and p ∈ (
0, 1

2

)
, a signal X ∈ Cn , a (k1,δ)-downsampling {Z r }r∈[2k1] of X , and a non-

negative vector γ ∈R2k1+ satisfying,

‖γ‖1 ≤ 10
∑

r∈[2k1]
‖Ẑ r ‖2

2. (1.5)

Suppose that BUDGETALLOCATION in Algorithm 1 is run with inputs (γ,k0,k1,δ, p), and outputs

the budgets {sr }r∈[2k1]. Then for any active j (i.e., j ∈ S̃ as per Definition 1.3.1), the probability

that there exists some r ∈ [2k1] such that j is covered by sr in Ẑ r is at least 1−p.

Proof. Recall from Definition 1.2.3 that if a pair (r, q) is sampled in the first loop of BUDGETAL-

LOCATION, then j is covered provided that |Ẑ r
j |2 ≥

‖Ẑ r ‖2
2

10·2q . We therefore define

qr
j = min

{
q ∈Z+ : |Ẑ r

j |2 ≥
‖Ẑ r ‖2

2

10 ·2q

}
, (1.6)

and note that the event described in the lemma statement is equivalent to some pair (r, q)

being sampled with qr
j ≤ q . Note that due to the range of q from which we sample (cf.,

Algorithm 1), this can only occur if qr
j ≤ log2

10k0
δ .

Taking a single sample: We first compute the probability of being covered for a single random

sample of (q,r ), denoting the corresponding probability by Pr1[·]. Recalling from line 4 of

Algorithm 1 that we sample each (q,r ) with probability w r
q = 2−q

1−δ/(10k0)
γr

‖γ‖1
, we obtain

Pr1[ j covered] = ∑
r∈[2k1]

∑
qr

j ≤q≤log2
10k0
δ

w r
q

= 1

1−δ/(10k0)

∑
r∈[2k1]

∑
qr

j ≤q≤log2
10k0
δ

2−q γr

‖γ‖1

≥ ∑
r∈[2k1] : qr

j ≤log2
10k0
δ

2−qr
j
γr

‖γ‖1

= ∑
r∈[2k1]

2−qr
j
γr

‖γ‖1
− ∑

r∈[2k1] : qr
j >log2

10k0
δ

2−qr
j
γr

‖γ‖1
, (1.7)

where the third line follows since δ/(10k0) ≤ 1/10.

Bounding the first term in (1.7): Observe from (1.6) that 2−qr
j ≥ 1

2

10|Ẑ r
j |2

‖Ẑ r ‖2
2

, and recall the def-

inition of being active in (1.4). Combining these, we obtain the following when j is active:
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∑
r∈[2k1]

2−qr
j
γr

‖γ‖1
≥ 10

2‖γ‖1

∑
r∈[2k1]

|Ẑ r
j |2γr

‖Ẑ r ‖2
2

≥ 10δ

2‖γ‖1
·
∑

r∈[2k1] ‖Ẑ r ‖2
2

k0
≥ δ

2k0
,

where the last inequality follows from the assumption on ‖γ‖1 in the lemma statement.

Bounding the second term in (1.7): We have

∑
r∈[2k1] : qr

j >log2
10k0
δ

2−qr
j
γr

‖γ‖1
≤ ∑

r∈[2k1]

δ

10k0

γr

‖γ‖1
= δ

10k0
.

Hence, we deduce from (1.7) that Pr1[ j covered] ≥ 2δ
5k0

.

Taking multiple independent samples: Since the sampling is done 10
δ k0 ·log 1

p times indepen-

dently, the overall probability of an active block j being covered satisfies

Pr[ j covered] ≥ 1−
(
1− 2δ

5k0

) 10
δ

k0·log 1
p ≥ 1−exp

(
−4log

1

p

)
≥ 1−p,

where we have applied the inequality 1−ζ≤ e−ζ for ζ≥ 0.

1.3.1 The Complete Location Algorithm

In Algorithm 2, we give the details of MULTIBLOCKLOCATE, which performs the above-described

energy-based importance sampling procedure, runs the sparse FFT location algorithm (see

Appendix A.8) with the resulting budgets, and returns a list L containing the block indices that

were identified.

MULTIBLOCKLOCATE calls two primitives that are defined later in the paper, but their precise

details are not needed in order to understand the location step:

• ESTIMATEENERGIES (see Section 1.4.4) computes a vector γ providing a good approxi-

mation of each ‖Ẑ r ‖2
2, in the sense of satisfying the preconditions of Lemmas 1.3.2 and

1.3.3;

• LOCATEREDUCEDSIGNALS (see Appendix A.8) accepts the sparsity budgets {sr }r∈[2k1]

and runs a standard sr -sparse FFT algorithm on each downsampled signal Z r in order

to locate the dominant frequencies.

Note that in addition to X , these procedures accept a second signal χ̂; this becomes rele-

vant when we iteratively run the block sparse FFT (cf., Section 1.5), representing previously-

estimated components that are subtracted off to produce a residual.
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1.3. Location via Importance Sampling

Algorithm 2 Multi-block sparse location

1: procedure MULTIBLOCKLOCATE(X , χ̂,n,k0,k1,δ, p)
2: ar ← nr

2k1
for each r ∈ [2k1]

3: for t ∈ {1, . . . ,10log2
1
p } do

4: γ← ESTIMATEENERGIES(X , χ̂,n,k0,k1,δ) . See Section 1.4.4

5: s(t ) ← BUDGETALLOCATION

(
γ,k0,k1,δ, δp

2log2(1/p)

)
. γ= (γ1, . . . ,γ2k1 )

6: s ← maxt s(t ) (element-wise with respect to r ∈ [2k1])
7: L ← LOCATEREDUCEDSIGNALS(X , χ̂,n,k0,k1,s,δ, 1

2δp) . See Appendix A.8
8: return L

The required guarantees on LOCATEREDUCEDSIGNALS are given in Lemma 1.2.4 (and more

formally in Appendix A.7.2), and in order to prove our main result on MULTIBLOCKLOCATE, we

also need the following lemma ensuring that we can compute energy estimates satisfying the

preconditions of Lemmas 1.3.2 and 1.3.3; the procedure and proof are presented in Section

1.4.4.

Lemma 1.3.4. (ESTIMATEENERGIES guarantees) Given integers n,k0,k1, signals X , χ̂ ∈Cn with

‖X̂−χ̂‖2 ≥ ‖χ̂‖2

poly(n) , and parameterδ ∈ ( 1
n , 1

20

)
, the procedure ESTIMATEENERGIES(X , χ̂,n,k0,k1,δ)

returns a non-negative vector γ ∈R2k1+ such that, for any given set S∗ of cardinality at most 10k0,

we have the following with probability at least 1
2 :

1.
∑

r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ≤ 40δ

∑
r∈[2k1] ‖Ẑ r ‖2

2;

2. ‖γ‖1 ≤ 10
∑

r∈[2k1] ‖Ẑ r ‖2
2;

where {Z r }r∈[2k1] is the (k1,δ)-downsampling of X −χ (see Definition 1.2.2).

Moreover, if χ̂ is (O(k0),k1)-block sparse, then the sample complexity is O
(

k0k1

δ2 log 1
δ log 1

δp

)
, and

the runtime is O
(

k0k1

δ2 log2 1
δ log2 n

)
.

Remark 1.3.1. The preceding lemma ensures that γr ’s provide good approximations of ‖Ẑ r ‖2
2

in a “restricted” and “one-sided” sense, while not over-estimating the total energy by more than

a constant factor. Specifically, the first part concerns the energy of Ẑ r restricted to a fixed set of

size O(k0), and characterizes the extent to which the energies are under-estimated. It appears to

be infeasible to characterize over-estimation in the same way (e.g., replacing | · |+ by | · |), since

several of the samples could be overly large due to spiky noise.

Remark 1.3.2. Here and subsequently, the poly(n) lower bounds regarding (X̂ , χ̂) are purely

technical, resulting from extremely small errors when subtracting off χ̂. See Section 1.4.2 for

further details.

We are now in a position to provide our guarantees on MULTIBLOCKLOCATE, namely, on the

behavior of the list size, and on the energy that the components in the list capture. Note that
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the output of MULTIBLOCKLOCATE is random, since the same is true of ESTIMATEENERGIES,

BUDGETALLOCATION, and LOCATEREDUCEDSIGNALS.

Lemma 1.3.5. (MULTIBLOCKLOCATE guarantees) Given integers n,k0,k1, parameters δ ∈( 1
n , 1

20

)
and p ∈ (

0, 1
2

)
, and signals X ∈Cn and χ̂ ∈Cn with χ̂0 uniformly distributed over an arbi-

trarily length- ‖χ̂‖2

poly(n) interval, the output L of the function MULTIBLOCKLOCATE(X , χ̂,k1,k0,n,δ, p)

satisfies the following properties for any set S∗ of cardinality at most 10k0, with probability at

least 1−p:

1. |L| =O
(k0
δ log k0

δ log 1
p log2 1

δp

)
;

2.
∑

j∈S∗\L ‖(X̂ − χ̂)I j ‖2
2 ≤ 200

p
δ‖X̂ − χ̂‖2

2.

Moreover, if χ̂ is (O(k0),k1)-block sparse, and we have δ=Ω( 1
poly(logn)

)
and p =Ω( 1

poly(logn)

)
,

then with probabilty at least 1−δp, the sample complexity is O∗(k0
δ log(1+k0) logn+ k0k1

δ2

)
, and

the runtime is O∗(k0k1

δ2 log2 n + k0k1
δ log3 n

)
.

Remark 1.3.3. MULTIBLOCKLOCATE is oblivious to the choice of S∗ in this lemma statement.

Proof. First claim: Note that in each iteration of the outer loop when we run BUDGETALLOCA-

TION(γ,k0,k1,δ, 1
2δp), Lemma 1.3.1 implies that for any t , the following holds true,

Pr

[ ∑
r∈[2k1]

s(t )
r =O

(k0

δ
log

k0

δ
log

1

δp

)]
≥ 1− pδ

2log2(1/p)
,

where s(t )
r is the r -th entry of the budget allocation vector st at iteration t . Therefore, by union

bound, we have,

Pr

[ ∑
r∈[2k1]

sr =O
(k0

δ
log

k0

δ
log

1

δp
log

1

p

)]
≥ 1−10log2

1

p
· pδ

2log2(1/p)
≥ 1−5δp. (1.8)

We now apply Lemma 1.2.4, which is formalized in Appendix A.8. We set the target success

probability to 1− 1
2δp, which guarantees that the size of the list returned by the function

LOCATEREDUCEDSIGNALS is O
(∑

r∈[2k1] sr log 1
δp

)
. Therefore, by (1.8), we have,

Pr

[
|L| =O

(
k0

δ
log

k0

δ
log

1

p
log2 1

δp

)]
≥ 1−p,

yielding the first statement of the lemma.

Second claim: Let X ′ = X −χ, and consider the set S∗ given in the lemma statement, and an

arbitrary iteration t . By Lemma 1.3.4 in Section 1.4.4 (also stated above), the approximate
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energy vector γ in any given iteration of the outer loop satisfies,∑
r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ≤ 40δ

∑
r∈[2k1]

‖Ẑ r ‖2
2

‖γ‖1 ≤ 10
∑

r∈[2k1]
‖Ẑ r ‖2

2 (1.9)

with probability at least 1
2 . When this is the case, the vector γ meets the requirements of

Lemmas 1.3.2 and 1.3.3. That means that the probability of having an energy estimate γ that

meets these requirements in at least one iteration is lower bounded by 1− ( 1
2 )10log 1

p ≥ 1−p/10.

Consider an arbitrary iteration in which the above conditions (1.9) on γ are satisfied. We write,∑
j∈S∗\L

‖X̂ ′
I j
‖2

2 =
∑

j∈(S∗∩S̃)\L

‖X̂ ′
I j
‖2

2 +
∑

j∈S∗\(S̃∪L)

‖X̂ ′
I j
‖2

2. (1.10)

The second term is bounded by,∑
j∈S∗\(S̃∪L)

‖X̂ ′
I j
‖2

2 ≤
∑

j∈S∗\S̃

‖X̂ ′
I j
‖2

2 ≤ 100
p
δ‖X̂ ′‖2

2 (1.11)

by Lemma 1.3.2, which uses the first condition on γ in (1.9).

We continue by calculating the expected value of the first term in (1.10) with respect to the

randomness of BUDGETALLOCATION and LOCATEREDUCEDSIGNALS:

E

 ∑
j∈(S∗∩S̃)\L

‖X̂ ′
I j
‖2

2

= E
 ∑

j∈(S∗∩S̃)

‖X̂ ′
I j
‖2

2 ·1[ j ∉ L]


≤ ∑

j∈S̃

‖X̂ ′
I j
‖2

2 ·Pr
[

j ∉ L
]
. (1.12)

We thus consider the probability Pr[ j ∉ L] for an arbitrary j ∈ S̃. If j ∈ S̃, then by Lemma 1.3.3

and the choice of the failure probability parameter 1
2δp passed to BUDGETALLOCATION, there

is at least one r ∈ [2k1] such that j is covered, with probability at least 1− 1
2δp. We also know

from Lemma 1.2.4 that the failure probability of LOCATEREDUCEDSIGNALS for some covered j

is at most 1
2δp. A union bound on these two events gives

Pr
[

j ∉ L
]≤ δp, ∀ j ∈ S̃.

Hence, we deduce from (1.12) that,

E

 ∑
j∈(S∗∩S̃)\L

‖X̂ ′
I j
‖2

2

≤ δp · ‖X̂ ′‖2
2,
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and Markov’s inequality gives, ∑
j∈(S∗∩S̃)\L

‖X̂ ′
I j
‖2

2 ≤ 10δ · ‖X̂ ′‖2
2

with probability at least 1−p/10. Combining this with (1.10)–(1.11), and using the assumption

δ≤ 1
20 to write δ≤p

δ, we complete the proof.

Sample complexity and runtime: There are two operations that cost us samples. The first

is the call to ESTIMATEENERGIES, which costs O
(

k0k1

δ2 log2 1
δ

)
by Lemma 1.3.4. The second is

the call to LOCATEREDUCEDSIGNALS; by Lemma 1.2.4 in Appendix A.8, with δp in place of p,

this costs O
(∑

r∈[2k1] sr · log 1
δp log 1

δ logn
)

samples (recall that χ̂ is (O(k0),k1)-block sparse by

assumption). Adding these contributions gives the desired result; the log 1
p and log 1

δ factors

are hidden in the O∗(·) notation, since we have assumed that δ and p behave asΩ
( 1

polylogn

)
.

The time complexity follows by a similar argument; The primitive ESTIMATEENERGIES has

time complexity O
(

k0k1

δ2 log2 1
δ log2 n

)
by Lemma 1.3.4, and the primitive LOCATEREDUCEDSIG-

NALS requires O
(∑

r∈[2k1] sr · log 1
δp log 1

δ log2 n + k0k1
δ log 1

δp log3 n
)

operations by Lemma 1.2.4

in Appendix A.8. The complexity of ESTIMATEENERGIES dominates that and of calling BUD-

GETALLOCATION, which is O
(
k1 + k0

δ log 1
p

)
by Lemma 1.3.1.

The sample complexity and runtime directly follows by plugging in the bound on
∑

r∈[2k1] sr

given in (1.8).

1.4 Energy Estimation

In this section, we provide the energy estimation procedure used in MULTIBLOCKLOCATE

primitive in Algorithm 2, and prove its guarantees that were used in the proof of Lemma 1.3.5.

To do this, we introduce a variety of tools needed, including hashing and the semi-equispaced

FFT. While such techniques are well-established for the standard sparsity setting (Indyk et al.,

2014), applying the existing semi-equispaced FFT algorithms separately for each Z r in our

setting would lead to a runtime of k0k2
1poly(logn). Our techniques allow us to compute the

required FFT values for all r in k0k1poly(logn) time, as we detail in Section 1.4.2.

1.4.1 Hashing Techniques

The notion of hashing plays a central role in our estimation primitives, and in turn makes use

of random permutations.

Definition 1.4.1 (Approximately pairwise-independent permutation). Fix integer n, and let

π : [n] → [n] be a random permutation. We say that π is approximately pairwise-independent

if, for any i , i ′ ∈ [n] and any integer t , we have Pr[|π(i )−π(i ′)| ≤ t ] ≤ 4t
n .

It is well known that such permutations exist in the form of a simple modulo-n multiplication;
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we will specifically use the following lemma from (Indyk and Kapralov, 2014).

Lemma 1.4.1. (Choice of permutation (Indyk and Kapralov, 2014, Lemma 3.2)) Let n be a

power of two, and define π(i ) = σ · i , where σ is chosen uniformly at random from the odd

numbers in [n]. Then π is an approximately pairwise-independent random permutation.

We now turn to the notion of hashing a signal into buckets. We do this by applying the random

permutation from Lemma 1.4.1 along with a random shift in time domain, and then applying

a suitable filter according to Definition 1.2.1.

Definition 1.4.2 (Hashing). Given integers n,B , parameters σ,∆ ∈ [n], and the signals X ∈Cn

and G ∈Cn , we say that U ∈CB is an (n,B ,G ,σ,∆)-hashing of X if

U j = B

n

∑
i∈[ n

B ]

Xσ(∆+ j+B ·i )G j+B ·i , j ∈ [B ]. (1.13)

Moreover, we define the following quantities:

• π( j ) =σ · j , representing the approximately pairwise random permutation;

• h( j ) = round
(

j B
n

)
, representing the bucket in [B ] into which a frequency j hashes;

• o j ( j ′) =π( j ′)−h(π( j )) · n
B , representing the offset associated with two frequencies ( j , j ′).

With these definitions, we have the following lemma, proved in Appendix A.3. Note that here

we write the exact Fourier transform of U as Û∗, since later we will use Û for its near-exact

counterpart to simplify notation.

Lemma 1.4.2. (Fourier transform of hashed signal) Fix integers n,B and the signals X ∈ Cn

and G ∈Cn with the latter symmetric about zero. If U is an (n,B ,G ,σ,∆)-hashing of X , then its

exact Fourier transform Û∗ is given by

Û∗
b = ∑

f ∈[n]
X̂ f Ĝσ f −b n

B
ω
σ∆ f
n , b ∈ [B ].

We conclude this subsection by stating the following technical lemma regarding approximately

pairwise independent permutations and flat filters.

Lemma 1.4.3. (Additional filter property) Fix n, and let G be an (n,B ,F )-flat filter. Let π(·) be

an approximately pairwise-independent random permutation (cf., Definition 1.4.1), and for

f , f ′ ∈ [n], define o f ( f ′) =π( f ′)− n
B round

(
π( f ) B

n

)
. Then for any x ∈Cn and f ∈ [n], we have

∑
f ′ 6= f

|X̂ f ′ |2Eπ
[|Ĝo f ( f ′)|2

]≤ 10

B
‖X̂ ‖2. (1.14)

The proof is given in Appendix A.1.1.
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Algorithm 3 Semi-equispaced inverse FFT for approximating the inverse Fourier transform,
with standard sparsity (top) and block sparsity (bottom)

1: procedure SEMIEQUIINVERSEFFT(X̂ ,n,k,ζ)
2: Ĝ ← FILTER (n,n/k,ζ) . See (Indyk et al., 2014, Sec. 12); same as proof of Lemma 1.4.5
3: Ŷi ← (X̂ ?Ĝ) i n

2k
for each i ∈ [2k]

4: Y ← INVERSEFFT(Ŷ )
5: return {Y j }| j |≤ k

2

6: procedure SEMIEQUIINVERSEBLOCKFFT(X̂ ,n,k0,k1,c)
7: Ĝ ← FILTER (n,k1,n−c ) . See proof of Lemma 1.4.5
8: for j ∈ [2n

k1

]
such that (X̂ ?Ĝ) k1

2 j
may be non-zero (O(k0 logn) in total) do

9: Ỹ b
j ← k1

2

∑ n
2k1

l=1 X̂b+2k1l Ĝ k1
2 j−(b+2k1l )

for each b ∈ [2k1]

10: (Ŷ 1
j , . . . , Ŷ 2k1

j ) ← IFFT(Ỹ 1
j , . . . , Ỹ 2k1

j )

11: for r ∈ [2k1] do
12: Ŷ r ← (Ŷ r

1 , . . . , Ŷ r
2n/k1

)

13: Y r ← SEMIEQUIINVERSEFFT(Ŷ r , n
k1

,k0,n−(c+1))

14: return {Y r
j }

r∈[2k1],| j |≤ k0
2

1.4.2 Semi-Equispaced FFT

One of the steps of our algorithm will be to take the inverse Fourier transform of our current

estimate of the spectrum, so that it can be subtracted off and we can work with the residual.

The semi-equispaced inverse FFT provides an efficient method for doing this, and is based on

the application of the standard inverse FFT to a filtered and downsampled signal.

We start by describing an existing technique of this type for standard sparsity; the details are

shown in the procedure SEMIEQUIINVERSEFFT in Algorithm 3, and the resulting guarantee

from (Indyk et al., 2014, Sec. 12) is stated as follows.2

Lemma 1.4.4. (SEMIEQUIINVERSEFFT guarantees (Indyk et al., 2014, Lemma 12.1, Cor. 12.2))

(i) Fix n and a parameter ζ> 0. If X̂ ∈Cn is k-sparse for some k, then SEMIEQUIINVERSEFFT(X̂ ,n,k,ζ)

returns a set of values {Y j }| j |≤k/2 in time O(k log n
ζ ), satisfying the following for every j ,

|Y j −X j | ≤ ζ‖X ‖2.

(ii) Given two additional parameters σ,∆ ∈ [n] with σ odd, it is possible to compute a set of

values {Y j } for all j equaling σ j ′+∆ for some j ′ with | j ′| ≤ k/2, with the same running time

and approximation guarantee.

For the block-sparse setting, we need to adapt the techniques of Indyk et al. (2014), making use

of a two-level scheme that calls SEMIEQUIINVERSEFFT. The resulting procedure, SEMIEQUIIN-

2Note that the roles of time and frequency are reversed here compared to (Indyk et al., 2014).
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1.4. Energy Estimation

VERSEBLOCKFFT, is described in Algorithm 3. The main result of the procedure is the following

analog of Lemma 1.4.4.

Lemma 1.4.5. (SEMIEQUIINVERSEBLOCKFFT guarantees) (i) Fix integers n,k0,k1, a (k0,k1)-

block sparse signal X̂ ∈ Cn , and a constant c ≥ 1. Define the shifted signals {X r }r∈[2k1] with

X r
i = Xi+ nr

2k1
. The procedure SEMIEQUIINVERSEBLOCKFFT(X̂ ,n,k0,k1,c) returns a set of values

Y r
j for all r ∈ [2k1] and | j | ≤ k0

2 in time O(c2k0k1 log2 n), satisfying,

|Y r
j −X r

j | ≤ 2n−c‖X ‖2. (1.15)

(ii) Given two additional parameters σ,∆ ∈ [ n
k1

]
with σ odd, it is possible to compute a set of

values Y r
j for all r ∈ [2k1] and j equaling σ j ′+∆ (modulo n

k1
) for some | j ′| ≤ k0

2 , with the same

running time and approximation guarantee.

The proof is given in Appendix A.3.1.

Remark 1.4.1. In the preceding lemmas, the signal sparsity and the number of values we wish

to estimate will not always be identical. However, this can immediately be resolved by letting

the parameter k0 therein equal the maximum of the two.

1.4.3 Combining the Tools

In Algorithm 4, we describe two procedures combining the above tools. The first, HASHTO-

BINS, accepts the signal X and its current estimate in the Fourier domain χ̂, uses SEMIEQUI-

INVERSEFFT to approximate the relevant entries of χ, and computes a hashing of X −χ as

per Definition 1.4.2. The second, HASHTOBINSREDUCED, is analogous, but instead accepts

a (k1,δ)-downsampling of X , and uses SEMIEQUIINVERSEBLOCKFFT. It will prove useful to

allow the function to hash into a different number of buckets for differing r values, and hence

accept {Gr }r∈[2k1] and {B r }r∈[2k1] as inputs. For simplicity, Algorithm 4 states the procedures

without precisely giving the parameters passed to the semi-equispaced FFT, but the details are

given in the proof of the following lemma.

Lemma 1.4.6. (HASHTOBINS and HASHTOBINSREDUCED guarantees) (i) Fix integers n,k,B ,F ,

an (n,B ,F )-flat filter G supported on an interval of length O(F B), a signal X ∈Cn , a k-sparse

signal χ̂. For any σ,∆, the procedure HASHTOBINS(X , χ̂,G ,n,B ,σ,∆) returns a sequence Û such

that,

‖Û −Û∗‖∞ ≤ n−c‖χ̂‖2,

where Û∗ is the exact Fourier transform of the (n,B ,G ,σ,∆)-hashing of X −χ (see Definition

1.4.2), and c = c ′+O(1) for c ′ in Algorithm 4. Moreover, the sample complexity is O(F B), and

the runtime is O(cF (B +k) logn).

(ii) Fix integers n,k0,k1 and parameters {B r }r∈[2k1],F,δ. For each r ∈ [2k1], fix an
( n

k1
,B r ,F

)
-flat

filter Gr supported on an interval of length O(F B r ). Moreover, fix a signal X ∈Cn and its (k1,δ)-
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Chapter 1. Sample-optimal Model-based Fourier Transform in Sublinear-time

Algorithm 4 Hash to bins functions for original signal (top) and reduced signals (bottom)

1: procedure HASHTOBINS(X , χ̂,G ,n,B ,σ,∆)
2: Compute {χi } using SEMIEQUIINVERSEFFT with input (χ̂,n,O(F B),n−c ′

)
3: . See Lemma 1.4.4; F equals the parameter of filter G , and c ′ is a large constant
4: UX ← (n,B ,G ,σ,∆)-hashing of X . See Definition 1.4.2
5: Uχ← (n,B ,G ,σ,∆)-hashing of χ
6: Û ← FFT of UX −Uχ

7: return Û
8: procedure HASHTOBINSREDUCED({Z r

X }r∈[2k1], χ̂, {Gr }r∈[2k1],n,k1, {B r }r∈[2k1],σ,∆)
9: Bmax ← maxr∈[2k1] B r

10: k0 ← minimal value such that χ̂ is (k0,k1)-block sparse
11: Compute {χi } using SEMIEQUIINVERSEBLOCKFFT; input (χ̂,n,O(FmaxBmax +k0),k1,c ′)
12: . See Lemma 1.4.5; Fmax equals the max parameter of filters {Gr }, and c ′ is a large constant
13: {Z r

χ }r∈[2k1] ← (k1,δ)-downsampling of χ . See Definition 1.2.2
14: for r ∈ [2k1] do
15: U r

X ←
(

n
k1

,B r ,Gr ,σ,∆
)
-hashing of Z r

X . See Definition 1.4.2

16: U r
χ ←

(
n
k1

,B r ,Gr ,σ,∆
)
-hashing of Z r

χ

17: Û r ← FFT of U r
X −U r

χ

18: return {Û r }r∈[2k1]

downsampling {Z r }r∈[2k1] with δ ∈ (
0, 1

20

)
, and a (k0,k1)-block sparse signal χ̂. For any σ,∆,

the procedure HASHTOBINSREDUCED
(
{Z r }r∈[2k1], χ̂, {Gr }r∈[2k1 ,n,k1, {B r }r∈[2k1 ,σ,∆

)
returns a

set of sequences {Û r }r∈[2k1] such that,

‖Û r −Û∗r ‖∞ ≤ n−c‖χ̂‖2, r ∈ [2k1],

where Û∗r is the exact Fourier transform of the
( n

k1
,B r ,Gr ,σ,∆

)
-hashing for the (k1,δ)-downsampling

of X−χ, and c = c ′+O(1) for c ′ in Algorithm 4. Moreover, the sample complexity is O
(
F

∑
r∈[2k1] B r log 1

δ

)
,

and the runtime is O
(
c2(BmaxF +k0)k1 log2 n) with Bmax = maxr∈[2k1] B r .

The proof is given in Appendix A.3.2.

Remark 1.4.2. Throughout the chapter, we consider c in Lemma 1.4.6 to be a large absolute

constant. Specifically, various results make assumptions such as ‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, and

the results hold true when c is sufficiently large compared to implied exponent in the poly(n)

notation. Essentially, the n−c error term is so small that it can be thought of as zero, but we

nevertheless handle it explicitly for completeness.

1.4.4 Estimating the Downsampled Signal Energies

We now come to the main task of this section, namely, approximating the energy of each Ẑ r .

To do this, we hash into B = 4
δ2 ·k0 buckets (cf., Definition 1.4.2), and form the estimate as the

energy of the hashed signal. The procedure is shown in Algorithm 5.
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Algorithm 5 Procedure for estimating energies of downsampled signals

1: procedure ESTIMATEENERGIES(X , χ̂,n,k0,k1,δ)
2: B ← 40

δ2 ·k0

3: F ← 10log 1
δ

4: H ← ( n
k1

,B ,F )-flat filter . See Definition 1.2.1
5: ∆← uniform random sample from [ n

k1
]

6: σ← uniform random sample from odd numbers in [ n
k1

]
7: {Z r }r∈[2k1] ← (k1,δ)-downsampling of X . See Definition 1.2.2
8: H ← (H , . . . , H)
9: B ← (B , . . . ,B)

10: {Û r }r∈[2k1] ← HASHTOBINSREDUCED({Z r }r∈[2k1], χ̂,H,n,k1,B,σ,∆) . See Section 1.4.1
11: for r ∈ [2k1] do
12: γr ←‖Û r ‖2

2

13: return γ . Length-2k1 vector of γr values

Before stating the guarantees of Algorithm 5, we provide the following lemma characterizing

the approximation quality for an exact hashing of a signal, as opposed to the approximation

returned by HASHTOBINSREDUCED. Intuitively, the first part states that we can accurately

estimate the top coefficients well without necessarily capturing the noise, and the second part

states that, in expectation, we do not over-estimate the total signal energy by more than a

small constant factor.

Lemma 1.4.7. (Properties of exact hashing) Fix the integers (m,B), the parameters δ ∈ (
0, 1

20

)
and F ′ ≥ 10log 1

δ , and the signal Y ∈Cm and (m,B ,F ′)-flat filter H (cf., Definition 1.2.1). Let

U be an (m,B , H ,σ,∆)-hashing of Y for uniformly random σ,∆ ∈ [m] with σ odd, and let π(·)
be defined as in Definition 1.4.2. Then, letting Û∗ denote the exact Fourier transform of U , we

have the following:

1. For any set S ⊂ [m],

E∆,π

[∣∣∣‖ŶS‖2
2 −‖Û∗‖2

2

∣∣∣+]
≤

(
10

√ |S|
B

+15
|S|
B

+2δ2
)
‖Ŷ ‖2

2,

where ‖ŶS‖2
2 denotes

∑
j∈S |Ŷ j |2.

2. We have E∆,π
[‖Û∗‖2

2

]≤ 3‖Ŷ ‖2
2.

The proof is given in Appendix A.3.3.

We now present the following lemma, showing that the procedure ESTIMATEENERGIES provides

us with an estimator satisfying the preconditions of Lemmas 1.3.2 and 1.3.3.

Lemma 1.3.4 (ESTIMATEENERGIES guarantees – restated from Section 1.3.1). Given integers

n,k0,k1, signals X ∈Cn and χ̂ ∈Cn with ‖X̂ − χ̂‖2
2 ≥ 1

poly(n)‖χ̂‖2, and parameter δ ∈ ( 1
n , 1

20

)
, the
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procedure ESTIMATEENERGIES(X , χ̂,n,k0,k1,δ) returns a non-negative vector γ ∈R2k1+ such that,

for any given set S∗ of cardinality at most 10k0, we have the following with probability at least
1
2 :

1.
∑

r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ≤ 40δ

∑
r∈[2k1] ‖Ẑ r ‖2

2;

2. ‖γ‖1 ≤ 10
∑

r∈[2k1] ‖Ẑ r ‖2
2;

where {Z r }r∈[2k1] is the (k1,δ)-downsampling of X −χ (see Definition 1.2.2).

Moreover, if χ̂ is (O(k0),k1)-block sparse, then the sample complexity is O
(

k0k1

δ2 log2 1
δ

)
, and the

runtime is O
(

k0k1

δ2 log2 1
δ log2 n

)
.

Proof. Analysis for the exact hashing sequence: We start by considering the case that the call

to HASHTOBINSREDUCED is replaced by an evaluation of the exact hashing sequence Û∗r , i.e.,

Definition 1.4.2 applied to Z r resulting from the (k1,δ)-downsampling of X −χ. In this case, by

applying Lemma 1.4.7 with Ŷ = Ẑ r , B = 40
δ2 k0 and S = S∗ (and hence |S| ≤ 10k0), the right-hand

side of the first claim therein becomes (5δ+ ( 15
4 + 2)δ2)‖Ẑ r ‖2

2 ≤ 6δ‖Ẑ r ‖2
2, since δ ≤ 1

20 . By

applying the lemma separately for each r ∈ [2k1] with Ŷ = Ẑ r , and summing the correspond-

ing expectations in the two claims therein over r , we obtain
∑

r∈[2k1]E
[∣∣‖Ẑ r

S∗‖2
2 −‖Û∗‖2

2

∣∣
+
]
≤

6δ
∑

r∈[2k1] ‖Ẑ r ‖2
2 and

∑
r∈[2k1]E

[‖Û∗‖2
2

]≤ 3
∑

r∈[2k1] ‖Ẑ r ‖2
2. We apply Markov’s inequality with

a factor of 6 in the former and 3 in the latter, to conclude that the quantities γ∗r = ‖Û∗r ‖2
2

satisfy, ∑
r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γ∗r
∣∣∣+ ≤ 36δ

∑
r∈[2k1]

‖Ẑ r ‖2
2 (1.16)

‖γ∗‖1 ≤ 9
∑

r∈[2k1]
‖Ẑ r ‖2

2, (1.17)

with probability at least 1/2.

Incorporating 1
nc error from use of semi-equispaced FFT in HASHTOBINSREDUCED: Since

Û r is computed using HASHTOBINSREDUCED, the energy vector γ is different from the exact

one γ∗, and we write∑
r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ≤ ∑

r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γ∗r
∣∣∣++ ∣∣γr −γ∗r

∣∣. (1.18)

By substituting γr = ‖Û r ‖2
2 and γ∗r = ‖Û∗r ‖2

2, and using the identity
∣∣‖a‖2

2−‖b‖2
2

∣∣≤ 2‖a−b‖2 ·
‖b‖2 +‖a −b‖2

2, we can write

∑
r∈[2k1]

∣∣γr −γ∗r
∣∣≤ ∑

r∈[2k1]

(
2‖Û r −Û∗r ‖2‖Û∗r ‖2 +‖Û r −Û∗r ‖2

2

)
. (1.19)

Upper bounding the `2 norm by the `∞ norm times the vector length, we have ‖Û r −Û∗r ‖2 ≤
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p
n‖Û r −Û∗r ‖∞ ≤ n−c+1/2‖χ̂‖2, where the second inequality follows from Lemma 1.4.6. More-

over, from the definition of Û∗r resulting from Definition 1.4.2 applied to Z r , along with

the filter property ‖Ĝ‖∞ in Definition 1.2.1, it follows that ‖Û∗r ‖2 ≤ ‖Ĝ‖∞‖Ẑ r ‖1 ≤
p

n‖Ẑ r ‖2.

Combining these into (1.19) gives∑
r∈[2k1]

∣∣γr −γ∗r
∣∣≤ ∑

r∈[2k1]

(
2n−c+1‖χ̂‖2‖Ẑ r ‖2 +n−2c+1‖χ̂‖2

2

)
≤ 2n−c+2

√ ∑
r∈[2k1]

‖χ̂‖2
2 ·

∑
r∈[2k1]

‖Ẑ r ‖2
2 +n−2c+1k1‖χ̂‖2

2

≤ 2n−c+3‖χ̂‖2

√ ∑
r∈[2k1]

‖Ẑ r ‖2
2 +n−2c+2‖χ̂‖2

2. (1.20)

where the second line is by Cauchy-Schwarz, and the third by k1 ≤ n.

By the second part of Lemma 1.2.3 and the assumption δ ≤ 1
20 , we have

∑
r∈[2k1] ‖Ẑ r ‖2

2 ≥
1
4‖X̂ − χ̂‖2

2 ≥ 1
4nc′ ‖χ̂‖2

2, where the second equality holds for some c ′ > 0 by the assumption

‖X̂ − χ̂‖2
2 ≥ 1

poly(n)‖χ̂‖2. Hence, (1.20) gives

∑
r∈[2k1]

∣∣γr −γ∗r
∣∣≤ 4

(
n−c+3nc ′/2 +n−2c+2nc ′) ∑

r∈[2k1]
‖Ẑ r ‖2

2. (1.21)

Since we have chosen δ> 1/n, the coefficient to the summation is upper bounded by 4δ when

c is sufficiently large, thus yielding the first part of the lemma upon combining with (1.16).

To prove the second part, note that by the triangle inequality,

‖γ‖1 ≤ ‖γ∗‖1 +
∣∣∣‖γ‖1 −‖γ∗‖1

∣∣∣
≤ 9

∑
r∈[2k1]

‖Ẑ r ‖2
2 +

∑
r∈[2k1]

∣∣γr −γ∗r
∣∣, (1.22)

where we have applied (1.17). Again applying (1.21) and noting that the coefficient to the

summation is less than one for sufficiently large c, the second claim of the lemma follows.

Sample complexity and runtime: The only step that uses samples is the call to HASHTOBIN-

SREDUCED. By Lemma 1.4.6 and the choices B = 40
δ2 k0 and F = 10log 1

δ , this uses O
(
k1F B log 1

δ

)=
O

(
k0k1

δ2 log2 1
δ

)
samples per call. The time complexity follows by the same argument along the

assumption that χ̂ is (O(k0),k1)-block sparse, with an additional log2 n factor following from

Lemma 1.4.6. Note that the call to HASHTOBINSREDUCED dominates the computation of γr ,

which is O(k1B),

1.5 The Block-Sparse Fourier Transform

In this section, we combine the tools from the previous sections to obtain the full sublinear-

time block sparse FFT algorithm, and provide its guarantees.
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1.5.1 Additional Estimation Procedures

Before stating the final algorithm, we note the main procedures that it relies on: MULTIBLOCK-

LOCATE, PRUNELOCATION, and ESTIMATEVALUES. We presented the first of these in Section 1.3.

The latter two are somewhat more standard, and hence we relegate them to the appendices.

However, for the sake of readability, we provide some intuition behind them here, and state

their guarantees.

We begin with PRUNELOCATION. The procedure MULTIBLOCKLOCATE gives us a list of block

indices containing the dominant signal blocks with high probability, with a list size L =
O∗(

k0 logk0
)
. Estimating the values of all of these blocks in every iteration would not only

cost O∗(k0k1 logk0) samples, but would also destroy the sparsity of the input signal: Most of

the blocks correspond to noise, and thus the estimation error may dominate the values being

estimated. The PRUNELOCATION primitive is designed to alleviate these issues, pruning L to

a list that contains mostly “signal” blocks, i.e., blocks that contain a large amount of energy.

Some false positives and false negatives occur, but are controlled by Lemma 1.5.1 below. The

procedure is given in Algorithm 16 in Appendix A.4.

The following lemma shows that with high probability, the pruning algorithm retains most of

the energy in the head elements, while removing most tail elements.

Lemma 1.5.1. (PRUNELOCATION guarantees) Given integers n,k0,k1, a list of block indices

L ⊆
[

n
k1

]
, parameters θ > 0, δ ∈ ( 1

n , 1
20

)
and p ∈ (0,1), and signals X ∈Cn and χ̂ ∈Cn with ‖X̂ −

χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, the output L′ of PRUNELOCATION(X , χ̂,L,n,k0,k1,δ, p,θ) has the following

properties:

a. Let Stail denote the tail elements in signal X̂ − χ̂, defined as,

Stail =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≤

p
θ−

√
δ

k0
‖X̂ − χ̂‖2

}
,

where I j is defined in Definition 1.1.1. Then, we have,

E
[∣∣L′∩Stail

∣∣]≤ δp · |L∩Stail|.

b. Let Shead denote the head elements in signal X̂ − χ̂, defined as,

Shead =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≥

p
θ+

√
δ

k0
‖X̂ − χ̂‖2

}
.

Then, we have,

E

[ ∑
j∈(L∩Shead)\L′

‖(X̂ − χ̂)I j ‖2
2

]
≤ δp

∑
j∈L∩Shead

‖(X̂ − χ̂)I j ‖2
2.
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Moreover, provided that ‖χ̂‖0 =O(k0k1), the sample complexity is O
(

k0k1
δ log 1

δp log 1
δ

)
, and the

runtime is O
(

k0k1
δ log 1

δp log 1
δ logn +k1 · |L| log 1

δp

)
.

The proof is given in Appendix A.4.

We are left with the procedure ESTIMATEVALUES, which is a standard procedure for estimating

the signal values at the frequencies within the blocks after they have been located. The details

are given in Algorithm 17 in Appendix A.5.

Lemma 1.5.2. (ESTIMATEVALUES guarantees) For any integers n,k0,k1, any list of block in-

dices L ⊆
[

n
k1

]
, parameters δ ∈ ( 1

n , 1
20

)
and p ∈ (0,1/2), and signals X ∈ Cn and χ̂ ∈ Cn with

‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, with probability at least 1−p, the output W of the function ESTIMATE-

VALUES (X , χ̂,L,n,k0,k1,δ, p) (Algorithm 17) has the following property:

∑
f ∈⋃

j∈L I j

|W f − (X̂ − χ̂) f |2 ≤ δ
|L|
3k0

‖X̂ − χ̂‖2
2,

where I j is the j -th block. Moreover, provided that ‖χ̂‖0 = O(k0k1), the sample complexity is

O
(

k0k1
δ log 1

p log 1
δ

)
, and the runtime is O

(
k0k1
δ log 1

p log 1
δ logn +k1 · |L| log 1

p

)
.

The proof is given in Appendix A.5.

1.5.2 Statement of the Algorithm and Main Result

Our overall block-sparse Fourier transform algorithm is given in Algorithm 6. It first calls

REDUCESNR, which performs an iterative procedure that picks up high energy components of

the signal, subtracts them from the original signal, and then recurses on the residual signal

X (i ) = X −χ(i ). Once this is done, the procedure RECOVERATCONSTSNR performs a final

“clean-up” step to obtain the (1+ε)-approximation guarantee.

With these definitions in place, we can now state our final result, which formalizes Theorem

1.1.1.

Theorem 1.1.1 (Upper bound – formal version). Given integers n,k0,k1, parameter ε ∈ ( 1
n , 1

20

)
,

and the signal X ∈Cn , if X̂ , SNR′, µ2, and ν2 satisfy the following for (µ2,SNR) given in Defini-

tion 1.1.2:

1. µ2 ≤ ν2;

2. ‖X̂ ‖2
2 ≤ (k0ν

2) ·SNR′;

3. SNR′ =O(poly(n));

4. µ2 ≥ ‖X̂ ‖2
2

poly(n) ;
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Chapter 1. Sample-optimal Model-based Fourier Transform in Sublinear-time

Algorithm 6 Block-sparse Fourier transform.

1: procedure BLOCKSPARSEFT(X ,n,k0,k1,SNR′,ν2,ε)
2: . X ∈Cn is approximately (k0,k1)-block sparse
3: . (SNR′,ν2) are upper bounds on (SNR,µ2) from Definition 1.1.2
4: . ε is the parameter for (1+O(ε))-approximate recovery
5: χ̂← REDUCESNR(X ,n,k0,k1,SNR′,ν2).
6: χ̂← RECOVERATCONSTSNR(X , χ̂,n,k0,k1,ν2,ε).
7: return χ̂

8: procedure REDUCESNR(X ,n,k0,k1,SNR′,ν2) . Iteratively locate/estimate to reduce SNR
9: T ← logSNR′

10: δ← small absolute constant
11: p ← δ

log2 k0
δ

log4 SNR′ . Failure probability for subroutines

12: χ̂(0) ← 0 . χ̂(t ) is our current estimate of X̂
13: for t ∈ {1, . . . ,T } do
14: L ← MULTIBLOCKLOCATE(X , χ̂(t−1),n,k1,k0,δ, p)
15: θ← 10 ·2−t ·ν2SNR′ . Threshold for pruning
16: L′ ← PRUNELOCATION(X , χ̂(t−1),L,n,k0,k1,δ, p,θ)
17: χ̂(t ) ← χ̂(t−1)+ ESTIMATEVALUES(X , χ̂(t−1),L′,n,k0,k1,δ, p)

18: return χ̂(T )

19: procedure RECOVERATCONSTSNR(X , χ̂,n,k0,k1,ε) . A final “clean-up” step
20: η← small absolute constant
21: p ← ηε

log2 k0
ε

.Upper bound on failure probability for subroutines

22: L ← MULTIBLOCKLOCATE(X , χ̂,n,k1,k0,ε2, p)
23: θ← 200εν2

24: L′ ← PRUNELOCATION(X , χ̂,L,n,k0,k1,ε, p,θ)
25: W ← ESTIMATEVALUES(X , χ̂,L′,n,3k0/ε,k1,ε, p)
26: χ̂′ ←W + χ̂
27: return χ̂′

then with probability at least 0.8, the procedure BLOCKSPARSEFT(X ,n,k0,k1,SNR′,ν2,ε) satis-

fies the following: (i) The output χ̂ satisfies,

‖X̂ − χ̂‖2
2 ≤ k0

(
µ2 +O(εν2)

)
.

(ii) The sample complexity is O∗
((

k0 log(1+k0) logn +k0k1
)

logSNR′+ k0

ε2 log(1+k0) logn + k0k1

ε4

)
,

and the runtime is O∗
((

k0 log(1+k0)+k0k1 logn
)

logSNR′ log2 n +
(

k0k1

ε2 logn + k0k1

ε4

)
log2 n

)
.

The assumptions of the theorem are essentially that we know upper bounds on the tail noise

µ2 and SNR. Moreover, in order to get the (1+ε)-approximation guarantee, the former upper

bound should be tight to within a constant factor.

In the remainder of the section, we provide the proof of Theorem 1.1.1, deferring the technical

details to the appendices.
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1.5. The Block-Sparse Fourier Transform

Guarantees for REDUCESNR and RECOVERATCONSTSNR.

The following theorem proves the success of the function REDUCESNR. We again recall the

definitions of Err2, µ2, and SNR in Definition 1.1.2.

Lemma 1.5.3. (REDUCESNR guarantees) Given integers n,k0,k1, parameters ν,SNR′, and a

signal X ∈Cn , if X̂ , SNR′, and ν2 satisfy the following for (µ2,SNR) given in Definition 1.1.2:

1. µ2 ≤ ν2;

2. ‖X̂ ‖2
2 ≤ (k0ν

2) ·SNR′;

3. SNR′ =O(poly(n));

4. ν2 ≥ ‖X̂ ‖2
2

poly(n) ;

then the procedure REDUCESNR(X ,n,k0,k1,SNR′,ν2) satisfies the following guarantees with

probability at least 0.9 when the constant δ therein is sufficiently small: (i) The output χ̂(T )

satisfies,

χ̂(T ) is (3k0,k1)-block sparse∥∥X̂ − χ̂(T )
∥∥2

2 ≤ 100k0ν
2.

(ii) The number of samples is O∗ (
k0 log(1+k0) logSNR′ logn +k0k1 logSNR′), and the runtime

is O∗ (
k0 log(1+k0) logSNR′ log2 n +k0k1 logSNR′ log3 n

)
.

The proof is given in Appendix A.6.1.

The following theorem proves the success of the function RECOVERATCONSTSNR.

Lemma 1.5.4. (RECOVERATCONSTSNR guarantees) Given integers n,k0,k1, parameters ν2 ≥
‖X̂ ‖2

2
poly(n) and ε ∈ ( 1

n , 1
20

)
, and signals X ∈Cn and χ̂ ∈Cn satisfying,

1. Err2(X̂ − χ̂,10k0,k1) ≤ k0ν
2;

2. ‖X̂ − χ̂‖2
2 ≤ 100k0ν

2;

the procedure RECOVERATCONSTSNR(X , χ̂,n,k0,k1,ε) satisfies the following guarantees with

probability at least 0.9 when the constant η therein is sufficiently small: (i) The output χ̂′ satisfies,

‖X̂ − χ̂′‖2
2 ≤ Err2(X̂ − χ̂,10k0,k1)+O(ε) ·k0ν

2. (1.23)

(ii) If χ̂ is (O(k0),k1)-block sparse, then its sample complexity is O∗
(

k0

ε2 log(1+k0) logn + k0k1

ε4

)
and its runtime is O∗

(
k0k1

ε4 log2 n + k0k1

ε2 log3 n
)
.

The proof is given in Appendix A.6.2.
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Proof of Theorem 1.1.1.We are now in a position to prove Theorem 1.1.1 via a simple combi-

nation of Lemmas 1.5.3 and 1.5.4.

Success event associated with REDUCESNR: Define a successful run of REDUCESNR(X ,n,k0,k1,SNR,ν2)

to mean the following conditions on its output χ̂(T ):

‖X̂ − χ̂(T )‖2
2 ≤ 100k0ν

2

Err2(X̂ − χ̂(T ),10k0,k1) ≤ k0µ
2.

By Lemma 1.5.3, it follows that the probability of having a successful run of REDUCESNR

is at least 0.9. Note that the second condition is not explicitly stated in Lemma 1.5.3, but it

follows by using 3k0 blocks to cover the parts where χ̂T is non-zero, and k0 blocks to cover the

dominant blocks of X̂ , in accordance with Definition 1.1.2.

Success event associated with RECOVERATCONSTSNR: Define a successful run of RECOVER-

ATCONSTSNR(X , χ̂,k0,k1,n,ε) to mean the following conditions on its output χ̂′:

‖X̂ − χ̂′‖2
2 ≤ Err2(X̂ − χ̂,10k0,k1)+ (4 ·105)εk0ν

2.

Conditioning on the event of having a successful run of REDUCESNR, by Lemma 1.5.4, it

follows that the probability of having a successful run of RECOVERATCONSTSNR is at least 0.9.

By a union bound, the aforementioned events occur simultaneously with probability at least

0.8, as desired. Moreover, the sample complexity and runtime are a direct consequence of

summing the contributions from Lemmas 1.5.3 and 1.5.4.

1.6 Lower Bound

Our upper bound in Theorem 1.1.1, in several scaling regimes, provides a strict improvement

over standard sparse FFT algorithms in terms of sample complexity. The corresponding

algorithm is inherently adaptive, which raises the important question of whether adaptivity is

necessary in order to achieve these improvements. In this section, we show that the answer is

affirmative, by proving the following formalization of Theorem 1.1.2.

Theorem 1.1.2 (Lower bound – formal version). Fix integers n,k0,k1 and constant C > 0, and

suppose that there exists a non-adaptive algorithm that, when given a signal Y with Fourier

transform Ŷ , outputs a signal Ŷ ′ satisfying the following `2/`2-guarantee with probability at

least 1
2 :

‖Ŷ − Ŷ ′‖2
2 ≤C min

Ŷ ∗ is (k0,k1)−block sparse
‖Ŷ − Ŷ ∗‖2

2. (1.24)

Then the number of samples taken by the algorithm must behave asΩ
(
k0k1 log n

k0k1

)
.
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Hence, for instance, if k0 =O(1) and SNR =O(1) then our adaptive algorithm uses O(k1+logn)

samples, whereas any non-adaptive algorithm must useΩ
(
k1 log n

k1

)
samples.

The remainder of this section is devoted to the proof of Theorem 1.1.2. Throughout the section,

we let k = k0k1 denote the total sparsity.

High-level overview: Our analysis follows the information-theoretic framework of Price and

Woodruff (2011). However, whereas Price and Woodruff (2011) considers a signal with k

arbitrary dominant frequency locations and uniform noise, we consider signals where the

k = k0k1 dominant frequencies are (nearly) contiguous, and both the noise and signal are

concentrated on an O
( 1

k

)
fraction of the time domain.

As a result, while the difficulty in Price and Woodruff (2011) arises from the fact that the

algorithm needs to recover roughly log n
k bits per frequency location for k such locations, our

source of difficulty is different. In our signal, there are only roughly log n
k bits to be learned

about the location of all the blocks in frequency domain, but the signal is tightly concentrated

on an O
( 1

k

)
fraction of the input space. As a consequence, any non-adaptive algorithm is

bound to waste most of its samples on regions of the input space where the signal is zero,

and only an O
( 1

k

)
fraction of its samples can be used to determine the single frequency that

conveys the location of the blocks. In the presence of noise, this results in a lower bound on

sample complexity ofΩ
(
k log n

k

)
.

Information-theoretic preliminaries: We will make use of standard results from information

theory, stated below. Here and subsequently, we use the notations H (X ), H(Y |X ), I (X ;Y ) and

I (X ;Y |U ) for the (conditional) Shannon entropy and (conditional) mutual information (e.g.,

see Cover and Thomas (2012)).

We first state Fano’s inequality, a commonly-used tool for proving lower bounds by relating a

conditional entropy to an error probability.

Lemma 1.6.1. (Fano’s Inequality (Cover and Thomas, 2012, Lemma 7.9.1)) Fix the random

variables (X ,Y ) with X being discrete, let X ′ be an estimator of X such that X → Y → X ′

forms a Markov chain (i.e., X and X ′ are conditionally independent given Y ), and define

Pe := Pr[X ′ 6= X ]. Then

H(X |Y ) ≤ 1+Pe log2 |X |,
where X = supp (X ). Consequently, if X is uniformly distributed, then

I (X ;Y ) ≥−1+ (1−Pe) log2 |X |.

The next result gives the formula for the capacity of a complex-valued additive white Gaussian

noise channel, often referred to as the Shannon-Hartley theorem. Here and subsequently,

CN(µ,σ2) denotes the complex normal distribution.

Lemma 1.6.2. (Complex Gaussian Channel Capacity (Cover and Thomas, 2012, Thm. 2.8.1))
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For Z ∼ CN(0,σ2
z ) and any complex random variable X with E[|X |2] =σ2

x , we have

I (X ; X +Z ) ≤ log2

(
1+ σ2

x

σ2
z

)
,

with equality if X ∼ CN(0,σ2
x ).

The following lemma states the data processing inequality, which formalizes the statement

that processing a channel output cannot increase the amount of information revealed about

the input.

Lemma 1.6.3. (Data Processing Inequality (Cover and Thomas, 2012, Thm. 2.8.1)) For any

random variables (X ,Y , Z ) such that X → Y → Z forms a Markov chain, we have I (X ; Z ) ≤
I (X ;Y ).

Finally, the following lemma bounds the mutual information between two vectors in terms of

the individual mutual information terms between components of those vectors.

Lemma 1.6.4. (Mutual Information for Vectors (Cover and Thomas, 2012, Lemma 7.9.2)) For

any random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn), if Y j is conditionally independent of

everything given X j for every j = 1,2, · · ·n, then I (X;Y) ≤∑n
i=1 I (Xi ;Yi ).

A communication game: We consider a communication game consisting of channel coding

with a state known at both the encoder (Alice) and decoder (Bob), where block-sparse recovery

is performed at the decoder. Recalling that we are in the non-adaptive setting, by Yao’s minimax

principle, we can assume that the samples are deterministic and require probability- 1
2 recovery

over a random ensemble of signals, as opposed to randomizing the samples and requiring

constant-probability recovery for any given signal in the ensemble. Hence, we denote the fixed

sampling locations by A .

We now describe our hard input distribution. Each signal in the ensemble is indexed by two

parameters (u, f ∗), and is given by

X t =
ω f ∗t t ∈ {u, . . . ,u + C ′n

k −1}

0 otherwise,
(1.25)

where C ′ > 0 is a constant that will be chosen later, and where all indices are modulo-n. Hence,

each signal is non-zero only in a window of length C ′n
k , and within that window, the signal

oscillates at a rate dictated by f ∗. Specifically, u specifies where the signal is non-zero in time

domain, and f ∗ specifies where the energy is concentrated in frequency domain. We restrict

the values of u and f ∗ to the following sets:

U =
{C ′n

k
,

2C ′n
k

. . . ,
( k

C ′ −1
)C ′n

k
,n

}
F =

{
k,2k, . . . ,

(n

k
−1

)
k,n

}
.
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The communication game is as follows:

1. Nature selects a state U and a message F uniformly from U and F , respectively.

2. An encoder maps (U ,F ) to the signal X according to (1.25).

3. A state-dependent channel adds independent CN(0,α) noise to X t for each t ∈ {u, . . . ,u+
C ′n

k −1}, while keeping the other entries noiseless. This is written as Yt = X t +Wt , where

Wt ∼
CN(0,α) {u, . . . ,u + C ′n

k −1}

0 otherwise.
(1.26)

The channel output is given by Y = {Yt }t∈A for the sampling locations A .

4. A decoder receives U and Y , applies (k0,k1)-block sparse recovery to Y to obtain a signal

Ŷ ′, and then selects F ′ to be the frequency f ′ ∈F such that the energy in Ŷ ′ within the

length-k window centered at f ′ is maximized:

F ′ = argmax f ′∈F ‖Ŷ ′
Ik ( f ′)‖2

2, (1.27)

where Ik ( f ′) = { f ′+∆ : ∆ ∈ [k]}.

We observe that if adaptivity were allowed, then the knowledge of U at the decoder would

make the block-sparse recovery easy – one could let all of the samples lie within the window

given in (1.25). The problem is that we are in the non-adaptive setting, and hence we must

take enough samples to account for all of the possible choices of U .

We denote the subset of A falling into
{

u, . . . ,u + C ′n
k −1

}
by Au , its cardinality by mu and the

total number of measurements by m = |A | =∑
u mu . Moreover, we let XAu and YAu denote

the sub-vectors of X and Y indexed by Au .

Information-theoretic analysis: We first state the following lemma.

Lemma 1.6.5. (Mutual information bound) In the setting described above, the conditional

mutual information I (F ;Y |U ) satisfies I (F ;Y |U ) ≤ C ′m
k log

(
1+ 1

α

)
, where α is variance of the

additive Gaussian noise within Au .
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Proof. We have

I (F ;Y |U ) = C ′

k

∑
u

I (F ;Y |U = u)

= C ′

k

∑
u

I (F ;YAu |U = u)

≤ C ′

k

∑
u

I (XAu ;YAu |U = u)

≤ C ′

k

∑
u

∑
t∈Au

I (X t ;Yt |U = u)

≤ C ′

k

∑
u

mu log2

(
1+ 1

α

)
= C ′m

k
log2

(
1+ 1

α

)
, (1.28)

where:

• Line 1 follows since U is uniform on a set of cardinality k
C ′ ;

• Line 2 follows since given U = u, only the entries of Y indexed by Au are dependent on

F (cf., (1.25));

• Line 3 follows by noting that given U = u we have the Markov chain F → XAu → YAu ,

and applying the data processing inequality (Lemma 1.6.3);

• Line 4 follows from Lemma 1.6.4 and (1.26), where the conditional independence as-

sumption holds because we have assumed the random variables Wt are independent;

• Line 5 follows from the Shannon-Hartley Theorem (Lemma 1.6.2); in our case, the signal

power is exactly one by (1.25), and the average noise energy is α by construction.

Next, defining δu := Pr[F ′ 6= F |U = u], Fano’s inequality (Lemma 1.6.1) gives

I (F ;Y |U = u) ≥−1+ (1−δu) log2
n

k
,

and averaging both sides over U gives

I (F ;Y |U ) ≥−1+ (1−δ) log2
n

k
,

where δ := E[δU ] = Pr[F ′ 6= F ].

Hence, and by Lemma 1.6.5, if we can show that our `2/`2-error guarantee (1.24) gives F ′ = F
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with constant probability, then we can conclude that,

m ≥ k
(
(1−δ) log2

n
k −1

)
C ′ log2

(
1+ 1

α

) =Ω
(
k log

n

k

)
.

We therefore conclude the proof of Theorem 1.1.2 by proving the following lemma.

Lemma 1.6.6. (Probability of error characterization) Fix integers n,k0,k1 and C > 0. If the

(k0,k1)-block sparse recovery algorithm used in the above communication game satisfies (1.24)

with probability at least 1
2 , then there exist choices of C ′ and α such that the decoder’s estimate

of F ′ according to (1.27) satisfies F ′ = F with probability at least 1
4 .

Proof. By the choice of estimator in (1.27), it suffices to show that Ŷ ′, the output of the block-

sparse Fourier transform algorithm, has more than half of its energy within the length-k

window Ik ( f ∗) centered of f ∗. We show this in three steps.

Characterizing the energy of X̂ within Ik ( f ∗): The Fourier transform of X in (1.25) is a

shifted sinc function of “width” k
C ′ centered at f ∗ when the time window is centered at zero,

and more generally, has the same magnitude as this sinc function. Hence, by letting C ′ be

suitably large, we can ensure that an arbitrarily high fraction of the energy of X̂ falls within the

length-k window centered at f ∗ ∈F . Formally, we have

‖X̂ Ik ( f ∗)‖2
2 ≥ (1−η)‖X̂ ‖2

2 (1.29)

for η ∈ (0,1) that we can make arbitrarily small by choosing C ′ large.

Characterizing the energy of Ŷ within Ik ( f ∗): We now show that, when the noise level α in

(1.26) it sufficiently small, the energy in Ŷ within Ik ( f ∗) is also large with high probability:∑
f ∈Ik ( f ∗)

|Ŷ f |2 ≥ (1−2η)‖X̂ ‖2
2. (1.30)

To prove this, we first note that |Ŷ f |2 = |X̂ f +Ŵ f |2 for all f ∈ [n], from which it follows that∣∣∣∣ ∑
f ∈Ik ( f ∗)

|Ŷ f |2 −
∑

f ∈Ik ( f ∗)
|X̂ f |2

∣∣∣∣≤ ∑
f ∈Ik ( f ∗)

|Ŵ f |2 +2
∑

f ∈Ik ( f ∗)
|X̂ f | · |Ŵ f |.

Upper bounding the summation over |Ŵ f |2 by the total noise energy, and upper bounding the

summation over |X̂ f | · |Ŵ f | using the Cauchy-Schwarz inequality, we obtain∣∣∣∣ ∑
f ∈Ik ( f ∗)

|Ŷ f |2 −
∑

f ∈Ik ( f ∗)
|X̂ f |2

∣∣∣∣≤ ‖Ŵ ‖2
2 +2‖X̂ ‖2 · ‖Ŵ ‖2. (1.31)

We therefore continue by bounding the total noise energy ‖Ŵ ‖2
2; the precise distribution of

the noise across different frequencies is not important for our purposes.
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Recall that every non-zero entry of X has magnitude one, and every non-zero time-domain

entry of W is independently distributed as CN(0,α). Combining these observations gives

E
[‖W ‖2

2

] = α‖X ‖2
2, or equivalently E

[‖Ŵ ‖2
2

] = α‖X̂ ‖2
2 by Parseval. Therefore, by Markov’s

inequality, we have ‖Ŵ ‖2
2 ≤ 4α‖X̂ ‖2

2 with probability at least 3
4 . When this occurs, (1.31) gives,∣∣∣∣ ∑

f ∈Ik ( f ∗)
|Ŷ f |2 −

∑
f ∈Ik ( f ∗)

|X̂ f |2
∣∣∣∣≤ 4(α+p

α)‖X̂ ‖2
2. (1.32)

If we choose α= η2

100 , then we have 4(α+p
α) = η2

25 +
4η
10 ≤ η. In this case, by (1.29) and (1.32),

the length-k window Ik ( f ∗) centered at f ∗ satisfies (1.30).

Characterizing the energy of Ŷ ′ within Ik ( f ∗): The final step is to prove that (1.30) and (1.24)

imply the following with constant probability for a suitable choice of η:

∑
f ∈Ik ( f ∗)

|Ŷ ′
f |2 >

1

2
‖Ŷ ′‖2

2, (1.33)

where Ŷ ′ is the output of the block-sparse recovery algorithm. This clearly implies that F = F ′,
due to our choice of estimator in (1.27).

As a first step towards establishing (1.33), we rewrite (1.30) as∑
f ∈[n]\Ik ( f ∗)

|Ŷ f |2 ≤ ‖Ŷ ‖2
2 − (1−2η)‖X̂ ‖2

2. (1.34)

We can interpret (1.34) as an error term ‖Ŷ − Ŷ ∗‖2
2 for a signal Ŷ ∗ coinciding with Ŷ within

Ik ( f ∗) and being zero elsewhere. Since Ik ( f ∗) contains k contiguous elements, this signal is

(k0,k1)-block sparse, and hence if the guarantee in (1.24) holds, then combining with (1.34)

gives

‖Ŷ − Ŷ ′‖2
2 ≤C

(
‖Ŷ ‖2

2 − (1−2η)‖X̂ ‖2
2

)
. (1.35)

We henceforth condition on both (1.24) and the above-mentioned event ‖Ŵ ‖2
2 ≤ 4α‖X̂ ‖2

2.

Since the former occurs with probability at least 1
2 by assumption, and the latter occurs with

probability at least 3
4 , their intersection occurs with probability at least 1

4 .

Next, we write the conditions in (1.30) and (1.35) in terms of ‖Ŷ ‖2
2, rather than ‖X̂ ‖2

2. Since

X̂ = Ŷ −Ŵ , we can use the triangle inequality to write ‖X̂ ‖2 ≥ ‖Ŷ ‖2 −‖Ŵ ‖2, and combining

this with ‖Ŵ ‖2
2 ≤ 4α‖X̂ ‖2

2, we obtain ‖X̂ ‖2 ≥ ‖Ŷ ‖2

1+2
p
α

. Hence, we can weaken (1.30) and (1.35) to

∑
f ∈Ik ( f ∗)

|Ŷ f |2 ≥
1−2η

(1+2
p
α)2

‖Ŷ ‖2
2 ≥ 0.99‖Ŷ ‖2

2 (1.36)

‖Ŷ − Ŷ ′‖2
2 ≤C

(
1− 1−2η

(1+2
p
α)2

)
‖Ŷ ‖2

2 ≤ 0.01‖Ŷ ‖2
2, (1.37)

where the second step in each equation holds for sufficiently small η due to the choice α= η2

100 .
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1.6. Lower Bound

It only remains to use (1.36)–(1.37) to bound the left-hand side of (1.33). To do this, we first

note that by interpreting both (1.36) and (1.37) as bounds on ‖Ŷ ‖2
2, and using ‖Ŷ − Ŷ ′‖2

2 ≥
‖(Ŷ − Ŷ ′)Ik ( f ∗)‖2

2 in the latter, we have∑
f ∈Ik ( f ∗)

|Ŷ f − Ŷ ′
f |2 ≤ 0.02

∑
f ∈Ik ( f ∗)

|Ŷ f |2,

since 0.01
0.99 ≤ 0.02. Taking the square root and applying the triangle inequality to the `2-norm

on the left-hand side, we obtain∑
f ∈Ik ( f ∗)

|Ŷ ′
f |2 ≥ (1−p

0.02)2
∑

f ∈Ik ( f ∗)
|Ŷ f |2. (1.38)

Next, writing ‖Ŷ ′‖2 = ‖Ŷ + (Ŷ ′− Ŷ )‖2, and applying the triangle inequality followed by (1.37),

we have ‖Ŷ ′‖2 ≤ 1.1‖Ŷ ‖2, and hence ‖Ŷ ‖2 ≥ 0.9‖Ŷ ′‖2. Squaring and substituting into (1.36),

we obtain, ∑
f ∈Ik ( f ∗)

|Ŷ f |2 ≥ 0.8‖Ŷ ′‖2
2. (1.39)

Finally, combining (1.38) and (1.39) yields (1.33), and we have thus shown that (1.33) holds

(and hence F = F ′) with probability at least 1
4 .
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2 Dimension-independent Sparse
Fourier Transform

This chapter is based on a joint work with Michael Kapralov and Ameya Velingker. It has been

accepted to the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (Kapralov et al.,

2019, SODA).

2.1 Introduction

The Discrete Fourier Transform (DFT) is one of the most widely used computational primitives

in modern computing, with numerous applications in data analysis, signal processing, and

machine learning. The fastest algorithm for computing the DFT is the Fast Fourier Trans-

form (FFT) algorithm of Cooley and Tukey, which has been recognized as one of the 10 most

important algorithms of the 20th century (Cipra, 2000). The FFT algorithm is very efficient:

it computes the Discrete Fourier Transform of a length N complex-valued signal in time

O(N log N ). This applies to vectors in any dimension: FFT works in O(N log N ) time irrespec-

tive of whether the DFT is on the line, on a
p

N ×p
N grid, or is in fact the Hadamard transform

on {0,1}d , with d = log2 N .

In any applications of the Discrete Fourier Transform, the input signal x ∈CN often satisfies

sparsity or approximate sparsity constraints: the Fourier transform x̂ of x has a small number of

coefficients k or is close to a signal with a small number of coefficients (e.g., this phenomenon

is the motivation for compression schemes such as JPEG and MPEG). This has motivated a

rich line of work on the Sparse FFT problem: given access to a signal x ∈CN in time domain

that is sparse in Fourier domain, compute the k nonzero coefficients in sublinear (i.e., o(N ))

time.

Very efficient algorithms for the Sparse FFT problem have been developed in the literature (Gol-

dreich and Levin, 1989; Kushilevitz and Mansour, 1993; Mansour, 1995; Gilbert et al., 2002;

Akavia et al., 2003; Gilbert et al., 2005; Iwen, 2010; Akavia, 2010; Hassanieh et al., 2012c,b;

Lawlor et al., 2013; Boufounos et al., 2015; Hassanieh et al., 2012a; Pawar and Ramchandran,

2013; Heider et al., 2013; Indyk et al., 2014; Indyk and Kapralov, 2014; Kapralov, 2016; Price
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and Song, 2015; Chen et al., 2016; Cevher et al., 2017; Kapralov, 2017; Nakos et al., 2019; Am-

rollahi et al., 2019). The state-of-the-art approach, due to Hassanieh et al. (2012b), yields

an O(k log N ) runtime algorithm for the following exact k-sparse Fourier transform problem:

given access to an input signal of length N whose Fourier transform has at most k non-zeros,

output the non-zero coefficients and their values. This highly efficient algorithm comes with a

caveat, however: the runtime of O(k log N ) only holds for the Fourier transform on the line,

namely,ZN . The algorithm naturally extends to higher dimensions, namely,Zd
n , where N = nd ,

but with an exponential loss in runtime; the runtime becomes O(k logd N ) as opposed to

O(k log N ). Interestingly, the other extreme of d = log2 N , i.e., the Hadamard transform, has

been known to admit an O(k log N ) algorithm since the seminal work of Goldreich and Levin

(1989). The recent work of Amrollahi et al. (2019) yields a sample optimal sparse Hadamard

transform in sublinear time. However, all intermediate values of d exhibit a curse of dimen-

sionality. This is in sharp contrast to FFT itself, which runs in time O(N log N ), where N = nd is

the length of the input signal, in any dimension d . The focus of our work is to design sublinear

time algorithms for Sparse FFT that avoid this curse of dimensionality. Our main point of

attention is the Sparse FFT problem:

Input: access to x : [n]d →C,

integer k ≥ 1 such that |supp x̂| ≤ k

Output: nonzero elements of x̂ and their coefficients

(2.1)

Our main result is the first sublinear algorithm for exact Sparse FFT (2.1), as stated in the

following theorem.

Theorem 2.1.1 (Main result, informal version). For any integer n that is a power of two and any

positive integer d, there exists a deterministic algorithm that, given access to a signal x : [n]d →C

with ‖x̂‖0 ≤ k, recovers x̂ in time poly(k, log N ).

We remark that this is the first sublinear time Sparse FFT algorithm that avoids an exponential

dependence on the dimension d . One should note that the runtime still depends on d , since

log2 N = d log2 n is lower bounded by d , but this dependence is polynomial as opposed to

exponential.

2.1.1 Significance of our results and related work

Significance of our results. The state of the art in high dimensional Sparse Fourier Trans-

forms presents an interesting conundrum: algorithms with runtime O(k log N ) are known for

d = 1 (Discrete Fourier Transform on the line, see (Hassanieh et al., 2012b)) and d = log2 N

(the Hadamard transform, see (Goldreich and Levin, 1989; Amrollahi et al., 2019)), but for

all intermediate values of d the runtime scales exponentially in d . Given that FFT itself is

dimension-insensitive, this strongly suggests that exciting new algorithmic techniques can

be developed for the high-dimensional version of the problem. We design the first approach

to high dimensional Sparse FFT that does not suffer from the curse of dimensionality, and
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naturally leads to several exciting open problems that we hope will spur further progress in

this area.

In addition, we note that rather high-dimensional versions of the Fourier transform arise in

applications (e.g., 2D, 3D and 4D-NMR in medical imaging), and designing practical Sparse

FFT algorithms for this regime is an important problem. We hope that new techniques for

dimension-independent Sparse FFT will lead to progress in this direction as well.

Sample complexity of high-dimensional Sparse FFT. We note that, besides runtime, another

very important parameter of a Sparse FFT algorithm is sample complexity, i.e., the number of

samples that an algorithm needs to access in time domain in order to compute the dominant

coefficients of the Fourier transform. The sample complexity of Sparse FFT, unlike runtime,

does not suffer from a curse of dimensionality. Indeed, there exist several algorithms with

Õ(N ) runtime that can recover the top k coefficients of x̂ using only k poly(log N ) accesses

in time domain, irrespective of the dimensionality of the problem. This can be achieved, for

example, using either results on the restricted isometry property (RIP) (Candès and Tao, 2006;

Rudelson and Vershynin, 2008; Bourgain, 2014; Cheraghchi et al., 2013; Haviv and Regev, 2017),

or using the filtering approach developed in the Sparse FFT literature, with Õ(N ) decoding

time. Thus, the challenge is to achieve sublinear runtime without an exponential dependence

on the dimension.

We now outline existing approaches to Sparse FFT and explain why they fail to scale well in

high dimensions:

State-of-the-art approaches to Sparse FFT and their lack of scalability in high dimensions.

The main idea behind many recently developed algorithms for the Sparse FFT problem is

the “hashing” approach inherited from sparse recovery with arbitrary linear measurements.

Given access to a signal x : [n]d →C, one designs linear measurements of x that allow one to

“hash” the nonzero positions of x̂ into a number of “buckets.” The number of buckets B = bd

is chosen to be a constant factor larger than the sparsity k to ensure that a large constant

fraction of the nonzero positions of x̂ are isolated in their buckets. Every isolated element can

be recovered and subtracted from x for future iterations of the same hashing scheme, thereby

ensuring convergence. The idea of hashing is implemented via filtering: one designs a filter

G : [n]d → C such that Ĝ approximates a “bucket,” i.e., Ĝ is close to 1 on an `∞ ball of side

length ≈ (N /B)1/d = n/b in dimension d . The content of the j -th ‘bucket’, for j ∈ [b]d , is then

á(x·−a ·G) j ·n/b = ∑
f ∈[n]d

x̂ f e2π f T a/n ·Ĝ j ·n/b− f . (2.2)

Since Ĝ is essentially 1 on the `∞ ball around the center j ·n/b of the ‘bucket’ and essentially

zero outside, (2.2) gives the algorithm time domain access to the restriction of x̂ to the “bucket,”

i.e., the essential support of Ĝ , where a ∈ [n]d is the location in time domain at which the
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signal is being accessed. A pseudorandom permutation of the frequency space ensures that

such a bucket is likely to contain just a single element of the support, which enables the

algorithm to recover at least a constant fraction of elements in a single round and perform

iterative recovery. Furthermore, if the (essential) support of G in time domain is small, one

obtains an efficient algorithm.

The difficulty that arises in using (2.2) in high dimensions is the fact that it is not known

how to ensure that Ĝ is close to 1 in an appropriately defined “bucket” while simultaneously

ensuring that |supp G| is small. For example, the filters constructed in Hassanieh et al. (2012b)

ensure that Ĝ is polynomially close to 1 in Fourier domain, but this comes at the expense

of |supp G| being larger than k (the ideal support size) by a factor ofΘ(logn), and this effect

is even more pronounced in higher dimensions, resulting in a logd n loss in runtime. The

other extreme would be to choose G to be equal to 1 on an `∞ ball with k points around the

origin, but in that case, its Fourier transform Ĝ is the sinc function, which is only a constant

factor approximation to the indicator of the corresponding `∞ box in Fourier domain (i.e., the

ideal “bucket”). In dimension d , the approximation degrades to cd for some constant c ∈ (0,1),

leading to exponential loss in runtime. Indeed, suppose that all elements of x̂ have roughly the

same value. Then for a given element f ∈ supp x̂, the expected contribution of other elements

to the noise in the “bucket” that f is hashed to is ||x̂||22/B , but the contribution of x̂ f to its

own bucket is (most of the time) only cd of its value, and, hence, only an exponentially small

fraction of coefficients can be recovered in a given round of hashing. 1

Related work. In (Cheraghchi and Indyk, 2017), the authors presented a deterministic Sparse

Fourier transform algorithm for the Hadamard transform, i.e., d = log2 N , that runs in nearly

linear time in the sparsity parameter k, but it is not known how this extends to lower dimen-

sions. In (Iwen, 2010, 2013) the author gives a Õ(k2) time deterministic algorithm for the

Sparse Fourier Transform, but the algorithm only applies to a related but distinctly easier

problem. Specifically, the problem considers a continuous function on [0,2π) whose Fourier

transform is bandlimited and sparse. The presented algorithm requires sampling the signal

at arbitrary locations in [0,2π). A natural approach is to emulate sampling off-grid (i.e., at

arbitrary points in [0,2π)) given discrete samples that we have access to, which is achieved

in (Merhi et al., 2019) giving an Õ(k2) time deterministic algorithm for one dimensional sparse

FFT. But this is a challenging task in multi-dimensional setting for several reasons. First, we

are operating under the sparsity assumption alone, and no powerful general interpolation

techniques that work under the sparsity assumption alone are available, to the best of our

knowledge. Furthermore, even if the function were bandlimited, a natural approach to inter-

polation would involve some form of Taylor expansion or semi-equispaced Fourier Transform,

however, both approaches incur a logd N loss in dimension d . Indeed, similar exponential

1In addition, the discussion above assumes the presence of an approximate pairwise hashing lemma for high
dimensions that does not lose an exponential factor in the dimension (it is known that such a lemma holds with at
most about a factor of 2d loss (Indyk and Kapralov, 2014), but no dimension-independent version is available in
the literature).

52



2.2. Overview of Our Results and Techniques

dependence on the dimensionality of the problem manifests itself in Fast Multipole Methods

of Greengard and Rokhlin (1986) and the Sparse FFT algorithms mentioned above. Finally, one

should also note that whereas the problem of computing the Fourier transform on a p ×q grid

with p mutually prime with q is equivalent to a one-dimensional Fourier transform on Zpq ,

the standard case of side lengths that are powers of two (for which we have the most efficient

FFT algorithms) does not admit such a reduction. Furthermore, such a reduction appears to

be quite challenging in high dimensions for reasons outlined above, and even more so for

highly oscillatory functions that Sparse FFT algorithms need to handle.

2.2 Overview of Our Results and Techniques

Prior works on Sparse FFT have primarily focused on efficiently implementing hashing-based

ideas developed in the extensive literature on sparse recovery using general linear measure-

ments, e.g., (Ghazi et al., 2013), which meets with several difficulties. In particular, the presence

of multiplicative subgroups in Zd
n has been a hurdle in analyzing Sparse FFT algorithms: while

aliasing filters have optimal performance from the point of view of the uncertainty principle,

their applications have been limited due to the fact that frequencies that belong to the same

subgroup get hashed together if such filters are used, making it impossible to reason about

isolation of individual frequencies. At the same time, FFT itself owes much of its efficiency to

the very same multiplicative subgroups of Zd
n , and a natural question is whether one can de-

sign a Sparse FFT algorithm that operates on similar principles. This is precisely the approach

that we take.

Adaptive Aliasing Filters. The main technical innovation that allows us to avoid exponential

dependence on the dimension and obtain Theorem 2.1.1 is a new family of filters for isolating

a subset of frequencies in the Fourier domain for a sparse signal x̂ using few samples in time

domain. We refer to the family of filters as adaptive aliasing filters.

Definition 2.2.1 (( f ,S)-isolating filter, informal version of Definition 2.4.4, see Section 2.4).

Suppose n is a power of two integer and S ⊆ [n]d for a positive integer d . Then, for any

frequency f ∈ S, a filter G : [n]d → C is called ( f ,S)-isolating if Ĝ f = 1 and Ĝ f ′ = 0 for every

f ′ ∈ S \ { f }.

We explain the intuition behind the construction of the filter in Section 2.2.1 below and provide

the details later in Section 2.4.

The reason why an ( f ,S)-isolating filter G is useful lies in the fact that for every signal x :

[n]d →Cwith supp x̂ ⊆ S we have, for all t ∈ [n]d ,

∑
j∈[n]d

x j Gt− j = (x ∗G)t = 1

N

∑
j∈[n]d

x̂ j ·Ĝ j ·e2πi j T t
n = 1

N
x̂ f e2πi f T t

n .

Thus, the filter G enables access to the time domain representation of the restriction of x̂ to f
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using a running time proportional to |supp G|. Of course, this is only useful if the support of G

is small. The main technical lemma of our paper shows that for every support set S = supp x̂,

there exists an f ∈ S that can be isolated efficiently:

Lemma 2.2.1 (Informal version of Corollary 2.4.2 in Section 2.4). For every power of two n ≥ 1,

positive integer d, and set S ⊆ [n]d , there exists an f ∈ S and an ( f ,S)-isolating filter G such

that |supp G| ≤ |S|.

The proof of the lemma uses Kraft–McMillan inequality and is given in Section 2.4.

Accessing the residual signal. Lemma 2.2.1 suggests a natural approach to the estimation

problem with Fourier measurements in high dimensions: iteratively construct an ( f ,S)-

isolating filter G , estimate f , remove f from S, and proceed. The hope is that we can essentially

assume that we are given access to F−1
{

x̂S\{ f }
}

once we have estimated f . In general, if we

have been able to estimate the values of x̂ f for all f ∈C with some C ⊆ S, then we would like

to obtain access to,

xt −
∑
f ∈C

x̂ f ·e2πi f T t .

Note that we would need xt for t in the support of G at the next iteration, and this support is

generally a rather complicated set of size Ω(k), from which we need to subtract the inverse

Fourier transform of the signal estimated so far. This problem is the non-uniform Fourier trans-

form problem, and no subquadratic methods for subtraction are known even in dimension

d = 1 when the set in time domain that we want to compute the inverse Fourier transform on is

arbitrary. Even if the target set is an `∞-box, the best known algorithms for this problem run in

timeΩ(k logd (1/ε)), where ε> 0 is the precision parameter of the computation—this reduces

to quadratic time even when d =Ω(logk/loglogk) and inverse polynomial in k precision is de-

sired. Thus, subtracting from time domain would result in at least cubic runtime in k. Instead,

we subtract the influence of the residual in frequency domain, which requires O(k) evaluations

of Ĝ (as we show, Ĝ can be evaluated at a cost of just O(log N )). Note that it is crucial here

that we peel off one coefficient at at time. Any improvements to this process, if they were to

achieve k2−Ω(1) runtime overall, would likely also imply improvements in the computation of

approximate non-uniform Fourier transform: given a k-sparse signal x̂ and a set T ⊆ [n]d with

|T | ≤ k, output y : [n]d → C such that ||(x − y)T ||22 ≤ ε||x||22. However, it seems plausible that

quadratic runtime in k is essentially optimal for the non-uniform Fourier transform problem:

specifically, that under natural complexity theoretic assumptions there exists no algorithm

for the ε-approximate non-uniform Fourier transform problem with runtime k2−Ω(1) when

d =Ω(logk) and ε< 1/kC for sufficiently large constant C . We note that current techniques do

not provide a subquadratic algorithm even for simple sets T such as the `∞ box with k points

in dimension d =Ω(logk/loglogk) (due to the k logd (1/ε) dependence mentioned above; a

similar exponential dependence on the dimension is present in Fast Multipole Methods of

Greengard and Rokhlin (1986)). For an arbitrary set T no subquadratic algorithm is known

even when d = 1.
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Putting it together: estimation with Fourier measurements. Combining the aforemen-

tioned ideas, we are able to develop a deterministic algorithm for the estimation problem with

Fourier measurements in high dimensions:

Input: access to x : [n]d →C,

subset S ⊆ [n]d such that supp x̂ ⊆ S

Output: x̂S

(2.3)

For the estimation problem (2.3) we obtain the following result.

Theorem 2.2.1 (Estimation guarantee). Suppose n is a power of two integer, d is a positive

integer, and S ⊆ [n]d . Then, for any signal x : [n]d → C with supp x̂ ⊆ S, the procedure

ESTIMATE(x,S,n,d) (see Algorithm 9) recovers x̂. Moreover, the sample complexity of this

procedure is O(|S|2) and its runtime is O(|S|2 · log N ). Furthermore, ESTIMATE is deterministic.

In the rest of this section, we give an overview of our techniques. Throughout the section,

we present our results for the one-dimensional setting, as this makes notation simpler. All

our results translate to the high-dimensional setting without any loss—see Section 2.4.2 for

details.

2.2.1 Recovery via adaptive aliasing filters

Our main theorem is the following, which proves the existence of an efficient algorithm for

problem (2.1) for worst-case signals.

Theorem 2.1.1 (Sparse FFT for worst-case signals, formal version). For any power of two

integer n and any positive integer d and any signal x : [n]d →Cwith ‖x̂‖0 = k, the procedure

SPARSEFFT(x,n,d ,k) in Algorithm 11 recovers x̂. Moreover, the sample complexity of this

procedure is O(k3 log2 k log2 N ) and its runtime is O(k3 log2 k log2 N ), where N = nd .

The major difference between estimation and recovery (i.e., problem (2.3) vs. (2.1)) is the fact

that in the latter problem, the set S of frequencies is unknown to us: the algorithm is only

given access to x and an upper bound on the sparsity of x̂. Since our ( f ,S)-isolating filter is

adaptive, i.e., depends on S, this appears to present a challenge. However, we circumvent this

challenge by constructing a sequence of successive approximations to the set S. In dimension

1, these approximations amount to reducing S modulo 2 j for all j = 1, . . . , log2 n, and adaptively

probing to learn which of the residue classes are nonzero. As before, our approach extends

seamlessly to high dimensions by simply concatenating the d coordinates into a single vector.

Note that this is in sharp contrast to all previously known approaches, which are more efficient

in low dimensions, but incur an exponential loss overall. We would like to note that at a high

level one can view our filtering approach as a way to prune the FFT computation graph in a

way that suffices for recovery of a k-Fourier sparse vector.
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Figure 2.1 – An example of T f ul l
n and a splitting tree with n = 8 and binary labelling.

We outline the main ideas in one-dimensional setting here to simplify the presentation (see

Section 2.4.2 for the high-dimensional version of the argument). Let N = n be the length of

the signal and d = 1 be the dimension for n a power of two. We define T full
n to be a full binary

tree of height log2 n and define a labelling scheme on the vertices as follows.

Definition 2.2.2. Suppose n is a power of two integer. Let T full
n be a full binary tree of height

log2 n, where for every j ∈ {0,1, . . . , log2 n}, the nodes at level j (i.e., at distance j from the root)

are labeled with integers in Z2 j . For a node v ∈ T full
n , we let fv be its label. The label of the root

is fr oot = 0. The labelling of T f ul l
n satisfies the condition that for every j ∈ [log2 n] and every v

at level j , the right and left children of v have labels fv and fv +2 j , respectively. Note that the

root of T full
n is at level 0, while the leaves are at level log2 n.

The tree captures the computation graph of FFT algorithm, where leaves correspond to

frequencies in Zn (given by the label), and for any j ∈ {0,1, . . . , log2 n}, the nodes at level j (i.e.,

at distance j from the root) correspond to congruence classes of frequencies modulo 2 j , as

specified by the labelling (see Figure 2.1a).

Note that the full FFT algorithm starts from the root of T full
n and computes the congruence

classes of the Fourier transform of signal x at each level of this tree iteratively. Because it can

reuse the computations from each level for computing the next levels, the total runtime of

FFT is O(n log2 n).

In order to speed up the computation for sparse signals, we introduce the notion of a splitting

tree, which is nothing but the subtree of T full
n that contains the nonzero locations of x̂ together

with paths connecting them to the root. Given a set S ⊆ [n] (the support of x̂ in the Fourier

domain), we define the splitting tree of set S as follows:

Definition 2.2.3 (Splitting tree). Let n be an integer power of two. For every S ⊆ [n], the

splitting tree T = Tree(S,n) of a set S is a binary tree that is the subtree of T full
n that contains,

for every j ∈ [log2 n], all nodes v ∈ T full
n at level j such that

{
f ∈ S : f ≡ fv (mod 2 j )

} 6= ;.
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u

v

Partially recovered splitting tree

Frequency cone of v

Frequency cone of u

Figure 2.2 – A partially recovered splitting tree (shown in bold). Frequency cones of u and
v correspond to the subtrees rooted at nodes u and v , respectively, which have not been
discovered yet.

An illustration of such a tree is given in Figure 2.1b. In order to recover the identities of

the elements in S, our algorithm performs an exploration of this tree. At every point, the

algorithm constructs a filter G that isolates frequencies in a given subtree and tests whether

that subtree contains a nonzero signal. In order to make this work, we need a construction of

filters that isolates the entire subtree as opposed to only one element, as Definition 2.2.1 does.

Fortunately, the actual ( f ,S)-isolating filters G constructed in Lemma 2.2.1 satisfy precisely

this property. The stronger isolation properties are captured by the following definition:

Definition 2.2.4 (Frequency cone of a leaf of T ). For every power of two n, subtree T of T full
n ,

and vertex v ∈ T which is at level lT (v) from the root, the frequency cone of v with respect to T

is defined as,

FrequencyConeT (v) :=
{

f ∈ [n] : f ≡ fv (mod 2lT (v))
}

.

Intuitively, the frequency cone of a node v in T captures all potential nonzeros of x̂ that belong

to the subtree of v in T (see Figure 2.2). Our adaptive filter construction lets us obtain time

domain access to the corresponding part of the frequency space:

Definition 2.2.5 ((v,T )-isolating filter). For every integer n, subtree T of T full
n , and leaf v of T ,

a filter G ∈Cn is called (v,T )-isolating if the following conditions hold:

• For all f ∈ FrequencyConeT (v), we have Ĝ f = 1.

• For every f ′ ∈⋃
u: leaf of T

u 6=v
FrequencyConeT (u), we have Ĝ f ′ = 0.

Note that for every signal x ∈Cn with supp x̂ ⊆⋃
u: leaf of T FrequencyConeT (u) and all t ∈ [n],

∑
j∈[n]

x j Gt− j = 1

n

∑
f ∈FrequencyConeT (v)

x̂ f e2πi f t
n .
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Splitting tree T

v0

h

h0

h −h0

log2 n

v

2h−h0 n/2h0

Support of (v,T )-isolating filter G

Figure 2.3 – An instance of a splitting tree (on the left) and a (v,T )-isolating filter G (right),
where the weight of leaf v is h and hence the filter G satisfies |supp G| = 2wT (v) = 2h .

Iterative tree exploration process leading to an algorithm with Õ(k3) runtime. Now that

we have defined the framework for our algorithm, we need to specify the order in which

the algorithm will be accessing the leaves of the tree in order to minimize runtime. This is

governed by the cost of constructing and using a (v,T )-isolating filter for various nodes v in T .

To quantify cost, we introduce the notion of a weight of a leaf in the tree.

Definition 2.2.6 (Weight of a leaf). Suppose n is a power of two. Let T be a subtree of T full
n .

Then for any leaf v ∈ T , we define its weight wT (v) with respect to T to be the number of

ancestors of v in tree T with two children.

It turns out that the techniques from Lemma 2.2.1 also yield the following.

Lemma 2.2.2 (Informal version of Lemma 2.4.1 in Section 2.4). Suppose n is a power of two.

Let T be a subtree of T full
n . Then for any leaf v ∈ T , there exists a (v,T )-isolating filter G with

|supp G| ≤ 2wT (v) such that G and Ĝ can be evaluated at O(log N ) cost per point.

Before describing the algorithm we give an example illustrating filter support in time domain.

Consider a complete binary tree T of height h ¿ log2 n. Suppose that v0 is some vertex at

level h0 < h of this tree. Now we take the subtree rooted at v0 and move it away from the

root by adding an appendage of length log2 n −h to v0. The appendage is a path of log2 n −h

nodes each of which has a single child. This does not change the weight of any of the leafs

of the original tree because every node in the appendage has exactly one child. One can see

an example of such tree in Figure 2.3. Suppose that the leaf v is a leaf of the subtree rooted at

v0, which was moved down by the appendage. In order to isolate v from the elements that

are not in the subtree of v0 we need a filter which is
(
n/2h0

)
-periodic in time domain and

in order to isolate from the rest of the elements in subtree of v0 the filter needs to sample

the signal at a fine grid of length 2h−h0 . Hence, the support of a (v,T )-isolating filter G is

supp G = {
i + (

n/2h0
) · j ; j ∈ [

2h0
]

, i ∈ [
2h−h0

]}
. In Fig. 2.3 we exhibit a (v,T )-isolating filter G

which is constructed based on Lemma 2.4.1, where v and T correspond to this instance of

splitting tree that is described above.
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Given Lemma 2.2.2, our algorithm is natural. We find the vertex v∗ = argminv∈T wT (v), which,

by Kraft’s inequality, satisfies wT (v∗) ≤ log2 k. We then define an auxiliary tree T ′ by appending

a left a and a right child b to v . Then for each of the children a,b, we, in turn, construct a filter

G that isolates them from the rest of T (i.e., from the frequency cones of other nodes in T ) and

check whether the corresponding restricted signals are nonzero. The latter is unfortunately a

nontrivial task, since the sparsity of these signals can be as high as k, and detecting whether a

k-sparse signal is nonzero requires Ω(k) samples. However, a fixed set of k log3 N locations

that satisfies the restricted isometry property (RIP) can be selected, and accessing the signal

on those values suffices to test whether it is nonzero. The overall runtime becomes Õ(k3): the

isolating filter has support at most 2k, while the number of samples needed to test whether the

two subtrees of v are nonempty is Õ(k), so peeling off ≤ k elements takes Õ(k3) time overall.

This results in Theorem 2.1.1 (the procedure is presented in Algorithm 11).

Õ(k2) runtime under random phase assumption. We note that the runtime can be easily

reduced to Õ(k2) if assumptions are made on the signal that ensure that its energy is evenly

spread across the time domain, making Õ(1) samples sufficient to detect whether the signal

is zero or not. This occurs, for instance, if a signal’s Fourier spectrum satisfy distributional

assumptions (e.g., the values have random phases). We present such a result in Section 2.7. It

seems that even under this assumption on the values of the signal, since the support of the

signal in the Fourier domain is worst-case, reducing the runtime below k2 likely requires a

major advance in techniques for non-uniform Fourier transform computation.

More formally, we introduce the notion of a worst-case signal with random phase as follows:

Definition 2.2.7 (Worst-case signal with random phase). For any positive integer d and power

of two n, we define x to be a worst-case signal with random phase having values
{
β f

}
f ∈[n]d if,

x̂ f =β f e2πiθ for uniformly random θ ∈ [0,2π),

independently for every f ∈ [n]d . Furthermore, if k of the values
{
β f

}
f ∈[n]d are nonzero, then

x is said to be a worst-case k-sparse signal with random phase and is guaranteed to have

sparsity ‖x̂‖0 = k.

Note that “worst-case” in the above definition signifies the fact that the support of the signal is

arbitrary (having no distributional assumptions), subject to a potential sparsity constraint. We

then present the following theorem:

Theorem 2.2.2 (Sparse FFT for worst-case signals with random phase). For any power of two

integer n, positive integer d, and worst-case k-sparse signal with random phase x : [n]d →C, the

procedure SPARSEFFT-RANDOMPHASE(x,n,d ,k) in Algorithm 12 recovers x̂ with probability

1− 1
N 2 . Moreover, the sample complexity and runtime of this procedure are both O

(
k2 log4 N

)
.
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Impossibility of reducing the number of iterations (rounds of adaptivity): signals with low

Hamming weight support. We note that our algorithm differs from all prior works in that it

uses many rounds of adaptivity. Indeed, the samples that our algorithm takes are guided by

values of the signal that have been read in previously queried locations, which is in contrast to

most prior Sparse Fourier Transform algorithms. The notable exception in recent literature is

our adaptive block Sparse FFT algorithms (Cevher et al., 2017).

Our algorithm uses k rounds of adaptivity, peeling off one element at a time. It would be

desirable to reduce the number of rounds of adaptivity by perhaps peeling off many elements

in one batch as opposed to one at a time. For example, if the locations of the nonzeros of x̂

are uniformly random in [n]d , then the splitting tree of x is likely to be rather balanced, so

perhaps one can find a filter G that has small support and can be efficiently used to isolate

many coefficients at once? Indeed, this intuition turns out to be correct for signals with

uniformly random supports—we show in (Kapralov et al., 2019) that this idea yields a Õ(k)

time algorithm. However, rather surprisingly, adversarial instances exist that force the peeling

process to use k1−o(1) rounds of adaptivity in the worst case, making our analysis essentially

tight. We now present this adversarial instance.

Definition 2.2.8 (Hamming ball). For any power of two integer n any integer 0 ≤ c ≤ log2 n,

we define H n
c to be the closed Hamming ball of radius c centered at 0:

H n
c = {

f ∈ [n] : w( f ) ≤ c
}

,

where w( f ) is the Hamming weight of the binary representation of f , i.e., w( f ) is the number

of ones in the binary representation of f .

By basic countings, |H n
c | =

∑c
j=0

(log2 n
j

)
.

Definition 2.2.9 (Class of signals with low Hamming support). For any power of two integer

n and any integer c, Let X n
c denote the class of signals in Cn with support H n

c as in Defini-

tion 2.2.8,

X n
c = {

x ∈Cn : supp x ⊆ H n
c

}
.

Note that for any x ∈X n
c we have that ‖x‖0 =∑c

i=0

(log2 n
i

)
, so for any c ≤ (1

2 −ε
)

log2 n for any

constant ε> 0, the signals in the class X n
c areΘ

((log2 n
c

))
-sparse.

Definition 2.2.10 (Low Hamming weight splitting trees). For any n a power of two integer, we

define a low Hamming weight splitting tree T n
c inductively for c = 0,1, . . . , log2 n:

1. T n
0 is the unique tree of depth log2 n that has a single leaf and satisfies the property that

each non-leaf node has a single right child only. Thus, T n
0 has log2(n)+1 nodes.

2. For any c > 0, T n
c is constructed as follows: Take T n

0 and label the nodes in order from

the root to the leaf as 0,1, . . . , log2 n. Then, for each node 0 ≤ j < log2 n, take a copy of

T n/2 j+1

c−1 and append its root as the left child of node j . The resulting tree defines T n
c .
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Splitting tree with
Hamming weight 2

Figure 2.4 – The splitting tree corresponding to a family of signals with Hamming weight 2, T n
2 .

For simplicity, we truncated terminal rightward paths from leaves to the bottom level of the tree.
The corresponding support set of this tree is S = {0,1,2,3,4,5,6,8,9,10,12,16,17,18,20,24}.

Note that all leaves of T n
c are at level log2 n.

It is not hard to see that T n
c is in fact the splitting tree of the set H n

c and, hence, the number of

its leaves is
∑c

i=0

(log2 n
i

)
. An illustration of the tree T n

c for c = 2 and n = 32 is shown in Figure 2.4.

We prove the following theorem in Section 2.6 (see Theorem 2.6.1):

Theorem 2.2.3 (Informal version of Theorem 2.6.1). A peeling process with threshold τ ≤
log2 k +O(1) (i.e. any threshold that allows isolation of an element at cost bounded by O(k))

must take k1−o(1) iterations to terminate.

To add to the result above, we note that the lower bound on the number of rounds of adaptivity

is not the only cause for quadratic runtime in our algorithm. The other cause is the necessity to

update the residual signal as more and more elements are recovered, i.e. perform non-uniform

Fourier transform computations. Since no subquadratic approach to this problem are known

in high dimensions, it seems plausible that a k2−Ω(1) runtime algorithm for high-dimensional

FFT would also shed light on the complexity of this intriguing problem.

Organization. In Section 2.3, we introduce basic definitions and notation that will be used

throughout the chapter. Section 2.4 introduces our main technical tool of adaptive aliasing

filter, which are used in the various algorithms found in this chapter. Section 2.5 shows how to

use the adaptive aliasing filters to solve the problem of estimation for Fourier measurements

for worst-case signals, i.e., problem (2.3), thereby proving Theorem 2.2.1. Section 2.6 then
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shows that the inherent tree pruning process used to subtract off recovered frequencies and

access residual signals in the estimation algorithm is essentially optimal.

Section 2.7 proves our main theorem, Theorem 2.1.1, for problem (2.1) on worst-case signals.

Additionally, it shows how to improve on the runtime under the assumption that the signal is

a worst-case signal with random phase, thereby proving Theorem 2.2.2.

2.3 Preliminaries and Notations

In this section, we introduce notation and basic definitions that we will use in this chapter.

For any positive integer n, we use the notation [n] to denote the set of integer numbers

{0,1, . . . ,n −1}. We are interested in computing the Fourier transform of discrete signals of size

N in dimension d , where N = nd for some n ≥ 2. Such a signal will be a function [n]d → C.

However, we will often identify [n]d → C with Cnd
for convenience (and often use the two

interchangably depending on the context). This correspondence is formally defined later in

Definition 2.4.2. We first need the notion of an inner product.

Definition 2.3.1 (Inner product). Let t and f be two vectors in dimension d . We denote the

inner product of t and f by f T t =∑d
q=1 fq tq .

Let us define the Fourier transform of a multidimensional signal.

Definition 2.3.2 (Multidimensional Fourier transform). For any positive integers d and n,

the Fourier transform of a signal x ∈ Cnd
is denoted by x̂, where for any f ∈ [n]d , we define

x̂ f =∑
t∈[n]d xt e−2πi f T t

n .

Note that in the case of n = 2, the Fourier transform reduces to the Hadamard transform of

size N = 2d .

Claim 2.3.1 (Parseval’s theorem). For any positive integers n and d, any signal x ∈Cnd
satisfies

‖x̂‖2
2 = nd · ‖x‖2

2.

Definition 2.3.3 (Unit impulse). For any positive integers n and d , the unit impulse function

δ ∈Cnd
is defined as the function given by δ(t ) = 1 for t = 0 and δ(t ) = 0 for t 6= 0.

Claim 2.3.2. For any positive integers d, n, and any a ∈ [n]d , the inverse Fourier transform of

x̂ : [n]d →C given by x̂ f = e2πi aT f
n is xt = δ(t +a).

Claim 2.3.3 (Convolution theorem). Suppose d and n are positive integers. Then, for any

signals x, y ∈Cnd
, à(x ∗ y) = x̂ · ŷ , where x ∗ y is the convolution of x and y which itself is a signal

in Cnd
defined as, (x ∗ y)t =∑

τ∈[n]d xτyt−τ for all t ∈ [n]d .

We will require the notion of a tensor product of signals. Given d signals G1,G2, . . . ,Gd : [n] →C,

the tensor product constructs a signal in Cnd
that is defined as follows.
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Definition 2.3.4 (Tensor product). Suppose d and n are positive integers. For any set of

functions G1,G2, . . . ,Gd : [n] →C, we define the tensor product (G1 ×G2 ×·· ·×Gd ) : [n]d →C

as (G1 ×G2 ×·· ·×Gd ) ( j ) =G1( j1) ·G2( j2) · · ·Gd ( jd ) for all j = ( j1, j2, . . . , jd ) ∈ [n]d .

Note that the tensor product is essentially a generalization of the usual outer product on two

vectors to d vectors.

Claim 2.3.4 (Fourier transform of a tensor product). For any integers n,d and G1,G2, . . . ,Gd ∈
Cn , let G : [n]d →C denote the tensor product G =G1 ×G2 ×·· ·×Gd . Then, the d-dimensional

Fourier transform Ĝ of G is the tensor product of Ĝ1,Ĝ2, · · · ,Ĝd , i.e., Ĝ = Ĝ1 ×Ĝ2 ×·· ·×Ĝd .

Definition 2.3.5. For any positive d , n, and k, a signal x : [n]d →C is called Fourier k-sparse if

‖x̂‖0 = k.

Definition 2.3.6 (Restricted Isometry Property). We say that a matrix A ∈ Cq×n satisfies the

restricted isometry property (RIP) of order k if for every k-sparse vector x ∈Cn , i.e., ‖x‖0 ≤ k, it

holds that 1
2‖x‖2

2 ≤ ‖Ax‖2
2 ≤ 3

2‖x‖2
2.

We will use the following theorem from Haviv and Regev (2017).

Theorem 2.3.1. (Restricted Isometry Property (Haviv and Regev, 2017, Theorem 3.7)) For

sufficiently large N and k, a unitary matrix M ∈CN×N satisfying ‖M‖∞ =O
(

1p
N

)
, and some q =

O
(
k log2 k log N

)
, if A ∈Cq×N is a matrix whose q rows are chosen uniformly and independently

from the rows of M, multiplied by
√

N
q , then, with probability 1− 1

N 10 , the matrix A satisfies the

restricted isometry property of order k, as per Definition 2.3.6.

2.4 Adaptive Aliasing Filters

In this section, we introduce a new class of filters that forms the basis of our algorithm for esti-

mation of worst-case Fourier sparse signals. For simplicity, we begin by introducing the filters

in one-dimensional setting and then show how they naturally extend to the multidimensional

setting (via tensoring). Throughout the section, we assume that the input is a signal x ∈Cn

with supp x̂ = S for some S ⊆ [n].

2.4.1 One-dimensional Fourier transform

We restate the following definition for T full
n and the corresponding labels of its vertices:

Definition 2.2.2. Suppose n is a power of two integer. Let T full
n be a full binary tree of height

log2 n, where for every j ∈ {0,1, . . . , log2 n}, the nodes at level j (i.e., at distance j from the root)

are labeled with integers in Z2 j . For a node v ∈ T full
n , we let fv be its label. The label of the root

is fr oot = 0. The labelling of T f ul l
n satisfies the condition that for every j ∈ [log2 n] and every v

at level j , the right and left children of v have labels fv and fv +2 j , respectively. Note that the

root of T full
n is at level 0, while the leaves are at level log2 n.
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Algorithm 7 Splitting tree construction in time O(|S| logn)

1: procedure TREE(S,n)
2: C0 ← {(r,S)}
3: Let T be a tree with one node, labeled fr = 0
4: for j = 1 to log2 n do
5: C j ←;
6: for all (v,Sv ) ∈C j−1 do . C j−1 : set of every node at level j −1 and set of all

frequencies in the subtree of each node
7: R ← {

g ∈ Sv : g = fv (mod 2 j )
}

8: L ← {
g ∈ Sv : g = fv +2 j−1 (mod 2 j )

}
9: if R 6= ; then

10: Add a right child, u, to node v of T with label fu ← fv

11: C j ←C j ∪ {(u,R)}

12: if L 6= ; then
13: Add a left child, w , to node u of T with label fw ← fv +2 j−1

14: C j ←C j ∪ {(w,L)}

15: return T
16: procedure TREE.REMOVE(T, v)
17: r ← root of T , l ← lT (v)
18: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
19: q ← largest j ∈ {0,1, · · · l } such that v j has two children
20: Remove vq+1, ..., vl and their connecting edges from T
21: return T

Next, we recall the definition of the splitting tree of a set.

Definition 2.2.3 (Splitting tree). Let n be an integer power of two. For every S ⊆ [n], the

splitting tree T = Tree(S,n) of a set S is a binary tree that is the subtree of T full
n that contains,

for every j ∈ [log2 n], all nodes v ∈ T full
n at level j such that

{
f ∈ S : f ≡ fv (mod 2 j )

} 6= ;.

For every node v ∈ T , the level of v , denoted by lT (v), is the distance from v to the root. The

splitting tree T = Tree(S,n) can be constructed easily in O(|S| logn) time, given S. We provide

a simple pseudocode for this in Algorithm 7. The following basic claim will be useful and

follows immediately from the definition of T = Tree(S,n).

Claim 2.4.1. For every integer power of two n, if T is a subtree of T full
n , then for every node

v ∈ T , the labels of nodes that belong to the subtree Tv of T rooted at v are congruent to fv

modulo 2lT (v). Furthermore, every node u ∈ T at level lT (v) or higher which satisfies fu ≡ fv

(mod 2lT (v)) belongs to Tv .

Now let us recall the definition of the weight of a leaf. We need this definition to define our

notion of isolating filters.

Definition 2.2.6 (Weight of a leaf). Suppose n is a power of two. Let T be a subtree of T full
n .
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Then for any leaf v ∈ T , we define its weight wT (v) with respect to T to be the number of

ancestors of v in tree T with two children.

Definition 2.4.1 (( f ,S)-isolating filter). For every power of two n, set S ⊆ [n], and f ∈ S, a filter

G ∈Cn is called ( f ,S)-isolating if Ĝ f = 1, and Ĝ f ′ = 0 for all f ′ ∈ S \ { f }.

In particular, if G is ( f ,S)-isolating, then for every signal x ∈Cn with supp x̂ ⊆ S, we have∑
j∈[n]

x j Gt− j = (x ∗G)t

= 1

n

∑
f ∈[n]

x̂ f ·Ĝ f ·e2πi f t
n

= 1

n
x̂ f e2πi f t

n

for all t ∈ [n], by convolution theorem, see Claim 2.3.3.

While the definitions above suffice to state our estimation primitive, our Sparse FFT algorithm

requires a filter G that satisfies a more refined property due to the fact that throughout the

execution of the algorithm, the identity of supp x̂ is only partially known. We encode this

knowledge as a subtree T of T full
n whose leaves are not necessarily at level log2 n. Hence, every

leaf v ∈ T corresponds to a set of frequencies in the support of x̂ whose full identities have not

been discovered yet. This is captured by the following definition:

Definition 2.2.4 (Frequency cone of a leaf of T ). For every power of two n, subtree T of T full
n ,

and vertex v ∈ T which is at level lT (v) from the root, the frequency cone of v with respect to T

is defined as,

FrequencyConeT (v) :=
{

f ∈ [n] : f ≡ fv (mod 2lT (v))
}

.

Note that under this definition, the frequency cone of a vertex v of T corresponds to the

subtree rooted at v when T is embedded inside T full
n (see Figure 2.2).

Definition 2.2.5 ((v,T )-isolating filter). For every integer n, subtree T of T full
n , and leaf v of T ,

a filter G ∈Cn is called (v,T )-isolating if the following conditions hold:

• For all f ∈ FrequencyConeT (v), we have Ĝ f = 1.

• For every f ′ ∈⋃
u: leaf of T

u 6=v
FrequencyConeT (u), we have Ĝ f ′ = 0.

Note that in particular, for all signals x ∈Cn with supp x̂ ⊆⋃
u: leaf of T FrequencyConeT (u) and

t ∈ [n], ∑
j∈[n]

x j Gt− j = 1

n

∑
f ∈FrequencyConeT (v)

x̂ f e2πi f t
n .

Now we are in a position to present an efficient algorithm to compute a (v,T )-isolating filter

with compact support in the time domain and formally prove its theoretical guarantees.
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Algorithm 8 Filter construction

1: procedure FILTERPREPROCESS(T, v,n)
2: r ← root of T , l ← lT (v), f ← fv

3: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
4: g ← {0}log2 n

5: for j = 1 to l do
6: if v j−1 has two children in T then

7: g j ← e−2πi f

2 j

8: return g

9: procedure FILTERTIME(g,n)
10: G(t ) ← δ(t ) for all t ∈ [n]
11: for l = 1 to log2 n do
12: if gl 6= 0 then

13: G(t ) ← G(t )
2 + gl · G

(
t+n/2l

)
2 for all t ∈ [n]

14: return G
15: procedure FILTERFREQUENCY(g,n,ξ)
16: Ĝξ← 1
17: for l = 1 to log2 n do
18: if gl 6= 0 then

19: Ĝξ← Ĝξ ·
(
1+ gl ·e2πi ξ

2l

)/
2

20: return Ĝξ

Lemma 2.4.1 (Filter properties). For every integer power of two n, subtree T of T full
n , and leaf

v ∈ T , the procedure FILTERPREPROCESS(T, v,n) outputs a static data structure g ∈ Clog2 n in

time O(logn) such that, given g, the following conditions hold:

1. The primitive FILTERTIME(g,n) outputs a filter G such that |supp G| = 2wT (v) and G is a

(v,T )-isolating filter. Moreover, the procedure runs in time O
(
2wT (v) + logn

)
.

2. For every ξ ∈ [n], the primitive FILTERFREQUENCY(g,n,ξ) computes the Fourier transform

of G at frequency ξ, namely, Ĝ(ξ), in time O(logn).

Before proving Lemma 2.4.1, we establish a corollary, assuming that Lemma 2.4.1 holds.

Corollary 2.4.1. Suppose n is a power of two, S ⊆ [n], and f ∈ S. Then, let T = Tree(S,n)

be the splitting tree of S. If v is the leaf of T with label fv = f , while g is the output of

FILTERPREPROCESS(T, v,n), and G is the filter computed by FILTERTIME(g,n), then the fol-

lowing conditions hold:

(1) G is an ( f ,S)-isolating filter.

(2) |supp G| = 2wT (v).
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Proof. Indeed, given a subset S, if T = Tree(S,n), then all the leaves of T are at level log2 n

and the set of labels of the leaves is exactly equal to S. Hence, for every leaf v of T , one

has FrequencyConeT (v) = {
fv

}
. By Lemma 2.4.1, G is a (v,T )-isolating filter. Therefore, by

Definition 2.2.5,

;= supp Ĝ ∩

 ⋃
u: leaf of T

u 6=v

FrequencyConeT (u)

= supp Ĝ ∩

 ⋃
u: leaf of T

u 6=v

{
fu

}= supp Ĝ ∩ (
S \ fv

)
,

and Ĝ( f ) = 1 for all f ∈ FrequencyConeT (v) = {
fv

}
. This implies (1), see definition of

(
fv ,S

)
-

isolating filters in 2.4.1. Property (2) follows directly from Lemma 2.4.1.

Now, we prove Lemma 2.4.1.

Proof of Lemma 2.4.1: Let v be a leaf of T , l = lT (v) denote the level of v (i.e., distance from

the root), r denote the root of T , and v0, v1, . . . , vl denote the path from root to v in T , where

v0 = r and vl = v .

We first show how to efficiently construct a (v,T )-isolating filter in the Fourier domain, i.e.,

how to efficiently construct Ĝ . Then we derive the time domain representation of G . We

iteratively define a sequence of functions G0,G1, . . . ,Gl (with Fourier transforms Ĝ0,Ĝ1, . . . ,Ĝl ,

respectively) by traversing the path from the root to v in T , after which we let G be the final

filter constructed on this path, i.e., G :=Gl (and Ĝ := Ĝl ). We start with Ĝ0(ξ) = 1 for all ξ ∈ [n].

Then, we iteratively define Ĝq in terms of Ĝq−1 according to the following update rule for all

q = 1,2, . . . , l :

Ĝq (ξ) =
Ĝq−1(ξ) · 1+e

2πi
ξ− fv

2q

2 if vq−1 has two children in T

Ĝq−1(ξ) otherwise
. (2.4)

for every ξ ∈ [n].

In order to prove that G =Gl is a (v,T )-isolating filter, it is enough to show that G satisfies,

supp Ĝ ∩

 ⋃
u: leaf of T

u 6=v

FrequencyConeT (u)

=;, (2.5)

and,

Ĝ( f ) = 1 for all f ∈ FrequencyConeT (v). (2.6)

We now prove (2.5). Consider a leaf u of T distinct from v . Recall that v0, v1, . . . , vl denotes the

root to v path in T . Let j be the largest integer such that v j is a common ancestor of v and u.

By definition of tree T (Definition 2.2.2) and noting that v j is at level j , one has that the label

of the right child a of v j is fv j , and the label of the left child b is fv j +2 j . Furthermore, using

67



Chapter 2. Dimension-independent Sparse Fourier Transform

this together with Claim 2.4.1, we get that the labels of all nodes in subtree Ta of T subtended

at the right child a of v are congruent to fa = fv j modulo 2 j+1, and labels in the subtree Tb

rooted at the left child b of v j are all congruent to fb = fv j +2 j modulo 2 j+1.

Suppose that v belongs to the right subtree of v j , and u belongs to the left subtree (the other

case is symmetric). We thus get that fv ≡ fv j (mod 2 j+1), and fu ≡ fv j +2 j (mod 2 j+1). It now

suffices to note that by construction of Ĝ (see (2.4)), we have that for all ξ ∈ [n],

Ĝ j+1(ξ) = Ĝ j (ξ) · 1+e2πi ξ− fv
2 j+1

2
.

By Claim 2.4.1, for all f ∈ FrequencyConeT (u) one has that f ≡ fu (mod 2lT (u)) and hence,

f ≡ fu (mod 2 j+1) because j +1 ≤ lT (u). Therefore, by substituting ξ= f in the above, we get

Ĝ j+1( f ) = Ĝ j ( f ) · 1+e2πi f − fv
2 j+1

2
= Ĝ j ( f ) · 1+e2πi fu− fv

2 j+1

2
= 0,

implying that Ĝ j+1( f ) = 0 and, hence, Ĝl ( f ) = 0, as required.

It remains to prove (2.6). Consider any f ′ ∈ FrequencyConeT (v), and note that by Claim 2.4.1,

f ′ ≡ fv (mod 2l ). Using this in (2.4), we get

Ĝ( f ′) = ∏
q∈{1,2,...,l }

vq−1 has two children in T

1+e2πi f ′− fv
2q

2
= 1,

since f ′− fv ≡ 0 (mod 2q ) for every q = 0, . . . , l .

Next, note that the primitive FILTERPREPROCESS(T, v,n) preprocesses the tree T by traversing

the path from root to leaf v in time O(log2 n). Given g, the primitive FILTERFREQUENCY (g,n,ξ)

implements (2.4) for successive values of q , and the runtime of this algorithm is O(log2 n)

because of the for loop passing through vector g.

Finally, it remains to show that the filter G in time domain can be computed efficiently and

has a small support. First note that by Claim 2.3.2, the inverse Fourier transform of 1+e
2πi

ξ− fv
2q

2

is
δ(t )+e

−2πi
fv
2q δ

(
t+ n

2q

)
2 .

By duality of convolution in the time domain and multiplication in the Fourier domain (see

Claim 2.3.3), we can equivalently define G (see (2.4)) by letting G0(t ) = δ(t ) and setting,

Gq (ξ) =

Gq−1(t )∗ δ(t )+e
−2πi

fv
2q δ

(
t+ n

2q

)
2 if vq−1 has two children in T

Gq−1(t ) otherwise
(2.7)

for every q = 1, . . . , l . Thus, G =Gl is the time domain representation of the filter Ĝ defined
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in (2.4). We now note that convolving any function with a function supported on two points,

e.g., 1
2

(
δ(t )+e−2πi fv /2q

δ(t + n
2q )

)
, at most doubles the support. Since the number of times the

convolution is performed in obtaining Gl from G0 (as per (2.7)) is wT (v), the support size of G

is at most 2wT (v). Given g, the primitive FILTERTIME (g,n) implements the above algorithm for

construction of G and, therefore, runs in time O(2wT (v) + log2 n).

2.4.2 d-dimensional Fourier transform

In this section, we show that our construction of adaptive aliasing filters from the previous

section naturally extends to higher dimensions without any loss (by tensoring).

Definition 2.4.2 (Flattening of [n]d to [nd ]. Unflattening of [nd ] to [n]d ). For every integer

power of two n, positive integer d , and f = (
f1, . . . , fd

) ∈ [n]d we define the flattening of f as,

f̃ =
d∑

r=1
fr ·nr−1.

Similarly, for a subset S ⊆ [n]d we let S̃ := {
f̃ : f ∈ S

}
denote the flattening of S.

For ξ̃ ∈ [nd ], the unflattening of ξ̃ is uniquely defined as ξ= (ξ1, . . . ,ξd ) ∈ [n]d , where

ξq = ξ̃− (
ξ̃ mod nq−1

)
nq−1 (mod n).

for every q = 1, . . . ,d . Similarly, for a subset R̃ ⊆ [nd ], we let R := {
ξ ∈ [n]d : ξ̃ ∈ R̃

}
denote the

unflattening of R̃.

Definition 2.4.3 (Multidimensional splitting tree). Suppose d is a positive integer and n is a

power of two. For every S ⊆ [n]d , the flattened splitting tree of S is defined as T̃ = Tree(S̃,nd )

where S̃ is flattening of S.

The unflattened splitting tree of S is denoted by T and is obtained from the flattened splitting

tree T̃ by unflattening the labels f̃v of all nodes v ∈ T̃ .

Definition 2.4.4 (Multidimensional ( f ,S)-isolating filter). Suppose n is a power of two integer

and S ⊆ [n]d for a positive integer d . Then, for any frequency f ∈ S, a filter G : [n]d → C is

called ( f ,S)-isolating if Ĝ f = 1 and Ĝ f ′ = 0 for every f ′ ∈ S \ { f }.

Definition 2.4.5 (Frequency cone of a leaf of T in high dimensions). Suppose d is a positive

integer, n is a power of two, and N = nd . For every unflattened subtree T of T full
N and v ∈ T , we

define the frequency cone of v as,

FrequencyConeT (v) :=
{

f ∈ [n]d : f̃ ≡ f̃v (mod 2lT (v))
}

,

where lT (v) denotes the level of v in T (i.e., the distance from the root).

We use the following straightforward claim about the properties of frequency cones.
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Claim 2.4.2. For every positive integer d, power of two integer n, and every subtree T of T full
nd and

every leaf v ∈ T of height lT (v) < d log2 n, if T ′ = T ∪ {
left child u of v

}∪ {
right child w of v

}
,

then the following holds,

FrequencyConeT (v) = FrequencyConeT ′(u)∪FrequencyConeT ′(w)

Now we are ready to extend the definition of our isolating filters to high dimensions.

Definition 2.4.6 (Multidimensional (v,T )-isolating filter). Suppose d is a positive integer, n

is a power of two, and N = nd . For every subtree T of T full
N and vertex v ∈ T , a filter G ∈ Cnd

is called (v,T )-isolating if Ĝ f = 1 for every f ∈ FrequencyConeT (v) and Ĝ f ′ = 0 for every

f ′ ∈⋃
u: leaf of T

u 6=v
FrequencyConeT (u).

In particular, for every signal x ∈Cnd
with supp x̂ ⊆⋃

u: leaf of T FrequencyConeT (u) and for all

t ∈ [n]d , ∑
j∈[n]d

x j Gt− j = 1

N

∑
f ∈FrequencyConeT (v)

x̂ f e2πi f T t
n .

Lemma 2.4.2 (Construction of a multidimensional isolating filter). Suppose n is a power of

two integer and d is a positive integer. Let N = nd . For every subtree T of T f ul l
N and every

leaf v ∈ T , there exists a (v,T )-isolating filter G such that |supp G| = 2wT (v). Such a filter G

can be constructed in time O
(
2wT (v) + log N

)
. Moreover, for any frequency ξ ∈ [n]d , the Fourier

transform of G at frequency ξ, i.e., Ĝ(ξ), can be computed in time O(log N ).

Proof. The key idea is to choose q∗ to be the smallest positive integer such that lT (v) ≤
q∗ · log2 n. One then defines successive filters G (0),G (1), . . . ,G (q∗) by letting Ĝ (0) = 1 and

Ĝ (q)( f ) = Ĝ (q−1)( f ) ·Ĝq ( fq )

for q = 1,2, . . . , q∗, where Ĝq is an isolating filter corresponding to the projection of the leaves

of tree T into coordinate q . The final filter G =G (q∗) turns out to be (v,T )-isolating.

Let v be a leaf of T , let l = lT (v) denote the level of v , let r denote the root of T , and let

v0, v1, . . . , vl denote the path from root to v in T , where v0 = r and vl = v . Let q∗ denote the

smallest positive integer such that l ≤ q∗ · log2 n. Note that q∗ ≤ d .

For every q ∈ {0,1, . . . ,d} let T (q) be a subtree of T which denotes the result of truncating the

path v0, v1, . . . , vl of T to contain only the nodes that are at distance at most q log2 n from the

root, i.e., removing the subtree rooted at vq log2 n+1. We construct the (v,T )-isolating filter Ĝ

iteratively by starting with Ĝ (0) = 1 and refining Ĝ (q−1) to Ĝ (q) over q∗ steps. The filters Ĝ (q) will

be
(
vq·log2 n ,T (q)

)
-isolating for q = 0,1, . . . , q∗−1 and Ĝ (q∗) will be

(
vl ,T (q∗)

)
-isolating. Since

T (q∗) = T and vl = v , the filter Ĝ (q∗) will be (v,T )-isolating, as required.

For every q ∈ {1, ..., q∗} let T v
q be the subtree of T which is rooted at v(q−1)·log2 n and is restricted

to contain only the nodes that are at distance at most log2 n from v(q−1)·log2 n . For every node
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u ∈ T v
q the label of u is defined to be fu = ( fu)q , i.e., the qth coordinate of fu , where fu is the

label of node u in tree T .

Iteratively define Ĝ (q) for q = 1, . . . q∗, assuming Ĝ (0) := 1, as follows for f = ( f1, . . . fd ) ∈ [n]d ,

Ĝ (q)( f ) = Ĝ (q−1)( f ) ·Ĝq ( fq ). (2.8)

where Ĝq is a
(
vq·log2 n ,T v

q

)
-isolating filter for all q = 1, ..., q∗−1 and Ĝq∗ is a

(
vl ,T v

q∗

)
-isolating

filter. By lemma 2.4.1, for every q = 1, . . . , q∗ there exists such Gq with |supp Gq | = 2
wT v

q
(vq ·log2 n )

and can be constructed in time O
(
2

wT v
q

(vq ·log2 n ) + logn
)
. Such a filter can be computed in the

Fourier domain at any desired frequency in time O(logn). Note that Ĝ (q) is a tensor product

of q one-dimensional filters. We now show by induction on q that Ĝ (q) is a
(
vq·log2 n ,T (q)

)
-

isolating filter.

The base of the induction is provided by q = 0: since v0 is the root of T (0), we have that

FrequencyConeT (0) (v0) = [n]d and Ĝ (0) ≡ 1 as required.

Inductive step (q−1 → q): We first show Ĝ (q)
f ′ = 0 for every f ′ ∈⋃

u: leaf of T (q)

u 6=vq ·log2 n

FrequencyConeT (q) (u).

Let u be a leaf of T (q) distinct from vq·log2 n . Let u′ denote the leaf of T (q−1) that is is the ancestor

of u (note that u′ could be the same node as u too). Consider the two possible cases.

Case 1: f ′ 6∈ FrequencyConeT (q−1)

(
v(q−1)log2 n

)
. Suppose that u′ 6= v(q−1)·log2 n . Note that lT (u′) ≤

(q −1)log2 n, and additionally, FrequencyConeT (q) (u) ⊆ FrequencyConeT (q−1) (u′).

Thus for every f ′ ∈ FrequencyConeT (q) (u) it is true that f ′ ∈ FrequencyConeT q−1 (u′). By

the inductive hypothesis we have that Ĝ (q−1) is (v(q−1)log2 n ,T (q−1))-isolating, and hence

by the assumption of u′ 6= v(q−1)·log2 n , one has Ĝ (q−1)( f ′) = 0 for every such f ′, and thus

Ĝ (q)( f ′) = Ĝ (q−1)( f ′) ·Ĝq ( f ′
q ) = 0 as required.

Case 2: f ′ ∈ FrequencyConeT (q−1)

(
v(q−1)log2 n

)
. Suppose that v(q−1)·log2 n is ancestor of u. There-

fore, by definition of T v
q , one can see that u is a leaf in T v

q . Hence, by definition

of T v
q , for every f ′ ∈ FrequencyConeT (q) (u), it is true that f ′

q ∈ FrequencyConeT v
q

(u).

Recall that Ĝq is a (vq·log2 n ,T v
q )-isolating filter and therefore, Ĝq ( f ′

q ) = 0, and thus

Ĝ (q)( f ′) = Ĝ (q−1)( f ′) ·Ĝq ( f ′
q ) = 0 as required.

Now we show that Ĝ (q)
f = 1 for all f ∈ FrequencyConeT (q)

(
vq·log2 n

)
. Note that vq·log2 n is a

leaf in T v
q . Hence, for every f ∈ FrequencyConeT (q)

(
vq·log2 n

)
, fq ∈ FrequencyConeT v

q

(
vq·log2 n

)
.

Since Ĝq is a
(
vq·log2 n ,T v

q

)
-isolating filter, Ĝq ( fq ) = 1. Because FrequencyConeT (q)

(
vq·log2 n

)⊆
FrequencyConeT (q−1)

(
v(q−1)·log2 n

)
, for every f ∈ FrequencyConeT (q)

(
vq·log2 n

)
it is true that

f ∈ FrequencyConeT (q−1)

(
v(q−1)·log2 n

)
. By the inductive hypothesis we have that Ĝ (q−1) is(

v(q−1)log2 n ,T (q−1)
)
-isolating, and hence Ĝ (q−1)( f ) = 1, and thus Ĝ (q)( f ) = Ĝ (q−1)( f ) ·Ĝq ( fq ) =

1 as required.
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It remains to note that wT (v) = ∑q∗
q=1 wT v

q
(vq·log2 n). By Lemma 2.4.1, for every q ∈ {1, ..., q∗}

one has |supp Gq | = 2
wT v

q
(vq ·log2 n )

, so |supp G| = 2wT (v), as required (note that the support size

of the tensor product of two filters is equal to the product of support sizes of each filter).

The total runtime for constructing this filter has two parts; First part is the computation time

of Gq ’s for all q ∈ {1, ..., q∗} which takes
∑q∗

q=1 O
(
2

wT v
q

(vq·log2 n ) + logn
)
= O

(
2wT (v) +d log2 n

)
by

Lemma 2.4.1. Second part is the time needed for computing the tensor product of all Gq ’s

which is O
(‖G1‖0 · ... · ‖Gq∗‖0

)=O(2wT (v)). Therefore the total runtime is O
(
2wT (v) +d logn

)
.

Moreover, the total time for computing Ĝ(ξ) is the sum of the times needed for computing all

Ĝq (ξq )’s for q = 1, · · · , q∗, which is O(d logn) =O(log N ) by Lemma 2.4.1.

2.4.3 Putting it together

Now we are ready to prove that for any splitting tree there exists a leaf that can be isolated via

our filters using small runtime.

Claim 2.4.3. For any binary tree T let L be the set of leaves of T . There exists a leaf v ∈ L such

that wT (v) ≤ log2 |L|.

Proof. Let T ′ be the tree obtained by “collapsing” T , i.e., removing all nodes (and incident

edges) of T that have exactly one child. Then, observe that the leaves of T are still preserved in

T ′, except that they are at possibly varying levels. In particular, a leaf v in T ′ will be at level

wT (v). Thus, by applying Kraft’s inequality to T ′ (which is an equality because every node in

T ′ is either a leaf or has two children), we see that,∑
v∈L

2−wT (v) = 1.

Therefore, there exists a v ∈ L such that 2−wT (v) ≥ 1
|L| , implying wT (v) ≤ log2 |L|, as desired.

This gives us the main result of this section, and the main technical lemma of the paper:

Corollary 2.4.2. For every integer n ≥ 1 a power of two and every positive integer d, every

S ⊆ [n]d , there exists an f ∈ S and an ( f ,S)-isolating filter G (as defined in Definition 2.4.4)

such that |supp G| ≤ |S|.

Proof. Follows by combining Lemma 2.4.2 with Claim 2.4.3.

2.5 Estimation of Sparse High-dimensional Signals in Quadratic Time

In this section, we use the filters that we have constructed in Section 2.4 in order to show the

first result of the paper, a deterministic algorithm for estimation of Fourier-sparse signals in

time which is quadratic in the sparsity.
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Algorithm 9 d-dimensional Estimation for Sparse FFT with sample and time complexity k2

1: procedure ESTIMATE(x,S,n,d)
2: T̃ ← TREE(S̃,nd ) . S̃: flattening of S . T̃ : flattened splitting tree of S
3: T ← the unflattening of T̃
4: χ̂← {0}nd

5: while T 6= ; do
6: v ← argminu: leaf of T wT (u), f ← fv . f is the label of node v
7: v0, v1, . . . , vd ·log2 n ← path from r to v in T , where v0 = r and vd ·log2 n = v
8: for q = 1 to d do
9: T v

q ← subtree of T rooted at v(q−1)·log2 n

10: Remove all nodes of T v
q which are at distance more than log2 n from v(q−1)·log2 n

11: Label every node u ∈ T v
q as fu = ( fu)q

12: g ← FILTERPREPROCESS(T v
q , vq·log2 n ,n)

13: Gq ← FILTERTIME(gq ,n)
14: Ĝq (ξq ) = FILTERFREQUENCY(gq ,n,ξq )

15: G ←G1 ×G2 × ...×Gd

16: h f ←∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq (ξq )

)
17: χ̂ f ← χ̂ f +

(
nd ·∑ j∈[n]d x j ·G− j

)
−h f

18: T ← Tree.REMOVE(T, v)

19: return χ̂

Theorem 2.2.1 (Estimation guarantee). Suppose n is a power of two integer and d is a pos-

itive integer and S ⊆ [n]d . Then, for any signal x ∈ Cnd
with supp x̂ ⊆ S, the procedure

ESTIMATE(x,S,n,d) (see Algorithm 9) returns x̂. Moreover, the sample complexity of this proce-

dure is O(|S|2) and its runtime is O(|S|2 ·d log2 n). Furthermore, ESTIMATE is deterministic.

Proof. The proof is by induction on the iteration number t = 0,1,2, ... of the while loop in

Algorithm 9. One can see that since at each iteration the tree T looses one of its leaves, the

algorithm terminates after |S| iterations, since initially the number of leaves of T is |S|. Let χ̂(t )

and T (t ) denote the signal χ̂ and the tree T after finishing up iteration t , respectively, and let S(t )

denote the set of frequencies corresponding to leaves of T (t ), i.e., S(t ) = {
fu : u is a leaf of T (t )

}
.

In particular, χ̂(0) = 0 and T (0) is the unflattened spltting tree of S and S(0) = S.

We claim that for each t = 0,1, . . . , |S|, the following holds,

supp
(
x̂ − χ̂(t ))⊆ S(t ) and

∣∣S(t )
∣∣= |S|− t (2.9)

Base case of induction: We have S(0) = S and χ̂(0) ≡ 0, which immediately implies (2.9) for

t = 0.

Inductive step: For the inductive hypothesis, let r ≥ 1 and assume that (2.9) holds for t = r −1.

The main loop of the algorithm finds v = argminu: leaf of T (r−1) wT (r−1) (u). By Claim 2.4.3 along
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with inductive hypothesis, wT (r−1) (v) ≤ log2 |S(r−1)| ≤ log2 |S|. Note that the main loop of the

algorithm constructs an
(

fv ,S(r−1)
)
-isolating filter G , along with Ĝ . In order to do so, the

algorithm constructs trees T v
q for all q ∈ {1, ...,d} which in total takes time O(|S|d logn). Given

T v
q ’s, the algorithm constructs filter G and Ĝ in time O

(
2wT (r−1) (v) +d logn

)=O
(|S|+d logn

)
,

by Lemma 2.4.2. Moreover, the filter G has support size 2wT (r−1) (v) ≤ |S| by Lemma 2.4.2.

By Lemma 2.4.2 computing the quantity h f = ∑
ξ∈[n]d χ̂

(r−1)
ξ

· Ĝ(ξ) in line 16 of Algorithm 9

can be done in time O
(‖χ̂(r−1)‖0 ·d logn

)=O
(|S| ·d logn

)
. By convolution theorem 2.3.3, the

quantity h f is h f = nd · (χ(r−1) ∗G
)

0, and thus(
nd · ∑

j∈[n]d

x j ·G− j

)
−h f = nd · ((x −χ(r−1))∗G

)
0

= x̂ fv − χ̂(r−1)
fv

,

where the last transition is due to the fact that G is
(

fv ,S(r−1)
)
-isolating along with the inductive

hypothesis of supp
(
x̂ − χ̂(r−1)

)⊆ S(r−1).

We thus get that χ̂(r )(·) ← χ̂(r−1)(·)+ (
x̂ − χ̂(r−1)

)
fv
·δ fv (·). Moreover, it updates the tree T (r ) ←

Tree.REMOVE(T (r−1), v). Also note that the set S(r ) gets updated to S(r−1) \{ fv } accordingly. This

establishes (2.9) for t = r , thereby completing the inductive step.

Runtime: The number of steps is exactly |S|, as follows from the inductive claim. Thus, the

total runtime is O
(|S|2 ·d logn

)
.

2.6 A Lower Bound of k1−o(1) Rounds of Tree Pruning

One apparent disadvantage of our algorithm presented in the previous section is the fact that

it only estimates elements of the Fourier spectrum one at a time, thereby taking k rounds to

estimate all elements in the spectrum. Since the isolation of one element takes up to k time

due to the support size of G , the resulting bound on the runtime is quadratic in k. A natural

conjecture is that our analysis is not tight, and one can achieve better runtime by removing

several nodes of weight at most log2 k +O(1) at once. If one could argue that the filters G that

isolate the nodes removed in one round have nontrivial overlap, runtime improvements could

be achieved. In this section we present a class of signals on which k1−o(1) rounds of pruning

the tree are required, showing that our analysis is essentially optimal.

Tree pruning process. Suppose n is a power of two integer and τ is a positive integer. Let T be

a subtree of T full
n . The tree pruning process, P (T,τ,n), is an iterative algorithm that performs

the following operations on T successively until T is empty:

1. Find S̃τ = {leaves v of T : wT (v) ≤ τ}, i.e., set of vertices of weight no more than τ.

2. For each v ∈ S̃τ (in an arbitrary order) remove v from T (i.e., T.r emove(v); Algorithm 7).
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We show that for every k and sufficiently large integer n there exists a tree T with k leaves such

that P (T,τ,n) with τ= log2 k +O(1) requires k1−o(1) rounds to terminate. This in particular

shows that our k2 runtime analysis from section 2.5 cannot be improved by reusing work

done in a single iteration, and hence our analysis is essentially optimal. Our construction is

one-dimensional, although higher dimensional extensions can be readily obtained.

Theorem 2.6.1. For any integer constant c ≥ 1, sufficiently large power of two integer n there

exists an integer k =Θ(logc n) and a subtree T of T full
n with k leaves such that if τ= log2 k+O(1),

then the tree pruning process P (T,τ,n) requires k1−o(1) iterations to terminate.

The following simple lemma is crucial to our analysis

Lemma 2.6.1 (Monotonicity of tree pruning process). Suppose n is a power of two integer, T ′ a

subtree of T full
n , and T a subtree of T ′. Then for every integer τ the number of rounds that it takes

P (T,τ,n) to collapse T is at most the number of rounds that it takes P (T ′,τ,n) to collapse T ′.

Proof. For j = 0,1,2, . . . , let T ( j ) (respectively T ′( j )) denote the tree obtained by performing j

rounds of the tree pruning process (with threshold τ) to T (respectively T ′).

We claim that T ( j ) is a subtree of T ′( j ) for all j = 0,1, . . . , which will obviously imply the desired

conclusion. We use induction on j . Note that the base of induction is trivial for j = 0 since

T (0) = T and T ′(0) = T ′. Now, we prove the inductive step. Suppose j > 0. By the inductive

hypothesis, we have that T ( j−1) is a subtree of T ′( j−1). Thus, for any leaf v that appears in both

T ( j−1) and T ′( j−1), we have wT ( j−1) (v) ≤ wT ′( j−1) (v) (this is because any node in T ′( j−1) along

the path from the root to v that has exactly one child will also have exactly one child in T ( j−1)).

Hence, if v is removed from T ′( j−1) in the j -th iteration of the process, then it is also removed

from T ( j−1) during the j -th iteration. Hence, T ( j ) is a subtree of T ′( j ), which completes the

inductive step and, therefore, proves the claim.

We recall a few definitions.

Definition 2.2.8 (Hamming ball). For any power of two integer n any integer 0 ≤ c ≤ log2 n,

we define H n
c to be the closed Hamming ball of radius c centered at 0:

H n
c = {

f ∈ [n] : w( f ) ≤ c
}

,

where w( f ) is the Hamming weight of the binary representation of f , i.e., w( f ) is the number

of ones in the binary representation of f .

Note that |H n
c | =

∑c
j=0

(log2 n
j

)
.

Definition 2.2.9 (Class of signals with low Hamming support). For any power of two integer

n and any integer c, Let X n
c denote the class of signals in Cn with support H n

c as in Defini-

tion 2.2.8,

X n
c = {

x ∈Cn : supp x ⊆ H n
c

}
.
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Note that for any x ∈ X n
c we have that ‖x‖0 = ∑c

i=0

(log2 n
i

)
, so for any c ≤ ( 1

2 − ε) log2 n, the

signals in the class X n
c areΘ

((log2 n
c

))
-sparse.

Definition 2.2.10 (Low Hamming weight splitting trees). For any n a power of two integer, we

define a low Hamming weight splitting tree T n
c inductively for c = 0,1, . . . , log2 n:

1. T n
0 is the unique tree of depth log2 n that has a single leaf and satisfies the property that

each non-leaf node has a single right child only. Thus, T n
0 has log2(n)+1 nodes.

2. For any c > 0, T n
c is constructed as follows: Take T n

0 and label the nodes in order from

the root to the leaf as 0,1, . . . , log2 n. Then, for each node 0 ≤ j < log2 n, take a copy of

T n/2 j+1

c−1 and append its root as the left child of node j . The resulting tree defines T n
c .

Note that all leaves of T n
c are at level log2 n.

It is not hard to see that T n
c is in fact the splitting tree for the set H n

c and, hence, the number of

its leaves is
∑c

i=0

(log2 n
i

)
.

Now, we are ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1: Let us choose the tree T to be T n
c for some positive integer c . We will

set parameter c at the end of proof. Let D(n,c,τ) denote the number of iterations required to

collapse T n
c with threshold τ. We prove that,

D(n,c,τ) ≥ logc
2 n

c ! ·τc , (2.10)

for any power of two integer n, any integer 0 ≤ c ≤ log2 n, and any positive integer τ. We use

induction on c.

Base: Note that for c = 0, the tree T n
c has one leaf, which gets removed in the first iteration of

the tree pruning process. Thus, D(n,0,τ) = 1 for any n and τ≥ 1, and so, (2.10) holds for c = 0.

Inductive step: Suppose c > 0. For any T n
c , we label the nodes along the path from the root to

the rightmost leaf (i.e., the path formed by starting at the root and repeatedly following the

right child) in order as 0,1, . . . , log2 n.

Note that if n ≤ 2τ, then
logc

2 n

c ! ·τc ≤ τc

c ! ·τc ≤ 1.

Thus, (2.10) does indeed hold for n ≤ 2τ.

Now, suppose n > 2τ. Recall that a copy of T n/2 j+1

c−1 is embedded at the left child of node j of T n
c

for all j = 0,1, . . . ,τ−1. We divide the pruning process on T n
c into two phases. The first phase

consists of the process up until the point at which the left subtree of node j in T n
c completely

collapses for some j ∈ {0,1, . . . ,τ−1}, while the second phases consists of the process thereafter.
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Thus, the number of rounds in the first phase is just the number of rounds till at least one of

the top τ left subtrees collapses.

Note that during the first phase, the behavior of the collapsing process on the left subtree of

node j corresponds to running a collapsing process with threshold τ− j −1 on T n/2 j+1

c−1 . Thus,

the number of rounds in the first phase is,

R = min
0≤ j<τ

{
D

(
n/2 j+1,c −1,τ− j −1

)}
.

By the inductive hypothesis (on c), we have that for j = 0,1, . . . ,τ−1

D
(
n/2 j+1,c −1,τ− j −1

)
≥ 1

(c −1)!
·
(

log2 n − j −1

τ− j −1

)c−1

,

which implies that R ≥ 1
(c−1)! ·

(
log2 n−1
τ−1

)c−1
since we assumed τ≤ log2 n.

Now, let T ′ be the tree obtained after performing R rounds of the collapsing process on

T n
c . Moreover, let T ′′ be the tree obtained by further removing any left subtrees of nodes

0,1, . . . ,τ−1. By Lemma 2.6.1, we have that the number of rounds needed to collapse T ′ is

at least the number of rounds needed to collapse T ′′. Moreover, observe that the number

of rounds needed to collapse T ′′ is precisely D(n/2τ,c,τ), thus, the number of rounds in the

second phase is at least D (n/2τ,c,τ), and so,

D(n,c,τ) ≥ R +D
(
n/2τ,c,τ

)
≥ 1

(c −1)!
·
(

log2 n −1

τ−1

)c−1

+D
(
n/2τ,c,τ

)
.

Note that a similar argument gives,

D
(
n/2aτ,c,τ

)≥ 1

(c −1)!
·
(

log2 n −aτ−1

τ−1

)c−1

+D
(
n/2(a+1)τ,c,τ

)
for every a = 0,1, . . . ,b(log2 n−1)/τc−1 (this condition ensures that τ≤ log2(n/2aτ), as required

by our argument above). Hence, it follows that,

D(n,c,τ) ≥
b(log2 n−1)/τc−1∑

a=0

1

(c −1)!
·
(

log2 n −aτ−1

τ−1

)c−1

+D
(
n/2τ·b(log2 n−1)/τc,c,τ

)
≥ 1

(c −1)!

b(log2 n−1)/τc−1∑
a=0

(
log2 n

τ
−a

)c−1

+1

≥ 1

(c −1)!
·
∫ log2 n

τ

1
uc−1 du +1

= 1

(c −1)!
· 1

c

((
log2 n

τ

)c

−1

)
+1 ≥ logc

2 n

c ! ·τc ,
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which establishes (2.10) for n > 2τ. This completes the inductive step.

Recall that k = Θ
((log2 n

c

))
, so for any constant c one has k = Θ

((log2 n
c

)) ≤ logc
2 n

c ! . Setting τ =
log2 k +O(1), we get

D(n,c,τ) ≥ logc
2 n

c ! ·τc =Θ(k/(log2 k)c ) = k1−o(1),

as required.

2.7 Sparse FFT for Worst-case Sparse Signals and Worst-case Sig-

nals with Random Phase

In this section we prove the main result of the paper, namely,

Theorem 2.1.1 (Sparse FFT for worst-case signals, formal version). For any power of two

integer n and any positive integer d and any signal x ∈ Cnd
with ‖x̂‖0 = k, the procedure

SPARSEFFT(x,n,d ,k) in Algorithm 11 recovers x̂. Moreover, the sample complexity of this

procedure is O(k3 log2 k log2 N ) and its runtime is O(k3 log2 k log2 N ), where N = nd .

We also present improved recovery algorithms for Fourier sparse signals x whose nonzero

frequencies are distributed arbitrarily (worst-case) and values at the nonzero frequencies are

independently chosen to have a uniformly random phase. Recall Definition 2.2.7:

Definition 2.2.7 (Worst-case signal with random phase). For any positive integer d and power

of two n, we define x to be a worst-case signal with random phase having values
{
β f

}
f ∈[n]d if,

x̂ f =β f e2πiθ for uniformly random θ ∈ [0,2π),

independently for every f ∈ [n]d . Furthermore, if k of the values
{
β f

}
f ∈[n]d are nonzero, then

x is said to be a worst-case k-sparse signal with random phase and is guaranteed to have

sparsity ‖x̂‖0 = k.

For this model we prove the stronger result:

Theorem 2.2.2 (Sparse FFT for worst-case signals with random phase). For any power of two

integer n, positive integer d, and worst-case k-sparse signal with random phase x : [n]d →C, the

procedure SPARSEFFT-RANDOMPHASE(x,n,d ,k) in Algorithm 12 recovers x̂ with probability

1− 1
N 2 . Moreover, the sample complexity and runtime of this procedure are both O

(
k2 log4 N

)
.

The main property that allows us to obtain the stronger result is that a small number of time

domain samples from such a signal suffice to approximate its energy with high confidence

(whereas Ω(k) samples are required in general for a worst-case k-sparse signal). This is

reflected by the following lemma.
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Lemma 2.7.1. For any power of two integr n, any positive integer d, and any worst-case signal

with random phase x,

Pr

[
1

2
· ‖β‖

2
2

n2d
≤ 1

s

s∑
j=1

|xt j |2 ≤
3

2
· ‖β‖

2
2

n2d

]
≥ 1− 1

n4d
,

where s = C d 3 log3
2 n for some absolute constant C > 0 and t1, t2, . . . , ts ∼ Unif([n]d ) are i.i.d.

random variables. The probability is over the randomness in choosing the variables t j as well

the randomness in the choice of the phase for each frequency of x̂.

Proof. This sort of guarantee for signals with random phase is well-known and follows from

standard application of Bernstein’s inequality. See for example (Kapralov et al., 2019).

2.7.1 Proofs of Theorems 2.1.1 and 2.2.2

Given the construction of our adaptive aliasing filter from the previous section, our sparse

recovery algorithms follow by a reduction to the estimation problem. Our algorithm starts by

first finding the vertex v∗ = argminv∈T wT (v), which, by Kraft’s inequality, satisfies wT (v∗) ≤
log2 k. We then define an auxiliary tree T ′ by appending a left a and a right child b to v . Then

for each of the children a,b, we, in turn, construct a filter G that isolates them from the rest of

T (i.e., from the frequency cones of other nodes in T ) and check whether the corresponding

restricted signals are nonzero. The latter is unfortunately a nontrivial task, since the sparsity of

these signals can be as high as k, and detecting whether a k-sparse signal is nonzero requires

Ω(k) samples. However, a fixed set of O
(
k log3 N

)
locations that satisfies the restricted isometry

property (RIP) can be selected, and accessing the signal on those values suffices to test whether

it is nonzero. If the signal is further assumed to be a worst-case random phase signal, then a

polylogarithmic number of samples suffices. The following lemma (Lemma 2.7.2) makes the

latter claim formal.

Lemma 2.7.2 (ZEROTEST guarantee). Suppose d is a positive integer and n is a power of two.

Assume that signals x, χ̂ ∈ Cnd
satisfy supp (x̂ − χ̂) ⊆ ⋃

u: leaf of T FrequencyConeT (u) for some

T that is a subtree of T full
nd . For every leaf v of T if∆ is a multiset of elements from [n]d which

satisfies the following:
1

2
· ‖ŷ‖2

2

n2d
≤ 1

|∆| ·
∑
∆∈∆

|y∆|2 ≤ 3

2
· ‖ŷ‖2

2

n2d
,

where y = (x̂ − χ̂)FrequencyConeT (v) is the signal obtained by restricting x̂ − χ̂ to frequencies in

FrequencyConeT (v) and zeroing it out everywhere else, then the following conditions hold:

• ZEROTEST(x, χ̂,T, v,n,d ,∆) outputs true if supp (x̂ − χ̂)∩FrequencyConeT (v) 6= ;; oth-

erwise, it outputs false.

• The sample complexity of this procedure is O
(
2wT (v) · |∆|), where wT (v) is the weight of

leaf v in T (see Definition 2.2.6).
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• The runtime of the ZEROTEST procedure is O
(‖χ̂‖0 · |∆|+ |T | ·d logn +2wT (v) · |∆|), where

|T | denotes the number of leaves of T .

Proof. Consider lines 13-14 of Algorithm 10. By Claim 2.3.3, we have,

h∆f = 1

nd

∑
ξ∈[n]d

e2πi ξ
T ∆
n · χ̂ξĜξ

= ∑
j∈[n]d

G∆− j ·χ j ,

where G ∈Cnd
is the filter constructed in lines 5-12 of Algorithm 10. Thus,

H∆
f =

( ∑
j∈[n]d

G∆− j · x j

)
−h∆f

= ∑
j∈[n]d

G∆− j · (x −χ) j .

Note that, by Lemma 2.4.2, the filter G in Algorithm 10 is a (v,T )-isolating filter. Therefore,

by the assumption supp (x̂ − χ̂) ⊆⋃
u: leaf of T FrequencyConeT (u) and the definition of a (v,T )-

isolating filter (see Definition 2.4.6), we have,

H∆
f = ∑

j∈[n]d

G∆− j · (x −χ) j

= 1

nd

∑
ξ∈FrequencyConeT (v)

(x̂ − χ̂)ξ ·e2πi ξ
T ∆
n .

Therefore, H∆
f is the inverse Fourier transform of (x̂ − χ̂)FrequencyConeT (v) at time ∆, where

(x̂ − χ̂)FrequencyConeT (v) denotes the signal obtained by restricting x̂ − χ̂ to frequencies ξ ∈
FrequencyConeT (v) and zeroing out the signal on all other frequencies. By the assumption of

lemma the following holds:

1

2
· ‖(x̂ − χ̂)FrequencyConeT (v)‖2

2

n2d
≤ 1

|∆| ·
∑
∆∈∆

|H∆
f |2 ≤

3

2
· ‖(x̂ − χ̂)FrequencyConeT (v)‖2

2

n2d
.

Therefore, the test performed in line 15 of Algorithm 10 correctly identifies if the restricted

signal (x̂ − χ̂)FrequencyConeT (v) is zero or not, hence, the first claim of the lemma holds.

Note that in order to construct a (v,T )-isolating filter G , along with Ĝ , the algorithm constructs

trees T v
q for all q ∈ {1, ...,d}, which has a total time complexity O

(|T |d logn
)
. Given T v

q ’s, the

algorithm constructs filter G and Ĝ in time O
(
2wT (v) +d logn

)
, by Lemma 2.4.2. Moreover, the

filter G has support size 2wT (v), by Lemma 2.4.2.

By Lemma 2.4.2, computing the quantities h∆f = 1
nd

∑
ξ∈[n]d e2πi ξ

T ∆
n · χ̂ξĜξ for all∆ ∈∆ in line 13

of Algorithm 10 can be done in time O
(‖χ̂‖0 ·

(|∆|+d logn
))=O

(‖χ̂‖0 · |∆|
)
. Given the values of
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Algorithm 10 Procedure for testing zero hypothesis

1: procedure ZEROTEST(x, χ̂,T, v,n,d ,∆) .∆: multiset of elements from [n]d

2: f ← fv , l ← lT (v), q∗ ←
⌈

l
log2 n

⌉
3: v0, v1, . . . , vl ← path from r to v in T , where v0 = r and vl = v
4: (u1,u2, · · · ,uq∗−1,uq∗) ← (vlog2 n , v2log2 n , · · · , v(q∗−1)·log2 n , vl )
5: for q = 1 to q∗ do
6: T v

q ← subtree of T rooted at uq−1

7: Remove all nodes of T v
q which are at distance more than log2 n from uq−1

8: Label every node w ∈ T v
q as fw = ( fw )q

9: gq ← FILTERPREPROCESS(T v
q ,uq ,n)

10: Gq ← FILTERTIME(gq ,n)
11: Ĝq (ξq ) = FILTERFREQUENCY(gq ,n,ξq )

12: G ←G1 ×G2 × ...×Gq∗

13: h∆f ← 1
nd

∑
ξ∈[n]d

(
e2πi ξ

T ∆
n · χ̂ξ ·

∏q∗
q=1 Ĝq (ξq )

)
for all ∆ ∈∆

14: H∆
f ← (∑

j∈[n]d G(∆− j ) · x j
)−h∆f for all ∆ ∈∆

15: if 1
|∆|

∑
∆∈∆ |H∆

f |2 = 0 then
16: return false
17: else
18: return true

h∆f for all∆ ∈∆, computing
{|H∆

f ∗ |2
}
∆∈∆ in line 14 takes time O

(
2wT (v) · |∆|) because |supp G| =

2wT (v). Therefore, the total runtime of this procedure is,

O
(|T | ·d logn +2wT (v) · |∆|+‖χ̂‖0 · |∆|

)
,

as desired.

Because support size of G is 2wT (v), computing all
{|H∆

f ∗ |2
}
∆∈∆ in line 14 of the algorithm

requires O
(
2wT (v) · |∆|) samples from x which proves the second claim of the lemma.

Now we are in a position to prove our main result:

Proof of Theorems 2.1.1 and 2.2.2: Note that Algorithms 11 and 12 are identical except in line

2. We first analyze the common code of the algorithms (after line 2) under the assumption that

the set∆ are replaced with a more powerful set which satisfies the precondition of Lemma 2.7.2

in all calls to ZEROTEST, hence, ZEROTEST correctly tests the zero hypothesis on its input signal

with probability 1. We then establish a coupling between this idealized execution and the

actual execution for both Algorithms 11 and 12, leading to our result.

Let m denote the size of the set m = |∆|. By induction, we prove that the following properties

are maintained throughout the execution of SPARSEFFT (Algorithm 11) and SPARSEFFT-
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Algorithm 11 Sparse FFT for worst-case sparse signals

1: procedure SPARSEFFT(x,n,d ,k)
2: ∆← Multiset of [n]d corresponding to Fourier measurements satisfying RIP of order k
. |∆| =O

(
k log2 k ·d logn

)
, see Theorem 2.3.1

3: T ← {r }, fr ← 0
4: while T 6= ; do
5: v ← argminu: leaf of T wT (u), f ← fv and l ← lT (v)
6: if l = d log2 n then . All bits of v have been discovered
7: v0, v1, . . . , vd ·log2 n ← path from r to v in T , where v0 = r and vd ·log2 n = v
8: for q = 1 to d do
9: T v

q ← subtree of T rooted at v(q−1)·log2 n

10: Remove all nodes of T v
q at distance more than log2 n from v(q−1)·log2 n

11: Label every node u ∈ T v
q as fu = ( fu)q

12: gq ← FILTERPREPROCESS(T v
q , vq·log2 n ,n)

13: Gq ← FILTERTIME(gq ,n)
14: Ĝq (ξq ) = FILTERFREQUENCY(gq ,n,ξq )

15: G ←G1 ×G2 × ...×Gd

16: h f ←∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq (ξq )

)
17: χ̂ f ← χ̂ f +

(
nd ·∑ j∈[n]d x j ·G− j

)−h f

18: T ← Tree.REMOVE(T, v)
19: else
20: T ′ ← T ∪ {left child u of v}∪{

right child w of v
}

21: if ZEROTEST
(
x, χ̂,T ′, w,n,d ,∆

)
then

22: Add w as the right child of node v to tree T
23: fw ← f . Frequency corresponding to node w

24: if ZEROTEST
(
x, χ̂,T ′,u,n,d ,∆

)
then

25: Add u as the left child of node v to tree T
26: fu ← f +2l ; . Frequency corresponding to node u

27: return χ̂;

RANDOMPHASE (Algorithm 12):

(1) supp (x̂ − χ̂) ⊆⋃
u: leaf of T FrequencyConeT (u);

(2) For every leaf u of tree T one has supp (x̂ − χ̂)∩FrequencyConeT (u) 6= ;;

(3) If x̂ is a worst-case signal with random phase, then x̂−χ̂ is a worst-case signal with random

phase;

(4) The quantity φ= (d log2 n +1)‖x̂ − χ̂‖0 −∑
u: leaf of T lT (u) decreases by at least 1 in every

iteration of Algorithms 11 and 12;

(5) Always ‖x̂ − χ̂‖0 ≤ k;

The base of induction is provided by the first iteration, at which point T is a single vertex

82



2.7. Sparse FFT for Worst-case Sparse Signals and Worst-case Signals with Random Phase

Algorithm 12 Sparse FFT for worst-case sparse signals with random phase

1: procedure SPARSEFFT-RANDOMPHASE(x,n,d ,k)
2: ∆← Multiset

{
∆i :∆i ∼ Unif([n]d ),∀i ∈ [

C d 3 log3
2 n

]}
.C : constant; see Lemma 2.7.1

3: T ← {r }, fr ← 0
4: while T 6= ; do
5: v ← argminu: leaf of T wT (u), f ← fv and l ← lT (v)
6: if l = d log2 n then . All bits of v have been discovered
7: v0, v1, . . . , vd ·log2 n ← path from r to v in T , where v0 = r and vd ·log2 n = v
8: for q = 1 to d do
9: T v

q ← subtree of T rooted at v(q−1)·log2 n

10: Remove all nodes of T v
q at distance more than log2n from v(q−1)·log2 n

11: Label every node u ∈ T v
q as fu = ( fu)q

12: gq ← FILTERPREPROCESS(T v
q , vq·log2 n ,n)

13: Gq ← FILTERTIME(gq ,n)
14: Ĝq (ξq ) = FILTERFREQUENCY(gq ,n,ξq )

15: G ←G1 ×G2 × ...×Gd

16: h f ←∑
ξ∈[n]d

(
χ̂ξ ·

∏d
q=1 Ĝq (ξq )

)
17: χ̂ f ← χ̂ f +

(
nd ·∑ j∈[n]d x j ·G− j

)−h f

18: T ← Tree.REMOVE(T, v)
19: else
20: T ′ ← T ∪ {left child u of v}∪{

right child w of v
}

21: if ZEROTEST
(
x, χ̂,T ′, w,n,d ,∆

)
then

22: Add w as the right child of node v to tree T
23: fw ← f . Frequency corresponding to node w

24: if ZEROTEST
(
x, χ̂,T ′,u,n,d ,∆

)
then

25: Add u as the left child of node v to tree T
26: fu ← f +2l ; . Frequency corresponding to node u

27: return χ̂;

T = {r } where r is the root with fr = 0 and χ̂= 0. The conditions (1) and (2) and (3) and (5)

are satisfied since FrequencyConeT (r ) = [n]d and supp (x̂ − χ̂) = supp x̂ 6= ; and x̂ − χ̂= x̂ is a

worst-case signal with random phase if x̂ is a worst-case signal with random phase.

We now prove the inductive step by assuming that conditions (1) and (2) and (3) and (5) of

the inductive hypothesis are satisfied at the beginning of a certain iteration and arguing that

conditions (1) and (2) and (3) and (5) are maintained at the end of iteration. We also show that

the value of the quantity φ defined in (4), decreases by at least one at every iteration. Let v ∈ T

be the smallest weight leaf chosen by the algorithms in line 5. We now consider two cases.

Case 1: lT (v) = d log2 n. Since the filter G constructed in Algorithms 11 and 12 is a (v,T )-

isolating filter, we have by Definition 2.2.5 that for every signal z ∈Cnd
with Fourier support
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supp ẑ ⊆⋃
u: leaf in T FrequencyConeT (u) and for all t ∈ [n]d ,

∑
j∈[n]d

z j Gt− j = 1

nd

∑
f ′∈FrequencyConeT (v)

ẑ f ′e2πi f ′T t
n . (2.11)

By condition (1) of the inductive hypothesis one has supp (x̂−χ̂) ⊆⋃
u: leaf of T FrequencyConeT (u),

and thus we can apply (2.11) with z = x −χ and t = 0, obtaining,

∑
j∈[n]d

(x −χ) j G− j = 1

nd

∑
f ′∈FrequencyConeT (v)

à(x −χ) f ′ . (2.12)

Note that by Claim 2.3.3,

nd · ∑
j∈[n]d

χ j G− j =
∑

f ∈[n]
χ̂ f Ĝ f = h f ,

where h f is the quantity computed in line 16. We thus get that,

nd
∑

j∈[n]d

x j ·G− j −h f = ∑
f ′∈FrequencyConeT (v)

à(x −χ) f ′

= à(x −χ) fv
,

because FrequencyConeT (v) = {
fv

}
due to the assumption lT (v) = d log2 n. Therefore, the

operation in line 17 is in fact χ̂(·) ← χ̂(·)+ à(x −χ) fv
δ fv (·) and hence, at the end of the loop

we have à(x −χ) fv
= 0 which means that fv will no longer be in supp à(x −χ). And also v

gets removed from tree T implying that
{

fv
} = FrequencyConeT (v) will be excluded from⋃

u: leaf of T FrequencyConeT (u). Note that this also implies that à(x −χ) will remain a worst-

case signal with random phase. Therefore, condition (1) and (2) and (3) hold.

Additionally, note that ‖à(x −χ)‖0 will decrease by exactly 1 because fv is no longer in supp à(x −χ)

and the rest of the support is unchanged. This shows that condition (5) holds. Moreover,∑
u: leaf of T lT (u) decreases by exactly d log2 n because the level of v was lT (v) = d log2 n and v

gets removed from T . So φ will decrease by one as required in condition (4).

Case 2: Suppose that lT (v) < d log2 n. We first verify that the preconditions of Lemma 2.7.2

are satisfied. We need to ensure that for the residual signal x̂ − χ̂ it holds that,

supp (x̂ − χ̂) ⊆ ⋃
u: leaf of T ′

FrequencyConeT ′(u),

where T ′ is the tree obtained from T by adding two children of v (line 20). This follows, since

by the inductive hypothesis,

supp (x̂ − χ̂) ⊆ ⋃
u: leaf of T

FrequencyConeT (u),
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and by claim 2.4.2 we have,

FrequencyConeT (v) = FrequencyConeT ′(u)∪FrequencyConeT ′(w).

We thus get that the preconditions of Lemma 2.7.2 are satisfied, therefore, the output of ZE-

ROTEST(x, χ̂,T ′, w,n,d ,∆) is true if (x̂−χ̂)FrequencyConeT ′ (w) 6= 0 and false otherwise. A similar ar-

gument shows that the algorithm correctly tests the zero hypothesis on (x̂− χ̂)FrequencyConeT ′ (u).

Thus, by letting Tnew denote the tree T at the end of the while loop, we have that,

supp (x̂ − χ̂) ⊆ ⋃
u: leaf of Tnew

FrequencyConeTnew
(u),

and for every v ∈ Tnew one has supp (x̂ − χ̂)∩FrequencyConeTnew
(v) 6= ;. Hence, becauseà(x −χ) remains unchanged, conditions (1) and (2) and (3) hold at the end of the iteration.

Now, we show that φ has decreased by at least one. By inductive hypothesis we have that

supp (x̂ − χ̂) ∩ FrequencyConeT (v) 6= ; and at least one of w or u will be added to T be-

cause FrequencyConeT (v) = FrequencyConeT ′(u)∪FrequencyConeT ′(v). Since lTnew (w) =
lTnew (u) = lT (v)+ 1,

∑
u′: leaf of T lTnew (u′) ≥ ∑

u′: leaf of T lT (u′)+ 1. Because ‖x̂ − χ̂‖0 remains

unchanged, the value of φ decreases by at least one hence conditions (4) and (5) hold.

We have established by induction that conditions (1), (2), (3), (4), and (5) hold throughout the

execution of SPARSEFFT (Algorithm 11) and SPARSEFFT-RANDOMPHASE (Algorithm 12). Now

we show that these conditions are sufficient to prove the correctness and convergence of our

algorithms.

Because lT (u) ≤ d log2 n for every leaf u ∈ T , it follows from condition (2) that the quantity

φ = (d log2 n +1)‖x̂ − χ̂‖0 −∑
u: leaf of T lT (u) is non-negative. At the first iteration, χ̂ = 0 and

T = {r } where r is the root with lT ( f ) = 0. Hence, φ = ‖x̂‖0 · (1 + d log2 n) at the start of

our algorithms. Because φ is decreasing by at least 1 at each iteration, the algorithm must

terminate after O
(‖x̂‖0 ·d logn

)
iterations. By Lemma 2.7.2 along with Claim 2.4.3 and noting

that ‖χ̂‖0 =O(k) by condition (5), the runtime as well as the sample complexityof each iteration

of our algorithms are O(km), therefore, the total runtime and sample complexity will both be

O
(
k2m ·d logn

)
.

Finally, observe that throughout this analysis we have assumed that the set ∆ satisfies the

precondition of Lemma 2.7.2 for all the invocations of ZEROTEST by our algorithm. In reality,

there are two cases.

The first case is for worst-case signals (Algorithm 11, Theorem 2.1.1). In this case, the algorithm

chooses∆ to be a multiset of Fourier measurements that satisfies the RIP of order k. Let F−1
N

be the d dimensional inverse Fourier transform’s matrix with N = nd points. By Theorem 2.3.1
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there exists a multiset∆ of size m =O
(
k log2 k ·d logn

)
such that, for every signal y ∈Cnd

:

1

2
· ‖ŷ‖2

2

n2d
≤ 1

|∆| ·
∑
∆∈∆

|y∆|2 ≤ 3

2
· ‖ŷ‖2

2

n2d

As we have shown in condition (5) of the induction, ‖x̂ − χ̂‖0 ≤ k. Therefore, for every leaf v of

the tree T , ‖(x̂ − χ̂)FrequencyConeT (v)‖0 ≤ k, and so, the precondition of lemma 2.7.2 is satisfied.

The second case is for worst-case signals with random phase (Algorithm 12, Theorem 2.2.2).

We have shown in condition (3) of the induction that x −χ is a worst-case signal with random

phase in every iteration of the algorithm. Therefore for every leaf v of the tree it is true

that (x̂ − χ̂)FrequencyConeT (v) is a worst-case signal with random phase. In this case, therefore,

Lemma 2.7.1 implies that for every fixed leaf v of tree T , the multiset ∆ defined in line 2 of

Algorithm 12 satisfies the following with probability at least 1−1/n4d ,

1

2
· ‖ŷ‖2

2

n2d
≤ 1

|∆| ·
∑
∆∈∆

|y∆|2 ≤ 3

2
· ‖ŷ‖2

2

n2d

where y = (x̂ − χ̂)FrequencyConeT (v).

This shows that in the second case which corresponds to theorem 2.2.2, the failure probability

of procedure ZEROTEST is at most 1
n4d . Moreover, the above analysis shows that SPARSEFFT-

RANDOMPHASE makes at most O
(
kd logn

)
calls to ZEROTEST. Therefore, by a union bound,

the overall failure probability of the calls to ZEROTEST is O
(
(kd logn) 1

n4d

)
≤ n−2d . Hence, we

obtain the desired result.
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3 Near-optimal Recovery of Signals with
Simple Fourier Transforms

This chapter is based on a joint work with Haim Avron, Michael Kapralov, Cameron Musco,

Christopher Musco, and Ameya Velingker. It has been accepted to the 51st Annual ACM

SIGACT Symposium on Theory of Computing (Avron et al., 2019, STOC).

3.1 Introduction

Consider the following fundamental function fitting problem, pictured in Figure 3.1. We can

access a continuous signal y(t) at any time t ∈ [0,T ]. We wish to select a finite set of sample

times t1, . . . , tq such that, by observing the signal values y(t1), . . . , y(tq ) at those samples, we

are able to find a good approximation ỹ to y over the entire range [0,T ]. We also study the

problem in a noisy setting, where for each sample ti , we only observe y(ti )+n(ti ) for some

fixed noise function n.

(a) Observed signal y sampled at times t1, . . . , tq .

-6

-4

-2

0

2

4

6

8

(b) Reconstructed signal ỹ based on samples.

Figure 3.1 – Our basic function fitting problem requires reconstructing a contin-
uous signal based on a small number of (possibly noisy) discrete samples.

We seek to understand:

1. How many samples q are required to approximately reconstruct y and how should we

select these samples?
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Chapter 3. Near-optimal Recovery of Signals with Simple Fourier Transforms

2. After sampling, how can we find and represent ỹ in a computationally efficient way?

Answering these questions requires assumptions about the underlying signal y . In particular,

for the information at our samples t1, . . . , tq to be useful in reconstructing y on the entirety of

[0,T ], the signal must be smooth, structured, or otherwise “simple” in some way.

Across science and engineering, by far one of the most common ways in which structure arises

is through various assumptions about ŷ , the Fourier transform of y :

ŷ(ξ) =
∫ ∞

−∞
y(t )e−2πi tξd t .

Our goal is to understand signal reconstruction under natural constraints on the complexity

of ŷ .

3.1.1 Classical sampling theory and bandlimited signals

Classically, the most standard example of such a constraint is requiring y to be bandlimited,

meaning that ŷ is only non-zero for frequencies ξ with |ξ| ≤ F for some bandlimit F . In

this case, we recall the famous sampling theory of Nyquist, Shannon, and others (Whitaker,

1915; Kotelnikov, 1933; Nyquist, 1928; Shannon, 1949). This theory shows that y can be

reconstructed exactly using sinc interpolation (i.e, Whittaker-Shannon interpolation) if 1/2F

uniformly spaced samples of y are taken per unit of time (the Nyquist rate).

Unfortunately, this theory is asymptotic: it requires infinite samples over the entire real line

to interpolate y , even at a single point. When a finite number of samples are taken over an

interval [0,T ], sinc interpolation is not a good reconstruction method, either in theory or in

practice (Xiao, 2002).1

This well-known issue was resolved through a seminal line of work by Slepian and Pollak

(1961); Landau and Pollak (1961, 1962), who presented a set of explicit basis functions for

interpolating bandlimited functions when a finite number of samples are taken from a finite

interval. Their so-called “prolate spheroidal wave functions” can be combined with numerical

quadrature methods of Rokhlin et al. (2001) to obtain sample efficient (and computationally

efficient) methods for bandlimited reconstruction. Overall, this work shows that roughly

O
(
F T + log(1/ε)

)
samples from [0,T ] are required to interpolate a signal with bandlimit F to

accuracy ε on that same interval.2

1Approximation bounds can be obtained by truncating the Whittaker-Shannon method; however, they are
weak, depending polynomially, rather than logarithmically, on the desired error ε (see Appendix A of Avron et al.
(2019) for an in depth overview of related work.

2We formalize our notion of accuracy in Section 3.2.
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3.1.2 More general Fourier structure

While the aforementioned line of work is beautiful and powerful, in today’s world, we are

interested in far more general constraints than bandlimits. For example, there is wide-spread

interest in Fourier-sparse signals (Donoho, 2006), where ŷ is only non-zero for a small number

of frequencies, and multiband (Block-sparse) signals, where the Fourier transform is confined

to a small number of intervals. Methods for recovering signals in these classes have countless

applications in communication, imaging, statistics, and a wide variety of other disciplines

(Eldar, 2015).

More generally, in statistical signal processing, a prior distribution, specified by some probabil-

ity measure µ, is often assumed on the frequency content of y (Eldar and Unser, 2006; Ramani

et al., 2005). For signals with bandlimit F , µ would be the uniform probability measure on

[−F,F ]. Alternatively, instead of assuming a hard bandlimit, a zero-centered Gaussian prior on

ŷ can encode knowledge that higher frequencies are less likely to contribute significantly to y ,

although they may still be present. Such a prior naturally suits a Bayesian approach to signal

reconstruction (Handcock and Stein, 1993) and, in fact, is essentially equivalent to assuming y

is a stationary stochastic process with a certain covariance function (Avron et al., 2019). Under

various names, including “Gaussian process regression” and “kriging,” likelihood estimation

under a covariance prior is the dominant statistical approach to fitting continuous signals in

many scientific disciplines, from geostatistics to economics to medical imaging (Ripley, 2005;

Rasmussen, 2003).

3.1.3 Our contributions

Despite their clear importance, accurate methods for fitting continuous signals under most

common Fourier transform priors are not well understood, even 50 years after the ground-

breaking work of Slepian, Landau, and Pollak on the bandlimited problem. The only exception

is Fourier sparse signals: the noiseless interpolation problem can be solved using classical

methods (de Prony, 1795; Pisarenko, 1973; Bresler and Macovski, 1986), and recent work has

resolved the much more difficult noisy case (Chen et al., 2016; Chen and Price, 2019).

In this chapter, we address the problem far more generally. Our contributions are as follows:

1. We tightly characterize the information theoretic sample complexity of reconstructing y

under any Fourier transform prior, specified by probability measure µ. In essentially all

settings, we can prove that this complexity scales nearly linearly with a natural statistical

dimension parameter associated with µ. See Theorem 3.2.1.

2. We present a method for sampling from y that achieves the aforementioned statistical

dimension bound to within a polylogarithmic factor. Our approach is randomized

and universal: we prove that it is possible to draw t1, . . . , tq from a fixed non-uniform

distribution over [0,T ] that is independent of µ, i.e., “spectrum-blind.” In other words,
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Chapter 3. Near-optimal Recovery of Signals with Simple Fourier Transforms

the same sampling scheme works for bandlimited, sparse, or more general priors. See

Theorem 3.2.2.

3. We show that y can be recovered from t1, . . . , tq using a simple, efficient, and completely

general interpolation method. In particular, we just need to solve a kernel ridge regres-

sion problem using y(t1), . . . , y(tq ), with an appropriately chosen kernel function for µ.

This method runs in O(q3) time and is already widely used for signal reconstruction in

practice, albeit with sub-optimal strategies for choosing t1, . . . , tq . See Theorem 3.2.3.
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Figure 3.2 – Examples of Fourier transform “priors” induced by various measures µ (we plot
the corresponding density). Our algorithm can reconstruct signals under any of these priors.

Overall, this approach gives the first finite sample, provable approximation bounds for all

common Fourier-constrained signal reconstruction problems beyond bandlimited and sparse

functions.

Our results are obtained by drawing on a rich set of tools from randomized numerical linear

algebra, including sampling methods for approximate regression and deterministic column-

based low-rank approximation methods (Batson et al., 2009; Cohen et al., 2016a). Many of

these methods view matrices as sums of rank-1 outer products and approximate them by

sampling or deterministically selecting a subset of these outer products. We adapt these tools

to the approximation of continuous operators, which can be written as the (weak) integral of

rank-1 operators. For example, our universal time domain sampling distribution is obtained

using the notion of statistical leverage (Spielman and Srivastava, 2008; Alaoui and Mahoney,

2015; Drineas and Mahoney, 2016), extended to a continuous Fourier transform operator

that arises in the signal reconstruction problem. We hope that, by extending many of the

fundamental contributions of randomized numerical linear algebra to build a toolkit for

‘randomized operator theory’, our work will offer a starting point for progress on many signal

processing problems using randomized methods.
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3.2 Formal Statement of Results

As suggested, we formally capture Fourier structure through any probability measure µ over

the reals.3 We often refer toµ as a “prior”, although we will see that it can be understood beyond

the context of Bayesian inference. The simplicity of a set of constraints will be quantified by a

natural statistical dimension parameter for µ, defined in Section 3.2.1.

For signals with bandlimit F , µ is the uniform probability measure on [−F,F ]. For multiband

signals, it is uniform on the union of k intervals, while for Fourier-sparse functions, µ is

uniform on a union of k Dirac measures. More general priors are visualized in Figure 3.2.

Those based on Gaussian or Cauchy-Lorentz distributions are especially common in scientific

applications, and we will discuss examples shortly. For now, we begin with our main problem

formulation.

Problem 3.2.1. Given a known probability measureµ onR, for any t ∈ [0,T ], define the inverse

Fourier transform of a function g (ξ) with respect to µ as,[
F∗
µ g

]
(t )

def=
∫
R

g (ξ)e2πiξt dµ(ξ). (3.1)

Suppose our input y can be written as y =F∗
µ x for some frequency domain function x(ξ) and,

for any chosen t , we can observe y(t )+n(t ) for some fixed noise function n(t ). Then, for error

parameter ε, our goal is to recover an approximation ỹ satisfying,

‖y − ỹ‖2
T ≤ ε‖x‖2

µ+C‖n‖2
T , (3.2)

where ‖x‖2
µ

def= ∫
R |x(ξ)|2 dµ(ξ) is the energy of the function x with respect to µ, while ‖z‖2

T
def=

1
T

∫ T
0 |z(t )|2d t , so that ‖y − ỹ‖2

T is our mean squared error and ‖n‖2
T is the mean squared noise

level. C ≥ 1 is a fixed positive constant.

Unlike the ‖x‖2
µ term in (3.2), which we can control by adjusting ε, we can never hope to

recover y to accuracy better than ‖n‖2
T . Accordingly, we consider ‖n‖2

T to be small and are

happy with any solution of Problem 3.2.1 that is within a constant factor of optimal – i.e.,

where C =O(1).

Problem 3.2.1 captures signal reconstruction under all standard Fourier transform constraints,

including bandlimited, multiband, and sparse signals.4 The error in (3.2) naturally scales with

the average energy of the signal over the allowed frequencies. For more general priors, ‖x‖2
µ

will be larger when y contains a significant component of frequencies with low density in µ.5

3Formally, we consider the measure space (R,B,µ) where B is the Borel σ-algebra on R.
4For sparse or multiband signals, Problem 3.2.1 assumes frequency or band locations are known a priori. There

has been significant work on algorithms that can recover y when these locations are not known (Mishali and Eldar,
2009; Moitra, 2015; Price and Song, 2015; Chen et al., 2016). Understanding this more complicated problem in the
multiband case is an important future direction.

5Informally, decreasing dµ(ξ) by a factor of c > 1 requires increasing x(ξ) by a factor of c to give the same time
domain signal. This increases x(ξ)2 by a factor of c2 and so increases its contribution to ‖x‖2

µ by a factor of c2/c = c .
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For a given number of samples, we would thus incur larger error in (3.2) in comparison to a

signal that uses more “likely” frequencies.

As an alternative to Problem 3.2.1, we can formulate signal fitting from a Bayesian perspective.

We assume that n is independent random noise, and y is a stationary stochastic process with

expected power spectral density µ. This assumption on y ’s power spectral density is equivalent

to assuming that y has covariance function (a.k.a. autocorrelation) µ̂(t ), which is the type of

prior used in kriging and Gaussian process regression.

Examples and applications

As discussed in Section 3.1.2, “hard constraint” versions of Problem 3.2.1, such as bandlimited,

sparse, and multiband signal reconstruction, have many applications in communications,

imaging, audio, and other areas of engineering. Generalizations of the multiband problem to

non-uniform measures (see Figure 3.2d) are also useful in various communication problems

(Mishali and Eldar, 2010).

On the other hand, “soft constraint” versions of the problem are widely applied in scientific

applications. In medical imaging, images are often denoised by setting µ to a heavy-tailed

Cauchy-Lorentz measure on frequencies (Fuderer, 1989; Lettington and Hong, 1995). This

corresponds to assuming an exponential covariance function for spatial correlation. Exponen-

tial covariance and its generalization, Matérn covariance, are also common in the earth and

geosciences (Ripley, 1991, 2005), as well as in general image processing (Pesquet-Popescu and

Véhel, 2002).

A Gaussian prior µ, which corresponds to Gaussian covariance, is also used to model both

spatial and temporal correlation in medical imaging (Friston et al., 1994; Worsley et al., 1996)

and is very common in machine learning. Other choices for µ are practically unlimited. For

example, the popular ArcGIS kriging library also supports the following covariance functions:

circular, spherical, tetraspherical, pentaspherical, rational quadratic, hole effect, k-bessel, and

j-bessel, and stable (ESRI, 2001).

3.2.1 Sample complexity

With Problem 3.2.1 defined, our first goal is to characterize the number of samples required to

reconstruct y , as a function of the accuracy parameter ε, the range T , and the measure µ. We

do so using what we refer to as the Fourier statistical dimension of µ, which corresponds to the

standard notion of statistical or ‘effective dimension’ for regularized function fitting problems

(Hastie et al., 2009; Zhang, 2005).

Definition 3.2.2 (Fourier statistical dimension). For a probability measure µ on R and time
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length T , define the kernel operator Kµ : L2(T ) → L2(T )6 as:

[Kµz](t )
def=

∫
ξ∈R

e2πiξt
[

1

T

∫
s∈[0,T ]

z(s)e−2πiξs d s

]
dµ(ξ). (3.3)

Note that Kµ is self-adjoint, positive semidefinite and trace-class.7 The Fourier statistical

dimension for µ, T , and error ε is denoted by sµ,ε and defined as:

sµ,ε
def= tr

(
Kµ(Kµ+εIT )−1) , (3.4)

where IT is the identity operator on L2(T ). Letting λi (Kµ) denote the i th largest eigenvalue

of Kµ, we may also write,

sµ,ε =
∞∑

i=1

λi
(
Kµ

)
λi

(
Kµ

)+ε . (3.5)

Note that Kµ and sµ,ε as defined above, depend on T and thus could naturally be denoted

Kµ,T and sµ,ε,T . However, since T is fixed throughout our results, for conciseness we do not

use T in our notation for these and related notions.

It is not hard to see that sµ,ε increases as ε decreases, meaning that we will require more

samples to obtain a more accurate solution to Problem 3.2.1. The operator Kµ corresponds

to taking the Fourier transform of a time domain input z(t ), scaling that transform by µ, and

then taking the inverse Fourier transform. Readers familiar with the literature on bandlimited

signal reconstruction will recognize Kµ as the natural generalization of the frequency limiting

operator studied in the celebrated work of Slepian and Pollak (1961); Landau and Pollak (1961,

1962) on prolate spheroidal wave functions. In that work, it is established that a quantity

nearly identical to sµ,ε bounds the sample complexity of solving Problem 3.2.1 for bandlimited

functions.

Our first technical result is that this is actually true for any prior µ.

Theorem 3.2.1 (Main result, sample complexity). For any probability measure µ, Problem

3.2.1 can be solved using q =O
(
sµ,ε · log sµ,ε

)
noisy signal samples y(t1)+n(t1), . . . , y(tq )+n(tq ).

What does Theorem 3.2.1 imply for common classes of functions with constrained Fourier

transforms? Table 3.1 includes a list of upper bounds on sµ,ε for many standard priors.

A complexity of O(sµ,ε · log sµ,ε) equates to Õ(k) samples for Fourier k-sparse functions and

Õ(F T + log1/ε) for bandlimited functions. Up to log factors, these bounds are tight for these

well studied problems. In Section 3.6, we show that Theorem 3.2.1 is actually tight for all

common Fourier transform priors: Ω(sµ,ε) time points are required for solving Problem 3.2.1

6L2(T ) denotes the complex-valued square integrable functions with respect to the uniform measure on [0,T ].
7See Section 3.3 for a formal explanation of these facts.
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Fourier prior, µ Statistical dimension, sµ,ε Proof

k-sparse k Since Kµ has rank k.

bandlimited to [−F,F ] O
(
F T + log(1/ε)

)
Theorem B.3.1.

multiband, widths F1, . . . ,Fs O
(∑

i Fi T + s log(1/ε)
)

Theorem B.4.1.8

Gaussian, variance F O
(
F T

√
log(1/ε)+ log(1/ε)

)
Theorem B.4.2.

Cauchy-Lorentz, scale F O
(
F T

p
1/ε+p

1/ε
)

Theorem B.4.3.

Table 3.1 – Statistical dimension upper bounds for common Fourier interpolation problems.
Our result (Theorem 3.2.1) requires O(sµ,ε · log sµ,ε) samples.

as long as sµ,ε grows slower than 1/εp for some p < 1. This property holds for all Fourier priors

µ listed in Table 3.1.

To compliment the sample complexity bound of Theorem 3.2.1, we introduce a universal

method for selecting samples t1, . . . , tq that nearly matches this complexity. Our method selects

samples at random, in a way that does not depend on the specific prior µ.

Theorem 3.2.2 (Main result, sampling distribution). For any sample size q, there is a fixed

probability density pq over [0,T ] such that, if q time points t1, . . . , tq are selected indepen-

dently at random according to pq , and q ≥ c · sµ,ε · log2 sµ,ε for some fixed constant c, then

it is possible to solve Problem 3.2.1 with probability 99/100 using the noisy signal samples

y(t1)+n(t1), . . . , y(tq )+n(tq ).9

Theorem 3.2.2 is our main technical contribution. By achieving near-optimal sample complex-

ity with a universal distribution, it shows that wide range of Fourier constrained interpolation

problems considered in the literature are more closely related than previously understood.

Moreover, pq (which is formally defined in Theorem 3.5.6) is very simple to describe and

sample from. As may be intuitive from results on polynomial interpolation, bandlimited

approximation, and other function fitting problems, it is more concentrated towards the

endpoints of [0,T ], so our sampling scheme selects more time points in these regions. The

density is shown in Figure 3.3.

3.2.2 Algorithmic complexity

While Theorem 3.2.2 immediately yields an approach for selecting samples t1, . . . , tq , it is

only useful if we can efficiently solve Problem 3.2.1 given the noisy measurements y(t1)+
n(t1), . . . , y(tq )+n(tq ). We show that this is possible for a broad class of constraint measures.

8Just as Theorem B.3.1 intuitively matches the Nyquist sampling rate, Theorem B.4.1 intuitively matches the
Landau rate for asymptotic recovery of multiband functions (Landau, 1967).

9In Section 3.5.4, we formally quantify the tradeoff between success probability and sample complexity.
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3.2. Formal Statement of Results

(a) Density for selecting time points. (b) Example set of nodes sampled according to
pq .

Figure 3.3 – A visualization of the universal sampling distribution, pq , which can be used for
reconstructing a signal under any Fourier prior µ. To obtain pq for a given number of samples
q , choose α so that q =Θ(α log2α). Set zq (t) equal to α/min(t ,T − t), except near 0 and T ,
where the function is capped at zq (t ) =α6. Construct pq by normalizing zq to integrate to 1.

Specifically, we only need to efficiently compute the positive-definite kernel function10:

kµ(t1, t2) =
∫
ξ∈R

e−2πi (t1−t2)ξdµ(ξ). (3.6)

The above integral can be approximated via numerical quadrature, but for many of the afore-

mentioned applications, it has a closed-form. For example, when µ is supported on just

k frequencies, it is a sum of these frequencies. When µ is uniform on [−F,F ], kµ(t1, t2) =
sinc(2πF (t1 − t2)). For multiband signals with s bands, kµ(t1, t2) is a sum of s modulated sinc

functions. In fact, kµ(t1, t2) has a closed-form for all µ illustrated in Figure 3.2. Further details

are discussed in Appendix B.5. Assuming a subroutine for computing kµ(t1, t2), our main

algorithmic result is as follows:

Theorem 3.2.3. (Main result, algorithmic complexity) There is an algorithm that solves Prob-

lem 3.2.1 with probability 99/100 which uses O
(
sµ,ε · log2(sµ,ε)

)
time domain samples (sampled

according to the distribution given by Theorem 3.2.2) and runs in Õ
(
sωµ,ε+ s2

µ,ε ·Z
)

time, assum-

ing the ability to compute kµ(t1, t2) for any t1, t2 ∈ [0,T ] in Z time.11 The algorithm returns a

representation of ỹ(t ) that can be evaluated in Õ(sµ,ε ·Z ) time for any t .

For bandlimited, Gaussian, or Cauchy-Lorentz priors µ, Z = O(1). For s sparse signals or

multiband signals with s blocks, Z =O(s).

We note that, while Theorem 3.2.3 holds when Õ
(
sµ,ε

)
samples are taken, sµ,ε may not be

known and thus it may be unclear how to set the sample size. In our full statement of the

Theorem in Section 3.5.4 we make it clear that any upper bound on sµ,ε suffices to set the

10When y is real valued, it makes sense to consider symmetric µ. In this case, kµ is also real valued. However, in
general it may be complex valued.

11For conciseness, we use Õ(z) to denote Õ(z logc z), where c is some fixed constant (usually ≤ 2). In formal
theorem statements we give c explicitly. ω< 2.373 is the current exponent of fast matrix multiplication (Williams,
2012).
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sample size. The sample complexity will depend on how tight this upper bound is. In Appendix

B.4 we give upper bounds on sµ,ε for a number of common µ, which can be plugged into

Theorem 3.2.3.

3.2.3 Our approach

Theorems 3.2.1, 3.2.2, and 3.2.3 are achieved through a simple and practical algorithmic

framework. In Section 3.4, we show that Problem 3.2.1 can be modeled as a least squares re-

gression problem with `2 regularization. As long as we can compute kµ(t1, t2), we can solve this

problem using kernel ridge regression, a popular function fitting technique in nonparametric

statistics (Shawe-Taylor et al., 2004).

Naively, the kernel regression problem is infinite dimensional: it needs to be solved over

the continuous time domain [0,T ] to solve our signal reconstruction problem. This is where

sampling comes in. We need to discretize the problem and establish that our solution over

a fixed set of time samples nearly matches the solution over the continuous interval. To

bound the error of discretization, we turn to a tool from randomized numerical linear algebra:

statistical leverage score sampling (Spielman and Srivastava, 2008; Drineas and Mahoney,

2016). We show how to randomly discretize Problem 3.2.1 by sampling time points with

probability proportional to an appropriately defined non-uniform leverage score distribution

on [0,T ]. The required number of samples is O(sµ,ε log sµ,ε), which proves Theorem 3.2.1.

Unfortunately, the leverage score distribution does not have a closed-form, varies depending

on ε, T , and µ, and likely cannot be sampled from exactly. To prove Theorem 3.2.2, we show

that for any µ, for large enough q , the closed form distribution pq upper bounds the leverage

score distribution. This upper bound closely approximates the true leverage score distribution

and, therefore, can be used in its place during sampling, losing only a log sµ,ε factor in the

sample complexity.

The leverage score distribution roughly measures, for each time point t , how large |y(t)|2
can be compared to

∥∥y
∥∥2

T when y ’s Fourier transform is constrained by µ (i.e., when ‖x‖2
µ

as defined in Problem 3.2.1 is bounded). To upper bound this measure we turn to another

powerful result from the randomized numerical linear algebra literature: every matrix contains

a small subset of columns that span a near-optimal low-rank approximation to that matrix

(Sarlos, 2006; Boutsidis et al., 2009; Deshpande and Rademacher, 2010). In other words,

every matrix admits a near-optimal low-rank approximation with sparse column support.

By extending this result to continuous linear operators, we prove that the smoothness of a

signal whose Fourier transform has ‖x‖2
µ bounded is tightly captured by the smoothness of an

O(sµ,ε)-sparse Fourier function. This lets us reduce every Fourier prior to Fourier sparsity and

apply recent results of (Chen et al., 2016; Chen and Price, 2019) that bound |y(t)|2 in terms

of
∥∥y

∥∥2
T for any Fourier sparse function y . Intuitively, our result shows that the simplicity of

sparse Fourier functions governs the simplicity of any class of Fourier constrained functions.
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The above argument yields Theorem 3.2.2. Since we can sample from pq in O(1) time, we can

efficiently sample the time domain to O
(
sµ,ε · log2 sµ,ε

)
points and then solve Problem 3.2.1 by

applying kernel ridge regression to these points, which takes Õ
(
sωµ,ε+ s2

µ,ε ·Z
)

time, assuming

the ability to compute kµ(·, ·) in Z time. This yields the algorithmic result of Theorem 3.2.3.

3.2.4 Roadmap

The rest of this chapter is structured as follows:

Section 3.3 We lay out basic notation that is used throughout the paper.

Section 3.4 We reduce Problem 3.2.1 to a kernel ridge regression problem and explain how

to randomly discretize and solve this problem via leverage score sampling, proving

Theorem 3.2.1.

Section 3.5 We give an upper bound on the leverage score distribution for general priors,

proving Theorems 3.2.2 and 3.2.3.

Section 3.6 We prove that, under a mild assumption, the statistical dimension tightly char-

acterizes the sample complexity of solving Problem 3.2.1, and thus that our results are

nearly optimal.

In Appendix B.1 we give operator theory preliminaries. In Appendix B.2 we prove our ex-

tensions of a number of randomized linear algebra primitives to continuous operators. In

Appendix B.3, we bound the statistical dimension for the important case of bandlimited func-

tions. We use this result in Appendix B.4 to prove statistical dimension bounds for multiband,

Gaussian, and Cauchy-Lorentz priors (shown in Table 3.1). In Appendix B.5, we show how to

compute the kernel function kµ for these common priors.

3.3 Notation

Letµ be a probability measure on (R,B), where B is the Borelσ-algebra onR. Let L2(µ) denote

the space of complex-valued square integrable functions with respect to µ. For a,b ∈ L2(µ),

let 〈a,b〉µ denote
∫
ξ∈R a(ξ)∗b(ξ)dµ(ξ) where for any x ∈ C, x∗ is its complex conjugate. Let

‖a‖2
µ denote 〈a, a〉µ. Let Iµ denote the identity operator on L2(µ). Note that for any µ, L2(µ) is

a separable Hilbert space and thus has a countably infinite orthonormal basis (Hunter and

Nachtergaele, 2001).

We overload notation and use L2(T ) to denote the space of complex-valued square integrable

functions with respect to the uniform probability measure on [0,T ]. It will be clear from

context that T is not a measure. For a,b ∈ L2(T ), let 〈a,b〉T denote 1
T

∫ T
0 a(t)∗b(t)d t and let

‖a‖2
T denote 〈a, a〉T . Let IT denote the identity operator on L2(T ).
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Define the Fourier transform operator Fµ : L2(T ) → L2(µ) as:

[
Fµ f

]
(ξ) = 1

T

∫ T

0
f (t )e−2πi tξd t . (3.7)

The adjoint of Fµ is the unique operator F∗
µ : L2(µ) → L2(T ) such that for all f ∈ L2(T ), g ∈

L2(µ) we have 〈g ,Fµ f 〉µ = 〈F∗
µ g , f 〉T . It is not hard to see that F∗

µ is the inverse Fourier

transform operator with respect to µ as defined in Section 3.2, equation (3.1):[
F∗
µ g

]
(t )

def=
∫
R

g (ξ)e2πiξt dµ(ξ). (3.8)

Note that the kernel operator Kµ : L2(T ) → L2(T ) originally defined in (3.3) is equal to

Kµ =F∗
µFµ.

Kµ is self-adjoint, positive semidefinite and trace-class and an integral operator with kernel

kµ:

[Kµz](t ) = 1

T

∫ T

0
kµ(s, t )z(s)d s,

where kµ is as defined in (3.6). The trace of Kµ is equal to 1.12 We will also make use of the

Gram operator: Gµ
def= FµF∗

µ . Gµ is also self-adjoint, positive semidefinite, and trace-class.

Remark: It may be useful for the reader to informally regard Fµ as an infinite matrix with rows

indexed by ξ ∈R and columns indexed by t ∈ [0,T ]. Following the definition of Fµ above, and

assuming that µ has a density p, this infinite matrix has entries given by:

Fµ(ξ, t ) =
√

p(ξ)

T
·e−2πi tξ. (3.9)

The results we apply on leverage score sampling can all be seen as extending results for finite

matrices from the randomized numerical linear algebra literature to this infinite matrix.

3.4 Function Fitting with Least Squares Regression

Least squares regression provides a natural approach to solving the interpolation task of

Problem 3.2.1. In particular, consider the following regularized minimization problem over

12Since the kernel is a Fourier transform of a probability measure, it is Hermitian positive definite (Bochner’s
Theorem). Then we can conclude that Kµ is trace-class from Mercer’s theorem, and calculate tr(Kµ) =
1
T

∫ T
0 kµ(t , t )d t = 1.
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functions g ∈ L2(µ)13:

min
g∈L2(µ)

‖F∗
µ g − (y +n)‖2

T +ε‖g‖2
µ. (3.10)

The first term encourages us to find a function g whose inverse Fourier transform is close

to our measured signal y +n. The second term encourages us to find a low energy solution

– ultimately, we solve (3.10) based on only a small number of samples y(t1), . . . , y(tk ), and

smoother, lower energy solutions will better generalize to the entire interval [0,T ]. We remark

that it is well known that least squares approximations benefit from regularization even in the

noiseless case (Cohen et al., 2013).

We first state a straightforward fact: if we minimize (3.10), even to a coarse approximation,

then we are able to solve Problem 3.2.1.

Claim 3.4.1. Let y = F∗
µ x, n ∈ L2(T ) be an arbitrary noise function, and for any C ≥ 1, let

g̃ ∈ L2(µ) be a function satisfying:

‖F∗
µ g̃ − (y +n)‖2

T +ε‖g̃‖2
µ ≤C · min

g∈L2(µ)

[
‖F∗

µ g − (y +n)‖2
T +ε‖g‖2

µ

]
.

Then

‖F∗
µ g̃ − y‖2

T ≤ 2Cε‖x‖2
µ+2(C +1)‖n‖2

T .

Proof. Since y =F∗
µ x, ming∈L2(µ)

[
‖F∗

µ g − (y +n)‖2
T +ε‖g‖2

µ

]
≤ ‖n‖2

T +ε‖x‖2
µ. Thus, ‖F∗

µ g̃ −
(y +n)‖2

T ≤Cε‖x‖2
µ+C‖n‖2

T . The claim then follows via triangle inequality:

‖F∗
µ g̃ − y‖T −‖n‖T ≤ ‖F∗

µ g̃ − (y +n)‖T

‖F∗
µ g̃ − y‖T ≤

√
Cε‖x‖2

µ+C‖n‖2
T +‖n‖T

‖F∗
µ g̃ − y‖2

T ≤ 2Cε‖x‖2
µ+2(C +1)‖n‖2

T .

Claim 3.4.1 shows that approximately solving the regression problem in (3.10), with regular-

ization parameter ε gives a solution to Problem 3.2.1 with parameter 2Cε (decreasing the

regularization parameter to ε
2C will let us solve with parameter ε). But how can we solve

the regression problem efficiently? Not only does the problem involve a possibly infinite

dimensional parameter vector g , but the objective function also involves the continuous time

interval [0,T ].

13The fact that the minimum is attainable is a simple consequence of the extreme value theorem, since the
search space can be restricted to ‖g‖2

µ ≤ ‖(y +n)‖2
T /ε.
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3.4.1 Random discretization via leverage function sampling

The first step is to deal with the latter challenge, i.e., that of a continuous time domain. We

show that it is possible to randomly discretize the time domain of (3.10), thereby reducing

our problem to a regression problem on a finite set of times t1, . . . , tq . In particular, we can

sample time points with probability proportional to the so-called ridge leverage function, a

specific non-uniform distribution that has been applied widely in randomized algorithms for

regression and other linear algebra problems on discrete matrices (Alaoui and Mahoney, 2015;

Cohen et al., 2017; Musco and Musco, 2017; Musco and Woodruff, 2017).

While we cannot compute the leverage function explicitly for our problem, an issue highlighted

by Bach (2017), our main result (Theorem 3.2.2) uses a simple, but very accurate, closed form

approximation in its place. We start with the definition of the ridge leverage function:

Definition 3.4.1 (Ridge leverage function). For a probability measure µ on R, time length

T > 0, and ε≥ 0, we define the ε-ridge leverage function for t ∈ [0,T ] as14:

τµ,ε(t ) = 1

T
· max

{α∈L2(µ):‖α‖µ>0}

∣∣∣[F∗
µα](t )

∣∣∣2

∥∥F∗
µα

∥∥2
T
+ε‖α‖2

µ

. (3.11)

Intuitively, the ridge leverage function at time t is an upper bound of how much a function

can “blow up” at t when its Fourier transform is constrained by µ. The denominator term∥∥∥F∗
µα

∥∥∥2

T
is the average squared magnitude of the function F∗

µα, while the numerator term,

|[F∗
µα](t )|2, is the squared magnitude at t . The regularization term ε‖α‖2

µ reflects the fact that,

to solve (3.10), we only need to bound the smoothness for functions with bounded Fourier

energy under µ. As observed in (Pauwels et al., 2018), the ridge leverage function can be

viewed as a type of Christoffel function, studied in the literature on orthogonal polynomials

and approximation theory (Pauwels et al., 2018; Totik, 2000; Borwein and Erdélyi, 1995).

The larger the leverage “score” τµ,ε(t), the higher the probability we will sample time t , to

ensure that our sample points well reflect any possibly significant components or ‘spikes’ of

the function y . Ultimately, the integral of the ridge leverage function
∫ T

0 τµ,ε(t )d t determines

how many samples we require to solve (3.10) to a given accuracy. Theorem 3.4.1 below states

the already known fact that the ridge leverage function integrates to the statistical dimension

(Avron et al., 2017c), which will ultimately allow us to achieve the Õ(sµ,ε) sample complexity

bound of Theorems 3.2.1 and 3.2.2. Theorem 3.4.1 also gives two alternative characterizations

of the leverage function that will prove useful. The theorem is proven in Appendix B.2, using

techniques for finite matrices, adapted to the operator setting.

14Formally L2(T ) is a space of equivalence classes of functions that differ at a set of points with measure 0. For
notational simplicity, here and throughout we use F∗

µα to denote the specific representative of the equivalence
class F∗

µα ∈ L2(T ) given by (3.8). In this way, we can consider the pointwise value [F∗
µα](t), which we could

alternatively express as 〈ϕt ,α〉µ, for ϕt (ξ)
def= e−2πi tξ.
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Theorem 3.4.1 (Leverage function properties). Let τµ,ε(t ) be the ridge leverage function (Defi-

nition 3.4.1) and define ϕt ∈ L2(µ) by ϕt (ξ)
def= e−2πi tξ. We have:

• The ridge leverage function integrates to the statistical dimension:∫ T

0
τµ,ε(t )d t = sµ,ε

def= tr
(
Kµ(Kµ+εIT )−1) . (3.12)

• Inner Product characterization:

τµ,ε(t ) = 1

T
· 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ. (3.13)

• Minimization Characterization:

τµ,ε(t ) = 1

T
· min
β∈L2(T )

∥∥Fµβ−ϕt
∥∥2
µ

ε
+∥∥β∥∥2

T . (3.14)

In Theorem 3.4.2, we give our formal statement that the ridge leverage function can be used to

randomly sample time domain points to discretize the regression problem in (3.10) and solve it

approximately. While complex in appearance, readers familiar with randomized linear algebra

will recognize Theorem 3.4.2 as closely analogous to standard approximate regression results

for leverage score sampling from finite matrices (Clarkson and Woodruff, 2017). As discussed,

since we are typically unable to sample according to the true ridge leverage function, we give a

general result, showing that sampling with any upper bound function with a finite integral

suffices.

Theorem 3.4.2 (Approximate regression via leverage function sampling). Assume that ε ≤∥∥Kµ

∥∥
op.15 Consider a measurable function τ̃µ,ε(t) with τ̃µ,ε(t) ≥ τµ,ε(t) for all t and let s̃µ,ε =∫ T

0 τ̃µ,ε(t )d t. Let s = c · s̃µ,ε ·
(
log s̃µ,ε+1/δ

)
for sufficiently large fixed constant c and let t1, . . . , ts

be i.i.d. time points selected by drawing each randomly from [0,T ] with probability proportional

to τ̃µ,ε(t ). For j ∈ 1, . . . , s, let w j =
√

1
sT · s̃µ,ε

τ̃µ,ε(t j ) . Let F :Cs → L2(µ) be the operator defined by:

[
F g

]
(ξ) =

s∑
j=1

w j · g ( j ) ·e−2πiξt j

and y,n ∈Rs be the vectors with y( j ) = w j · y(t j ) and n( j ) = w j ·n(t j ). Let:

g̃ = argming∈L2(µ)

[
‖F∗g − (y+n)‖2

2 +ε‖g‖2
µ

]
(3.15)

With probability ≥ 1−δ:

‖F∗
µ g̃ − (y +n)‖2

T +ε‖g̃‖2
µ ≤ 3 min

g∈L2(µ)

[
‖F∗

µ g − (y +n)‖2
T +ε‖g‖2

µ

]
. (3.16)

15If ε> ∥∥Kµ
∥∥

op then (3.10) is solved to a constant approximation factor by the trivial solution g = 0.
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A generalized version of this result is proven in Appendix B.2, which holds even when g̃ is only

an approximate minimizer of (3.15).

Theorem 3.4.2 shows that g̃ obtained from solving the discretized regression problem provides

an approximate solution to (3.10) and by Claim 3.4.1, ỹ = F∗
µ g̃ solves Problem 3.2.1 with

parameterΘ(ε). If we have τ̃µ,ε(t ) = τµ,ε(t ), Theorem 3.4.2 combined with Claim 3.4.1 shows

that Problem 3.2.1 with parameterΘ(ε) can be solved with sample complexity O
(
sµ,ε · log sµ,ε

)
,

since by (3.12),
∫ T

0 τµ,ε(t )d t = sµ,ε. Note that, by simply decreasing the regularization parame-

ter in (3.10) by a constant factor, we can solve Problem 3.2.1 with parameter ε. The asymptotic

complexity is identical since, by (3.14), for any c ≤ 1, any t ∈ [0,T ], τµ,cε(t ) ≤ 1
c τµ,ε(t ) and so:

sµ,cε ≤ 1

c
sµ,ε. (3.17)

This proves the sample complexity result of Theorem 3.2.1. However, since it is not clear

that sampling according to τµ,ε(t) can be done efficiently (or at all), it does not yet give an

algorithm yielding this complexity.16 This issue will be addressed in Section 3.5, where we

prove Theorem 3.2.2.

We prove Theorem 3.4.2 in Appendix B.2. We show that leverage function sampling satisfies,

with good probability, an affine embedding guarantee: that ‖F∗g − (y+n)‖2
2 +ε‖g‖2

µ closely

approximates ‖F∗
µ g − (y +n)‖2

T + ε‖g‖2
µ for all g ∈ L2(µ). Thus, a (near) optimal solution to

the discretized problem, ming∈L2(µ)

[
‖F∗g − (y+n)‖2

2 +ε‖g‖2
µ

]
, gives a near optimal solution

to the original problem, ming∈L2(µ)

[
‖F∗

µ g − (y +n)‖2
T +ε‖g‖2

µ

]
. Our proof of the affine em-

bedding property is analogous to existing proofs for finite dimensional matrices (Clarkson

and Woodruff, 2017; Avron et al., 2017b).

3.4.2 Efficient solution of the discretized problem

Given an upper bound on the ridge leverage function τ̃µ,ε(t ) ≥ τµ,ε(t ), we can apply Theorem

3.4.2 to approximately solve the ridge regression problem of (3.10) and therefore Problem 3.2.1

by Claim 3.4.1. In Section 3.5 we show how to obtain such an upper bound for any µ using a

universal distribution.

First, however, we demonstrate how to apply Theorem 3.4.2 algorithmically. Specifically,

we show how to solve the randomly discretized problem of (3.15) efficiently. Combined

with Theorem 3.4.2 and our bound on τµ,ε(t) given in Section 3.5, this yields a randomized

algorithm (Algorithm 13) for Problem 3.2.1. The formal analysis of Algorithm 13 is given in

Theorem 3.4.3.

Theorem 3.4.3 (Efficient signal reconstruction given leverage function upper bounds). Assume

16We conjecture that the existential sample complexity can in fact be upper bounded by O(sµ,ε) by adapting
deterministic sampling methods for finite matrices to the operator setting (Cohen et al., 2016a), like we do in
Lemma B.2.3.
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Algorithm 13 Time Point Sampling and Signal Reconstruction

input: Probability measure µ(ξ), ε,δ > 0, time bound T , and function y : [0,T ] → R. Ridge
leverage function upper bound τ̃µ,ε(t ) ≥ τµ,ε(t ) with s̃µ,ε =

∫ T
0 τ̃µ,ε(t )d t .

output: t1, . . . , ts ∈ [0,T ] and z ∈Cs .

1: Let s = c · s̃µ,ε ·
(
log s̃µ,ε+ 1

δ

)
for a sufficiently large constant c.

2: Independently sample t1, . . . , ts ∈ [0,T ] with probability proportional to τ̃µ,ε(t ) and set the

weight wi :=
√

1
sT · s̃µ,ε

τ̃µ,ε(ti ) .

3: Let K ∈Cs×s be the matrix with K(i , j ) = wi w j ·kµ(ti , t j ).
4: Let ȳ ∈Cs be the vector with ȳ(i ) = wi · [y(ti )+n(ti )].
5: Compute z̄ := (K+εI)−1ȳ.
6: return t1, . . . , ts ∈ [0,T ] and z ∈Cs with z(i ) = z̄(i ) ·wi .

Algorithm 14 Evaluation of Reconstructed Signal

input: Probability measure µ(ξ), t1, . . . , ts ∈ [0,T ], z ∈Cs , and evaluation point t ∈ [0,T ].
output: Reconstructed function value ỹ(t ).

1: For i ∈ {1, . . . , s}, compute kµ(ti , t ) = ∫
ξ∈R e−2πi (ti−t )dµ(ξ).

2: return ỹ(t ) =∑s
i=1 z(i ) ·kµ(ti , t ).

that ε≤ ∥∥Kµ

∥∥
op.17 Algorithm 13 returns t1, . . . , ts ∈ [0,T ] and z ∈Cs such that ỹ(t ) =∑s

i=1 z(i ) ·
kµ(ti , t ) (as computed in Algorithm 14) satisfies with probability ≥ 1−δ:∥∥ỹ − y

∥∥2
T ≤ 6ε‖x‖2

µ+8‖n‖2
T .

Suppose we can sample t ∈ [0,T ] with probability proportional to τ̃µ,ε(t ) in time W and compute

the kernel function kµ(t1, t2) = ∫
ξ∈R e−2πi (t1−t2)dµ(ξ) in time Z . Algorithm 13 queries y +n at s

points and runs in O
(
s ·W + s2 ·Z + sω

)
time18 where s =O

(
s̃µ,ε ·

(
log s̃µ,ε+1/δ

))
. Algorithm 14

evaluates ỹ(t ) in O(s ·Z ) time for any t .

Proof. In Step 2 of Algorithm 13, t1, . . . , ts are sampled according to τ̃µ,ε(t), which upper

bounds τµ,ε(t ). We can thus apply Theorem 3.4.2. If the constant c in Step 1 is set large enough,

with probability ≥ 1−δ, letting F,y, and n be as defined in that theorem, (3.16) holds for

g̃ = argming∈L2(µ)

[
‖F∗g − (y+n)‖2

2 +ε‖g‖2
µ

]
.

Therefore, letting ỹ
def= F∗

µ g̃ and applying Claim 3.4.1, with probability ≥ 1−δ,

∥∥ỹ − y
∥∥2

T ≤ 6ε‖x‖2
µ+8‖n‖2

T . (3.18)

Furthermore, the minimizer g̃ is indeed unique and can be written as (see Lemma B.2.1 in

17As discussed for Theorem 3.4.2, if ε> ∥∥Kµ
∥∥

op, Problem 3.2.1 is trivially solved by ỹ = 0.
18Here ω< 2.373 is the exponent of fast matrix multiplication. sω is the theoretically fastest runtime required to

invert a dense s × s matrix. We note that the sω term may be thought of as s3 in practice, and potentially could be
accelerated using a variety of techniques for fast (regularized) linear system solvers.
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Appendix B.2):

g̃ = F(K+εI)−1(y+n) = F(K+εI)−1ȳ

where K = F∗F is as defined in Step 3 of Algorithm 13 and ȳ = y+n is formed in Step 4. If we let

z̄ = (K+εI)−1ȳ and let z have z(i ) = z̄(i ) ·wi as in Steps 5 and 6, we can see that:

ỹ =F∗
µ g̃ =

s∑
i=1

z̄(i ) ·wi ·kµ(ti , t )

=
s∑

i=1
z(i ) ·kµ(ti , t ),

giving the expression returned in Algorithm 14. Combined with (3.18), this completes the

accuracy bound of the theorem. The runtime and sample complexity bounds follow from

observing that:

• s ·W time is required to sample t1, . . . , ts in Step 2.

• s2 ·Z time is required to form K in Step 3.

• s queries to y +n are required to form ȳ in Step 4.

• O(sω) time is required to compute z̄ := (K+εI)−1ȳ in Step 5. This runtime could poten-

tially be improved with a variety of fast system solvers. We take sω as a simple upper

bound.

• O(s ·Z ) time is required to compute k(t1, t ), . . . ,k(ts , t ) to evaluate ỹ(t ) in Algorithm 14.

This completes the proof of Theorem 3.4.3.

Remark: As discussed, in Section 3.5 we will give a ridge leverage function upper bound that

can be sampled from in W =O(1) time and closely bounds the true leverage function for any

µ, giving s̃µ,ε = O
(
sµ,ε · log sµ,ε

)
. Using this upper bound to sample time domain points, our

sample complexity s is thus within a O(log sµ,ε) factor of the best possible using Theorem 3.4.2,

which we would achieve if sampling using the true ridge leverage function.

In Appendix B.3 we prove a tighter leverage function bound than the one in Section 3.5 for

bandlimited signals, removing the logarithmic factor in this case. It is not hard to see that for

general µ we can also achieve optimal sample complexity by further subsampling t1, . . . , ts

using the ridge leverage scores of K1/2. These scores can be computed in Õ(s · s2
µ,ε) time

using known techniques for finite kernel matrices (Musco and Musco, 2017). Subsampling

O
(

sµ,ε log sµ,ε

∆2

)
time domain points according to these scores lets us approximately solve the

discretized problem of (3.15) to error (1+∆).

Applying the more general version of Theorem 3.4.2 stated in Appendix B.2, this yields an

approximate solution to (3.10) and thus to Problem 3.2.1. For constant δ, we need just
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3.5. A Near-optimal Spectrum Blind Sampling Distribution

O
(
sµ,ε · log sµ,ε

)
time samples to to solve the subsampled regression problem, matching the

best possible sample complexity of Theorem 3.4.2. By the lower bound given in Section 3.6,

Theorem 3.6.2, this complexity is within a O(log sµ,ε) factor of optimal in nearly all settings.

We conjecture that one can in fact achieve within an O(1) factor of the optimal sample com-

plexity by applying deterministic selection methods to F (Cohen et al., 2016a), similar to the

techniques used to prove Lemma B.2.3.

3.5 A Near-optimal Spectrum Blind Sampling Distribution

In the previous section, we showed how to solve Problem 3.2.1 given the ability to sample time

points according to the ridge leverage function τµ,ε. In general, this function depends strongly

on T , µ, and ε, and it is not clear if it can be computed or sampled from directly.

Nevertheless, in this section we show that it is possible to efficiently obtain samples from a

function that very closely approximates the true leverage function for any constraint measure

µ. In particular we describe a set of closed form functions τ̃α(t ), each parameterized by α> 0.

τ̃α upper bounds the leverage function τµ,ε for any µ and ε, as long as the statistical dimension

sµ,ε =O(α). Our upper bound satisfies∫ T

0
τ̃α(t )d t =O

(
sµ,ε · log sµ,ε

)
,

which means it can be used in place of the true ridge leverage function to give near optimal

sample complexity via Theorem 3.4.2 and 3.4.3. This result is proven formally in Theorem

3.5.6, which as a consequence immediately yields our main technical result, Theorem 3.2.2.

The majority of this section is devoted to building tools necessary for proving Theorem 3.5.6.

3.5.1 Uniform leverage bound via Fourier sparsification

We seek a simple closed form function that upper bounds the leverage function τµ,ε. Ultimately,

we want this upper bound to be very tight, but a natural first question is whether it should

exists at all. Is it possible to prove any finite upper bound on τµ,ε without using specific

knowledge of µ?

We answer this first question by showing that τµ,ε can be upper bounded by a constant function.

Specifically, we show that for t ∈ [0,T ], τµ,ε(t ) ≤C for C = poly(sµ,ε). This upper bound depends

on the statistical dimension, but importantly, it does not depend on µ. Formally we show:

Theorem 3.5.1 (Uniform leverage function bound). For all t ∈ [0,T ] and ε≤ 119

τµ,ε(t ) ≤ 241(sµ,ε)5 log3(40sµ,ε)

T
.

19If ε> 1 = tr(Kµ), Problem 3.2.1 is trivially solved by returning ỹ = 0.
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While Theorem 3.5.1 appears to give a relatively weak bound, proving this statement is a key

technical challenge. Ultimately, it is used in Section 3.5.3 as one of two main ingredients in

proving the much tighter leverage function bound that yields Theorem 3.5.6 and Theorem

3.2.2.

Towards a proof of Theorem 3.5.1, we consider the operator Fµ defined in Section 3.3. Since

Fµ has statistical dimension sµ,ε, Kµ =F∗
µFµ can have at most 2sµ,ε eigenvalues ≥ ε:

sµ,ε =
∞∑

i=1

λi (Kµ)

λi (Kµ)+ε ≥
∑

i :λi (Kµ)≥ε

λi (Kµ)

λi (Kµ)+ε ≥
∣∣i :λi (Kµ) ≥ ε∣∣

2
. (3.19)

Thus, if we project Fµ onto the span of Kµ’s top 2sµ,ε eigenfunctions (when µ is uniform on

an interval these are the prolate spherical wave functions of Slepian and Pollak (1961)) we will

approximate Kµ up to its small eigenvalues. The total mass of these eigenvalues is bounded

by:

∑
i :λi (Kµ)≤ε

λi (Kµ) ≤ 2ε · ∑
i :λi (Kµ)≤ε

λi (Kµ)

λi (Kµ)+ε ≤ 2ε · sµ,ε.

Alternatively, instead of projecting onto the span of the eigenfunctions, we can approximate

Kµ nearly optimally by projecting Fµ onto the span of a subset of O(sµ,ε) of its “rows" – i.e.

frequencies in the support of µ. For finite linear operators, is well known that such a subset

exists: the problem of finding these subsets has been studied extensively in the literature on

randomized low-rank matrix approximation under the name column subset selection (Sarlos,

2006; Boutsidis et al., 2009; Deshpande and Rademacher, 2010). In Appendix B.2 we show that

an analogous result extends to the continuous operator Fµ:

Theorem 3.5.2 (Frequency subset selection). For some s ≤ d36 · sµ,εe there exists a set of distinct

frequencies ξ1, . . . ,ξs ∈R such that, if Cs : L2(T ) →Cs and Z : L2(µ) →Cs are defined by:

[Cs g ]( j ) = 1

T

∫ T

0
g (t )e−2πiξ j t d t Z = (Cs C∗

s )−1CsF
∗
µ , 20 (3.20)

then

tr
(
Kµ−C∗

s ZZ∗Cs
)≤ 4ε · sµ,ε. (3.21)

Note that, if ϕt ∈ L2(µ) is defined as ϕt (ξ)
def= e−2πi tξ and φt ∈Cs is defined as φt ( j )

def= ϕt (ξ j ),

then we have:

tr
(
Kµ−C∗

s ZZ∗Cs
)= 1

T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t .

20The fact that ξ1, . . . ,ξs are distinct ensures that (Cs C∗
s )−1 exists.
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Leverage function bound proof sketch. With Theorem 3.5.2 in place, we explain how to use

this result to prove Theorem 3.5.1, i.e., to establish a universal bound on the leverage function

of Fµ. For the sake of exposition, we use the term “row” of an operator A : L2(µ) → L2(T ) to

refer to the corresponding operator restricted to some time t . We use the term “column” of

an operator as the row of the adjoint operator A ∗ : L2(T ) → L2(µ), i.e., the adjoint operator

restricted to some frequency ξ.

By Theorem 3.5.2, C∗
s Z : L2(µ) → L2(T ) (the projection of F∗

µ onto the range of Cs) closely

approximates the operator F∗
µ yet has columns spanned by just O(sµ,ε) frequencies: ξ1, . . . ,ξs .

Thus, for any α ∈ L2(µ), C∗
s Zα ∈ L2(T ) is just a Fourier O(sµ,ε)-sparse function. Using the

maximization characterization of Definition 3.4.1, we can thus bound the time domain ridge

leverage function of C∗
s Z by appealing to known smoothness bounds for Fourier sparse func-

tions (Chen et al., 2016; Chen and Price, 2019), even for ε= 0. When ε= 0, the ridge leverage

function is known as the standard leverage function in the randomized numerical linear

algebra literature, and we will refer to them as such.

We can use a similar argument to bound the row norms of the residual operator
[
F∗
µ −C∗

s Z
]

.

The columns of this residual operator are each spanned by O(sµ,ε) frequencies, and so are

again Fourier sparse functions whose smoothness we can bound. This smoothness ensures

that no row can have norm significantly higher than average.

Finally, we note that the time domain ridge leverage function of F∗
µ is approximated to within

a constant factor by the sum of the standard row leverage function of C∗
s Z along with row

norms of F∗
µ −C∗

s Z. This gives us a bound on F∗
µ ’s ridge leverage function. We prove this

formally below:

Theorem 3.5.3 (Ridge leverage function approximation). Let Cs and Z be the operators guar-

anteed to exist by Theorem 3.5.2. Let `(t ) be the standard leverage function of t in C∗
s Z:21

`(t )
def= max

{α∈L2(µ):‖α‖µ>0}

1

T
· |[C∗

s Zα](t )|2∥∥C∗
s Zα

∥∥2
T

.

Let r (t ) be the residual:

r (t )
def= 1

T
·∥∥ϕt −Z∗φt

∥∥2
µ ,

where ϕt and φt are as defined in Theorem 3.5.2. Then for all t :

τµ,ε(t ) ≤ 2 ·
(
`(t )+ r (t )

ε

)

Proof. For any α ∈ L2(µ) we can write [F∗
µα](t) = 〈ϕt ,α〉µ and [C∗

s Zα](t) = 〈φt ,Zα〉Cs =
21Analogously to how [F∗

µα](t ) is used in Definition 3.4.1, while L2(T ) is formally a space of equivalence classes
of functions, here we use C∗

s Zα to denote the specific representative of the equivalence class C∗
s Zα ∈ L2(T ) given

by [C∗
s Zα](t ) =∑s

j=1[Zα]( j ) ·e2πiξ j t = 〈φt ,Zα〉Cs . In this way, we can consider the pointwise value [C∗
s Zα](t ).
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〈Z∗φt ,α〉µ. By the maximization characterization of the ridge leverage function in Definition

3.4.1,

τµ,ε(t ) = 1

T
· max

{α∈L2(µ):‖α‖µ>0}

〈ϕt ,α〉2
µ∥∥F∗

µα
∥∥2

T
+ε‖α‖2

µ

≤ 2

T
· max

{α∈L2(µ):‖α‖µ>0}

( 〈Z∗φt ,α〉2
µ∥∥F∗

µα
∥∥2

T

+
〈ϕt −Z∗φt ,α〉2

µ

ε‖α‖2
µ

)

≤ 2

T
· max

{α∈L2(µ):‖α‖µ>0}

 〈Z∗φt ,α〉2
µ∥∥C∗

s Zα
∥∥2

T

+
∥∥ϕt −Z∗φt

∥∥2
µ

ε


= 2 ·

(
`(t )+ r (t )

ε

)
where the second to last line follows from observing that due to Cauchy-Schwarz,

〈ϕt −Z∗φt ,α〉2
µ ≤ ‖α‖2

µ ·
∥∥ϕt −Z∗φt

∥∥2
µ ,

and that, letting P s = C∗
s (Cs C∗

s )−1Cs :∥∥∥F∗
µα

∥∥∥2

T
= 〈α,FµF∗

µα〉µ
≥ 〈α,FµP sF

∗
µα〉µ

= 〈α,Z∗Cs C∗
s Zα〉µ =

∥∥C∗
s Zα

∥∥2
T .

In the above, the inequality is due to the fact that P s is an orthogonal projection, so P s ¹Iµ.

This completes the proof.

With Theorem 3.5.3 in place, we now bound τ̄µ,ε(t) = 2
(
`(t )+ r (t )

ε

)
, which yields a uniform

bound on the true ridge leverage scores.

Lemma 3.5.1. Let `(t ),r (t ) be as defined in Theorem 3.5.3 and τ̄µ,ε(t )
def= 2 ·

(
`(t )+ r (t )

ε

)
. For all

t ∈ [0,T ]:

τ̄µ,ε(t ) ≤ 15400(36sµ,ε+2)5 log3(36sµ,ε+2)

T
.

Combining Lemma 3.5.1 with Theorem 3.5.3 yields Theorem 3.5.1. We just simplify the

constants by noting that for ε≤ 1, sµ,ε ≥ tr(Kµ)
2 = 1

2 and so 36sµ,ε+2 ≤ 40sµ,ε.

Proof of Lemma 3.5.1. We separately bound the leverage score `(t ) and residual r (t ) compo-

nents of τ̄µ,ε(t ) using a similar argument based on the smoothness of sparse Fourier functions

for both. Specifically, for both bounds we employ the following smoothness bound of (Chen

et al., 2016).
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Lemma 3.5.2 (Follows from Lemma 5.1 of Chen et al. (2016)). For any f (t ) =∑k
j=1 v j e2πiξ j t ,

max
x∈[0,T ]

| f (x)|2∥∥ f
∥∥2

T

≤ 1540 ·k4 log3 k.

Proof. Lemma 5.1 of Chen et al. (2016), gives the bound without an explicit constant. It is not

hard to check that their proof gives the constant of 1540 stated above.

Bounding the leverage scores `(t ) of C∗
s Z.

For every α ∈ L2(µ), C∗
s Zα is a Fourier s = O(sµ,ε)-sparse function. Specifically, we have[

C∗
s Zα

]
(t) = ∑s

j=1 [Zα] ( j ) · e2πiξ j t , for frequencies ξ1, . . . ,ξs ∈ R given by Theorem 3.5.2. We

can thus directly apply Lemma 3.5.2 giving for any t ∈ [0,T ]:

`(t )
def= max

{α∈L2(µ):‖α‖µ>0}

1

T
· |[C∗

s Zα](t )|2∥∥C∗
s Zα

∥∥2
T

≤ max
{α∈L2(µ):‖α‖µ>0}

[
1

T
· max

t ′∈[0,T ]

|[C∗
s Zα](t ′)|2∥∥C∗

s Zα
∥∥2

T

]

≤ 1540

T
· s4 log3 s (3.22)

Bounding the residuals r (t ).

We start by some intuition. To bound the squared row norms of the residual F∗
µ −C∗

s Z we

show that each “column” of this residual is an s +1 = O(sµ,ε) sparse Fourier function. Thus,

applying Lemma 3.5.2, no entry’s squared value can significantly exceed the average squared

value in the column. This lets us show that no squared row norm r (t ) can significantly exceed

the average squared row norm, which is bounded by Theorem 3.5.2.

Concretely, define ϑξ ∈ L2(T ) by ϑξ(t)
def= e2πi tξ, and notice that given g ∈ L2(T ) the function

ξ 7→ 〈ϑξ, g 〉T is equal to Fµg in the L2(T ) sense (i.e., is a member of the equivalence class Fµg ).

For ξ ∈R, let zξ ∈Cs be given by zξ( j ) = 〈ϑξ,C∗
s (Cs C∗

s )−1e j 〉∗T where e j is the j th standard basis

vector in Cs . The function ξ 7→ 〈zξ,φt 〉 =∑s
j=1 z∗

ξ
( j )e−2πiξ j t is equal in the L2(µ) sense to Z∗φt .

Let us define:

rξ(t ) = e−2πiξt −
s∑

j=1
z∗ξ ( j )e−2πiξ j t .

For a fixed t , consider the function ξ 7→ rξ(t ). We have rξ(t ) =ϕt −Z∗φt . Thus, we can write

r (t ) = 1

T

∥∥ϕt −Z∗φt
∥∥2
µ =

1

T

∫
ξ∈R

|rξ(t )|2 dµ(ξ). (3.23)

Further, for a fixed ξ, if we consider the function t 7→ rξ(t ), which we denote by rξ(·), we notice

that it is a s +1 = O(sµ,ε) sparse Fourier function, so applying Lemma 3.5.2 we have for any
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ξ ∈R and t ∈ [0,T ]:

|rξ(t )|2∥∥rξ(·)∥∥2
T

≤ 1540(s +1)4 log3(s +1). (3.24)

Combining (3.24) with (3.23) we can thus bound for any t ∈ [0,T ]:

r (t ) ≤ 1540(s +1)4 log3(s +1) · 1

T

∫
ξ∈R

∥∥rξ(·)∥∥2
T dµ(ξ)

= 1540(s +1)4 log3(s +1) · 1

T 2

∫
w∈[0,T ]

∫
ξ∈R

|rξ(w)|2 dµ(ξ)d w

= 1540(s +1)4 log3(s +1) · 1

T 2

∫
w∈[0,T ]

∥∥ϕw −Z∗φw
∥∥2
µ d w. (3.25)

By Theorem 3.5.2 we have 1
T

∫
w∈[0,T ]

∥∥ϕw −Z∗φw
∥∥2
µ d w ≤ 4ε · sµ,ε. Plugging into (3.25) and

using that we can choose s ≤ 36 · sµ,ε+1, for all t ∈ [0,T ]:

r (t ) ≤ ε ·6160(36sµ,ε+2)5 log3(36sµ,ε+2)

T
. (3.26)

Combining (3.22) and (3.26) completes the proof of Lemma 3.5.1:

τ̄µ,ε(t )
def= 2 ·

(
`(t )+ r (t )

ε

)
≤ 15400(36sµ,ε+2)5 log3(36sµ,ε+2)

T
.

Theorem 3.5.1 gives a universal uniform bound on the ridge leverage scores corresponding

to measure µ in terms of sµ,ε. If we directly sample time points according to the uniform

distribution over [0,T ], this theorem shows that poly(sµ,ε) samples and poly(sµ,ε) runtime

suffice to apply Theorem 3.4.3 and solve Problem 3.2.1 with good probability. This is already

a surprising result, showing that the simplest sampling scheme, uniform random sampling,

can give bounds in terms of the optimal complexity sµ,ε for any µ. Existing methods with

similar complexity, such as those that interpolate bandlimited signals using prolate spheroidal

wave functions (Rokhlin et al., 2001) require nonuniform sampling. Methods that use uni-

form sampling, such as truncated Whittaker-Shannon, have sample complexity depending

polynomially rather than logarithmically on the desired error ε.

3.5.2 Gap-based leverage score bound

Our final result gives a much tighter bound on the ridge leverage scores than the uniform

bound of Theorem 3.5.1. The key idea is to show that the bound is loose for t bounded away

from the edges of [0,T ]. Specifically we have:
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Theorem 3.5.4 (Gap-Based Leverage Score Bound). For all t ,

τµ,ε(t ) ≤ sµ,ε

min(t ,T − t )
.

Proof. Consider t ∈ [0,T /2]. We will show that τµ,ε(t) ≤ sµ,ε

t . A symmetric proof will hold for

t ∈ [T /2,T ], giving the theorem. We define an auxiliary operator: Fµ,t : L2(T ) → L2(µ) which is

given by restricting the integration in Fµ to [0, t ]. Specifically, for f ∈ L2(T ) we have:

[
Fµ,t f

]
(ξ) = 1

T

∫ t

0
f (s)e−2πi sξd s. (3.27)

We can see that [F∗
µ,t g ](s) = ∫

R g (ξ)e2πi sξdµ(ξ) for s ∈ [0, t ] and [F∗
µ,t g ](s) = 0 for s ∈ (t ,T ]. We

will use the leverage score of some s ∈ [0, t ] in the restricted operator Fµ,t to upper bound

those of t in Fµ. We start by defining these scores analogously to Definition 3.4.1 for Fµ.

Definition 3.5.1 (Restricted ridge leverage scores). For probability measure µ on R, time

length T , t ∈ [0,T ] and ε≥ 0, define the ε-ridge leverage score of s ∈ [0, t ] in Fµ,t as:

τµ,ε,t (s) = 1

T
· max

{α∈L2(µ):‖α‖µ>0}

|[Fµ,tα](s)|2∥∥∥F∗
µ,tα

∥∥∥2

T
+ε‖α‖2

µ

.

We have the following leverage score properties, analogous to those given for Fµ in Theorem

3.4.1:

Theorem 3.5.5 (Restricted leverage score properties). Let τµ,ε,t (s) be as in Definition 3.5.1.

• The leverage scores integrate to the statistical dimension:∫ t

0
τµ,ε,t (s)d s = sµ,ε,t

def= tr
(
F∗
µ,t Fµ,t (F∗

µ,t Fµ,t +εIT )−1
)

. (3.28)

• Inner Product Characterization: Letting ϕs ∈ L2(µ) have ϕs(ξ) = e−2πi sξ for s ∈ [0, t ],

τµ,ε,t (s) = 1

T
·
〈
ϕs , (Fµ,t F

∗
µ,t +εIµ)−1ϕs

〉
µ

. (3.29)

• Minimization Characterization:

τµ,ε,t (s) = 1

T
· min
β∈L2(T )

∥∥Fµ,tβ−ϕs
∥∥2
µ

ε
+∥∥β∥∥2

T . (3.30)

We first show that the restricted leverage scores of Definition 3.5.1 are not too large on average.
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Claim 3.5.1 (Restricted statistical dimension bound).∫ T

0
τµ,ε,t (s)d s ≤ sµ,ε. (3.31)

Proof. Via (3.28) we have
∫ t

0 τµ,ε,t (s)d s = sµ,ε,t which we can write as:

sµ,ε,t = tr
(
F∗
µ,t Fµ,t (F∗

µ,t Fµ,t +εIT )−1
)
= tr

(
Fµ,t F

∗
µ,t (Fµ,t F

∗
µ,t +εIµ)−1

)
.

By Claim B.1.10, Fµ,t F
∗
µ,t ¹FµF∗

µ =Gµ. Since Fµ,t F
∗
µ,t (Fµ,t F

∗
µ,t+εIµ)−1 =Iµ−ε(Fµ,t F

∗
µ,t+

εIµ)−1 and Gµ(Gµ+εIµ)−1 =Iµ−ε(Gµ+εIµ)−1. Therefore, by Claim B.1.2 and since the trace

is monotone for trace-class operators,

sµ,ε,t = tr
(
Fµ,t F

∗
µ,t (Fµ,t F

∗
µ,t +εIµ)−1

)
≤ tr

(
Gµ(Gµ+εIµ)−1)= sµ,ε

which gives the claim.

From Claim 3.5.1 we immediately have:

Claim 3.5.2. There exists s? ∈ [0, t ] with τµ,ε,t (s?) ≤ sµ,ε

t .

Proof. Assume for the sake of contradiction that τµ,ε,t (s) > sµ,ε

t for all s ∈ [0, t ]. Then by (3.28),∫ t

0
τµ,ε,t (s)d s > t · sµ,ε

t
= sµ,ε.

This contradicts Claim 3.5.1, giving the claim.

We now show that the leverage score of s? in Fµ,t upper bounds the leverage score of t in

Fµ, completing the proof of Theorem 3.5.4. We apply the minimization characterization of

Theorem 3.5.5, equation (3.30), to prove that by simply shifting an optimal solution for s? we

can show the existence of a good solution for t , upper bound its leverage score by that of s?

and give τµ,ε(t ) ≤ τµ,ε,t (s?) ≤ sµ,ε

t by Claim 3.5.2.

Formally, by Claim 3.5.2 and (3.30), there is some β? ∈ L2(T ) achieving:

1

T
·
∥∥Fµ,tβ

?−ϕs?
∥∥2
µ

ε
+∥∥β?∥∥2

T = τµ,ε,t (s?) ≤ sµ,ε

t
. (3.32)

We can assume without loss of generality thatβ?(s) = 0 for s ∉ [0, t ], since Fµ,tβ
? is unchanged

if we set β?(s) = 0 on this range and since doing this cannot increase
∥∥β∥∥2

T . Now, let β̄ ∈ L2(T )

be given by β̄(s) =β?(s − (t − s?)). That is, β̄ is just β? shifted from the range [0, t ] to the range
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[t − s?,2t − s?]. Note that since we are assuming t ≤ T /2, [t − s?,2t − s?] ⊂ [0,T ]. For any ξ:

[Fµβ̄](ξ) = 1

T

∫ T

0
β̄(s)e−2πi sξd s

= 1

T

∫ 2t−s?

t−s?
β?(s − (t − s?))e−2πi sξd s

= 1

T

∫ t

0
β?(s)e−2πi (s+(t−s?))ξd s

= [Fµ,tβ
?](ξ) ·e−2πi (t−s?)ξ. (3.33)

Now,

ϕt (ξ) = e−2πi tξ = e−2πi (t−s?)ξ ·ϕs?(ξ).

Combined with (3.33) this gives:

∥∥Fµβ̄−ϕt
∥∥2
µ
=

∫
ξ

∣∣[Fµβ̄](ξ)−ϕt (ξ)
∣∣2

dµ(ξ) =
∫
ξ

∣∣∣([Fµ,tβ
?](ξ)−ϕs?(ξ)

) ·e−2πi (t−s?)ξ
∣∣∣2

dµ(ξ)

=
∫
ξ

∣∣[Fµ,tβ
?](ξ)−ϕs?(ξ)

∣∣2
dµ(ξ)

= ∥∥Fµ,tβ
?−ϕs?

∥∥2
µ

. (3.34)

Finally, noting that
∥∥β̄∥∥

T = ∥∥β?∥∥
T and applying the minimization characterization of Theorem

3.4.1, the bound in (3.34) along with (3.32) gives:

τµ,ε(t ) ≤ 1

T
·
∥∥Fµβ̄−ϕt

∥∥2
µ

ε
+∥∥β̄∥∥2

T =
∥∥Fµ,tβ

?−ϕs?
∥∥2
µ

ε
+∥∥β?∥∥2

T ≤ sµ,ε

t
,

which completes the theorem.

3.5.3 Nearly tight leverage score bound

Combining Theorems 3.5.1 and 3.5.4 gives our tight, spectrum blind leverage score bound.

Theorem 3.5.6 (Spectrum Blind Leverage Score Bound). For any α,T ≥ 0 let τ̃α(t ) be given by:

τ̃α(t ) =
 α

256·min(t ,T−t ) for t ∈ [T /α5,T (1−1/α5)]
α6

T for t ∈ [0,T /α5]∪ [T (1−1/α5),T ].

For any probability measure µ, T ≥ 0, 0 ≤ ε≤ 1 and t ∈ [0,T ], if α≥ 256 · sµ,ε:

τµ,ε(t ) ≤ τ̃α(t ) and s̃α
def=

∫ T

0
τ̃α(t )d t ≤ α · logα

2
.

A visualization of τ̃α is given in Figure 3.3.
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Proof. The fact that τµ,ε(t ) ≤ τ̃α(t ) follows from Theorems 3.5.1 and 3.5.4:

• For t ∈ [T /α5,T (1−1/α5)], by Theorem 3.5.4 if α≥ 256 · sµ,ε we have

τ̃α(t ) = α

256 ·min(t ,T − t )
≥ τµ,ε(t ).

• For t ∈ [0,T /α5]∪ [T (1−1/α5),T ], by Theorem 3.5.1 we can bound,

τµ,ε(t ) ≤
241s5

µ,ε log3(40sµ,ε)

T
≤

247s6
µ,ε

T
≤ α6

T

for α≥ 256 · sµ,ε. Note that the second inequality uses that log3(40x) ≤ 64x for any x.

The integral of the approximate scores s̃α is bounded as:∫ T

0
τ̃α(t )d t =

∫ T (1−1/α5)

T /α5

α

256 ·min(t ,T − t )
d t +2

∫ T /α5

0

α6

T
d t

= 2

256

∫ T /2

T /α5

α

t
d t +2α

= α

128
· [log(T /2)− log(T /α5)

]+2α (3.35)

≤ 5α logα

128
+2α≤ α logα

2
.

where the last inequality follows since for ε≤ 1, sµ,ε ≥ 1/2 and so log(α) ≥ 9/2.

3.5.4 Putting it all together: generic signal reconstruction

Finally, we combine the leverage score bound of Theorem 3.5.6 with Theorem 3.4.3 to give our

main algorithmic result, Theorem 3.2.3 (and as a corollary, Theorem 3.2.2). We state the full

theorem below:

Theorem 3.2.3 (Main result, algorithmic complexity). Consider any measure µ, for which we

can compute the kernel kµ(t1, t2) = ∫
ξ∈R e−2πi (t1−t2)dµ(ξ) for any t1, t2 ∈ [0,T ] in time Z .

Let τ̃α(t ) be as defined in Theorem 3.5.6. For any ε≤ ∥∥Kµ

∥∥
op and T > 0, let τ̃µ,ε(t ) = τ̃α(t ) forα=

β·sµ,ε withβ≥ 256. Algorithm 13 applied with τ̃µ,ε(t ) and failure probabilityδ returns t1, . . . , ts ∈
[0,T ] and z ∈Cs such that ỹ(t ) =∑s

i=1 z(i ) ·kµ(ti , t ) solves Problem 3.2.1 with parameter 6ε and

probability ≥ 1−δ. That is, with probability of at least 1−δ:∥∥ỹ − y
∥∥2

T ≤ 6ε‖x‖2
µ+8‖n‖2

T .

The algorithm queries y +n at s points and runs in O
(
s2 ·Z + sω

)
time, where

s =O
(
β · sµ,ε log(β · sµ,ε) ·

[
log(β · sµ,ε)+1/δ

])= Õ

(
β · sµ,ε

δ

)
.
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The output ỹ(t ) can be evaluated in O(s ·Z ) time at any t using Algorithm 14.

If we want to solve Problem 3.2.1 with parameter ε, it suffices to apply Theorem 3.2.3 with

parameter ε′ = ε/6. The asymptotic complexity will be identical since, by (3.17), sµ,ε/6 ≤ 6sµ,ε.

Proof. The theorem follows directly from Theorem 3.4.3, along with Theorem 3.5.6 which

shows that, for α=β · sµ,ε with β≥ 256 and τ̃µ,ε(t ) = τ̃α(t ) we have:

1. τ̃µ,ε(t ) ≥ τµ,ε(t ) for all t ∈ [0,T ].

2. s̃µ,ε =
∫ T

0 τ̃µ,ε(t )d t =O
(
β · sµ,ε log(β · sµ,ε)

)
.

The runtime bound follows after noting that we can sample according to τα in W =O(1) time

using inverse transform sampling since it is straightforward to derive an explicit expression

for the CDF and compute the inverse (see (3.35)).

3.6 Lower Bound

We conclude by showing that the statistical dimension sµ,ε tightly characterizes the sample

complexity of solving Problem 3.2.1, under a very mild assumption on µ that holds for all

natural constraints we discuss in this chapter. Thus, Theorem 3.2.1 is nearly tight.

We first define a quantity, nµ,ε that gives a natural lower bound on sµ,ε. For any µ,ε, let

nµ,ε
def=

∞∑
i=1

1[λi (Kµ) ≥ ε]. (3.36)

That is, nµ,ε is the number of eigenvalues of Kµ that are larger than ε. As shown in (3.19), we

always have nµ,ε ≤ 2sµ,ε. We first prove that solving Problem 3.2.1 requiresΩ(nµ,ε) samples. We

then show that, under a very mild constraint on µ (which holds for all µ we consider including

sparse, bandlimited, multiband, Gaussian, and Cauchy-Lorentz), nµ,ε =Ω(sµ,ε). Thus, sµ,ε

gives a tight bound on the query complexity of solving Problem 3.2.1.

Theorem 3.6.1 (Lower bound in terms of eigenvalue count). Consider a measure µ, an error

parameter ε> 0, and any algorithm that solves Problem 3.2.1 with probability ≥ 2/3 for any

function y and makes at most r (possibly adaptive) queries on any input. Then r ≥ nµ,72ε/20.

Proof. We describe a distribution on inputs y on which any deterministic algorithm that takes

r = o(nµ,72ε) samples fails with probability > 1/3. The theorem then follows by Yao’s principle.

Notation: Let v1, . . . , vnµ,72ε ∈ L2(µ) be the eigenfunctions of Gµ corresponding to its top nµ,72ε

eigenvalues. Let Z : L2(µ) → Cnµ,72ε be the operator with vi as its i th row – i.e., [Zg ](i ) =
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〈vi , g 〉µ. Note that Z has orthonormal rows. Let D ∈ Rnµ,72ε×nµ,72ε be a diagonal matrix with

Di i =
√
λi (Kµ). Let U = F∗

µ Z∗D−1. We can see that ZFµF∗
µ Z∗ = ZGµZ∗ = D2 and hence,

U∗U = D−1ZFµF∗
µ Z∗D−1 = I. While not needed for our proof, U :Cnµ,72ε → L2(T ) is an operator

with columns corresponding to all eigenfunctions of Kµ with eigenvalue ≥ 72ε.

Hard Input Distribution: Let c ∈Rnµ,72ε be a random vector with each entry distributed inde-

pendently as a Gaussian: c(i ) ∼N
(
0, 1

nµ,72ε

)
. Let c̄ = D−1c, x = Z∗c̄, and the random input be

y =F∗
µ x. That is, y =F∗

µ Z∗D−1c = Uc is a random linear combination of the top eigenfunc-

tions of Kµ. While, formally, F∗
µ x ∈ L2(T ) is an equivalence class of functions, since our input

model requires that y admits pointwise evaluation, we will abuse notation, letting y denote

the member of this class with y(t ) = 〈ϕt ,Z∗D−1c〉µ = 〈D−1Zϕt ,c〉, where ϕt (ξ) = e−2πi tξ.

We prove that accurately reconstructing y drawn from the hard input distribution yields an

accurate reconstruction of the random vector c. Since c is nµ,72ε dimensional, this recon-

struction requires Ω(nµ,72ε) samples, giving us a lower bound for accurately reconstructing

y .

Claim 3.6.1. For random x distributed as described above, with probability ≥ 5/6, ‖x‖2
µ ≤ 1

12ε .

Proof.

‖x‖2
µ = 〈Z∗c̄,Z∗c̄〉µ = 〈c̄,ZZ∗c̄〉 = ‖c̄‖2

2 .

We then bound ‖c̄‖2
2 ≤ ‖c‖2

2 /λnµ,72ε(Kµ) ≤ ‖c‖2
2

72ε since λnµ,72ε(Kµ) ≥ 72ε by definition. Finally,

note that ‖c‖2
2 is a Chi-squared random variable, with E

[‖c‖2
2

] = 1. So loosely, by Markov’s

inequality, with probability ≥ 5/6, ‖c‖2
2 ≤ 6, which gives the claim.

From Claim 3.6.1 we have:

Claim 3.6.2. Given random input y =F∗
µ x generated as described above, with probability≥ 5/6,

to solve Problem 3.2.1, an algorithm must return a representation of ỹ with
∥∥y − ỹ

∥∥2
T ≤ 1

12 .

Proof. Solving Problem 3.2.1 requires finding a representation of ỹ with
∥∥y − ỹ

∥∥2
T ≤ ε‖x‖2

µ+
C ‖n‖2

T . By Claim 3.6.1 and the fact that for our input ‖n‖2
T = 0, with probability ≥ 5/6 one has

that ε‖x‖2
µ+C ‖n‖2

T ≤ 1
12 , yielding the claim.

We next show that finding a ỹ satisfying the condition of Claim 3.6.2 is at least as hard as

finding an accurate approximation to c.

Claim 3.6.3. For ỹ with
∥∥y − ỹ

∥∥2
T ≤ 1

12 , c̃ = U∗ ỹ satisfies ‖c− c̃‖2
2 ≤ 1

12 .

Proof. Recalling that y = Uc, for c̃ = U∗ ỹ we have:

c̃ = U∗y +U∗(ỹ − y) = U∗Uc+U∗(ỹ − y).
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Recalling that U∗U = I we thus have:

‖c− c̃‖2
2 =

∥∥U∗(ỹ − y)
∥∥2

2

≤ ∥∥ỹ − y
∥∥2

T ≤ 1

12
.

The second to last inequality follows since U∗U = I and UU∗ are finite rank, so are compact

and share the same non-zero eigenvalues. Thus, UU∗ ¹IT (Hunter and Nachtergaele, 2001,

Lemma 8.26). This completes the claim.

Combining Claims 3.6.2 and 3.6.3 we have:

Claim 3.6.4. If a deterministic algorithm solves Problem 3.2.1 with probability ≥ 2/3 over our

random input y = Uc, then with probability ≥ 1/2, letting ỹ be the output of the algorithm,

c̃ = U∗ ỹ satisfies ‖c− c̃‖2
2 ≤ 1

12 .

Proof. If an algorithm solves Problem 3.2.1 probability ≥ 2/3 then by Claim 3.6.2, it returns

ỹ with
∥∥y − ỹ

∥∥2
T ≤ 1

12 with probability ≥ 2/3− 1/6 = 1/2. Thus, by Claim 3.6.3, c̃ satisfies

‖c− c̃‖2
2 ≤ 1

12 with probability ≥ 1/2.

Finally, we complete the proof of Theorem 3.6.1 by arguing that if ỹ is formed using o(nµ,72ε)

queries, then for c̃ = U∗ ỹ , ‖c− c̃‖2
2 > 1

12 with good probability. Thus the bound of Claim 3.6.4

cannot hold and so ỹ cannot be a solution to Problem 3.2.1 with good probability.

Assume for the sake of contradiction that there is a deterministic algorithm solving Problem

3.2.1 with probability ≥ 2/3 over the random input Uc that makes r = nµ,72ε

20 queries on any

input (note that if there exists an algorithm that makes fewer queries on some inputs, we can

always modify it to make exactly
nµ,72ε

20 queries and return the same output.)

As discussed, each query to y is a query to y(t) = 〈D−1Zϕt ,c〉. Consider a deterministic

function Q, that is given input V ∈ Ci×nµ,72ε (for any positive integer i ) and outputs Q(V) ∈
Cnµ,72ε×nµ,72ε such that Q(V) has orthonormal rows with the first i spanning the i rows of V.

For example, Q may run Gram-Schmidt orthogonalization on V fixing its first rank(V) ≤ i

rows and then fill out the remaining nµ,72ε− rank(V) rows using some canonical approach.

Letting D−1Zϕt1 , . . . ,D−1Zϕtr denote the queries made by our algorithm on random input c,

let Qi = Q([D−1Zϕt1 , . . . ,D−1Zϕti ]∗). That is Qi is an orthonormal matrix whose first i rows

span our first i queries. Note that since our algorithm is deterministic, Qi is a deterministic

function of the random input c. We have the following claim:

Claim 3.6.5. Conditioned on the queries y(t1), . . . y(tr ), for j > r , each [Qr c]( j ) is distributed

independently as N
(
0, 1

nµ,72ε

)
.

Proof. We prove the claim via induction on the number of queries considered. For the base

case set i = 1. Q1 is a deterministic matrix (since the choice of our first query is made de-
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terminstically before seeing any input) and so by the rotational invariance of the Gaussian

distribution, the entries of Q1c are distributed independently as N
(
0, 1

nµ,72ε

)
(the same as

the entries of c). The first row of Q1 spans our first query, and thus this row is just equal to

D−1Zϕt1 scaled to have unit norm. Thus y(t1) = D−1Zϕt1 c is just a fixed scaling of [Q1c](1). So

conditioning on y(t1), we still have [Q1c]( j ) for j > 1 distributed independently as N
(
0, 1

nµ,72ε

)
.

Now, consider i > 1. By the inductive assumption, conditioned on y(t1), . . . y(ti−1), for j ≥ i ,

[Qi−1c]( j ), are distributed independently as N
(
0, 1

nµ,72ε

)
. We can see that both Qi−1 and Qi are

fixed conditioned on y(t1), . . . y(ti−1) (since the i th query is chosen deterministically, possibly

adaptively as a function of the previously seen queries y(t1), . . . y(ti−1)). Additionally, since

they share their first i − 1 rows, the remaining nµ,72ε − i + 1 rows of Qi−1 and Qi have the

same rowspans. Thus we can write Qi = [I;R]Qi−1 where R ∈Cnµ,72ε−i+1×nµ,72ε−i+1 is some fixed

rotation with R∗R = I. Thus, by the rotational invariance of the Gaussian, for all j ≥ i , [Qi c]( j )

are distributed independently as N
(
0, 1

nµ,72ε

)
(the same as [Qi−1c]( j )). Further conditioning

on y(ti ), which is a deterministic function of [Qi c](i ) and y(t1) . . . y(ti−1), we still have that for

j > i , [Qi c]( j ) are distributed independently as N
(
0, 1

nµ,72ε

)
. This completes the inductive step

and so the claim.

Armed with Claim 3.6.5 we can compute:

Pr

[
‖c− c̃‖2

2 ≤
1

12

]
= Pr

[∥∥Qr c−Qr c̃
∥∥2

2 ≤
1

12

]
(Since Qr is orthonormal.)

≤ Pr

[
nµ,72ε∑

i=r+1

∣∣[Qr c](i )− [Qr c̃](i )
∣∣2 ≤ 1

12

]

= Ey(t1),...,y(tr )

[
Pr

[
nµ,72ε∑

i=r+1

∣∣[Qr c](i )− [Qr c̃](i )
∣∣2 ≤ 1

12

∣∣∣∣∣ y(t1)..., y(tr )

]]

≤ Ey(t1),...,y(tr )

[
Pr

[
nµ,72ε∑

i=r+1

∣∣[Qr c](i )
∣∣2 ≤ 1

12

∣∣∣∣∣ y(t1)..., y(tr )

]]
(3.37)

where the last line follows since, conditioned on y(t1)..., y(tr ), Qr c̃ is fixed and for i ≥ r +1,

Qr c(i ) are distributed independently as Gaussians centered around 0 (by Claim 3.6.5). So

the probability of the sum of differences being small is only smaller than if we replaced each

Qr c̃(i ) by 0.

Now, conditioned on y(t1)..., y(tr ),
∑nµ,72ε

i=r+1 |[Qr c](i )|2 is a Chi-squared random variable with

E

[
nµ,72ε∑

i=r+1

∣∣[Qr c](i )
∣∣2

∣∣∣∣∣ y(t1)..., y(tr )

]
= nµ,72ε− r

nµ,72ε
.

For r = nµ,72ε

20 , we thus have E
[∑nµ,72ε

i=r+1 |[Qr c](i )|2 | y(t1)..., y(tr )
]
≥ 19

20 . We can loosely upper

bound the probability in (3.37), using the fact that for a Chi-squared random variable X with
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k degrees of freedom, Pr[X ≤ δE[X ]] ≤ (
δe1−δ)k/2 ≤ (

δe1−δ)1/2
. So,

Pr

[
nµ,72ε∑

i=k(c)+1

∣∣[Qr c](i )
∣∣2 ≤ 1

12

∣∣∣∣∣ y(t1)..., y(tr )

]
≤

(
20

19 ·12
e1− 20

19·12

)1/2

< 47

100
.

Plugging back into (3.37) gives:

Pr

[
‖c− c̃‖2

2 ≤
1

12

]
≤ Ey(t1),...,y(tr )

[
Pr

[
nµ,72ε∑

i=r+1

∣∣[Qr c](i )
∣∣2 ≤ 1

12

∣∣∣∣∣ y(t1)..., y(tr )

]]
< 47

100
.

However, we have assumed that our algorithm solves Problem 3.2.1 with probability ≥ 2/3,

and hence, by Claim 3.6.4, Pr
[‖c− c̃‖2

2 ≤ 1
12

]≥ 1
2 . This is a contradiction, yielding the theorem.

3.6.1 Statistical Dimension Lower Bound

We now use Theorem 3.6.1 to prove that the statistical dimension tightly characterizes the

sample complexity of solving Problem 3.2.1 for any constraint measure µ satisfying a simple

condition: we must have sµ,ε = O (1/εp ) for some p < 1. Note that this assumption holds

for all µ considered in this work (including bandlimited, multiband, sparse, Gaussian, and

Cauchy-Lorentz), where sµ,ε either grows as log(1/ε) or 1/
p
ε. Also note that by (3.5) we can

always bound sµ,ε ≤ tr(Kµ)/ε= 1/ε. So this assumption holds whenever we have a nontrivial

upper bound on sµ,ε.

Theorem 3.6.2 (Statistical Dimension Lower Bound). For any probability measure µ, suppose

that sµ,ε =O(1/εp ) for some constant p < 1. Consider any (possibly randomized) algorithm that

solves Problem 3.2.1 with probability ≥ 2/3 for any function y and any ε> 0 and makes at most

rµ,ε (possibly adaptive) queries on any input. Then rµ,ε =Ω(sµ,ε).22

Proof. We simply prove that for this class of measures, nµ,72ε =Ω(sµ,ε) and then apply Theorem

3.6.1. It suffices to show that nµ,ε = Ω(sµ,cε) for any fixed constant c ≥ 1 since by (3.17),

sµ,cε ≥ sµ,ε

c . Thus nµ,ε =Ω(sµ,cε) gives that nµ,72ε =Ω(sµ,72cε) =Ω(sµ,ε), giving the theorem.

Let cp = 2
4

1−p > 1. Assume for the sake of contradiction that nµ,ε = o(sµ,cpε). By this assumption,

there is some fixed ε0 such that,

For all ε≤ ε0 ,nµ,ε ≤
sµ,cpε

2
. (3.38)

22Here we follow the Hardy-Littlewood definition (Hardy et al., 1914), using f (ε) = Ω(g (ε)) to denote that

limsupx→∞
f (ε)
g (ε) > 0. Thus the lower bound shows that, for some fixed constant c > 0, there is at least some ε′ such

that for every ε≤ ε′, the number of queries used by any algorithm solving Problem 3.2.1 with probability ≥ 2/3 is at
least c · sµ,ε. In other words, the lower bound rules out the possibility that the number of queries is o(sµ,ε).
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We can bound:

sµ,cpε =
∞∑

i=1

λi (Kµ)

λi (Kµ)+ cpε
≤ nµ,ε+

∞∑
i=nµ,ε+1

λi (Kµ)

cpε

and thus by (3.38) have for any ε≤ ε0:

1

2
· sµ,cpε ≤

∞∑
i=nµ,ε+1

λi (Kµ)

cpε
. (3.39)

Now we also have:

sµ,ε =
∞∑

i=1

λi (Kµ)

λi (Kµ)+ε ≥
∞∑

i=nµ,ε+1

λi (Kµ)

λi (Kµ)+ε

≥
∞∑

i=nµ,ε+1

λi (Kµ)

2ε

= cp

2
·

∞∑
i=nµ,ε+1

λi (Kµ)

cpε
.

Combined with (3.39) this gives that for any ε≤ ε0:

sµ,ε ≥
cp

4
· sµ,cpε. (3.40)

By (3.40) we in turn have that, for every ε≤ ε0,

sµ,ε ≥ sµ,ε0 ·
(cp

4

)blogcp ε0/εc
.

Using that blogcp
ε0/εc ≥ logcp

ε0/ε−1 and that cp = 2
4

1−p ≥ 16 we can then bound, for all ε≤ ε0:

sµ,ε

sµ,ε0

≥
(cp

4

)logcp ε0−logcp ε−1
=

(cp

4

)logcp ε0−1
· c

logcp 1/ε
p ·

(
1

4

)logcp 1/ε

≥
(cp

4

)logcp ε0−1
· 1

ε
·ε 1−p

2

≥
(cp

4

)logcp ε0−1
· 1

εp+ 1−p
2

.

Note that sµ,ε0 ·
(

cp

4

)logcp ε0−1
is a constant independent of ε. Thus, the above contradicts the

assumption that sµ,ε =O(1/εp ), giving the theorem.

Remark We remark that a similar technique to Theorem 3.6.2 can be used to show that

nµ,ε =Ω(sµ,ε/εp ) for any p > 0, without any assumptions on sµ,ε.
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4 Modified Random Fourier Features
for Kernel Ridge Regression

This chapter is based on a joint work with Haim Avron, Michael Kapralov, Cameron Musco,

Christopher Musco, and Ameya Velingker. It has been accepted to the 34th International

Conference on Machine Learning (Avron et al., 2017c, ICML).

4.1 Introduction

Kernel methods constitute a powerful paradigm for devising non-parametric modeling tech-

niques for a wide range of problems in machine learning. One of the most elementary is Kernel

Ridge Regression (KRR). Given training data (x1, y1), . . . , (xn , yn) ∈X ×Y , where X ⊆Rd is an in-

put domain and Y ⊆R is an output domain, a positive definite kernel function k : X ×X →R,

and a regularization parameter λ> 0, the response for a given input x is estimated as:

f̄ (x) ≡
n∑

j=1
k(x j ,x)α j

where α= (α1, · · ·αn)> is the solution of the equation

(K+λIn)α= y. (4.1)

In the above, K ∈ Rn×n is the kernel matrix or Gram matrix defined by Ki j ≡ k(xi ,x j ) and

y ≡ (y1, · · · yn)> is the vector of responses. The KRR estimator can be derived by minimizing a

regularized square loss objective function over a hypothesis space defined by the reproducing

kernel Hilbert space associated with k(·, ·); however, the details are not important for this

chapter.

While simple, KRR is a powerful technique that is well understood statistically and capable

of achieving impressive empirical results. Nevertheless, the method has a key weakness:

computing the KRR estimator can be prohibitively expensive for large datasets. Solving (4.1)

generally requiresΘ(n3) time1 andΘ(n2) memory. Thus, the design of scalable methods for

1The running time can be improved using fast matrix products.
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KRR (and other kernel based methods) has been the focus of intensive research in recent

years (Zhang et al., 2013; Alaoui and Mahoney, 2015; Musco and Musco, 2017; Avron et al.,

2017a; Kapralov et al., 2020).

One of the most popular approaches to scaling up kernel based methods is random Fourier

features sampling, originally proposed by Rahimi and Recht (2008). For shift-invariant kernels

(e.g. the Gaussian kernel), Rahimi and Recht (2008) presented a distribution D on functions

from X to Cs (s is a parameter) such that for every x,z ∈Rd ,

k(x,z) = Eϕ∼D
[
ϕ(x)∗ϕ(z)

]
.

The random features approach is then to sample a ϕ from D and use k̃(x,z) ≡ϕ(x)∗ϕ(z) as a

surrogate kernel. The resulting approximate KRR estimator can be computed in O(ns2) time

and O(ns) memory (see Section 4.2.2), giving substantial computational savings if s ¿ n.

This approach naturally raises the question: how large should s be to ensure a high quality

estimator? Or, using the exact KRR estimator as a natural baseline: how large should s be

for the random Fourier features estimator to be almost as good as the exact KRR estimator?

Answering this question can help us determine when random Fourier features can be useful,

whether the method needs to be improved, and how to go about improving it.

The original analysis of Rahimi and Recht (2008) bounds the point-wise distance between

k(·, ·) and k̃(·, ·) (for other approaches to analyzing random Fourier features, see Section 4.2.3).

However, the bounds do not naturally lead to an answer to the aforementioned question. In

contrast, spectral approximation bounds on the entire surrogate kernel matrix, i.e. of the form

(1−∆)(K+λIn) ¹ K̃+λIn ¹ (1+∆)(K+λIn) , (4.2)

naturally have statistical and algorithmic implications. Indeed, in Section 4.3 we show that

when (4.2) holds we can bound the excess risk introduced by the random Fourier features

estimator compared to the KRR estimator. We also show that K̃+λIn can be used as an effective

preconditioner for the solution of (4.1). This motivates the study of how large s should be as a

function of ∆ for (4.2) to hold.

In this chapter we rigorously analyze the relation between the number of random Fourier

features and the spectral approximation bound (4.2). Our main results are the following:

• We give an upper bound on the number of random features needed to achieve (4.2)

(Theorem 4.4.1). This bound, in conjunction with the results in Section 4.3, positively

shows that random Fourier features can give guarantees for KRR under reasonable

assumptions.

• We give a lower bound showing that our upper bound is tight for the Gaussian kernel

(Theorem 4.5.1).
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• We show that the upper bound can be improved dramatically by modifying the sampling

distribution used in the classical random Fourier features (Section 4.4). Our sampling

distribution is based on an appropriately defined leverage function of the kernel, closely

related to so-called leverage scores frequently encountered in the analysis of sampling

based methods for linear regression. Unfortunately, it is unclear how to efficiently

sample using the leverage function.

• To address the lack of an efficient way to sample using the leverage function, we propose

a novel, easy-to-sample distribution for the Gaussian kernel which approximates the

true leverage function distribution and allows random Fourier features to achieve a

significantly improved upper bound (Theorem 4.6.1). The upper bound has an expo-

nential dependence on the data dimension, so it is only applicable to low dimensional

datasets. Nevertheless, our results demonstrate that the classic random Fourier sam-

pling distribution can be improved for spectral approximation and motivates further

study. As an application, our improved understanding of the leverage function yields a

novel asymptotic bound on the statistical dimension of Gaussian kernel matrices over

bounded datasets, which may be of independent interest (Corollary 4.7.1).

4.2 Preliminaries

4.2.1 Setup and Notation

The complex conjugate of x ∈C is denoted by x∗. For a vector x or a matrix A, x∗ or A∗ denotes

the Hermitian transpose. The l × l identity matrix is denoted Il . We use the convention that

vectors are column-vectors.

A Hermitian matrix A is positive semidefinite (PSD) if x∗Ax ≥ 0 for every vector x. For any two

Hermitian matrices A and B of the same size, A ¹ B means that B−A is PSD.

We use L2(ρ) = L2(Rd ,dρ) to denote the space of complex-valued square-integrable functions

with respect to some measure ρ(·). L2(ρ) is a Hilbert space equipped with the following inner

product:

〈 f , g 〉L2(ρ) =
∫
Rd

f (η)g (η)∗dρ(η) =
∫
Rd

f (η)g (η)∗pρ(η)dη .

In the above, pρ(·) is the probability density induced by ρ(·) (assuming one exists).

We denote the training set by (x1, y1), . . . , (xn , yn) ∈X ×Y ⊆ Rd ×R. Note that n denotes the

number of training examples, and d their dimension. We denote the kernel, which is a function

from X ×X to R, by k. We denote the kernel matrix by K, with Ki j ≡ k(xi ,x j ). The associated

reproducing kernel Hilbert space (RKHS) is denoted by Hk , and the associated inner product

by 〈·, ·〉Hk . Some results are stated for the Gaussian kernel k(x,z) = exp(−‖x−z‖2
2 /2σ2) for

some bandwidth parameter σ.

We use λ to denote the ridge regularization parameter. We remark that the choice of regular-
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ization parameter generally depends on n. Typically, λ=ω(1) and λ= o(n). See Caponnetto

and De Vito (2007) and Bach (2013) for discussion on the asymptotic behavior of λ, noting that

in our notation, λ is scaled by an n factor as compared to those works. As the ratio between n

and λ will be an important quantity in our bounds, we denote it as nλ
def= n/λ.

The statistical dimension or effective degrees of freedom given the regularization parameter λ is

denoted by sλ(K)
def= tr

(
(K+λIn)−1K

)
.

4.2.2 Random Fourier features

Classical random Fourier features

Random Fourier features (Rahimi and Recht, 2008) is an approach to scaling up kernel methods

for shift-invariant kernels. A shift-invariant kernel is a kernel of the form k(x,z) = k(x− z)

where k(·) is a positive definite function (we abuse notation by using k to denote both the

kernel and the defining positive definite function).

The underlying observation behind random Fourier features is a simple consequence of

Bochner’s Theorem: for every shift-invariant kernel with k(0) = 1, there is a probability mea-

sure µk (·) which induces a probability density function pk (·), both on Rd , such that

k(x,z) =
∫
Rd

e−2πiη>(x−z)dµk (η) =
∫
Rd

e−2πiη>(x−z)pk (η)dη . (4.3)

In other words, the Fourier transform of the kernel k(·) is a probability density function, pk (·).

For simplicity we typically drop the k subscript, writing µ(·) =µk (·) and p(·) = pk (·), with the

associated kernel function clear from context. We remark that while it is not always the case

that the probability measure µk (·) has an associated density function pk (·), we assume the

existence of a density function for the kernels we consider.

If η1, . . . ,ηs are drawn according to p(·), and we define ϕ(x)
def= 1p

s

(
e−2πiηT

1 x, · · · ,e−2πiηT
s x

)∗
,

then:

k(x,z) = Eϕ
[
ϕ(x)∗ϕ(z)

]
.

The idea of random Fourier features method is then to define the substitute kernel:

k̃(x,z) ≡ϕ(x)∗ϕ(z) = 1

s

s∑
l=1

e−2πiη>
l (x−z) (4.4)

To summarize, the random Fourier features method approximates k(·) by sampling s fre-

quencies η1, ...,ηs ∈Rd according to their weight in the density function p(·) which is just the

d-dimensional Fourier transform of the kernel k(·). Note that in order for p(·) to be a proper

probability density function (integrating to 1) we must have k(0) = 1. We assume this without

loss of generality, since any kernel can be scaled to satisfy this condition.

Now suppose that Z ∈ Cn×s is the matrix whose j th row is ϕ(x j )∗, and let K̃ = ZZ∗. K̃ is the

124



4.2. Preliminaries

kernel matrix corresponding to k̃(·, ·). The resulting random Fourier features KRR estimator

is f̃ (x) ≡∑n
j=1 k̃(x j ,x)α̃ j where α̃ is the solution of (K̃+λIn)α̃= y. Typically, s < n and we can

represent f̃ (·) more efficiently as:

f̃ (x) =ϕ(x)∗w,

where w = (Z∗Z+λIs)−1Z∗y (a simple consequence of the Woodbury formula). We can com-

pute w in O(ns2) time, making random Fourier features computationally attractive if s = o(n).

Modified random Fourier features

While it seems to be a natural choice, there is no fundamental reason that we must sample

the frequencies η1, . . . ,ηs using the Fourier transform density function p(·). In fact, we will see

that it is advantageous to use a different sampling distribution based on the kernel leverage

function (defined later).

Let q(·) be any probability density function whose support includes that of p(·). If we sample

η1, . . . ,ηs using q(·), and define

ϕ(x)
def= 1p

s

(√
p(η1)

q(η1)
e−2πiηT

1 x, · · · ,

√
p(ηs)

q(ηs)
e−2πiηT

s x

)∗

we still have k(x,z) = Eϕ
[
ϕ(x)∗ϕ(z)

]
. We refer to this method as modified random Fourier

features and remark that it can be viewed as a form of importance sampling.

Additional Notations and Identities

With the definition of (modified) random Fourier features in hand, we can introduce additional

notation and identities. The ( j , l ) entry of Z from previous section is given by:

Z j l =
1p

s
e−2πi x>

j ηl
√

p(ηl )/q(ηl ). (4.5)

Let z :Rd →Cn be defined by

z(η) j = e−2πi x>
j η .

Note that column l of Z is exactly z(ηl )
√

p(ηl )/[s ·q(ηl )]. So we have:

ZZ∗ = 1

s

s∑
l=1

p(ηl )

q(ηl )
z(ηl )z(ηl )∗.

Finally, by (4.3),

K =
∫
Rd

z(η)z(η)∗dµ(η) =
∫
Rd

z(η)z(η)∗p(η)dη .

Therefore, E [ZZ∗] = K.
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4.2.3 Related Work

The original analysis of random Fourier features (Rahimi and Recht, 2008) bounded the point-

wise distance between k(·, ·) and k̃(·, ·). In follow-up work, Rahimi and Recht (2009) give

learning rate bounds for a broad class of estimators using random Fourier features. However,

their results do not apply to classic KRR. Furthermore, their main bound becomes relevant

only when the number of sampled features is on the order of the training set size.

Rudi and Rosasco (2017) prove generalization properties for KRR with random features, under

somewhat difficult to verify technical assumptions, some of which can be seen as constraining

the leverage function distribution that we study. They leave open improving their bounds

via a more refined sampling approach. Bach (2017) analyzes random Fourier features from a

function approximation point of view. He defines a similar leverage function distribution to

the one that we consider, but leaves open establishing bounds on and effectively sampling

from this distribution, both of which we address in this work. Finally, Tropp et al. (2015)

analyzes the distance between the kernel matrix and its approximation in terms of the spectral

norm,
∥∥K− K̃

∥∥
op, which can be a significantly weaker error metric than (4.2).

Outside of work on random Fourier features, risk inflation bounds for approximate KRR and

leverage score sampling have been used to analyze and improve the Nyström method for

kernel approximation (Bach, 2013; Alaoui and Mahoney, 2015; Rudi et al., 2015; Musco and

Musco, 2017). We apply a number of techniques from this line of work.

Spectral approximation bounds, such as (4.2), are quite popular in the sketching literature;

see Woodruff’s survey (Woodruff, 2014). Most closely related to our work is analysis of spectral

approximation bounds without regularization (i.e. λ= 0) for the polynomial kernel (Avron

et al., 2014). Improved bounds with regularization (still for the polynomial kernel) were

recently proved by Avron et al. (2017a) and Ahle et al. (2020).

4.3 Spectral Bounds and Statistical Guarantees

Given a feature transformation, like random Fourier features, how do we analyze it and

relate its use to non-approximate methods? A common approach, taken for example in the

original paper on random Fourier features (Rahimi and Recht, 2008), is to bound the difference

between the true kernel k(·, ·) and the approximate kernel k̃(·, ·). However, it is unclear how

such bounds translate to downstream guarantees on statistical learning methods, such as KRR.

In this paper we advocate and focus on spectral approximation bounds on the regularized

kernel matrix, specifically, bounds of the form,

(1−∆)(K+λIn) ¹ ZZ∗+λIn ¹ (1+∆)(K+λIn) (4.6)

for some ∆< 1.

Definition 4.3.1. Matrix A is a ∆-spectral approximation of matrix B, if (1−∆)B ¹ A ¹ (1+∆)B.
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Remark 4.3.1. When λ = 0, bound of (4.6) can be viewed as a low-distortion subspace em-

bedding. Indeed, when λ= 0 it follows from (4.6) that Span (k(x1, ·), . . . ,k(xn , ·)) ⊆ Hk can be

embedded with ∆-distortion in Span
(
ϕ(x1), . . . ,ϕ(xn)

)⊆Rs .

The main mathematical question we seek to address is: when using random Fourier features,

how large should s be in order to guarantee that ZZ∗+λIn is a ∆-spectral approximation of

K+λIn? To motivate this question, in the following two subsections we show that such bounds

can be used to derive risk inflation bounds for approximate kernel ridge regression. We also

show that they can be used to analyze the use of ZZ∗+λIn as a preconditioner for K+λIn .

While this chapter focuses on KRR for conciseness, we remark that in the sketching literature,

spectral approximation bounds also form the basis for analyzing sketching based methods for

tasks like low-rank approximation, k-means and more. In the kernel setting, such applications

where analyzed, without regularization, for the polynomial kernel (Avron et al., 2014). Cohen

et al. (2017) recently showed that (4.6) along with a trace condition on ZZ∗ (which holds for all

sampling approaches we consider) yields a so called “projection-cost preservation” condition

for the kernel approximation. With λ chosen appropriately, this condition ensures that ZZ∗

can be used in place of K for approximately solving kernel k-means clustering and for certain

versions of kernel PCA and kernel CCA. See Musco and Musco (2017) for details, where this

analysis is carried out for the Nyström method.

4.3.1 Risk Bounds

One way to analyze estimators is via risk bounds; several recent papers on approximate KRR

employ such an analysis (Bach, 2013; Alaoui and Mahoney, 2015; Musco and Musco, 2017).

In particular, these papers consider the fixed design setting and seek to bound the expected

in-sample predication error of the KRR estimator f̄ , viewing it as an empirical estimate of the

statistical risk. More specifically, the underlying assumption is that yi satisfies

yi = f ?(xi )+νi (4.7)

for some f ? : X → R. The {νi }’s are i.i.d noise terms, distributed as normal variables with

variance σ2
ν. The empirical risk of an estimator f , which can be viewed as a measure of the

quality of the estimator, is

R( f ) ≡ E{νi }

[
1

n

n∑
j=1

∣∣ f (xi )− f ?(xi )
∣∣2

]

(note that f itself might be a function of {νi }).

Let f ∈Rn be the vector whose j th entry is f ?(x j ). It is quite straightforward to show that for

the KRR estimator f̄ we have (Bach, 2013; Alaoui and Mahoney, 2015):

R( f̄ ) = n−1λ2f>(K+λIn)−2f+n−1σ2
νtr

(
K2(K+λIn)−2) .
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Since λ2f>(K+λIn)−2f ≤λf>(K+λIn)−1f and tr
(
K2(K+λIn)−2

)≤ tr
(
K(K+λIn)−1

)= sλ(K), we

define

R̂K(f)
def= n−1λf>(K+λIn)−1f+n−1σ2

νsλ(K)

and note that R( f̄ ) ≤ R̂K(f). The first term in the above expressions for R( f̄ ) and R̂K(f) is

frequently referred to as the bias term, while the second is the variance term.

Lemma 4.3.1. Suppose that (4.7) holds, and let f ∈Rn be the vector whose j th entry is f ?(x j ).

Let f̄ be the KRR estimator, and let f̃ be KRR estimator obtained using some other kernel k̃(·, ·)
whose kernel matrix is K̃. If K̃+λIn is a ∆-spectral approximation to K+λIn for some ∆< 1,

and ‖K‖op ≥ 1, then the following bound holds:

R( f̃ ) ≤ R̂K̃(f) ≤ (1−∆)−1R̂K(f)+ ∆

(1+∆)
· rankK̃

n
·σ2

ν (4.8)

Proof. Note that A ¹ B implies that B−1 ¹ A−1 so for the bias term we have:

f>(K̃+λIn)−1f ≤ (1−∆)−1f>(K+λIn)−1f. (4.9)

We now consider the variance term. Denote s = rankK̃. We have:

sλ(K̃) = tr
(
(K̃+λIn)−1K̃

)= s∑
i=1

λi (K̃)

λi (K̃)+λ

= s −
s∑

i=1

λ

λi (K̃)+λ

≤ s − (1+∆)−1
s∑

i=1

λ

λi (K)+λ

= s −
s∑

i=1

λ

λi (K)+λ + ∆

1+∆
s∑

i=1

λ

λi (K)+λ

≤ n −
n∑

i=1

λ

λi (K)+λ + ∆ · s

1+∆
= sλ(K)+ ∆ · s

1+∆
≤ (1−∆)−1sλ(K)+ ∆ · s

1+∆ ,

where we used the fact that A ¹ B implies λi (A) ≤λi (B) (a simple consequence of the Courant-

Fischer minimax theorem).

Combining the above variance bound with the bias bound in (4.9) yields:

R̂K̃(f) ≤ (1−∆)−1R̂K(f)+ ∆

(1+∆)
· rankK̃

n
·σ2

ν.
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In short, Lemma 4.3.1 bounds the risk of the approximate KRR estimator as a function of both

the risk upper bound R̂K(f) and an additive term which is small if rankK̃ and/or ∆ is small.

In particular, it is instructive to compare the additive term (∆/(1+∆))n−1σ2
ν · rankK̃ to the

variance term n−1σ2
ν · sλ(K).

Remark 4.3.2. An approximation K̃ is only useful computationally if rankK̃ ¿ n so K̃ gives a

significantly compressed approximation to the original kernel matrix. Ideally we should have

rankK̃/n → 0 as n →∞ and so the additive term in (4.8) will also approach 0 and generally be

small when n is large.

4.3.2 Random Features Preconditioning

Suppose we choose to solve (K+λIn)α= y using an iterative method (e.g. CG). In this case, we

can apply ZZ∗+λIn as a preconditioner. Using standard analysis of Krylov-subspace iterative

methods it is immediate that if ZZ∗+λIn is a ∆-spectral approximation of K+λIn then the

number of iterations until convergence is O
(p

(1+∆)/(1−∆)
)
. Thus, if ZZ∗+λIn is, say, a

1/2-spectral approximation of K+λIn , then the number of iterations is bounded by a constant.

The preconditioner can be efficiently applied (after preprocessing) via the Woodbury formula,

giving cost per iteration (if s ≤ n) of O(n2). The overall cost of computing the KRR estimator is

therefore O(ns2 +n2). Thus, as long as s = o(n) this approach gives an advantage over direct

methods which cost O(n3). For small s it also beats non-preconditioned iterative methods

cost O
(
n2pκ(K)

)
. See Cutajar et al. (2016) and Avron et al. (2017a) for a detailed discussion.

The upshot though is that we reach again the question that was poised earlier: how big should

s be so that ZZ∗+λIn is a 1/2-spectral approximation of K+λIn?

4.4 Ridge Leverage Function Sampling and Random Fourier Fea-

tures

In this section we present upper bounds on the number of random Fourier features needed

to guarantee that ZZ∗+λIn is a ∆-spectral approximation to K+λIn . Our bounds apply to

any shift-invariant kernel and a wide range of feature sampling distributions (in particular,

classical random Fourier features).

Our analysis is based on relating the sampling density to an appropriately defined ridge lever-

age function. This function is a continuous generalization of the popular leverage scores (Ma-

honey and Drineas, 2009) and ridge leverage scores (Alaoui and Mahoney, 2015; Cohen et al.,

2017) used in the analysis of linear methods. Bach (2017) defined the leverage function of the

integral operator given by the kernel function and the data distribution. For our purposes, a

more appropriate definition is with respect to a fixed input dataset:

Definition 4.4.1. For x1, . . . ,xn ∈Rd and shift-invariant kernel k(·, ·), define the ridge leverage

function as

τλ(η)
def= p(η)z(η)∗(K+λIn)−1z(η) .
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In the above, K is the kernel matrix and p(·) is the distribution given by the inverse Fourier

transform of k(·, ·).

We begin with two simple propositions. Recall that we assume k(x,x) = k(0) = 1 for any x,

however our results apply to general shift invariant kernel after appropriate scaling.

Proposition 1. For all η,
n

n +λ ·p(η) ≤ τλ(η) ≤ n

λ
·p(η).

Proof. Since k is positive definite and k(0) = 1, |k(x,z)| ≤ 1 for all x and z. This implies that

the maximum eigenvalue of K is bounded by n. The lower bound follows, after noting that∥∥z(η)
∥∥2

2 = n. The upper bound follows similarly, since all eigenvalues of K+λIn are lower

bounded by λ.

Proposition 2.
∫
Rd τλ(η)dη= sλ(K).

Proof. ∫
Rd
τλ(η)dη =

∫
Rd

p(η)z(η)∗(K+λIn)−1z(η)dη

=
∫
Rd

tr
(
p(η)(K+λIn)−1z(η)z(η)∗

)
dη

= tr

(
(K+λIn)−1

∫
Rd

p(η)z(η)z(η)∗dη

)
= tr

(
(K+λIn)−1K

)= sλ(K) .

The second and third lines follow from the cyclic property and linearity of trace respectively.

Recall that we denote the ratio n/λ, which appears frequently in our analysis, by nλ = n/λ. As

discussed, theoretical bounds generally set λ=ω(1) (as a function of n) so nλ = o(n). However

we remark that in practice, it may sometimes be the case that λ is very small and nλg n.

An immediate result of Propositions 1 and 2 (which can also be obtained algebraically from K)

is a generic bound on the statistical dimension of a kernel matrix:

Corollary 4.4.1. For any K ∈Rn×n , sλ(K) ≤ nλ.

For any shift-invariant kernel with k(x,x) = 1 and k(x,z) → 0 as ‖x−z‖2 →∞ (e.g., the Gaussian

kernel) if we allow points to be arbitrarily spread out, the kernel matrix converges to the identity

matrix, and sλ(In) = n/(1+λ) = Ω(nλ) so the above bound is tight. However, this requires

datasets of increasingly large diameter (as n grows). In contrast, the usual assumption in

statistical learning is that the data is sampled from a bounded domain X . In Section 4.7.4 we
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show via a leverage function upper bound that for the important Gaussian kernel on bounded

datasets sλ(K) = o(nλ).

In Chapter 3 we proved that spectral approximation bounds similar to (4.6) can be constructed

by sampling columns relative to upper bounds on the leverage scores. In the following, we

formalize this for the case of sampling Fourier features from a continuous domain. First, we

need an auxiliary lemma which is a special case of Lemma B.1.1 in Appendix B.1.

Lemma 4.4.1. Let B be a fixed d ×d matrix. Construct a d ×d random matrix R that satisfies

E [R] = B and ‖R‖op ≤ L.

Let M be semidefinite upper bounds for the expected squares, E [RR∗] ¹ M.

Form the matrix sampling estimator R̄n = 1
n

∑n
k=1 Rk , where each Rk is an independent copy of

R. Then, for all t ≥√‖M‖op /n +2L/3n,

Pr
[∥∥R̄n −B

∥∥
op ≥ t

]
≤ 8tr(M)

‖M‖op
exp

( −nt 2/2

‖M‖op +2Lt/3

)
.

We prove a more general version of Lemma 4.4.1 in Appendix B.1 (see Lemma B.1.1).

Lemma 4.4.2. Let τ̃ : Rd → R be a measurable function such that τ̃(η) ≥ τλ(η) for all η ∈ Rd ,

and furthermore assume that

sτ̃ ≡
∫
Rd
τ̃(η)dη

is finite. Denote pτ̃(η) = τ̃(η)/sτ̃. Let ∆≤ 1/2 and ρ ∈ (0,1). Assume that ‖K‖op ≥λ. Suppose we

take s ≥ 8
3∆

−2sτ̃ ln(16sλ(K)/ρ) i.i.d. samples η1, . . . ,ηs from the distribution associated with the

density pτ̃(·) and then construct the matrix Z according to (4.5) with q = pτ̃. Then ZZ∗+λIn is

∆-spectral approximation of K+λIn with probability at least 1−ρ.

Proof. Let K+λIn = V>Σ2V be an eigendecomposition of K+λIn . Note that the ∆-spectral

approximation guarantee (4.2) is equivalent to

K−∆(K+λIn) ¹ ZZ∗ ¹ K+∆(K+λIn) ,

so by multiplying by Σ−1V on the left and V>Σ−1 on the right we find that it suffices to show

that ∥∥Σ−1VZZ∗V>Σ−1 −Σ−1VKV>Σ−1
∥∥

op ≤∆ (4.10)

holds with probability of at least 1−ρ. Let

Yl =
p(ηl )

pτ̃(ηl )
Σ−1Vz(ηl )z(ηl )∗V>Σ−1 .

Note that E [Yl ] = Σ−1VKV>Σ−1 and 1
s

∑s
l=1 Yl = Σ−1VZZ∗V>Σ−1. Thus, we can use matrix

concentration result of Lemma 4.4.1 to prove (4.10).
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To apply this bound we need to bound the norm of Yl as well as the stable rank E
[
Y2

l

]
. Since

Yl is always a rank one matrix,

‖Yl‖op = p(ηl )

pτ̃(ηl )
tr

(
Σ−1Vz(ηl )z(ηl )∗V>Σ−1)

= p(ηl )

pτ̃(ηl )
z(ηl )∗V>Σ−1Σ−1Vz(ηl )

= p(ηl )

pτ̃(ηl )
z(ηl )∗(K+λIn)−1z(ηl )

= sτ̃ ·τλ(ηl )

τ̃(ηl )
≤ sτ̃

since τ̃λ(ηl ) ≥ τ(ηl ) by assumption of the lemma. We also have:

Y2
l = p(ηl )2

pτ̃(ηl )2Σ
−1Vz(ηl )z(ηl )∗V>Σ−1Σ−1Vz(ηl )z(ηl )∗V>Σ−1

= p(ηl )2

pτ̃(ηl )2Σ
−1Vz(ηl )z(ηl )∗(K+λIn)−1z(η)z(ηl )∗V>Σ−1

= p(ηl )τ(ηl )

pτ̃(ηl )2 Σ−1Vz(ηl )z(ηl )∗V>Σ−1

= τ(ηl )

pτ̃(ηl )
Yl

= sτ̃τ(ηl )

τ̃(ηl )
Yl ¹ sτ̃Yl .

Let λ1 ≥ ·· · ≥λn be the eigenvalues of K. We have

E [sτ̃Yl ] = sτ̃Σ
−1VKV>Σ−1

= sτ̃
(
In −λΣ−2)

= sτ̃ ·diag(λ1/(λ1 +λ), . . . ,λn/(λn +λ)) := D .

So,

Pr

(∥∥∥∥∥1

s

s∑
l=1

Yl −Σ−1VKV>Σ−1

∥∥∥∥∥
op

≥∆
)

≤ 8tr(D)

‖D‖op
exp

( −s∆2/2

‖D‖op +2sτ̃∆/3

)

≤ 16sλ(K)exp

( −s∆2

2sτ̃(1+2∆/3)

)
≤ 16sλ(K)exp

(−3s∆2

8sτ̃

)
≤ ρ

where the second inequality is due to the assumption that λ1 = ‖K‖op ≥λ and hence ‖D‖op ≥
sτ̃/2. The last inequality is due to the bound on s.

Lemma 4.4.2 shows that if we sample using the ridge leverage function, then O
(
sλ(K) log(sλ(K))

)
samples suffice for spectral approximation of K (for a fixed ∆ and failure probability). While
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there is no straightforward way to perform this sampling, we can consider how well the classic

random Fourier features sampling distribution approximates the leverage function, obtaining

a bound on its performance:

Theorem 4.4.1. Let∆≤ 1/2 andρ ∈ (0,1). Assume that ‖K‖2 ≥λ. If we use s ≥ 8
3∆

−2nλ ln
(
16 sλ(K)

ρ

)
random Fourier features (i.e., sampled according to p(·)), then ZZ∗+λIn is ∆-spectral approxi-

mation of K+λIn with probability of at least 1−ρ.

Proof. Define τ̃(η) = p(η) ·nλ and note that τ̃(η) ≥ τλ(η) by Proposition 1 and that sτ̃ = nλ.

Finally, note that pτ̃(η) = p(η), the classic Fourier features sampling probability.

Theorem 4.4.1 establishes that if λ=ω(log(n)) and ∆ is fixed, o(n) random Fourier features

suffice for spectral approximation, and so the method can provably speed up KRR. Never-

theless, the bound depends on nλ instead of sλ(K), as is possible with true leverage function

sampling (see Lemma 4.4.2). This gap arises from our use of the simple, often loose, leverage

function upper bound given by Proposition 1.

Unfortunately, the bound in Theorem 4.4.1 cannot be improved. Even for the special case of a

one-dimensional Gaussian kernel, the classic random Fourier features sampling distribution

is far enough from the ridge leverage distribution that Ω(nλ) features may be needed even

when sλ(K) = o(nλ). On the otherhand, a simple modified sampling approach does closely

approximate the true ridge leverage distribution and so yields significantly better bounds

for the Gaussian kernel. We present these results in Section 4.5 and Section 4.6 respectively.

We defer a discussion of their proofs to Section 4.7, where we develop our main technical

contribution: a sharper understanding of the ridge leverage function based on a formulation

as the solution to two dual optimization problems which give corresponding upper and lower

bounds on the distribution and, correspondingly, on sampling performance.

4.5 Lower Bound for Classic Random Fourier Features

Our lower bound shows that the upper bound of Theorem 4.4.1 on the number of samples

required by classic random Fourier features to obtain a spectral approximation to K+λIn is

essentially best possible. The full proof is given in Appendix C.5.

Theorem 4.5.1. Consider the d-dimensional Gaussian kernel with σ = (2π)−1 (so p(η) =
(2π)−d/2e−‖η‖2

2/2). For any odd integer n ≥ 8lnnλ, any λ satisfying 0 <λ≤ n
256 , and every radius

R such that 600ln3/2 nλ ≤ R ≤ n
80
p

ln(nλ)
, there exists a dataset of n points {x j }n

j=1 ⊆ [−R,R]d

such that if s random Fourier features (i.e., sampled according to p(·)) are sampled for some s

satisfying s ≤ nλ

215 , then with probability at least 1/2, there exists a vector α ∈Rn such that:

α>(K+λIn)α< 2

3
α>(ZZ∗+λIn)α. (4.11)

Furthermore, for the said dataset, sλ(K) =O
(
R ·polylognλ

)
.
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Theorem 4.5.1 shows that the number of samples s required for ZZ∗+λIn to be a 1/2-spectral

approximation to K+λIn for a bounded dataset of points must depend at least linearly on

nλ. So, there is an asymptotic gap between what is achieved with classical random Fourier

features and what is achieved by modified random Fourier features using leverage function

sampling.

As we will see in Section 4.7, the key idea behind the proof of Theorem 4.5.1 is to show that for

a dataset contained in [−R,R]d , the ridge leverage function is large on a range of bandlimited

frequencies. In contrast, the classic random Fourier features distribution is very small at the

edges of this frequency band, and so significantly undersamples some frequencies and does

not achieve spectral approximation.

We remark that it would have been preferable if Theorem 4.5.1 applied to bounded datasets

(i.e. with R fixed), as the usual assumption in statistical learning theory is that data is sampled

from a bounded domain. However, our current techniques are unable to address this scenario.

Nevertheless, our analysis allows R to grow very slowly with n and we conjecture that the lower

bound is tight even for bounded domains.

4.6 Improved Sampling for the Gaussian Kernel

Contrasting with the lower bound of Theorem 4.5.1, we now propose a modified Fourier feature

sampling distribution that performs near-optimally for the Gaussian kernel on bounded input

sets. Furthermore, unlike the true ridge leverage function, this distribution is simple and

efficient to sample from. To reduce clutter, we state the result for a fixed bandwidth σ= (2π)−1.

This is without loss of generality since we can always rescale the points by (2πσ)−1.

Our modified distribution essentially corrects the classic distribution by “capping” the proba-

bility of sampling low frequencies near the origin. This allows it to allocate more samples to

higher frequencies, which are undersampled by classical random Fourier features. See Figure

4.1 for a visual comparison of the two distributions.

Definition 4.6.1 (Improved Fourier feature distribution for the Gaussian kernel). Define the

function

τ̄R (η) ≡
{ (

6.2R +1240ln1.5 nλ)
)d +1 ‖η‖∞ ≤ 10

√
ln(nλ)

nλp(η)
∏d

j=1 max
(
1, |η j |

)
otherwise

Let sτ̄R = ∫
R τ̄R (η)dη and define the probability density function p̄R (η) = τ̄R (η)/sτ̄R .

Note that p̄R (η) is just the uniform distribution for low frequencies with ‖η‖∞ ≤ 10
√

log(nλ),

and a slightly modified classic Fourier features distribution, appropriately scaled, outside this

range. As we show in Section 4.7, τ̄R (η) upper bounds the true ridge leverage function τλ(η)

for all η. Hence, simply applying Lemma 4.4.2:

Theorem 4.6.1. Consider the d-dimensional Gaussian kernel with σ = (2π)−1 (so p(η) =
(2π)−d/2e−‖η‖

2
2/2) and any dataset of n points {x j }n

j=1 ⊆ Rd contained in a `∞-ball of radius
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R (i.e
∥∥xi −x j

∥∥∞ ≤ 2R for all i , j ∈ [n]). For any λ such that d ≤ 50ln(nλ)+O(1), if we sam-

ple s ≥ 8
3∆

−2sτ̄R ln(16sλ(K)/ρ) Fourier features according to p̄R (·) and construct Z according

to (4.5), then with probability at least 1−ρ, ZZ∗+λIn is ∆-spectral approximation of K+λIn .

Furthermore, sτ̄R =O
(
(248R)d lnd/2 nλ+ (223lnnλ)2d

)
and p̄R (·) can be sampled from in O(d)

time.

Proof. The result follows from Lemma 4.4.2 and the fact that τ̄R (·) upper bounds the true ridge

leverage function, which follows from Theorem 4.7.1 of Section 4.7 along with Proposition 1.

The bound on sτ̄R can be computed as follows. Let us denote g1(η) = (2π)−1/2e−η
2/2 max(1, |η|)

and g (η) = g1(η1) · . . . · g1(ηd ). We calculate

A ≡
∫ ∞

−∞
g1(η)dη= erf(1/

p
2)+

p
2/eπ≈ 1.1663

B ≡ 2
∫ ∞

10
p

lnnλ

g1(η)dη=
√

2

π
n−50
λ .

We now have
∫
‖η‖∞>10

p
ln(nλ)

g (η)dη = Ad − (A −B)d . The assumption d ≤ 50ln(nλ)+O(1)

ensures that,

sτ̄R =
∫
Rd
τ̄R (η)dη

=
((

6.2R +1240ln1.5 nλ
)d +1

)(
20

√
lnnλ

)d +nλ ·
∫
‖η‖∞>10

p
ln(nλ)

g (η)dη

=O
(
(248R)d ln(nλ)d/2 + (223lnnλ)2d

)
.

Sampling from τ̄R (η) amounts to sampling from the mixture of a uniform distribution on[
−10

√
lnnλ,10

√
lnnλ

]d
and the tail of the distribution defined by τ̄R : with probability

1
sτ̄R

(
20

√
lnnλ

)d ·
((

6.2R +1240ln1.5 nλ
)d +1

)
sample from the uniform distribution and with

the remaining probability sample from the tail. Using the above expression for the total mass

of the tail, we can decide whether to sample from the uniform part or from the tail part by

generating a single sample with uniform distribution on [0,1].

Sampling from the uniform part, clearly takes O(d) time. Sampling from the tail can be easily

done via rejection sampling at O(d) expected cost, as we show now. The density pt of the tail

is:

pt (η) =
g (η) ·1

[
‖η‖∞ ≥ 10

√
lnnλ

]
∫
‖η′‖∞≥10

p
lnnλ

g (η′)dη′ .

We can write 1
[
‖η‖∞ ≥ 10

√
lnnλ

]
as a union of disjoint partitions as follows:

1
[
‖η‖∞ ≥ 10

√
lnnλ

]
=

d∑
j=1

1
[
|η j | ≥ 10

√
lnnλ

]
1

[
|ηk | < 10

√
lnnλ ∀k ∈ {1, .., j −1}

]
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Let R j denote the j th region in the above partition for every j ∈ [d ]:

R j =
{
η ∈Rd : |η j | ≥ 10

√
lnnλ , |ηk | < 10

√
lnnλ∀k ∈ {1, .., j −1}

}
Thus, the density pt can written as follows:

pt (η) =
g (η) ·∑d

j=11
[
η ∈ R j

]∫
‖η′‖∞≥10

p
lnnλ

g (η′)dη′

Now because R j ’s are disjoint sets we can sample from pt in the following fashion.

1. First generate a sample j ∈ [d ] with probability

∫
η∈R j

g (η)dη∫
‖η′‖∞≥10

p
lnnλ

g (η)dη′ . In order to execute

this step, we first compute:∫
η∈R j

g (η)dη= Ad− j (A−B) j−1B.

Then given the probabilities we can sample j in O(d) time.

2. Next, generate a sample from the distribution:

pt , j (η) = g (η) ·1[
η ∈ R j

]∫
η′∈R j

g (η′)dη′

=
g1(η j ) ·1

[
|η j | ≥ 10

√
lnnλ

]
B

·
j−1∏
k=1

g1(ηk ) ·1
[
|ηk | < 10

√
lnnλ

]
A−B

·
d∏

k= j+1

g1(ηk )

A

We explain how to sample from this distribution in the subsequent paragraphs.

We now explain how to perform the second step of sampling. It can be seen in the above

expression that sampling from the distribution whose density is pt , j (η) amounts to sampling

each of d coordinates of η independently from their corresponding distributions. There

are three types of distributions that we need to sample from. Either we need to sample

proportional to g1(·) (coordinates j +1, j +2, · · ·d) or we need to sample from the (rescaled)

head of g1 (coordinates 1,2, . . . j −1), or we sample from the tail of g1(·) (coordinate j ).

We start with sampling proportional to g1. This distribution is a mixture of Gaussian on [−1,1]

and enlarged Gaussian outside. The total mass is A, and the relative mass of the Gaussian part

is erf(1/
p

2)/A. First, we sample a random variable U ∼ Unif([0,1]), which will decide which

part of the mixture we sample. If U is bigger than erf(1/
p

2)/A, then the sample comes from the

tail. In that case, we generate the sample by computing G−1(U ) where G(ξ) ≡ A−1
∫ ξ
−ξ g1(η)dη

(i.e., we use inverse transform sampling). Note that G has a simple invertible closed form for

values larger than 1, we have G(1) = erf(1/
p

2)/A. If U ≤ erf(1/
p

2)/A, then the sample comes

from the Gaussian part. To generate the sample from the head, we sample a standard Gaussian
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Figure 4.1 – Plot of the true ridge leverage function vs. the classic random Fourier features
distribution and our modified distribution, for a dataset of n = 401 equispaced points on the
range [−5,5]. Our modified distribution closely matches the true leverage scores to within a
small multiplicative factor. In contrast, the classical distribution oversamples low frequencies,
at the expense of substantially undersampling higher frequencies.

X , and test whether X ≤ 1. If it is, then we use the sample, otherwise we reject and repeat.

Obviously, the expected number of samples we need is O(1).

To sample proportional to the head of g1, we repeat the above procedure and test whether the

sample is smaller than 10
√

lnnλ. If it is not, we reject the sample and repeat.

To sample proportional to the tail of g1, we sample a uniform random variable T on [0,B/A],

and return G−1(1−T ), using the closed from expression for G−1 for values close to 1.

Thus, we can generate a sample in step 2 in O(d) expected time, and overall the sampling

procedure takes O(d).

Theorem 4.6.1 represents a possibly exponential improvement over the bound obtainable by

classic random Fourier features. Consider d = 1 and R ≥ log1.5(nλ). The bound on sτ̄R shows

that our modified distribution requires O
(
R

√
log(nλ)

)
samples, as opposed to Ω(nλ) lower

bound given by Theorem 4.5.1.

4.7 Bounding the Ridge Leverage Function

We now bound the ridge leverage function of the Gaussian kernel, which leads to Theorems

4.5.1 and 4.6.1. The key idea is to reformulate the leverage function as the solution of two

dual optimization problems. By exhibiting suitable test functions for these optimization
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problems, we are able to give tight upper and lower bounds on the ridge leverage function,

and correspondingly on the sampling performance of classic and modified Fourier features.

4.7.1 Primal-Dual Characterization

Before introducing our primal-dual characterization of the ridge leverage function, we present

a few definitions. Define the operatorΦ : L2(µ) →Cn by

Φy
def=

∫
Rd

z(ξ)y(ξ)dµ(ξ). (4.12)

We first prove that the operator Φ is defined on all L2(µ) and is a bounded linear operator.

Indeed, for y ∈ L2(µ),

∥∥Φy
∥∥2

2 =
∥∥∥∥∫
Rd

z(ξ)y(ξ)dµ(ξ)

∥∥∥∥2

2

≤
∫
Rd

∥∥z(ξ)y(ξ)
∥∥2

2 dµ(ξ)

=
∫
Rd

|y(ξ)|2 · ‖z(ξ)‖2
2 dµ(ξ)

= n ·∥∥y
∥∥2

L2(dµ) .

Therefore, there is a unique adjoint operatorΦ∗ :Cn → L2(µ), such that 〈Φy,x〉 = 〈y,Φ∗x〉L2(µ)

for every y ∈ L2(µ) and x ∈Cn . One can verify that [Φ∗x](η) = z(η)∗x. The following holds:

Proposition 3. For every x ∈Cn :

ΦΦ∗x = Kx.

Proof. For every x ∈Cn ,

ΦΦ∗x =
∫
Rd

z(ξ)[Φ∗x](ξ)dµ(ξ)

=
∫
Rd

z(ξ)z(ξ)∗xdµ(ξ)

=
(∫
Rd

z(ξ)z(ξ)∗dµ(ξ)

)
x = Kx.

We can now equivalently define the ridge leverage function τλ(·) via the following optimization

problems. Similar characterization are known for the finite dimensional case. Here we extend

these results to an infinite dimensional case.

Lemma 4.7.1. The ridge leverage function (Definition 4.4.1) can alternatively be defined as:

τλ(η) = min
y∈L2(µ)

λ−1
∥∥∥Φy −√

p(η)z(η)
∥∥∥2

2
+∥∥y

∥∥2
L2(µ) . (4.13)
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Proof. The minimizer of the right-hand side of (4.13) can be obtained from the usual normal

equations, and simplified using the matrix inversion lemma for operators (Ogawa, 1988):

y? = √
p(η)

(
Φ∗Φ+λIL2(µ)

)−1
Φ∗z(η)

= √
p(η)Φ∗(ΦΦ∗+λIn)−1z(η)

= √
p(η)Φ∗(K+λIn)−1z(η)

where we used Proposition 3. So, for y?(ξ) =√
p(η)z(ξ)∗(K+λIn)−1z(η) we have:

‖y?‖2
L2(µ) = p(η)

∫
Rd

∣∣z(ξ)∗(K+λIn)−1z(η)
∣∣2

dµ(ξ)

= p(η)
∫
Rd

z(η)∗(K+λIn)−1z(ξ)z(ξ)∗(K+λIn)−1z(η)dµ(ξ)

= p(η)z(η)∗(K+λIn)−1
(∫
Rd

z(ξ)z(ξ)∗dµ(ξ)

)
(K+λIn)−1z(η)

= p(η)z(η)∗(K+λIn)−1K(K+λIn)−1z(η)

= p(η)z(η)∗(K+λIn)−1z(η)−λp(η)z(η)∗(K+λIn)−2z(η).

Additionally, ∥∥∥Φy?−√
p(η)z(η)

∥∥∥2

2
= p(η)

∥∥ΦΦ∗(K+λIn)−1z(η)−z(η)
∥∥2

2

= p(η)
∥∥(K(K+λIn)−1 − In)z(η)

∥∥2
2

= p(η)
∥∥λ(K+λIn)−1z(η)

∥∥2
2

= λ2p(η)z(η)∗(K+λIn)−2z(η), .

Plugging the above equations into (4.13) gives:

‖y?‖2
L2(µ) +λ−1

∥∥∥Φy?−√
p(η)z(η)

∥∥∥2

2

= p(η)z(η)∗(K+λIn)−1z(η)−λp(η)z(η)∗(K+λIn)−2z(η)

+λp(η)z(η)∗(K+λIn)−2z(η)

= p(η)z(η)∗(K+λIn)−1z(η)

= τλ(η).

Recall that we define z(η) j = e−2πi x>
j η. So Φ is just a d-dimensional Fourier transform of

the function y weighted by the probability measure µ(ξ), and evaluated at the frequencies

given by the data points x1, ...,xn . Thus, the optimization problem of Lemma 4.7.1 asks us

to produce a function y whose Fourier transform is close to the pure cosine wave on our

datapoints
√

p(η)z(η). At the same time, to keep the second term of (4.13) small, y should

have bounded norm under the µ(ξ) measure. So, the trivial solution of setting y to be a Dirac
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delta function at η (whose Fourier transform is a pure cosine with frequency η) fails. A more

carefully chosen function must be constructed whose Fourier transform looks like the cosine

at our datapoints but diverges elsewhere. Such a function certifies that, on our datapoints,

the cosine of frequency η can be approximately reconstructed with low energy using other

frequencies. Hence η is not a critical frequency for sampling, so τλ(η) is small.

Dual to the minimization objective of Lemma 4.7.1, which allows us to certify upper bounds

on the ridge leverage function, we can define a maximization objective allowing us to certify

lower bounds:

Lemma 4.7.2. The ridge leverage function can alternatively be defined as:

τλ(η) = max
α∈Cn

p(η) · |z(η)∗α|2
‖Φ∗α‖2

L2(µ) +λ‖α‖2
2

. (4.14)

Proof. The optimization problem (4.13) can equivalently be reformulated as,

τλ(η) = minimum
∥∥y

∥∥2
L2(µ) +‖u‖2

2

y ∈ L2(µ); u ∈Cn

subject to: Φy +
p
λu =√

p(η)z(η).

First, we show that for any α ∈Cn , the argument of the minimization problem in (4.14) is no

larger than τλ(η). That is because for the optimal solution to above optimization, namely ū

and ȳ , we have:

Φȳ +
p
λū =√

p(η)z(η).

Hence, √
p(η) · |z(η)∗α| = |α∗(Φȳ +

p
λū)|

≤ |α∗Φȳ |+
p
λ

∣∣α∗ū
∣∣

= |〈α,Φȳ〉|+
p
λ|α∗ū|

= |〈Φ∗α, ȳ〉L2(µ)|+
p
λ|α∗ū|

≤ ∥∥Φ∗α
∥∥

L2(µ) ·
∥∥ȳ

∥∥
L2(µ) +

p
λ‖α‖2 · ‖ū‖2 ,

where the last inequality follows from Cauchy-Schwarz. By another application of Cauchy-

Schwarz:

p(η)|z(η)∗α|2 ≤
(∥∥Φ∗α

∥∥2
L2(µ) +λ‖α‖2

2

)
·
(∥∥ȳ

∥∥2
L2(µ) +‖ū‖2

2

)
.

Therefore, for every α ∈Cn ,

p(η)|α∗z(η)|2
‖Φ∗α‖2

L2(µ) +λ‖α‖2
2

≤ ∥∥ȳ
∥∥2

L2(µ) +‖ū‖2
2 = τλ(η). (4.15)
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Now it is enough to show that for the optimal α the objective of the dual problem (4.14)

achieves the leverage score value τλ(η). First, note that for any α ∈Cn :∥∥Φ∗α
∥∥2

L2(µ) +λ‖α‖2
2 = 〈Φ∗α,Φ∗α〉L2(µ) +λα∗α

= 〈ΦΦ∗α,α〉+λα∗α

=α∗(K+λIn)α.

Now we show that for ᾱ=√
p(η)(K+λIn)−1z(η) the objective of (4.14) matches leverage score

τλ(η). By substituting ᾱ=√
p(η)(K+λIn)−1z(η) we have:

p(η)|z(η)∗ᾱ|2
‖Φ∗ᾱ‖2

L2(µ) +λ‖ᾱ‖2
2

= p(η)2|z(η)∗(K+λIn)−1z(η)|2
p(η)z(η)∗(K+λIn)−1(K+λIn)(K+λIn)−1z(η)

= p(η)|z(η)∗(K+λIn)−1z(η)|
= τλ(η).

The optimization problem in (4.14) asks us to exhibit a set of coefficients α ∈ Cn , such that

the Fourier domain representation of our point set weighted by these coefficients (i.e. Φ∗α) is

concentrated at frequency η and hence p(η)·|z(η)∗α|2
‖Φ∗α‖2

L2(µ)
is large. Such α certifies that η is a critical

frequency for representing our point set and so τλ(η) must be large. The regularization term

λ‖α‖2, decreases the ridge leverage function when p(η) is very small, i.e. when η has small

weight in the Fourier transform of our kernel.

4.7.2 The Gaussian Kernel Leverage Function: Upper Bound

We start by applying Lemma 4.7.1 to prove a ridge leverage function upper bound for the

Gaussian kernel. Again, to reduce clutter, we state the result for a fixed bandwidth σ= (2π)−1.

Theorem 4.7.1. Consider the d-dimensional Gaussian kernel with σ= (2π)−1. For any integer

n, any 0 < λ≤ n
2 such that d ≤ 10nλ, and any radius R > 0, if x1, ...,xn ∈ Rd is contained in a

`∞-ball of radius R (i.e
∥∥xi −x j

∥∥∞ ≤ 2R for all i , j ∈ [n]), then for every ‖η‖∞ ≤ 10
√

lnnλ,

τλ(η) ≤ (
6.2R +1240ln1.5 nλ

)d +1.

Combining the bound of Theorem 4.7.1 for η with ‖η‖∞ < 10
√

lnnλ and Proposition 1 for η

outside this range immediately implies our improved sampling bound in Theorem 4.6.1.

Theorem 4.7.1 Proof Outline (Details and a full proof in Appendix C.2).

For simplicity we focus on the case of d = 1. Our proof for higher dimensions uses similar
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Figure 4.2 – To minimize
∥∥Φyη−z(η)

∥∥2
2, we can choose a test function yη(ξ) whose (µ(·)

weighted) Fourier transformΦyη is the pure cosine e−2πi xη multiplied by the box function on

[−R,R]. Specifically, yη(ξ)p(ξ) is a sinc function centered at η. Unfortunately,
∥∥yη

∥∥2
L2(µ) is too

large to get a good leverage function bound from Lemma 4.7.1. However, this construction is
the starting point for our final test function, pictured in Figure 4.3.

ideas. To upper bound τλ(η) using Lemma 4.7.1 it suffices to exhibit any function yη ∈ L2(µ)

(i.e. with bounded norm
∥∥yη

∥∥2
L2(µ)) such that, when reweighted by µ(ξ) = p(ξ)dξ, yη’s Fourier

transform is close to the pure cosine target function z(η) on our datapoints. In general, the

test function depends on η and hence our subscript notation yη(·).

One simple attempt is yη(ξ) = 1p
p(η)

δ(η−ξ) where δ(·) is the Dirac delta function. This choice

zeros out the first term of (4.13). However δ(·) is not square integrable, yη 6∈ L2(µ), so the

lemma cannot be used (the norm is unbounded). Another attempt is yη(ξ) = 0, which zeros

out the second term and recovers the trivial bound τλ(η) ≤ λ−1
∥∥√

p(η)z(η)
∥∥2

2 = p(η)nλ of

Proposition 1.

We improve this bound by replacing the Dirac delta function at η with a ‘soft spike’ whose

Fourier transform still looks approximately like a cosine wave on [−R,R], and hence at our

data points, which are bounded on this range. The smaller R is, the more spread out this

function can be, and hence the smaller its norm
∥∥yη

∥∥2
L2(µ), and the better the leverage function

bound.

A natural idea is to consider the inverse Fourier transform of the cosine with frequency η

restricted to the range [−R,R] – i.e. multiplied by the box function on this range. It is well

known that this is a sinc function with width 1
2R , centered at η: gη(ξ) = 2R · sinc

(
2R(ξ−η)

)
,

where sinc x = sinπx
πx (see Figure 4.2). If we set yη(ξ) = gη(ξ) ·

p
p(η)

p(ξ) , the µ weighted Fourier

transform at x j ∈ [−R,R], [Φyη] j , will be identical to the target z(η) j and so again the first term

of (4.13) will be 0. Unfortunately,
∥∥yη

∥∥2
L2(µ) will still be too large. The reweighting function

1
p(ξ) =

p
2πeξ

2/2 grows exponentially, while sinc
(
2R(ξ−η)

)
only falls off linearly, so yη will have

unbounded energy in the high frequencies.
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Figure 4.3 – In comparison to Figure 4.2, damping the sinc function with a Gaussian decreases
the energy

∥∥yη
∥∥2

L2(dµ) but does not significantly affect the Fourier transform on [−R,R]. Φyη is
a pure cosine with frequency η multiplied by a blurred box function and thus (Φyη) j ≈ z(η) j

for x j ∈ [−R,R]. Accordingly, yη is ideal for bounding the leverage function via Lemma 4.7.1.

To correct this issue, we dampen the sinc at higher frequencies by multiplying with a Gaussian,

which decreases
∥∥yη

∥∥2
L2(µ), but does not significantly affect the Fourier transform on [−R,R].

Specifically, for some parameters u, v set gη(ξ) to be product of a Gaussian with standard

deviation 1/u with a sinc function with width 1/v , both centered at η. The corresponding

Fourier transform ĝη(x) is the convolution of a Gaussian with standard deviation u with a box

of width v – i.e. a blurred box.

If we set v =Θ(
R +u

√
lognλ

)
then the box, when centered at x ∈ [−R,R] nearly covers the

full mass of the Gaussian. Specifically, we have 1−1/nc
λ
≤ |ĝη(x)| ≤ 1 for x ∈ [−R,R] and some

large constant c. Since gη(ξ) is centered at η, ĝη(x) is multiplied by the cosine wave e−2πi xη,

and so we have (Φyη) j =
√

p(η)ĝη(x j ) ≈ √
p(η)z(η) j . Thus, when applying Lemma 4.7.1 to

bound the leverage function, the first term of (4.13) will be negligible (see Figure 4.3).

Theorem 4.7.1 then follows from adjusting u to minimize
∥∥yη

∥∥2
L2(µ) – balancing increased

damping for large ηwith increased energy due to a more concentrated Gaussian. We eventually

choose u =Θ(lognλ). Obtaining tight bounds and in particular achieving the right dependence

on lognλ requires several modifications, but the general intuition described above works!

4.7.3 The Gaussian Kernel Leverage Function: Lower Bound

Using the dual leverage function characterization in Lemma 4.7.2, we can give a near matching

leverage function lower bound for the Gaussian kernel.

Theorem 4.7.2. Consider the d-dimensional Gaussian kernel with σ= (2π)−1. For every odd

integer m ≥ 8lnnλ, positive integer d ≤ 8nλ, where n = md , every parameter 0 <λ≤ (1
2

)2d · n
64 ,

and every radius 60ln3/2 nλ ≤ R ≤ m
80
p

lnnλ

, there exist x1,x2, . . . ,xn ∈ [−R,R]d such that for every
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η ∈
[
−10

√
lnnλ,10

√
lnnλ

]d
,

τλ(η) ≥ 1

128

(
R

3

)d

· p(η)

2p(η)+ (4R/3)d n−1
λ

.

Theorem 4.7.2 Proof Outline (Details and a full proof in Appendix C.3). The main idea of

the proof is to use Lemma 4.7.2 to get a lower bound on τλ(η). Note that the expression

given under the maximum in (4.14) provides a lower bound for any choice of α. However, we

provide a judiciously chosen α that is related to the test function yη ∈ L2(µ) used in the proof

of Theorem 4.7.1 which provides an upper bound on τλ(η). The choice of yη in the proof of the

upper bound is essentially a sinc function that is dampened by a Gaussian centered at η. Due

to the duality of the corresponding minimization and maximization problems in Lemma 4.7.1

and Lemma 4.7.2, respectively, the optimal α must essentially be a scalar multiple of Φyη,

which is a (weighted) Fourier transform of yη evaluated on the data points x1,x2, . . . ,xn . Hence,

we should intuitively choose α to be the samples of yη on the data points. Moreoever, to

provide the tightest possible lower bound, we wish to choose our data points x1,x2, . . . ,xn to

be as spread apart as possible, as this corresponds to a higher statistical dimension (which

corresponds to higher leverage scores on average). Thus, we choose our points to be evenly

spaced points on a d-dimensional grid located inside an L∞ ball of radius R around the origin.

4.7.4 Bounding the Statistical Dimension of Gaussian Kernel Matrices

Theorems 4.7.1 and 4.7.2 together imply a tight bound on the statistical dimension of Gaussian

kernel matrices corresponding to bounded points sets (the proof appears in Appendix C.4):

Corollary 4.7.1. Consider the d-dimensional Gaussian kernel withσ= (2π)−1. For any positive

integer n, parameter 0 <λ≤ n
2 , integer 1 ≤ d ≤ 50lnnλ

ln(10lnnλ) , and any R > 0, if x1, ...,xn ∈ [−R,R]d :

sλ(K) ≤
(
20

√
lnnλ

)d ((
6.2R +1240ln1.5 nλ

)d +1
)/
Γ(d/2+1)+1

= O

(
(248R)d lnd/2 nλ+ (223lnnλ)2d

Γ(d/2+1)

)

Furthermore, if n = md for some odd integer m ≥ 8lnnλ, and additionally λ≤ (1
2

)2d · n
64 , and

radius 60ln3/2 nλ ≤ R ≤ m
80
p

lnnλ

there exists a set of points x1, . . . ,xn ⊆ [−R,R]d such that:

sλ(K) =Ω


(p

πR
3

√
ln nλ

(4R/3)d

)d

Γ(d/2+1)

 .
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5 Oblivious Sketching of High-degree
Polynomial Kernels

This chapter is based on a joint work with Michael Kapralov, Rasmus Pagh, Ameya Velingker,

and David Woodruff. It has been accepted to the 31st Annual ACM-SIAM Symposium on

Discrete Algorithms (Ahle et al., 2020, SODA).

5.1 Introduction

Data dimensionality reduction, or sketching, is a common technique for quickly reducing

the size of a large-scale optimization problem while approximately preserving the solution

space, thus allowing one to instead solve a much smaller optimization problem, typically in

a smaller amount of time. This technique has led to near-optimal algorithms for a number

of fundamental problems in numerical linear algebra and machine learning, such as least

squares regression, low rank approximation, canonical correlation analysis, k-means, and

robust variants of these problems. In a typical instance of such a problem, one is given a large

matrix X ∈Rd×n as input, and one wishes to choose a random map Π from a certain family

of random maps and replace X withΠX . AsΠ typically has many fewer rows than columns,

ΠX compresses the original matrix X , which allows one to perform the original optimization

problem on the much smaller matrix ΠX . For a survey of such techniques, we refer the reader

to the survey by Woodruff (2014).

A key challenge in this area is to extend sketching techniques to kernel-variants of the above

linear algebra problems. Suppose each column of X corresponds to an example while each

row corresponds to a feature. Then the existing sketching algorithms require an explicit

representation of X to be made available to the algorithm. This is unsatisfactory in many

machine learning applications, since typically the actual learning is performed in a much

higher (possibly infinite) dimensional feature space, by first mapping each column of X to

a much higher dimensional space. Fortunately, due to the kernel trick, one need not ever

perform this mapping explicitly; indeed, if the optimization problem at hand only depends

on inner product information between the input points, then the kernel trick allows one to

quickly compute the inner products of the high dimensional transformations of the input

145



Chapter 5. Oblivious Sketching of High-degree Polynomial Kernels

points, without ever explicitly computing the transformation itself. However, evaluating kernel

matrices easily becomes a bottleneck in algorithms that rely on the kernel trick because

primitives such as kernel PCA or kernel ridge regression generally take prohibitively large

quadratic space and (at least) quadratic time, as kernel matrices are usually dense. There

are a number of recent works which try to improve the running times of kernel methods; we

refer the reader to the recent work of Musco and Musco (2017) and the references therein.

A natural question is whether it is possible to instead apply sketching techniques on the

high-dimensional feature space without ever computing the high-dimensional mapping.

For the important case of polynomial kernel, such sketching techniques are known to be

possible1. This was originally shown by Pham and Pagh (2013) in the context of kernel support

vector machines, using the TensorSketch technique for compressed matrix multiplication

due to Pagh (2013). This was later extended in (Avron et al., 2014) to a wide array of kernel

problems in linear algebra, including kernel low-rank approximation, principal component

analysis, principal component regression, and canonical correlation analysis.

The running times of the algorithms above, while nearly linear in the number of non-zero

entries of the input matrix X , depend exponentially on the degree q of the polynomial ker-

nel. For example, suppose one wishes to perform low-rank approximation on A, the matrix

obtained by replacing each column of X with its kernel-transformed version. One would

like to express A ≈ UV , where U ∈ Rd p×k and V ∈ Rk×n . Writing down U explicitly is prob-

lematic, since the columns belong to the much higher d p -dimensional space. Instead, one

can express UV implicitly via column subset selection, by expressing it as a AZ Z> and then

outputting Z . Here Z is an n × k matrix. In (Avron et al., 2014), an algorithm running in

nnz(X )+ (n +d)poly
(
3p ,k,ε−1

)
time was given for outputting such Z with the guarantee

that
∥∥A− AZ Z>∥∥2

F ≤ (1+ε)‖A− Ak‖2
F with constant probability, where Ak is the best rank-k

approximation to A. Algorithms with similar runtimes were proposed for PCR and CCA. The

main message here is that all analyses of all existing sketches require the sketchΠ to have at

least 3p rows in order to guarantee their correctness. Moreover, the existing sketches work

with constant probability and no high probability result is known for the polynomial kernel.

The main drawback of previous works on sketching the polynomial kernel is the exponential

dependence on the kernel degree p in the sketching dimension and consequently in the

running time. Ideally, one would like a polynomial dependence. This is especially useful

for the application of approximating the Gaussian kernel by a sum of polynomial kernels of

various degrees, for which large values of p, e.g., p = polylogn are used (Cotter et al., 2011).

This raises the main question of our work:

Is it possible to desing a data oblivious sketch with a sketching dimension (and, hence, running

time) that is not exponential in p for the above applications in the context of the polynomial

kernel?

1The lifting function corresponding to the polynomial kernel of degree p maps x ∈ Rd to φ(x) ∈ Rd p
, where

φ(x)i1,i2,...,ip = xi1 xi2 · · ·xip , for every i1, i2, . . . , ip ∈ {1,2, . . . ,d}
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While we answer the above question, we also investigate it in a more general context, namely,

that of regularization. In many machine learning problems, it is crucial to regularize so as to

prevent overfitting or ill-posed problems. Sketching and related sampling-based techniques

have also been extensively applied in this setting. For a small sample of such work see

(Rahimi and Recht, 2008; Alaoui and Mahoney, 2015; Pilanci and Wainwright, 2015; Musco

and Musco, 2017; Avron et al., 2017b,a,c, 2019). As an example application, in ordinary least

squares regression one is given a d ×n matrix A, and a d ×1 vector b, and one seeks to find a

y ∈ Rn that minimizes ‖Ay −b‖2
2. In ridge regression, we instead seek a y so as to minimize

‖Ay −b‖2
2 +λ‖y‖2

2, for a parameter λ > 0. Intuitively, if λ is much larger than the operator

norm ‖A‖op of A, then a good solution is obtained simply by setting y = {0}d . On the other

hand, if λ = 0, the problem just becomes an ordinary least squares regression. In general,

the statistical dimension (or effective degrees of freedom), sλ, captures this tradeoff, defined

as sλ
def= ∑d

i=1
λi (A>A)

λi (A>A)+λ , where λi (A>A) is the i th eigenvalue of A>A. Note that the statistical

dimension is always at most min(n,d), but in fact can be much smaller. A key example of its

power is that for ridge regression, it is known (Avron et al., 2017b) that if one chooses a random

Gaussian matrixΠwith O(sλ/ε) rows, and if y∗ is the minimizer to ‖ΠAy −Πb‖2
2 +λ‖y‖2

2, then

‖Ay∗−b‖2
2 +λ‖y∗‖2

2 ≤ (1+ ε)miny ′(‖Ay ′−b‖2
2 +λ‖y ′‖2

2). Note that for ordinary regression

(λ= 0) one would need thatΠ has Ω(rank(A)/ε) rows (Clarkson and Woodruff, 2009). Another

drawback of existing sketches for the polynomial kernel is that their running time and target

dimension depend at least quadratically on sλ and no result is known with optimal linear

dependence on sλ. We also ask if the exponential dependence on p is avoidable in the

regularized setting:

Is it possible to obtain sketching dimension bounds and running times that are not exponential

in p in the context of regularization? Moreover, is it possible to obtain a running time that

depends only linearly on sλ?

5.1.1 Our contributions

In this chapter, we answer the above questions in the affirmative. In other words, for each of the

aforementioned applications, our algorithm depends only polynomially on p. We state these

applications as corollaries of our main results, which concern approximate matrix product and

subspace embeddings. In particular, we devise a new distribution on oblivious linear maps

Π ∈Rm×d p
(i.e., a randomized family of maps that does not depend on the dataset X ), so that

for any fixed X ∈Rd×n , it satisfies the approximate matrix product and subspace embedding

properties. These are the key properties needed for kernel low-rank approximation. We remark

that our data oblivious sketching is greatly advantageous to data dependent methods because

it results in a one-round distributed protocol for kernel low-rank approximation (Kannan et al.,

2014). We show that our oblivious linear mapΠ ∈Rm×d p
has the following key properties:
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Oblivious Subspace Embeddings (OSEs). Given ε> 0 and an n-dimensional subspace E ⊆Rd ,

we say thatΠ ∈Rm×d is an ε-subspace embedding for E if (1−ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1+ε)‖x‖2 for

all x ∈ E . In this chapter we focus on Oblivious Subspace Embeddings (OSEs) in the regularized

setting. In order to define (regularized) OSEs, we first recall the notion of statistical dimension:

Definition 5.1.1 (Statistical Dimension). Given λ≥ 0, for every positive semidefinite matrix

K ∈Rn×n , we define the λ-statistical dimension of K to be

sλ(K )
def= tr

(
K (K +λIn)−1) .

Now, we can define the notion of an oblivious subspace embedding (OSE):

Definition 5.1.2 (Oblivious Subspace Embedding (OSE)). Given ε,δ,µ> 0 and integers d ,n ≥
1, an (ε,δ,µ,d ,n)-Oblivious Subspace Embedding (OSE) is a distribution D over m ×d matri-

ces (for arbitrary m) such that for every λ ≥ 0, every A ∈ Rd×n with λ-statistical dimension

sλ(A>A) ≤µ, the following holds,

PrΠ∼D

[
(1−ε)(A>A+λIn) ¹ (ΠA)>ΠA+λIn ¹ (1+ε)(A>A+λIn)

]≥ 1−δ. (5.1)

The goal is to have the target dimension m small so thatΠ provides dimensionality reduction.

If we consider the non-oblivious setting where we allow the sketch matrix Π to depend on

A, then as we saw in Chapters 3 and 4, we can achieve a target dimension of m ≈ sλ(A>A)

by leverage scores sampling, which is essentially optimal (see Theorem 3.6.2). But as we

discussed the importance of oblivious embeddings, the ultimate goal is to get an oblivious

subspace embedding with target dimension of m ≈ sλ(A>A).

Approximate Matrix Product. We formally define this property in the following definition.

Definition 5.1.3 (Approximate Matrix Product). Given ε,δ> 0, we say that a distribution D

over m ×d matrices has the (ε,δ)-Approximate Matrix Product property if for every C ,D ∈
Rd×n ,

PrΠ∼D

[‖C>Π>ΠD −C>D‖F ≤ ε‖C‖F‖D‖F
]≥ 1−δ.

Now we present our main theorems, which provide the aforementioned guarantees. Our first

theorem optimizes the runtime’s dependence on the degree p of the kernel.2

Theorem 5.1.1. For every positive integers n, p,d, every ε, sλ > 0, there exists a distribution on

linear sketches Πp ∈ Rm×d p
such that: (1) If m =Ω(

ps2
λ
ε−2

)
, then Πp is an (ε,1/10, sλ,d p ,n)-

oblivious subspace embedding as in Definition 5.1.2. (2) If m = Ω
(
pε−2

)
, then Πp has the

(ε,1/10)-approximate matrix product property as in Definition 5.1.3.

Moreover, for any X ∈Rd×n , if A ∈Rd p×n is the matrix whose columns are obtained by the p-fold

self-tensoring of each column of X thenΠp A can be computed in time Õ
(
pnm +p nnz(X )

)
.

2Throughout this chapter, the notations Õ,Ω̃,Θ̃ suppress polylog(nd/ε) factors.
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Our next theorem optimally achieves linear dependence on the statistical dimension sλ.

Theorem 5.1.2. For every positive integers p,d ,n, every ε, sλ > 0, there exists a distribution on

linear sketchesΠp ∈Rm×d p
which is an

(
ε,1/polyn, sλ,d p ,n

)
-oblivious subspace embedding

as in Definition 5.1.2, provided that the integer m satisfies m = Ω̃(
p4sλ/ε2

)
.

Moreover, for any X ∈Rd×n , if A ∈Rd p×n is the matrix whose columns are obtained by the p-fold

self-tensoring of each column of X thenΠp A can be computed in time Õ
(
pnm +p5ε−2 nnz(X )

)
.

We can immediately apply these theorems to kernel ridge regression with respect to the

polynomial kernel of degree p. In this problem, we are given a regularization parameter

λ≥ 0, a d ×n matrix X , and vector b ∈ Rn and would like to find a y ∈ Rn so as to minimize∥∥A>Ay −b
∥∥2

2 +λ‖Ay‖2
2, where A ∈Rd p×n is the matrix obtained by applying self tensoring of

degree p to each column of X . To solve this problem via sketching, we choose a random matrix

Πp according to the theorems above and compute Πp A. We then solve the sketched ridge

regression problem which seeks to minimize
∥∥(Πp A)>Πp Ay −b

∥∥2
2 +λ‖Πp Ay‖2

2 over y . By

the OSE property, we have
∥∥(Πp A)>Πp Ay −b

∥∥2
2+λ‖Πp Ay‖2

2 = (1±ε)
(∥∥A>Ay −b

∥∥2
2 +λ‖Ay‖2

2

)
simultaneously for all y ∈ Rn ; thus, solving the sketched ridge regression problem gives a

(1±ε)-approximation to the original problem. If we apply Theorem 5.1.1, then the number of

rows of Πp needed to ensure success with probability 9/10 is Θ
(
ps2

λ
ε−2

)
. The running time

to compute Πp A is Õ
(
p2s2

λ
ε−2n +p nnz(X )

)
, after which a ridge regression problem can be

solved in O
(
ns4

λ
/ε4

)
time via an exact closed-form solution for linear ridge regression. An

alternative approach to obtaining a very high-accuracy approximation is to use the sketched

kernel as a preconditioner to solve the original ridge regression problem, which improves the

dependence on ε to log(1/ε) (Avron et al., 2017a). To obtain a high probability of success along

with a near-optimal target dimension that depends only linearly on the statistical dimension,

we can instead apply Theorem 5.1.2, which would allow us to compute the sketched matrix

Πp A in Õ
(
p5sλε

−2n +p5ε−2 nnz(X )
)

time. This is the first sketch to achieve the optimal de-

pendence on sλ for the polynomial kernel. Importantly, both running times are polynomial in

p, whereas all previously known methods incurred running times that were exponential in p.

Although there has been much work on sketching methods for kernel approximation which

nearly achieve the optimal target dimension m ≈ sλ, such as Nyström sampling (Musco and

Musco, 2017), all known methods are data-dependent unless strong conditions are assumed

about the kernel matrix (small condition number or incoherence). Data oblivious methods

provide nice advantages, such as one-round distributed protocols and single-pass streaming

algorithms. However, for kernel methods they are poorly understood and previously had worse

theoretical guarantees than data-dependent methods. Furthermore, note that the Nyström

method requires to sample at least m =Ω(sλ) landmarks to satisfy the subspace embedding

property even given an oracle access to the exact leverage scores distribution. This results in a

runtime ofΩ
(
s2
λ

n + sλnnz(X )
)
. Whereas our method achieves a target dimension that nearly

matches the best dimension possible with data-dependent Nyström method and with strictly

better running time of Õ(nsλ+nnz(X )) (assuming p = polylogn). Therefore, for a large range

of parameters, our sketch runs in input sparsity time whereas the Nyström methods are slower
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by an sλ factor at best.

Application: Polynomial Kernel Rank-k Approximation. Approximate matrix product and

subspace emebedding are key properties that imply efficient algorithms for rank-k kernel

approximation. The following corollary of Theorem 5.1.1 immediately follows from (Avron

et al., 2014, Theorem 6).

Corollary 5.1.1 (Rank-k Approximation). For every positive integers k,n, p,d, every ε> 0, any

X ∈Rd×n , if A ∈Rd p×n is the matrix whose columns are obtained by the p-fold self-tensoring

of each column of X then there exists an algorithm that finds an n × k matrix V in time

O
(
p nnz(X )

)+poly(k, p,ε−1) such that with probability 9/10,∥∥A− AV V >∥∥2
F ≤ (1+ε) min

U∈Rd p×n

rank(U )=k

‖A−U‖2
F .

Note that this corollary improves the runtime of (Avron et al., 2014) by exponential factors in

the polynomial kernel’s degree p.

Additional Applications. Our results also imply improved bounds for each of the applications

in Avron et al. (2014), including canonical correlation analysis (CCA), and principal component

regression (PCR). Importantly, we obtain the first sketching-based solutions for these problems

with running time polynomial rather than exponential in p.

Oblivious Subspace Embedding for the Gaussian Kernel. One very important implication

of our result is an OSE of the Gaussian kernel. Most work in this area is related to the Random

Fourier Features method (Rahimi and Recht, 2008). As shown in Chapter 4, one requiresΩ(n)

samples of the classic Fourier features to obtain a subspace embedding for the Gaussian kernel,

while a modified distribution for sampling frequencies yields provably better performance.

Our proposed sketch for the Gaussian kernel improves upon Theorem 4.6.1, which has an

exponential dependence on the dimension d . We for the first time, embed the Gaussian kernel

with a target dimension that depends only linearly on the statistical dimension of the kernel

and is not exponential in the dimensionality of the data-point.

Theorem 5.1.3. For every r > 0, every positive integers n,d, and every X ∈ Rd×n such that

‖xi‖2 ≤ r for all i ∈ [n], where xi is the i th column of X , suppose G ∈ Rn×n is the Gaussian

kernel matrix – i.e., G j ,k = e−‖x j−xk‖2
2/2 for all j ,k ∈ [n]. There exists an algorithm that computes

Sg (X ) ∈Rm×n in time Õ
(
q6ε−2nsλ+q6ε−2 nnz(X )

)
such that for every ε,λ> 0,

PrSg

[
(1−ε)(G +λIn) ¹ (

Sg (X )
)> Sg (X )+λIn ¹ (1+ε)(G +λIn)

]
≥ 1− 1

poly(n)
,

where m = Θ̃(
q5sλ/ε2

)
and q =Θ(r 2 + log n

ελ ) and sλ is λ-statistical dimension of G.
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We remark that for datasets with radius r = polylogn even if one has oracle access to the exact

leverage scores for Fourier features of the Gaussian kernel, in order to get subspace embedding

guarantee one needs to use m =Ω(sλ) features which requires Ω(sλnnz(X )) operations to

compute. Whereas our embedding in Theorem 5.1.3 runs in time Õ(nsλ+nnz(X )). Therefore,

for a large range of parameters, our Gaussian sketch runs in near input sparsity time while the

Fourier features method is, at best, slower by an sλ factor.

5.1.2 Technical overview

Our goal is to design a sketching matrixΠp that satisfies the oblivious subspace embedding

property with an optimal embedding dimension and which can be efficiently applied to vectors

of the form x⊗p ∈Rd p 3. We start by describing some natural approaches to this problem (some

of which have been used before), and show why they incur an exponential loss in the degree

of the polynomial kernel. We then present our sketch and outline our proof of its correctness.

We first discuss two natural approaches to tensoring classical sketches, namely the Johnson-

Lindenstrauss transform and the CountSketch. We show that both lead to an exponential

dependence of the target dimension on p and then present our new approach.

Tensoring the Johnson-Lindenstrauss Transform. Perhaps the most natural approach to

designing a sketchΠp is the idea of tensoring p independent Johnson-Lindenstrauss matrices.

Specifically, let m be the target dimension. For every r = 1, . . . , p let M (r ) denote an m ×d

matrix with iid uniformly random ±1 entries, and let the sketching matrix M ∈Rm×d p
be

M = 1p
m

M (1) • . . .•M (p),

where • stands for the operation of tensoring the rows of matrices M (r ) (see Definition 5.2.4).

This would be a very efficient matrix to apply, since for every j = 1, . . . ,m the j -th entry of

M x⊗p is exactly
∏p

r=1

[
M (r )x

]
j , which can be computed in time O(p nnz(x)), giving overall

evaluation time O(pm nnz(x)). One would hope that m =O(ε−2 logn) would suffice to ensure

that ‖M x⊗p‖2
2 = (1±ε)‖x⊗q‖2

2. However, this is not true: it is shown in (Ahle et al., 2020) that

one must have m =Ω(
ε−23p logn/p +ε−1(logn/p)p

)
in order to preserve the norm with high

probability. Thus, the dependence on degree p of the polynomial kernel must be exponential.

Tensoring of COUNTSKETCH (TENSORSKETCH). Pham and Pagh (2013) introduced the follow-

ing tensorized version of CountSketch. For every i = 1, . . . , p let hi : [d ] → [m] denote a random

hash function, and σi : [d ] → [m] a random sign function. Then let S :Rd p →Rm be defined by

Sr,( j1,..., jp ) :=σ(i1) · · ·σ(ip )1[h1(i1)+ . . .hp (ip ) = r ]

3Tensor product of x with itself p times.
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for r = 1, . . . ,m. For every x ∈ Rd one can compute Sx⊗p in time O(pm logm + p nnz(x)).

Since the time to apply the sketch only depends linearly on the dimension p (due to the

Fast Fourier Transform) one might hope that the dependence of the sketching dimension

on p is polynomial. However, this turns out to not be the case: the argument in Avron et al.

(2014) implies that m =O
(
3p s2

λ

)
suffices to construct a subspace embedding for a matrix with

regularization λ and statistical dimension sλ, and the lower bound in (Ahle et al., 2020) shows

that exponential dependence on p is necessary.

Our Approach: Recursive Tensoring. The initial idea behind our sketch is as follows. To

apply our sketch Πp to x⊗p , for x ∈ Rd , we first compute the sketches T1x,T2x, . . . ,Tp x for

independent sketching matrices T1, . . . ,Tp ∼ Tbase – see the leaves of the sketching tree in

Figure 5.1. Note that we choose these sketches as CountSketch (Charikar et al., 2002; Charikar,

2002) or OSNAP (Nelson and Nguyên, 2013) to ensure that the leaf sketches can be applied in

time proportional to the number of nonzeros of the input data (in the case of OSNAP this is

true up to polylogarithimic factors).

Each of these is a standard sketching matrix mapping d-dimensional vectors to m-dimensional

vectors for some common value of m. We refer the reader to the survey by Woodruff (2014). The

next idea is to choose new sketching matrices S1,S2, . . . ,Sp/2 ∼ Sbase, mapping m2-dimensional

vectors to m-dimensional vectors and apply S1 to (T1x)⊗ (T2x), as well as apply S2 to (T3x)⊗
(T4x), and so on, applying Sp/2 to (Tp−1x)⊗ (Tp x). These sketches are denoted by Sbase – see

internal nodes of the sketching tree in Figure 5.1. We note that in order to ensure efficiency

of our construction (in particular, running time that depends only linearly on the statistical

dimension sλ) we must choose Sbase as a sketch that can be computed on tensored data

without explicitly constructing the actual tensored input, i.e., Sbase supports fast matrix vector

product on tensor product of vectors. We use either TensorSketch (for results that work with

constant probability) and a new variant of the Subsampled Randomized Hadamard Transform

SRHT (Ailon and Chazelle, 2006) which supports fast multiplication for the tensoring of two

vectors (for high probability bounds) – we call the last sketch TensorSRHT.

At this point we have reduced our number of input vectors from p to p/2, and the dimension

is m, which will turn out to be roughly sλ. We have made progress, as we now have fewer

vectors each in roughly the same dimension we started with. After log2 p levels in the tree we

are left with a single output vector.

Intuitively, the reason that this construction avoids an exponential dependence on p is that

at every level in the tree we use target dimension m larger than the statistical dimension of

our matrix by a factor polynomial in p. This ensures that the accumulation of error is limited,

as the total number of nodes in the tree is O(p). This is in contrast to the direct approaches

discussed above, which use a rather direct tensoring of classical sketches, thereby incurring an

exponential dependence on p due to dependencies that arise.
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Sbase

Sbase

Tbase Tbase

Sbase

Tbase Tbase

internal nodes:
TensorSketch or TensorSRHT

leaves: CountSketch or OSNAP

Figure 5.1 – Sbase is chosen from the family of sketches which support fast matrix-vector
product for tensor inputs, e.g., TensorSketch and TensorSRHT. The Tbase is chosen from the
family of sketches which operate in input sparsity time, e.g., CountSketch and OSNAP.

Showing Our Sketch is a Subspace Embedding. In order to show that our recursive sketch is

a subspace embedding, we need to argue it preserves norms of arbitrary vectors in Rd p
, not

only vectors of the form x⊗p , i.e., p-fold self-tensoring of d-dimensional vectors4. Indeed,

all known methods for showing the subspace embedding property at the very least argue

that the norms of each of the columns of an orthonormal basis for the subspace in question

are preserved (Woodruff, 2014). While our subspace may be formed by the span of vectors

which are tensor products of p d-dimensional vectors, we are not guaranteed that there is an

orthonormal basis of this form. Thus, we first observe that our mapping is indeed linear over

Rd p
, making it well-defined on the elements of any basis for our subspace, and hence our task

essentially reduces to proving that our mapping preserves norms of arbitrary vectors in Rd p
.

We present two approaches to analyzing our construction. One is based on the idea of propa-

gating moment bounds through the sketching tree, and results in a nearly linear dependence

of the sketching dimension m on the degree p of the polynomial kernel, at the expense of

a quadratic dependence on the statistical dimension sλ. This approach is presented in Sec-

tion 5.4. The other approach achieves the (optimal) linear dependence on sλ, albeit at the

expense of a worse polynomial dependence on p. This approach uses sketches that succeed

with high probability, and uses matrix concentration bounds.

Optimizing the dependence on the degree p. We analyze our recursively constructed sketch

by showing how second moment bounds can be propagated through the tree structure of the

4x⊗p denotes x ⊗x · · ·⊗x︸ ︷︷ ︸
p terms

, the p-fold self-tensoring of x.
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sketch. This analysis is presented in Section 5.4, and results in the proof of Theorem 5.1.1. The

analysis obtained this way gives particularly sharp dependence on p. The idea is to consider

the sketch matrix Π ∈Rm×d p
that we have described it recursively above. This matrix could

in principle be applied to any vector x ∈ Rd p
(though it would be slow to realise). We can

nevertheless show that this matrix has the (ε,δ,2)-JL Moment Property, which is for parameters

ε,δ ∈ [0,1], and every x ∈Rd the statement E
[∣∣‖Πx‖2

2 −1
∣∣2

]
≤ (

ε‖x‖2
2

)2
δ.

It can be shown thatΠ is built from our various Sbase and Tbase matrices using three different

operations: multiplication, direct sum, and row-wise tensoring. In other words, it is sufficient

to show that if Q and Q ′ both have the (ε,δ,2)-JL Moment Property, then so does QQ ′ and

Q ⊕Q ′. This turns out to hold for Q ⊕Q ′, but QQ ′ is more tricky. (Here ⊕ is the direct sum.

See Section 5.2 on notation.) For multiplication, a simple union bound allows us to show

that Q(1)Q(2) · · ·Q(p) has the (pε, pδ,2)-JL Moment Property. This would unfortunately mean a

factor of p2 in the final dimension. The union bound is clearly suboptimal, since implicitly it

assumes that all the matrices conspire to either shrink or increase the norm of a vector, while

in reality with independent matrices, we should get a random walk on the real line. Using an

intricate decoupling argument, we show that this is indeed the case, and that Q(1)Q(2) · · ·Q(p)

has the (
p

pε,δ,2)-JL Moment Property, saving a factor of p in the output dimension.

Optimizing the dependence on sλ. Our proof of Theorem 5.1.2 relies on instantiating our

framework with OSNAP at the leaves of the tree (Tbase ) and a novel version of the SRHT that

we refer to as TensorSRHT at the internal nodes of the tree. We outline the analysis of why

our sketch preserves norm of an arbitrary vector y ∈Rd p
. In the bottom level of the tree, we

can view our sketch as T1 ×T2 ×·· ·×Tp , where × for denotes the tensor product of matrices

(see Definition 5.2.2). Then, we can reshape y to a d q−1 ×d matrix Y , such that the entries

of T1 ×T2 × ·· ·×Tp y are in bijective correspondence with those of T1 ×T2 × ·· ·×Tp−1Y T >
p .

By definition of Tp , it preserves the Frobenius norm of Y , and consequently, we can replace

Y with Y T >
p . We next look at (T1 ×T2 × ·· · ×Tp−2)Z (Id ×T >

p−1), where Z is the d p−2 ×d 2

matrix with entries in bijective correspondence with those of Y T >
p . Then we know that Tp−1

preserves the Frobenius norm of Z . Iterating in this fashion, we can show the first layer of our

tree preserves the norm of y , by union bounding over p events – i.e., each sketch preserves

the norm of an intermediate matrix. The core of the analysis consists of applying spectral

concentration bounds based analysis to sketches that act on blocks of the input vector in a

correlated fashion. We give the details in Section 5.5.

Sketching the Gaussian kernel. Our techniques yield the first oblivious sketching method

for the Gaussian kernel with target dimension that does not depend exponentially on the

dimensionality of the input data points. The main idea is to Taylor expand the Gaussian

function and apply our sketch to the polynomial terms in the expansion. It is crucial here that

the target dimension of our sketch depends only polynomially on the degree of the polynomial

kernel, as otherwise we would not be able to truncate the Taylor expansion sufficiently far
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in the tail (the number of terms in the Taylor expansion depends logarithmically on the

dataset size). Overall, our subspace embedding for the Gaussian kernel has optimal target

dimension up to logarithmic factors in the dataset size and is the first to run in near input

sparsity time Õ(nnz(X )) for datasets with polylogarithmic radius. The result is summarized in

Theorem 5.1.3, and the analysis is presented in Section 5.6.

5.1.3 Related work

Work related to sketching of tensors and explicit kernel embeddings is found in fields ranging

from pure mathematics to physics and machine learning. Hence we only compare ourselves

with the most common types.

Johnson-Lindenstrauss Transform A cornerstone result in the field of subspace embeddings

is the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984). It has been shown

in (Clarkson and Woodruff, 2013; Cohen et al., 2016b) that the Johnson-Lindenstrauss Lemma

implies that for any r -dimensional subspace U ⊆Rd there exists a subspace embedding with

m =O(ε−2r ).

It is not enough to know that the subspace embedding exists, we also need to find the di-

mensionality reduction map, and we want the map to be applicable to the data quickly.

Achlioptas (2003) showed that ifΠ ∈Rm×d is random matrix with i.i.d. entries whereΠi , j = 0

with probability 2/3, and otherwise Πi , j is uniform in {−1,1}, and m =O(ε−2 log(1/δ)), then

‖Πx‖2 = (1 ± ε)‖x‖2 with probability 1 − δ for any x ∈ Rd . This gives a running time of

O(mnnz(x)) to sketch a vector x ∈ Rd . Later, the Fast JL Transform (Ailon and Chazelle,

2006), which exploits the FFT algorithm, improved the running time for dense vectors to

O(d logd +m3). The related Subsampled Randomized Hadamard Transform has been exten-

sively studied (Sarlos, 2006; Drineas et al., 2006b, 2011; Tropp, 2011; Drineas et al., 2012; Lu

et al., 2013), which uses O(d logd) time but obtains suboptimal dimension O
(
ε−2 log(1/δ)2

)
,

hence it can not use the above argument to get subspace embedding, but it has been proven

in Tropp (2011) that if m =O
(
ε−2(r + log(1/δ)2)

)
, then one get a subspace embedding. This

improvement has a running time of O(d logd), which can be worse than O(mnnz(x)) if x ∈Rd

is very sparse. This inspired a line of work trying to obtain sparse Johnson Lindenstrauss

transforms (Dasgupta et al., 2010; Kane and Nelson, 2014; Nelson and Nguyên, 2013; Cohen,

2016). They obtain a running time of O
(
ε−1 log(1/δ)nnz(x)

)
. In Nelson and Nguyên (2013)

they define the ONSAP transform and investigate the trade-off between sparsity and subspace

embedding dimension. This was further improved in (Cohen, 2016).

In the context of this paper all the above mentioned methods have the same shortcoming,

they do not exploit the extra structure of the tensors. The Subsampled Randomized Hadamard

Transform has a running time of Ω(pd p log(p)) in the model considered in this paper, and

the sparse embeddings have a running time ofΩ(nnz(x)p ). This is clearly unsatisfactory and

inspired the TensorSketch (Pham and Pagh, 2013; Avron et al., 2014), which has a running time
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ofΩ(p nnz(x)). Unfortunately, they need m =Ω(
3pε−2δ−1

)
and one of the main contributions

of this paper is get rid of the exponential dependence on p.

Approximate Kernel Expansions A classic result by Rahimi and Recht (2008) shows how to

compute an embedding for any shift-invariant kernel function in time O(dm). In (Le et al.,

2013) this is improved to time O((m +d) logd), however, the method does not handle kernel

functions that can’t be specified as a function of the inner product, and it doesn’t provide

subspace embeddings. See also (Avron et al., 2017c) for more approaches along the same line.

Unfortunately, these methods are unable to operate in input sparsity time and their runtime,

at best, is off by an sλ factor.

Tensor Sparsification There is a literature of tensor sparsification based on sampling (Nguyen

et al., 2015), however, unless the vectors tensored are very smooth (such as ±1 vectors), the

sampling has to be weighted by the data. This means that these methods aren’t applicable in

general to the types of problems we consider, where the tensor usually isn’t known when the

sketching function is sampled.

Hyper-plane rounding An alternative approach is to use hyper-plane rounding to get vectors

of the form ±1 and after this we can simply sample from the tensor product. The sign-sketch

was first brought into the field of data-analysis by Charikar (2002) and Valiant (2012) was

the first to use it with tensoring. The main issue with this approach is that it isn’t a linear

sketch, which hinders the applications we consider in this paper, such as kernel low rank

approximation, CCA, PCR, and ridge regression. It takes O(dm) time to sketch a single vector

which is unsatisfactory.

5.1.4 Organization

In section 5.2 we introduce basic definitions and notations that will be used throughout

the paper. Section 5.3 introduces our recursive construction of the sketch which is our main

technical tool for sketching high degree tensor products. Section 5.4 analyzes how the moment

bounds propagate through our recursive construction thereby proving Theorem 5.1.1 which

has linear dependence on the degree p. Section 5.5 introduces a high probability Oblivious

Subspace Embedding with linear dependence on the statistical dimension thereby proving

Theorem 5.1.2. Finally, section 5.6 uses the tools that we build for sketching polynomial kernel

and proves that, for the first time, the curse of dimensionality csn be avoided when sketching

the Gaussian kernel.
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5.2 Preliminaries

In this section we introduce notation and present useful properties of tensor product of vectors

and matrices.

Definition 5.2.1 (Tensor product of vectors). Given a ∈Rm and b ∈Rn we define the twofold

tensor product a ⊗b to be

a ⊗b =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
...

amb1 amb2 · · · ambn

 ∈Rm×n .

Although tensor products are multidimensional objects, it is often convenient to associate

them with single-dimensional vectors. In particular, we will often associate a ⊗ b with

the single-dimensional column vector (a1b1, a2b1, . . . , amb1, a1b2, a2b2, . . . , amb2, . . . , ambn)>.

Given v1 ∈ Rd1 , v2 ∈ Rd2 · · ·vk ∈ Rdk , we define the k-fold tensor product v1 ⊗ v2 · · · ⊗ vk ∈
Rd1d2···dk . For shorthand, we use the notation v⊗k to denote v ⊗ v · · ·⊗ v︸ ︷︷ ︸

k terms

, the k-fold self-

tensoring of v .

Tensor product can be naturally extended to matrices which is formally defined as follows,

Definition 5.2.2. Given A1 ∈Rm1×n1 , A2 ∈Rm2×n2 , · · · , Ak ∈Rmk×nk , we define A1×A2×·· ·×Ak

to be the matrix in Rm1m2···mk×n1n2···nk whose element at row (i1, · · · , ik ) and column ( j1, · · · , jk )

is A1(i1, j1) · · · Ak (ik , jk ). As a consequence the following holds for any v1 ∈Rn1 , v2 ∈Rn2 , · · · , vk ∈
Rnk : (A1 × A2 ×·· ·× Ak )(v1 ⊗ v2 ⊗·· ·⊗ vk ) = (A1v1)⊗ (A2v2)⊗·· ·⊗ (Ak vk ).

The tensor product has the useful mixed product property, given in the following Claim,

Claim 5.2.1. For every matrices A,B ,C ,D with appropriate sizes, the following holds,

(A ·B)× (C ·D) = (A×C ) · (B ×D).

We also define the column wise tensoring of matrices as follows,

Definition 5.2.3. Given A1 ∈ Rm1×n , A2 ∈ Rm2×n , · · · , Ak ∈ Rmk×n , we define A1 ⊗ A2 ⊗·· ·⊗ Ak

to be the matrix in Rm1m2···mk×n whose j th column is A j
1 ⊗ A j

2 ⊗·· ·⊗ A j
k for every j ∈ [n], where

A j
l is the j th column of Al for every l ∈ [k].

Similarly the row wise tensoring of matrices are introduced in the following Definition,

Definition 5.2.4. Given A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , · · · , Ak ∈ Rm×nk , we define A1 • A2 • · · · Ak to

be the matrix in Rm×n1n2···nk whose j th row is (A1
j ⊗ A2

j ⊗·· ·⊗ Ak
j )> for every j ∈ [m], where Al

j

is the j th row of Al as a column vector for every l ∈ [k].
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Definition 5.2.5. Another related operation is the direct sum for vectors: x ⊕ y = [ x
y
]

and for

matrices: A ⊕B = [
A 0
0 B

]
. When the sizes match up, we have (A ⊕B)(x ⊕ y) = Ax +B y . Also

notice that if Ik is the k ×k identity matrix, then Ik ⊗ A = A⊕·· ·⊕ A︸ ︷︷ ︸
k times

.

5.3 Construction of the Sketch

In this section, we present the basic construction for our new sketch. Suppose we are given

v1, v2, . . . vq ∈ Rm . Our main task is to map the tensor product v1 ⊗ v2 ⊗ ·· · ⊗ vq to a vector

of size m using a linear sketch. Our sketch construction is recursive in nature. To illustrate

the general idea, let us first consider the case in which q ≥ 2 is a power of two. Our sketch

involves first sketching each pair (v1 ⊗v2), (v3 ⊗v4), · · · , (vq−1 ⊗vq ) ∈Rm2
independently using

independent instances of some linear base sketch (e.g., TensorSketch, SRHT, CountSketch,

OSNAP). The number of vectors after this step is half of the number of vectors that we began

with. The natural idea is to recursively apply the same procedure on the sketched tensors and

half the number of instances of the base sketch in each successive step.

More precisely, we first choose a (randomized) base sketch Sbase : Rm2 → Rm that sketches

twofold tensor products of vectors in Rm (we will describe how to choose the base sketch later).

Then, for any power of two q ≥ 2, we define Qq :Rmq →Rm on v1 ⊗ v2 ⊗·· ·⊗ vq recursively by,

Qq (v1 ⊗ v2 ⊗·· ·⊗ vq ) =Qq/2
(
Sq

1 (v1 ⊗ v2)⊗Sq
2 (v3 ⊗ v4)⊗·· ·⊗Sq

q/2(vq−1 ⊗ vq )
)

,

where Sq
1 ,Sq

2 , · · · ,Sq
q/2 : Rm2 → Rm are independent instances of Sbase and Q1 : Rm → Rm is

simply the identity map on Rm .

The above construction of Qq has been defined in terms of its action on q-fold tensor products

of vectors in Rm , but it extends naturally to a linear mapping from Rmq
to Rm . The formal

definition of Qq is presented below.

Definition 5.3.1 (Sketch Qq ). Let m ≥ 2 be a positive integer and let Sbase : Rm2 → Rm be a

linear map that specifies some base sketch. Then, for any integer power of two q ≥ 2, we define

Qq :Rmq →Rm to be the linear map specified as follows:

Qq def= S2 ·S4 · · ·Sq/2 ·Sq ,

where for each l ∈ {
21,22, · · · , q/2, q

}
, Sl is a matrix in Rml/2×ml

defined as

Sl def= Sl
1 ×Sl

2 ×·· ·×Sl
l/2, (5.2)

where the matrices Sl
1, · · · ,Sl

l /2 ∈Rm×m2
are drawn independently from the base distribution

Sbase.

This sketch construction can be best visualized using a balanced binary tree with q leaves.
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S2
1

w1 ⊗w2

z = S2
1(w1 ⊗w2)

S4
1

v1 ⊗ v2

w1 = S4
1(v1 ⊗ v2)

v1 v2

S4
2

v3 ⊗ v4

w2 = S4
2(v1 ⊗ v2)

v3 v4

S2 = S2
1

S4 = S4
1 ×S4

2

Figure 5.2 – Visual illustration of the recursive construction of Qq for degree q = 4. The input
tensor is v1 ⊗ v2 ⊗ v3 ⊗ v4 and the output is z =Q4(v1 ⊗ v2 ⊗ v3 ⊗ v4). The intermediate nodes
sketch the tensors w1 = S4

1(v1 ⊗ v2) and w1 = S4
2(v3 ⊗ v4).

Figure 5.2 illustrates the construction of a degree 4 sketch, Q4.

For every integer power of two q , by definition of Sq in (5.2) of Definition 5.3.1, and claim 5.2.1,

Sq = Sq
1 ×·· ·×Sq

q/2 =
(
Sq

1 ×·· ·×Sq
q/2−1 × Im

)
·
(
Imq−2 ×Sq

q/2

)
.

By multiple applications of Claim 5.2.1 we have the following claim,

Claim 5.3.1. For every power of two integer q and any positive integer m, if Sq is defined as in

(5.2) of Definition 5.3.1, then Sq ≡ Mq/2Mq/2−1 · · ·M1, where M j = Imq−2 j ×Sq
q/2− j+1 × Im j−1 for

every j ∈ [q/2].

Embedding Rd q
: So far we have constructed a sketch Qq for sketching tensor product of

vectors in Rm . However, in general the data points can be in a space Rd of arbitrary dimension.

A natural idea is to reduce the dimension of the vectors by a linear mapping from Rd to Rm and

then apply Qq on the tensor product of reduced data points. The dimensionality reduction

defines a linear mapping from Rd q
to Rmd

which is denoted by T q and formally defined as:

Definition 5.3.2 (Sketch T q ). Let m,d be positive integers and let Tbase :Rd →Rm be a linear

map that specifies some base sketch. Then for any integer q ≥ 1 we define T q to be the linear

map specified as follows,

T q def= T1 ×T2 ×·· ·×Tq ,

where the matrices T1, · · · ,Tq are drawn independently from Tbase.

Discussion: Similar to Claim 5.3.1, the transform T q can be expressed as the product of q

matrices, T q ≡ Mq Mq−1 · · ·M1, where M j = Id q− j ×Tq− j+1 × Im j−1 for every j ∈ [q].

Now we define the final sketch Πq : Rd q → Rm for arbitrary d as the composition of Qq ·T q .
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Algorithm 15 Sketch for the Tensor x⊗p

input: Vector x ∈Rd , degree p, base sketches Sbase ∈Rm×m2
and Tbase ∈Rm×d

output: Sketched vector z ∈Rm

1: Let q = 2dlog2 pe

2: Let T1, · · ·Tq be independent instances of the base sketch Tbase :Rd →Rm

3: For every j ∈ {1,2, · · · , p}, let Y 0
j = T j · x

4: For every j ∈ {p +1, · · · , q}, let Y 0
j = T j ·e1, where e1 is the standard basis vector in Rd with

value 1 in the first coordinate and zero elsewhere
5: for l = 1 to log2 q do

6: Let Sq/2l−1

1 , · · · ,Sq/2l−1

q/2l be independent instances of the base sketch Sbase :Rm2 →Rm

7: For every j ∈ {
1, · · · , q/2l

}
let Y l

j = Sq/2l−1

j

(
Y l−1

2 j−1 ⊗Y l−1
2 j

)
8: return z = Y

log2 q
1

Moreover, to extend the definition to arbitrary q which is not necessarily a power of two we

tensor the input vector with a standard basis vector a number of times to make the input size

compatible with the sketch matrices. The sketchΠp is formally defined below,

Definition 5.3.3 (Sketch Πp ). Let m,d be positive integers and let Sbase : Rm2 → Rm and

Tbase :Rd →Rm be linear maps that specify some base sketches. Then, for any integer p ≥ 2

we defineΠp :Rd p →Rm to be the linear map specified as follows:

1. If p is a power of two, then Πp is defined as Πp def= Qp ·T p , where Qp ∈ Rm×mp
and

T p ∈Rmp×d p
are sketches as in Definitions 5.3.1 and 5.3.2 respectively.

2. If p is not a power of two, then let q = 2dlog2 pe be the smallest power of two integer that

is greater than p. We defineΠp as the linear map,

Πp (v) =Πq
(
v ⊗e⊗(q−p)

1

)
,

for every v ∈ Rd p
, where e1 ∈ Rd is the standard basis vector with value 1 in the first

coordinate and zeros elsewhere, andΠq is defined as in the first part of this definition.

Algorithm 15 sketches x⊗p for any integer p and any input vector x ∈Rd using the sketchΠp

as in Definition 5.3.3, i.e., computes Πp (x⊗p ). We show the correctness of Algorithm 15 in the

next lemma.

Lemma 5.3.1. For any positive integers d, m, and p, any distribution on matrices Sbase :Rm2 →
Rm and Tbase : Rd → Rm which specify some base sketches, any vector x ∈ Rd , Algorithm 15

computesΠp
(
x⊗p

)
as in Definition 5.3.3.

Proof. Let Y 0
1 , · · · ,Y 0

p be the vectors that are computed in lines 3 and 4 of Algorithm 15. Then,

as shown in Definition 5.2.2, Y 0
1 ⊗·· ·⊗Y 0

p = T1 ×·· ·×Tq ·
(
x⊗p ⊗e⊗(q−p)

1

)
. Let T q be the sketch
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as in Definition 5.3.2. Then it follows that,

Y 0
1 ⊗·· ·⊗Y 0

q = T q ·
(
x⊗p ⊗e⊗(q−p)

1

)
. (5.3)

The algorithm computes Y l
1 , · · ·Y l

q/2l in line 7 as, Y l
j = Sq/2l−1

j

(
Y l−1

2 j−1 ⊗Y l−1
2 j

)
, for every j ∈{

1, · · · , q/2l
}

and every l ∈ {
1, · · · , log2 q

}
. Therefore, by Claim 5.2.1,

Y l
1 ⊗·· ·⊗Y l

q/2l =
(
Sq/2l−1

1 ×·· ·×Sq/2l−1

q/2l

)
·
(
Y l−1

1 ⊗·· ·⊗Y l−1
q/2l−1

)
.

By definition of the sketch Sq/2l−1
in (5.2) of Definition 5.3.1, for every l ∈ {

1, · · · , log2 q
}
,

Y l
1 ⊗·· ·⊗Y l

q/2l = Sq/2l−1 ·Y l−1
1 ⊗·· ·⊗Y l−1

q/2l−1 .

Therefore, by recursive application of the above identity we get that,

Y
log2 q

1 = S2 ·S4 · · ·Sq/2 ·Sq ·Y 0
1 ⊗·· ·⊗Y 0

q .

By Definition 5.3.1 (sketch Qq ) it follows that,

Y
log2 q

1 =Qq ·Y 0
1 ⊗·· ·⊗Y 0

q .

Substituting Y 0
1 ⊗·· ·⊗Y 0

q from (5.3) in the above gives, z = (Qq ·T q ) ·
(
x⊗p ⊗e⊗(q−p)

1

)
, hence,

by Definition 5.3.3, z =Πp
(
x⊗p

)
.

Choices of the Base Sketches Sbase and Tbase: We present formal definitions of various base

sketches that will be used in our sketch construction. We start by briefly recalling the CountS-
ketch (Charikar et al., 2002).

Definition 5.3.4 (CountSketch). Let h : [d ] → [m] be a 3-wise independent hash function, also

let σ : [d ] → {−1,+1} be a 4-wise independent random sign function. Then, the CountSketch
transform, S :Rd →Rm , is defined as Sr,i

def= σ(i ) ·1 [h(i ) = r ], for every i ∈ [d ] and every r ∈ [m].

Another base sketch that we consider is the degree-2 TensorSketch (Pagh, 2013) defined as:

Definition 5.3.5 (Degree-2 TensorSketch transform). Let h1,h2 : [d ] → [m] be 3-wise inde-

pendent hash functions, and also let σ1,σ2 : [d ] → {−1,+1} be 4-wise independent random

sign functions. Then, the degree-2 TensorSketch transform, S : Rd ×Rd → Rm , is defined as

Sr,(i , j )
def= σ1(i ) ·σ2( j ) ·1[

h1(i )+h2( j ) = r (mod m)
]
, for every i , j ∈ [d ] and every r ∈ [m],

Remark: S
(
x⊗2

)
can be computed in O(m logm +nnz(x)) time using the FFT algorithm.

Now let us briefly recall the SRHT (Ailon and Chazelle, 2006).
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Definition 5.3.6 (SRHT). Let D be a d ×d diagonal matrix with i.i.d. Rademacher diagonal

entries. Also, let P ∈ {0,1}m×d be a uniform random sampling matrix, and let H be a d ×d

Hadamard matrix. Then, the SRHT, S ∈Rm×d , is defined as S
def= 1p

m
PHD .

We now define a new variant of the SRHT that is very efficient for sketching tensor product

vectors. We call this sketch the TensorSRHT.

Definition 5.3.7 (TensorSRHT). Let D1 and D2 be two independent d ×d diagonal matrices,

each with i.i.d. Rademacher diagonal entries. Also let P ∈ {0,1}m×d 2
be a uniform random

sampling matrix, and let H be a d ×d Hadamard matrix. Then, the TensorSRHT is defined to

be a linear map S :Rd ×Rd →Rm given by S
def= 1p

m
P · (HD1 ×HD2).

Remark: S
(
x⊗2

)
can be computed in time O(d logd +m) using the FFT algorithm.

Another sketch which is particularly efficient for sketching sparse vectors with high probability

is the OSNAP transform (Nelson and Nguyên, 2013), defined as follows.

Definition 5.3.8 (OSNAP). For every sparsity parameter s, target dimension m, and positive

integer d , the OSNAP transform with sparsity parameter s is defined as, Sr, j
def=

√
1
s ·δr, j ·σr, j ,

for all r ∈ [m] and all j ∈ [d ], where σr, j ∈ {−1,+1} are independent and uniform Rademacher

random variables and δr, j are Bernoulli random variables satisfying,

1. For every i ∈ [d ],
∑

r∈[m]δr,i = s. That is, each column of S has exactly s non-zero entries.

2. For all r ∈ [m] and all i ∈ [d ], E
[
δr,i

]= s/m.

3. δr,i ’s are negatively correlated: ∀T ⊂ [m]× [d ], E
[∏

(r,i )∈T δr,i
]≤∏

(r,i )∈T E
[
δr,i

]= ( s
m )|T |.

5.4 Linear Dependence on the Tensoring Degree p

There are various desirable properties that one would wish for a linear sketch to satisfy. One

such property that is central to our main results is the JL Moment Property. In this section

we prove Theorem 5.1.1 by propagating the JL moment property through our recursive con-

struction from Section 5.3. The JL moment property captures a bound on the moments of

the difference between the Euclidean norm of a vector and its Euclidean norm after applying

the sketch on it. This proves to be a powerful property which implies the Oblivious Subspace

Embedding as well as the Approximate Matrix Product for linear sketches.

In this section we choose Sbase and Tbase to be TensorSketch and CountSketch respectively.

Then we propagate the second JL moment through the sketch constructionΠp and thereby

prove Theorem 5.1.1.

Throughout this section we use ‖X ‖Lt for the t th moment of X , formally defined as:
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Definition 5.4.1 (Moments of a Random Variable). For every integer t ≥ 1 and any random

variable X ∈ R, we define ‖X ‖Lt
def= (

E
[|X |t ])1/t . Note that ‖X +Y ‖Lt ≤ ‖X ‖Lt +‖Y ‖Lt for any

random variables X ,Y by the Minkowski’s Inequality.

We now formally define the JL Moment Property of sketches.

Definition 5.4.2 (JL Moment Property). For every positive integer t and every δ,ε≥ 0, we say

a distribution over random matrices S ∈Rm×d has the (ε,δ, t )-JL-moment property, when∥∥‖Sx‖2
2 −1

∥∥
Lt ≤ εδ1/t and E

[‖Sx‖2
2

]= 1

for all x ∈Rd such that ‖x‖ = 1.

The following two lemmas together show that to prove thatΠp is an OSE and thatΠp has the

Approximate Matrix Multiplication property, it suffices to prove thatΠq has the JL Moment

Property, for q which is the smallest power of two integer such that q ≥ p, as in Definition 5.3.3.

This reduction will be the main component of the proof of Theorem 5.1.1.

Lemma 5.4.1. For every positive integers n, p,d, every ε,δ ∈ [0,1], and every µ ≥ 0. Let q =
2dlog2(p)e and let Πp ∈ Rm×d p

and Πq ∈ Rm×d q
be defined as in Definition 5.3.3, for some base

sketches Sbase ∈Rm×m2
and Tbase ∈Rd×d .

If Πq is an (ε,δ,µ,d q ,n)-Oblivious Subspace Embedding then Πp is an (ε,δ,µ,d p ,n)-Oblivious

Subspace Embedding. Also if Πq has the (ε,δ)-Approximate Matrix Multiplication Property

thenΠp has the (ε,δ)-Approximate Matrix Multiplication Property.

The proof of this lemma can be found in Appendix D.1.

Lemma 5.4.2. For any ε,δ ∈ [0,1], t ≥ 1, if M ∈ Rm×d is a random matrix with (ε,δ, t)-JL

Moment Property then M has the (ε,δ)-Approximate Matrix Multiplication Property.

Furthermore, for anyµ> 0, if M ∈Rm×d is a random matrix with
(
ε/µ,δ, t

)
-JL Moment Property

then for every positive integer n, M is a (ε,δ,µ,d ,n)-OSE.

This lemma is proved in Appendix D.1.

Our next important observation is thatΠq can be written as the product of 2q −1 independent

random matrices, which all have a special structure which makes them easy to analyse.

Lemma 5.4.3. For any integer power of two q, if Πq : Rmq → Rm is defined as in Defini-

tion 5.3.3 for some base sketches Sbase :Rm2 →Rm and Tbase :Rd →Rm , then there exist matrices{
M (i )

}
i∈[q−1] ,

{
M ′( j )

}
j∈[q] and integers

{
ki ,k ′

i ≤ mq−1
}

i∈[q−1]
,
{

l j , l ′j ≤ d q−1
}

j∈[q]
, such that,

Πq = M (q−1) · . . . M (1) ·M ′(q) · . . . ·M ′(1) ,

and M (i ) = Iki × S(i )
base × Ik ′

i
, M ′( j ) = Il j ×T ( j )

base × Il ′j
, where S(i )

base and T ( j )
base are independent

instances of Sbase and Tbase, for every i ∈ [q −1], j ∈ [q].
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Proof. We have that Πq = Qq T q by Definition 5.3.3. By Definition 5.3.1, Qq = S2S4 · · ·Sq .

Claim 5.3.1 shows that for every l ∈ {2,4, · · ·q} we can write,

Sl = M l
l /2M l

l/2−1 · . . . ·M l
1, (5.4)

where M l
j = Iml−2 j ×Sl

l/2− j+1 × Im j−1 for every j ∈ [l /2]. From the discussion in Definition 5.3.2

it follows that,

T q = M ′(q) · . . . ·M ′(1), (5.5)

where M ′( j ) = Id q− j ×Tq− j+1 × Im j−1 for every j ∈ [q]. Therefore by combining (5.4) and (5.5)

we get the result.

We want to show that Ik × M × Ik ′ inherits the JL moment properties of M . The following

Lemma, which follows from the simple fact stated in Lemma D.1.2 in Appendix D.1, does that.

Lemma 5.4.4. If the matrix S has the (ε,δ, t )-JL Moment Property, then for any positive integers

k,k ′, the matrix M = Ik ×S × Ik ′ has the (ε,δ, t )-JL Moment Property.

Similarly, if the matrix S has the Strong (ε,δ)-JL Moment Property, then for any positive integers

k,k ′, the matrix M = Ik ×S × Ik ′ has the Strong (ε,δ)-JL Moment Property.

Consequently, if we can prove that the product of matrices with the JL moment property

inherits the JL moment property, then Lemma 5.4.4 and Lemma 5.4.3 will imply thatΠq has

the JL moment property, which in turn implies that Πp is an OSE and has the Approximate

Matrix Multiplication property, by Lemma 5.4.2 and Lemma 5.4.1. This is exactly what we will

do: in Section 5.4.1 we prove that the product of k independent matrices with the
(

εp
2k

,δ,2
)
-JL

Moment Property results in a matrix with the (ε,δ,2)-JL Moment Property, thereby giving the

proof of Theorem 5.1.1.

5.4.1 Second moment of Πq (analysis for Tbase : CountSketch and Sbase : TensorS-
ketch)

In this section we prove Theorem 5.1.1 by instantiating our recursive construction withCountS-
ketch at the leaves and TensorSketch at the internal nodes of the tree. The proof proceeds

by showing bounding the second moment of our recursive construction. More precisely, we

prove that our sketchΠq satisfies the (ε,δ,2)-JL Moment Property as per Definition 5.4.2 as

long as the base sketches Sbase,Tbase are chosen from distributions which satisfy such moment

property. We show that this is the case for CountSketch and TensorSketch. Lemma 5.4.4 and

Lemma 5.4.3 show thatΠq is the product of 2q −1 independent random matrices, therefore,

understanding how matrices with the JL Moment Property compose is crucial. The following

lemma shows that composing independent random matrices which have the JL moment

property results in a matrix with the JL moment property with a small loss in parameters.

Lemma 5.4.5 (Composition lemma for the second moment). For any ε,δ≥ 0 and any integer
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k if M (1) ∈Rd2×d1 , · · ·M (k) ∈Rdk+1×dk are independent random matrices with
(

εp
2k

,δ,2
)
-JL mo-

ment property then the product matrix M = M (k) · · ·M (1) satisfies (ε,δ,2)-JL moment property.

Proof. Let x ∈Rd1 be a fixed unit norm vector. We note that for any i ∈ [k],

E

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣ M (1), . . . , M (i−1)
]
=

∥∥∥M (i−1) · . . . ·M (1)x
∥∥∥2

2
. (5.6)

We proceed to prove by induction on i ∈ [k] that,

Var

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

]
≤

(
1+ ε2δ

2k

)i

−1. (5.7)

For i = 1 the result follows from the fact that M (1) has the
(
ε/
p

2k,δ,2
)
-JL moment property.

Now assume that (5.7) is true for i −1. By the law of total variance we can write

Var

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

]
= E

[
Var

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣ M (1), . . . , M (i−1)
]]

+Var

[
E

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣ M (1), . . . , M (i−1)
]]

(5.8)

Using (5.6) and the induction hypothesis we get that,

Var

[
E

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣ M (1), . . . , M (i−1)
]]

= Var

[∥∥∥M (i−1) · . . . M (1)x
∥∥∥2

2

]
≤

(
1+ ε2δ

2k

)i−1

−1. (5.9)

Since M (i ) has the
(
ε/
p

2k,δ,2
)
-JL moment property, (5.6) and the induction hypothesis

together imply that,

E

[
Var

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣ M (1), . . . , M (i−1)
]]

≤ E
[
ε2

2k
δ

∥∥∥M (i−1) · . . . M (1)x
∥∥∥4

2

]
= ε2δ

2k

(
Var

[∥∥∥M (i−1) · . . . M (1)x
∥∥∥2

2

]
+E

[∥∥∥M (i−1) · . . . M (1)x
∥∥∥2

2

]2)
≤ ε2δ

2k

((
1+ ε2δ

2k

)i−1

−1+1

)
= ε2δ

2k

(
1+ ε2δ

2k

)i−1

. (5.10)

Plugging (5.9) and (5.10) into (5.8) gives,

Var

[∥∥∥M (i ) · . . . ·M (1)x
∥∥∥2

2

]
≤ ε2δ

2k

(
1+ ε2δ

2k

)i−1

+
(
1+ ε2δ

2k

)i−1

−1 =
(
1+ ε2δ

2k

)i

−1 .
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Hence, Var
[‖M x‖2

2

]≤ (
1+ ε2δ

2k

)k −1 ≤ ε2δ. Moreover, it is easy to verify that E
[‖M x‖2

2

]= 1, by

law of total expectation, which proves that M has the (ε,δ,2)-JL moment property.

Equipped with the composition lemma for the second moment, we now establish the second

moment property for our recursive sketchΠq :

Corollary 5.4.1 (Second moment property of Πq ). For any power of two integer q let Πq :

Rmq → Rm be defined as in Definition 5.3.3, where both of the common distributions Sbase :

Rm2 →Rm and Tbase :Rd →Rm , satisfy the

(
εp

4q−2
,δ,2

)
-JL moment property. Then it follows

thatΠq satisfies the (ε,δ,2)-JL moment property.

Proof. This immediately follows from Lemma 5.4.3, Lemma 5.4.4, and Lemma 5.4.5.

Now we are in a position to prove Theorem 5.1.1. Recall that k(x, y) = 〈x, y〉q = 〈x⊗q , y⊗q〉 is

the polynomial kernel of degree q . Let x1, x2, · · ·xn ∈Rm be an arbitrary dataset of n points in

Rm . We represent the data points by matrix X ∈Rm×n whose i th column is the vector xi . Also,

let A ∈Rmq×n be the matrix whose i th column is x⊗q
i for every i ∈ [n].

Theorem 5.1.1. For every positive integers n, p,d, every ε, sλ > 0, there exists a distribution on

linear sketches Πp ∈ Rm×d p
such that: (1) If m =Ω(

ps2
λ
ε−2

)
, then Πp is an (ε,1/10, sλ,d p ,n)-

oblivious subspace embedding as in Definition 5.1.2. (2) If m = Ω
(
pε−2

)
, then Πp has the

(ε,1/10)-approximate matrix product property as in Definition 5.1.3.

Moreover, for any X ∈Rd×n , if A ∈Rd p×n is the matrix whose columns are obtained by the p-fold

self-tensoring of each column of X thenΠp A can be computed in time Õ
(
pnm +p nnz(X )

)
.

Proof. Throughout the proof, suppose δ = 1
10 denotes the failure probability, q = 2dlog2 pe,

and e1 ∈ Rd is the column vector with a 1 in the first coordinate and zeros elsewhere. Let

Πp ∈ Rm×d p
be the sketch defined in Definition 5.3.3, where the base distributions Sbase ∈

Rm×m2
and Tbase ∈Rm×d are respectively the standard degree-2 TensorSketch (Definition 5.3.5)

and standard CountSketch (Definition 5.3.4). It is shown in (Avron et al., 2014; Clarkson and

Woodruff, 2017) that for these choices of base sketches, Sbase and Tbase are both unbiased and

satisfy the

(
εp

4q−2
,δ,2

)
-JL moment property as long as m =Ω( q

ε2δ

)
(see Definition 5.4.2).

Oblivious Subspace Embedding. Let m =Ω
(

qs2
λ

δε2

)
be a large enough integer. Then Sbase and

Tbase have the

(
ε

sλ·
p

4q−2
,δ,2

)
-JL Moment Property. Thus using Corollary 5.4.1 we conclude

that Πq has the
(
ε
sλ

,δ,2
)
-JL Moment Property. Hence, Lemma 5.4.2 implies that Πq is an

(ε,δ, sλ,d q ,n)-Oblivious Subspace Embedding, which in turn, by Lemma 5.4.1, implies that

Πp is an (ε,δ, sλ,d p ,n)-Oblivious Subspace Embedding.
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5.5. Linear Dependence on the Statistical Dimension sλ

Approximate Matrix Multiplication. Let m =Ω( q
δε2

)
be a large enough integer. Then Sbase

and Tbase have the

(
εp

4q−2
,δ,2

)
-JL Moment Property. Thus, using Corollary 5.4.1 we conclude

that Πq has the (ε,δ,2)-JL Moment Property. Thus, Lemma 5.4.2 implies that Πq has the

(ε,δ)-Approximate Matrix Multiplication Property, and by Lemma 5.4.1 we find thatΠp has

the (ε,δ)-Approximate Matrix Multiplication Property.

Runtime of Algorithm 15 when the base sketch Sbase is degree-2 TensorSketch and Tbase is

CountSketch: We bound the time of running Algorithm 15 on a vector x. Computing Y 0
j for

each j in lines 3 and 4 of algorithm requires applying a CountSketch on either x or e1 which

requires O(nnz(x)) operations. Therefore computing all Y 0
j ’s takes time O(q ·nnz(x)).

Computing each of Y l
j ’s for l ≥ 1 in line 7 of Algorithm 15 amounts to applying a degree-2

TensorSketch with input dimension m2 and target dimension m on Y l−1
2 j−1 ⊗Y l−1

2 j . This takes

time O(m logm). Therefore computing Y l
j for all l , j ≥ 1 takes time O(q ·m logm). Note that

q ≤ 2p and hence the total running time of Algorithm 15 on a vector x is O(pm logm+pnnz(x)).

Sketching n columns of a matrix X ∈Rd×n takes time O
(
pnm logm +pnnz(X )

)
.

5.5 Linear Dependence on the Statistical Dimension sλ

In this section, we show that by choosing the internal nodes and the leaves of our recursive

construction in Section 5.3 to be TensorSRHT and OSNAP transforms respectively, then the

sketchΠq as in Definition 5.3.3 yields a high probability OSE with target dimension Õ
(
p4sλ

)
.

Thus, we prove Theorem 5.1.2. This sketch is highly efficient to compute because the OSNAP
transform is computable in input sparsity time and the TensorSRHT supports fast matrix

vector multiplication for tensor inputs.

We start by defining the Spectral Property of a random matrix. We use the notation ‖ ·‖op to

denote the operator norm of matrices.

Definition 5.5.1 (Spectral Property). For any positive integers m,n,d and any ε,δ,µF ,µ2 ≥ 0

we say that a random matrix S ∈Rm×d satisfies the
(
µF ,µ2,ε,δ,n

)
-Spectral Property if, for every

fixed matrix U ∈Rd×n with ‖U‖2
F ≤µF and ‖U‖2

op ≤µ2,

PrS

[∥∥U>S>SU −U>U
∥∥

op ≤ ε
]
≥ 1−δ.

The spectral property is a central property of our sketch construction in Section 5.3 when

leaves are OSNAP and internal nodes are TensorSRHT. This is a powerful property which

implies that our sketch is an Oblivious Subspace Embedding. The SRHT, TensorSRHT, as well

as OSNAP sketches (Definitions 5.3.6, 5.3.7, 5.3.8 respectively) with target dimension m =
Ω

(
µFµ2

ε2 ·polylog nd
δ

)
and sparsity parameter s = Ω

(
log nd

δ

ε

)
, all satisfy the above-mentioned

spectral property (Sarlos, 2006; Tropp, 2011; Nelson and Nguyên, 2013).

We start by showing in section 5.5.1 that our recursive construction of Πp satisfies the Spectral
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Property as per Definition 5.5.1 as long as Id q ×Tbase and Imq ×Sbase have such property. There-

fore, we proceed by analyzing the Spectral Property of Id q×OSNAP and Imq×TensorSRHT
in section 5.5.2. Finally, we put everything together in section 5.5.3 and prove that when the

leaves are OSNAP and the internal nodes are TensorSRHT in our recursive construction of

Πp , the resulting sketch satisfies the Spectral Property thereby proving Theorem 5.1.2.

5.5.1 Spectral property of the sketchΠq

In this section we show that the sketchΠq presented in Definition 5.3.3 inherits the spectral

property (see Definition 5.5.1) from the base sketches Sbase and Tbase. We start by proving that

composing independent random matrices inherits the spectral property from the original

matrices a with small loss.

Lemma 5.5.1. For any ε,δ,µF ,µ2 > 0 and every positive integers k,n, if M (1) ∈Rd2×d1 , · · ·M (k) ∈
Rdk+1×dk are independent random matrices satisfying

(
2µF +2,µ2 +2, ε

3k , δ
4nk ,n

)
-spectral prop-

erty then the product matrix M = M (k) · · ·M (1) has (µF +1,µ2 +1,ε,δ,n)-spectral property.

Proof. Consider a matrix U ∈Rd1×n which satisfies ‖U‖2
F ≤µF +1 and ‖U‖2

op ≤µ2 +1. We aim

to prove that for every such U ,Pr
[∥∥U>M>MU −U>U

∥∥
op ≤ ε

]
≥ 1−δ, where M ≡ M (k) · · ·M (1).

For every j ∈ [k], let us define the set E j as follows,

E j :=
(

M (1), . . . , M ( j )
)

:

1.
∥∥[

M ( j ) · · ·M (1)
]

U
∥∥2

F ≤ (
1+ ε

3k

) j ‖U‖2
F

2.
∥∥∥U> [

M ( j ) · · ·M (1)
]> [

M ( j ) · · ·M (1)
]

U −U>U
∥∥∥

op
≤ ε j

3k

 .

First we prove that for every j ∈ {1, · · · ,k −1},

Pr
[(

M (1), · · · , M ( j+1)
)
∈ E j+1

∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

2k
. (5.11)

We proceed to prove (5.11) in an inductive fashion. Suppose that
(
M (1), · · · , M ( j )

) ∈ E j for some

j ≥ 1. Let us denote
[
M ( j ) · · ·M (1)

]
U by U ′. The assumption

(
M (1), · · · , M ( j )

) ∈ E j implies that,

‖U ′‖2
F ≤ (

1+ ε
3k

) j ‖U‖2
F and

∥∥∥U ′>U ′−U>U
∥∥∥

op
≤ ε j

3k and therefore by triangle inequality we

have ‖U ′‖2
op ≤ ‖U‖2

op + ε j
3k . The assumptions ‖U‖2

F ≤µF +1 and ‖U‖2
op ≤µ2 +1 together with

j ≤ k −1 imply that ‖U ′‖2
F ≤ 2µF +2 and ‖U ′‖2

op ≤µ2 +2. Now note that by the assumption of

lemma, M ( j+1) satisfies
(
2µF +2,µ2 +2, ε

3k , δ
4nk ,n

)
-spectral property. Therefore,

Pr

[∥∥∥∥(
M ( j+1)U ′

)>
M ( j+1)U ′−U ′>U ′

∥∥∥∥
op

≤ ε

3k

∣∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

4nk
.
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Combining the above with ‖U ′>U ′−U>U‖2 ≤ ε j
3k gives,

Pr

[∥∥∥∥(
M ( j+1)U ′

)>
M ( j+1)U ′−U>U

∥∥∥∥
op

≤ ε j +1

3k

∣∣∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

4nk
. (5.12)

Furthermore, the spectral property of M ( j+1) implies that for every column U ′i of matrix U ′,∥∥∥M ( j+1)U ′i
∥∥∥2

2
=

(
1± ε

3k

)∥∥∥U ′i
∥∥∥2

2
,

with probability 1− δ
4nk . By a union bound over all i ∈ [n], we have the following,

Pr

[∥∥∥M ( j+1) ·U ′
∥∥∥2

F
≤

(
1+ ε

3k

)∥∥U ′∥∥2
F

∣∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

4k
.

Combining the above with ‖U ′‖2
F ≤ (

1+ ε
3k

) j ‖U‖2
F , we find that

Pr

[∥∥∥M ( j+1) ·U ′
∥∥∥2

F
≤

(
1+ ε

3k

) j+1
‖U‖2

F

∣∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

4k
. (5.13)

A union bound on (5.12) and (5.13) gives,

Pr
[(

M (1), · · · , M ( j+1)
)
∈ E j+1

∣∣∣(M (1), · · · , M ( j )
)
∈ E j

]
≥ 1− δ

4nk
− δ

4k
≥ 1− δ

2k
.

We also show that Pr
[
M (1) ∈ E1

]≥ 1−δ/2k. By the assumption of lemma we know that M (1)

satisfies the
(
2µF +2,µ2 +2, ε

3k , δ
4nk ,n

)
-spectral property. Therefore,

PrM (1)

[∥∥∥(
M (1)U

)>
M (1)U −U>U

∥∥∥
op

≤ ε

3k

]
≥ 1− δ

4nk
. (5.14)

Additionally, for every column U i of matrix U ,∥∥∥M (1)U i
∥∥∥2

2
=

(
1± ε

3k

)∥∥∥U i
∥∥∥2

2
,

with probability 1− δ
4nk . By a union bound over all i ∈ [n], we find the following,

Pr
[∥∥M (1) ·U∥∥2

F ≤
(
1+ ε

3k

)
‖U‖2

F

]
≥ 1− δ

4k
. (5.15)

A union bound on (5.14) and (5.15) gives,

Pr
[
M (1) ∈ E1

]≥ 1− δ

4nk
− δ

4k
≥ 1− δ

2k
.
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By the chain rule we have,

Pr
[(

M (1), · · · , M (k)
)
∈ Ek

]
=

k∏
j=1

Pr
[(

M (1), · · ·M ( j )
)
∈ E j

∣∣∣(M (1), · · ·M ( j−1)
)
∈ E j−1

]
≥

(
1− δ

2k

)k

≥ 1−δ,

which completes the proof of the lemma.

Before stating the main result of this section, we need to first present a claim that follows fom

basic properties of tensor products and definition of the spectral property.

Claim 5.5.1. For every ε,δ> 0 and any sketch S ∈Rm×d such that Ik ×S satisfies (µF ,µ2,ε,δ,n)-

spectral property, the sketch S × Ik also satisfies the (µF ,µ2,ε,δ,n)-spectral property.

Proof. Suppose U ∈Rdk×n . Then, note that there exists U ′ ∈Rdk×n formed by permuting the

rows of U such that (S × Ik )U and (Ik ×S)U ′ are identical up to a permutation of the rows. (In

particular, the (d ,k)-reshaping of any column U j of U is the transpose of the (k,d)-reshaping

of the corresponding column U ′ j of U ′.) Then, observe that

U>U =U ′>U ′, and U>(S × Ik )>(S × Ik )U =U ′>(Ik ×S)>(Ik ×S)U ′.

Therefore,∥∥U>(S × Ik )>(S × Ik )U −U>U
∥∥

op =
∥∥∥U ′>(Ik ×S)>(Ik ×S)U ′−U ′>U ′

∥∥∥
op

.

Moreover, since U and U ′ are identical up to a permutation of the rows, we have ‖U‖op =
‖U ′‖op and ‖U‖F = ‖U ′‖F . The desired claim now follows easily.

The following lemma shows that the sketch Πq presented in definition 5.3.3 inherits the

spectral property of Definition 5.5.1 from the base sketches. That is, if Sbase and Tbase are such

that Imq−2 ×Sbase and Id q−1 ×Tbase satisfy the spectral property, then the sketchΠq satisfies the

spectral property.

Lemma 5.5.2. For every positive integers n,d ,m, any power of two integer q, any base sketches

Sbase :Rm2 →Rm and Tbase :Rd →Rm such that both Imq−2 ×Sbase and Id q−1 ×Tbase satisfy the(
2µF +2,µ2 +2, ε

6q , δ
8nq ,n

)
-spectral property, then the sketchΠq as defined in Definition 5.3.3

satisfies the
(
µF +1,µ2 +1,ε,δ,n

)
-spectral property.

Proof. We wish to show that the sketch Πq ≡ Qq T q as per Definition 5.3.3, satisfies the
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(
µF +1,µ2 +1,ε,δ,n

)
-spectral property. By Lemma 5.4.3,

Πq = M (2q−1)M (2q) · · ·M (1),

where M (i ) are independent matrices that satisfy
(
2µF +2,µ2 +2, ε

6q , δ
8nq ,n

)
-spectral property.

That is by the assumption of the lemma about the spectral property of Imq−2 × Sbase and

Id q−1 ×Tbase together with Claim 5.5.1. Therefore, the Lemma readily follows by invoking

Lemma 5.5.1 with k = 2q +1.

5.5.2 Spectral property of Identity×TensorSRHT and Identity×OSNAP

In this section, we show that tensoring an identity operator with our base sketches results in

a matrix that satisfies the spectral property (Definition 5.5.1). We show that using either of

TensorSRHT or OSNAP as the base sketch yields a transform that has the spectral property.

The following lemma proves that tensoring identity with TensorSRHT (Definition 5.3.7) results

in a transform that satisfies the spectral property with nearly optimal target dimension.

Lemma 5.5.3. For any ε,δ,µ2,µF > 0 and any integers n,k > 0, if m =Ω
(
log n

δ log2( ndk
εδ ) · µFµ2

ε2

)
and S ∈Rm×d is a TensorSRHT, then the sketch Ik ×S satisfies (µF ,µ2,ε,δ,n)-spectral property.

The above lemma is proved in Appendix D.2.1. In the next lemma, we show that tensoring

identity operator with OSNAP results in a sketch that satisfies the spectral property with

nearly optimal target dimension as well as nearly optimal application time. This sketch is

particularly efficient for sketching sparse vectors. We use a slightly different version than the

original OSNAP to simplify the analysis, defined as follows.

Definition 5.5.2 (OSNAP transform). For every positive integers s, m, and d , the OSNAP
transform with sparsity parameter s and target dimension m is defined as,

Sr, j
def=

√
1

s
·δr, j ·σr, j ,

for all r ∈ [m] and all j ∈ [d ], where σr, j ∈ {−1,+1} are i.i.d. uniform Rademacher random

variables and δr, j are i.i.d. Bernoulli random variables satisfying, E
[
δr,i

]= s/m.

Now we state the spectral property result for OSNAP which is proved in Appendix D.2.2.

Lemma 5.5.4. For every ε,δ,µ2,µF > 0 and positive integer n, if S ∈Rm×d is an OSNAP sketch

with sparsity parameter s, then the sketch Ik ×S satisfies the (µF ,µ2,ε,δ,n)-spectral property,

provided that s =Ω
(
log2

(
ndk
εδ

)
log n

δ ·
µ2

2
ε2

)
and m =Ω

(
log

(
ndkµF

εδ

)
log nd

δ · µ2µF

ε2

)
.

5.5.3 High probability OSE with linear dependence on sλ

We are ready to prove Theorem 5.1.2. We prove that if we instantiate Πp (Definition 5.3.3)

with Tbase : OSNAP and Sbase : TensorSRHT, it satisfies the Oblivious Subspace Embedding
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guarantee.

Theorem 5.1.2. For every positive integers p,d ,n, every ε, sλ > 0, there exists a distribution on

linear sketchesΠp ∈Rm×d p
which is an

(
ε,1/polyn, sλ,d p ,n

)
-oblivious subspace embedding

as in Definition 5.1.2, provided that the integer m satisfies m = Ω̃(
p4sλ/ε2

)
.

Moreover, for any X ∈Rd×n , if A ∈Rd p×n is the matrix whose columns are obtained by the p-fold

self-tensoring of each column of X thenΠp A can be computed in time Õ
(
pnm +p5ε−2 nnz(X )

)
.

Proof. Let δ= 1
poly(n) denote the failure probability. Let m ≈ p4sλ

ε2 log3
(

nd
εδ

)
and s ≈ p4

ε2 log3
(

nd
εδ

)
.

Let Πp ∈ Rm×mp
be the sketch defined in Definition 5.3.3, where Sbase ∈ Rm×m2

and Tbase ∈
Rm×d are TensorSRHT and OSNAP with sparsity parameter s, respectively. Let q = 2dlog2(p)e.
By Lemma 5.4.1, it is sufficient to show thatΠq is an

(
ε,δ, sλ,d q ,n

)
-Oblivious Subspace Em-

bedding. Consider arbitrary A ∈Rd q×n and λ≥ 0 and let U = A
(

A>A+λIn
)−1/2

. Let us denote

the statistical dimension of A by sλ = sλ(A>A). Therefore, ‖U‖2 ≤ 1 and ‖U‖2
F = sλ. Since

q < 2p, by Lemma 5.5.4, the transform Id q−1 ×Tbase, satisfies
(
2sλ+2,2, ε

6q , δ
8nq ,n

)
-spectral

property. Moreover, by Lemma 5.5.3, Imq−2 ×Sbase satisfies
(
2sλ+2,2, ε

6q , δ
8nq ,n

)
-spectral prop-

erty. Therefore, by Lemma 5.5.2,Πq satisfies (sλ+1,1,ε,δ,n)-spectral property. Hence,

Pr
[∥∥(ΠqU )>ΠqU −U>U

∥∥
op ≤ ε

]
≥ 1−δ.

Since U>U = (A>A +λIn)−1/2 A>A(A>A +λIn)−1/2 and ΠqU =Πq A(A>A +λIn)−1/2 we find

that Pr
[
(1−ε)(A>A+λIn) ¹ (Πq A)>Πq A+λIn ¹ (1+ε)(A>A+λIn)

]≥ 1−δ, which proves that

Πq is an
(
ε,δ, sλ,d q ,n

)
-Oblivious Subspace Embedding.

Runtime: By Lemma 5.3.1, if A is the matrix whose columns are obtained by p-fold self-

tensoring of each column of X ∈ Rd×n then Πp A can be computed using Algorithm 15. We

bound the time of running Algorithm 15 on a vector x when Sbase is TensorSRHT and Tbase is

OSNAP. Computing Y 0
j ’s for each j in lines 3 and 4 of algorithm requires applying an OSNAP

sketch on either x or e1 which takes time O(s ·nnz(x)). Therefore computing Y 0
j for all j takes

time O(qs ·nnz(x)). Computing each of Y l
j ’s in line 7 of algorithm amounts to applying a

TensorSRHT with input dimension m2 and target dimension m on Y l−1
2 j−1 ⊗Y l−1

2 j . This takes

time O(m logm). Therefore computing all Y l
j ’s takes time O(qm logm). Note that q ≤ 2p hence

the total time of running Algorithm 15 on a vector x is O(pm logm +ps ·nnz(x)). Therefore,

sketching n columns of a matrix X ∈Rd×n takes time O
(
pnm logm +ps ·nnz(X )

)
.

5.6 Oblivious Embedding of the Gaussian Kernel

In this section we show how to sketch the Gaussian kernel matrix by polynomial expansion

and then applying our proposed sketch for the polynomial kernels.
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Data-points with bounded `2 radius: Suppose that we are given a dataset of points x1, · · ·xn ∈
Rd such that for all i ∈ [n], ‖xi‖2

2 ≤ r for some positive value r . Consider the Gaussian kernel

matrix G ∈Rn×n defined as Gi , j
def= e−‖xi−x j ‖2

2/2 for all i , j ∈ [n]. We are interested in sketching

the data points matrix X using a sketch Sg : Rd → Rm such that the following holds with

probability 1−δ,

(1−ε)(G +λIn) ¹ (
Sg (X )

)> Sg (X )+λIn ¹ (1+ε)(G +λIn).

Theorem 5.1.3. For every r > 0, every positive integers n,d, and every X ∈ Rd×n such that

‖xi‖2 ≤ r for all i ∈ [n], where xi is the i th column of X , suppose G ∈ Rn×n is the Gaussian

kernel matrix – i.e., G j ,k = e−‖x j−xk‖2
2/2 for all j ,k ∈ [n]. There exists an algorithm that computes

Sg (X ) ∈Rm×n in time Õ
(
q6ε−2nsλ+q6ε−2 nnz(X )

)
such that for every ε,λ> 0,

PrSg

[
(1−ε)(G +λIn) ¹ (

Sg (X )
)> Sg (X )+λIn ¹ (1+ε)(G +λIn)

]
≥ 1− 1

poly(n)
,

where m = Θ̃(
q5sλ/ε2

)
and q =Θ(r 2 + log n

ελ ) and sλ is λ-statistical dimension of G.

Proof. Let δ= 1
poly(n) denote the failure probability. Note that Gi , j = e−‖xi ‖2

2/2 ·ex>
i x j ·e−‖x j ‖2

2/2

for every i , j ∈ [n]. Let D be an n ×n diagonal matrix with i th diagonal entry e−‖xi ‖2
2/2 and let

K ∈ Rn×n be defined as Ki , j = ex>
i x j . Note that DK D ≡ G and K is a positive definite kernel

matrix. The Taylor series expansion of kernel K is K ≡ ∑∞
l=0

[
X ⊗l

]>
X ⊗l

l ! . Therefore, G can be

written as the following series,

G ≡
∞∑

l=0

[
X ⊗l D

]>
X ⊗l D

l !
.

Note that each term
[

X ⊗l D
]>

X ⊗l D = D(X ⊗l )>X ⊗l D is a positive definite kernel matrixand

the statistical dimension of
[

X ⊗l D
]>

X ⊗l D for every l ≥ 0 is upper bounded by the statistical

dimension of G through the following claim.

Claim 5.6.1. For every µ≥ 0 and every integer l , sµ
([

X ⊗l D
]>

X ⊗l D
)
≤ sµ(G).

Proof. Using the fact that a polynomial kernel of any degree is positive definite, we find that[
X ⊗l D

]>
X ⊗l D ¹G . By Courant-Fischer’s min-max theorem we have,

λ j

([
X ⊗l D

]>
X ⊗l D

)
= max

U∈R(n− j+1)×n
min
α6=0

Uα=0

α> [
X ⊗l D

]>
X ⊗l Dα

‖α‖2
2

.
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Let U∗ be the maximizer of the expression above. Then we have,

λ j (G) = max
U∈R(n− j+1)×n

min
α6=0

Uα=0

α>Gα

‖α‖2
2

≥ min
α6=0

U∗α=0

α>Gα

‖α‖2
2

≥ min
α6=0

U∗α=0

α> [
X ⊗l D

]>
X ⊗l Dα

‖α‖2
2

=λ j

([
X ⊗l D

]>
X ⊗l D

)
.

for every j . Therefore, the claim follows from the definition of statistical dimension,

sµ(G) =
n∑

j=1

λ j (G)

λ j (G)+µ ≥
n∑

j=1

λ j

([
X ⊗l D

]>
X ⊗l D

)
λ j

([
X ⊗l D

]> X ⊗l D
)
+µ

= sµ

([
X ⊗l D

]>
X ⊗l D

)
.

If we let P =∑q
l=0

(X ⊗l )>X ⊗l

l ! and q = 8r 2 + ln n
ελ , then by the triangle inequality we have,

‖K −P‖op ≤ ∑
l>q

∥∥∥∥∥
[

X ⊗l
]>

X ⊗l

l !

∥∥∥∥∥
F

≤ ∑
l>q

n · r 2l

l !
≤ ελ/2.

Since P is a positive definite kernel matrix and all eigenvalues of D are bounded by 1, in order

to prove the theorem it is sufficient to satisfy the following with probability 1−δ,

(1−ε/3)(DPD +λIn) ¹ (
Sg (X )

)> Sg (X )+λIn ¹ (1+ε/3)(DPD +λIn).

LetΠl ∈Rml×d l
be the sketch defined as per Theorem 5.1.2 with ml =Θ

(
l 4 log3 nd

δ · sλ
ε2

)
, where

sλ is the λ-statistical dimension of G . Therefore by Claim 5.6.1, with probability 1− δ
q+1 :

(
1− ε

9

)([
X ⊗l D

]>
X ⊗l D +λIn

)
¹

[
Πl X ⊗l D

]>
Πl X ⊗l D +λIn ¹

(
1+ ε

9

)([
X ⊗l D

]>
X ⊗l D +λIn

)
. (5.16)

Moreover,Πl X ⊗l D can be computed using O
(
l nml logml + l 5

ε2 log3 nd
δ ·nnz(X )

)
runtime.

We let SP be the linear mapping from SP :R
∑q

l=0 d l →Rm defined as

SP
def=

[
1p
0!
Π0

]
⊕

[
1p
1!
Π1

]
⊕

[
1p
2!
Π2

]
· · ·

[
1√
q !
Πq

]
.

Let Z be the matrix of size
(∑q

l=0 d l
)×n whose i th column is zi = x⊗0

i ⊕x⊗1
i ⊕x⊗2

i · · ·x⊗q
i , where
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xi is the i th column of X . The following holds for [SP Z ]>SP Z ,

[SP Z ]> SP Z =
q∑

l=0

[
Πl X ⊗l

]>
Πl X ⊗l

l !
.

This trivially implies that,

[SP Z D]>SP Z D =
q∑

l=0

[
Πl X ⊗l D

]>
Πl X ⊗l D

l !
.

Therefore, by union bound, we find that (5.16) holds for all 0 ≤ l ≤ q with probability 1−δ,

giving the following,

(1−ε/3)(DPD +λIn) ¹ [SP Z D]> SP Z D +λIn ¹ (1+ε/3)(DPD +λIn).

Now we define non-linear transformation Sg :Rd →Rm as follows,

Sg (x)
def= e−‖x‖2

2/2

([
1p
0!
Π0 (

x⊗0)]⊕[
1p
1!
Π1 (

x⊗1)]⊕[
1p
2!
Π2 (

x⊗2)] · · ·[ 1√
q !
Πq (

x⊗q)])
.

We have that Sg (X ) = SP Z D , therefore with probability 1−δ, the following holds,

(1−ε)(G +λIn) ¹ (
Sg (X )

)> Sg (X )+λIn ¹ (1+ε)(G +λIn).

Note that the target dimension of Sg is m = m0+m1+·· ·+mq ≈ q5 log3 nd
δ · sλ

ε2 . Also, by Theorem

5.1.2, time to compute Sg (X ) is O
(

q6n
ε2 log4 nd

δ · sλ+ q6

ε2 log3 nd
δ ·nnz(X )

)
.
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6 Conclusion

The research results mentioned in this thesis have shed light on–and sometimes fully re-

solved–a number of important questions in the theoretical foundations of data science while,

at the same time, opening several promising avenues for further progress. We outline these

directions below.

Sparse FFT: Theory vs Practice. In this thesis, we devised sparse FFT algorithms that achieve

theoretically optimal sample complexity in sublinear time by exploiting structure beyond

sparsity. Nonetheless, the theoretical guarantees ignore constant factors and in practice, the

compressive sensing algorithms typically outperform the sparse FFT algorithms in terms

of sample complexity at the expense of incurring a slow superlinear runtime. The practical

sample complexity of learning sparse functions is crucially important because in applica-

tions like hyperparameter tuning of massive neural networks (Hazan et al., 2018) every data

sample requires running a computationally expensive training process. On the other hand,

the compressive sensing methods are both theoretically and practically slow with (at least)

linear runtime which makes them intractable for the hyperparameter tuning applications

because their runtime scales exponentially in the number of hyperparameter of the neural

network. As of now, it is not known how to achieve the practically optimal sample complexity

of compressive sensing methods and fast runtime at the same time, so, a very interesting open

question is unifying theory and practice of sparse FFT algorithms.

Optimal Kernel Embeddings: a Unified Method. The results we presented in this thesis make

exciting progress in the problem of spectrally approximating kernel matrices, by giving near-

optimal oblivious sketching of the Polynomial kernel as well as near-optimal characterization

of the Gaussian kernel using Fourier sampling. However, these methods are tailored to the

specific choice of the kernel function and do not extend to for instance, non-smooth kernels

such as Laplacian kernel or kernels with slowly decaying tails such as Cauchy. As a result, there

is no overarching kernel approximation method that works optimally for a wide class of kernel

problems. So, a very interesting open problem is to design a unified kernel embedding tech-

177



Chapter 6. Conclusion

nique that works optimally for a wide range of kernel functions including Cauchy, Laplacian,

Gaussian, and Polynomial.
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A Supplementary Materials for Chap-
ter 1

A.1 Fourier Downsampling via Compactly Supported Flat Filters

A.1.1 Flat filters with compact support

Our filter construction is similar to (Indyk and Kapralov, 2014), but we prove and utilize

different properties, and hence provide the details for completeness.

Definition A.1.1 (Rectangular pulse). For an even integer B ′, let rectB ′ denote the rectangular

pulse of width B ′−1, i.e.,

rectB ′(t ) =
{

1, if |t | < B ′
2

0 otherwise.

For an integer B ′ > 0 a power of 2, define the length-n signal,

W (·) =
( n

B ′−1
· rectB ′

)
? · · ·?

( n

B ′−1
· rectB ′

)
, (A.1)

where the convolution is performed F times. As noted in (Indyk and Kapralov, 2014), we have

supp (W ) ⊆ [−F B ′,F B ′], and the Fourier transform is given by,

Ŵ f =
 1

B ′−1

∑
| f ′|< B ′

2

ω
f f ′
n

F

=
(

sin(π(B ′−1) f /n)

(B ′−1)sin(π f /n)

)F

(A.2)

for f 6= 0, and W0 = 1.

Lemma A.1.1. (Properties of W ) For every even F ≥ 2, the following hold for the signal W

defined in (A.1)–(A.2):

1 Ŵ f ∈ [0,1] for all f ∈ [n];
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2 There exists an absolute constant C ≥ 0 such that for every λ> 1,∑
f ∈[n], | f |≥ λ·n

2B ′

Ŵ f ≤ (C /λ)F−1
∑

f ∈[n]
Ŵ f .

Proof. First note that the maximum of Ŵ f is achieved at 0 and equals 1. Since F is even by

assumption, we have from (A.2) that Ŵ f ≥ 0 for all f . These two facts establish the first claim.

To prove the second claim, note that for all f ∈ [n], we have

Ŵ f =
∣∣∣∣ sin(π(B ′−1) f /n)

(B ′−1)sin(π f /n)

∣∣∣∣F

≤
∣∣∣∣ 1

(B ′−1)sin(π f /n)

∣∣∣∣F

(since |sin(πx)| ≤ 1)

≤
∣∣∣∣ 1

(B ′−1)2| f |/n

∣∣∣∣F

(since |sin(πx)| ≥ 2|x| for |x| ≤ 1/2). (A.3)

We claim that this can be weakened to

Ŵ f ≤
(

n

B ′| f |
)F

. (A.4)

For f ∈ [−n/B ′,n/B ′] the right-hand side is at least one, and hence this claim follows directly

from the first claim above. On the other hand, if | f | ≥ n/B ′, we have

2(B ′−1)| f |/n = 2B ′| f |/n −2| f |/n

≥ 2B ′| f |/n −1 (since | f | ≤ n/2)

≥ B ′| f |/n (since | f | ≥ n/B ′),

and hence (A.4) follows from (A.3).

Using (A.4), we have

∑
| f |≥ λ·n

2B ′

Ŵ f ≤
∑

| f |≥ λ·n
2B ′

(
n

B ′| f |
)F

=O(λ)−F+1 · n

B ′ . (A.5)

At the same time, for any f ∈ [− n
2B ′ , n

2B ′ ], we have

Ŵ f =
∣∣∣∣ sin(π(B ′−1) f /n)

(B ′−1)sin(π f /n)

∣∣∣∣F

≥
∣∣∣∣ 2(B ′−1) f /n

(B ′−1)sin(π f /n)

∣∣∣∣F

(since |sin(πx)| ≥ 2|x| for |x| ≤ 1/2)

≥
∣∣∣∣ 2(B ′−1) f /n

(B ′−1)π( f /n)

∣∣∣∣F

(since |sin(πx)| ≤π|x|)

=
(

2

π

)F

.
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This means that ∑
f ∈[n]

Ŵ f ≥
∑

f ∈[− n
2B ′ , n

2B ′ ]

Ŵ f ≥
(

2

π

)F

· n

B ′ . (A.6)

Putting (A.5) together with (A.6), we get

∑
f ∈[n], | f |≥ λ·n

2B ′

Ŵ f =O(λ)−F+1 · n

B ′ ≤
(π

2

)F
(C ′ ·λ)−F+1 · ∑

f ∈[n]
W f

for an absolute constant C ′ > 0. The desired claim follows by setting C =C ′(π/2).

We now fix an integer B , and define Ĝ by

Ĝ f =
1

Z

3n
4B∑

∆=− 3n
4B

Ŵ f −∆.

where Z =∑
f ∈[n] Ŵ f . By interpreting this as a convolution with a rectangle, we obtain that the

inverse Fourier transform Gt is obtained via the multiplication of Wt with a sinc pulse.

We proceed by showing that, upon identifying B ′ = 8C B (where B ′ was used in defining Ŵ ,

and C is the implied constant in Lemma A.1.1), this filter satisfies the claims of Lemma 1.2.1.

We start with the three properties in Definition 1.2.1.

Proof of Lemma 1.2.1: (filter property 1) For every f , we have,

Ĝ f =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵ f −∆ ≤ 1

Z

∑
∆∈[n]

Ŵ f −∆ = 1.

Similarly, the non-negativity of Ĝ follows directly from that of Ŵ .

(filter property 2) For every f ∈ [n] with | f | ≤ n
2B , we have,

Ĝ f =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵ f −∆

= 1− 1

Z

∑
|∆|> 3n

4B

Ŵ f −∆

≥ 1− 2

Z

∑
f ′> n

4B

Ŵ f ′ (since | f | ≤ n

2B
and W is symmetric)

= 1− 2

Z

∑
f ′> B ′

2B · n
2B ′

Ŵ f ′

≥ 1−
(
2C

B

B ′
)F−1

. (by Lemma A.1.1)
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Since B ′/B = 8C by our choice of B ′ above, we get Ĝ f ≥ 1− (1/4)F−1, as required.

(filter property 3) For every f ∈ [n] with | f | ≥ n
B , we have,

Ĝ f =
1

Z
·

3n
4B∑

∆=− 3n
4B

Ŵ f −∆

≤ 1

Z
· ∑

f ′ : | f ′|≥| f |− 3n
4B

Ŵ f ′ (by | f | ≥ n

B
).

Defining ζ≥ 1 such that | f | = (3+ζ) n
4B , this becomes,

Ĝ f ≤
1

Z
· ∑

f ′ : | f ′|≥ ζn
4B

Ŵ f ′

= 1

Z
· ∑

f ′ : | f ′|≥ ζB ′
2B · n

2B ′

Ŵ f ′

≤
(2C B

ζB ′
)F−1

(by Lemma A.1.1)

=
( 1

4ζ

)F−1
(since B ′ = 8C B).

Rearranging the definition of ζ, we obtain ζ= 4B | f |
n −3, and hence ζ≥ B | f |

n due to the fact that

| f | ≥ n
B . Therefore, Ĝ f ≤

( n
4B | f |

)F−1.

Proof of Lemma 1.2.1:(additional property 1) We have already shown that W is supported on

a window of length O(F B ′) =O(F B) centered at zero. The same holds for G since it is obtained

via a pointwise multiplication of W with a sinc pulse.

(additional property 2) Since Ĝ f ∈ [0,1], the total energy across | f | < n
B is at most 2n

B . On the

other hand, we have from the third property in Definition 1.2.1 that

∑
| f |≥ n

B

|Ĝ f |2 ≤ 2
∑

f ≥ n
B

(1

4

)2(F−1)( n

B f

)2(F−1)

≤ 1

8

∑
f ≥ n

B

( n

B f

)2
(since F ≥ 2)

≤ 1

8
· n

B

∞∑
f =1

1

f 2

≤ n

B
(since

∞∑
f =1

1

f 2 < 8).

Combining this with the contribution from | f | < n
B concludes the proof.

Proof of Lemma 1.4.3:
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For brevity, let Ψ = ∑
f ′ 6= f |X̂ f ′ |2Eπ

[|Go f ( f ′)|2
]

denote the left-hand side of (1.14). Following

the approach of (Indyk and Kapralov, 2014, Lemma 3.3), we define the intervals Ft =
(
π( f )−

n
B 2t ,π( f )+ n

B 2t
]

for t = 1, . . . , log2 b, and write

Ψ≤ ∑
f ′ 6= f

|X̂ f ′ |2
log2 B∑

t=1
Pr[π( f ′) ∈Ft \Ft−1] max

f ′′ :π( f ′′)∈Ft \Ft−1

|Ĝo f ( f ′′)|2

≤ 4

B

∑
f ′ 6= f

|X̂ f ′ |2
(
2+

log2 B∑
t=2

2t max
f ′′ :π( f ′′)∈Ft \Ft−1

|Ĝo f ( f ′′)|2
)
, (A.7)

where the second line follows by (i) upper bounding Pr[π( f ′) ∈Ft \Ft−1] ≤ Pr[π( f ′) ∈Ft ] and

applying the approximate pairwise independence property (cf., Definition 1.4.1); (ii) using the

fact that there are at most n
B ·2t+1 integers within Ft , and applying |Ĝ f | ≤ 1 for the case t = 1.

To handle the term containing |Ĝo f ( f ′′)|2, we use the triangle inequality to write

|o f ( f ′′)| ≥ |π( f )−π( f ′′)|−
∣∣∣π( f )− n

b
round

(
π( f )

B

n

)∣∣∣
≥ |π( f )−π( f ′′)|− n

B
.

For any f ′′ with π( f ′′) ∉Ft−1, we have |π( f )−π( f ′′)| ≥ n
B 2t−1, and hence |o f ( f ′′)| ≥ n

B (2t−1−1).

As a result, for t ≥ 2, the third property in Definition 1.2.1 gives

Ĝo f ( f ′′) ≤
(1

4

)F−1( 1

2t−1 −1

)F−1 ≤
(1

4

)F−1( 1

2t−2

)F−1 =
( 1

2t

)F−1
,

and hence

log2 B∑
t=2

2t max
f ′′ :π( f ′′)∈Ft \Ft−1

|Ĝo f ( f ′′)|2 ≤
∞∑

t=2

( 1

2t

)2F−1
.

This sum is less than 1
2 for all F ≥ 2, and hence substitution into (A.7) gives Ψ ≤ 10

B ‖X̂ ‖2
2, as

desired.

A.1.2 Optimal downsampling

We are interested in the behavior of
∑

r∈[2k1] |Ẑ r
j |2 for each j (first part), and summed over all

j (second part). We therefore begin with the following lemma, bounding this summation in

terms of the signal X and the filter G .

Lemma A.1.2. (Initial downsampling bound) For any integers (n,k1), parameter δ ∈ (
0, 1

20

)
,

signal X ∈Cn and its corresponding (k1,δ)-downsampling
{

Z r
}

r∈[2k1], the following holds for

all j ∈
[

n
k1

]
:

∣∣∣∣ 1

2k1

∑
r∈[2k1]

|Ẑ r
j |2 −

n∑
f =1

|Ĝ f −k1 j |2 · |X̂ f |2
∣∣∣∣≤ 3δ

n∑
f =1

|Ĝ f −k1 j | · |X̂ f |2.
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Proof. Directly evaluating the sum: Using the definition of the signals Ẑ r in (1.2), we write,

∑
r∈[2k1]

|Ẑ r
j |2 =

∑
r∈[2k1]

( n∑
f =1

Ĝ f −k1 j · X̂ f ·ωar f
n

)∗( n∑
f ′=1

Ĝ f ′−k1 j · X̂ f ′ ·ωar f ′
n

)

=
n∑

f =1

n∑
f ′=1

Ĝ∗
f −k1 j · X̂ ∗

f ·Ĝ f ′−k1 j · X̂ f ′ ·
( ∑

r∈[2k1]
ω

ar ( f ′− f )
n

)

where (·)∗ denotes the complex conjugate. Since ar = nr
2k1

, the term
∑

r∈[2k1]ω
ar ( f ′− f )
n is equal

to 2k1 if f − f ′ is a multiple of 2k1 (including f = f ′) and zero otherwise, yielding,

∑
r∈[2k1]

|Ẑ r
j |2 = 2k1 ·

n∑
f =1

(
|Ĝ f −k1 j |2 · |X̂ f |2 +

∑
j ′∈[ n

2k1
]

j ′ 6=0

Ĝ∗
f −k1 j · X̂ ∗

f ·Ĝ f −2k1 j ′−k1 j · X̂ f −2k1 j ′

)
. (A.8)

Without loss of generality, we can assume that j = 0; otherwise, we can simply consider a

version of X shifted in frequency domain by k1 j . Setting j = 0 in (A.8) and applying the triangle

inequality, we obtain,∣∣∣∣ ∑
r∈[2k1]

|Ẑ r
0 |2 −2k1 ·

n∑
f =1

|Ĝ f |2 · |X̂ f |2
∣∣∣∣≤ 2k1 ·

∑
| j ′|≤ n

2(2k1)

j ′ 6=0

n∑
f =1

∣∣∣∣Ĝ∗
f · X̂ ∗

f ·Ĝ f −2k1 j ′ · X̂ f −2k1 j ′

∣∣∣∣. (A.9)

Bounding the right-hand side of (A.9): We write,

∑
| j ′|≤ n

2(2k1)

j ′ 6=0

n∑
f =1

∣∣∣∣Ĝ∗
f · X̂ ∗

f ·Ĝ f −2k1 j ′ · X̂ f −2k1 j ′

∣∣∣∣
= ∑

| j ′|≤ n
2(2k1)

j ′ 6=0

n∑
f =1

(
|Ĝ f |1/2 · |Ĝ f −2k1 j ′ |1/2

)
· |Ĝ f |1/2 · |X̂ ∗

f | · |Ĝ f −2k1 j ′ |1/2 · |X̂ f −2k1 j ′ |. (A.10)

In Lemma A.1.3 below, we show that,

|Ĝ f |1/2 · |Ĝ f −2k1 j ′ |1/2 ≤ ( 1
2 )F−1

| j ′|(F−1)/2

for all f ∈ [n] and all | j ′| ≤ n
2(2k1) with j ′ 6= 0. Definition 1.2.2 ensures that

(1
2

)F−1 ≤ δ, and

substitution into (A.10) gives,

∑
| j ′|≤ n

2(2k1)

j ′ 6=0

n∑
f =1

∣∣∣∣Ĝ∗
f · X̂ ∗

f ·Ĝ f −2k1 j ′ · X̂ f −2k1 j ′

∣∣∣∣
≤ δ · ∑

| j ′|≤ n
2(2k1)

j ′ 6=0

1

| j ′|(F−1)/2

n∑
f =1

|Ĝ f |1/2 · |X̂ ∗
f | · |Ĝ f −2k1 j ′ |1/2 · |X̂ f −2k1 j ′ |. (A.11)
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Next, we apply Cauchy-Schwarz inequality to upper bound the inner summation over f above

for any fixed j ′ ∈ [ n
2k1

], yielding,

n∑
f =1

|Ĝ f |1/2 · |X̂ ∗
f | · |Ĝ f −2k1 j ′ |1/2 · |X̂ f −2k1 j ′ | ≤

√√√√ n∑
f =1

|Ĝ f | · |X̂ ∗
f |2 ·

√√√√ n∑
f =1

|Ĝ f −2k1 j ′ | · |X̂ f −2k1 j ′ |2

=
n∑

f =1
|Ĝ f | · |X̂ ∗

f |2, (A.12)

where we used the fact that
{|Ĝ f −2k1 j ′ | · |X̂ f −2k1 j ′ |2

}n
f =1 is a permutation of

{|Ĝ f | · |X̂ ∗
f |2

}n
f =1.

Wrapping up: Substituting (A.12) into (A.11) gives,

∑
| j ′|≤ n

2(2k1)

j ′ 6=0

n∑
f =1

∣∣∣∣Ĝ∗
f · X̂ ∗

f ·Ĝ f −2k1 j ′ · X̂ f −2k1 j ′

∣∣∣∣
≤ δ · ∑

| j ′|≤ n
2(2k1)

j ′ 6=0

1

| j ′|(F−1)/2

n∑
f =1

|Ĝ f | · |X̂ f |2

≤ 3δ
n∑

f =1
|Ĝ f | · |X̂ f |2,

where the last inequality follows from the fact that
∑

| j ′|≤ n
2(2k1)

j ′ 6=0

1
| j ′|(F−1)/2 ≤ 2

∑∞
j ′=1

1
| j ′|(F−1)/2 , which

is upper bounded by 3 for F ≥ 8, a condition guaranteed by Definition 1.2.2. We therefore

obtain the following bound from (A.9),∣∣∣∣ 1

2k1
· ∑

r∈[2k1]
|Ẑ r

0 |2 −
n∑

f =1
|Ĝ f |2 · |X̂ f |2

∣∣∣∣≤ 3δ
n∑

f =1
|Ĝ f | · |X̂ f |2.

The lemma follows by recalling that the choice j = 0 was without loss of generality, with the

general case amounting to replacing Ẑ0 by Ẑ j and Ĝ f by Ĝ f −k1 j .

In the preceding proof, we made use of the following technical result bounding the product of

the filter G evaluated at two locations separated by some multiple of 2k1.

Lemma A.1.3. (Additional filter property) Given n,k1 and a parameter F ≥ 2, if G is an(
n, n

k1
,F

)
-flat filter, then for all f ∈ [n] and all j ′ ∈ [ n

k1

]
with | j ′| ≤ n

2(2k1) and j ′ 6= 0, one has

|Ĝ f |1/2 · |Ĝ f −2k1 j ′ |1/2 ≤ ( 1
2 )F−1

| j ′|(F−1)/2 .

Proof. For clarity, let f1 and f2 denote the frequencies corresponding to f and f − 2k1 j ′

respectively, defined in the range (−n/2,n/2] according to modulo-n arithmetic. By definition,

f1− f2 is equal to 2k1 j ′ modulo-n, and since | j ′| ≤ n
2(2k1) , we have |2k1 j ′| ≤ n

2 . This immediately

implies that the distance ∆ = | f1 − f2| according to regular arithmetic is lower bounded by
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the distance according to modulo-n arithmetic: ∆≥ 2k1| j ′|. Since f1 and f2 are at distance ∆

according to regular arithmetic, it must be the case that either | f1| ≥ ∆
2 or | f2| ≥ ∆

2 . Moreover,

since j ′ 6= 0, we have, from the above-established fact ∆≥ 2k1| j ′|, that ∆2 ≥ k1, and hence we

can apply the third filter property in Definition 1.2.1 to conclude that |G fν | ≤
(1

4

)F−1(2k1
∆

)F−1

for either ν= 1 or ν= 2. Substituting ∆≥ 2k1| j ′|, upper bounding G fν′ ≤ 1 (cf., Definition 1.2.1)

for the index ν′ ∈ {1,2} differing from ν, and taking the square root, we obtain the desired

result.

We are now in a position to prove Lemma 1.2.3

Proof of the first part of Lemma 1.2.3: Recall from Lemma A.1.2 that∣∣∣∣ 1

2k1

∑
r∈[2k1]

|Ẑ r
j |2 −

n∑
f =1

|Ĝ f −k1 j |2 · |X̂ f |2
∣∣∣∣≤ 3δ

n∑
f =1

|Ĝ f −k1 j | · |X̂ f |2. (A.13)

We proceed by lower bounding
∑n

f =1 |Ĝ f −k1 j |2 · |X̂ f |2 and upper bounding
∑n

f =1 |Ĝ f −k1 j | · |X̂ f |2.

Starting with the former, recalling that I j =
(
( j −1/2)k1, ( j +1/2)k1

]∩Z, we have,

n∑
f =1

|Ĝ f −k1 j |2 · |X̂ f |2 ≥
∑

f ∈I j

|Ĝ f −k1 j |2 · |X̂ f |2

≥
(
1−

(
1

4

)F−1)2 ∥∥X̂ I j

∥∥2
2
≥ (1−δ)

∥∥X̂ I j

∥∥2
2

, (A.14)

where the second line is by the second filter property given in Definition 1.2.1, and the third

line is by the choice of F made in Definition 1.2.2. Next, we upper bound
∑n

f =1 |Ĝ f −k1 j | · |X̂ f |2.

We can write,

n∑
f =1

|Ĝ f −k1 j | · |X̂ f |2 =
∑

f ∈I j∪I j−1∪I j+1

|Ĝ f −k1 j | · |X̂ f |2 +
∑

f ∈[n] : | f −k1 j |≥ 3k1
2

|Ĝ f −k1 j | · |X̂ f |2. (A.15)

By the third property in Definition 1.2.1, the filter decays as |Ĝ f | ≤ ( 1
4 )F−1( k1

| f | )
F−1 for | f | ≥ k1,

and therefore the second term in (A.15) is bounded by,

∑
f ∈[n] : | f −k1 j |≥ 3k1

2

|Ĝ f −k1 j | · |X̂ f |2 ≤
(

1

4

)F−1

· ∑
j ′∈[ n

k1
] : | j ′− j |≥2

∥∥∥X̂ I j ′

∥∥∥2

2

(| j ′− j |−1)F−1

≤
(

1

2

)F−1

· ∑
j ′∈[ n

k1
]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′− j |F−1

≤ δ · ∑
j ′∈[ n

k1
]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′− j |F−1
, (A.16)
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where the second line follows from | j ′− j |−1 ≥ | j ′− j |
2 , and the third line follows since the choice

of F in Definition 1.2.2 ensures that
(1

2

)F−1 ≤ δ. We bound the term
∑

f ∈I j∪I j−1∪I j+1
|Ĝ f −k1 j | ·

|X̂ f |2 in (A.15) using the first filter property in Definition 1.2.1, namely, Ĝ f ≤ 1,∑
f ∈I j∪I j−1∪I j+1

|Ĝ f −k1 j | · |X̂ f |2 ≤
∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2

. (A.17)

Hence, combining (A.15)–(A.17), we obtain,

n∑
f =1

|Ĝ f −k1 j | · |X̂ f |2 ≤
∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2
+δ · ∑

j ′∈[ n
k1

]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′− j |F−1
. (A.18)

The first claim of the lemma follows by combining (A.13), (A.14), and (A.18).

Proof of the second part of Lemma 1.2.3: By following the same steps as those used to handle

(A.15), we obtain the following analog of (A.18) with |Ĝ f |2 in place of |Ĝ f |:

n∑
f =1

|Ĝ f −k1 j |2 · |X̂ f |2 ≤
∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2
+δ · ∑

j ′∈[ n
k1

]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′− j |2(F−1)
. (A.19)

Combining (A.13), (A.18), and (A.19), we obtain,

∑
r∈[2k1] |Ẑ r

j |2
2k1

≤ ∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2
+δ · ∑

j ′∈[ n
k1

]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′|2(F−1)

+3δ ·
(∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2
+δ ∑

j ′∈[ n
k1

]\{ j }

∥∥∥X̂ I j ′

∥∥∥2

2

| j ′− j |F−1

)
.

Summing over all j ∈ [n] gives,

1

2k1

∑
r∈[2k1]

‖Ẑ r ‖2 ≤ ∑
j∈[n]

(
(1+3δ)

∥∥X̂ I j∪I j−1∪I j+1

∥∥2
2
+ (3δ2 +δ)

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

)

= 3(1+3δ)‖X̂ ‖2
2 + (3δ2 +δ)

∑
j∈[n]

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1
(A.20)

The double summation is upper bounded by
∑

j ′∈[n] ‖X̂ I j ′‖2
2 ·2

∑∞
∆=1

1
∆F−1 = 2‖X̂ ‖2

2 ·
∑∞
∆=1

1
∆F−1 ,

which in turn is upper bounded by 3‖X̂ ‖2
2 for F ≥ 4, a condition guaranteed by Definition 1.2.2.

We can therefore upper bound (A.20) by ‖X̂ ‖2
2(3(1+3δ)+3(3δ2 +δ)), which is further upper

bounded by 6‖X̂ ‖2
2 for δ≤ 1

20 , as is assumed in Definition 1.2.2.
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For the lower bound, we sum the bound in the first part of the lemma over all j , yielding,

∑
r∈[2k1]

‖Ẑ r ‖2 ≥
∑

r∈[2k1] |Ẑ r
j |2

2k1
≥ (1−δ)‖X̂ ‖2

2 −3δ ·
(
3‖X̂ ‖2

2 +δ
∑

j∈[ n
k1

]

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

)
.

We showed above that the double summation is upper bounded by 3‖X̂ ‖2
2, yielding an lower

bound of (1−δ−9δ−3δ2)‖X̂ ‖2
2. This is further lower bounded by (1−12δ)‖X̂ ‖2

2 for δ≤ 1
20 .

A.2 Properties of Active Frequencies

Proof of Lemma 1.3.2: Note that for any j ∈ [ n
k1

]
, solving the first part of Lemma 1.2.3 for

‖X̂ I j ‖2
2 gives

‖X̂ I j ‖2
2 ≤

1

1−δ

 1

2k1

∑
r∈[2k1]

|Ẑ r
j |2 +3δ ·

‖X̂ I j∪I j−1∪I j+1‖2
2 +δ

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

 . (A.21)

We will sum both sides over j ∈ S∗\S̃; we proceed by analyzing the resulting terms.

Second term in (A.21) summed over j ∈ S∗\S̃: We have

∑
j∈S∗\S̃

3δ ·
(
‖X̂ I j∪I j−1∪I j+1‖2

2 +δ
∑

j ′∈[ n
k1

]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

)

≤ 9δ‖X̂ ‖2
2 +3δ2

∑
j∈S∗\S̃

∑
j ′∈[ n

k1
]\{ j }

‖X̂ I j ′‖2
2

| j ′− j |F−1

≤ 9δ‖X̂ ‖2
2 +10δ2‖X̂ ‖2

2 ≤ 10δ‖X̂ ‖2
2, (A.22)

where the last line follows by expanding the double summation to all j , j ′ ∈ [ n
k1

]
with j 6= j ′,

noting that 2
∑∞
∆=1

1
∆F−1 ≤ 2.5 for F ≥ 4 (a condition guaranteed by Definition 1.2.2), and then

applying the assumption δ≤ 1
20 .

First term in (A.21) summed over j ∈ S∗\S̃: We first rewrite the sum of squares in terms of a

weighted sum of fourth moments:

∑
j∈S∗\S̃

1

2k1

∑
r∈[2k1]

|Ẑ r
j |2 =

1

2k1

∑
r∈[2k1]

‖Ẑ r
S∗\S̃

‖2
2 =

∑
r∈[2k1]

‖Ẑ r ‖2 ·
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2

≤ 1

2k1

√√√√( ∑
r∈[2k1]

‖Ẑ r ‖2
2

)( ∑
r∈[2k1]

‖Ẑ r
S∗\S̃

‖4
2

‖Ẑ r ‖2
2

)
, (A.23)

by Cauchy-Schwarz applied to the length-2k1 vectors containing entries ‖Ẑ r ‖2 and
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2
.
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The second summation inside the square root is upper bounded as

∑
r∈[2k1]

‖Ẑ r
S∗\S̃

‖4
2

‖Ẑ r ‖2
2

≤ ∑
r∈[2k1]

‖Ẑ r
S∗‖2

2 ·
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2
2

≤ ∑
r∈[2k1]

γr ·
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2
2

+ ∑
r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+ ·

‖Ẑ r
S∗\S̃

‖2
2

‖Ẑ r ‖2
2

, (A.24)

where the first inequality follows since ‖Ẑ r
S∗\S̃

‖2
2 ≤ ‖Ẑ r

S∗‖2
2 and the second inequality uses

‖Ẑ r
S∗‖2

2 ≤ γr + ∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣+.

Now observe that by definition of S̃ (Definition 1.3.1), for every j ∉ S̃, we have

∑
r∈[2k1]

(
|Ẑ r

j |2 ·
γr

‖Ẑ r ‖2
2

)
≤ δ ·

∑
r∈[2k1] ‖Ẑ r ‖2

2

k0
,

and summing both sides over all j ∈ S∗\S̃ gives

∑
r∈[2k1]

γr ·
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2
2

≤ δ|S∗\S̃|
k0

∑
r∈[2k1]

‖Ẑ r ‖2
2 ≤ 10δ

∑
r∈[2k1]

‖Ẑ r ‖2
2,

since |S∗| ≤ 10k0 by assumption. Applying this to the first term in (A.24), as well as
‖Ẑ r

S∗\S̃
‖2

2

‖Ẑ r ‖2
2

≤ 1

for the second term, we obtain

∑
r∈[2k1]

‖Ẑ r
S∗\S̃

‖4
2

‖Ẑ r ‖2
2

≤ 10δ
∑

r∈[2k1]
‖Ẑ r ‖2

2 +
∑

r∈[2k1]

∣∣∣‖Ẑ r
S∗‖2

2 −γr
∣∣∣+

≤ 50δ
∑

r∈[2k1]
‖Ẑ r ‖2

2, (A.25)

where we have applied the assumption (*) of the lemma.

Finally, substituting (A.25) into (A.23) yields

∑
j∈S∗\S̃

1

2k1

∑
r∈[2k1]

|Ẑ r
j |2 ≤

1

2k1

√√√√( ∑
r∈[2k1]

‖Ẑ r ‖2
2

)( ∑
r∈[2k1]

‖Ẑ r
S∗\S̃

‖4
2

‖Ẑ r ‖2
2

)

≤ 1

2k1

√( ∑
r∈[2k1]

‖Ẑ r ‖2
2

)(
50δ

∑
r∈[2k1]

‖Ẑ r ‖2
2

)
(by (A.25))

≤
p

50δ

2k1

∑
r∈[2k1]

‖Ẑ r ‖2
2 ≤ 43

p
δ‖X̂ ‖2

2, (A.26)

where the last inequality uses the fact that
∑

r∈[2k1] ‖Ẑ r ‖2
2

2k1
≤ 6‖X ‖2

2 by the second part of Lemma

1.2.3. The proof is concluded by substituting (A.22) and (A.26) into (A.21), and using the

assumption δ≤ 1
20 to deduce that 1

1−δ
(
43

p
δ+10δ

)≤ 100
p
δ.
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A.3 Hashing the Fourier Domain via Filtering and Subsampling

Proof of Lemma 1.4.2: The (exact) Fourier transform of U , denoted by Û∗, is given by

Û∗
j = 1

B

∑
b∈[B ]

Ubω
−b j
B

= 1

n

∑
b∈[B ]

∑
i ′∈[ n

B ]

Xσ(∆+b+B ·i ′)Gb+B ·i ′ω
−b j
B

= 1

n

∑
i∈[n]

Xσ(∆+i )Giω
−i j n/B
n , (A.27)

where we used the fact that ω(·)
B is periodic with period B , and then applied ωB =ωn/B

n . We see

that (A.27) is the Fourier transform of the signal {Xσ(∆+i )Gi }i∈[n] evaluated at frequency j n/B ,

and hence, since multiplication and convolution are dual under the Fourier transform, we

obtain

Û∗
j = (Ŷ ?Ĝ) j n/B , (A.28)

where Yi = Xσ(∆+i ). Now, by standard Fourier transform properties, we have Ŷ f = X̂σ−1 f ω
∆ f
n ,

and substitution into (A.28) gives

Û∗
j = ∑

f ∈[n]
X̂σ−1 f Ĝ j n

B − f ω
∆ f
n

= ∑
f ∈[n]

X̂ f Ĝσ f − n
B jω

σ∆ f
n ,

where we have used the assumed symmetry of G about zero.

A.3.1 Proof of Lemma 1.4.5

We use techniques resembling those used for a (k1,ε)-downsampling in Section 1.2, but

with the notable difference of using a more rapidly-decaying filter with bounded support in

frequency domain.

Choice of filter: We let G ∈Rn be the filter used in (Indyk et al., 2014) (as opposed to that used

in Definition 1.2.1), satisfying the following:

• There exists an ideal filter G ′ satisfying G ′
f ∈ [0,1] for all f , and

G ′
f =

1 | f | ≤ n
2k1

0 | f | ≥ n
k1

,
(A.29)

such that ‖G −G ′‖2 ≤ n−c ;

• Ĝ is supported on a window of length O(ck1 logn) centered at zero;
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• Each entry of Ĝ can be computed in time O(1).

Intuition behind the proof. Before giving the details, we provide the intuition for the proof.

Recall that our goal is to compute X r
j for | j | ≤ k0/2, for all r ∈ [2k1]. To do this, we first

note that X 0
j , for | j | ≤ k0/2 (i.e., for only one value of r , namely 0), can be computed via a

reduction to standard semi-equispaced FFT (Lemma 1.4.4) on an input signal of length 2n/k1.

To achieve this, consider the signal X ·G aliased to length 2n/k1, which is close to X on all

points j such that | j | ≤ n/(2k1). In order to compute X 0
j for | j | ≤ k0/2, it essentially suffices

(modulo boundary issues; see below) to calculate (X ·G) j for | j | ≤ k0/2. We show below that

this can be achieved using Lemma 1.4.4, because multiplication followed by aliasing are dual

to convolution and subsampling: the input (k0,k1)-block sparse signal of length n can be

naturally mapped to an O(k0 logn)-sparse signal in a reduced space with ≈ n/k1 points, in

which standard techniques (Lemma 1.4.4) can be applied.

This intuition only shows how to compute the values of X r
j for r = 0 and | j | ≤ k0/2, but we

need the values for all r ∈ [2k1]. As we show below, the regular structure of the set of shifts

that we are interested in allows us use the standard FFT on a suitably defined set of length-

2k1 signals, without increasing the runtime by a k1 factor. It is interesting to note that our

runtime is O(logn) worse than the runtime of Lemma 1.4.4 due to the two-level nature of

our scheme; this is for reasons similar to the logd n scaling of runtime of high-dimensional

semi-equispaced FFT, e.g. (Ghazi et al., 2013; Kapralov, 2016).

We now give the formal proof of the lemma.

Computing a convolved signal: Here we show that we can efficiently compute the values

Ŷ r
j = (X̂ r ? Ĝ) k1

2 j
at all j ∈ [2n

k1

]
where it is non-zero, for all values of r ∈ [2k1]. We will later

show that applying Lemma 1.4.4 to these signals (as a function of j ) gives accurate estimates

of the desired values of X .

Note that in the definition of Ŷ r
j , each non-zero block is convolved with a filter of support

O(ck1 logn), and so contributes to at most O(c logn) values of j . Since there are k0 non-zero

blocks, there are O(ck0 logn) values of j for which the result is non-zero.

The procedure is as follows:

1. For all j such that Ŷ r
j may be non-zero (O(ck0 logn) in total), compute,

Ỹ b
j = k1

2

n
2k1∑
l=1

X̂b+2k1l Ĝ k1
2 j−(b+2k1l )

for b ∈ [2k1]. That is, alias the signal
{

X̂ f Ĝ k1
2 j− f

}
down to length 2k1, and normalize by

2
k1

(for later convenience). Since Ĝ is supported on an interval of length O(ck1 logn),

this can be done in worst-case time O(c logn) per entry, for a total of O(ck1 logn) per j
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value, or O(c2k0k1 log2 n) overall (note that this bound is loose and one can show that

the total time to compute Ŷ r
j ’s is in fact O(ck0k1 logn)).

2. Compute the length-2k1 inverse FFT of Ỹ j = (Ỹ 1
j , . . . , Ỹ 2k1

j ) to obtain Ŷ j ∈C2k1 . This can

be done in time O(k1 log(1+k1)) per j value, or O(ck0k1 log(1+k1) logn) overall.

We now show that Ŷ r
j = k1

2 (X r ?G) k1
2 j

for r = 1, . . . ,2k1. By the definition of the inverse Fourier

transform, we have,

Ŷ r
j =

2k1∑
b=1

Ỹ b
j ω

r b
2k1

= k1

2

2k1∑
b=1

n
2k1∑
l=1

X̂b+2k1l Ĝ k1
2 j−(b+2k1l )

ωr b
2k1

= k1

2

n∑
f =1

X̂ f Ĝ k1
2 j− f

ω
r f
2k1

= k1

2

n∑
f =1

X̂ f Ĝ k1
2 j− f

ω
r f · n

2k1
n

= k1

2

n∑
f =1

X̂ r
f Ĝ k1

2 j− f
(since X r

(·) = X(·)+ nr
2k1

by Definition 1.2.2),

where the second line is by the definition of Ỹ b , the third by the periodicity of ω2k1 , and

the fifth since translation and phase shifting are dual under the Fourier transform. Hence,

Ŷ r
j = k1

2 (X̂ r ?Ĝ) k1
2 j

.

Applying the standard semi-equispaced FFT: For r ∈ [2k1], define Ŷ r = (Ŷ r
1 , . . . , Ŷ r

n/k1
). We

have already established that the support of each Ŷ r is a subset of a set having size at most

k ′ = O(ck0 logn). We can therefore apply Lemma 1.4.4 with ζ= n−(c+1) to conclude that we

can evaluate Y r
j for | j | ≤ k ′

2 satisfying,

|Y r
j −Y ∗r

j | ≤ n−(c+1)‖Y r ‖2, (A.30)

where Y ∗r is the exact inverse Fourier transform of Ŷ r . Moreover, this can be done in time

O
(
k ′ log n/k1

n−(c+1)

)=O(c2k0 log2 n) per r value, or O(c2k0k1 log2 n) overall.

Proof of the first part of lemma: It remains to show that the above procedure produces

estimates of the desired X values of the form (1.15).

Recall that Ŷ r
j = k1

2 (X̂ r ? Ĝ) k1
2 j

. By the convolution theorem and the fact that subsampling

and aliasing are dual (e.g., see Appendix A.3), the inverse Fourier transform of Ŷ r satisfies the
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following when | j | ≤ n
k1

,

Y r
j = ∑

i∈[
k1
2 ]

(G ·X r ) j+ 2n
k1

i

=G j X r
j +

∑
i∈[

k1
2 ], i 6=0

(G ·X r ) j+ 2n
k1

i

=
(
G ′

j X r
j +

∑
i∈[

k1
2 ], i 6=0

(G ′ ·X r ) j+ 2n
k1

i

)
±‖G −G ′‖2‖X ‖2

= X r
j ±n−c‖X ‖2, (A.31)

where the last line follows from the definition of G ′ in (A.29) and the assumption ‖G −G ′‖2 ≤
n−c .

Combining (A.30) and (A.31) and using the triangle inequality, we obtain

|Y r
j −X r

j | ≤ n−(c+1)‖Y r ‖2 +n−c‖X ‖2.

Since we have already shown that we can efficiently compute Y r
j for | j | ≤ k ′

2 with k ′ =
O(ck0 logn), it only remains to show that ‖Y r ‖2 ≤ n‖X ‖2. To do this, we use the first line

of (A.31) to write

|Y r
j | ≤

∑
i∈[

k1
2 ]

|G j+ 2n
k1

i | · |X r
j+ 2n

k1
i
|

≤ 2
∑

i∈[
k1
2 ]

|X r
j+ 2n

k1
i
|

≤
√

2k1
∑

i∈[
k1
2 ]

|X r
j+ 2n

k1
i
|2, (A.32)

where the first line is the triangle inequality, the second line follows since the first filter

assumption above ensures that |G j | ≤ 2 for all j , and the third line follows since the squared

`1-norm is upper bounded by the squared `2-norm times the vector length.

Squaring both sides of (A.32) and summing over all j gives ‖Y r ‖2
2 ≤ 2k1‖X ‖2 ≤ n2‖X ‖2 (under

the trivial assumption n ≥ 2), thus completing the proof.

Proof of the second part of lemma: In the proof of the first part, we applied Lemma 1.4.4 to

signals of length 2n
k1

. It follows directly from the arguments in (Indyk et al., 2014, Cor. 12.2) that

since we can approximate the entries of X r
j for all | j | ≤ k0

2 , we can do the same for all j equaling

σ j ′+b modulo- 2n
k1

for some | j ′| ≤ k0
2 . Specifically, this follows since the multiplication by σ

and shift by b simply amounts to a phase shift and a linear change of variables f →σ−1 f in

frequency domain, both of which can be done in constant time.

However, the second part of the lemma regards indices modulo- n
k1

, as opposed to modulo- 2n
k1

.
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To handle the former, we note that for any integer a, we either have a mod n
k1

= a mod 2n
k1

or

a mod n
k1

= (
a + n

k1

)
mod 2n

k1
. Hence, we obtain the desired result by simply performing two

calls to the first part, one with a universal shift of n
k1

.

A.3.2 Proof of Lemma 1.4.6

First Part: Since UX is computed according to X itself in Algorithm 4, we only need to compute

the error in Uχ.

In the definition of hashing in Definition 1.4.2, since G has support O(F B), we see that the

values of X used correspond to a permutation of an interval having length k ′ =O(F B). We can

therefore apply the second part of Lemma 1.4.4 with sparsity k ′ and parameter ζ= n−c ′
for

some c ′ > 0, ensuring an `∞-guarantee of n−c ′‖χ‖2 for the signal χ.

Since Û is computed from these values using (2.2) followed by the FFT, we readily obtain via

the relation ‖v‖∞ ≤ ‖v‖2 ≤
p

m‖v‖∞ (for v ∈ Cm) and Parseval’s theorem that Û has an `∞-

guarantee of n−(c ′−O(1))‖χ‖2, which can be made to equal n−c‖χ̂‖2 by choosing c ′ = c +O(1).

Sample complexity and runtime: The only operation that consumes samples from the signal

X is the hashing operation applied to X . From Definition 1.4.2, and the fact that the filter G

has support O(F B), we find that the sample complexity is also O(F B).

The runtime is dominated by the application of the semi-equispaced FFT, which, by Lemma

1.4.4, uses O(cF (‖χ̂‖0 +B) logn) operations. In particular, this dominates the O(B logB) time

to perform the FFT in Algorithm 4, and the hashing operation, whose time complexity is the

same as the sample complexity.

Second Part: Recall the definition of a (k1,δ)-downsampling of a signal X from (1.2):

Z r
j = 1

k1

∑
i∈[k1]

(G ·X r ) j+ n
k1

·i , j ∈
[ n

k1

]
, r ∈ [2k1].

In order to compute the
( n

k1
,B r ,Gr ,σ,∆

)
-hashing of Ẑ r (cf., Definition 1.4.2), we use the

samples of Z r
j at the locations j = σ( j ′ +∆) mod n

k1
for | j ′| ≤ F B r ; this is because Gr is

supported on [−F B r ,+F B r ]. Note that F B r is further upper bounded by O(F Bmax).

We claim that in the second part of Lemma 1.4.5, it suffices to set the sparsity level to O(F Bmax+
k0). To see this, first note that k0 is added in accordance with Remark 1.4.2 and the fact that χ̂

is (k0,k1)-block sparse. Moreover, note that Ẑ r has length n
k1

, and one sample of Z r
j can be

computed from X r
j+i n

k1

= X r+2i
j for |i | ≤ F as per Definition 1.2.2 and the fact that the filter

G is supported on [−F n
k1

,+F n
k1

]. Therefore, all we need is X r ′
j ′ for each r ′ ∈ [2k1] and for all

j ′ =σ( j +∆) mod n
k1

with | j | ≤ F Bmax.
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Applying the second part of Lemma 1.4.5 with sparsity O(F Bmax +k0) and parameter ζ= n−c ′

for some c ′ > 0, ensuring an `∞-guarantee of 2n−c ′‖χ‖2 on the computed values of χ. By an

analogous argument to the first case, this implies an `∞-guarantee of n−c‖χ‖2 on the FFT Û r

of the hashing of Z r
χ , with c = c ′+O(1).

Sample complexity and runtime: We take O(F B r ) samples of the r -th downsampled sig-

nal each time we do the hashing, separately for each r ∈ [2k1]. By Lemma 1.2.2, access-

ing a single sample of Z r
X costs us O(log 1

δ ) samples of X . Hence, the sample complexity is

O
(
F

∑
r∈[2k1] B r log 1

δ

)
.

We now turn to the runtime. By Lemma 1.4.5, the call to SEMIEQUIINVERSEBLOCKFFT with

O(F Bmax +k0) in place of k0 takes time O
(
c2(F Bmax +k0)k1 log2 n). The hashing operation’s

runtime matches its sample complexity, and since we have assumed δ≥ 1
n , its contribution is

dominated by the preceding term.

A.3.3 Proof of Lemma 1.4.7

First part of lemma: We start with the following upper bound on the expression inside the

expectation: ∣∣∣‖ŶS‖2
2 −‖Û∗‖2

2

∣∣∣+ ≤
∣∣∣‖ŶS‖2

2 −‖Û∗
h(S\Scol l )‖2

2

∣∣∣+
where h(S) = {h( j ) : j ∈ S} with h( j ) = round

(
π( j ) B

m

)
, denoting the bucket into which element

j hashes. We define Scoll to be a subset of S containing the elements that collide with each

other, i.e., Scoll = { j ∈ S |h( j )∩h(S\{ j }) 6= ;}, yielding∣∣∣‖ŶS‖2
2 −‖Û∗‖2

2

∣∣∣+ ≤
∣∣∣ ∑

j∈S
|Ŷ j |2 −

∑
b∈h(S\Scoll)

|Û∗
b |2

∣∣∣+
=

∣∣∣ ∑
j∈Scoll

|Ŷ j |2 +
∑

j∈S\Scoll

(
|Ŷ j |2 −|Û∗

h( j )|2
)∣∣∣+

≤ ∑
j∈Scoll

|Ŷ j |2 +
∑
j∈S

∣∣∣|Ŷ j |2 −|Û∗
h( j )|2

∣∣∣+, (A.33)

where the final line follows from the inequality [a +b]+ ≤ |a|+ [b]+.

Bounding the first term in (A.33): We start by evaluating the expected value of the term

corresponding to Scoll over the random permutation π:

Eπ

[ ∑
j∈Scoll

|Ŷ j |2
]
≤ Eπ

[∑
j∈S

|Ŷ j |2 ·1
[

j ∈ Scoll
]]

≤ ∑
j∈S

|Ŷ j |2
∑

j ′∈S\{ j }
Pr[h( j ) = h( j ′)]

≤ ∑
j∈S

∑
j ′∈S

|Ŷ j |2 4

B
= 4|S|

B

∑
j∈S

|Ŷ j |2, (A.34)

where the second line follows from the union bound, and the third line follows since π is
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approximately pairwise independent as per Definition 1.4.1.

Bounding the second term in (A.33): We apply Lemma 1.4.2 to obtain Û∗
h( j ) =

∑
j ′∈[m] Ŷ j ′ Ĥo j ( j ′)ω

σ∆ j ′
m ,

where o j ( j ′) = π( j ′) − h( j ) m
B . We write this as Û∗

h( j ) = Ŷ j Ĥo j ( j )ω
σ∆ j
m + err j , where err j :=∑

j ′∈[m]\{ j } Ŷ j ′ Ĥo j ( j ′)ω
σ∆ j ′
m , yielding,

∑
j∈S

∣∣∣|Ŷ j |2 −|Û∗
h( j )|2

∣∣∣+ ≤ ∑
j∈S

∣∣∣|Ŷ j |2 −|Ŷ j Ĥo j ( j )ω
σ∆ j
m +err j |2

∣∣∣
≤ ∑

j∈S

(∣∣|Ŷ j |2 −|Ŷ j Ho j ( j )|2
∣∣+|err j |2 +2|err j | · |Ŷ j Ĥo j ( j )|

)
(A.35)

by |ξ|+ ≤ |ξ| and the triangle inequality. We have by definition that |o j ( j )| ≤ m
2B , and hence

item 2 in Definition 1.2.1 yields Ho j ( j ) ≥ 1− (1
4

)F ′−1, which in turn implies H 2
o j ( j ) ≥ 1−2

(1
4

)F ′−1.

Combining this with H f ≤ 1 from item 1 in Definition 1.2.1, we can weaken (A.35) to,

∑
j∈S

∣∣∣|Ŷ j |2 −|Û∗
h( j )|2

∣∣∣+ ≤ ∑
j∈S

(
2|err j | · |Ŷ j |+ |err j |2 +2

(1

4

)F ′−1|Ŷ j |2
)
. (A.36)

We proceed by bounding the expected value of |err j |2. We first take the expectation over ∆,

using Parseval’s theorem to write,

E∆[|err j |2] = ∑
j ′∈[m]\{ j }

|Ŷ j ′ |2|Ĥo j ( j ′)|2.

Taking the expectation over π, we obtain

E∆,π[|err j |2] = Eπ
[ ∑

j ′∈[m]\{ j }
|Ŷ j ′ |2|Ĥo j ( j ′)|2

]
= ∑

j ′∈[m]\{ j }
|Ŷ j ′ |2 ·Eπ[|Ĥo j ( j ′)|2]

≤ 10

B

∑
j ′∈[m]\{ j }

|Ŷ j ′ |2 ≤ 10

B
‖Ŷ ‖2

2.

where the final line follows from Lemma 1.4.3. Substituting into (A.36), and using Jensen’s

inequality to write E[|err j |] ≤
√
E[|err j |2], we obtain,

E∆,π

[ ∑
j∈S

∣∣∣|Ŷ j |2 −|Û∗
h( j )|2

∣∣∣+]
≤ 2

∑
j∈S

√
10

B
‖Ŷ ‖2

2 · |Ŷ j |+ 10

B

∑
j∈S

‖Ŷ ‖2
2 +2

(1

4

)F ′−1 ∑
j∈S

|Ŷ j |2

≤ 10

√ |S|
B

‖Ŷ ‖2
2 +

(
10

|S|
B

+2δ2
)
‖Ŷ ‖2

2, (A.37)

where the second line follows from the fact that ‖v‖1 ≤p|S|‖v‖2 for any v ∈ C|S|, as well as(
1
4

)F ′−1 ≤ δ2 by the choice of F ′. The claim follows by substituting (A.34) and (A.37) into (A.33).
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Algorithm 16 Prune a location list via hashing and thresholding techniques.

1: procedure PRUNELOCATION(X , χ̂,L,n,k0,k1,δ, p,θ)
2: B ← 160 k0k1

δ

3: F ← 10log 1
δ

4: G ← (n,B ,F )-flat filter
5: T ← 10log 1

δp
6: for t ∈ {1, . . . ,T } do
7: ∆← uniform random sample from [n]
8: σ← uniform random sample from odd numbers in [n]
9: Û ← HASHTOBINS(X , χ̂,G ,n,B ,σ,∆)

10: W (t )
j ←∑

f ∈I j

∣∣Ĝ−1
o f ( f )Ûh( f )ω

−σ∆ f
n

∣∣2 for all j ∈ L . h( f ),o f ( f ) in Definition 1.4.2

11: W j ← Median t

{
W (t )

j

}
for all j ∈ L

12: L′ ← {
j ∈ L : W j ≥ θ

}
13: return L′

Second part of lemma: By the definition of Û∗ (cf., Definition 1.4.2), we have,

E∆

[
‖Û∗‖2

2

]
= E∆

[ ∑
b∈[B ]

∣∣∣ ∑
j∈[m]

Ŷ j Ĥπ( j )−b m
B
ω
∆ j
m

∣∣∣2]
= ∑

b∈[B ]

∑
j∈[m]

|Ŷ j |2|Ĥπ( j )−b m
B
|2,

by Parseval. Taking the expectation with respect to π, we obtain,

E∆,π

[
‖Û∗‖2

2

]
= ∑

b∈[B ]
Eπ

[ ∑
j∈[m]

|Ŷ j |2|Ĥπ( j )−b m
B
|2

]
= ∑

b∈[B ]

∑
j∈[m]

|Ŷ j |2 ·Eπ
[
|Ĥπ( j )−b m

B
|2

]
≤ ∑

b∈[B ]

3

B

∑
j∈[m]

|Ŷ j |2 = 3‖Ŷ ‖2
2,

where the final line follows by noting that π( j )−b m
B is uniformly distributed over [m], and

applying the second part of Lemma 1.2.1.

A.4 Pruning the Location List

The pruning procedure is given in Algorithm 16. Its goal is essentially to reduce the size of the

list returned by MULTIBLOCKLOCATE (cf., Algorithm 1) from O(k0 log(1+k0)) to O(k0). More

formally, the following lemma shows that with high probability, the pruning algorithm retains

most of the energy in the head elements, while removing most tail elements.

Lemma 1.5.1 (PRUNELOCATION guarantees – restated from Section 1.5.1). Given integers

n,k0,k1, a list of block indices L ⊆
[

n
k1

]
, parameters θ > 0, δ ∈ ( 1

n , 1
20

)
and p ∈ (0,1), and signals
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X ∈Cn and χ̂ ∈Cn with ‖X̂−χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, the output L′ of PRUNELOCATION(X , χ̂,L,n,k0,k1,δ, p,θ)

has the following properties:

a. Let Stail denote the tail elements in signal X̂ − χ̂, defined as,

Stail =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≤

p
θ−

√
δ

k0
‖X̂ − χ̂‖2

}
,

where I j is defined in Definition 1.1.1. Then, we have,

E
[∣∣L′∩Stail

∣∣]≤ δp · |L∩Stail|.

b. Let Shead denote the head elements in signal X̂ − χ̂, defined as,

Shead =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≥

p
θ+

√
δ

k0
‖X̂ − χ̂‖2

}
.

Then, we have,

E

[ ∑
j∈(L∩Shead)\L′

‖(X̂ − χ̂)I j ‖2
2

]
≤ δp

∑
j∈L∩Shead

‖(X̂ − χ̂)I j ‖2
2.

Moreover, provided that ‖χ̂‖0 =O(k0k1), the sample complexity is O
(

k0k1
δ log 1

δp log 1
δ

)
, and the

runtime is O
(

k0k1
δ log 1

δp log 1
δ logn +k1 · |L| log 1

δp

)
.

Proof. We begin by analyzing the properties of the random variables W (t )
j used in the threshold

test. We define X ′ = X −χ, let Û be the output of HASHTOBINS, and let Û∗ be its exact

counterpart as defined in Lemma 1.4.6. It follows that we can write the random variable W (t )
j

(cf., Algorithm 16) as

W (t )
j = ∑

f ∈I j

∣∣∣Ĝ−1
o f ( f )Ûh( f )ω

−σ∆ f
n

∣∣∣2

= ∑
f ∈I j

∣∣∣Ĝ−1
o f ( f )Û

∗
h( f )ω

−σ∆ f
n +Ĝ−1

o f ( f )(Ûh( f ) −Û∗
h( f ))ω

−σ∆ f
n

∣∣∣2

= ∑
f ∈I j

∣∣∣X̂ ′
f +err(t )

f +ẽrr(t )
f

∣∣∣2
, (A.38)

where (i) err(t )
f = Ĝ−1

o f ( f )

∑
f ′∈[n]\{ f } X̂ ′

f ′Ĝo f ( f ′)ω
σ∆( f ′− f )
n , with (σ,∆) implicitly depending on t ;

this follows directly from Lemma 1.4.2, along with the definitions π( f ) = σ f and o f ( f ′) =
π( f ′)− n

B h( f ). (ii) ẽrr(t )
f = Ĝ−1

o f ( f )(Ûh( f ) −Û∗
h( f ))ω

−σ∆ f , a polynomially small error term (cf.,

Lemma 1.4.6).
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Bounding err(t )
f and ẽrr(t )

f : In Lemma A.4.1 below, we show that,

E∆,π

[∣∣∣err(t )
f

∣∣∣2
]
≤ 20

B
‖X̂ ′‖2

2 (A.39)∣∣∣ẽrr(t )
f

∣∣∣≤ 2n−c+c ′‖X̂ ′‖2, (A.40)

where c is used in HASHTOBINS, and c ′ is a value such that ‖X̂ − χ̂‖2 ≥ 1
nc′ ‖χ̂‖2. For (A.40), we

upper bound the `2 norm by the square root of the vector length times the `∞ norm, yielding√ ∑
f ∈[n]

∣∣∣ẽrr(t )
f

∣∣∣2 ≤p
n max

f ∈[n]

∣∣∣ẽrr(t )
f

∣∣∣≤ 2n−c+c ′+1/2‖X̂ ′‖2. (A.41)

We now calculate the probability of a given block j passing the threshold test, considering two

separate cases.

If j is in the tail: The probability for j to pass the threshold is closely related to Pr
[

W (t )
j ≥ θ

]
=

Pr
[√

W (t )
j ≥p

θ
]

. From (A.38),
√

W (t )
j is the `2-norm of a sum of three signals, and

hence we can apply the triangle inequality to obtain

Pr
[
W (t )

j ≥ θ]≤ Pr

 ∑
f ∈I j

∣∣∣err(t )
f

∣∣∣2 ≥
(p
θ−

√ ∑
f ∈I j

|X̂ ′
f |2 −2n−c+c ′+1/2‖X̂ ′‖2

)2

 ,

where we have applied (A.41). By definition, for any j ∈ Stail, we have
p
θ−‖X̂ ′

I j
‖2 ≥√

δ
k0
‖X̂ ′‖2. Hence, and recalling that δ ≥ 1

n , if c if sufficiently large so that
√

δ
k0

−
2n−c+c ′+1/2 ≥

√
0.9δ
k0

, then Markov’s inequality yields,

Pr
[

W (t )
j ≥ θ

]
≤ Pr

[ ∑
f ∈I j

∣∣∣err(t )
f

∣∣∣2 ≥ 0.9δ

k0
‖X̂ ′‖2

2

]

≤
E∆,π

[∑
f ∈I j

|err(t )
f |2

]
0.9δ
k0

‖X̂ ′‖2
2

≤
20k1

B ‖X̂ ′‖2
2

0.9δ
k0

‖X̂ ′‖2
2

≤ 1

6

where the third inequality follows form (A.39) and |I j | = k1, and the final inequality

follows from the choice B = 160 k0k1
δ . Since W j is the median of T independent such

random variables, it can only exceed θ if there exists a subset of t values of size T
2 with

W (t )
j ≥ θ. Hence,

Pr
[
W j ≥ θ

]≤ (
T

T /2

)(1

6

)T /2 ≤
(2

3

)T /2 ≤ δp,
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where we applied
( T

T /2

)≤ 2T , followed by T = 10log 1
δp (cf., Algorithm 16).

If j is in the head: We proceed similarly to the tail case, but instead use the triangle inequality

in the form of a lower bound (i.e., ‖a +b‖2 ≥ ‖a‖2 −‖b‖2), yielding

Pr
[

W (t )
j ≤ θ

]
≤ Pr

 ∑
f ∈I j

∣∣∣err(t )
f

∣∣∣2 ≥
(√ ∑

f ∈I j

|X̂ ′
f |2 −

p
θ−2n−c+c ′+1/2‖X̂ ′‖2

)2

 .

By definition, for any j ∈ Shead, we have ‖X̂ ′
I j
‖2 −

p
θ ≥

√
δ
k0
‖X̂ ′‖2. Hence, if c if suffi-

ciently large so that
√

δ
k0

−2n−c+c ′+1/2 ≥
√

0.9δ
k0

, then analogously to the tail case above,

we have,

Pr
[
W (t )

j ≤ θ]≤ Pr

[ ∑
f ∈I j

∣∣∣err(t )
f

∣∣∣2 ≥ 0.9δ

k0
‖X̂ ′‖2

2

]
≤ 1

6
,

and consequently Pr
[
W j ≤ θ

]≤ δp.

First claim of the lemma: Since L′ ⊂ L, we have,

E
[∣∣L′∩Stail

∣∣]= ∑
j∈L∩Stail

Pr
[

j ∈ L′]= ∑
j∈L∩Stail

Pr
[
W j ≥ θ

]
.

Since we established that Pr
[
W j ≥ θ

]
is at most δp, we obtain,

E
[∣∣L′∩Stail

∣∣]≤ ∑
j∈L∩Stail

δp = δp · |L∩Stail|.

Second claim of the lemma: In order to upper bound
∑

j∈(L∩Shead)\L′ ‖X̂ ′
I j
‖2

2, we first calculate

its expected value as follows:

E

[ ∑
j∈(L∩Shead)\L′

‖X̂ ′
I j
‖2

2

]
= E

[ ∑
j∈L∩Shead

‖X̂ ′
I j
‖2

2 ·1
[

j ∉ L′]]
= ∑

j∈L∩Shead

‖X̂ ′
I j
‖2

2 ·Pr
[

j ∉ L′]
= ∑

j∈L∩Shead

‖X̂ ′
I j
‖2

2 ·Pr
[
W j ≤ θ

]
.

The probability Pr
[
W j ≤ θ

]
for j ∈ L∩Shead is at most δp, and hence,

E

[ ∑
j∈(L∩Shead)\L′

‖X̂ ′
I j
‖2

2

]
≤ δp

∑
j∈L∩Shead

‖X̂ ′
I j
‖2

2.

Sample complexity and runtime For the sample complexity, note that the algorithm only

uses samples via its call to HASHTOBINS. By part (i) of Lemma 1.4.6 and the choices B = 160 k0k1
δ
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and F = 10log 1
δ , the sample complexity is O(F B) =O( k0k1

δ log 1
δ ) per hashing operation. Since

we run the hashing in a loop 10log 1
δp times, the sample complexity is O( k0k1

δ log 1
δ log 1

δp ).

The runtime depends on three operations. The first is calling HASHTOBINS, for which an

analogous argument as that for the sample complexity holds, with the extra logn factor arising

from Lemma 1.4.6. The second operation is the computation of W (t )
j , which takes |I j | =O(k1)

time for each j ∈ L. Hence, the total contribution from the loop is O(k1 · |L| log 1
δp ). Finally,

since the median can be computed in linear time, computing the medians for every j ∈ L costs

O(|L| log 1
δp ) time, which is dominated by the computation of W (t )

j .

In the preceding proof, we made use of the following lemma.

Lemma A.4.1. Fix integers n,k0,k1,B, signals X ∈Cn and χ̂ ∈Cn with ‖X̂ − χ̂‖2 ≥ 1
nc′ ‖χ̂‖2, and

uniformly random parameters σ,∆ ∈ [n] with σ odd, and let Û be the output of HASHTO-

BINS (X , χ̂,G ,n,B ,σ,∆) and Û∗ its exact counterpart. Then, defining,

err f := Ĝ−1
o f ( f )

∑
f ′∈[n]\{ f }

X̂ ′
f ′Ĝo f ( f ′)ω

σ∆( f ′− f )
n , and ẽrr f := Ĝ−1

o f ( f )(Ûh( f ) −Û∗
h( f ))ω

−σ∆ f

(for h and σ f in Definition 1.4.2), we have,

E∆,π

[∣∣err f
∣∣2

]
≤ 20

B
‖X̂ ′‖2

2 (A.42)

|ẽrr f | ≤ 2n−c+c ′‖X̂ ′‖2 (A.43)

for c used in HASHTOBINS.

Proof. We take the expectation of |err f |2, first over ∆:

E∆

[
|err f |2

]
= |Ĝo f ( f )|−2

∑
f ′∈[n]\{ f }

|X̂ ′
f ′ |2|Ĝo f ( f ′)|2

by Parseval. By Definition 1.2.1 and the definition of o f (·), we can upper bound |Ĝo f ( f )|−2 ≤ 2.

Continuing, we take the expectation with respect to the random permutation π:

E∆,π

[
|err f |2

]
≤ Eπ

[
2

∑
f ′∈[n]\{ f }

|X̂ ′
f ′ |2|Ĝo f ( f ′)|2

]
= 2

∑
f ′∈[n]\{ f }

|X̂ ′
f ′ |2Eπ

[
|Ĝo f ( f ′)|2

]
≤ 20

B
‖X̂ ′‖2

2. (A.44)

by Lemma 1.4.3.

We now turn to ẽrr f . We know from Lemma 1.4.6 that
∣∣∣Ûh( f ) −Û∗

h( f )

∣∣∣≤ ‖Û −Û∗‖∞ ≤ n−c‖χ̂‖2.

Hence, and again using |Ĝo f ( f )|−2 ≤ 2, we find that,

|ẽrr f | ≤ 2n−c‖χ̂‖2 ≤ 2n−c+c ′‖X̂ ′‖2, (A.45)
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Algorithm 17 Estimation procedure for individual frequencies

1: procedure ESTIMATEVALUES(X , χ̂,L,n,k0,k1,δ, p)
2: B ← 1200

δ k0k1

3: F ← 10log 1
δ

4: G ← (n,B ,F )-flat filter . See Definition 1.2.1
5: F ←

{
f ∈ [n] : round

( f
k1

) ∈ L
}

6: T ← 10log 2
p

7: for t ∈ {1, . . . ,T } do
8: ∆← uniform random sample from [n]
9: σ← uniform random sample from odd numbers in [n]

10: Û ← HASHTOBINS(X , χ̂,G ,n,B ,σ,∆) . o f ( f ),h( f ) as in Definition 1.4.2

11: W (t )
f ← Ĝ−1

o f ( f )Ûh( f )ω
−σ∆ f for every f ∈F

12: W f ← Median t

{
W (t )

f

}
for every f ∈F . Separately for the real and imaginary parts

13: return W

where the second inequality follows since ‖χ̂‖2 ≤ nc ′‖X̂ ′‖2 for some c ′ > 0, by assumption.

A.5 Estimating Individual Frequency Values

Once we have located the blocks, we need to estimate the frequency values with them. The

function ESTIMATEVALUES in Algorithm 17 performs this task for us via basic hashing tech-

niques. The following lemma characterizes the guarantee on the output.

Lemma 1.5.2 (ESTIMATEVALUES guarantees – restated from Section 1.5.1). For any integers

n,k0,k1, any list of block indices L ⊆
[

n
k1

]
, parameters δ ∈ ( 1

n , 1
20

)
and p ∈ (0,1/2), and signals

X ∈Cn and χ̂ ∈Cn with ‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖2, with probability at least 1−p, the output W of

the function ESTIMATEVALUES (X , χ̂,L,n,k0,k1,δ, p) (Algorithm 17) has the following property:

∑
f ∈⋃

j∈L I j

|W f − (X̂ − χ̂) f |2 ≤ δ
|L|
3k0

‖X̂ − χ̂‖2
2,

where I j is the j -th block. Moreover, provided that ‖χ̂‖0 = O(k0k1), the sample complexity is

O
(

k0k1
δ log 1

p log 1
δ

)
, and the runtime is O

(
k0k1
δ log 1

p log 1
δ logn +k1 · |L| log 1

p

)
.

Proof. Let X ′ = X −χ, and let Û be the output of HASHTOBINS and Û∗ its exact counterpart.

We start by calculating W (t )
f for an arbitrary f ∈F :

W (t )
f = Ĝ−1

o f ( f )Ûh( f )ω
−σ∆ f

= Ĝ−1
o f ( f )Û

∗
h( f )ω

−σ∆ f +Ĝ−1
o f ( f )(Ûh( f ) −Û∗

h( f ))ω
−σ∆ f

= X̂ ′
f +err(t )

f +ẽrr(t )
f (by Lemma 1.4.2), (A.46)
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where err(t )
f = Ĝ−1

o f ( f )

∑
f ′∈[n]\{ f } X̂ ′

f ′Ĝo f ( f ′)ω
σ∆( f ′− f ), and ẽrr(t )

f = Ĝ−1
o f ( f )(Ûh( f ) −Û∗

h( f ))ω
−σ∆ f , for

(σ,∆) implicitly depending on t .

Bounding err(t )
f and ẽrr(t )

f : Using Lemma A.4.1 in Appendix A.4, we have

E∆,π

[∣∣∣err(t )
f

∣∣∣2
]
≤ 20

B
‖X̂ ′‖2

2 (A.47)∣∣∣ẽrr(t )
f

∣∣∣≤ 2n−c+c ′‖X̂ ′‖2, (A.48)

where c is used in HASHTOBINS, and c ′ is the exponent in the poly(n) notation of the assump-

tion ‖X̂ − χ̂‖2 ≥ 1
poly(n)‖χ̂‖2.

In order to characterize |W (t )
f − X̂ ′

f |2, we use the following:

|ẽrr f |2 +2|err(t )
f | · |ẽrr(t )

f | ≤ 4n2(−c+c ′)‖X̂ ′‖2
2 +4n−c+c ′‖X̂ ′‖2 · |err(t )

f |. (A.49)

which follows directly from (A.48).

Characterizing |W (t )
f − X̂ ′

f |2: We have from (A.46), (A.47), and (A.49) that

E
[
|W (t )

f − X̂ ′
f |2

]
≤ E

[
|err(t )

f |2 +2|err(t )
f | · |ẽrr(t )

f |+ |ẽrr(t )
f |2

]
≤ 20

B
‖X̂ ′‖2

2 +4n2(−c+c ′)‖X̂ ′‖2
2 +4n−c+c ′‖X̂ ′‖2E

[
|err(t )

f |
]

≤ 20

B
‖X̂ ′‖2

2 +4n2(−c+c ′)‖X̂ ′‖2
2 +4

√
20

B
n−c+c ′‖X̂ ′‖2

2, (A.50)

where the last line follows from E
[∣∣∣err(t )

f

∣∣∣] ≤ √
E

[∣∣∣err(t )
f

∣∣∣2
]

via Jensen’s inequality, and then

applying (A.47).

Since B = 1200k0k1
δ and we have assumed δ≥ 1

n , we have B ≤ 1200n3, and hence we have for

sufficiently large c that (A.50) simplifies to E

[∣∣∣W (t )
f − X̂ ′

f

∣∣∣2
]
≤ 25

B ‖X̂ ′‖2
2. This means that for any

v > 0,

Pr∆,π

[∣∣∣W (t )
f − X̂ ′

f

∣∣∣2 ≥ 160v

B
‖X̂ ′‖2

2

]
≤
E∆,π

[∣∣∣W (t )
f − X̂ ′

f

∣∣∣2
]

160v
B ‖X̂ ′‖2

2

≤ 1

6v
. (A.51)

by Markov’s inequality.

Taking the median: Recall that W f is the median of T independent random variables, with the

median taken separately for the real and imaginary parts. Since |W |2 = |Re(W )|2+|Im(W )|2, we

find that (A.51) holds true when W (t )
f − X̂ ′

f is replaced by its real or imaginary part. Hence, with

probability at least 1− ( T
T /2

)( 1
6v

)T /2, we have |Re(W (t )
f − X̂ ′

f )|2 < 160v
B ‖X̂ ′‖2

2, and analogously for
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the imaginary part. Combining these and applying the union bound, we obtain

Pr

[
|W f − X̂ ′

f |2 ≥
320v

B
‖X̂ ′‖2

2

]
≤ 2

(
T

T /2

)( 1

6v

)T /2 ≤ 2
( 2

3t

)T /2 ≤ p

vT /2
, (A.52)

where we first applied
( T

T /2

)≤ 2T , and then the choice T = 10log 2
p from Algorithm 17 and the

choice of p ≤ 1/2.

We now bound the error as follows:∣∣∣W f − X̂ ′
f

∣∣∣2 ≤ 320

B
‖X̂ ′‖2

2 +
∣∣∣ ∣∣∣W f − X̂ ′

f

∣∣∣2 − 320

B
‖X̂ ′‖2

2

∣∣∣+. (A.53)

We write the expected value of the second term as,

E

[∣∣∣|W f − X̂ ′
f |2 −

320

B
‖X̂ ′‖2

2

∣∣∣+
]
=

∫ ∞

0
Pr

[∣∣∣|W f − X̂ ′
f |2 −

320

B
‖X̂ ′‖2

2

∣∣∣+ ≥ u

]
du

=
∫ ∞

0
Pr

[
|W f − X̂ ′

f |2 ≥
320

B
‖X̂ ′‖2

2 +u

]
du

=
∫ ∞

1

320

B
‖X̂ ′‖2

2Pr

[
|W f − X̂ ′

f |2 ≥
320v

B
‖X̂ ′‖2

2

]
d v

where we applied the change of variable v = 1+ u
320
B ‖X̂ ′‖2

2
. By incorporating (A.52) into this

integral, we obtain,

E

[∣∣∣|W f − X̂ ′
f |2 −

320

B
‖X̂ ′‖2

2

∣∣∣+
]
≤ 320

B
‖X̂ ′‖2

2

∫ ∞

1

p

vT /2
d v

≤ 320

B
‖X̂ ′‖2

2 ·
p

T /2−1

≤ 80

B
‖X̂ ′‖2

2 ·p, (A.54)

where the second line is by explicitly evaluating the integral (with T > 2), and the third by

T /2−1 ≥ 4 (cf., Algorithm 17).

Summing (A.53) over F =∪ j∈L I j , we find that the total error is upper bounded as follows:

∑
f ∈F

|W f − X̂ ′
f |2 ≤

320|F |
B

‖X̂ ′‖2
2 +

∑
f ∈F

∣∣∣|W f − X̂ ′
f |2 −

320

B
‖X̂ ′‖2

2

∣∣∣+.

From (A.54), the expected value of the second term above is at most p · 80|F |
B ‖X̂ ′‖2

2, and hence,

∑
f ∈F

|W f − X̂ ′
f |2 ≤

400|F |
B

‖X̂ ′‖2
2,

with probability at least 1−p, by Markov’s inequality. The lemma follows since B = 1200
δ k0k1

in Algorithm 17.
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Sample complexity and runtime: To calculate the sample complexity, note that the only

operation in the algorithm that takes samples is the call to HASHTOBINS. By Lemma 1.4.6,

and the choices B = 1200 k0k1
δ and F = 10log 1

δ , the sample complexity is O
(

k0k1
δ log 1

δ

)
per

performed hashing. Since we run the hashing in a loop 10log 2
p times, this amounts to a total

of O
(

k0k1
δ log 1

δ log 1
p

)
.

The runtime depends on two operations. The first one is calling HASHTOBINS, whose analysis

follows similarly to the aforementioned sample complexity analysis using the assumption

‖χ̂‖0 = O(k0k1), but with an extra logn factor compared to the sample complexity, as per

Lemma 1.4.6. The other operation is computation of W (t )
f , which takes unit time for each

f ∈F . Since the size of |F | = k1 · |L|, running it in a loop costs O
(
k1 · |L| log 1

p

)
. Computing the

median is done in linear time which consequently results in |F |T =O
(
k1 · |L| log 1

p

)
.

A.6 Analysis of REDUCESNR and RECOVERATCONSTSNR

Note on 1
poly(n) assumptions in lemmas: Throughout the proofs of Lemmas 1.5.3 and 1.5.4, we

apply Lemmas 1.3.5, 1.5.1, and 1.5.2. The first of these assumes that χ̂0 uniformly distributed

over an arbitrarily length-Ω
( ‖χ̂‖2

poly(n)

)
interval, and the latter two use the assumption ‖X̂ − χ̂‖2 ≥

1
poly(n)‖χ̂‖2.

We argue that these assumptions are trivial and can be ignored. To see this, we apply a

minor technical modification to the algorithm as follows. Suppose the implied exponent

to the poly(n) notation is c ′. By adding a noise term to χ̂0 on each iteration uniform in[
−n−c ′+10‖χ̂‖2,n−c ′+10‖χ̂‖2

]
, we immediately satisfy the first assumption above, and we also

find that the probability of ‖X̂ − χ̂‖2 < 1
nc′ ‖χ̂‖2 is at most n−10, and the additional error in

the estimate is O
(
n−c ′+10‖χ̂‖2

)
. Since we only do O(logSNR′) = O(logn) iterations (by the

assumption SNR′ ≤ poly(n)), this does not affect the result because the accumulated noise

added to χ̂0 which we denote by err(χ̂0), does not exceed
‖X̂ ‖2

2
poly(n) which by the final assumption

of the lemma implies that err(χ̂0) ≤ ν2.

A.6.1 Proof of Lemma 1.5.3

Overview of the proof: We introduce the approximate support set of the input signal X̂ , given

by the union of the top k0 blocks of the signal and the blocks whose energy is more than the

tail noise level:

S0 :=
{

j ∈
[ n

k1

]
: ‖X̂ I j ‖2

2 ≥µ2
}
∪

(
argminS⊂[ n

k1
]

|S|=k0

∑
j∈[ n

k1
]\S

‖X̂ I j ‖2
2

)
. (A.55)
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From the definition of µ2 in Definition 1.1.2, we readily obtain |S0| ≤ 2k0. For each t = 1,2, ...,T ,

define the set St as,

St = St−1 ∪L′
t ,

where L′
t is the output of PRUNELOCATION at iteration t of REDUCESNR. St contains the set of

the head elements of X̂ , plus every element that is modified by the algorithm so far.

We prove by induction on the iteration number t = 1, . . . ,T that there exist events E0 ⊇ E1 ⊇
... ⊇ ET such that conditioned on Et , the followings hold true:

a. |St | ≤ 2k0 + tk0
T ;

b. ‖χ̂(t )
I j
‖2

2 = 0 for all j ∈ [ n
k1

]
\St ;

c. ‖X̂ − χ̂(t )‖2
2 ≤ 99 ·SNR′(k0ν

2)/2t ;

We prove using induction that for each t ≤ T , Pr[Et+1|Et ] ≥ 1− 1
10T .

Base case of the induction: We have already deduced that |S0| ≤ 2k0. Furthermore, χ̂(0) = 0 by

definition, and we have ‖X̂ − χ̂(0)‖2
2 = ‖X̂ ‖2

2 ≤ SNR′ · (k0µ
2)/20 by assumption (2) of the lemma.

Hence, we can let E0 be the trivial event satisfying Pr[E0] = 1.

Inductive step: We seek to define an event Et+1 that occurs with probability at least 1− 1
10T

conditioned on Et , and such that the induction hypotheses a, b, and c are satisfied conditioned

on Et+1. To this end, we introduce three events Eloc,t , Eprune,t , and Eest,t , and set Et+1 =
Eloc,t ∩Eprune,t ∩Eest,t ∩Et . In what follows, we let δ, θ, and p be chosen as in Algorithm 6

Success event associated with MULTIBLOCKLOCATE: Let Eloc,t be the event of having a suc-

cessful run of MULTIBLOCKLOCATE(X , χ̂(t ),n,k1,k0,δ, p) at iteration t + 1 of the algorithm.

More precisely, Eloc,t corresponds to having the following conditions on the output list L:

|L| ≤C · k0

δ
log

k0

δ
log3 1

δp
(A.56)∑

j∈St \L
‖(X̂ − χ̂(t ))I j ‖2

2 ≤ 0.1‖X̂ − χ̂(t )‖2
2, (A.57)

where C is a constant to be specified shortly. We proceed by invoking Lemma 1.3.5 with

S∗ = St . Note that inductive hypothesis (a) implies |St | ≤ (2+ t
logSNR′ )k0 ≤ 3k0. By Lemma

1.3.5 both (A.56) and (A.57) hold with probability at least 1 − p: the first part of Lemma

1.3.5, implies that |L| ≤C k0
δ log k0

δ log 1
p log2 1

δp , for an absolute constant C ; the second part of

Lemma 1.3.5, implies (A.57) provided that δ≤ 1
20002 . So, the event Eloc,t occurs with probability

Pr
[
Eloc,t |Et

]≥ 1−p.

Success event associated with PRUNELOCATION: Let Eprune,t be the event of having a success-

ful run of PRUNELOCATION(X , χ̂(t ),L,k0,k1,δ, p,n,θ) at iteration t +1 of the algorithm. More
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precisely, Eprune,t corresponds to the following conditions on the output list L′:

|L′\St | ≤ k0

T
(A.58)∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂(t ))I j ‖2

2 ≤ 0.2‖X̂ − χ̂(t )‖2
2 +k0

(
µ2 +33ν2SNR′/2t+1) . (A.59)

The probability of (A.58) holding: In order to bound |L′\St |, first recall that the set Stail, de-

fined in Lemma 1.5.1 part (a), has the following form:

Stail =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂(t ))I j ‖2 ≤

p
θ−

√
δ

k0
‖X̂ − χ̂(t )‖2

}
.

By substituting θ = 10 ·2−(t+1) ·ν2(SNR′) and using ‖X̂ − χ̂(t )‖2
2 ≤ 99 ·SNR′(k0ν

2)/2t from part c

of the inductive hypothesis, we have

p
θ−

√
δ

k0
‖X̂ − χ̂(t )‖2

≥
√

10 ·2−(t+1) ·ν2(SNR′)−
√

δ

k0

√
99 ·SNR′(k0ν2)/2t

≥
√

9 ·ν2(SNR′)/2t+1,

where the last inequality holds when δ is sufficiently small. Hence,

Stail ⊇
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂(t ))I j ‖2

2 ≤ 9 ·ν2(SNR′)/2t+1
}

. (A.60)

Now, to prove that (A.58) holds with high probability, we write

|L′\St | = |(L′∩Stail)\St |+ |L′\(Stail ∪St )|. (A.61)

To upper bound the first term, note that by the first part of Lemma 1.5.1, we have

E
[∣∣L′∩Stail

∣∣]≤ δp · |L|,

and hence by Markov’s inequality, the following holds with probability at least 1− 1
100T :∣∣(L′∩Stail)\St

∣∣≤ ∣∣L′∩Stail
∣∣

≤ 100Tδp · |L|

≤ 100Tδp ·C T
k0

δ
log

k0

δ
log3 1

δp

=
100Cδ ·k0 log3 1

δp

log k0
δ · log2 SNR′ ,
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where the third line follows from (A.56) (we condition on Eloc,t ), and fourth line follows from

the choices T = logSNR′ and p = δ

log2 k0
δ

log4 SNR′ in Algorithm 6. Again using this choice of p,

we claim that
100Cδ log3 1

δp

log
k0
δ
·logSNR′ ≤ 1 for sufficiently small δ regardless of the values (k0,SNR′); this is

because the dependence of 1/p on k0 and SNR′ is logarithmic, so in the numerator contains

log3 logk0 and log3 logSNR′ while the denominator contains logk0 and logSNR′. Hence,

∣∣(L′∩Stail)\St
∣∣≤ k0

logSNR′

with probability at least 1− 1
100T .

We now show that the second term in (A.61) is zero, by showing that Stail ∪St = [ n
k1

]. To see

this, note that the term ν2(SNR′)/2t+1 in the bound on Stail in (A.60) satisfies

ν2(SNR′)/2t+1 ≥ 1

2
ν2 ≥ 1

2
µ2, (A.62)

by applying t ≤ T = logSNR′, followed by the first assumption of the lemma. Hence,

Stail\St ⊇
{

j ∈
[ n

k1

]∖
St : ‖(X̂ − χ̂(t ))I j ‖2

2 ≤ 4µ2
}

.

By part b of the inductive hypothesis, we have ‖(X̂ −χ̂(t ))I j ‖2
2 = ‖X̂ I j ‖2

2 for all j ∉ St , and hence,

Stail\St ⊇
{

j ∈
[ n

k1

]∖
St : ‖X̂ I j ‖2

2 ≤ 4µ2
}

.

But from (A.55), we know that S0 (and hence St ) contains all j ∈
[

n
k1

]
with ‖X̂ I j ‖2

2 > 4µ2, so we

obtain Stail\St ⊃
[ n

k1

]
\St , and hence Stail ∪St = (Stail\St )∪St =

[ n
k1

]
, as required.

Therefore, the probability of (A.58) holding conditioned on Et and Eloc,t is at least 1− 1
100T .

The probability of (A.59) holding: To show (A.59), we use the second part of Lemma 1.5.1.

The set Shead therein is defined as,

Shead =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂(t ))I j ‖2 ≥

p
θ+

√
δ

k0
‖X̂ − χ̂(t )‖2

}
.

By substituting θ = 10 ·2−(t+1) ·ν2(SNR′) and using ‖X̂ − χ̂(t )‖2
2 ≤ 99 ·SNR′(k0ν

2)/2t from part c
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of the inductive hypothesis, we have

p
θ+

√
δ

k0
‖X̂ − χ̂‖2

=
√

10 ·2−(t+1) ·ν2(SNR′)+
√

δ

k0

√
99 ·SNR′(k0ν2)/2t

≤
√

11 ·ν2(SNR′)/2t+1

for sufficiently small δ. Therefore,

Shead ⊇
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2

2 ≥ 11 ·ν2(SNR′)/2t+1
}

. (A.63)

Next, we write,∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂(t ))I j ‖2
2 =

∑
j∈(St∩Shead∩L)\L′

‖(X̂ − χ̂(t ))I j ‖2
2 +

∑
j∈(St∩Shead)\(L′∪L)

‖(X̂ − χ̂(t ))I j ‖2
2

+ ∑
j∈St \(Shead∪L′)

‖(X̂ − χ̂(t ))I j ‖2
2 +

∑
j∈[ n

k1
]\(L′∪St )

‖(X̂ − χ̂(t ))I j ‖2
2, (A.64)

and we proceed by upper bounding each and every one of the four terms.

Bounding the first term in (A.64): By the second part of Lemma 1.5.1 and use of Markov’s

inequality, we have∑
j∈(St∩Shead∩L)\L′

‖(X̂ − χ̂(t ))I j ‖2
2 ≤ δ

∑
j∈L∩Shead

‖(X̂ − χ̂(t ))I j ‖2
2 ≤ δ‖X̂ − χ̂(t )‖2

2

with probability at least 1−p.

Bounding the second term in (A.64): Conditioned on Eloc,t , we have∑
j∈(St∩Shead)\(L∪L′)

‖(X̂ − χ̂(t ))I j ‖2
2 ≤

∑
j∈St \L

‖(X̂ − χ̂(t ))I j ‖2
2 ≤ 0.1‖X̂ − χ̂(t )‖2

2,

where we have applied (A.57).

Bounding the third term in (A.64): We have∑
j∈St \(Shead∪L′)

‖(X̂ − χ̂(t ))I j ‖2
2 ≤

∑
j∈St \Shead

‖(X̂ − χ̂(t ))I j ‖2
2

≤ |St \Shead| · max
j∈St \Shead

‖(X̂ − χ̂(t ))I j ‖2
2

≤ |St |(11 ·ν2SNR′/2t+1)

209



Appendix A. Supplementary Materials for Chapter 1

by (A.63). Part a of the inductive hypothesis implies that |St | ≤ 3k0, and hence∑
j∈(L∩St )\(Shead∪L′)

‖(X̂ − χ̂(t ))I j ‖2
2 ≤ 33k0 ·ν2SNR′/2t+1.

Bounding the fourth term in (A.64):∑
j∈[ n

k1
]\(L′∪St )

‖(X̂ − χ̂(t ))I j ‖2
2 ≤

∑
[ n

k1
]\St

‖(X̂ − χ̂(t ))I j ‖2
2

= ∑
[ n

k1
]\St

‖X̂ I j ‖2
2 ≤ k0µ

2,

where the equality follows from part b of the inductive hypothesis, and the final step holds

since St contains all top k0 blocks of X̂ (cf., (A.55)).

Adding the above four contributions and applying union bound, we find that conditioned

on Et and Eloc,t , (A.59) holds with probability at least Pr
[
Eprune,t |Et ∩Eloc,t

] ≥ 1− p − 1
100T ,

provided that δ is a sufficiently small constant (δ≤ 0.1).

Success event associated with ESTIMATEVALUES: Let Eest,t be the event of having a successful

run of ESTIMATEVALUES(X , χ̂(t ),L′,k0,k1,δ, p) at iteration t +1 of the algorithm conditioned

on Et . More precisely, Eest,t corresponds to having the following conditions on the output

signal W :

W f = 0 for all f ∉F∑
j∈L′

‖(X̂ − χ̂(t ) −W )I j ‖2
2 ≤ δ‖X̂ − χ̂(t )‖2

2, (A.65)

where F contains the frequencies within the blocks indexed by L′. By Lemma 1.5.2 and the

fact that |L′| ≤ 3k0 conditioned on Eprune,t , Eloc,t , and Et , it immediately follows that Eest,t

occurs with probability at least Pr
[
Eest,t |Eprune,t ∩Eloc,t ∩Et

]≥ 1−p.

Combining the events: We can now wrap everything up as follows:

Pr
[
Et+1

∣∣Et
]= Pr

[
Eloc,t ∩Eprune,t ∩Eest,t ∩Et

∣∣Et
]

= Pr
[
Eest,t

∣∣Eloc,t ∩Eprune,t ∩Et
]
Pr

[
Eprune,t

∣∣Eloc,t ∩Et
]
Pr

[
Eloc,t

∣∣Et
]
.

Substituting the probability bounds into the above equation, we have

Pr
[
Et+1

∣∣Et
]≥ 1−3p − 2

100T
≥ 1− 1

20T
,

by the choice of p in Algorithm 6 along with T = logSNR.

Now we show that the event Et+1 = Eloc,t ∩Eprune,t ∩Eest,t ∩Et implies the induction hypothesis.

Conditioned on Eprune,t ∩Et , we have (A.58), which immediately gives part a. Conditioned on

Eloc,t ∩Eest,t , from the definition St+1 = St ∪L′, part b of the inductive hypothesis follows from
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the fact that only elements in L′ are updated. Finally, conditioned on Et ∩Eprune,t ∩Eest,t , we

have

‖X̂ − χ̂(t+1)‖2
2 =

∑
j∈L′

‖(X̂ − χ̂(t+1))I j ‖2
2 +

∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂(t+1))I j ‖2
2

= ∑
j∈L′

‖(X̂ − χ̂(t ) −W )I j ‖2
2 +

∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂(t+1))I j ‖2
2

≤ (0.2+δ)‖X̂ − χ̂(t )‖2
2 +k0(µ2 +33ν2SNR′/2t+1)

≤ 99ν2k0SNR′/2t+1,

where the second line holds since W is non-zero only for the blocks indexed by L′, the third

line follows from (A.59) and (A.65), and the last line holds for sufficiently small δ from part c

of the induction hypothesis, and the upper bound µ2 ≤ 2ν2(SNR′)/2t+1 given in (A.62).

The first part of the lemma now follows from a union bound over the T iterations and the fact

that the accumulated error err(χ̂0) ≤ ν2, and by noting that the three parts of the induction

hypothesis immediately yield the two claims therein. We conclude by analyzing the sample

complexity and runtime.

Sample complexity: By Lemma 1.3.5, the sample complexity of MULTIBLOCKLOCATE in a

given iteration is O∗(k0
δ log(1+k0) logn+ k0k1

δ2

)
, and multiplying by the number T =O(logSNR′)

of iterations gives a total of O∗(
logSNR′(k0

δ log(1+k0) logn + k0k1

δ2

))
. Since δ=Ω(1), the above

sample complexity simplifies to O∗ (
k0 log(1+k0) logSNR′ logn +k0k1 logSNR′).

By Lemma 1.5.1, the sample complexity of PRUNELOCATION is O
(

k0k1
δ log 1

δp log 1
δ

)
, and by

Lemma 1.5.2, the sample complexity of ESTIMATEVALUES is O
(

k0k1
δ log 1

p log 1
δ

)
. Substituting

the choices of δ and p, these behave as O∗(k0k1) per iteration, or O∗ (
k0k1 logSNR′) overall.

Runtime: By Lemma 1.3.5, the runtime of MULTIBLOCKLOCATE in a given iteration t is

O∗(k0
δ log(1+k0) log2 n + k0k1

δ2 log2 n + k0k1
δ log3 n

)
. Moreover, by Lemma 1.5.1, the runtime of

PRUNELOCATION as a function of |L| is O
(

k0k1
δ log 1

δp log 1
δ logn +k1 · |L| log 1

δp

)
. Conditioned

on Eloc,t it holds that |L| =O
(k0
δ log k0

δ log3 1
δp

)
(see (A.56)), and substituting this in the runtime

of PRUNELOCATION we get O∗
(

k0k1
δ logn

)
, by absorbing the log 1

δ and log 1
p factors into the

O∗(·) notation.

Summing the preceding per-iteration expected runtimes, multiplying by the number of it-

erations T , and substituting the choices of T , p and δ, we find that the combined runtime

across all calls to MULTIBLOCKLOCATE and PRUNELOCATION is O∗(k0 logk0 logSNR′ log2 n +
k0k1 logSNR′ log3 n).

By Lemma 1.5.2, the runtime of ESTIMATEVALUES is O
(

k0k1
δ log 1

p log 1
δ logn +k1 · |L′| log 1

p

)
,
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which behaves as O
(

k0k1
δ log 1

p log 1
δ logn

)
conditioned on Eprune,t ∩Et (see (A.58) and recall

that |St | ≤ 3k0). By our choices of p and δ, this simplifies to O∗(k0k1 logn) per iteration, or

O∗ (
k0k1 logSNR′ logn

)
overall.

A.6.2 Proof of Lemma 1.5.4

The proof resembles that of Lemma 1.5.3, but is generally simpler, and has some differing

details. We provide the details for completeness.

Overview of the proof: We first introduce the approximate support set of the input signal

X̂ − χ̂, given by the top 10k0 blocks of the signal:

S0 := argmin S⊂[ n
k1

]

|S|=10k0

∑
j∉S

‖(X̂ − χ̂)I j ‖2
2 (A.66)

We also introduce another set indexing blocks whose energy is sufficiently large:

Sε =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2

2 ≥ ε
Err2(X̂ − χ̂,10k0,k1)

k0

} ⋃
S0. (A.67)

It readily follows from the above definition and Definition 1.1.2 that |Sε\S0| ≤ k0/ε.

The function calls three other primitives, and below, we show that each of them succeeds with

high probability by introducing suitable success events. Throughout, we let θ, p, and η be as

chosen in Algorithm 6.

Success event of the location primitive: Let Eloc be the event of having a successful run of

MULTIBLOCKLOCATE(X , χ̂,k1,k0,n,ε2, p), defined as the following conditions on the list L:

|L| ≤C
k0

ε2 log
k0

ε2 log3 1

ε2p
(A.68)∑

j∈S0\L
‖(X̂ − χ̂)I j ‖2

2 ≤ 200ε‖X̂ − χ̂‖2
2, (A.69)

where C is a constant to be specified shortly. To verify these conditions, we invoke Lemma

1.3.5 with S∗ = S0. Lemma 1.3.5, both (A.68) and (A.69) hold with probability at least 1−p.

By the first part of Lemma 1.3.5, we have |L| ≤ C k0

ε2 log k0
ε log3 1

εp for an absolute constant C .

The second part of Lemma 1.3.5 with δ = ε2, implies (A.69). So, the event Eloc occurs with

probability at least 1−p.

Success event of the pruning primitive: Let Eprune be the event of having a successful run of
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PRUNELOCATION(X , χ̂,L,n,k0,k1,ε, p,θ), meaning the following conditions on the output L′:

|L′\S0| ≤ 2k0

ε
(A.70)∑

j∈[ n
k1

]\L′
‖(X̂ − χ̂)I j ‖2

2 ≤ 300ε‖X̂ − χ̂‖2
2 +6000εν2k0 +Err2(X̂ − χ̂,10k0,k1). (A.71)

The probability of (A.70): In order to bound |L′\S0|, first note that the set Stail, defined in

Lemma 1.5.1 part (a), has the following form:

Stail =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≤

p
θ−

√
ε

k0
‖X̂ − χ̂‖2

}
.

By substituting θ = 200 ·εν2 (cf., Algorithm 6) and using the assumption ‖X̂ − χ̂‖2
2 ≤ 100k0ν

2 in

the lemma, we have,

p
θ−

√
ε

k0
‖X̂ − χ̂‖2 =

√
200 ·εν2 −

√
ε

k0
‖X̂ − χ̂‖2

≥
√

200 ·εν2 −
√

100 ·εν2

≥
√

16 ·εν2. (A.72)

Hence,

Stail ⊇
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂(t ))I j ‖2

2 ≤ 16ε ·ν2
}

.

Now, to prove that (A.70) holds, we write,

|L′\S0| = |(L′∩Sε)\S0|+ |L′\(S0 ∪Sε)|
≤ |(L′∩Sε)\S0|+ |(L′∩Stail)\Sε|+ |L′\(Stail ∪Sε)|.

(A.73)

We first upper bound the first term as follows:

|(L′∩Sε)\S0| ≤ |Sε\S0| ≤ k0/ε,

which follows directly from the definition of Sε. To upper bound the second term in (A.73),

note that by Lemma 1.5.1 part (a) with δ= ε,

E
[∣∣L′∩Stail

∣∣]≤ εp · |L|,
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and hence by Markov’s inequality, the following holds with probability at least 1− 1
100 :∣∣(L′∩Stail)\Sε

∣∣≤ ∣∣L′∩Stail
∣∣

≤ 100εp · |L|

≤ 100εp ·C k0

ε
log

k0

ε
log3 1

εp

= 100C p ·k0 log
k0

ε
log3 1

εp

=
100Cηε ·k0 log3 1

εp

log k0
ε

,

where the third line follows from (A.68) (we condition on Eloc), and the fifth line follows

from and the choice p = ηε

log2 k0
ε

in Algorithm 6. Again using this choice of p, we claim that

100Cηε log3 1
εp

log
k0
δ

≤ 1 for sufficiently small η regardless of the value of k0; this is because the depen-

dence of 1/p on k0 is logarithmic, so the numerator contains log3 logk0, while the denominator

contains logk0 which means that the ratio is upper bounded and can be made arbitrarily small

by choosing a small enough constant η. Hence∣∣(L′∩Stail)\Sε
∣∣≤ k0

with probability at least 1− 1
100 .

We now show that the third term in (A.73) is zero, by showing that Stail ∪ Sε = [ n
k1

]. To see

this, note that the term ν2 in the definition of Stail is more than Err2(X̂−χ̂,10k0,k1)
k0

by the first

assumption of the lemma, and hence

Stail\Sε ⊃
{

j ∈
[ n

k1

]∖
Sε : ‖(X̂ − χ̂)I j ‖2

2 ≤ 16ε
Err2(X̂ − χ̂,10k0,k1)

k0

}
.

However, the definition of Sε in (A.67) reveals that the condition upper bounding ‖(X̂ − χ̂)I j ‖2
2

is redundant, and Stail\Sε ⊃
[ n

k1

]
\Sε, and hence Stail ∪Sε = (Stail\Sε)∪Sε =

[ n
k1

]
.

Bounding the probability of (A.71): To show (A.71), we use the second part of Lemma 1.5.1.

The set Shead therein is defined as

Shead =
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2 ≥

p
θ+

√
ε

k0
‖X̂ − χ̂‖2

}
.

By substituting θ = 200ε ·ν2 (cf., Algorithm 6) and using the assumption ‖X̂ − χ̂‖2
2 ≤ 100k0ν

2 in

the lemma, we have

p
θ+

√
ε

k0
‖X̂ − χ̂‖2 =

√
200ε ·ν2 +

√
ε

k0
‖X̂ − χ̂‖2 ≤

√
600ε ·ν2,
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and hence

Shead ⊇
{

j ∈
[ n

k1

]
: ‖(X̂ − χ̂)I j ‖2

2 ≥ 600ε ·ν2
}

. (A.74)

Next, we write∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂)I j ‖2
2 =

∑
j∈(S0∩Shead∩L)\L′

‖(X̂ − χ̂)I j ‖2
2 +

∑
j∈(S0∩Shead)\(L′∪L)

‖(X̂ − χ̂)I j ‖2
2

+ ∑
j∈S0\(Shead∪L′)

‖(X̂ − χ̂)I j ‖2
2 +

∑
j∈[ n

k1
]\(L′∪S0)

‖(X̂ − χ̂)I j ‖2
2, (A.75)

and we proceed by upper bounding the four terms.

Bounding the first term in (A.75): By part b of Lemma 1.5.1, the choice δ= ε, and the use of

Markov, we have ∑
j∈(S0∩Shead∩L)\L′

‖(X̂ − χ̂)I j ‖2
2 ≤ ε

∑
j∈L∩Shead

‖(X̂ − χ̂)I j ‖2
2 ≤ ε‖X̂ − χ̂‖2

2

with probability at least 1−p.

Bounding the second term in (A.75): Conditioned on Eloc, we have∑
j∈(S0∩Shead)\(L∪L′)

‖(X̂ − χ̂)I j ‖2
2 ≤

∑
j∈S0\L

‖(X̂ − χ̂)I j ‖2
2

≤ 200ε‖X̂ − χ̂‖2
2,

where we have applied (A.69).

Bounding the third term in (A.75): We have∑
j∈S0\(Shead∪L′)

‖(X̂ − χ̂)I j ‖2
2 ≤

∑
j∈S0\Shead

‖(X̂ − χ̂)I j ‖2
2

≤ |S0\Shead| · max
j∈S0\Shead

‖(X̂ − χ̂)I j ‖2
2

≤ |S0|(600ε ·ν2)

by (A.74). We have by definition that |S0| = 10k0 (cf., (A.66)), and hence∑
j∈(L∩S0)\(Shead∪L′)

‖(X̂ − χ̂)I j ‖2
2 ≤ 6000k0ε ·ν2.
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Bounding the fourth term in (A.75): We have∑
j∈[ n

k1
]\(L′∪S0)

‖(X̂ − χ̂)I j ‖2
2 ≤

∑
j∈[ n

k1
]\S0

‖(X̂ − χ̂)I j ‖2
2

= Err2(X̂ − χ̂,10k0,k1),

which follows from the definition of S0 in (A.66), along with Definition 1.1.2.

Hence by the union bound, it follows that Eprune holds with probability at least 1−p − 1
1000

conditioned on Eloc.

Success event of estimation primitive: Let Eest be the event of having a successful run of

ESTIMATEVALUES(X , χ̂,L,n,3k0/ε,k1,ε, p), meaning the following conditions on the output,

W :

W f = 0 for all f ∉F∑
j∈L′

‖(X̂ − χ̂−W )I j ‖2
2 ≤ ε‖X̂ − χ̂‖2

2, (A.76)

where F contains the frequencies within the blocks indexed by L′. Since the assumption of

the theorem implies that ‖χ̂‖0 = O(k0k1), by Lemma 1.5.2 (with δ = ε and 3k0/ε in place of

k0) and the fact that conditioned on Eprune we have |L′| ≤ 3k0/ε (cf., (A.70)), it follows that Eest

occurs with probability at least 1−p.

Combining the events: We can now can wrap everything up.

Letting E denote the overall success event corresponding to the claim of the lemma, we have

Pr[E ] = Pr
[
Eloc ∩Eprune ∩Eest

]
= Pr

[
Eest

∣∣∣Eloc ∩Eprune
]
Pr

[
Eprune

∣∣Eloc
]
Pr

[
Eloc

]
.

By the results that we have above, along with the union bound, it follows that

Pr
[
E

]≥ 1−2/100−3p ≥ 0.95

for sufficiently small η in Algorithm 6. A union bound over Ē and the 1/poly(n) probability

failure event arising from random perturbations of χ̂0 yields the required bound of 0.9 on the

success probability.

What remains is to first show that the statement of the lemma follows from Eloc ∩Eprune ∩Eest.
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To do this, we observe that, conditioned on these events,

‖X̂ − χ̂′‖2
2 =

∑
j∈L′

‖(X̂ − χ̂′)I j ‖2
2 +

∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂′)I j ‖2
2 +err(χ̂0)

= ∑
j∈L′

‖(X̂ − χ̂−W )I j ‖2
2 +

∑
j∈[ n

k1
]\L′

‖(X̂ − χ̂)I j ‖2
2 +err(χ̂0)

≤ ε‖X̂ − χ̂‖2
2 +300ε‖X̂ − χ̂‖2

2 +6000εν2k0 +Err2(X̂ − χ̂,10k0,k1)+εν2

≤ (4 ·105)εν2k0 +Err2(X̂ − χ̂,10k0,k1),

where the second line follows since χ̂′ = χ̂+W and W is non-zero only within the blocks

indexed by L′, the third line follows from (A.71) and (A.76), and the final line follows from the

assumption ‖X̂ − χ̂‖2
2 ≤ 100k0ν

2 in the lemma.

Sample complexity: By Lemma 1.3.5 with δ = ε2, the sample complexity of MULTIBLOCK-

LOCATE is O∗
(

k0

ε2 log(1+k0) logn + k0k1

ε4 log 1
p

)
. By Lemma 1.5.1 with δ = ε, the sample com-

plexity of PRUNELOCATION is O
(

k0k1
ε log 1

εp log 1
ε

)
. In addition, the sample complexity of

ESTIMATEVALUES is O
(

k0k1

ε2 log 1
p log 1

ε

)
, by Lemma 1.5.2 with δ = ε. By summing the three

terms, and noting from the choice of p in Algorithm 6 that, up to loglog k0
ε factors, we can

replace p by ε in the above calculations, the total sample complexity of this procedure is

O∗
(

k0

ε2 log(1+k0) logn + k0k1

ε4

)
.

Runtime: By Lemma 1.3.5 with δ = ε2, and because by assumption, χ̂ is (O(k0),k1)-block

sparse, the runtime of MULTIBLOCKLOCATE is O∗
(

k0

ε2 log k0
ε · log2 n + k0k1

ε4 log2 n + k0k1

ε2 log3 n
)
.

By Lemma 1.5.1 withδ= ε, the runtime of PRUNELOCATION as a function of |L| is O∗(k0k1
ε logn+

k1 · |L|
)
, which behaves as O

(
k0k1
ε logn +k1 · k0

ε2 log k0
ε

)
conditioned on Eloc (see (A.68)).

Moreover, by Lemma 1.5.2 with δ = ε, the runtime of the primitive ESTIMATEVALUES is

O
(

k0k1
ε log 1

p log 1
ε logn +k1 · |L′| log 1

p

)
, which behaves as O

(
k0k1
ε log 1

p log 1
ε logn

)
conditioned

on Eprune (see (A.70) and recall that |S0| = 10k0). The total runtime follows by summing the

above terms and replacing p by ε, with the loglogn, loglogSNR′ and log 1
ε terms absorbed into

the O∗(·) notation and applying Markov’s inequality.

A.7 Discussion on Energy-based Importance Sampling

Here we provide further discussing on the adaptive energy-based importance sampling

scheme described in Sections 1.2–1.3. Recall from Definition 1.2.2 that given the signal X and

filter G , we are considering downsampled signals of the form Ẑ r
j = (X̂ r?Ĝ) j k1 with X r

i = Xi+ nr
2k1

for r ∈ [2k1], and recall from (1.3) that the goal of energy-based importance sampling is to
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approximately solve the covering problem

Minimize{sr }r∈[2k1]

∑
r∈[2k1]

sr subject to
∑

j : |Ẑ r
j |2≥

‖Ẑ r ‖2
2

sr

for some r∈[2k1]

‖X̂ I j ‖2
2 ≥ (1−α)‖X̂ ∗‖2

2 (A.77)

for suitable α ∈ (0,1), where X̂ ∗ is the best (k0.k1)-block sparse approximation of X̂ .

To ease the discussion, we assume throughout this appendix that the filter G is a width- n
k1

rectangle in time domain, corresponding to a sinc pulse of “width” k1 in frequency domain.

Such a filter is less tight than the one we use (see the proof of Lemma 1.2.1), but similar enough

for the purposes of the discussion.

A.7.1 Examples – Flat vs. Spiky Energies

We begin by providing two examples for the 1-block sparse case, demonstrating how the

energies can vary with r . An illustration of the energy in each Ẑ r is illustrated in Figure A.1 in

two different cases – one in which X is a sinc pulse (i.e., rectangular in frequency domain),

and one in which X is constant (i.e., a delta function in frequency domain). Both of the signals

are (1,k1)-block sparse with k1 = 16, and the signal energy is the same in both cases. However,

the sinc pulse gives significantly greater variations in |Ẑ r
j |2 as a function of r . In fact, these

examples demonstrate two extremes that can occur – in one case, the energy exhibits no

variations, and in the other case, the energy is O(k1) times its expected value for an O
( 1

k1

)
fraction of the r values.

The second example above is, of course, an extreme case of a (1,k1)-block sparse signal,

because it is also (1,1)-block sparse. Nevertheless, one also observes a similar flatness in time

domain for other signals; e.g., one could take the first example above and randomize the signs,

as opposed to letting them all be positive.

A.7.2 The log(1+k0) factor

Here we provide an example demonstrating that, as long as we rely solely on frequencies

being covered according to Definition 1.2.3, after performing the budget allocation, the extra

log(1+k0) factor in our analysis is unavoidable. Specifically, we argue that for a certain signal

X , the optimal solution to (1.3) satisfies
∑

r∈[2k1] sr =Ω(k0 log(1+k0)). However, we do not

claim that this log(1+k0) factor is unavoidable for arbitrary sparse FFT algorithms.

We consider a scenario where k0 =Θ(k1) = o(n), and for concreteness, we let both k0 and k1

behave asΘ(n0.1); hence, log(1+k0) =O(logk0)

Constructing a base signal: We first specify a base signal W ∈Cn that will be used to construct
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Figure A.1 – Behavior of ‖Ẑ r ‖2
2 as a function of r for a sinc function (top) and a rectangular

function (bottom), both of which are (1,16)-block sparse.
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Figure A.2 – Base signal and its Fourier transform, for constructing a signal where a logk0 loss
is unavoidable with our techniques.
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the approximately (k0,k1)-block sparse signal. Specifically, we fix the integers C and L, and set

Wt =



p
2L−1 |t | ≤ C n

2k1p
2L−2 C n

2k1
< |t | ≤ 3C n

2k1
...

...p
2L−` (2`−1−1)C n

2k1
< |t | ≤ (2`−1)C n

2k1
...

...

1 (2L−1−1)C n
2k1

< |t | ≤ (2L−1)C n
2k1

0 | f | > (2L+1−1)C n
2k1

.

(A.78)

Hence, the signal contains L regions of exponentially increasing width but exponentially

decreasing magnitude. See Figure A.2 for an illustration (L = 3), and observe that we can

express this function as a sum of rectangles having geometrically decreasing magnitudes.

Hence, we can specify its Fourier transform as a sum of sinc functions.

The narrowest of the rectangles has width C n
k1

, and hence the widest of the sinc pulses has width
k1
C . This means that by choosing C to be sufficiently large, we can ensure that an arbitrarily

high proportion of the energy lies in a window of length k1 in frequency domain, meaning W

is approximately 1-block sparse.

Constructing a block-spare signal: We construct a k0-block sparse signal by adding multiple

copies of W together, each shifted by a different amount in time domain, and also modu-

lated by a different frequency (i.e., shifted by a different amount in frequency domain). We

choose L such that the cases in (A.78) collectively occupy the whole time domain, yielding

L =Θ(logk1) =Θ(logk0).

Then, we set k0 = k1
C and let each copy of W be shifted by a multiple of C n

k1
, so that the copies

are separated by a distance equal to the length of the thinnest segment of W , and collectively

these thin segments cover the whole space [n]. As for the modulation, we choose these so that

the resulting peaks in frequency domain are separated by Ω(k4
1), so that the tail of the copy

of Ŵ corresponding to one block has a negligible effect on the other blocks. This is possible

within n coefficients, since we have chosen k1 =O(n0.1).

Evaluating the values of |Ẑ r
j |2: Recall that we are considering G in (A.77) equaling a rectangle

of width n
k1

. Because of the above-mentioned separation of the blocks in frequency domain,

each copy of W can essentially be treated separately. By construction, within a window of

length n
k1

, we have one copy of W at magnitude
p

2L−1, two copies at magnitude
p

2L−2,

and so on. Upon subsampling by a factor of k1, the relative magnitudes remain the same;

there is no aliasing, since we let G be rectangular. Hence, the dominant coefficients in the

spectrum of the subsampled signal exhibit this same structure, having energies of a form such

as (8,4,4,2,2,2,2,1,1,1,1,1,1,1,1) when sorted and scaled (up to negligible leakage effects).

Moreover, the matrix of |Ẑ r
j |2 values (cf., Figure 1.1) essentially amounts to circular shifts of
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a vector of this form – the structure of any given Ẑ r maintains this geometric structure, but

possibly in a different order.

Lower bounding the sum of budgets allocated: We now turn to the allocation problem in

(A.77). Allocating a sparsity budget s to a signal Z r covers all coefficients j for which |Ẑ r
j |2 ≥

‖Ẑ‖2

s . For the signal we have constructed, the total energy E is equally spread among the

L geometric levels: The `-th level consists of 2`−1 coefficients of energy 21−` E
L , and hence

covering that level requires s ≥ L ·2`.

Hence, setting s = L · 2`−1 covers the top ` levels, for a total of 2`− 1 coefficients. That is,

covering some number of coefficients requires letting s beΩ(L) times that number, and hence

covering a constant fraction of the k0 coefficients requires the sum of sparsity budgets to be

Ω(Lk0). Moreover, we have designed every block to have the same energy, so accounting for a

constant fraction of the energy amounts to covering a constant fraction of the k0 coefficients.

Since we selected L =Θ(logk0), this means that the sum of sparsity budgets isΩ(k0 logk0), so

that the logk0 factor must be present in any solution to (A.77).

A.8 Location of Reduced Signals

In Algorithm 18, we provide a location primitive that, given a sequence of budgets sr , locates

dominant frequencies in the sequence of reduced signals Z r using O
(∑

r∈[2k1] sr logn
)

samples.

The core of the primitive is a simple k-sparse recovery scheme, where k frequencies are

hashed into B = C k buckets for a large constant C > 1, and then each bucket is decoded

individually. Specifically, for each bucket that is approximately 1-sparse (i.e., dominated by a

single frequency that hashed into it) the algorithm accesses the signal at about a logarithmic

number of locations and decodes the bit representation of the dominant frequency bit by bit.

More precisely, to achieve the right sample complexity we decode the frequencies in blocks

of O(loglogn) bits. Such schemes or versions thereof have been used in the literature (e.g.,

Gilbert et al. (2005); Hassanieh et al. (2012c); Kapralov (2016)).

A novel aspect of our decoding scheme is that it receives access to the input signal X , but must

run a basic sparse recovery scheme as above on each reduced signal Z r . Specifically, for each

r it must hash Z r into sr buckets (the budget computed in MULTIBLOCKLOCATE and passed to

LOCATESIGNAL as input). This would be trivial since Z r can be easily accessed given access to

X (cf., Lemma 1.2.2), but the fact that we need to operate on the residual signal X −χ (where χ̂

is block sparse and given explicitly as input) introduces difficulties.

The difficulty is that we would like to compute χ on the samples that individual invocations

of sparse recovery use, for each r ∈ [2k1], but computing this directly would be very costly.

Our solution consists of ensuring that all invocations of sparse recovery use the same random

permutation π, and therefore all need to access X −χ on a set of shifted intervals after a

change of variables given by π (crucially, this change of variables is shared across all r ). The
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lengths of the intervals are different, and given by sr , but it suffices to compute the values of

χ on the shifts of the largest of these intervals, which is done in HASHTOBINSREDUCED (see

Lemma 1.4.6). We present the details below in Algorithm 18.

For convenience, throughout this section, we use m to denote the reduced signal length n/k1.

Lemma 1.2.4 (LOCATEREDUCEDSIGNAL guarantees – formal version). Fix integers n,k0,k1, sig-

nals X , χ̂ ∈Cn with χ̂0 uniformly distributed over an arbitrarily length- ‖χ̂‖2

poly(n) interval, sparsity

budgets {sr }r∈[2k1] with sr =O
(k0
δ

)
for all r ∈ [2k1], and parameters δ ∈ ( 1

n , 1
20

)
and p ∈ ( 1

n3 , 1
2

)
,

and let {Z r }r∈[2k1] be the (k1,δ)-downsampling of X −χ.

If L denotes the output of LOCATEREDUCEDSIGNALS(X , χ̂,n,k0,k1, {sr }r∈[2k1],δ, p), then for any

j ∈ [ n
k1

]
such that |Z r

j |2 ≥
‖Z r ‖2

2
sr for some r ∈ [2k1], one has j ∈ L with probability at least 1−p.

Additionally, the list size satisfies |L| =O
(∑

r∈[2k1] sr log 1
p

)
with probability 1.

Moreover, if χ̂ is (O(k0),k1)-block sparse, the sample complexity is O
(∑

r∈[2k1] sr log 1
p log 1

δ logn
)
,

and the runtime is O
(∑

r∈[2k1] sr log 1
p log 1

δ log2 n + k0k1
δ log 1

p log3 n
)
.

Proof. We first note that the claim on the list size follows immediately from the fact that

B = O(sr ) entries are added to the list for each t and r , and the loop over t is of length

O
(

log 1
p

)
.

In order to prove the main claim of the lemma, it suffices to show that for any single value of

r , if we replace the loop over r by that single value, then L contains any given j ∈ [ n
k1

]
such

that |Z r
j |2 ≥ ‖Z r ‖2

2/sr , with probability at least 1−p. Since this essentially corresponds to a

standard sparse recovery problem, we switch to simpler notation throughout the proof: We let

Y denote a generic signal Z r , we write its length as m = n/k1, we index its entries in frequency

domain as Ŷ f , and we define k = sr .

The proof now consists of two steps. First, we show correctness of the location algorithm

assuming that the SEMIEQUIINVERSEBLOCKFFT computation in line 11 computes all the

required values for the computation of Û in line 19. We then prove that SEMIEQUIINVERSE-

BLOCKFFT indeed computes all the required values ofχ, and conclude with sample complexity

and runtime bounds.

Proving correctness of the location process We show that each element f with |Ŷ f |2 ≥ ‖Ŷ ‖2
2/k

is reported in a given iteration of the outer loop over t = 1, . . . ,C1 log(2/p), with probability

at least 9/10. Since the loops use independent randomness, the probability of f not being

reported in any of the iterations is bounded by (1/10)C1 log(2/p) ≤ p/2 if C1 is sufficiently large.

Fix an iteration t . We first show that the random set A chosen in LOCATEREDUCEDSIGNALS has

useful error-correcting properties with high probability. Specifically, we let Ebalanced denote the

event that for every λ ∈ [Λ],λ 6= 0 at least a fraction 49/100 of the numbers {ωλ·βΛ }(α,β)∈A have

non-positive real part; in that case, we say that A is balanced. We have for fixed λ ∈ [Λ],λ 6= 0

that since the pair (α,β) was chosen uniformly at random from [m]× [m], the quantity ωλ·βΛ
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is uniformly distributed on the set of roots of unity of order 2s for some s > 0 (since λ 6= 0).

At least half of these roots have non-positive real part, so for every fixed λ ∈ [Λ],λ 6= 0 one

has Prβ[Re(ωλ·βΛ ) ≤ 0] ≥ 1/2. It thus follows by standard concentration inequalities that for

every fixed λ at least 49/100 of the numbers {ωλ·βΛ }(α,β)∈A have non-positive real part with

probability at least 1−e−Ω(|A |) = 1−exp(−Ω(C3 loglogm))) ≥ 1−1/(100log2 m) as long as C3

is larger than an absolute constant. A union bound over Λ ≤ log2 m values of λ shows that

Pr[Ebalanced] ≥ 1−(log2 m)·/(100log2 m) = 1−1/100 for sufficiently large m (recall from Section

1.1 that n
k1

exceeds a large absolute constant by assumption). We henceforth condition on

Ebalanced.

Fix any f such that |Ŷ f |2 ≥ ||Ŷ ||22/k, and let q =σi for convenience. We show by induction on

g = 1, . . . , logΛN that before the g -th iteration of lines 23–26 of Algorithm 18, we have that f

coincides with q on the bottom g · log2Λ bits, i.e., f−q = 0 modΛg−1.

The base of the induction is trivial and is provided by g = 1. We now show the inductive

step. Assume by the inductive hypothesis that f−q = 0 modΛg−1, so that q = f+Λg−1(λ0 +
Λλ1 +Λ2λ2 + . . .). Thus, (λ0,λ1, . . .) is the expansion of (q− f)/Λg−1 baseΛ, and λ0 is the least

significant digit. We now show that λ0 is the unique value of λ that satisfies the condition of

line 24 of Algorithm 18, with high probability

In the following, we use the definitions of π( f ), h( f ), and o f ( f ′) from Definition 1.4.2 with

∆= 0. First, we have for each a = (α,β) ∈A and w ∈ W that

Ĥ−1
o f ( f )Ûh( f )(α+w ·β)− Ŷ f ω

(α+w·β)q
N = Ĥ−1

o f ( f )Û
∗
h( f )(α+w ·β)− Ŷ f ω

(α+w·β)q
N +errw

= Ĥ−1
o f ( f )

∑
f ′∈[m]\{ f }

Ĥo f ( f ′)Ŷ f ′ω
σ f ′·(α+w·β)
N +errw =: E ′(w),

where errw = Ĥ−1
o f ( f )(Ûh( f ) −Û∗

h( f ))(α+w ·β).

And similarly

Ĥ−1
o f ( f )Ûh( f )(α)− Ŷ f ω

αq
N = Ĥ−1

o f ( f )Û
∗
h( f )(α)− Ŷ f ω

αq
N +err

= Ĥ−1
o f ( f )

∑
f ′∈[m]\{ f }

Ĥo f ( f ′)Ŷ
′
f ′ω

σ f ′·α
N +err =: E ′′.

where err = Ĥ−1
o f ( f )(Ûh( f ) −Û∗

h( f ))(α).

We will show that f is recovered from bucket h( f ) with high (constant) probability. The bounds

above imply that

Ûh( f )(α+wβ))

Ûh( f )(α)
= Ŷ f ω

(α+wβ)q
N +E ′(w)

Ŷ f ω
αq
N +E ′′ . (A.79)

The rest of the proof consists of two parts. We first show that with high probability over the
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choice of π, the error terms E ′(w) and E ′′ are small in absolute value for most a = (α,β) ∈A

with extremely high probability. We then use this assumption to argue that f is recovered.

Bounding the error terms E ′(w) and E ′′ (part (i)). We have by Parseval’s theorem that

Ea[|E ′(w)|2] ≤ Ĥ−2
o f ( f )

∑
f ′∈[m]\{ f }

Ĥ 2
o f ( f ′)|Y f ′ |2 +|errw |2 +2|errw |Ĥ−1

o f ( f )

∑
f ′∈[m]\{ f }

Ĥo f ( f ′)|Y f ′ |,

(A.80)

and

Ea[|E ′′|2] ≤ Ĥ−2
o f ( f )

∑
f ′∈[m]\{ f }

Ĥ 2
o f ( f ′)|Ŷ f ′ |2 +|err |2 +2|err |Ĥ−1

o f ( f )

∑
f ′∈[m]\{ f }

Ĥo f ( f ′)|Ŷ f ′ |,

where we used the fact that α+wβ is uniformly random in [m] (due to α being uniformly

random in [m] and independent of β by definition of A in line 6 of Algorithm 18).

Taking the expectation of the term Ĥ−2
o f ( f )

∑
f ′∈[m]\{ f } Ĥ 2

o f ( f ′)|Y f ′ |2 with respect to π, we obtain

Eπ

[
Ĥ−2

o f ( f )

∑
f ′∈[m]\{ f }

Ĥ 2
o f ( f ′)|Y f ′ |2

]
=O(‖Y ‖2

2/B) =O(||X ′||22/(C2k))

by Lemma 1.4.3 (note that F ′ ≥ 2, so the lemma applies) and the choice B = C2 ·k (line ??

of Algorithm 18). We thus have by Markov’s inequality together with the assumption that

|Ŷ f |2 ≥ ||Ŷ ||22/k that

Prπ

[
Ĥ−2

o f ( f )

∑
f ′∈[m]\{ f }

Ĥ 2
o f ( f ′)|Ŷ f ′ |2 > |Ŷ f |2/1700

]
<O(1/C2) < 1/40

and

Prπ

[
Ĥ−2

o f ( f )

∑
f ′∈[m]\{ f }

Ĥ 2
o f ( f ′)|Ŷ f ′ |2 > |Ŷ f |2/1700

]
<O(1/C2) < 1/40

since C2 is larger than an absolute constant by assumption.

Bounding err and errw (numerical errors from semi-equispaced FFT computation): Recall

that we have by assumption that χ̂0 uniformly distributed over an arbitrarily length- ‖χ̂‖2

poly(n)

interval, and that Ŷ = Ẑ r for some Ẑ r in the (k1,δ)-downsampling of X −χ. By decomposing

Ẑ r
j = ((X̂ r − χ̂r )? Ĝ) j k1 into a deterministic part and a random part (in terms of the above-

mentioned uniform distribution), we readily obtain for some c ′ > 0 that

‖Ŷ ‖2 ≥ ‖χ̂‖2
2

nc ′ (A.81)

with probability at least 1− 1
n4 . Since p ≥ 1

n3 by assumption, we deduce that this also holds

with probability at least 1−p/2. By the the accuracy of the χ̂ values stated in Lemma 1.4.5,

along with the argument used in (A.31)–(A.32) its proof in Appendix A.3.1 to convert (A.81) to
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accuracy on hashed values, we know that |Ûh( f ) −Û∗
h( f )| ≤ ‖Û −Û∗‖∞ ≤ n−c+1‖χ̂‖2. Hence, by

using |Ĥo f ( f )|−2 ≤ 2 and α,α+w ·β≤ m, we find that

|err | ≤ 2n−c+1‖χ̂‖2 ≤ 2n−c+c ′+1‖Ŷ ‖2

|errw | ≤ 2n−c+1‖χ̂‖2 ≤ 2n−c+c ′+1‖Ŷ ‖2,

where the second inequality in each equation holds for some c ′ > 0 by (A.81).

Note also that Ĥ−1
o f ( f )

∑
f ′∈[m]\{ f } Ĥo f ( f ′)|Ŷ f ′ | ≤ 2‖Ŷ ‖1 ≤ 2

p
m‖Ŷ ‖2, since we have Ĥ−1

o f ( f ) ≤ 2 and

Ĥ f ′ | ≤ 1 for all f ′. We can thus write

|err |2 +2|err | · Ĥ−1
o f ( f )

∑
f ′∈[m]\{ f }

Ĥo f ( f ′)|Ŷ f ′ | ≤ |err |2 +4
p

m|err | · ‖Ŷ ‖2

≤ 4n−2c+2c ′+2‖Ŷ ‖2
2 +8n−c+c ′+3/2‖Ŷ ‖2

2

= nΩ(−c+c ′)‖Ŷ ‖2
2, (A.82)

which can thus be made to behave as 1
poly(n)‖Ŷ ‖2

2 by a suitable choice of c.

Bounding the error terms E ′(w) and E ′′ (part (ii)). By union bound, we have |E ′(w)|2 ≤
|Ŷ f |2/1600 and |E ′′|2 ≤ |Ŷ f |2/1600 simultaneously with probability at least 1−1/20 – denote

the success event by E t
f ,π(w). Conditioned on E t

f ,π(w), we thus have by (A.80) and (A.82), along

with the fact that A is independent of π, that

Ea[|E ′(w)|2|] ≤ |Y f |2/1600 and Ea[|E ′′|2] ≤ |Y f |2/1600.

Another application of Markov’s inequality gives

Pra[|E ′(w)|2 ≥ |Ŷ f |2/40] ≤ 1/40 and Pra[|E ′′|2 ≥ |Ŷ f |2/40] ≤ 1/40.

This means that conditioned on E t
f ,π(w), with probability at least 1−e−Ω(|A |) ≥ 1−1/(100log2 m)

over the choice of A , both events occur for all but 2/5 fraction of a ∈A ; denote this success

event by E t
f ,A (w). We condition on this event in what follows. Let A ∗(w) ⊆A denote the set

of values of a ∈A that satisfy the bounds above.

In particular, we can rewrite (A.79) as

Ûh( f )(α+wβ)

Ûh( f )(α)
= Ŷ f ω

(α+wβ)q
N +E ′(w)

Ŷ f ω
αq
N +E ′′

= ω
(α+wβ)q
N

ω
αq
N

·ξ
(
where ξ=

1+ω−(α+wβ)qE ′(w)/Ŷ ′
f

1+ω−αq
N E ′′/Ŷ ′

f

)
=ω(α+wβ)q−αq

N ·ξ=ωwβq
N ·ξ.
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We thus have for a ∈A ∗(w) that

|E ′(w)|/|Ŷ ′
f | ≤ 1/40 and |E ′′|/|Ŷ ′

f | ≤ 1/40. (A.83)

Showing that A ∗(w) ⊆A suffices for recovery. By the above calculations, we get

Ûh( f )(α+wβ)

Ûh( f )(α)
=ωwβq

N ·ξ=ωNΛ−gβq
N ·ξ=ωNΛ−gβq

N +ωNΛ−gβq
N (ξ−1).

We proceed by analyzing the first term, and we will later show that the second term is small.

Since q = f+Λg−1(λ0 +Λλ1 +Λ2λ2 + . . .), by the inductive hypothesis, we have

ω
−λ·β
Λ ·ω−NΛ−g f·β

N ·ωNΛ−gβq
N =ω−λ·β

Λ ·ωNΛ−g (q−f)·β
N

=ω−λ·β
Λ ·ωNΛ−g (Λg−1(λ0+Λλ1+Λ2λ2+...))·β

N

=ω−λ·β
Λ ·ω(N /Λ)·(λ0+Λλ1+Λ2λ2+...)·β

N

=ω−λ·β
Λ ·ωλ0·β

Λ

=ω(−λ+λ0)·β
Λ ,

where we used the fact that ωN /Λ
N = e2π f (N /Λ)/N = e2π f /Λ =ωΛ. Thus, we have

ω
−λ·β
Λ ω−(NΛ−g f)·βÛh( f )(α+wβ)

Ûh( f )(α)
=ω(−λ+λ0)·β

Λ ξ.

We now consider two cases. First suppose that λ=λ0. Then ω(−λ+λ0)·β
Λ = 1, and it remains to

note that by (A.83) we have |ξ−1| ≤ 1+1/40
1−1/40 −1 < 1/3. Thus, every a ∈ A ∗(w) passes the test

in line 24 of Algorithm 18. Since |A ∗(w)| ≥ (3/5)|A | by the argument above, we have that λ0

passes the test in line 24. It remains to show that λ0 is the unique element in 0, . . . ,Λ−1 that

passes this test.

Suppose that λ 6=λ0. Then, by conditioning on Ebalanced, at least a 49/100 fraction ofω(−λ+λ0)·β
Λ

have negative real part. This means that for at least 49/100 of a ∈A , we have

|ω(−λ+λ0)·β
Λ ξ−1| ≥ |i · |ξ|−1| ≥ |(7/9)i−1| > 1/3,

and hence the condition in line 16 of Algorithm 18 is not satisfied for any λ 6=λ0.

We thus get that conditioned on Ebalanced and the intersection of E t
f ,π(w) for all w ∈ W and

E t
f ,A , recovery succeeds for all values of g = 1, . . . , logΛN . By a union bound over the failure

events, we get that

Pr

[
Ebalanced ∩E t

f ,A ∩
( ⋂

w∈W
E t

f ,π(w)
)]

≥ 1−1/100− (logΛN ) · 1

100log2 m
≥ 98/100.
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This shows that location is successful for f in a single iteration t with probability at least

98/100 ≥ 9/10, as required.

Sample complexity and runtime.

We first consider the calls to HASHTOBINSREDUCED. This is called for loglogm values of

(α,β) and logΛN =O
( logm

loglogm

)
values of g in each iteration, the product of which is O(logm) =

O(logn). Moreover, the number of iterations is O
(

log 1
p

)
. Hence, using Lemma 1.4.6, we find

that the combination of all of these calls costs O
(
F

∑
r∈[2k1] B r log 1

δ logn
)

samples, with a run-

time of O
(
(BmaxF +k0)k1 log3 n), where Bmax =O(maxr sr ), and k0 is such that χ̂ is (O(k0),k1)-

block sparse. By the assumption maxr sr =O
(k0
δ

)
, the runtime simplifies to O

(k0k1
δ log3 n)
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Algorithm 18 Location primitive: Given access to the input signal X , a partially recovered
signal χ̂, a budget k and bound on failure probability p, recovers any given j ∈ [n/k1] with
|Ẑ r

j |2 ≥ ‖Ẑ r ‖2
2/k for some r ∈ [2k1], in the (k1,δ)-downsampling of X −χ.

1: procedure LOCATEREDUCEDSIGNALS(X , χ̂,n,k0,k1, {sr }r∈[2k1],δ, p)
2: .Uses large absolute constants C1,C2,C3 > 0
3: B r ←C2sr for each r ∈ [2k1] . Rounded up to a power of two
4: H r ← (m,B ,F ′)-flat filter for each r ∈ [2k1], for sufficiently large F ′ ≥ 2
5: Bmax ← B r

6: {Z r
X }r∈[2k1] ← (k1,δ)-downsampling of X . See Definition 1.2.2

7: m ← n/k1

8: L ←;
9: for t = {1, . . . ,C1 log(2/p)} do

10: σ← uniformly random odd integer in [m]
11: A ← C3 loglogm uniformly random elements in [m]× [m]
12: Λ← 2b 1

2 log2 log2 mc, N ←ΛdlogΛme . Implicitly extend X to an m-periodic length-N
signal

13: for (α,β) ∈A do
14: w ← NΛ−g

15: ∆←α+w ·β
16: H ← {H r }r∈[2k1]

17: B ← {B r }r∈[2k1]

18: Û r (α+w ·β) ← HASHTOBINSREDUCED({Z r
X }r∈[2k1], χ̂,H,n,k1,B,σ,∆)

19: for r ∈ [2k1] do
20: for b ∈ [B r ] do . Loop over all hash buckets
21: f ← 0
22: for g = {1, . . . , logΛN } do
23: w ← NΛ−g

24: If there exists a unique λ ∈ {0,1, . . . ,Λ−1} such that

25:

∣∣∣∣ω−λ·β
Λ ·ω−(N ·Λ−g f)·β · Û r

b (α+w·β)

Û r
b (α)

−1

∣∣∣∣< 1
3 for at least 3

5 fraction of (α,β) ∈A

26: then f ← f+Λg−1 ·λ
27: L ← L∪ {σ−1f · m

N } . Add recovered element to output list

28: return L
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B Tight Leverage Scores Characteriza-
tion of Constrained Signal Classes

B.1 Operator Theory Preliminaries

Throughout the book, we use the term operator for linear transformation between two Hilbert

spaces. In this section we discuss and prove basic results on operators that we use throughout

the book.

B.1.1 Basic definitions and the Loewner partial ordering

Consider two Hilbert spaces H1 and H2 with inner products 〈·, ·〉H1 and 〈·, ·〉H2 . We denote by

B(H1,H2) the set of bounded operators from H1 to H2, and abbreviate B(H ) if H1 =H2 =
H . We denote by BTC (H ) and BHS(H ) the set of trace-class and Hilbert-Schmidt operators

(respectively) on H (i.e. from H to H ). Note that BT C (H ) ⊂BHS(H ) ⊂B(H ). Recall that for

operators, boundedness is equivalent to continuity. The open mapping theorem states that if

A is invertible, then A −1 is bounded. This implies that a compact operator is not invertible.

If A ∈B(H ) and B ∈BTC (H ) then A B,BA ∈BTC (H ) and tr(A B) = tr(BA ).

We call self-adjoint A positive semidefinite (or simply positive) and write A º 0 if 〈x,A x〉H ≥ 0

for all x ∈H . We write A % 0 if A is positive definite, i.e. 〈x,A x〉 > 0 for all x ∈H . We denote

A Â 0 if A is strictly positive, i.e. there exist a c > 0 such that A % c ·IH where IH is the

identity operator on H . Note that for operators on finite dimensional Hilbert spaces, A % 0 if

and only if A Â 0, but this is not always the case for infinite dimensional Hilbert spaces. The

notation for A ºB, A %B, and A ÂB follow in the standard way.

If A º 0 is self-adjoint and bounded, then it possesses a unique self-adjoint bounded square

root A 1/2 º 0 (Wouk, 1966). Furthermore, if A is strictly positive then so is A 1/2. This implies

that if A is strictly positive and bounded, then A is bounded below and that the inverse of the

square root of A is A −1/2 def= (A −1)1/2. Lidskii’s theorem states the that trace of a trace-class

operator is the sum of its eigenvalues.

Many of the following claims are well known of matrices, and the proofs in most cases, but not
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all, mirror the matrix case. However, for the operator case we need to be more careful with the

conditions due to the aforementioned distinction between % and Â.

Claim B.1.1. Suppose that A is a self-adjoint bounded positive semidefinite operator on an

Hilbert space H . For every ε > 0, the operator A + εIH is bounded, strictly positive and

invertible, and the inverse is bounded.

Proof. The operator A + εIH is the sum of two bounded operators, and so it is bounded.

It is also clearly bounded below, since A + εIH º εIH Â 0. A continuous (i.e., bounded)

bounded-below operator is invertible, so A +εIH is invertible. The inverse is bounded due

to the open mapping theorem.

Claim B.1.2. Suppose that 0 ≺A ¹IH for a self-adjoint operator A . Then, A −1 ºIH .

Proof. For every x ∈H we have 〈x,A x〉H ≤ 〈x, x〉H . Given y , let x =A −1/2 y . Then 〈y, y〉H =
〈A 1/2x,A 1/2x〉H = 〈x,A x〉H ≤ 〈x, x〉H = 〈A −1/2 y,A −1/2 y〉H = 〈y,A −1 y〉H so A −1 º IH .

Claim B.1.3. Suppose that A ∈B(H ) and that B º 0 is self-adjoint trace-class operator. Then,

B1/2A B1/2 is trace-class, and tr(B1/2A B1/2) = tr(A B).

Proof. Since B is trace-class, B1/2 ∈ BHS(H ). This implies that A B1/2 is also Hilbert-

Schmidt. Thus, B1/2A B1/2 is the product of two Hilbert-Schmidt operators, so it is trace-class.

The trace equality follows from the cyclic property of the trace.

Claim B.1.4. Suppose that A Â 0 is a self-adjoint bounded operator, and that B º 0 is self-

adjoint trace-class operator, both on a separable Hilbert space H . Suppose we have tr(A B) ≤ 1.

Then, B ¹A −1.

Proof. Due to the cyclicity of the trace tr(A 1/2BA 1/2) ≤ 1. The operator A 1/2BA 1/2 is posi-

tive semidefinite, so due to Lidskii’s theorem it’s largest eigenvalue ≤ 1. For A 1/2BA 1/2, the

largest eigenvalue is equal to the operator norm , so for any y ,

〈y,A 1/2BA 1/2 y〉H ≤ 〈y, y〉H .

Since A 1/2 is invertible, with inverse A −1/2, the conclusion of the claim follows.

Claim B.1.5. Let A ,B be self-adjoint, bounded, strictly positive operators. If A ¹ B then

A −1 ºB−1.
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Proof. Since B is bounded and strictly positive, then it is invertible and has an invertible

square root. For any y ∈H let x =B−1/2 y . We have

〈y,B−1/2A B−1/2 y〉H = 〈B−1/2 y,A B−1/2 y〉H
= 〈x,A x〉H
≤ 〈x,Bx〉H
= 〈y, y〉H .

So B−1/2A B−1/2 ¹ IH . Since both A and B are strictly positive, B−1/2A B−1/2 is also

strictly positive. Thus, by Claim B.1.2, B1/2A −1B1/2 ºIH , from which the claim follows.

Claim B.1.6. Suppose that A Â 0 and A ºB. Then for any 0 ≤ c < 1 we have A − cB Â 0.

Proof. Suppose by contradiction that A −cB 6Â 0. Then for any ε> 0 there exists an x with unit

norm (〈x, x〉H = 1) such that 〈x, (A −cB)x〉H ≤ ε. We have 〈x,Bx〉H ≥ (〈x,A x〉H −ε)/c , and

since 〈x,A x〉H is bounded away from zero and c < 1, for small enough ε we have 〈x,Bx〉H >
〈x,A x〉H so 〈x, (A −B)x〉H < 0 which contradicts the assumption that A ºB.

Definition B.1.1. Given x ∈H1 and y ∈H2, we define the operator x ⊗ y : H2 →H1 by,

(x ⊗ y)z
def= 〈y, z〉H2 x.

Claim B.1.7. Let H be a separable Hilbert space, and assume that A ∈B(H ) and v ∈H . Then,

〈v,A v〉H = tr(A (v ⊗ v)). (We remark that A (v ⊗ v) is trace-class since v ⊗ v has finite-rank

and A is bounded.)

Proof. Let e1,e2, . . . be an orthonormal basis for H . Write v =∑∞
i=1αi ei . On one hand we have

〈v,A v〉H =
〈 ∞∑

i=1
αi ei ,A v

〉
H

=
∞∑

i=1
α∗

i 〈ei ,A v〉H .

On the other hand we have,

tr(A (v ⊗ v)) =
∞∑

i=1
〈ei ,A (v ⊗ v)ei 〉H

=
∞∑

i=1
〈ei ,A 〈v,ei 〉H v〉H

=
∞∑

i=1
〈v,ei 〉H 〈ei ,A v〉H

=
∞∑

i=1
α∗

i 〈ei ,A v〉H ,
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so the two terms are equal.

B.1.2 Weak integrals of operators

We are going to work with operator-valued random variables. To reason about the expected

value, we need a notion of an integral of operator-valued functions. We use a generalization of

the concept of weak integrals (a.k.a., Pettis integral) of vector-valued functions (Pettis, 1938).

Definition B.1.2. Let H1,H2 be two separable Hilbert spaces, G a measurable space and

µ a measure on G , and consider a mapping A : G → B(H1,H2). If the mapping (x, z) 7→∫
G〈x,A (ξ)z〉H2 dµ(ξ) is a bounded sesquilinear map in x, z, then we say that A is a weakly

integrable operator valued function and the weak operator integral is defined to be the unique

bounded operator ∫
G

A (ξ)dµ(ξ) ∈B(H1,H2)

such that for all x and z,〈
x,

(∫
G

A (ξ)dµ(ξ)

)
z

〉
H2

def=
∫

G
〈x,A (ξ)z〉H2 dµ(ξ).

The existence and uniqueness of such an operator is guaranteed by the Riesz representation

theorem for sesquilinear maps (Helmberg, 2008, Page 92, Theorem 5).1

Claim B.1.8. Suppose that A : G →B(H1,H2) is weakly integrable operator valued function,

and S ∈ B(H1),T ∈ B(H2). Then ξ 7→T A (ξ)S is also a weakly integrable operator valued

function and ∫
G

T A (ξ)S dµ(ξ) =T

(∫
G

A (ξ)dµ(ξ)

)
S .

Proof. Recall that (x, z) 7→ ∫
G〈x,A (ξ)z〉H2 dµ(ξ) is bounded, so there exists a γ such that for

every x ∈H2, z ∈H1, ∣∣∣∣∫
G
〈x,A (ξ)z〉H2 dµ(ξ)

∣∣∣∣≤ γ‖x‖H2‖z‖H1

We have∣∣∣∣∫
G
〈x,T A (ξ)S z〉H2 dµ(ξ)

∣∣∣∣= ∣∣∣∣∫
G
〈T ∗x,A (ξ)S z〉H2 dµ(ξ)

∣∣∣∣
≤ γ‖T ∗x‖H2‖S z‖H1 ≤ γ‖T ‖op ‖S ‖op ‖x‖H2‖z‖H1 ,

where we used the fact that both S and T are bounded. Therefore, the mapping (x, z) 7→∫
G〈x,T A (ξ)S z〉H2 dµ(ξ) is bounded and ξ 7→T A (ξ)S is weakly integrable.

1We remark that (Helmberg, 2008, Page 92, Theorem 5) is stated and proved only for sesquilinear forms on the
same Hilbert space (i.e., H1 =H2). However, it is easy to verify that the result also holds for sesquilinear forms
between two Hilbert spaces.
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We now show that the value of the integral is T
(∫

G A (ξ)dµ(ξ)
)
S . For any x ∈H2, z ∈H1:〈

x,T

(∫
G

A (ξ)dµ(ξ)

)
S z

〉
H2

=
〈

T ∗x,

(∫
G

A (ξ)dµ(ξ)

)
S z

〉
H2

By definition of
∫

G A (ξ)dµ(ξ),〈
T ∗x,

(∫
G

A (ξ)dµ(ξ)

)
S z

〉
H2

=
∫

G
〈T ∗x,A (ξ)S z〉H2 dµ(ξ) =

∫
G
〈x,T A (ξ)S z〉H2 dµ(ξ)

so indeed
∫

G T A (ξ)S dµ(ξ) =T
(∫

G A (ξ)dµ(ξ)
)
S .

Claim B.1.9. Let ρ,µ be two, possibly different, probability measures, onR, and let A ∈B(L2(ρ))

be self-adjoint and positive semi-definite, and let B ∈BT C (L2(ρ)). Assume that there exists an

orthonormal basis for L2(ρ) consisting of eigenvectors of A . Given a mapping η ∈R 7→ vη ∈ L2(ρ)

such that B = ∫
R(vη⊗ vη)dµ(η) we have:∫

R
〈vη,A vη〉ρdµ(η) = tr(A B)

Proof. Let e1,e2, . . . be an orthonormal basis for L2(ρ) consisting of eigenvectors of A . Using

Claim B.1.7, we have∫
R
〈vη,A vη〉ρdµ(η) =

∫
R

tr(A (vη⊗ vη))dµ(η)

=
∫
R

∞∑
i=1

〈ei ,A (vη⊗ vη)ei 〉ρdµ(η)

=
∞∑

i=1

∫
R
〈ei ,A (vη⊗ vη)ei 〉ρdµ(η)

=
∞∑

i=1
〈ei ,

∫
R
A (vη⊗ vη)dµ(η)ei 〉ρ

=
∞∑

i=1
〈ei ,A

∫
R

(vη⊗ vη)dµ(η)ei 〉ρ

=
∞∑

i=1
〈ei ,A Bei 〉µ

= tr(A B)

where the exchange of the integral and infinite sum in the third equality is justified by Tonelli’s

Theorem. In order to apply Tonelli’s theorem we need to show that 〈ei ,A (vη⊗ vη)ei 〉ρ ≥ 0

for every i and η. This is indeed the case since 〈ei ,A (vη ⊗ vη)ei 〉ρ = 〈A ei , (vη ⊗ vη)ei 〉ρ =
λi 〈ei , (vη⊗ vη)ei 〉ρ ≥ 0 where λi is the eigenvalue corresponding to ei . Note that since A

is self-adjoint and positive semi-definite, λi is real and non-negative. We also used the

immediate fact that vη⊗ vη is positive semi-definite.
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Remark: One way to guarantee that there exists an orthonormal basis of eigenvectors for A is

to require A to be compact. However, it is quite possible for A not to be compact, and still

have an orthonormal basis of eigenvectors. In fact, we primarily apply Claim B.1.9 to operators

of the form (C +εI )−1 where C is compact, and such operators have an orthonormal basis of

eigenvectors (since they share eigenvectors with C ).

We say that a weakly integrable A (·) is self-adjoint if A (ξ) is self-adjoint for all ξ. It is easy to

verify that if A (·) is self-adjoint, then
∫

G A(ξ)dµ(ξ) is self-adjoint as well.

Claim B.1.10. Suppose that A ,B : G →B(H ) are two self-adjoint weakly integrable operator

valued functions. If, with respect to a measure µ on G, A (ξ) ¹B(ξ) almost everywhere, then∫
G A (ξ)dµ(ξ) ¹ ∫

G B(ξ)dµ(ξ).

Proof. For every x ∈H ,〈
x,

∫
G

A (ξ)dµ(ξ)x

〉
H

=
∫

G
〈x,A (ξ)x〉H dµ(ξ) ≤

∫
G
〈x,B(ξ)x〉H dµ(ξ) =

〈
x,

∫
G

B(ξ)dµ(ξ)x

〉
H

so indeed
∫

G A (ξ)dµ(ξ) ¹ ∫
G B(ξ)dµ(ξ).

Claim B.1.11. Suppose that B : G →B(H ) is a self-adjoint weakly integrable operator valued

function. Consider another self-adjoint operator valued function A : G →B(H ). If for every

ξ ∈G we have 0 ¹A (ξ) ¹B(ξ), then A is weakly integrable and
∫

G A (ξ)dµ(ξ) ¹ ∫
G B(ξ)dµ(ξ).

Proof. We need to prove only that A is weakly integrable, since the integral bound follows

from Claim B.1.10. A sesquilinear form is bounded if and only if the associated quadratic form

is bounded (Helmberg, 2008, Page 92, Theorem 3), so we need to show that the integral of the

quadratic form associated with A is bounded. Since A (ξ) is positive semidefinite for every

ξ ∈G , for any x∣∣∣∣∫
G
〈x,A (ξ)x〉H dµ(ξ)

∣∣∣∣= ∫
G
〈x,A (ξ)x〉H dµ(ξ) ≤

∫
G
〈x,B(ξ)z〉H dµ(ξ) =

∣∣∣∣∫
G
〈x,B(ξ)x〉H dµ(ξ)

∣∣∣∣
and since the integral of the quadratic form associated with B is bounded (since B is weakly

integrable) we conclude that integral quadratic form associated with A is bounded, so indeed

A is weakly integrable.

B.1.3 Concentration of random operators

Let A : G →B(H ) be a weakly integrable operator valued function. If the underlying measure

µ is a probability measure, then we shall call A a random operator, and write

E[A ] =
∫

G
A (ξ)dµ(ξ).
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Certain matrix concentration results can be generalized to the case that A is a random

operator which takes only self-adjoint Hilbert-Schmidt values. The underlying reason is that

Hilbert-Schmidt operators can be well-approximated using finite rank operators. The basic

technique is outlined in (Minsker, 2017, Section 3.2). We use this technique to prove the

following lemma.

Lemma B.1.1. Suppose that H is a separable Hilbert space, and B is a fixed self-adjoint

Hilbert-Schmidt operator on H . Let R be a self-adjoint Hilber-Schmidt random operator

satisfying

E[R] =B and ‖R‖op ≤ L.

Let M be another self-adjoint trace-class operator such that E[R2] ¹ M . Form the operator

sampling estimator

R̄n = 1

n

n∑
k=1

Rk ,

where each Rk is an independent copy of R. Then, for all t >√‖M‖op /n +2L/3n,

Pr
(∥∥R̄n −B

∥∥
op > t

)
≤ 8tr(M )

‖M‖op
exp

( −nt 2/2

‖M‖op +2Lt/3

)
. (B.1)

Proof. Let e1,e2, . . . be the eigenvectors of M , ordered according to the magnitude of the

corresponding eigenvalue, and let P j be the orthogonal projector on the span of e1,e2, . . . ,e j .

Consider the finite-rank operators R( j ) =P j RP j , R
( j )
k =P j RkP j , R̄

( j )
n =P j R̄nP j , B( j ) =

P j BP j and M ( j ) =P j MP j . We will apply on these operator sequences the matrix version

of the current lemma (Avron et al., 2017c)2

Due to linearity of weak operator integrals we have E(R( j )) =P j B
( j )P j . We can bound the

operator norm of R( j ):
∥∥R( j )

∥∥
op ≤ ∥∥P j RP j

∥∥
op ≤ ∥∥P j

∥∥2
op ‖R‖op ≤ L since the operator norm

of a projection operator is 1. Using the fact that P j ¹IH and so RP j R ¹R2 we have

E
[

(R( j ))2
]
=P jE[RP j R]P j ¹P jE[R2]P j ¹M ( j )

Now applying the aforementioned matrix version of the current lemma3 we find that

Pr

(∥∥∥R̄
( j )
n −B( j )

∥∥∥
op

≥ t

)
≤ 8tr(M ( j ))∥∥M ( j )

∥∥
op

exp

(
−nt 2/2∥∥M ( j )
∥∥

op +2Lt/3

)
. (B.2)

Due to the way we constructed P j , and M being trace-class, we have tr(M ( j )) → tr(M ) as

j →∞. Furthermore, since M is trace-class, P j M →M uniformly (Hunter and Nachtergaele,

2The lemma in Avron et al. (2017c) is stated as a bound on Pr
(∥∥R̄n −B

∥∥
op ≥ t

)
, while for operators strict inequal-

ity is necessary. It is easy to verify that the matrix version of the Lemma continues to hold for Pr
(∥∥R̄n −B

∥∥
op > t

)
.

3Technically, the aforementioned concentration result is for matrices, while here we deal with abstract operators
on finite dimensional subspaces. We can address this issue by using the corresponding transformation matrices,
but we find that to be tedious details.
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2001, Theorem 9.21), and so M ( j ) → M implies that
∥∥M ( j )

∥∥
op → ‖M‖op. Thus, the entire

right side of (B.2) converges to the right side of (B.1), so

liminf
j→∞

Pr

(∥∥∥R̄
( j )
n −B( j )

∥∥∥
op

> t

)
≤ 8tr(M )

‖M‖op
exp

( −nt 2/2

‖M‖op +2Lt/3

)
.

Let G and µ denote the underlying probability space and probability measure. Let f j now

denote the indicator function for the event
∥∥∥R̄

( j )
n −B( j )

∥∥∥
op

> t , and f the indicator for the

event
∥∥R̄n −B

∥∥
op > t . Again, due to the fact that R̄n −B is Hilbert-Schmidt we have R̄

( j )
n −

B( j ) → R̄n −B, implies that for any ξ ∈G , f (ξ) = liminf j→∞ f j (ξ). Now due to Fatou’s lemma:

Pr
(∥∥R̄n −B

∥∥
op > t

)
=

∫
G

f (ξ)dµ(ξ)

=
∫

G
liminf

j→∞
f j (ξ)dµ(ξ)

≤ liminf
j→∞

∫
G

f j (ξ)dµ(ξ)

= liminf
j→∞

Pr

(∥∥∥R̄
( j )
n −B( j )

∥∥∥
op

> t

)
≤ 8tr(M )

‖M‖op
exp

( −nt 2/2

‖M‖op +2Lt/3

)
.

B.2 Properties of the Ridge Leverage Scores

B.2.1 Basic facts about leverage scores

In this section we prove Theorem 3.4.1, giving fundamental properties of the ridge leverage

scores that we use both in bounding these scores and proving that leverage score sampling

can be used to solve the regularized regression problem of (3.10) (and hence Problem (3.2.1)).

Theorem 3.4.1 (Leverage Function Properties). Let τµ,ε(t) be the ridge leverage function of

Definition 3.4.1, that is

τµ,ε(t ) = 1

T
· max

{α∈L2(µ):‖α‖µ>0}

|[F∗
µα](t )|2∥∥F∗

µα
∥∥2

T
+ε‖α‖2

µ

, (B.3)

and let ϕt ∈ L2(µ) be defined by ϕt (ξ) = e−2πi tξ, we have the following basic properties:
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• The leverage scores integrate to the statistical dimension:∫ T

0
τµ,ε(t )d t = sµ,ε

def= tr
(
Kµ(Kµ+εIT )−1) . (B.4)

• Inner Product characterization:

τµ,ε(t ) = 1

T
· 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ. (B.5)

• Minimization Characterization:

τµ,ε(t ) = 1

T
· min
β∈L2(T )

∥∥Fµβ−ϕt
∥∥2
µ

ε
+∥∥β∥∥2

T . (B.6)

Proof. Recall, that given t ∈ [0,T ], ϕt (ξ)
def= e−2πi tξ (ϕt ∈ L2(µ)). It is easy to verify that:

Gµ = 1

T

∫ T

0
(ϕt ⊗ϕt )d t . (B.7)

To prove the equality between Equations (B.3), (B.5), and (B.6), we first show that the right

hand side of (B.5) is equal to the right hand side of (B.6) and then show that the right hand

side of (B.5) is equal to the right hand side of (B.3).

First, we need an auxiliary lemma regarding the solution of regularized least squares prob-

lems. If A is matrix with full column rank or a one-to-one linear operator between finite-

dimensional Hilbert spaces, and b some vector, then F (x) = ‖A x −b‖2 has a unique minimizer.

In infinite dimension spaces, this remains true if only the co-domain of A is infinite dimen-

sional. However, if both the domain and co-domain are infinite dimensional there might not

be a minimizer even if the A is bounded: the range of A might not be closed, so it is possible

that ‖A x −b‖ > 0 for every x, but also that there exists a series {xn} such that ‖A xn −b‖→ 0

as n →∞. However, once we introduce a ridge term (i.e., minimize F (x) = ‖A x −b‖2 +λ‖x‖2

for some λ > 0) there is always a unique minimizer (as long as A is bounded), due to the

extreme value theorem (since we can bound the search domain). Furthermore, we can write

an analytic expression for the minimizer in an analogous way to the finite dimensional case,

as the following lemma shows.

Lemma B.2.1 (Regularized Least Squares Minimizer). Let H1 and H2 be two Hilbert spaces,

and A : H1 →H2 be a bounded linear operator. Let b ∈H2 and λ> 0. The function

F (x) = ‖A x −b‖2
H2

+λ‖x‖2
H1

has a unique minimizer which is x? =A ∗(A A ∗+λIH2 )−1b.
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Proof. Consider the Hilbert space H1 ×H2 equipped with the inner product

〈(a1, a2), (b1,b2)〉H1×H2

def= 〈a1,b1〉H1 +〈a2,b2〉H2 .

Define the operator T : H1 → H1 ×H2, T (x) = (
p
λx,A x). Let y = (0,b) ∈ H1 ×H2. We

have F (x) = ∥∥T x − y
∥∥2

H1×H2
. Thus, we need to show that there is a unique point ỹ ∈ range(T )

that minimizes
∥∥ỹ − y

∥∥2
H1×H2

and that ỹ =T x? for x? =A ∗(A A ∗+λIH2 )−1b.

The operator T is a bounded linear operator, so it is continuous. We also have that for every

x ∈H1, ‖T x‖2
H1×H2

≥λ‖x‖2
H1

where λ> 0, so T is bounded from below. So T has a closed

range (Abramovich et al., 2002, Theorem 2.5). Thus, there is a unique ỹ ∈ range(T ) that

minimizes
∥∥ỹ − y

∥∥2
H1×H2

, and that ỹ is the unique element of range(T ) with the property

y − ỹ ⊥ range(T ) (Hunter and Nachtergaele, 2001, Theorem 6.13). So it suffices to show that

for every x ∈H1 we have y −T x? ⊥T x. We compute:

〈y −T x?,T x〉H1×H2

= 〈(−
p
λA ∗(A A ∗+λIH2 )−1b,b −A A ∗(A A ∗+λIH2 )−1b), (

p
λx,A x)〉H1×H2

= 〈(−
p
λA ∗(A A ∗+λIH2 )−1b,λ(A A ∗+λIH2 )−1b), (

p
λx,A x)〉H1×H2

=−λ〈A ∗(A A ∗+λIH2 )−1b, x〉H1 +λ〈(A A ∗+λIH2 )−1b,A x〉H2 = 0.

So indeed, for every x ∈H1 we have y −T x? ⊥T x and x? is the unique minimizer.

Using Lemma B.2.1 we now proceed with the proof of Theorem 3.4.1.

Corollary B.2.1. Let

β? =F∗
µ (Gµ+εIµ)−1ϕt .

Then,

1

T
·
∥∥Fµβ

?−ϕt
∥∥2
µ

ε
+∥∥β?∥∥2

T

= 1

T
· min
β∈L2(T )

∥∥Fµβ−ϕt
∥∥2
µ

ε
+∥∥β∥∥2

T .

Claim B.2.1. We have

〈ϕt , (Gµ+εIµ)−1ϕt 〉µ =
∥∥Fµβ

?−ϕt
∥∥2
µ

ε
+∥∥β?∥∥2

T

so the right hand side of (B.5) is equal to the right hand side of (B.6).

Proof. We compute:∥∥β?∥∥2
T = 〈F∗

µ (Gµ+εIµ)−1ϕt ,F∗
µ (Gµ+εIµ)−1ϕt 〉µ

= 〈(Gµ+εIµ)−1ϕt ,Gµ(Gµ+εIµ)−1ϕt 〉µ
= 〈(Gµ+εIµ)−1ϕt , (Gµ+εIµ−εIµ)(Gµ+εIµ)−1ϕt 〉µ
= 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ−ε〈ϕt , (Gµ+εIµ)−2ϕt 〉µ,
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and,

∥∥Fµβ
?−ϕt

∥∥2
µ

=
∥∥∥FµF∗

µ (Gµ+εIµ)−1ϕt −ϕt

∥∥∥2

µ

= ∥∥(
Gµ(Gµ+εIµ)−1 −Iµ

)
ϕt

∥∥2
µ

= ∥∥(
(Gµ+εIµ−εIµ)(Gµ+εIµ)−1 −Iµ

)
ϕt

∥∥2
µ

= ∥∥ε(Gµ+εIµ)−1ϕt
∥∥2
µ

= ε2〈ϕt , (Gµ+εIµ)−2ϕt 〉µ

Summing the last equalities completes the proof.

Claim B.2.2. We have

〈ϕt , (Gµ+εIµ)−1ϕt 〉µ = max
{α∈L2(µ):‖α‖µ>0}

|[F∗
µα](t )|2∥∥F∗

µα
∥∥2

T
+ε‖α‖2

µ

so the right hand side of (B.5) is equal to the right hand side of (B.3).

Proof. We can reformulate the previous claim as :

〈ϕt , (Gµ+εIµ)−1ϕt 〉µ = minimum ‖u‖2
µ+

∥∥β∥∥2
T

β ∈ L2(µ); u ∈ L2(T )

subject to: Fµβ+p
εu =ϕt .

Let the optimal solution beβ? and u?. We haveϕt =Fµβ
?+pεu?, hence for any 0 6=α ∈ L2(µ):

|[F∗
µα](t )| = |〈ϕt ,α〉µ|

= |〈α,ϕt 〉µ|
= |〈α,Fµβ

?+p
εu?〉µ|

≤ |〈α,Fµβ
?〉µ|+ |〈α,

p
εu?〉µ|

= |〈F∗
µα,β?〉T |+ |〈α,

p
εu?〉µ|

≤
∥∥∥(F∗

µα)
∥∥∥

T
·∥∥β?∥∥

T +p
ε‖α‖µ ·

∥∥u?
∥∥
µ ,

where the last inequality follows from Cauchy-Schwarz inequality. Using Cauchy-Schwarz

again:

|[F∗
µα](t )|2 ≤

(∥∥∥(F∗
µα)

∥∥∥
T
·∥∥β?∥∥

T +p
ε‖α‖µ ·

∥∥u?
∥∥
µ

)2

≤
(∥∥∥F∗

µα
∥∥∥2

T
+ε‖α‖2

µ

)
·
(∥∥β?∥∥2

T +∥∥u?
∥∥2
µ

)
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So for every 0 6=α ∈ L2(µ):

|[F∗
µα](t )|2∥∥F∗

µα
∥∥2

T
+ε‖α‖2

µ

≤ ∥∥β?∥∥2
T +∥∥u?

∥∥2
µ = 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ

We conclude by showing that the maximum value is attained. Let α? = (Gµ+εIµ)−1ϕt . Then,∥∥∥F∗
µα

?
∥∥∥2

T
+ε∥∥α?∥∥2

µ = 〈α?, (Gµ+εIµ)α?〉 = 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ

and finally,

|[F∗
µα

?](t )|2∥∥F∗
µα

?
∥∥2

T
+ε‖α‖2

µ

= |〈ϕt ,α?〉µ|2
〈ϕt , (Gµ+εIµ)−1ϕt 〉µ

= 〈ϕt , (Gµ+εIµ)−1ϕt 〉µ.

We now turn to showing that the leverage function integrates to the statistical dimension.

Claim B.2.3. ∫ T

0
τµ,ε(t )d t = sµ,ε.

Proof. It follows from Eq. (B.7) and Claim B.1.9 that
∫ T

0 τµ,ε(t ) = tr((Gµ+εIµ)−1Gµ). The claim

follows by noting that Kµ and Gµ have the same eigenvalues (both operators are compact and

self-adjoint, so their spectrum consists of only eigenvalues, and it is easy to verify that if x is

an eigenvector of Kµ then Fµx is eigenvector of Gµ).

We thus have completed the proof of Theorem 3.4.1.

B.2.2 Operator Approximation via Leverage Score Sampling

Analogs of the following concentration result are well known for matrices. Accordingly, the

proof is an adaptation of standard proofs for finite matrix approximation by leverage score

sampling, where matrix concentration results are replaced with operator concentration results.

A similar strategy was employed in Bach (2017).

Lemma B.2.2. Consider the preconditions of Theorem 3.4.2, and denote Ĝµ = FF∗. Let ∆≤ 1/2

and ε≤ ∥∥Gµ

∥∥
op. If s ≥ 8

3∆
−2 s̃µ,ε ln(16s̃2

µ,ε/δ), then

(1−∆)(Gµ+εIµ) ¹ Ĝµ+εIµ ¹ (1+∆)(Gµ+εIµ) (B.8)
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with probability of at least 1−δ.

Proof. The condition (B.8) is equivalent to

Gµ−∆(Gµ+εIµ) ¹ Ĝµ ¹Gµ+∆(Gµ+εIµ)

By composing with (Gµ+εIµ)−1/2 on the left and right, we find that the condition is equivalent

to ∥∥(Gµ+εIµ)−1/2(Ĝµ−Gµ)(Gµ+εIµ)−1/2
∥∥

op ≤∆. (B.9)

Noticing that Fg =∑s
j=1 w j g ( j )ϕt j and that [F∗z]( j ) = w j 〈ϕt j , z〉µ, we understand that Ĝµ =∑s

j=1 w2
j (ϕt j ⊗ϕt j ). Let,

X j
def= sw2

j (Gµ+εIµ)−1/2(ϕt j ⊗ϕt j )(Gµ+εIµ)−1/2.

Note that X j is self-adjoint and Hilbert-Schmidt (since it has finite rank). We have,

(Gµ+Iµ)−1/2Ĝµ(Gµ+Iµ)−1/2 = 1

s

s∑
j=1

X j .

Since the time samples are drawn randomly, X1, . . . ,Xs are i.i.d. random operators. We also

have, using Claim B.1.8,

Et j∝τ̃µ,ε [X j ] = (Gµ+εIµ)−1/2Et j∝τ̃µ,ε

[
sw2

j (ϕt j ⊗ϕt j )
]

(Gµ+εIµ)−1/2.

Write w(t ) =
√

s̃µ,ε

T ·τ̃µ,ε(t ) . For every x, z ∈ L2(µ),

∫ T

0

〈
x, w(t )2 · (ϕt ⊗ϕt )z

〉
µ · (τ̃µ,ε(t )/s̃µ,ε)d t = 1

T

∫ T

0

〈
x, (ϕt ⊗ϕt )z

〉
µd t = 〈x,Gµz〉µ

which shows that Et j∝τ̃µ,ε

[
sw2

j (ϕt j ⊗ϕt j )
]
=Gµ. Therefore,

Et j∝τ̃µ,ε [X j ] = (Gµ+εIµ)−1/2Gµ(Gµ+εIµ)−1/2. (B.10)

Next, we bound the operator norm of X j . The random operator only takes values that are

both positive semidefinite and rank one, so the operator norm of X j is equal to the trace of
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the operator. Thus, we have∥∥X j
∥∥

op = sw2
j tr

(
(Gµ+εIµ)−1/2(ϕt j ⊗ϕt j )(Gµ+εIµ)−1/2)

= s̃µ,ε

τ̃µ,ε(t j )
· 1

T
tr

(
(Gµ+εIµ)−1(ϕt j ⊗ϕt j )

)
= s̃µ,ε

τ̃µ,ε(t j )
·τµ,ε(t j ) (via Theorem 3.4.1, equation (B.5).)

≤ s̃µ,ε

where the last line follows since τ̃µ,ε(t j ) ≥ τµ,ε(t j ) by assumption.

The final ingredient for applying Lemma B.1.1 is to bound X 2
j . Again, using the fact that

τ̃µ,ε(t j ) ≥ τµ,ε(t j ) we have:

X 2
j =

s̃2
µ,ε

T 2 · τ̃µ,ε(t j )2 (Gµ+εIµ)−1/2(ϕt j ⊗ϕt j )(Gµ+εIµ)−1(ϕt j ⊗ϕt j )(Gµ+εIµ)−1/2

=
s̃2
µ,ε · 〈ϕt j , (Gµ+εIµ)−1ϕt j 〉µ

T 2 · τ̃µ,ε(t j )2 (Gµ+εIµ)−1/2(ϕt j ⊗ϕt j )(Gµ+εIµ)−1/2

=
s̃2
µ,ε ·τµ,ε(t j )

T · τ̃µ,ε(t j )2 (Gµ+εIµ)−1/2(ϕt j ⊗ϕt j )(Gµ+εIµ)−1/2

= s̃µ,ε ·τµ,ε(t j )

τ̃µ,ε(t j )
X j ¹ s̃µ,εX j .

So, using Claim B.1.11,

Et j∝τ̃µ,ε

[
X 2

j

]
¹ Et j∝τ̃µ,ε

[
s̃µ,εX j

]= s̃µ,ε(Gµ+εIµ)−1/2Gµ(Gµ+εIµ)−1/2 def= M .

Noticing that tr(M ) = s̃µ,ε · sµ,ε and ‖M‖op = s̃µ,ε · ‖Gµ‖op

‖Gµ‖op+ε
≥ s̃µ,ε/2 by our assumption that

ε≤ ∥∥Gµ

∥∥
op, and Lemma B.1.1 we have:

Pr
(∥∥(Gµ+εIµ)−1/2(Ĝµ−Gµ)(Gµ+εIµ)−1/2

∥∥
op ≥∆

)
≤8tr(M )

‖M‖op
exp

( −s∆2/2

‖M‖op +2s̃µ,ε∆/3

)
≤16sµ,ε ·exp

( −s∆2

2s̃µ,ε(1+2∆/3)

)
≤16sµ,ε ·exp

(−3s∆2

8s̃µ,ε

)
≤ δ.
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B.2.3 Approximate Discretization via Leverage Score Sampling

With the operator approximation bound of Lemma B.2.2 in place, we can prove Theorem 3.4.2,

which shows that we can approximately solve the regression problem of (3.10) (and by Claim

3.4.1 solve Problem 3.2.1) by sampling time domain points via over-approximations to their

ridge leverage scores.

Theorem 3.4.2 (Approximate Regression via Leverage Score Sampling). Assume ε≤ ∥∥Kµ

∥∥
op

and consider a measurable τ̃µ,ε(t ) with τ̃µ,ε(t ) ≥ τµ,ε(t ) for all t and let s̃µ,ε =
∫ T

0 τ̃µ,ε(t )d t. Let

s = c ·(s̃µ,ε · [log(s̃µ,ε)+1/δ]
)

for sufficiently large fixed constant c and let t1, . . . , ts be time points

selected by drawing each randomly from [0,T ] with probability proportional to τ̃µ,ε(t). For

j ∈ 1, . . . , s let w j =
√

1
sT · s̃µ,ε

τ̃µ,ε(t j ) . Let F :Cs → L2(µ) be the operator defined by:

[F x] (ξ) =
s∑

j=1
w j ·x( j ) ·e−2πiξt j (B.11)

and y,n ∈Rs be the vector with y( j ) = w j · y(t j ) and n( j ) = w j ·n(t j ).

For any β≥ 0, if g̃ ∈ L2(µ) satisfies: 4

‖F∗g̃ − (y+n)‖2
2 +ε‖g̃‖2

µ ≤ (1+δβ) · min
g∈L2(µ)

[
‖F∗g − (y+n)‖2

2 +ε‖g‖2
µ

]
, (B.12)

then with probability ≥ 1−δ,

‖F∗
µ g̃ − (y +n)‖2

T +ε‖g̃‖2
µ ≤ 3(1+2β) · min

g∈L2(µ)

[
‖F∗

µ g − (y +n)‖2
T +ε‖g‖2

µ

]
. (B.13)

So g̃ provides an approximate solution to (3.10) and by Claim 3.4.1, ỹ =F∗
µ g̃ solves Problem

3.2.1 with parameterΘ(ε).

Proof. Throughout the proof we will let ȳ = y +n and ȳ = y+n. Let

g?
def= argming∈L2(µ)

[
‖F∗

µ g − ȳ‖2
T +ε‖g‖2

µ

]
.

By Lemma B.2.1, g? =Fµ(Kµ+λIT )−1 ȳ . Denote the optimal error as b?
def= F∗

µ g?− ȳ and the

optimal cost as B? def= ‖F∗
µ g?− ȳ‖2

T +ε‖g?‖2
µ.

Reduction to Affine Embedding

We prove that, for all g ∈ L2(µ), ridge leverage score sampling lets us approximate the value

of the objective function of (3.10) when evaluated at g . In the randomized linear algebra

literature, this is known as an affine embedding guarantee. Specifically, we show that, with

4We can see that the adjoint F∗ : L2(µ) →Cs is given by
[
F∗ g

]
( j ) = w j ·

∫
R g (ξ)e2πiξt j dµ(ξ).
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probability ≥ 1−δ, for all g ∈ L2(µ),

1

2

(∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ

)
≤ ∥∥F∗g − ȳ

∥∥2
2 +ε

∥∥g
∥∥2
µ+α≤ 3

2

(∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ

)
(B.14)

where α is some fixed value independent of g (but which depends on F and ȳ) with |α| ≤ 1
δ ·B?.

It is not hard to see that (B.14) gives the theorem. For any g̃ ∈ L2(µ) satisfying:

‖F∗g̃ − ȳ‖2
2 +ε‖g̃‖2

µ ≤ (1+δC ) · min
g∈L2(µ)

[
‖F∗g − ȳ‖2

2 +ε‖g‖2
µ

]
, (B.15)

we can apply (B.14) to give the main claim of the theorem:

‖F∗
µ g̃ − ȳ‖2

T +ε‖g̃‖2
µ ≤ 2

(∥∥F∗g̃ − ȳ
∥∥2

2 +ε
∥∥g̃

∥∥2
µ+α

)
(applying lower bound of (B.14))

≤ 2(1+δC ) · min
g∈L2(µ)

(
‖F∗g − ȳ‖2

2 +ε‖g‖2
µ

)
+2α (by assumption of (B.15))

≤ 2(1+δC ) ·
(
‖F∗g?− ȳ‖2

2 +ε‖g?‖2
µ

)
+2α

= 2(1+δC ) ·
(
‖F∗g?− ȳ‖2

2 +ε‖g?‖2
µ+α

)
−2δCα

≤ 3(1+δC ) ·
(
‖F∗

µ g?− ȳ‖2
F +ε‖g?‖2

µ

)
−2δCα (upper bound of (B.14))

≤ [3(1+δC )+2C ] ·
(
‖F∗

µ g?− ȳ‖2
F +ε‖g?‖2

µ

)
(since |α| ≤ B?

δ )

≤ 3(1+2C ) · min
g∈L2(µ)

[
‖F∗

µ g − ȳ‖2
T +ε‖g‖2

µ

]
. (g? is optimum)

Thus, we focus our attention to proving that the affine embedding guarantee of (B.14) holds

with probability ≥ 1−δ.

Expression of Error in Terms of g − g?

We begin by showing how, for any g ∈ L2(µ), the cost
∥∥∥F∗

µ g − ȳ
∥∥∥2

T
+ε∥∥g

∥∥2
µ can be written as a

function of the deviation from the optimum: g − g?.

Claim B.2.4 (Expression for Excess Cost). For any g ∈ L2(µ):∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ =

∥∥∥F∗
µ (g − g?)

∥∥∥2

T
+ε∥∥g − g?

∥∥2
µ+B?,

recalling that B? def=
∥∥∥F∗

µ g?− ȳ
∥∥∥2

T
+ε∥∥g?

∥∥2
µ is the optimum cost of the ridge regression problem.

Proof. Following Lemma B.2.1 we define T : L2(µ) → L2(µ)×L2(T ), T g = (
p
εg ,F∗

µ g ). For

any g ,
∥∥∥F∗

µ g − ȳ
∥∥∥2

T
+ε∥∥g

∥∥2
µ =

∥∥T g − (0, ȳ)
∥∥2

L2(µ)×L2(T ). Again, as in Lemma B.2.1 we know g? is

the unique minimizer of this function with the property that (0, y)−T g? ⊥ range(T ) (Hunter
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and Nachtergaele, 2001, Theorem 6.13). We can thus decompose:∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ =

∥∥T g − (0, ȳ)
∥∥2

L2(µ)×L2(T )

= ∥∥T g?− (0, ȳ)+ (T g −T g?)
∥∥2

L2(µ)×L2(T )

= ∥∥T g?− (0, ȳ)
∥∥2

L2(µ)×L2(T ) +
∥∥T (g − g?)

∥∥2
L2(µ)×L2(T )

= B?+
∥∥∥F∗

µ (g − g?)
∥∥∥2

T
+ε∥∥g − g?

∥∥2
µ

which gives the claim.

Bounding The Sampling Error

We now show that Claim B.2.4 holds approximately, even after sampling. This almost immedi-

ately yields the affine embedding bound of (B.14).

Let B̃
def= ∥∥F∗g?− ȳ

∥∥2
2+ε

∥∥g?
∥∥2
µ be the error of the optimal solution in our randomly discretized

regression problem. We can write the discretized objective function value for any g ∈ L2(µ) as:∥∥F∗g − ȳ
∥∥2

2 +ε
∥∥g

∥∥2
µ =

∥∥F∗(g − g?)+F∗g?− ȳ
∥∥2

2 +ε
∥∥g?+ (g − g?)

∥∥2
µ

= B̃ +∥∥F∗(g − g?)
∥∥2

2 +ε
∥∥g − g?

∥∥2
µ

+2ℜ(〈F∗(g − g?),F∗g?− ȳ〉)+2εℜ(〈(g − g?), g?〉µ). (B.16)

Let F̄µ : L2(T )×L2(µ) → L2(µ) be the operator F̄µ( f , g ) =Fµ f +p
ε · g . We can see that F̄∗

µ :

L2(µ) → L2(T )×L2(µ) is given by F̄∗
µ g = (F∗

µ g ,
p
ε · g ). Further, we see that F̄µF̄∗

µ =Gµ+εIµ.

We can write:

F̄∗
µ = F̄∗

µ (Gµ+εIµ)−1(Gµ+εIµ) = P̄µF̄
∗
µ

where P̄µ = F̄∗
µ (Gµ+ εIµ)−1F̄µ. Note that P̄µ is self adjoint. Correspondingly, let F̄ : Cs ×

L2(µ) → L2(µ) be given by F̄( f , g ) = F f +p
ε · g . We have F̄∗g = (F∗g ,

p
ε · g ). We can also write

P̄ = F̄∗(Gµ+εIµ)−1F̄µ, and observe that F̄∗ = P̄F̄∗
µ .

With this notation in place we can rewrite (B.16) as:

〈F∗(g − g?),F∗g?− ȳ〉+ε〈(g − g?), g?〉µ = 〈F̄∗(g − g?), (F∗g?− ȳ,
p
εg?)〉Cs×L2(µ)

= 〈P̄F̄∗
µ (g − g?), (F∗g?− ȳ,

p
εg?)〉Cs×L2(µ)

= 〈F̄∗
µ (g − g?), P̄∗(F∗g?− ȳ,

p
εg?)〉L2(T )×L2(µ).

Using the fact that ℜ(z) ≤ |z| for all z ∈ C, and applying Cauchy-Schwarz to the above and
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plugging back into (B.16) we have:∥∥F∗g − ȳ
∥∥2

2 +ε
∥∥g

∥∥2
µ ∈ B̃ +∥∥F∗(g − g?)

∥∥2
2 +ε

∥∥g − g?
∥∥2
µ

±2
(∥∥∥F∗

µ (g − g?)
∥∥∥

T
+ε∥∥g − g?

∥∥
µ

)
·∥∥P̄∗(F∗g?− ȳ,

p
εg?)

∥∥
L2(T )×L2(µ) .

(B.17)

We now bound
∥∥P̄∗(F∗g?− ȳ,

p
εg?)

∥∥
L2(T )×L2(µ). If we had not sampled, this would equal:∥∥∥P̄µ(F∗

µ g?− ȳ ,
p
εg?)

∥∥∥
L2(T )×L2(µ)

=
∥∥∥F̄∗

µ (Gµ+εIµ)−1F̄µ

[
F̄∗
µ g?− (ȳ ,0)

]∥∥∥
L2(T )×L2(µ)

= 0

(B.18)

since g? is the optimum of
∥∥∥F̄∗

µ g − (ȳ ,0)
∥∥∥

L2(T )×L2(µ)
and thus F̄∗

µ g?− (ȳ ,0) ⊥ range(F̄∗
µ ). We

will show that after sampling, while the norm no longer equals 0, it is still small. The bound we

give is analogous to standard approximate matrix multiplication results for finite dimensional

matrices. Specifically, our proof follows that of (Drineas et al., 2006a, Lemma 4).

Claim B.2.5 (Approximate Operator Application). With probability ≥ 1−δ:

∥∥P̄∗(F∗g?− ȳ,
p
εg?)

∥∥
L2(T )×L2(µ) ≤

1

64
·B?.

Proof. For conciseness let H denote the space L2(T )× L2(µ). Let ϕt ∈ L2(µ) be given by

ϕt (ξ) = e−2πi tξ. Let b?
def= F∗

µ g?− ȳ and b? ∈ Cs be given by b?
def= F∗g?− ȳ. We can see that

b?( j ) = w j · [〈ϕt j , g?〉µ− ȳ(t j )]. We have:

E
[∥∥P̄∗(F∗g?− ȳ,

p
εg?)

∥∥2
H

]
= E

[∥∥P̄∗(b?,
p
εg?)

∥∥2
H

]
= E

[∥∥∥P̄∗(b?,
p
εg?)−F̄∗

µ (Gµ+εIµ)−1F̄µ

[
F̄∗
µ g?− (ȳ ,0)

]∥∥∥2

H

]
(Since by (B.18),

∥∥∥F̄∗
µ (Gµ+εIµ)−1F̄µ

[
F̄∗
µ g?− (ȳ ,0)

]∥∥∥
H

= 0)

= E
[∥∥∥P̄∗(b?,

p
εg?)−F̄∗

µ (Gµ+εIµ)−1F̄µ

(
b?,

p
εg?

)∥∥∥2

H

]
(Since F̄∗

µ g? = (F∗
µ g ,

p
εg ) and b?

def= F∗
µ g?− ȳ , giving

[
F̄∗
µ g?− (ȳ ,0)

]
= (b?,

p
εg?))

= E
[∥∥∥F̄∗

µ (Gµ+εIµ)−1 (
F̄

(
b?,

p
εg?

)−F̄µ

(
b?,

p
εg?

))∥∥∥2

H

]
(Factoring F̄∗

µ (Gµ+εIµ)−1 out of P̄∗ = F̄∗
µ (Gµ+εIµ)−1F̄)

= E
[∥∥∥F̄∗

µ (Gµ+εIµ)−1 (
Fb?−Fµb?

)∥∥∥2

H

]
(Recalling that F̄( f , g ) = F f +p

εg and similarly F̄µ( f , g ) =Fµ f +p
εg )

= E
[∥∥∥∥∥F̄∗

µ (Gµ+εIµ)−1
s∑

i=1

(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)∥∥∥∥∥
2

H

]
,

(B.19)
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where the last equality follows since by (B.11), for any x ∈ Cs , Fx = ∑s
j=1ϕt j · w j · x( j ). To

simplify (B.19) we first bound, for an arbitrary g ∈ L2(µ), E
[〈g ,ϕt j ·w j ·b?( j )〉µ

]
, recalling that

b?( j ) = w j · [〈ϕt j , g?〉µ− ȳ(t j )]. Let p(t ) = τ̃µ,ε(t )
s̃µ,ε

be the density with which we sample our time

points t1, . . . , ts and w(t ) =
√

1
sT ·p(t ) be the reweighting factor we apply if we sample time t (so

w j = w(t j )).

First we argue that we can apply Fubini’s theorem to switch the order of the double integration

in E
[〈g ,ϕt j ·w j ·b?( j )〉µ

]
(over random instantiations of ϕt j ·w j ·b?( j ) and within the inner

product). Letting for z ∈ L2(µ), |z| ∈ L2(µ) be given by |z|(η) = |z(η)| we have:

E
[〈|g |, |ϕt j ·w j ·b?( j )|〉µ

]≤ ∥∥g
∥∥
µ ·E

[∥∥ϕt j w j b?( j )
∥∥
µ

]
,

which, noting that
∥∥ϕt j

∥∥
µ
= 1 gives:

E
[〈|g |, |ϕt j ·w j ·b?( j )|〉µ

]≤ ∥∥g
∥∥
µ ·E

[|w j b?( j )|]
= ∥∥g

∥∥
µ ·

∫ T

0
|〈ϕt , g?〉µ− ȳ(t )|w(t )2 ·p(t )d t

= ∥∥g
∥∥
µ ·

1

sT

∫ T

0
|〈ϕt , g?〉µ− ȳ(t )|d t

<∞

where the last line follows since g ∈ L2(µ) so
∥∥g

∥∥
µ <∞ and since 1

T

∫ T
0 |〈ϕt , g?〉µ− ȳ(t)|d t ≤

1
T

∫ T
0

(|〈ϕt , g?〉µ− ȳ(t )|2 +1
)

d t =
∥∥∥F∗

µ g?− ȳ
∥∥∥2

T
+1 ≤ ∥∥ȳ

∥∥2
T +1 <∞. Since we have established

that E
[〈|g |, |ϕt j ·w j ·b?( j )|〉µ

]
is finite we can apply Fubini’s theorem to compute:

E
[〈g ,ϕt j ·w j ·b?( j )〉µ

]= ∫ T

0
[〈ϕt , g?〉µ− ȳ(t )]w(t )2 · 〈g ,ϕt 〉µ ·p(t )d t

= 1

sT

∫ T

0

(
b?(t ) ·

∫
ξ∈R

g (ξ)∗e−2πiξt dµ(ξ)

)
d t

= 1

s

∫
ξ∈R

(
g (ξ)∗ · 1

T

∫ T

0
e−2πiξt b?(t )d t

)
dµ(ξ)

= 1

s
〈g ,Fµb?〉µ. (B.20)

This in turn gives that E
[〈g ,ϕt j ·w j ·b?( j )− 1

s Fµb?〉µ
]= 0 and so for any g ∈ L2(µ):

E

[〈
F̄∗
µ (Gµ+εIµ)−1g ,F̄∗

µ (Gµ+εIµ)−1
(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)〉
H

]
=

E

[〈
(Gµ+εIµ)−1F̄µF̄∗

µ (Gµ+εIµ)−1g ,ϕt j ·w j ·b?( j )− 1

s
Fµb?

〉
µ

]
= 0.

(B.21)
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Further, since t1, . . . , ts are independent, the above gives that for j 6= k:

E

[〈
F̄∗
µ (Gµ+εIµ)−1

(
ϕt j ·w j b?( j )− 1

s
Fµb?

)
,F̄∗

µ (Gµ+εIµ)−1
(
ϕtk ·wk b?(k)− 1

s
Fµb?

)〉
H

]
= 0.

(B.22)

We can apply (B.21) and (B.22) to expand out (B.19), giving:

E
[∥∥P̄∗(F∗g?− ȳ,

p
εg?)

∥∥2
H

]
=∑

j ,k∈[s]
E

[〈
F̄∗
µ (Gµ+εIµ)−1

(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)
,F̄∗

µ (Gµ+εIµ)−1
(
ϕtk ·wk ·b?(k)− 1

s
Fµb?

)〉
H

]

=
s∑

j=1
E

[〈
F̄∗
µ (Gµ+εIµ)−1

(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)
,F̄∗

µ (Gµ+εIµ)−1
(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)〉
H

]
(since cross terms are 0 via (B.22))

=
s∑

j=1
E

[〈
F̄∗
µ (Gµ+εIµ)−1

(
ϕt j ·w j ·b?( j )− 1

s
Fµb?

)
,F̄∗

µ (Gµ+εIµ)−1
(
ϕt j ·w j ·b?( j )

)〉
H

]
(applying (B.21) to g =− 1

s Fµb?)

=
s∑

i=1
E

[∥∥∥F̄∗
µ (Gµ+εIµ)−1ϕt j ·w j ·b?( j )

∥∥∥2

H
− 1

s

〈
F̄∗
µ (Gµ+εIµ)−1Fµb?,F̄∗

µ (Gµ+εIµ)−1ϕt j ·w j ·b?( j )
〉

H

]
=

s∑
i=1
E

[∥∥∥F̄∗
µ (Gµ+εIµ)−1ϕt j ·w j ·b?( j )

∥∥∥2

H
− 1

s2

∥∥∥F̄∗
µ (Gµ+εIµ)−1Fµb?

∥∥∥2

H

]
≤

s∑
i=1
E

[∥∥∥F̄∗
µ (Gµ+εIµ)−1ϕt j ·w j ·b?( j )

∥∥∥2

H

]
, (B.23)

where the second to last line follows from (B.20).

Given the bound of (B.23) we can now expand out, using the fact that time t is sampled with

probability proportional to τ̃µ,ε(t ):

E
[∥∥P̄∗(F∗g?− ȳ,

p
εg?)

∥∥2
H

]
≤ s ·

∫ T

t=0

τ̃µ,ε(t )

s̃µ,ε
·
∥∥∥∥F̄∗

µ (Gµ+εIµ)−1ϕt ·
(〈ϕt , g?〉µ− ȳ(t )) · s̃µ,ε

sT · τ̃µ,ε(u)

∥∥∥∥2

H

d t

= 1

sT 2 ·
∫ T

t=0

s̃µ,ε ·b?(t )2

τ̃µ,ε(t )
·
∥∥∥F̄∗

µ (Gµ+εIµ)−1ϕt

∥∥∥2

H
d t

= 1

sT 2 ·
∫ T

t=0

s̃µ,ε ·b?(t )2

τ̃µ,ε(t )
· 〈ϕt , (Gµ+εIµ)−1ϕt 〉2

µd t

(since F̄µF̄∗
µ =Gµ+εIµ)

= 1

sT
·
∫ T

t=0

s̃µ,ε ·b?(t )2 ·τµ,ε(t )

τ̃µ,ε(t )
d t (Theorem 3.4.1, (3.29))

≤ s̃µ,ε ·
∥∥b?

∥∥2
T

s
. (since by assumption τ̃µ,ε(t ) ≥ τµ,ε(t ))
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Since s =Ω
(

s̃µ,ε

δ

)
we thus have via Markov’s inequality, with probability ≥ 1−δ,

∥∥P̄∗(F∗g?− ȳ,
p
εg?)

∥∥2
H ≤ 1

64
·∥∥b?

∥∥2
T ≤ 1

64
·B?

which completes the claim. Note that 64 is an arbitrarily chosen constant, which can be made

as small as we want by increasing the sample size s by a constant factor.

Plugging Claim B.2.5 back into (B.17) gives:

∥∥F∗g − ȳ
∥∥2

2 +ε
∥∥g

∥∥2
µ ∈ B̃ +∥∥F∗(g − g?)

∥∥2
2 +ε

∥∥g − g?
∥∥2
µ±

p
B?

4

(∥∥∥F∗
µ (g − g?)

∥∥∥
T
+ε∥∥g − g?

∥∥
µ

)
∈ B̃ +∥∥F∗(g − g?)

∥∥2
2 +ε

∥∥g − g?
∥∥2
µ±

1

8

(∥∥∥F∗
µ (g − g?)

∥∥∥
T
+ε∥∥g − g?

∥∥
µ

)2 ± B?

8

∈ B̃ +∥∥F∗(g − g?)
∥∥2

2 +ε
∥∥g − g?

∥∥2
µ±

1

4

(∥∥∥F∗
µ (g − g?)

∥∥∥2

T
+ε∥∥g − g?

∥∥2
µ

)
± B?

8
.

Applying the operator approximation bound of Lemma B.2.2 with error ∆= 1/4 then gives:

∥∥F∗g − ȳ
∥∥2

2 +ε
∥∥g

∥∥2
µ ∈ B̃ +

(
1± 1

2

)(∥∥∥F∗
µ (g − g?)

∥∥∥2

2
+ε∥∥g − g?

∥∥2
µ

)
± 1

8
B?.

Finally, applying Claim B.2.4 gives:

∥∥F∗g − ȳ
∥∥2

2 +ε
∥∥g

∥∥2
µ ∈ (B̃ −B?)+

∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ±

1

2

(∥∥∥F∗
µ g − ȳ

∥∥∥2

T
+ε∥∥g

∥∥2
µ

)
.

Note that E[B̃ ] = B?. So writing α= B̃ −B? we have |α| ≤ 1
δ ·B? with probability 1−δ. This

completes the theorem.

B.2.4 Frequency Subset Selection

We now prove the frequency subset selection guarantee Theorem 3.5.2 used in Section 3.5.1

to bound the leverage scores for general constraints µ, by showing that F∗
µ can be well

approximated by an operator whose columns are spanned by just O(sµ,ε) frequencies.

Theorem 3.5.2 (Frequency Subset Selection). For some s ≤ d36·sµ,εe there exists a set of distinct

frequencies ξ1, . . . ,ξs ∈R such that, letting Cs : L2(T ) →Cs be defined by:

[Cs g ]( j ) = 1

T

∫ T

0
g (t )e−2πiξ j t d t ,

and Z = (Cs C∗
s )−1CsF

∗
µ , for ϕt ∈ L2(µ),φt ∈Cs with ϕt (ξ)

def= e−2πi tξ and φt ( j )
def= ϕt (ξ j ):

1

T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t ≤ 4ε · sµ,ε. (B.24)
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Our proof relies on the following spectral error bound for weighted frequency subset selection:

Lemma B.2.3 (Frequency Subset Selection – Direct Spectral Approximation). For some s ≤
d36 ·sµ,εe there exists a set of distinct frequencies ξ1, . . . ,ξs ∈R and positive weights w1, . . . , ws ∈R
such that letting C̄s : L2(T ) → Cs be given by [C̄s g ]( j )

def= 1
T

∫ T
0 g (t)w j e−2πiξ j t d t, and letting

K̂µ = C̄∗
s C̄s , we have:

1

2
· (Kµ+εIT ) ¹ K̂µ+εIT ¹ 3

2
· (Kµ+εIT ). (B.25)

Proof. We prove a more general statement, in which we are given 0 < ∆ < 1 and we select

s = d9sµ,ε/∆2e frequencies ξ1, . . . ,ξs ∈R and weights w1, . . . , ws ∈R such that

(1−∆)(Kµ+εIT ) ¹ K̂µ+εIT ¹ (1+∆)(Kµ+εIT ).

The claim follows by setting ∆= 1/2. We can assume that ξ1, . . . ,ξs are distinct, since if ξi ,ξ j

are equal, we can simply remove ξ j and update wi ←
√

w2
i +w2

j , leaving K̂µ unchanged and

only decreasing s.

The last condition is equivalent to Kµ−∆(Kµ+εIT ) ¹ K̂µ ¹Kµ+∆(Kµ+εIT ). Multiplying

with (Kµ+εIT )−1/2 on the left and right, we find that the condition is equivalent to:

−∆IT ¹ (Kµ+εIT )−1/2K̂µ(Kµ+εIT )−1/2 − (Kµ+εIT )−1/2Kµ(Kµ+εIT )−1/2 ¹∆IT .

To shorten the notation, we write Z = (Kµ + εIT )−1/2Kµ(Kµ + εIT )−1/2 and Ẑ = (Kµ +
εIT )−1/2K̂µ(Kµ+ εIT )−1/2. Given ξ ∈ R, we define ϑξ(t)

def= e2πi tξ (ϑξ ∈ L2(T )). It is easy to

verify that

Kµ =
∫
R

(ϑξ⊗ϑξ)dµ(ξ), and K̂µ =
s∑

i=1
w2

i (ϑξi ⊗ϑξi ).

Further define ϑ̄ξ
def= (Kµ+εIT )−1/2ϑξ. Since (Kµ+εIT )−1/2 is self-adjoint and bounded, we

have

Z =
∫
R

(ϑ̄ξ⊗ ϑ̄ξ)dµ(ξ), and Ẑ =
s∑

i=1
w2

i (ϑ̄ξi ⊗ ϑ̄ξi ).

We prove the existence of ξ1, . . . ,ξs and w1, . . . , ws using the deterministic selection process

known as “BSS" (Batson et al., 2009).5 In particular, we use a process that in essence is the

same as the one described in (Cohen et al., 2016a, Theorem 5). Indeed, since ‖Z ‖op ≤ 1 and

tr(Z ) = sµ,ε the aforementioned results would suffice if we were dealing with matrices instead

of operators. The rest of the proof extends these results to the operator case. Let

δu
def= ∆/3+2∆2/9, δl

def= ∆/3−2∆2/9,

5We remark that unlike the process described in Batson et al. (2009), our existence proof does not trivially
translate to an algorithm, since it involves a search over an infinite domain. Nevertheless, for our needs, existence
suffices.
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and for j = 0,1, . . . , s,

X
( j )

l
def= jδl ·Z − sµ,ε ·IT , X

( j )
u

def= jδu ·Z + sµ,ε ·IT .

The process we shall describe iteratively selects ξ1,ξ2, . . . and unscaled weights w̃1, w̃2, . . . such

that if we define Ẑ ( j ) def= ∑ j
i=1 w̃i (ϑ̄ξi ⊗ ϑ̄ξi ) the invariant

X
( j )

l ≺ Ẑ ( j ) ≺X
( j )

u (B.26)

is held. Let us write s = d9sµ,ε/∆2e, so s =C sµ,ε/∆2 for C ≥ 9. If indeed we are able to select the

frequencies and weights for s steps such that this invariant holds, we shall have

C sµ,ε

3∆
·Z − (1+2C /9) · sµ,ε ·IT ¹ Ẑ (s) ¹ C sµ,ε

3∆
·Z + (1+2C /9) · sµ,ε ·IT

where we used the fact that Z ¹IT . Since C ≥ 9 we have −∆ ·IT ¹ 3∆
C sµ,ε

Ẑ (s) −Z ¹∆ ·IT , so

by defining wi =
√

3∆
C sµ,ε

w̃i for i = 1, . . . , s we shall then have Ẑ = 3∆
C sµ,ε

Ẑ (s) thereby establishing

the desired bound.

Thus, it suffices to show that we can select frequencies and weights iteratively so that (B.26) is

maintained. In fact, the iterative selection process will maintain two additional invariants:∫
R
〈ϑ̄ξ, (X ( j )

u − Ẑ ( j ))−1ϑ̄ξ〉T dµ(ξ) ≤ 1∫
R
〈ϑ̄ξ, (Ẑ ( j ) −X

( j )
l )−1ϑ̄ξ〉T dµ(ξ) ≤ 1

All the invariants hold for j = 0. Eq. (B.26) trivially holds for j = 0. As for the integral,∫
R
〈ϑ̄ξ, (X (0)

u − Ẑ (0))−1ϑ̄ξ〉T dµ(ξ) =
∫
R
〈ϑ̄ξ, s−1

µ,εϑ̄ξ〉T dµ(ξ)

= s−1
µ,ε

∫
R
〈(Kµ+εIT )−1/2ϑξ, (Kµ+εIT )−1/2ϑξ〉T dµ(ξ)

= s−1
µ,ε

∫
R
〈ϑξ, (Kµ+εIT )−1ϑξ〉T dµ(ξ)

= s−1
µ,ε tr

(
(Kµ+εIT )−1KT

)= 1

and similarly for the second invariant. In the above, the last equality is due to Claim B.1.9.

Suppose by induction that the invariants hold for j . We prove that it is possible to pick a

frequency ξ and weight w > 0 such that if we set ξ j+1 = ξ and w̃ j+1 = w then the invariants

will hold for j +1.

Fix j . For t ≥ 0, let us denote

Mu(t ) =
(
X

( j )
u + tZ − Ẑ ( j )

)−1
, and Ml (t ) =

(
Ẑ ( j ) −X

( j )
l − tZ

)−1
,
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where Mu is defined for any t ≥ 0 (since the inverted operator is strictly positive and bounded,

so invertible), and Ml is defined for t < 1. We can define Ml for t < 1 since Ẑ ( j )−X
( j )

l − tZ Â 0

for t < 1 as we show now. Due to Claim B.1.9:

tr
(
(Ẑ ( j ) −X

( j )
l )−1Z

)
=

∫
R
〈ϑ̄ξ, (Ẑ ( j ) −X

( j )
l )−1ϑ̄ξ〉T dµ(ξ) ≤ 1.

Since Ẑ ( j ) −X
( j )

l Â 0 (induction assumption), (Ẑ ( j ) −X
( j )

l )−1 is bounded so according to

Claim B.1.4, Z ¹ Ẑ ( j ) −X
( j )

l , and then Claim B.1.6 implies that Ẑ ( j ) −X
( j )

l − tZ Â 0.

Consider some fixed ξ. We first claim that for w < 1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T we have Mu(δu)−1 −
w(ϑ̄ξ⊗ ϑ̄ξ) Â 0. Obviously, the last statement holds for w = 0, and due to continuity of w 7→
〈x, (Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄ξ))x〉T with respect to w , it will also hold for some interval around 0.

Let w? be the maximal value such that for all w ∈ [0, w?) we have Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄ξ) Â
0. Our goal is to show that w? ≥ 1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T . Assume by contradiction that w? <
1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T . For every w ∈ [0, w?), the operator Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄ξ) is invertible,

and we can apply a operator pseudo-inversion lemma due to (Deng, 2011, Theorem 2.1) to

find that

(Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄T ))−1 = Mu(δu)+ w

1−w · 〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T
Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu).

Since we assumed w? < 1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T , it is clear from the above equation that there

exists a K such that for all w ∈ [0, w?) we have:

(Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄T ))−1 ¹ K ·IT .

Note that Mu(δu)−1 −w?(ϑ̄ξ⊗ ϑ̄ξ) is not strictly positive for otherwise due to continuity we

could have extended the interval, so there exists a x with norm 1 such that 〈x, (Mu(δu)−1 −
w?(ϑ̄ξ ⊗ ϑ̄ξ))x〉 < 1

2K . Let w1, w2, . . . be a sequence which converges to w?, and let yi =(
Mu(δu)−1 −wi (ϑ̄ξ⊗ ϑ̄ξ)

)1/2
x. We now have 〈yi , yi 〉T = 〈x, (Mu(δu)−1 − wi (ϑ̄ξ ⊗ ϑ̄ξ))x〉T →

〈x, (Mu(δu)−1−w?(ϑ̄ξ⊗ϑ̄ξ))x〉T < 1
2K as i →∞. However 〈yi , (Mu(δu)−1−wi (ϑ̄ξ⊗ϑ̄ξ))−1 yi 〉T =

〈x, x〉T = 1 which contradicts the bound on (Mu(δu)−1 −wi (ϑ̄ξ⊗ ϑ̄ξ))−1.

Thus, if we picked ξ and w < 1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T for the step, we shall have X
( j+1)

u − Ẑ ( j+1) =
Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄ξ) Â 0 as required, and the upper invariant will translate to∫

R

〈
ϑ̄η,

(
Mu(δu)−1 −w(ϑ̄ξ⊗ ϑ̄ξ)

)−1
ϑ̄η

〉
T

dµ(η) ≤ 1,

which is equivalent to

∫
R
〈ϑ̄η, Mu(δu)ϑ̄η〉T dµ(η)+ w ·∫R 〈

ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η
〉

T dµ(η)

1−w · 〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T
≤ 1.
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The induction hypothesis is
∫
R〈ϑ̄η, Mu(0)ϑ̄η〉T dµ(η) ≤ 1, so the upper invariant is held if

∫
R
〈ϑ̄η, Mu(δu)ϑ̄η〉T dµ(η)−

∫
R
〈ϑ̄η, Mu(0)ϑ̄η〉T dµ(η)+w ·∫R 〈

ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η
〉

T dµ(η)

1−w · 〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T
≤ 0.

(B.27)

Consider any η ∈R, and let fη(y)
def= 〈ϑ̄η, Mu(y)ϑ̄η〉T . Using the operator inversion formula, we

have for any t2 ≥ t1:

Mu(t2) = Mu(t1)− (t2 − t1)Mu(t1)Z 1/2 (
IT + (t2 − t1)Z 1/2Mu(t1)Z 1/2)−1

Z 1/2Mu(t1).

From this equation we see that

f ′
η(y) =−〈ϑ̄η, Mu(y)Z Mu(y)ϑ̄η〉T .

Furthermore, since for t2 > t1 we have IT + t2Z
1/2Mu(t1)Z 1/2 º IT + t1Z

1/2Mu(t1)Z 1/2

and both operators are strictly positive and bounded, then (IT + t1Z
1/2Mu(t1)Z 1/2)−1 ¹

(IT + t2Z
1/2Mu(t1)Z 1/2)−1, and we can easily verify that fη has a positive second derivative

and hence is convex. Thus,

fη(δu)− fη(0) ≤−δu〈ϑ̄η, Mu(y)Z Mu(y)ϑ̄η〉T .

After integrating on both sides, we have the bound∫
R
〈ϑ̄η, Mu(δu)ϑ̄η〉T dµ(η)−

∫
R
〈ϑ̄η, Mu(0)ϑ̄η〉T dµ(η) ≤−δu

∫
R
〈ϑ̄η, Mu(δu)Z Mu(δu)ϑ̄η〉T dµ(η).

Using this bound in (B.27) and rearranging, we find that for any ξ, the upper invariant is held

if we select w such that

1

w
>

∫
R

〈
ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η

〉
T dµ(η)

δu
∫
R〈ϑ̄η, Mu(δu)Z Mu(δu)ϑ̄η〉T dµ(η)

+〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T . (B.28)

Note that if this is held, we also have w < 1/〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T , as previously required.

We now consider the lower invariants. If we picked ξ and w > 0 for the step, then Ẑ ( j+1) −
X

( j+1)
l = Ml (δl )−1 +w(ϑ̄ξ⊗ ϑ̄ξ) º Ml (δl )−1 Â 0 as long δl < 1 which holds for our choice of δl .

So the left part of (B.26) will hold regardless of how we choose ξ and w > 0. As for the lower

trace bound, it translates to:∫
R

〈
ϑ̄η,

(
Ml (δl )−1 +w(ϑ̄ξ⊗ ϑ̄ξ)

)−1
ϑ̄η

〉
T

dµ(η) ≤ 1.

Applying another variant of operator pseudo-inversion lemma (Ogawa, 1988, Theorem 2), we

find that the last condition is equivalent to

∫
R
〈ϑ̄η, Ml (δl )ϑ̄η〉T dµ(η)− w ·∫R 〈

ϑ̄η, Ml (δl )(ϑ̄ξ⊗ ϑ̄ξ)Ml (δl )ϑ̄η
〉

T dµ(η)

1+w · 〈ϑ̄ξ, Ml (δl )ϑ̄ξ〉T
≤ 1.
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The induction hypothesis is ∫
R
〈ϑ̄η, Ml (0)ϑ̄η〉T dµ(η) ≤ 1

so the lower invariant is held if∫
R
〈ϑ̄η, Ml (δl )ϑ̄η〉µdµ(η)−

∫
R
〈ϑ̄η, Ml (0)ϑ̄η〉T dµ(η)− w ·∫R 〈

ϑ̄η, Ml (δl )(ϑ̄ξ⊗ ϑ̄ξ)Ml (δl )ϑ̄η
〉

T dµ(η)

1+w · 〈ϑ̄ξ, Ml (δl )ϑ̄ξ〉T
≤ 0.

(B.29)

Similarly to before, by using the convexity of the first integrand, we can bound∫
R
〈ϑ̄η, Ml (δl )ϑ̄η〉T dµ(η)−

∫
R
〈ϑ̄η, Ml (0)ϑ̄η〉T dµ(η) ≤ δl

∫
R
〈ϑ̄η, Ml (δl )Z Ml (δl )ϑ̄η〉T dµ(η).

Using this bound in (B.29) and rearranging, we find that for any ξ, the lower invariant is held if

we select w such that

1

w
≤

∫
R

〈
ϑ̄η, Ml (δl )(ϑ̄ξ⊗ ϑ̄ξ)Ml (δl )ϑ̄η

〉
T dµ(η)

δl
∫
R〈ϑ̄η, Ml (δl )Z Ml (δl )ϑ̄η〉T dµ(η)

−〈ϑ̄ξ, Ml (δl )ϑ̄ξ〉T . (B.30)

Thus, we need to show that there exists a ξ and w such that both (B.28) and (B.30) hold.

However, for a given ξ, such a w will surely exist if∫
R

〈
ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η

〉
T dµ(η)

δu
∫
R〈ϑ̄η, Mu(δu)Z Mu(δu)ϑ̄η〉T dµ(η)

+〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T

<
∫
R

〈
ϑ̄η, Ml (δl )(ϑ̄ξ⊗ ϑ̄ξ)Ml (δl )ϑ̄η

〉
T dµ(η)

δl
∫
R〈ϑ̄η, Ml (δl )Z Ml (δl )ϑ̄η〉T dµ(η)

−〈ϑ̄ξ, Ml (δl )ϑ̄ξ〉T .

Thus, it suffices to show that there exists a ξ for which the above inequality holds. To show

that such a ξ exists, we will show that the inequality holds for the integral of both sides with

respect to µ measure. This will guarantee the existence of such a ξ since the Lebesgue integral

is strictly positive for non-negative functions. We compute:∫
R

∫
R

〈
ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η

〉
T dµ(η)dµ(ξ)

=
∫
R

∫
R

〈
ϑ̄η, Mu(δu)(ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η

〉
T dµ(ξ)dµ(η)

=
∫
R

∫
R

〈
Mu(δu)ϑ̄η, (ϑ̄ξ⊗ ϑ̄ξ)Mu(δu)ϑ̄η

〉
T dµ(ξ)dµ(η)

=
∫
R

〈
Mu(δu)ϑ̄η,Z Mu(δu)ϑ̄η

〉
T dµ(η)

=
∫
R
〈ϑ̄η, Mu(δu)Z Mu(δu)ϑ̄η〉T dµ(η).

Similarly,∫
R

∫
R

〈
ϑ̄η, Ml (δl )(ϑ̄ξ⊗ ϑ̄ξ)Ml (δl )ϑ̄η

〉
T dµ(η)dµ(ξ) =

∫
R
〈ϑ̄η, Ml (δl )Z Ml (δl )ϑ̄η〉T dµ(η).

254



B.2. Properties of the Ridge Leverage Scores

Z is self-adjoint and positive definite, so the operator pseudo-inversion lemma (Ogawa, 1988,

Theorem 2) implies that Mu(δu) ¹ Mu(0), so by the induction hypothesis∫
R
〈ϑ̄ξ, Mu(δu)ϑ̄ξ〉T dµ(ξ) ≤

∫
R
〈ϑ̄ξ, Mu(0)ϑ̄ξ〉T dµ(ξ) ≤ 1.

We now consider the lower invariant. We already showed that Z ¹ Ẑ ( j ) −X
( j )

l , so as long as

δl ≤ 1/2 we will have:∫
R
〈ϑ̄ξ, Ml (δl )ϑ̄ξ〉T dµ(ξ) =

∫
R
〈ϑ̄ξ, (Ml (0)−1 −δl Z )−1ϑ̄ξ〉T dµ(ξ) ≤ 2

∫
R
〈ϑ̄ξ, Ml (0)ϑ̄ξ〉T dµ(ξ) ≤ 2

where we used Claim B.1.5. So there will be a gap in the value of the integrals (as desired), if

1

δu
+1 < 1

δl
−2,

which is the case for our selection of δl and δu .

From Lemma B.2.3 we can prove a stronger spectral error bound for the projection onto the

range of C̄s .

Lemma B.2.4 (Frequency Subset Selection – Projection Based Spectral Approximation). For

some s ≤ d36 · sµ,εe there exists a set of distinct frequencies ξ1, . . . ,ξs ∈ R such that letting Cs :

L2(T ) →Cs and Z : L2(µ) →Cs be defined as in Theorem 3.5.2 and Ĝµ = Z∗Cs C∗
s Z,

Ĝµ ¹Gµ ¹ Ĝµ+εIµ. (B.31)

Proof. Let ξ1, . . . ,ξs ∈ C and w1, . . . , ws ∈ R be the frequencies and weights shown to exist in

Lemma B.2.3 and let C̄s be as defined in that lemma (note that C̄s is identical to Cs except that

its rows are weighted by w1, . . . , ws .) First note that for any g ∈ L2(µ),

〈g , Ĝµg 〉µ =
∥∥C∗

s Zg
∥∥2

T =
∥∥∥C∗

s (Cs C∗
s )−1CsF

∗
µ g

∥∥∥2

T
≤

∥∥∥F∗
µ g

∥∥∥2

T
= 〈g ,Gµg 〉µ

where the inequality follows from observing that C∗
s (Cs C∗

s )−1Cs is an orthogonal projection.

Thus Ĝµ ¹ Gµ. It remains to show that Gµ ¹ Ĝµ+ εIµ. Let P̄ = IT −C∗
s (Cs C∗)−1Cs be the

projection to the orthogonal complement of C∗
s ’s range and let K̂µ = C̄∗

s C̄s be as defined in

Lemma B.2.3. Rearranging the guarantee of Lemma B.2.3 gives Kµ ¹ 2 · K̂µ + εIT which

immediately yields,

P̄ KµP̄ ¹ 2 · P̄ K̂µP̄ +εP̄ IT P̄ .

Note that C̄sP̄ = 0 (since P̄ is an orthogonal projection onto ker(Cs) = ker(C̄s)) and so

P̄ K̂µP̄ = 0, giving:

P̄ KµP̄ ¹ εP̄ IT P̄ ¹ εIT . (B.32)
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Note that P̄ KµP̄ = P̄ F∗
µFµP̄ and

Gµ− Ĝµ =FµF∗
µ −Z∗Cs C∗

s Z =FµP̄ F∗
µ .

Thus by (B.32) we also have Gµ− Ĝµ ¹ εIµ (since the norm of an operator and its adjoint are

the same so P̄ KµP̄ ¹ εIT =⇒ FµP̄ F∗
µ ¹ εIµ), which completes the lemma.

Finally, from Lemma B.2.4 we can prove the frequency subset selection guarantee of Theorem

3.5.2.

Proof of Theorem 3.5.2. We consider the same set of frequencies ξ1, . . . ,ξs shown to exist in

Lemma B.2.4 and the corresponding operators Cs , Z. We show that these frequencies satisfy

the guarantee of Theorem 3.5.2. First, we define K
def= Cs C∗

s = 1
T

∫ T
0 (φt ⊗φt )d t (we abuse the

notation and use φt to denote both the vector defined in the Theorem statement, and the

operator x ∈C 7→ xφt ). From Claim B.1.9:

1

T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t = tr

(
1

T

∫
t∈[0,T ]

(ϕt −Z∗φt )⊗ (ϕt −Z∗φt )d t

)
= tr

(
1

T

∫
t∈[0,T ]

ϕt ⊗ϕt d t

)
+ tr

(
1

T

∫
t∈[0,T ]

Z∗φt ⊗Z∗φt d t

)
− tr

(
1

T

∫
t∈[0,T ]

Z∗φt ⊗ϕt d t

)
− tr

(
1

T

∫
t∈[0,T ]

ϕt ⊗Z∗φt d t

)
We have,

1

T

∫
t∈[0,T ]

ϕt ⊗ϕt d t =Gµ ,

From Claim B.1.8:

1

T

∫
t∈[0,T ]

Z∗φt ⊗Z∗φt d t = Z∗
(

1

T

∫
t∈[0,T ]

φt ⊗φt d t

)
Z = Z∗KZ = Ĝµ

Next, consider 1
T

∫ T
0 φt ⊗ϕt d t . For any α ∈ L2(µ),

1

T

(∫ T

0
φt ⊗ϕt d t

)
α= 1

T

∫ T

0
〈ϕt ,α〉µφt d t

where the integral on the left is a weak vector integral. Since for every g ∈ L2(T ),

Cs g = 1

T

∫ T

0
g (t )φt d t

and for every α ∈ L2(µ), [F∗
µα](t ) = 〈ϕt ,α〉µ, we have 1

T

∫ T
0 φt ⊗ϕt d t = CsF

∗
µ , so

1

T

∫
t∈[0,T ]

Z∗φt ⊗ϕt d t = Z∗
(

1

T

∫
t∈[0,T ]

φt ⊗ϕt d t

)
= Z∗CsF

∗
µ = Z∗KZ = Ĝµ .
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Combining the previous observations, we find that

1

T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t = tr(Gµ− Ĝµ).

Let v1, . . . , v2sµ,ε ∈ L2(µ) be the eigenfunctions of Gµ corresponding to its top 2sµ,ε eigenvalues.

Define X : L2(µ) →C2sµ,ε as: for g ∈ L2(µ), [Xg ]( j ) = 〈v j , g 〉µ. Note that

tr
(
Ĝµ−X∗XĜµX∗X

)
= tr

(
Z∗Cs Cs Z−X∗XZ∗Cs Cs ZX∗X

)
= tr

(
Cs ZZ∗Cs −Cs ZX∗XZ∗Cs

)≥ 0

since Cs ZZ∗Cs º Cs ZX∗XZ∗Cs (X∗X is a projection, so X∗X ¹Iµ). So we can bound:

1

T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t = tr

(
Gµ− Ĝµ

)
≤ tr

(
Gµ− Ĝµ

)
+ tr

(
Ĝµ−X∗XĜµX∗X

)
= tr

(
Gµ−X∗XGµX∗X

)+ tr
(
X∗X(Gµ− Ĝµ)X∗X

)
. (B.33)

Let iε be the smallest i with λi (Gµ) ≤ ε. We have:

sµ,ε =
∞∑

i=1

λi (Gµ)

λi (Gµ)+ε ≥
i+ε∑
i=1

λi (Gµ)

λi (Gµ)+ε ≥
iε
2

.

Thus we can bound tr
(
Gµ−X∗XGµX∗X

)
as:

tr
(
Gµ−X∗XGµX∗X

)= ∞∑
i=2sµ,ε+1

λi (Gµ) ≤
∞∑

i=iε+1
λi (Gµ) ≤ 2εsµ,ε. (B.34)

where the last bound follows from the fact that sµ,ε ≥∑∞
i=iε+1

λi (Gµ)
λi (Gµ)+ε ≥

∑∞
i=iε+1

λi (Gµ)
2ε .

We can also bound tr
(
X∗X(Gµ− Ĝµ)X∗X

)
using Lemma B.2.4. Since Gµ ≤ Ĝµ+εIµ we have:

tr
(
X∗X(Gµ− Ĝµ)X∗X

)
≤ ε tr(X∗XX∗X) = 2εsµ,ε. (B.35)

Plugging (B.34) and (B.35) back into (B.33) we have, 1
T

∫
t∈[0,T ]

∥∥ϕt −Z∗φt
∥∥2
µ d t ≤ 4ε·sµ,ε, which

completes the theorem.

B.3 Tight Statistical Dimension Bound for Bandlimited Functions

In Section 3.5 we demonstrated, perhaps surprisingly, that a simple function τ̃µ,ε(t ) (defined

in Theorem 3.5.6) exists for any µ that upper bounds τµ,ε(t ) and has s̃µ,ε = Õ(sµ,ε). Combined

with Theorem 3.4.3 this yields our main algorithmic result Theorem 3.2.3, which shows that
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we can achieve O
(
sµ,ε log2(sµ,ε

)
sample complexity with just Õ

(
sωµ,ε

)
runtime.

Instantiating Theorem 3.2.3 using the approximate ridge leverage function of Theorem 3.5.6

requires an upper bound on sµ,ε. In this section we show how to bound sµ,ε when µ is uniform

measure on some interval – i.e., when our interpolation problem is over bandlimited functions.

In Section B.4 we leverage this result to bound sµ,ε for a number of other important priors,

including multiband, Gaussian, and Cauchy-Lorentz.

Beyond letting us upper bound sµ,ε to apply Theorem 3.2.3, our proof for bandlimited functions

is constructive, giving a simple upper bound on τµ,ε(t) for any t . This upper bound can be

plugged directly into Algorithm 13 and Theorem 3.4.3 to give a tightening of Theorem 3.2.3

by a logarithmic factor in the bandlimited case. Like our general result, the proof is based on

the definition of leverage scores given in (3.11). This definition makes it clear that, to upper

bound τµ,ε(t ), it suffices to show that a function with Fourier support controlled by µ cannot

“spike” too extremely at time t .

For bandlimited functions, we obtain a smoothness bound by introducing and applying a

Bernstein type smoothness bound for low-degree polynomials and relying on the fact that

any bandlimited function is well approximated by a low-degree polynomial. This approach

mirrors the general proof in Section 3.5, which uses a more sophisticated smoothness bound

for Fourier sparse functions.

Our result for bandlimited functions is as follows:

Theorem B.3.1. Let µ be the uniform measure on [−F,F ]. Let q = d16πeF T +2log(1/ε)+11e.
For all t ∈ [0,T ], let the approximate ridge leverage function τ̃µ,ε equal:

τ̃µ,ε(t ) = 1

T

(
4+ qp

min(t ,T − t )/T

)
.

For any ε≤ 1,F,T , τ̃µ,ε(t ) satisfies:

1. τ̃µ,ε(t ) ≥ τµ,ε(t ).

2.
∫ T

0 τ̃µ,ε(t )d t
def= s̃µ,ε =O

(
F T + log(1/ε)

)
.

Thus we have sµ,ε ≤ s̃µ,ε =O
(
F T + log(1/ε)

)
.

Combined with Theorem 3.4.3, Theorem B.3.1 immediately gives:

Corollary B.3.1. Let µ be the uniform measure on [−F,F ]. Using τ̃µ,ε as defined in Theorem

B.3.1, Algorithm 13 returns t1, . . . , ts ∈ [0,T ] and z ∈ Cs such that ỹ(t) = ∑s
i=1 z(i ) · kµ(ti , t)

satisfies with probability ≥ 1−δ:∥∥ỹ − y
∥∥2

T ≤ 6ε‖x‖2
µ+7‖n‖2

T .
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The algorithm queries y+n at s points and runs in O(sω) time and furthermore ỹ(t ) can be evalu-

ated using Algorithm 14 in O(s) time, where s =O
(
[F T + log(1/ε)] · [log(F T + log(1/ε))+1/δ]

)
.

Proof. The corollary follows immediately from Theorem 3.4.3 after noting that

• Z =O(1) since, as shown in Appendix B.5, kµ(t1, t2) = sin(2πF (t1−t2))
2πF (t1−t2) and so can be com-

puted in O(1) arithmetic operations.

• W =O(1) since to sample points proportional to τ̃µ,ε(t), we must sample a mixture of

the uniform distribution and the distribution with density proportional to 1p
min(t ,T−t )/T

.

It suffices to show that we can sample from the later in O(1) time, and in fact that we can

sample t ∈ [0,1/2] with probability proportional to 1p
t

in O(1) time, since we can then

symmetrize and scale this distribution. We can accomplish this with inverse transform

sampling. Our density is p(t) = 1
2
p

2t
and so its cumulative distribution function is

C (t) =p
t/2. Thus we can sample z uniformly in [0,1] and return C−1(z) = 2z2, which

will be a sample from the desired distribution. This can be done in O(1) operations.

B.3.1 Smoothness bounds for polynomials

Our main technical tool is a Bernstein type smoothness bounds for low-degree polynomials. In

general, low-degree polynomials are smoother than high-degree polynomials, and thus cannot

spike as sharply. There are a number of ways to formalize this statement. The well known

Markov brother’s inequality and Bernstein inequality bound the maximum derivative of a

polynomial by a function of the polynomial’s degree and it’s maximum value on an interval.

To bound leverage scores, we are interested in a slightly different metric of smoothness. In

particular, we need to bound the maximum squared value of a polynomial by its average

squared value on [0,T ]. We can use standard properties of the Legendre polynomials to prove:

Claim B.3.1. For any degree d polynomial p(·) with complex coefficients and any t ∈ [0,T ], if

r = min(t ,T−t )
T , then:

|p(t )|2 ≤ d +1p
r

· 1

T

∫ T

0
|p(t )|2 d t .

This bound is tighter for points near the center of the interval [0,T ] and goes to infinity near

the edges. Using Markov brother’s inequality, it is possible to obtain a fixed up bound of O(d 2),

which is tighter for small values of r . However, this won’t be necessary for our purposes. We

note that, when t = T /2, the upper bound on p(t )2 improves to O(d) times the average squared

value of p. This improvement is nearly optimal: the upper bound of Claim B.3.1 is matched
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up to a logarithmic factor by an appropriately scaled and shifted Chebyshev polynomial of the

first kind applied to [T /2− t ]2 (see e.g. Frostig et al. (2016)).

Proof of Claim B.3.1. The claim follows from properties of the standard orthogonal Legendre

polynomials, which are denoted by P0,P1, . . . and defined via the recurrence relation:

P0(x) = 1

P1(x) = x

...

Pk (x) = 2k −1

k
x ·Pk−1(x)− n −1

n
·Pk−2(x).

The Legendre polynomials are orthogonal over the interval [−1,1] with respect to the constant

weight function. In particular, they satisfy∫ 1

−1
P j (x)Pk (x)d x = 2

2 j +1
δ j ,k , (B.36)

where δm,n is the Kronecker delta function. Additionally, for all j and all x ∈ [−1,1], |P j (x)| ≤ 1.

Using these facts we show that for any degree d polynomial p(·), interval [a,b], and x ∈ [a,b]:

|p(x)|2 ≤ d +1p
r

·
∫ b

a |p(t )|2 d t

(b −a)
,

where r = min(|a−x|,|b−x|)
(b−a) . Setting a = 0 and b = T gives the claim.

We begin by noting that, without loss of generality, we can assume that a = −1 and b = 1.

In particular, shift and stretch p(x) by defining g (x) = p
(

2(x−a)
b−a −1

)
. g has degree d and

the maximum of |g (x)|2 for x ∈ [−1,1] is the same as the maximum of |p(x)|2 for x ∈ [a,b].

Additionally,
∫ 1
−1 |g (t )|2 d t

2 =
∫ b

a |p(t )|2 d t
(b−a) . Accordingly, to prove the claim it suffices to prove that,

for any degree d polynomial g ,

max
x∈[−1,1]

|g (x)|2 ≤ d +1p
r

·
∫ 1
−1 |g (t )|2 d t

2
. (B.37)

Our proof depends on a Bernstein type inequality for Legendre polynomials, which can be

found in Lorch (1983). Specifically, for all j = 0,1,2, . . . and any x ∈ [−1,1] it holds that:

P j (x)2 ≤ 2

π( j +1/2)

1p
1−x2

. (B.38)
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Writing g in the Legendre basis:

g (x) =
d∑

j=0
c j P j (x),

we have from (B.38) that

|g (x)| ≤
d∑

j=0
|c j |

(
2

π( j +1/2)

1p
1−x2

)1/2

and thus

|g (x)|2 ≤ (d +1)
d∑

j=0
|c j |2 2

π( j +1/2)

1p
1−x2

= 2

π

(d +1)p
1−x2

d∑
j=0

|c j |2 2

2 j +1

= 2

π

(d +1)p
1−x2

∫ 1

−1
|g (t )|2 d t . (B.39)

The last equality step follows from (B.36). Finally, let q = min(|−1−x|, |1−x|) and note that

1p
1−x2

= 1√
1− (1−q)2

≤ 1p
q

.

As defined, r = q/2 Plugging into (B.39) we have a final bound of

|g (x)|2 ≤ 4

π

(d +1)p
2r

∫ 1
−1 |g (t )|2 d t

2
< (d +1)p

r

∫ 1
−1 |g (t )|2 d t

2
,

which establishes (B.37) and thus the claim.

B.3.2 Smoothness bounds for bandlimited functions

With Claim B.3.1 in place, we are now ready to prove our main result for bandlimited functions.

Proof of Theorem B.3.1. Following Definition 3.4.1, our goal is to choose τ̃µ,ε to satisfy:

τ̃µ,ε(t ) ≥ 1

T
· |[Fµα](t )|2∥∥Fµα

∥∥2
T +ε‖α‖2

µ

. (B.40)

for any α. Let z =Fµα. Expanding e−2iπξt using its Maclaurin series and letting d be some
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degree parameter that we will fix later, we write z as the sum of two functions, a and b:

z(t ) = 1

2F

∫ F

−F
α(ξ)e−2iπξt dξ

=
∞∑

j=0

1

2F

∫ F

−F
α(ξ)

(−2πiξ) j

j !
t j dξ

=
d∑

j=0

(
1

2F

∫ F

−F
α(ξ)

(−2πiξ) j

j !
dξ

)
t j +

∞∑
j=d+1

1

2F

∫ F

−F
α(ξ)

(−2πiξ) j

j !
t j dξ

def= a(t )+b(t ). (B.41)

Note that a is a degree d polynomial with complex coefficients. So by Claim B.3.1,

|a(t )|2 ≤ d +1p
min(t ,T − t )/T

· ‖a‖2
T . (B.42)

Turning our attention to b, we see that:

|b(t )| =
∣∣∣∣∣ ∞∑

j=d+1

1

2F

∫ F

−F
α(ξ)

(−2πiξ) j

j !
t j dξ

∣∣∣∣∣≤ ∞∑
j=d+1

(2πF T ) j

j !

1

2F

∫ F

−F
|α(ξ)|dξ

≤
∞∑

j=d+1

(2πF T ) j

j !

√
1

2F

∫ F

−F
1dξ

√
‖α‖2

µ =
∞∑

j=d+1

(2πF T ) j

j !
· ‖α‖µ. (B.43)

The second to last step uses Cauchy-Schwarz inequality. Finally using that for all j , j ! ≥ ( j /e) j ,

for any d ≥ 4πeF T :

∞∑
j=d+1

(2πF T ) j

j !
≤

∞∑
j=d+1

(
2πeF T

j

) j

≤
∞∑

j=d+1

(
2πeF T

d +1

) j

≤
∞∑

j=d+1

(
1

2

) j

= 1

2d
. (B.44)

So, if we take d = d4πeF T + log(1/ε)/2+1e, it follows from (B.43) and (B.44) that

|b(t )| ≤ 1

2d
· ‖α‖µ ≤

1

2dlog(1/ε)/2e+1
· ‖α‖µ ≤

p
ε

2
· ‖α‖µ .

Moreover, ‖b‖T ≤
p
ε

2 ‖α‖µ. Using the decomposition of (B.41) and the fact that for any real
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non-negative c,d , c2 +d 2 ≤ (c +d)2, and for any complex e, f , |e + f |2 ≤ 2|e|2 +2| f |2:

|z(t )|2
‖z‖2

T +ε‖α‖2
µ

≤ |a(t )+b(t )|2
(‖a‖T −‖b‖T )2 +ε‖α‖2

µ

≤ 2|a(t )|2 +2|b(t )|2
1
2 (‖a‖T −‖b‖T +p

ε‖α‖µ)2

≤ 4|a(t )|2 +4|b(t )|2
(‖a‖T +

p
ε

2 ‖α‖µ)2

≤
4|a(t )|2 +ε‖α‖2

µ

‖a‖2
T + ε

4 ‖α‖2
µ

.

It follows from (B.42) that:

|z(t )|2
‖z‖2

T +ε‖α‖2
µ

≤ max

(
4|a(t )|2
‖a‖2

T

,4

)

≤ 4(d +1)p
min(t ,T − t )/T

+4.

In Theorem B.3.1 we set q = d16πeF T +2log(1/ε)+11e. We have q ≥ 4 · d4πeF T + log(1/ε)/2+
2e = 4(d +1) since, for any x, d4x +3e ≥ 4dxe. Recalling that z = Fµα, it follows τ̃µ,ε defined

in that theorem satisfies (B.40) for any α. It remains to bound the total measure of our

approximate ridge leverage function, s̃µ,ε. To do so, note that:

s̃µ,ε = 2

T

∫ T /2

0

qp
t/T

+4d t .

We can compute:

2

T

∫ T /2

0

qp
t/T

+4d t = 2
∫ 1/2

0

qp
t
+4d t = 2

p
2q +4 =O(F T + log(1/ε)).

This bound establishes the theorem.

B.4 Statistical Dimension of Common Fourier Constraints

In this section we leverage Theorem B.3.1 to give upper bounds on the statistical dimensions of

a number common priors µ used for Fourier constrained interpolation, including multiband,

Gaussian, and Cauchy-Lorentz priors. We start by giving two simple lemmas that we use to

translate our bound for bandlimited functions to these more general priors.

Lemma B.4.1 (Statistical dimension of sum of measures). For any finite measures µ1,µ2, · · ·µs
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on R, if µ
def= µ1 +µ2 +·· ·+µs is a measure, then:

sµ,ε ≤
s∑

i=1
sµi ,ε.

Proof. We can see from Definition 3.2.2 that forµ=µ1+. . .+µs the kernel operator Kµ satisfies

Kµ =∑s
i=1 Kµi . We can thus bound:

sµ,ε = tr
(
Kµ(Kµ+εIT )−1)= s∑

i=1
tr

(
Kµi (Kµ+εIT )−1)

≤
s∑

i=1
tr

(
Kµi (Kµi +εIT )−1)

=
s∑

i=1
sµi ,ε.

The second to last inequality follows since 0 ¹Kµi ¹Kµ, so 0 ≺Kµi +εIT ¹Kµ+εIT and

(Kµ+εIT )−1 ¹ (Kµi +εIT )−1 by Claim B.1.5. Letting e1,e2 be an orthonormal basis for L2(T ),

we thus have:

tr
(
Kµi (Kµi +εIT )−1)= tr

(
K 1/2

µi
(Kµi +εIT )−1K 1/2

µi

)
=

∞∑
i=1

〈K 1/2
µi

ei , (Kµi +εIT )−1K 1/2
µi

ei 〉T

≥
∞∑

i=1
〈K 1/2

µi
ei , (Kµ+εIT )−1K 1/2

µi
ei 〉T

= tr
(
K 1/2

µi
(Kµ+εIT )−1K 1/2

µi

)
= tr

(
Kµi (Kµ+εIT )−1) .

This completes the lemma.

Lemma B.4.2 (Statistical dimension of scaled measures). For any measure µ on R and any

parameter γ> 0, if µ′ =µ/γ and ε′ = ε/γ then:

sµ,ε = sµ′,ε′ .

Proof. From Definition 3.2.2, we can see that Kµ′ = 1
γKµ and thus has eigenvalues equal to
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λ1/γ,λ2/γ, . . ., where λ1,λ2, . . . are the eigenvalues of Kµ. Therefore,

sµ′,ε′ =
∞∑

i=1

λi (Kµ′)

λi (Kµ′)+ε′

=
∞∑

i=1

λi /γ

λi /γ+ε/γ

=
∞∑

i=1

λi

λi +ε
= sµ,ε.

We now use Lemmas B.4.1 and B.4.2 to prove our statistical dimension bounds. We first

start with multiband Fourier constraints, showing that the statistical dimension is roughly

proportional to the total length of all the frequency bands times the time domain window size,

intuitively matching the Landau rate for asymptotic recovery of multiband functions Landau

(1967).

Theorem B.4.1 (Multiband statistical dimension). Consider a set of s disjoint frequency bands,

I1, I2, · · · , Is , and suppose that the length of the band Ii is denoted by Fi . Let µ be the measure

which induces a uniform probability density on I1 ∪ I2 ∪·· ·∪ Is . We have:

sµ,ε =O

(
s∑

i=1
Fi T + s log(1/ε)

)
.

Proof. For every i , let µi be the measure defined by µi (A) = µ(A ∩ Ii ). Note that we have

µ=∑
i µi and so can invoke Lemma B.4.1, giving:

sµ,ε ≤
s∑

i=1
sµi ,ε. (B.45)

If µi gave a uniform probability measure on frequency band Ii (i.e., if we had µi (R) = 1), we

could use the result of Theorem B.3.1 to obtain sµi ,ε =O(Fi T + log(1/ε)). This is not the case,

but we can instead let γi
def= µi (R) ≤ 1. By Lemma B.4.2,

sµi ,ε = s(µi /γi ),(ε/γi ).

Now µi /γi is a uniform probability measure on Ii , so we can invoke Theorem B.3.1 giving:

sµi ,ε = s(µi /γi ),(ε/γi ) =O
(
Fi T + log(γi /ε)

)
.

Plugging this bound in (B.45) and using that γi ≤ 1 we obtain:

sµ,ε =O

(
s∑

i=1
Fi T + log(γi /ε)

)
=O

(
s∑

i=1
Fi T + s log(1/ε)

)
,
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completing the theorem.

We next bound the statistical dimension of Gaussian measure.

Theorem B.4.2 (Gaussian statistical dimension). Suppose that µ induces the Gaussian proba-

bility distribution with standard deviation F defined by dµ(ξ) = 1p
2πF 2

e−ξ
2/2F 2

dξ. We have:

sµ,ε =O
(
F T

√
log(1/ε)+ log(1/ε)

)
.

Proof. Let Ih be the interval defined by Ih = {
ξ ∈R : |ξ| ≤ F

√
log(1/ε)

}
. We decompose µ into

two measures µh and µt as follows:

µh(A) =µ(A∩ Ih), and µt (A) =µ(A− A∩ Ih).

We can see that µ=µh +µt and so by Lemma B.4.1, sµ,ε ≤ sµt ,ε+ sµh ,ε. For µt we have:

tr(Kµt ) =µt (R) = 1p
2πF 2

∫
|ξ|>F

p
log(1/ε)

e−ξ
2/2F 2

dξ

= 1−erf
(√

log(1/ε)
)
≤ 2ε,

where the last bound follows from a Chernoff bound, giving 1−erf(x) ≤ 2e−x2
(Wainwright,

2019). This lets us crudely bound:

sµt ,ε = tr
(
Kµt (Kµt +εIT )−1)≤ tr(Kµt )

ε
≤ 2, (B.46)

where the first ineguality is because
∥∥(Kµt +εIT )−1

∥∥
op ≤ 1/ε.

We next bound the statistical dimension of µh . Let µ̃h be a uniform measure on Ih , with

dµ(ξ) = 1p
2πF 2

dξ for all ξ ∈ Ih . Note that d µ̃h(ξ) ≥ dµh(ξ) for all ξ ∈ Ih which gives that

Kµh ¹ Kµ̃h and so sµh ,ε ≤ sµ̃h ,ε.

Let γ
def= µ̃h(R) =

√
2log(1/ε)

π . By Lemma B.4.2, sµ̃,ε = s(µ̃/γ),(ε/γ). Since µ̃/γ is a uniform probability

measure on Ih , invoking Theorem B.3.1 yields:

sµh ,ε ≤ sµ̃h ,ε = s(µ̃h /γ),(ε/γ) =O
(
F T

√
log(1/ε)+ log(γ/ε)

)
=O

(
F T

√
log(1/ε)+ log(1/ε)

)
, (B.47)

where the last equality follows from the fact that γ = O
(√

log(1/ε)
)
. Combining (B.46) and

(B.47) and applying Lemma B.4.1 we have:

sµ,ε ≤ sµt ,ε+ sµh ,ε

= 2+O
(
F T

√
log(1/ε)+ log(1/ε)

)
=O

(
F T

√
log(1/ε)+ log(1/ε)

)
,
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which completes the theorem.

Finally, we bound the statistical dimension of the Cauchy-Lorentz measure.

Theorem B.4.3 (Cauchy-Lorentz statistical dimension). If µ induces the Cauchy-Lorentz prob-

ability distribution with scale parameter F defined by dµ(ξ) = 1
πF (1+(ξ/F )2)

dξ, then:

sµ,ε =O

(
F Tp
ε
+ 1p

ε

)
.

Proof. Similar to the proof of Theorem B.4.2, we define the interval Ih = {
ξ ∈R : |ξ| ≤ F /

p
ε
}
.

We decompose µ into two measures µh and µt as follows:

µh(A) =µ(A∩ Ih), and µt (A) =µ(A− A∩ Ih).

Since µ=µh +µt , by Lemma B.4.1, sµ,ε ≤ sµt ,ε+ sµh ,ε. For µt we have:

tr
(
Kµt

)=µt (R) = 1

πF

∫
|ξ|>F /

p
ε

1

1+ (ξ/F )2 dξ

= 2

π

∫ ∞

1/
p
ε

1

1+ξ2 dξ

≤ 2

π

∫ ∞

1/
p
ε

1

ξ2 dξ= 2
p
ε

π
.

As in (B.46) we can thus bound:

sµt ,ε ≤ tr(Kµt )/ε=O
(
1/
p
ε
)

. (B.48)

We next bound the statistical dimension of µh . Let µ̃h be a uniform measure on Ih with

dµ(ξ) = 1
πF for all ξ ∈ Ih . As in the proof of Theorem B.4.2, d µ̃h(ξ) ≥ dµh(ξ) for all ξ ∈ Ih which

gives that Kµh ¹ Kµ̃h and so sµh ,ε < sµ̃h ,ε.

Let γ
def= µ̃h(R) = 2

π
p
ε

. By Lemma B.4.2, sµ̃,ε = s(µ̃/γ),(ε/γ). Since µ̃/γ is a uniform probability

measure on Ih , we can invoke Theorem B.3.1 to give:

sµh ,ε ≤ sµ̃h ,ε = s(µ̃h /γ),(ε/γ) =O

(
F Tp
ε
+ log(γ/ε)

)
=O

(
F Tp
ε
+ log(1/ε)

)
, (B.49)

where the last equality follows from the fact that γ= O(1/
p
ε). Combining (B.48) and (B.49)

and applying Lemma B.4.1 we have:

sµ,ε ≤ sµt ,ε+ sµh ,ε =O

(
1p
ε
+ F Tp

ε
+ log(1/ε)

)
=O

(
F Tp
ε
+ 1p

ε

)
,
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which completes the theorem.

B.5 Kernel Computation for Common Fourier Constraints

Algorithm 13 and the corresponding Theorem 3.2.3 assume the ability to compute the kernel

function kµ(t1, t2) = ∫
ξ∈R e−2πi (t1−t2)dµ(ξ). In this section we give closed form expressions for

kernel functions of popular measures µ, including all those whose statistical dimension we

bound in Appendix B.4.

Bandlimited Fourier Constraint: When µ is the uniform measure on frequencies in [−F,F ],

kµ is the sinc kernel:

kµ(t1, t2) = 1

2F

∫ F

−F
e−2πi (t1−t2)ξdξ= sin(2πF (t1 − t2))

2πF (t1 − t2)
.

Multiband Fourier Constraint: Consider a set of s disjoint frequency bands, I1, I2, · · · , Is ,

where I j = [c j −F j ,c j +F j ]. Let µ be the uniform measure on I1 ∪ I2 ∪·· ·∪ Is . Then we have:

kµ(t1, t2) = 1

2
∑s

j=1 F j
·

s∑
j=1

e−2πi c j (t1−t2)ξ
∫ F j

−F j

e−2πi (t1−t2)ξdξ

=
∑s

j=1 e−2πi c j (t1−t2) · sin
(
2πF j (t1 − t2)

)
2π

∑s
j=1 F j (t1 − t2)

.

Gaussian Fourier Constraint: When µ induces the Gaussian probability distribution with

standard deviation F defined by dµ(ξ) = 1p
2πF 2

e−ξ
2/2F 2

dξ, then kµ is the Gaussian kernel:

kµ(t1, t2) = 1p
2πF 2

·
∫
ξ∈R

e−2πi (t1−t2)ξe−ξ
2/2F 2

dξ

= e−2π2F 2(t1−t2)2
.

Cauchy-Lorentz Fourier Constraint: Whenµ induces the Cauchy-Lorentz probability density

with scale parameter F defined by dµ(ξ) = 1
πF (1+(ξ/F )2)

·dξ, kµ is the so-called Laplacian kernel:

kµ(t1, t2) =
∫
ξ∈R

e−2πi (t1−t2) 1

πF
(
1+ (ξ/F )2)dξ

= e−2πF |t1−t2|.
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C Tight Characterization of the Gaus-
sian Kernel Leverage Scores

C.1 Properties of Fourier Transform and Gaussian Distribution

Our upper and lower bound analysis of the Gaussian kernel leverage function relies predom-

inantly on Fourier analysis and properties of the Gaussian distribution. In this section we

introduce some additional notation and state some useful facts about these.

C.1.1 Properties of Fourier transform

Definition C.1.1 (Fourier transform). The Fourier transform of a continuous function f :Rd →
C in L1(Rn) is defined to be the function F f :Rd →C as follows:

[F f ](ξ) =
∫
Rd

f (t)e−2πi tT ξdt.

We also sometimes use the notation f̂ for the Fourier transform of f . We often informally

refer to f as representing the function in time domain and f̂ as representing the function in

frequency domain.

The original function f can also be obtained from f̂ by the inverse Fourier transform:

f (t) =
∫
Rd

f̂ (ξ)e2πiξT t dξ

Definition C.1.2 (Convolution). The convolution of two functions f :Rd →C and g :Rd →C

is defined to be the function ( f ∗ g ) :Rd →C given by

( f ∗ g )(η) =
∫
Rd

f (t)g (η− t)dt.

The convolution theorem shows that the Fourier transform of the convolution of two functions

is simply the product of the individual Fourier transforms:

Claim C.1.1 (Convolution Theorem). Given functions f :Rd →C and g :Rd →Cwhose convo-
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Appendix C. Tight Characterization of the Gaussian Kernel Leverage Scores

lution is h = f ∗ g , we have ĥ(ξ) = f̂ (ξ) · ĝ (ξ) for all ξ ∈Rd .

We now define the rectangle function and normalized sinc function, which we use extensively

in our analysis.

Definition C.1.3 (Rectangle Function). We define the 1-dimensional rectangle function rect1,a :

R→C as

rect1,a(x) =


0 if |x| > a/2
1
2 if |x| = a/2

1 if |x| < a/2

.

For any d > 1, we define the d-dimensional rectangle function rectd ,a :Rd →C as

rectd ,a(x) =
d∏

j=1
rect1,a(x j ).

If d is understood from context, we often omit d and write recta . Moreover, if a = 1 (and d is

understood from context), we often omit all subscripts and simply write rect.

Definition C.1.4 (Normalized Sinc Function). We define the d-dimensional normalized sinc

function sincd :Rd →C as

sincd (x) =
d∏

j=1

sin(πx j )

πx j
.

We often omit the subscript and simply write sinc.

It is well known that the Fourier transform of the rectangle function (with a = 1) is the normal-

ized sinc function:

F [rectd ] = sincd .

We use δd to denote the d-dimensional Dirac delta function. The Dirac delta function satisfies

the following useful property for any function f :∫
Rd

f (x)δd (x−a)dx = f (a),

i.e. the integral of a function multiplied by a shifted Dirac delta functions picks out the value

of the function at a particular point. Therefore,

[Fδd ](ξ) =
∫
Rd

e−2πi t>ξ ·δd (t)dt = e−2πi ·0>·ξ = 1

for all ξ. Similarly, the Fourier transform of a shifted delta function is as follows:

[Fδ(·−a)](ξ) =
∫
Rd

e−2πi t>ξ ·δd (t−a)dt = e−2πi a>ξ.
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Moreover, convolving a function by a shifted delta function results in a shift of the original

function:

[ f ∗δd (·−a)](x) = f (x−a).

Thus, by the convolution theorem, we obtain the following identity:

Claim C.1.2. Given a function f :Rd →C, we have

[F f (·−a)](ξ) = [F ( f ∗δd (·−a))](ξ) = f̂ (ξ) ·e−2πi aT ξ.

Similarly,

Claim C.1.3. Given a function f :Rd →C, we have[
F

(
f (x) ·e2πi aT x

)]
(ξ) = f̂ (ξ−a).

Finally, we introduce a useful function known as the Dirac comb function:

Definition C.1.5. The d-dimensional Dirac comb function with period T is defined as

f (x) = ∑
j∈Zd

δ(x− jT ).

It is a standard fact that the Fourier transform of a Dirac comb function is another Dirac comb

function which is scaled and has the inverse period:

Claim C.1.4. Let f (x) =∑
j∈Zd δ(x− jT ) be the d-dimensional Dirac comb function with period

T . Then,

[F f ](ξ) = 1

T d

∑
j∈Zd

δ

(
ξ− j

T

)
.

We use the Dirac comb function in our lower bound constructions.

Claim C.1.5. Given a function f :Rd →C, we have:

F

[
f (·) ∑

j∈Zd

δd (·−T j)

]
(ξ) = ∑

j∈Zd

T −d [F f ](ξ−T −1j). (C.1)

C.1.2 Properties of Gaussian distributions

The following is a standard fact about the cumulative distribution function of the standard

Gaussian distribution:

Claim C.1.6 (Feller (2008)). For any x > 0, we have

1p
2π

∫ ∞

x
e−t 2/2 d t ≤ e−x2/2

x
p

2π
.
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Moreover, as a direct consequence, for any σ, x > 0, we have that

1p
2πσ

∫ ∞

x
e−t 2/2σ2

d t ≤ σe−x2/2σ2

x
p

2π
.

Also, if x ≥ 1, then (
1

x
− 1

x3

)
· 1p

2π
e−x2/2 ≤ 1p

2π

∫ ∞

x
e−t 2

d t .

Next, we prove the following claim, which provides tail bounds for modified Gaussians:

Claim C.1.7. We have the following results:

1. For any x > 0 and d = 1,
∫ ∞

x t d e−t 2/2 d t = e−x2/2.

2. For any x > 0 and odd integer d > 1,
∫ ∞

x t d e−t 2/2 d t ≥ (d −1)(d −3) · · ·2 ·e−x2/2.

3. For any x > 0 and even integer d > 1,
∫ ∞

x t d e−t 2/2 d t ≥ (d −1)(d −3) · · ·3 ·1 · xe−x2/2.

4. For any x > 0 and integer d ≥ 1,
∫ ∞

x t d e−t 2/2 d t ≥ xd−1e−x2/2.

Proof. Part (1) is simple calculation.

If d is odd, say d = 2a +1, then by repeated use of integration by parts,

∫ ∞

x
t d e−t 2/2 d t =

a−1∑
j=0

(
j∏

k=1
(d − (2k −1))

)
xd−(2 j+1)e−x2/2 + (d −1)(d −3) · · ·2

∫ ∞

x
te−t 2/2 d t

(C.2)

≥ (d −1)(d −3) · · ·2
∫ ∞

x
te−t 2/2 d t

= (d −1)(d −3) · · ·2 ·e−x2/2,

which establishes part (2).

On the other hand, if d is even, say d = 2a, then we have

∫ ∞

x
t d e−t 2/2 d t =

a−1∑
j=0

(
j∏

k=1
(d − (2k −1))

)
xd−(2 j+1)e−x2/2 + (d −1)(d −3) · · ·3

∫ ∞

x
e−t 2/2 d t

(C.3)

≥ (d −1)(d −3) · · ·3 ·1 · xe−x2/2,

which establishes part (3) of the claim.

Finally, note that (C.2) and (C.3) are both bounded from below by xd−1e−x2/2 (since this is the

first term of the summation in both expressions), which establishes part (4).
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We also need the following property about Gaussian random variables.

Claim C.1.8. Let t ≥ 13, and a1, a2, . . . , at be sampled independently according to the Gaussian

distribution given by probability density function 1p
2π

e−x2/2. Let a∗ = max1≤ j≤t |a j |. Then,

Pr

[
1p
2π

e−a∗2/2 ≤ 2
p

2ln t

t

]
≥ 1−e−1 ≥ 1

2
.

Proof. Choose q1 such that ∫ ∞

q1

1p
2π

e−x2/2 d x = 1

t
. (C.4)

Note that by Claim C.1.6, we have

1p
2π

∫ ∞
p

2ln t
e−x2/2 d x ≤ 1p

2πt
p

2ln t
≤ 1

t
.

Thus, q1 ≤
p

2ln t .

Also, since 1
t ≤ 1

13 , we have that q1 ≥
p

2. Thus, by another application of Claim C.1.6,

1

t
= 1p

2π

∫ ∞

q1

e−x2/2 d x ≥
(

1

q1
− 1

q3
1

)
1p
2π

e−q2
1 /2 ≥ 1

2q1
· 1p

2π
e−q2

1 /2,

and so,
1p
2π

e−q2
1 /2 ≤ 2q1

t
≤ 2

p
2ln t

t
.

Therefore,

Pr

[
1p
2π

e−a∗2/2 ≤ 2
p

2ln t

t

]
≥ Pr

[
1p
2π

e−a∗2/2 ≤ 1p
2π

e−q2
1 /2

]
= Pr

[
a∗ ≥ q1

]
= 1−

(
1− 1

t

)t

≥ 1− 1

e
≥ 1

2
,

as desired.

C.2 Tight Upper Bound on the Gaussian Kernel Leverage Scores

It is easy to verify that if we shift all points by the same constant vector, the leverage function

stays the same (the reason is that K is shift invariant, while the shift corresponds to a phase

shift in z(η) and a reverse phase shift in z(η)∗). This ensures that without loss of generality we

can assume x1, ...,xn ∈ [−R,R]d .
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Recall from Lemma 4.7.1 that

τλ(η) = min
y∈L2(µ)

λ−1
∥∥∥Φy −√

p(η)z(η)
∥∥∥2

2
+∥∥y

∥∥2
L2(µ) . (C.5)

To upper bound τλ(η) for any η ∈ Rd , we exhibit a test function, yη(·), and compute the

argument in (C.5). As discussed in Section 4.7.2, yη(·) will be a ‘softened spike’ given by:

Definition C.2.1 (Softened spike function). For any η ∈Rd , and any u > 0 define yη,u :Rd →R

as follows:

yη,u(t) =
√

p(η)

p(t)
·e−u2‖t−η‖2

2/4 · vd sinc
(
v(t−η)

)
(C.6)

where v = 2
(
R +u

√
lnnλ

)
.

The reweighted function gη,u(t) = p(t) · yη,u(t) is just a d-dimensional Gaussian with standard

deviation Θ(1/u) multiplied by a sinc function with width Õ
( 1

u+R

)
, both centered at η. Taking

the Fourier transform of this function yields a Gaussian with standard deviation Θ(u) con-

volved with a box of width Õ(u)+R . The box is wide enough to cover nearly all the mass of the

Gaussian when centered between [−R,R]d , and so the Fourier transform is nearly identically

1 on the range [−R,R]d . Shifting by η, means that it is very close to a pure cosine wave with

frequency η on this range, and hence makes the first term of (C.5) small.

C.2.1 Bounding λ−1
∥∥Φyη,u −√

p(η)z(η)
∥∥2

2

Lemma C.2.1 (Test function Fourier transform bound). For any integer n, every parameter

0 <λ≤ n
2 and every u > 0 and any η ∈Rd , and any kernel density function p(η) and d ≤ 10nλ if

x j ∈ [−R,+R]d for all j ∈ [n], then:

λ−1
∥∥∥Φyη,u −√

p(η)z(η)
∥∥∥2

2
= 1

λ

n∑
j=1

∣∣∣ĝη,u(x j )−√
p(η) ·z(η) j

∣∣∣2 ≤ p(η),

where gη,u(t)
def= p(t)yη,u(t).

Proof. By gη,u(t) = p(t)yη,u(t) =√
p(η)e−u2‖t−η‖2

2/4 · vd sinc
(
v(t−η)

)
, we have:

ĝη,u(x j ) =√
p(η)

∫
Rd

e−2πi t>x j e−u2‖t−η‖2
2/4 · vd sinc

(
v(t−η)

)
dt

=√
p(η)e−2πi xT

j η ·F
[

e−u2‖t‖2
2/4 · vd sinc(vt)

]
(x j )

=√
p(η) ·z(η) j ·h(x j ), (C.7)

where h(x) =
(

2
p
π

u

)d
e−4π2‖x‖2

2/u2∗rectv (x) by the convolution theorem (Claim C.1.1), F
[

e−u2‖t‖2
2/4

]
=
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(
2
p
π

u

)d
e−4π2‖x‖2

2/u2
, and F

[
vd sinc(vt)

]= rectv (x).

For every x ∈ [−R,R]d , by Claim C.1.6 and the fact that v = 2R +2u
√

lnnλ, we have:

h(x) =
∫

y−x∈[−v/2,+v/2]d

(
2
p
π

u

)d

e−4π2‖y‖2
2/u2

dy

≥
(
1−2

∫ ∞

v/2−R

2
p
π

u
e−4π2 y2

1 /u2
d y1

)d

,

where y1 is a scalar variable. Hence by Claim C.1.6 we have the following:

h(x) ≥ 1−2d
∫ ∞

v/2−R

2
p
π

u
e−4π2 y2

1 /u2
d y1

≥ 1− d

2π3/2
· u

v/2−R
e−4π2(v/2−R)2/u2

≥ 1− 1

nλ
(since d ≤ 10nλ).

Additionally, because e−4π2‖x‖2
2/u2

is a positive function, h(x) ≤ ∫
Rd

(
2
p
π

u

)d
e−4π2‖x‖2

2/u2
dx = 1 for

all x. Plugging into (C.7) gives∣∣∣ĝη,u(x j )−√
p(η) ·z(η) j

∣∣∣2 = p(η)
∣∣h(x j )−1

∣∣2

≤ p(η)

n2
λ

≤ p(η)

nλ
,

and so,

1

λ

n∑
j=1

∣∣∣ĝ (x j )−√
p(η) ·z(η) j

∣∣∣2 ≤ n

λ
· p(η)

nλ
= p(η),

proving the lemma.

C.2.2 Bounding
∥∥yη,u

∥∥2
L2(µ)

Having established Lemma C.2.1, showing that the weighted Fourier transform of yη,u is

close to
√

p(η)z(η), bounding the leverage function reduces to bounding the norm of the test

function. To that effect, we show the following:

Lemma C.2.2 (Test Function `2 Norm Bound). For any integer n, any parameter 0 < λ≤ n
2 ,

every η ∈ Rd with ‖η‖∞ ≤ 10
√

lnnλ, and every 200lnnλ ≤ u ≤ 10nλ, if yη,u(t) is defined as in

(C.6), as per Definition C.2.1, then we have

∥∥yη,u
∥∥2

L2(dµ) ≤
(
6.2R +6.2u

√
lnnλ

)d
. (C.8)
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We first prove the following claim:

Claim C.2.1. For every 0 <λ≤ n
2 , every c > 0, every η ∈Rd with ‖η‖∞ ≤ 10

√
lnnλ, every t ∈Rd

such that ‖t−η‖∞ ≤ c
p

lnnλ

σ , and every σ≥ 10c lnnλ, we have e
‖t‖2

2
2 − ‖η‖2

2
2 ≤ 3d .

Proof. Let∆= t−η. Then, note that ‖∆‖∞ ≤ c
p

lnnλ

σ , and so,

e
‖t‖2

2
2 − ‖η‖2

2
2 = e∆

>η+ ‖∆‖2
2

2

≤ ed ·‖∆‖∞·‖η‖∞ ·ed ·‖∆‖2
∞

≤ ed ·e
d

(
c
p

lognλ/σ
)2

≤ 3d , (since σ≥ 10c lnnλ and nλ ≥ 2).

Now, we are ready to prove Lemma C.2.2.

Proof of Lemma C.2.2. Recall that p(t) = 1
(
p

2π)d e−‖t‖2
2/2. We calculate:

∫
Rd

∣∣yη,u(t)
∣∣2 dµ(t) = p(η)

∫
Rd

(p
2π

)d e‖t‖2
2/2 ·e−u2‖t−η‖2

2/2 · v2d sinc
(
v(t−η)

)2dt

Hence, it is enough to upper bound the following integral:∫
Rd

e‖t‖2
2/2 ·e−u2‖t−η‖2

2/2 · sinc
(
v(t−η)

)2dt

=
d∏

l=1

∫
R

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl (C.9)

We proceed by upper bounding the one dimensional integral along some fixed coordinate l :∫
R

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl

=
∫
|tl−ηl |≤ 20

p
lnnλ

u

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl

+
∫
|tl−ηl |≥ 20

p
lnnλ

u

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl (C.10)
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For the integral over the region |tl −ηl | ≥ 20
p

lnnλ

u we have:∫
|tl−ηl |≥ 20

p
lnnλ

u

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl

≤
(

v
20

√
lnnλ

u

)−2 ∫
|tl−ηl |≥ 20

p
lnnλ

u

e t 2
l /2 ·e−u2(tl−ηl )2/2 d tl

≤ nλ
v

∫
|tl−ηl |≥ 20

p
lnnλ

u

e t 2
l /2 ·e−u2(tl−ηl )2/2 d tl . (C.11)

The first inequality is because by definition of sinc, for all |tl −ηl | ≥ 20
p

lnnλ

u :

sinc
(
v(tl −ηl )

)2 =
∣∣∣∣sin(πv(tl −ηl ))

πv(tl −ηl )

∣∣∣∣2

≤
(

v
20

√
lognλ
u

)−2

The last inequality in (C.11) due to the fact that:(
v

20
√

lnnλ
u

)−2

= 1

v
· u2

400 · v lnnλ

≤ 1

v
· u

800 · ln1.5 nλ
(since v ≥ 2u

√
lnnλ, see Definition C.2.1)

≤ nλ
v

(since u ≤ 10nλ),

Now note that, using the inequality t 2
l ≤ 2(tl −ηl )2 +2η2

l , for all |tl −ηl | ≥ 20
p

lnnλ

u :

t 2
l ≤ 2(tl −ηl )2 +2η2

l

≤ 2(tl −ηl )2 +200lognλ (by the assumption ‖η‖∞ ≤ 10
√

lnnλ)

≤ 2(tl −ηl )2 +u2(tl −ηl )2/2 (since |tl −ηl | ≥
20

√
lnnλ

u
)

≤ 2

3
u2(tl −ηl )2

where the last inequality follows from u ≥ 200lognλ ≥
p

12 (because nλ ≥ 2). Hence,

nλ
v

∫
|tl−ηl |≥ 20

p
lnnλ

u

e t 2
l /2 ·e−(tl−ηl )2u2/2d tl ≤

nλ
v

∫
|tl−ηl |≥ 20

p
lnnλ

u

e−(tl−ηl )2u2/6d tl

= nλ
v

∫
|t ′|≥ 20

p
lnnλ

u

e−(t ′)2u2/6d t ′

≤ 1

10v
(C.12)

The last inequality follows from Claim C.1.6 along with the assumption nλ ≥ 2.
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Now, we bound the first integral on the right hand side of (C.10):∫
|t−ηl |≤ 20

p
lnnλ

u

e
|tl |2

2 e−
u2 |tl −ηl |2

2 · sinc
(
v(tl −ηl )

)2d tl ≤
∫
|t−ηl |≤ 20

p
lnnλ

u

e
|tl |2

2 · sinc
(
v(tl −ηl )

)2d tl

≤ 3e
|ηl |2

2

∫
R

sinc
(
v(tl −ηl )

)2d tl

= 3e
|ηl |2

2

v
, (C.13)

where the second inequality follows from Claim C.2.1 with c = 20 and σ = u because by

assumption u ≥ 200lnnλ.

Now by incorporating (C.12) and (C.13) into (C.10), we have∫
R

e |tl |2/2 ·e−u2|tl−ηl |2/2 · sinc
(
v(tl −ηl )

)2d tl

≤ 3e
|ηl |2

2

v
+ 1

10v
= (3.1)e

|ηl |2
2

v
.

If we plug the above inequality into (C.9), we get the following:

∫
Rd

∣∣yη,u(t)
∣∣2 dµ(t) ≤ (p

2π
)d p(η) · v2d · (3.1)d e

‖η‖2
2

2

vd
≤ (3.1v)d . (C.14)

Proof of Theorem 4.7.1. By the assumptions of the theorem n is an integer, parameter 0 <λ≤
n/2, and R > 0, and all x1, ...,xn ∈ [−R,R]d and p(η) = 1p

2π
e−

‖η‖2
2

2 , therefore Lemmas C.2.1, and

C.2.2 go through. Hence the theorem follows immediately by setting u = 200lnnλ and then

plugging Lemmas C.2.1 and C.2.2 into (C.5).

C.3 A Lower Bound on the Gaussian Kernel Leverage Scores

With the choice of a Gaussian kernel with σ= (2π)−1 we have p(η) = (2π)−d/2 exp(−‖η‖2
2/2).

Recall from Lemma 4.7.2 that

τλ(η) = max
α∈Cn

p(η) · |α∗z(η)|2
‖Φ∗α‖2

L2(µ) +λ‖α‖2
2

. (C.15)

In particular, this gives us a method of bounding the leverage function from below, namely, by

exhibiting some α and computing the argument of (C.15).

This section is organized as follows. In Section C.3.1, we construct our candidate set of data

points x1,x2, . . . ,xn along with the vector α. In particular, α will be chosen to be a vector of
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samples of a function f∆,b,v at each of the data points. Section C.3.2 then describes basic

Fourier properties of the function f∆,b,v and α that we will require later. The next sections

then bound each relevant quantity that appears in (C.15) for our specific choice of x1,x2, . . . ,xn

and α. In particular, Section C.3.3 shows a lower bound on α∗z(η), while Section C.3.4 shows

an upper bound on ‖α‖2
2 and Section C.3.5 shows an upper bound on ‖Φ∗α‖2

L2(µ).

C.3.1 Construction of data point set and the vector of coefficientsα

In this section, we construct a set of data points as well as an α. As discussed in Section 4.7,

we choose the data points to lie on an evenly spaced grid inside [−R,R]d . Moreover, because

of the duality of Lemmas 4.7.2 and 4.7.1, we choose α to be related to the test function yη in

the leverage score upper bound provided in Section C.2. In particular, α is formed by taking

samples of a modified version ofΦyη (i.e., a weighted Fourier transform of yη) on the data

points. In particular, the function we sample is f∆,b,v , which we now formally define. We then

proceed to proving some useful properties before formally defining x1,x2, . . . ,xn and α.

Definition C.3.1. For parameters ∆ ∈ Rd , b > 0 and v > 0, let the function f∆,b,v : Rd → R be

defined as follows:

f∆,b,v (a) = 2cos(2π∆>a)

(
1(p

2πb
)d

e−‖·‖
2
2/2b2 ∗ rectv

)
(a)

= 2cos(2π∆>a)
∫ a1+v/2

a1−v/2

∫ a2+v/2

a2−v/2
. . .

∫ ad+v/2

ad−v/2

1(p
2πb

)d
e−‖t‖2

2/2b2
d td · · · d t2 d t1,

where a = (a1, a2, . . . , ad ) and t = (t1, t2, . . . , td ).

Lemma C.3.1. For any ∆ ∈ Rd , v > 0, and b > 0, if we define the function f∆,b,v as in Defini-

tion C.3.1, then

F
[

f∆,b,v
]

(ξ) = e−2π2b2‖ξ−∆‖2
2 · vd sinc(v(ξ−∆))+e−2π2b2‖ξ+∆‖2

2 · vd sinc(v(ξ+∆)).

Proof. Note that F
[

1
(
p

2πb)d e−‖·‖
2
2/2b2

]
(ξ) = e−2π2b2‖ξ‖2

2 . Therefore, by the convolution theorem

(see Claim C.1.1),

F

[
1

(
p

2πb)d
e−‖·‖

2
2/2b2 ∗ rectv

]
(ξ) = e−2π2b2‖ξ‖2

2 · vd sinc(v(ξ)).

Now by the duality of phase shift in time domain and frequency shift in the Fourier domain,

F [ f∆,b,v ](ξ) =F

[(
e2πi∆>·+e−2πi∆>·

)(
1

(
p

2πb)d
e−‖·‖

2
2/2b2 ∗ rectv

)]
(ξ)

=F

[
1

(
p

2πb)d
e−‖·‖

2
2/2b2 ∗ rectv

]
(ξ−∆)+F

[
1

(
p

2πb)d
e−‖·‖

2
2/2b2 ∗ rectv

]
(ξ+∆)

= e−2π2b2‖ξ−∆‖2
2 · vd sinc(v(ξ−∆))+e−2π2b2‖ξ+∆‖2

2 · vd sinc(v(ξ+∆)).
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Definition C.3.2 (Construction of data points and α). We let n = md for an odd integer m > 0.

Then, we define a set of n data points x1,x2, . . .xn ∈ Rd as follows: We index the points by a

d-tuple j = ( j1, j2, . . . , jd ) ∈ {1,2, . . . ,m}d for convenience. In particular, we rename x1,x2, . . . ,xn

as xj, over j ∈ {1,2, . . . ,m}d , where x j is defined as

x j =
((

j1 − m +1

2

)
· 2R

m
,

(
j2 − m +1

2

)
· 2R

m
, . . . ,

(
jd − m +1

2

)
· 2R

m

)>
.

Thus, the data points are on a grid of width 2R
m extending from −R to R in all d dimensions.

For convenience, we let c j =
(

j − m+1
2

) · 2R
m . Therefore, we simply have x j = (c j1 ,c j2 , . . . ,c jd ).

Given a point η ∈ Rd at which we wish to bound the ridge leverage function, we define the

vectorα ∈Cn to be the vector of evaluations of fη,b,v at points xj, for some choice of parameters

b and v that we set later. More specifically, we define α= {
α j

}
j∈[m]d by,

αj = fη,b,v

(
x j

)
= 2cos

(
2πη>x j

)∫ x1+ v
2

x1− v
2

· · ·
∫ xd+ v

2

xd− v
2

1

(
p

2πb)d
e−‖t‖2

2/2b2
d td · · · d t1. (C.16)

C.3.2 Basic properties of f∆,b,v andα

By the Nyquist-Shannon sampling theorem, we have the following lemma.

Lemma C.3.2. For any parameters∆ ∈Rd , v > 0, b > 0, and any w > 0, if fη,b,v is the function

as in Definition C.3.1, then:

F

[
f∆,b,v (·) · ∑

j∈Zd

δ(·−w j)

]
(ξ) = w−d vd

∑
j∈Zd

e−2π2b2‖ξ−∆−w−1j‖2
2 · sinc

(
v(ξ−∆− j/w)

)
+w−d vd

∑
j∈Zd

e−2π2b2‖ξ+∆−w−1j‖2
2 · sinc

(
v(ξ+∆− j/w)

)
.

Proof. By Claim C.1.5, we have

F

(
f∆,b,v (·) ∑

j∈Zd

δd (·−w j)

)
(ξ) = ∑

j∈Zd

w−d F
[

f∆,b,v
]

(ξ− j/w). (C.17)
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Thus, by Lemma C.3.1, we find that (C.17) can be written as,∑
j∈Zd

w−d F
[

f∆,b,v
]

(ξ− j/w) = w−d
∑

j∈Zd

e−2π2b2‖ξ−∆−w−1j‖2 · vd sinc
(
v(ξ−∆− j/w)

)
+w−d

∑
j∈Zd

e−2π2b2‖ξ+∆−w−1j‖2
2 · vd sinc

(
v(ξ+∆− j/w)

)
,

which completes the proof.

Lemma C.3.3. For every odd integer m ≥ 3, positive integer d ≤ 18nλ ln3/2 nλ, where n = md ,

every 0 < λ ≤ n/2, η ∈ Rd , 0 < v ≤ R, and every 0 < b ≤ R
6
p

lnnλ

, if fη,b,v is the function as in

Definition C.3.1, then for every ξ ∈Rd ,∣∣∣∣∣∣∣∣F
 ∑

j∈Z
‖j‖∞>m

2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ)

∣∣∣∣∣∣∣∣≤
p
λn.

Proof. By definition of fη,b,v , we have the following for all a = (a1, a2, . . . , ad ):

∣∣ fη,b,v (a)
∣∣≤ ∫ a1+ v

2

a1− v
2

∫ a2+ v
2

a2− v
2

· · ·
∫ ad+ v

2

ad− v
2

2

(
p

2πb)d
e−‖t‖2

2/2b2
d td · · · d t2 d t1. (C.18)

Note that if j ∈Rd satisfies | jk | > m
2 for some k ∈ {1,2, . . . ,d}, then (C.18) implies,

∣∣∣∣ fη,b,v

(
2R

m
j
)∣∣∣∣≤ 2

d∏
i=1

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2
i /2b2

d ti

≤
(

2p
2πb

∫ ∞
R
m | jk |

e−t 2
k /2b2

d tk

) ∏
1≤i≤d

i 6=k

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2
i /2b2

d ti

≤ 2p
2π

· mb

R| jk |
·e−

R2 | jk |2
2m2b2

∏
1≤i≤d

i 6=k

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2
i /2b2

d ti

≤ 2b

R
·e−

R2 | jk |2
2m2b2

∏
1≤i≤d

i 6=k

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2
i /2b2

d ti ,

where we have used the fact that 2R
m | jk | − | v

2 | ≥ 2R
m | jk | − R

2 ≥ R
m | jk |, along with Claim C.1.6.
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Therefore,∣∣∣∣∣∣∣∣F
 ∑

j∈Z
‖j‖∞>m

2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ)

∣∣∣∣∣∣∣∣≤
∑
j∈Z

‖j‖∞>m
2

∣∣∣∣ fη,b,v

(
2R

m
j
)∣∣∣∣

≤
d∑

k=1

∑
j∈Zd

| jk |>m
2

∣∣∣∣ fη,b,v

(
2R

m
j
)∣∣∣∣

≤
d∑

k=1

∑
j∈Zd

| jk |>m
2

2b

R
e−

R2 | jk |2
2m2b2

∏
1≤i≤d

i 6=k

∫ 2R
m ji+ v

2

2R
m ji− v

2

e−t 2
i /2b2

p
2πb

d ti

We bound:

d∑
k=1

∑
j∈Zd

| jk |>m
2

2b

R
e−

R2 | jk |2
2m2b2

∏
1≤i≤d

i 6=k

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2/2b2
d t

≤ 2b

R

d∑
k=1

∑
| jk |>m

2

e−
R2 | jk |2
2m2b2 · ∏

1≤i≤d
i 6=k

( ∞∑
ji=−∞

∫ 2R
m ji+ v

2

2R
m ji− v

2

1p
2πb

e−t 2
i /2b2

d ti

)

≤ 2b

R

d∑
k=1

∑
| jk |>m

2

e−
R2 | jk |2
2m2b2 · ∏

1≤i≤d
i 6=k

(⌈ vm

2R

⌉∫ ∞

−∞
1p
2πb

e−t 2/2b2
d t

)

where the last inequality is due to the fact that each point in R gets integrated at most d vm
2R e

times in the infinite sum. Again using Claim C.1.6:∣∣∣∣∣∣∣∣F
 ∑

j∈Z
‖j‖∞>m

2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ)

∣∣∣∣∣∣∣∣≤
2b

R

(
m +1

2

)d−1 d∑
k=1

 ∑
| jk |>m

2

e−
R2 | jk |2
2m2b2


≤ 4b

R

(
m +1

2

)d−1 d∑
k=1

∫ ∞
m−1

2

e−
R2 t2

2m2b2 d t

= 4bd

R
·
(

m +1

2

)d−1 ∫ ∞
m−1

2

e−
R2 t2

2m2b2 d t

≤ 4bd

R
·
(

m +1

2

)d−1

· m2b2/R2(m−1
2

) e−
R2( m−1

2 )2

2m2b2

≤ 12dn

(
b

R

)3

e−
R2

18b2 ≤λ≤
p
λn,

since m ≥ 3, n = md , R ≥ 6b
√

lnnλ, d ≤ 18nλ ln3/2 nλ, and λ≤ n/2.

Lemma C.3.4. Consider the preconditions of Lemma C.3.3. If α is defined as in (C.16) of
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Definition C.3.2, then:∣∣∣∣∣α∗z(ξ)−
(mv

2R

)d ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
)
+e−2π2b2‖ξ+η− m

2R j‖2
2 · sinc v

(
ξ+η− m

2R
j
)∣∣∣∣∣≤p

λn.

Proof. By definition of α and z,

α∗z(ξ) = ∑
1≤ j1, j2,..., jd≤m

αje
−2πiξ>xj = ∑

j∈Zd

‖j‖∞≤m
2

fη,b,v

(
2R

m
j
)
·e−2πi

(
2R
m

)
j>ξ

=F

 ∑
j∈Zd

‖j‖∞≤m
2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ)

=F

[ ∑
j∈Zd

fη,b,v (·) ·δ
(
·− 2R

m
j
)]

(ξ)−F

 ∑
j∈Zd

‖j‖∞>m
2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ). (C.19)

By Lemma C.3.2 (applied with w = 2R/m), the first term in (C.19) can be written as:

F

[ ∑
j∈Zd

fη,b,v (·) ·δ
(
·− 2R

m
j
)]

(ξ)

=
(mv

2R

)d ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
)
+e−2π2b2‖ξ+η− m

2R j‖2
2 · sinc v

(
ξ+η− m

2R
j
)
. (C.20)

Now, by assumption, that preconditions of Lemma C.3.3 hold, therefore, the second term in
(C.19) can be bounded, by invoking Lemma C.3.3, as,∣∣∣∣∣∣∣∣∣F

 ∑
j∈Zd

‖j‖∞> m
2

fη,b,v

(
2R

m
j
)
·δ

(
·− 2R

m
j
) (ξ)

∣∣∣∣∣∣∣∣∣≤
p
λn. (C.21)

Thus, the desired result follows by combining (C.19), (C.20), and (C.21).

C.3.3 Boundingα∗z(η)

Lemma C.3.5. For every odd integer m ≥ 8lnnλ, positive integer d ≤ 8nλ, where n = md , every

parameter 0 <λ≤ ( v
2R

)2d · n
64 , every η ∈Rd satisfying ‖η‖∞ ≤ n1/d

4R , if α is defined as in (C.16) of

Definition C.3.2 with parameters 0 < v ≤ R and b = R
6
p

lnnλ

, then:

∣∣α∗z(η)
∣∣≥ n

4

( v

2R

)d
.
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Proof. Since λ≤ n/256 ≤ n/2, m ≥ 8lnnλ ≥ 3, d ≤ 8nλ, and b = R
6
p

lnnλ

, Lemma C.3.4 implies,

∣∣∣∣∣α∗z(η)−
(mv

2R

)d ∑
j∈Zd

e−2π2b2‖ m
2R j‖2

2 · sinc v
( m

2R
j
)
+e−2π2b2‖2η− m

2R j‖2
2 · sinc v

(
2η− m

2R
j
)∣∣∣∣∣≤p

λn.

Therefore, by the fact that |sinc(·)| ≤ 1 and sinc(·) ≥−1
4 , we have

∣∣α∗z(η)
∣∣≥ (mv

2R

)d
∣∣∣∣∣ ∑

j∈Zd

e−2π2b2‖ m
2R j‖2

2 · sinc v
( m

2R
j
)
+e−2π2b2‖2η− m

2R j‖2
2 · sinc v

(
2η− m

2R
j
)∣∣∣∣∣−p

λn

≥
(mv

2R

)d

1+e−2π2b2‖2η‖2
2 · sinc v(2η)− ∑

j∈Zd

j 6=0

e−2π2b2‖ m
2R j‖2

2 +e−2π2b2‖2η− m
2R j‖2

2

−
p
λn

≥ 3

4

(mv

2R

)d
−

(mv

2R

)d ∑
j∈Zd

j 6=0

e−2π2b2‖ m
2R j‖2

2 +e−2π2b2‖2η− m
2R j‖2

2 −
p
λn. (C.22)

Now we show that
∑

j∈Zd ,j 6=0

(
e−2π2b2‖ m

2R j‖2
2 +e−2π2b2‖2η− m

2R j‖2
2

)
is small. Note that the assumption

b = R
6
p

lnnλ

, implies e−2π2b2‖− m
2R j‖2

2 ≤ e
− 1

8 · m2

lognλ
‖j‖2

2 ≤ e−m‖j‖1 , since m ≥ 8lnnλ. Thus,

∑
j∈Zd

j 6=0

e2π2b2‖ m
2R j‖2

2 ≤ ∑
j∈Zd

j 6=0

e−m‖j‖1

=
( ∞∑

j1=−∞
e−m| j1|

)( ∞∑
j2=−∞

e−m| j2|
)
· · ·

( ∞∑
jd=−∞

e−m| jd |
)
−1

=
(
1+ 2e−m

1−e−m

)d

−1

≤ e3de−m −1 ≤ 1/16, (C.23)

where the last inequality follows because by the assumption m ≥ 8lnnλ, we have 3de−m ≤ 3d
n8
λ

≤
1

64 , since d ≤ 8nλ and nλ ≥ 256. Moreover, recall that
∥∥η∥∥∞ ≤ m

4R , and so,
∥∥2η− m

2R j
∥∥2

2 ≥ ‖ m
4R j‖2

2

. Thus, in a similar fashion,∑
j∈Zd

j 6=0

e−2π2b2‖2η− m
2R j‖2

2 ≤ ∑
j∈Zd

j 6=0

e−2π2b2‖ m
4R j‖2

2

≤ ∑
j∈Zd

j 6=0

e−m‖j‖1/4

≤
(
1+ 2e−m/4

1−e−m/4

)d

−1

≤ e3de−m/4 −1 ≤ 1/4. (C.24)
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Thus, combining (C.22), (C.23), and (C.24), we have

∣∣α∗z(η)
∣∣≥ (mv

2R

)d
(

3

4
− 1

16
− 1

4

)
−
p
λn

≥ n

4

( v

2R

)d
,

where the final inequality follows since
p
λn ≤

√
n
64

( v
2R

)2d ·n = n
8

( v
2R

)d .

C.3.4 Bounding ‖α‖2
2

Lemma C.3.6. For every odd integer m ≥ 3, n = md , every η ∈ Rd , and every b, v > 0, if α is

defined as in (C.16) of Definition C.3.2, then we have

‖α‖2
2 ≤ 4n.

Proof. Let w = 2R/m. Then, letting j = ( j1, j2, . . . , jd ), we observe that

‖α‖2
2 =

∑
j∈{1,2,...,m}d

α2
j

= ∑
j∈Zd

‖j‖∞≤m−1
2

(
2cos(2πwη>j)

(
1(p

2πb
)d

e−‖·‖
2
2/2b2 ∗ rectv

)
(w j )

)2

≤ ∑
j∈Zd

‖j‖∞≤m−1
2

4

= 4md = 4n,

as desired.

C.3.5 Bounding ‖Φ∗α‖2
L2(dµ)

Note that all the results so far hold for any kernel p(η) and are independent of the kernel

function. Now, we upper bound ‖Φ∗α‖L2(dµ). This quantity depends on the particular choice

of kernel, which we assume to be Gaussian.

Lemma C.3.7. For every odd integer m ≥ 8lnnλ, positive integer d ≤ 8nλ, where n = md , every

parameter 0 < λ ≤ (1
2

)2d · n
64 , every η satisfying ‖η‖∞ ≤ 10

√
lnnλ, and any 60ln3/2 nλ ≤ R ≤

m
80
p

lnnλ

, if α is defined as in (C.16) of Definition C.3.2 with parameters b = R
6
p

lnnλ

and v = R,
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then for the Gaussian kernel with pdf p(ξ) = 1
(
p

2π)d e−‖ξ‖
2
2/2, we have:

∥∥Φ∗α
∥∥2

L2(µ) ≤ 16n2
(

3

4R

)d

·p(η)+4λn. (C.25)

Proof. Recall that we set v = R and b = R
6
p

lnnλ

. Thus, since λ ≤ (1
2

)2d · n
64 , and d ≤ 8nλ,

Lemma C.3.4 implies that

|α∗z(ξ)|2 ≤
(∣∣∣∣∣(m

2

)d ∑
j∈Zd

(
e−2π2b2‖ξ−η− m

2R j‖2
2 · sinc v

(
ξ−η− m

2R
j
)

+e−2π2b2‖ξ+η− m
2R j‖2

2 · sinc v
(
ξ+η− m

2R
j
)∣∣∣∣∣+p

λn

)2

≤ 2
(m

2

)2d
( ∑

j∈Zd

(
e−2π2b2‖ξ−η− m

2R j‖2
2 · sinc v

(
ξ−η− m

2R
j
)

+e−2π2b2‖ξ+η− m
2R j‖2

2 · sinc v
(
ξ+η− m

2R
j
))2

+2(
p
λn)2.

By the definition of the L2(µ) norm, ‖Φ∗α‖2
L2(µ) =

∫
Rd |α∗z(ξ)|2p(ξ)dξ, we have

∥∥Φ∗α
∥∥2

L2(µ) ≤
∫
Rd

2
(m

2

)2d
( ∑

j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
)

+e−2π2b2‖ξ+η− m
2R j‖2

2 · sinc v
(
ξ+η− m

2R
j
))2

p(ξ)dξ+
∫
Rd

2λnp(ξ)dξ

= 8
(m

2

)2d
∫
Rd

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ+2λn, (C.26)

where the last equality holds because the kernel pdf p(ξ) is symmetric in our case, and the

sum is over all j ∈Zd . The integral in (C.26) can be split into two integrals as follows:

∫
Rd

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ

=
∫
‖ξ‖∞≤10

p
lnnλ

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ

+
∫
‖ξ‖∞≥10

p
lnnλ

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ. (C.27)

First, we consider the integral over ‖ξ‖∞ ≤ 10
√

lnnλ. By the assumption of lemma, ‖η‖∞ ≤
10

√
lnnλ, and hence, ‖ξ−η‖∞ ≤ 20

√
lnnλ. This implies that ‖ξ−η‖∞ ≤ 1

2 ( m
2R ), since we

assume that R ≤ m
80
p

lnnλ

. Therefore, for any j 6= (0,0, . . . ,0), there exists some k such that jk 6= 0,
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and so,

∑
j∈Zd

j 6=0

e−2π2b2‖ξ−η− m
2R j‖2

2 ≤
d∑

k=1

∑
j∈Zd

jk 6=0

e−2π2b2‖ξ−η− m
2R j‖2

2

=
d∑

k=1

( ∑
| jk |≥1

e−2π2b2
(
ξk−ηk− m

2R jk
)2

) ∏
1≤i≤d

i 6=k

∞∑
ji=−∞

e−2π2b2
(
ξi−ηi− m

2R ji
)2


≤

d∑
k=1

( ∑
| jk |≥1

e−
π2b2m2

8R2 (2| jk |−1)2

) ∏
1≤i≤d

i 6=k

(
1+ ∑

| ji |≥1
e−

π2b2m2

8R2 (2| ji |−1)2

)
≤

d∑
k=1

(
2

∞∑
jk=1

e−m jk /4

) ∏
1≤i≤d

i 6=k

(
1+2

∞∑
ji=1

e−m ji /4

)
≤ d

(
3e−m/4)(1+3e−m/4)d−1

≤ 4d

n2
λ

, (C.28)

where we have used the assumptions b = R
6
p

lnnλ

and m ≥ 8lnnλ, as well as nλ ≥ 256 and

d ≤ 8nλ.

Now, using (C.28), we see that the first integral in (C.27) can be bounded as follows:

∫
‖ξ‖∞≤10

p
lnnλ

p(ξ)

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

dξ

≤ 2
∫
‖ξ‖∞≤10

p
lnnλ

p(ξ)
(
e−2π2b2‖ξ−η‖2

2 · sinc v(ξ−η)2
)2

dξ

+2
∫
‖ξ‖∞≤10

p
lnnλ

p(ξ)

(∑
j 6=0

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

dξ

≤ 2
∫
‖ξ‖∞≤10

p
lnnλ

1

(
p

2π)d
e−‖ξ‖

2
2/2

(
e−2π2b2‖ξ−η‖2

2 sinc
(
v(ξ−η)

)2 + 4d

n2
λ

)
dξ

= 2
∫
‖ξ‖∞≤10

p
lnnλ

1

(
p

2π)d
e−‖ξ‖

2
2/2e−2π2b2‖ξ−η‖2

2 · sinc
(
v(ξ−η)

)2 dξ+ 8d

n2
λ

. (C.29)

Next, by applying Claim C.2.1 (with c = 1 and σ = b), we have e−‖ξ‖
2
2/2 ≤ 3d e−‖η‖

2
2/2 for∥∥ξ−η∥∥∞ ≤

p
lnnλ

b (since ‖ξ‖∞ ≤ 10
√

lnnλ and b = R
6
p

lnnλ

≥ 10lnnλ). Hence,
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∫
‖ξ−η‖∞≤

p
lnnλ
b

‖ξ‖∞≤10
p

lnnλ

1

(
p

2π)d
e−‖ξ‖

2
2/2e−2π2b2‖ξ−η‖2

2 · sinc
(
v(ξ−η)

)2 dξ

≤ 3d e−‖η‖
2
2/2

∫
Rd

1

(
p

2π)d
e−2π2b2‖ξ−η‖2

2 · sinc
(
v(ξ−η)

)2 dξ

≤ 3d

(
p

2π)d
e−‖η‖

2
2/2

∫
Rd

sinc
(
v(ξ−η)

)2 dξ

=
(

3

v

)d

p(η) (C.30)

Note that the last line follows from the fact that vd · sinc v(·) is the Fourier transform of rectv ,

and so, by the convolution theorem (Claim C.1.1),
∫
Rd (vd · sinc vt)2 dt = (rectv ∗ rectv ) (0) = vd .

Additionally,∫
‖ξ−η‖∞≥

p
lnnλ
b

‖ξ‖∞≤10
p

lnnλ

1

(
p

2π)d
e−‖ξ‖

2
2/2e−2π2b2‖ξ−η‖2

2 · sinc
(
v(ξ−η)

)2 dξ≤ n−10
λ

∫
Rd

1

(
p

2π)d
e−‖ξ‖

2
2/2 dξ

= n−10
λ , (C.31)

since ‖ξ−η‖2 ≥ ‖ξ−η‖∞. Thus, (C.29), (C.30), and (C.31) imply that

∫
‖ξ‖∞≤10

p
lnnλ

( ∑
j∈Rd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ

≤ 2

(
3

v

)d

p(η)+2n−10
λ + 8d

n2
λ

. (C.32)

Next, we bound the second integral in (C.27). We first show that the quantity in parentheses is

upper bounded by a constant for all ξ in the appropriate range, and then use this bound to

upper bound the integral itself. Consider ξ ∈Rd satisfying ‖ξ‖∞ ≥ 10
√

lnnλ. Let ti , for every

i = 1, . . .d , be an integer such that |ξi −ηi − ti m/2R| ≤ m/4R. Note that the following upper
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bound holds:∣∣∣∣∣ ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
)∣∣∣∣∣≤ ∑

j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2

≤
d∏

i=1

∞∑
ji=−∞

e−2π2b2
(
ξi−ηi− m

2R ji
)2

≤
d∏

i=1

(
1+ ∑

ji 6=ti

e−2π2b2
(
ξi−ηi− m

2R ji
)2

)

≤
d∏

i=1

(
1+2

∞∑
ji=1

e−
π2b2m2

8R2 (2| ji |−1)2

)

≤
d∏

i=1

(
1+ ∑

| ji |≥1
e−m ji /4

)

≤
d∏

i=1

(
1+3e−m/4)

≤ e
3d
n2
λ ≤ 3,

since d ≤ 8nλ, m ≥ 8lnnλ and nλ ≥ 256. Thus, we can bound the second integral in (C.27) as

follows: ∫
‖ξ‖∞≥10

p
lnnλ

( ∑
j∈Zd

e−2π2b2‖ξ−η− m
2R j‖2

2 · sinc v
(
ξ−η− m

2R
j
))2

p(ξ)dξ

≤ 9
∫
‖ξ‖∞≥10

p
lnnλ

p(ξ)dξ

≤ 9
d∑

k=1

(
2
∫ ∞

10
p

lnnλ

1p
2π

e−ξ
2
k /2 dξk

) ∏
i 6=k

∫ ∞

−∞
1p
2π

e−ξ
2
i /2 dξi

≤ 18dp
2π

· n−50
λ

10
√

lognλ
≤ n−40

λ , (C.33)

by Claim C.1.6.

Combining (C.26), (C.27), (C.32), and (C.33) implies that

∥∥Φ∗α
∥∥2

L2(µ) ≤ 8
(m

2

)2d
(

2

(
3

v

)d

p(η)+2n−10
λ + 8d

n2
λ

+n−40
λ

)
+2λn

≤ 8
(m

2

)2d
(

2

(
3

v

)d

p(η)+n−1
λ

)
+2λn

≤ 16n2
(

3

4R

)d

·p(η)+4λn,

as desired. In the above, the second inequality follows from 2n−10
λ

+ 8d
n2
λ

+n−40
λ

≤ n−1
λ

, because
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nλ ≥ 256, and d ≤ 8nλ.

Proof of Theorem 4.7.2. Note that we can choose data points x1,x2, . . . ,xn and the vector α

according to the construction in Definition C.3.2 with v = R and b = R
6
p

lognλ

. Thus, Lemmas

C.3.5, C.3.6, and C.3.7, as well as (C.15), imply that

τλ(η) ≥ p(η) · |α∗z(η)|2
‖Φ∗α‖2

L2(dµ) +λ‖α‖2
2

≥
p(η) ·

(
n
4

(1
2

)d
)2

16n2
( 3

4R

)d
p(η)+4λn +λ(4n)

≥ 1

128

(
R

3

)d

· p(η)

2p(η)+ (4R/3)d n−1
λ

,

as desired.

C.4 Proof of Corollary 4.7.1

In the proof of corollary 4.7.1 we often need to compute the volume of a d-dimensional ball

hence we state it as a claim.

Claim C.4.1. For any integer d ≥ 1 and any R > 0 the following holds:∫
η∈Rd

‖η‖2≤R

1dη= (
p
πR)d

Γ(d/2+1)

where Γ is the Gamma function.

First claim of the corollary (upper bound on statistical dimension): Let t = 10
√

lnnλ. We

have:

sλ =
∫
Rd
τ(η)dη=

∫
η∈Rd

‖η‖2≤t

τ(η)dη+
∫
η∈Rd

‖η‖2>t

τ(η)dη

290



C.4. Proof of Corollary 4.7.1

By the naive bound in Proposition 1 we have:

∫
η∈Rd

‖η‖2>t

τ(η)dη≤ nλ

∫
η∈Rd

‖η‖2>t

e−
‖η‖2

2
2 dη= nλ

(d−1∏
i=1

∫
θi∈[0,2π]

dθi

)∫
[t ,∞]

r d−1e−r 2/2dr

= (
p

2π)d−1nλ

∫
[t ,∞]

r d−1e−r 2/2dr

≤ (
p

2π)d−1nλ

∫
[t ,∞]

e−r 2/4dr

≤ (
p

2π)d−1nλ ·
(

2e−t 2/4

t

)
≤ (

p
2π)d n−25

λ (C.34)

where the first equality follows by converting from cartesian coordinates to polar coordi-

nates. The second inequality uses the fact that if d ≤ t 2

4log t then for all r with r ≥ t we have

r d−1e−r 2/2 ≤ e−r 2/4 which holds true by the assumption of the lemma. To see this note that for

r with r ≥ t , r d−1 = e(d−1)logr ≤ e
t2

4log t logr ≤ e
r 2

4logr logr = er 2/4 and therefore, r d−1e−r 2/2 ≤ e−r 2/4.

The third inequality in (C.34) follows from Claim C.1.6

Further, by the refined bound of Theorem 4.7.1, for any η with ‖η‖∞ ≤ t and hence ‖η‖2 ≤ t

we have ∫
η∈Rd

‖η‖2≤t

τ(η)dη≤
∫
η∈Rd

‖η‖2≤t

((
6.2R +1240ln1.5 nλ

)d +1
)

dη

≤ (2t )d /Γ(d/2+1) ·
((

6.2R +1240ln1.5 nλ
)d +1

)
=

(
20

√
lnnλ

)d ((
6.2R +1240ln1.5 nλ

)d +1
)/
Γ(d/2+1). (C.35)

The second inequality follows from Claim C.4.1. Combining (C.34) and (C.35) gives the lemma.

Second claim of the corollary: We use the same construction of points as in Theorem 4.7.2.

Note that for all ‖η‖2 ≤
√

2ln nλ

(4R/3)d we have p(η) ≥ 1
3 (4R/3)d n−1

λ
, hence we have:

2p(η)+ (4R/3)d n−1
λ ≤ 5p(η)

Hence, by Theorem 4.7.2, we have:

τ(η) ≥ 1

640

(
R

3

)d

.
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Therefore,

sλ(K) =
∫
Rd
τ(η)dη

≥
∫
‖η‖2≤

√
2ln

nλ
(4R/3)d

1

640

(
R

18

)d

dη

=Ω
((p

πR

3

√
log

nλ
(4R/3)d

)d /
Γ(d/2+1)

)
(C.36)

The first inequality above is because τ is a non-negative function everywhere. The final line

above is due to Claim C.4.1.

C.5 Proof of Theorem 4.5.1

We now show our lower bound on the number of samples required for achieving spectral

approximation using classical random Fourier features. This bound is closely related to the

leverage score lower bound of Theorem 4.7.2 and the leverage score characterization given by

the maximization problem in Lemma 4.7.2.

Our goal is to show that if we take s samples η1,η2, . . . ,ηs from the distribution defined by p,

for s too small, then there is an α= (α1,α2, . . . ,αn) ∈Rn such that with constant probability,

α>(K+λIn)α< 2

3
α>(ZZ∗+λIn)α. (C.37)

Informally, a frequency η with high ridge leverage score implies by Lemma 4.7.2 the existence

of anαwhich is concentrated atη (i.e. |z(η)∗α|2 is large compared to ‖Φ∗α‖2
L2(µ)+λ‖α‖2

2.) Ifη

is not sampled with high enough probability thenα>(K+λIn)αwill not be well approximated.

Formally, by (4.3):

αT Kα=∑
j ,k
α jαk ·k(x j ,xk )

=∑
j ,k

∫
Rd

e−2πiηT (x j−xk )α jαk p(η)dη

=
∫
Rd

∣∣∣∣∣ n∑
j=1

α j e2πiηT x j

∣∣∣∣∣
2

p(η)dη.

Also, by the definition of Z and ϕ (see Section 4.2.2), we have

αT ZZ∗α=
∥∥∥∥∥ n∑

j=1
α jϕ(x j )

∥∥∥∥∥
2

2

= 1

s

s∑
k=1

∣∣∣∣∣ n∑
j=1

α j e2πiηT
k x j

∣∣∣∣∣
2

,
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where η1,η2, . . . ,ηs are the s samples from the distribution given by p. Hence, (C.37) is equiva-

lent to ∫
Rd

p(η)

∣∣∣∣∣ n∑
j=1

α j e2πiηT x j

∣∣∣∣∣
2

dη+ 1

3
λ‖α‖2

2 <
2

3
· 1

s

s∑
k=1

∣∣∣∣∣ n∑
j=1

α j e2πiηk x j

∣∣∣∣∣
2

. (C.38)

We again use the same construction of n data points x1, x2, . . . , xn ∈ Rd , according to the

construction in Definition C.3.2 with d = 1. Moreover, we define η∗ to be

η∗ = argmaxη∈{η1,η2,...,ηs }|η|.

We also let α= (α1,α2, . . . ,αn) be given by

α j = fη∗,b,R (x j ),

where b = R
6
p

ln(n/λ)
. We show that this choice of data points and vector α satisfies (C.38) with

large constant probability.

Lemma C.5.1. Under the preconditions of Theorem 4.5.1, with probability 0.99 over the samples

we have |η∗| ≤ 10
√

lnnλ.

Proof. Let γ be a random variable with density p(γ) = (2π)−1/2e−γ
2/2. The limits on n and λ

alongside Claim C.1.6 imply that Pr
[
|γ| ≥ 10

√
lnnλ

]
< n−1

λ
/100. Now, consider the s different

random variables η1, . . . ,ηs . Each of these random variables are distributed identically as γ, so

by union-bound the probability that the maximum value is bigger than 10
√

lnnλ is bounded

by sn−1
λ

/100. Since s ≤ nλ, the probability that the maximum value is bigger than 10
√

lnnλ is

bounded by 1/100, hence, the lemma follows.

First, we upper bound the first term on the left side of (C.38). Note that by Lemmas C.5.1 and

C.3.7, with probability at least 0.99 over the samples η1,η2, . . . ,ηs , we have

∫
Rd

p(η)

∣∣∣∣∣ n∑
j=1

α j e2πiη>x j

∣∣∣∣∣
2

dη≡ ‖Φ∗α‖2
L2(µ)

≤ 16n2
(

3

4R

)d

·p(η∗)+4λn,

where we have let η= η∗. Now, in order to estimate p(η∗), note that by Claim C.1.8, we have

that with probability at least 1−e−1 over the samples η1,η2, . . . ,ηs , p(η∗) ≤ 2
p

2ln s
s .

Thus, with probability at least 1−e−1 −1/100 ≥ 1/2, we have

∫
Rd

p(η)

∣∣∣∣∣ n∑
j=1

α j e2πiη>x j

∣∣∣∣∣
2

dη≤ 32n2 · 3

4R
·
p

2ln s

s
+4λn. (C.39)
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Next, we bound the right side of (C.38) from below. Note that by b = R
6
p

ln(n/λ)
and with the

choice of v = R and η= η∗, Lemma C.3.5 holds true. Therefore, by Lemma C.3.5, we have

1

s

s∑
k=1

∣∣∣∣∣ n∑
j=1

α j e2πiη>k x j

∣∣∣∣∣
2

≥ 1

s

∣∣∣∣∣ n∑
j=1

α j e2πiη∗·x j

∣∣∣∣∣
2

= 1

s

∣∣α∗z(η∗)
∣∣2

≥ 1

s

(
n

4 ·2d

)2

= n2

64s
. (C.40)

We also require the following estimate of ‖α‖2
2, which is provided by Lemma C.3.6:

‖α‖2
2 ≤ 4n. (C.41)

We also need the bound:

32n2 · 3

4R
·
p

2ln s

s
≤ n2

98s
(C.42)

which holds by the assumptions R ≥ 600ln3/2 nλ, s ≤ nλ

215 and λ≤ n
256 .

Finally, by combining (C.39), (C.40), (C.41), and (C.42) we have that with probability at least

1/2,

∫
Rd

p(η)

∣∣∣∣∣ n∑
j=1

α j e2πiη>x j

∣∣∣∣∣
2

dη+ 1

3
λ‖α‖2

2 ≤ 32n2 · 3

4R
·
p

2ln s

s
+4λn + 4

3
λn

≤ n2

98s
+ 16λns

3s

≤ n2

98s
+ n2

3 ·211s

< n2

96s

≤ 2

3
· 1

s

s∑
k=1

∣∣∣∣∣ n∑
j=1

α j e2πiη>k x j

∣∣∣∣∣
2

.

This completes the proof.
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D Near-optimal Sketching of Tensors

D.1 JL Moment Properties of the Tensoring of Sketches

The JL moment property readily implies the following moment bound for the inner product of

vectors:

Lemma D.1.1 (Two vector JL Moment Property). For any x, y ∈ Rd , if S has the (ε,δ, t)-JL

Moment Property, then ∥∥(Sx)>(Sy)−x>y
∥∥

Lt ≤ εδ1/t‖x‖2‖y‖2. (D.1)

Proof. We can assume by linearity of the norms that ‖x‖2 = ‖y‖2 = 1. We then use that

x>y = (‖x + y‖2
2 −‖x − y‖2

2)/4. Plugging this into the left hand side of (D.1) gives∥∥(Sx)>(Sy)−x>y
∥∥

Lt =
∥∥‖Sx +Sy‖2

2 −‖x + y‖2
2 −‖Sx −Sy‖2

2 +‖x − y‖2
2

∥∥
Lt /4

≤ (∥∥‖S(x + y)‖2
2 −‖x + y‖2

2

∥∥
Lt +

∥∥‖S(x − y)‖2
2 −‖x − y‖2

2

∥∥
Lt

)
/4

≤ εδ1/t (‖x + y‖2
2 +‖x − y‖2

2

)
/4 (JL moment property)

= εδ1/t (‖x‖2
2 +‖y‖2

2

)
/2

= εδ1/t .

The next lemma shows that the direct sum of matrices inherit the JL moment property.

Lemma D.1.2. Let t ∈N and α≥ 0. If P ∈Rm1×d1 and Q ∈Rm2×d2 are two random matrices (not

necessarily independent), such that,∥∥‖P x‖2
2 −‖x‖2

2

∥∥
Lt ≤α‖x‖2

2 and E
[‖P x‖2

2

]= ‖x‖2
2 ,∥∥∥∥∥Q y

∥∥2
2 −‖y‖2

2

∥∥∥
Lt

≤α∥∥y
∥∥2

2 and E
[‖Q y‖2

2

]= ‖y‖2
2 ,
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for any vectors x ∈Rd1 and y ∈Rd2 , then for any vector z ∈Rd1+d2 ,∥∥‖(P ⊕Q)z‖2
2 −‖z‖2

2

∥∥
Lt ≤α‖z‖2

2 and E
[‖(P ⊕Q)z‖2

2

]= ‖z‖2
2.

Proof. Let z ∈Rd1+d2 and choose x ∈Rd1 and y ∈Rd2 , such that, z = x⊕y . By triangle inequality,∥∥‖(P ⊕Q)z‖2
2 −‖z‖2

2

∥∥
Lt =

∥∥∥‖P x‖2
2 +

∥∥Q y
∥∥2

2 −‖x‖2
2 −

∥∥y
∥∥2

2

∥∥∥
Lt

≤ ∥∥‖P x‖2
2 −‖x‖2

2

∥∥
Lt +

∥∥∥∥∥Q y
∥∥2

2 −
∥∥y

∥∥2
2

∥∥∥
Lt

≤α‖x‖2
2 +α

∥∥y
∥∥2

2

=α‖z‖2
2 .

Moreover, E
[‖(P ⊕Q)z‖2

2

]= E[‖P x‖2
2

]+E[‖Q y‖2
2

]= ‖x‖2
2 +‖y‖2

2 = ‖z‖2
2.

An easy consequence of this lemma is that for any matrix, S, with the (ε,δ, t )-JL Moment Prop-

erty, Ik ×S has the (ε,δ, t )-JL Moment Property. This follows simply from Ik ×S = S ⊕S ⊕ . . .⊕S︸ ︷︷ ︸
k times

.

Similarly, S× Ik has the (ε,δ, t )-JL Moment Property, since S× Ik is just a reordering of the rows

of Ik ×S, which trivially does not affect the JL Moment Property. The same arguments show

that if S has the Strong (ε,δ)-JL Moment Property then Ik ×S and S× Ik has the Strong (ε,δ)-JL

Moment Property.

Proof of Lemma 5.4.1

We will prove a correspondence between Πp and Πq . Let E1 ∈ Rd×n be a matrix whose first

row is equal to one and is zero elsewhere. By Definition 5.3.3 for any matrix A ∈ Rd p×n ,

Πp A =Πq
(

A⊗E⊗(q−p)
1

)
. A simple calculation shows that for any matrices A,B ∈Rd p×n then

(
A⊗E⊗(q−p)

1

)> (
B ⊗E⊗(q−p)

1

)
= A>B ◦

(
E⊗(q−p)

1

)> ·E⊗(q−p)
1 = A>B ,

where ◦ denotes the Hadamard product, and the last equality follows since
(
E⊗(q−p)

1

)> ·E⊗(q−p)
1

is all ones matrix. Therefore,
∥∥∥A⊗E⊗(q−p)

1

∥∥∥
F
= ‖A‖F and sλ

(
A⊗E⊗(q−p)

1

)
= sλ(A).

Now assume thatΠq is an (ε,δ,µ,n)-Oblivious Subspace Embedding, and let A ∈Rd p×n and

λ≥ 0 be such that sλ(A) ≤µ. Define A′ = A⊗E⊗(q−p)
1 , then

Pr
[
(1−ε)(A>A+λIn) ¹ (Πp A)>Πp A+λIn ¹ (1+ε)(A>A+λIn)

]
= Pr

[
(1−ε)(A′>A′+λIn) ¹ (Πq A′)>Πq A′+λIn ¹ (1+ε)(A′>A′+λIn)

]
≥ 1−δ ,

where we have used that sλ(A′>A′) = sλ(A>A) ≤ µ. This shows that Πp is an (ε,δ,µ,n)-

Oblivious Subspace Embedding.
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Assume thatΠq has (ε,δ)-Approximate Matrix Multiplication Property, and let C ,D ∈Rd p×n .

Define C ′ =C ⊗E⊗(q−p)
1 and D ′ = D ⊗E⊗(q−p)

1 , then

Pr
[∥∥(ΠpC )>Πp D −C>D

∥∥
F ≥ ε‖C‖F ‖D‖F

]= Pr
[∥∥(ΠqC ′)>Πq D ′−C ′>D ′∥∥

F ≥ ε∥∥C ′∥∥
F

∥∥D ′∥∥
F

]
≤ δ ,

where we have used that
∥∥C ′∥∥

F = ‖C‖F ,
∥∥D ′∥∥

F = ‖D‖F , and C ′>D ′ =C>D . This show thatΠp

has (ε,δ)-Approximate Matrix Multiplication Property.

Proof of Lemma 5.4.2

Approximate Matrix Multiplication Let C ,D ∈Rd×n . We will prove that∥∥∥∥(MC )>MD −C>D
∥∥

F

∥∥
Lt ≤ εδ1/t ‖C‖F ‖D‖F . (D.2)

Then Markov’s inequality will give us the result. Using the triangle inequality together with

Lemma D.1.1 we get that:

∥∥∥∥(MC )>MD −C>D
∥∥

F

∥∥
Lt =

∥∥∥∥∥(MC )>MD −C>D
∥∥2

F

∥∥∥1/2

Lt/2

=
∥∥∥∥∥ ∑

i , j∈[n]

(
(MCi )>MD j −C>

i D j
)2

∥∥∥∥∥
1/2

Lt/2

≤
√ ∑

i , j∈[n]

∥∥(MCi )>MD j −C>
i D j

∥∥2
Lt

≤
√ ∑

i , j∈[n]
ε2δ2/t ‖Ci‖2

2

∥∥D j
∥∥2

2

= εδ1/t ‖C‖F ‖D‖F .

Using Markov’s inequality we now get that

Pr
[∥∥(MC )>MD −C>D

∥∥
F ≥ ε‖C‖F ‖D‖F

]≤ ∥∥∥∥(MC )>MD −C>D
∥∥

F

∥∥t
Lt

εt ‖C‖t
F ‖D‖t

F

≤ δ .

Oblivious Subspace Embedding. We will prove that for any λ≥ 0 and any matrix A ∈Rd×n ,

(1−ε)(A>A+λIn) ¹ (M A)>M A+λIn ¹ (1+ε)(A>A+λIn) , (D.3)

holds with probability at least 1−
(

sλ(A>A)
µ

)t
δ, which will imply our result. First consider λ> 0.

Then A>A+λIn is positive definite. Thus, by left and right multiplying (D.3) by (A>A+λIn)−1/2,

we see that (D.3) is equivalent to

(1−ε)In ¹ (
M A(A>A+λIn)−1/2)> M A(A>A+λIn)−1/2 +λ(A>A+λIn)−1 ¹ (1+ε)In .
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which, in turn, is implied by the following:∥∥∥(
M A(A>A+λIn)−1/2)> M A(A>A+λIn)−1/2 +λ(A>A+λIn)−1 − In

∥∥∥
op

≤ ε .

Note that (A>A +λIn)−1/2 A>A(A>A +λIn)−1/2 = In −λ(A>A +λIn)−1. Letting Z = A(A>A +
λIn)−1/2, we note that it suffices to establish

∥∥(M Z )> M Z −Z>Z
∥∥

op ≤ ε. Using (D.2) together

with Markov’s inequality we find that

Pr
[∥∥(M Z )> M Z −Z>Z

∥∥
op ≥ ε

]
≤ Pr

[∥∥(M Z )> M Z −Z>Z
∥∥

F ≥ ε]≤ (‖Z‖2
F

µ

)t

δ=
(

sλ(A>A)

µ

)t

δ ,

where the last equality follows since ‖Z‖2
F = tr

(
A>A(A>A+λIn)−1

)= sλ(A>A).

To prove the result for λ= 0 we will use Fatou’s lemma.

Pr
[(

(1−ε)A>A ¹ (M A)>M A ¹ (1+ε)A>A
)C

]
≤ liminf

λ→0+ Pr
[(

(1−ε)(A>A+λIn) ¹ (M A)>M A+λIn ¹ (1+ε)(A>A+λIn)
)C

]
≤ liminf

λ→0+
sλ(A>A)

µ
δ

= s0(A>A)

µ
δ,

where the last equality follows from continuity of λ 7→ sλ(A>A).

D.2 Spectral Concentration of the Tensoring of Sketches

We start this section by presenting the definitions and tools from the literature that we use for

proving concentration properties of random matrices.

Lemma D.2.1 (Matrix Bernstein Inequality (Tropp et al., 2015, Theorem 6.1.1)). Consider

a finite sequence Zi of independent, random matrices with dimensions d1 × d2. Assume

that each random matrix satisfies E[Zi ] = 0 and ‖Zi‖op ≤ B almost surely. Define σ2 =
max

{‖∑
i E[Zi Z∗

i ]‖op ,‖∑
i E[Z∗

i Zi ]‖op
}
. Then for every t > 0,

P

[∥∥∥∥∥∑
i

Zi

∥∥∥∥∥
op

≥ t

]
≤ (d1 +d2) ·exp

( −t 2/2

σ2 +B t/3

)
.

To analyze the performance of TensorSRHT we need the following claim which shows that

with high probability individual entries of the Hadamard transform of a vector with random

signs on its entries do not “overshoot the mean energy” by much.

Claim D.2.1. Let D1,D2 be two independent d×d diagonal matrices, each with i.i.d. Rademacher
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diagonal entries. Also, let H be a d ×d Hadamard matrix. Then, for every x ∈Rd 2
,

PrD1,D2

[‖[(HD1)× (HD2)] · x‖∞ ≤ 4log2(d/δ) · ‖x‖2
]≥ 1−δ.

Proof. By Claim 5.2.1 we can write that,

(HD1)× (HD2) = (H ×H)(D1 ×D2),

where H ×H is indeed a Hadamard matrix of size d 2 ×d 2 which we denote by H ′. The goal is

to prove

PrD1,D2

[‖H ′(D1 ×D2) · x‖∞ ≤ 4log2(d/δ) · ‖x‖2
]≥ 1−δ.

By generalized Khintchine’s inequality as per (Ahle et al., 2020, Lemma 4.9), we have that for

every t ≥ 1 and every j ∈ [d 2] the j th element of H ′(D1 ×D2)x has a bounded t th moment as

follows, ∥∥∥[
H ′(D1 ×D2)x

]
j

∥∥∥
Lt

≤ t · ‖x‖2.

Hence by applying Markov’s inequality to the t th moment of
∣∣∣[H ′(D1 ×D2)x

]
j

∣∣∣ for t = log2(d/δ)

we find that,

Pr
[∣∣∣[H ′(D1 ×D2)x

]
j

∣∣∣≥ 4log2(d/δ) · ‖x‖2

]
≤ δ/d 2.

The claim follows by a union bound over all entries j ∈ [d 2].

D.2.1 Spectral property of Identity×TensorSRHT

In this section we prove Lemma 5.5.3 as follows.

Fix a matrix U ∈Rkd×n with ‖U‖2
F ≤µF and ‖U‖2

op ≤µ2. Partition U by rows into d ×n-sized

submatrices U1,U2, . . . ,Uk such that U> =
[
U>

1 U>
2 · · · U>

k

]
. We easily find that,

U>(Ik ×S)>(Ik ×S)U =U>
1 S>SU1 +·· ·U>

k S>SUk .

The proof first considers the simpler case of a TensorSRHT sketch of rank 1 and then applies

the matrix Bernstein inequality as per Lemma B.1.1 in Appendix B.1. Let R denote a rank one

TensorSRHT sketch which is a 1×d matrix defined in Definition 5.3.7 by setting m = 1 as

follows,

R
def= P · (HD1 ×HD2) ,

where P ∈ {0,1}1×d has one non-zero element at a uniformly random position in [d ]. It is

easy to verify that S>S ∈ Rd×d is the average of m independent copies of R>R, i.e., S>S =
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1
m

∑
i∈[m] R>

i Ri , for i.i.d. R1,R2, . . . ,Rm ∼ R. Therefore,

U>(Ik ×S)>(Ik ×S)U = 1

m

∑
i∈[m]

U>(Ik ×Ri )>(Ik ×Ri )U .

Hence, in order to use Lemma B.1.1, we need to bound the maximum operator norm of

U>(Ik ×R)>(Ik ×R)U as well as the operator norm of its second moment. We proceed to upper

bound the operator norm of U>(Ik ×R)>(Ik ×R)U . First, define the set

E :=
{

(D1,D2) :
∥∥∥(HD1 ×HD2)U i

j

∥∥∥2

∞ ≤ 16log2
2

(
ndµF k

εδ

)
·
∥∥∥U i

j

∥∥∥2

2
for all j ∈ [k] and all i ∈ [n]

}
,

where U i
j is the i th column of U j . By Claim D.2.1, for every i ∈ [n] and j ∈ [k],

PrD1,D2

[∥∥∥(HD1 ×HD2)U i
j

∥∥∥2

∞ ≤ 16log2
(

ndµF k

εδ

)∥∥∥U i
j

∥∥∥2

2

]
≥ 1− εδ

nkµF d
.

Thus, by a union bound over all i ∈ [n] and j ∈ [k], E occurs with probability at least 1− εδ
µF d ,

Pr[(D1,D2) ∈ E ] ≥ 1− εδ

µF d
,

where the probability is over the random choice of D1,D2. From now on, we fix (D1,D2) ∈ E

and proceed having conditioned on this event.

Upper bounding
∥∥U>(Ik ×R)>(Ik ×R)U

∥∥
op. Using the fact that (D1,D2) ∈ E , we have,

L
def= ∥∥U>(Ik ×R)>(Ik ×R)U

∥∥
op = ‖U>

1 R>RU1 +·· ·U>
k R>RUk‖op

≤ ‖RU1‖2
2 +·· ·+‖RUk‖2

2

≤ 16log2
2

(
ndµF k

εδ

)
· ‖U‖2

F

≤ 16µF · log2
2

(
ndµF k

εδ

)
.

Upper bounding
∥∥∥EP

[(
U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥

op
. Using the fact that (D1,D2) ∈ E , we find

that,

EP

[(
U>(Ik ×R)>(Ik ×R)U

)2
]
¹ EP

[∥∥U>(Ik ×R)>(Ik ×R)U
∥∥

op ·
(
U>(Ik ×R)>(Ik ×R)U

)]
= L ·EP

[
U>(Ik ×R)>(Ik ×R)U

]
.

Now it suffices to upper bound
∥∥EP

[
U>(Ik ×R)>(Ik ×R)U

]∥∥
op. For every x ∈Rd with ‖x‖2 = 1,
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we have,

x>EP
[
U>(Ik ×R)>(Ik ×R)U

]
x = EP

[ ∑
j∈[k]

(
RU j x

)2

]
= EP

[(
P (HD1 ×HD2)U j x

)2
]

= ∑
j∈[k]

∥∥U j x
∥∥2

2

= ‖Ux‖2
2 ≤µ2,

where we used EP

[(
P (HD1 ×HD2)U j x

)2
]
= 1

d ‖(HD1 ×HD2)U j x‖2 = ‖U j x‖2
2 for all x.

Since the matrix
(
U>(Ik ×R)>(Ik ×R)U

)2
is positive semi-definite for any D1, D2, and P , it

follows that

M
def=

∥∥∥EP

[(
U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥

op
≤ L ·µ2.

Combining one-dimensional TensorSRHT transforms. Recall that (D1,D2) ∈ E with proba-

bility at least 1− εδ
dµF

, therefore we have the following conditional expectation,

E
[

U>(Ik ×R)>(Ik ×R)U
∣∣ (D1,D2) ∈ E

]¹ E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[(D1,D2) ∈ E ]

¹ U>U

1−εδ/dµF
.

Furthermore, by Cauchy-Schwarz we have,

E
[

U>(Ik ×R)>(Ik ×R)U
∣∣ (D1,D2) ∈ E]

º E[
U>(Ik ×R)>(Ik ×R)U

]−E[
U>(Ik ×R)>(Ik ×R)U

∣∣ (D1,D2) ∉ E
] ·Pr[(D1,D2) ∉ E ]

ºU>U −d‖U‖2
F Pr[(D1,D2) ∉ E ] · In

ºU>U − ε

2
· In .

These two bounds together imply that
∥∥E[

U>(Ik ×R)>(Ik ×R)U
∣∣ (D1,D2) ∈ E

]−U>U
∥∥

op ≤ ε
2 .

To conclude, we recall that the Gram matrix, S>S ∈ Rd×d , is the average of m independent

copies of R>R, i.e., S>S = 1
m

∑
i∈[m] R>

i Ri , for i.i.d. R1,R2, . . . ,Rm ∼ R, and therefore,

(Ik ×S)>(Ik ×S) = 1

m

∑
i∈[m]

(Ik ×Ri )>(Ik ×Ri ).

Now note that the random variables R>
i Ri are independent conditioned on (D1,D2) ∈ E .

Hence, using the upper bounds L ≤ 16µF · log2
2

(
ndµF k
εδ

)
and M ≤ L ·µ2, which hold when
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(D1,D2) ∈ E , we have the following by Lemma B.1.1,

Pr
[∥∥U>(I ×S)>(I ×S)U −U>U

∥∥
op ≥ ε

]
≤ Pr

[∥∥U>(I ×S)>(I ×S)U −E[
U>(I ×R)>(I ×R)U

∣∣ (D1,D2) ∈ E
]∥∥

op ≥ ε

2

∣∣∣ (D1,D2) ∈ E
]

+Pr[(D1,D2) ∉ E ]

≤ 8n ·exp

(
− mε2/2

M +2εL/3

)
+δ/2

≤ δ,

where the last inequality follows by setting m = Ω
(
log n

δ log2( ndk
εδ ) · µFµ2

ε2

)
. This shows that

Ik ×S satisfies the
(
µF ,µ2,ε,δ,n

)
-spectral property.

D.2.2 Spectral property of Identity×OSNAP

In this section we prove Lemma 5.5.4 as follows.

Fix a matrix U ∈Rkd×n with ‖U‖2
F ≤µF and ‖U‖2

op ≤µ2. Partition U by rows into d ×n-sized

sub-matrices U1,U2, . . . ,Uk such that U T =
[
U>

1 U>
2 · · · U>

k

]
. We can easily see that

U>(Ik ×S)>(Ik ×S)U =U>
1 S>SU1 +·· ·U>

k S>SUk .

The proof first considers the simpler case of a rank 1 OSNAP sketch and then applies matrix

Bernstein inequality. Let R denote a rank one OSNAP, which is a 1×d matrix defined as,

Ri
def=

√
m

s
·δiσi , (D.4)

where σi for all i ∈ [d ] are i.i.d. Rademacher random variables and δi are i.i.d. Bernoulli ran-

dom variables with E[δi ] = s
m . In order to use Lemma B.1.1, we need to bound the maximum

operator norm of U>(Ik ×R)>(Ik ×R)U as well as the operator norm of its second moment.

We proceed to upper bound the operator norm of U>(Ik ×R)>(Ik ×R)U . First, define the set

E :=
{

R : (RU j )>RU j ¹C

(
m

s
ln2

(
ndkµF

εδ

)
·U>

j U j + ln

(
ndkµF

εδ

)
‖U j‖2

F · In

)
for all j ∈ [k]

}
,

where C > 0 is a large enough constant. We show that Pr[R ∈ E ] ≥ 1 − εδ
dmµF

, where the

probability is over the random choices of {σi }i∈[d ] and {δi }i∈[d ]. To show this we first need to

prove the following claim,

Claim D.2.2. For every matrix Z ∈Rd×n , if we let R be defined as in (D.4), then,

Pr
[

Z>R>R Z ¹C
(m

s
· ln2(n/δ)Z>Z + ln(n/δ)‖Z‖2

F In

)]
≥ 1−δ.

Proof. The proof is by Matrix Bernstein inequality as per Lemma D.2.1. For any matrix Z let

302



D.2. Spectral Concentration of the Tensoring of Sketches

A = Z (Z>Z +µIn)−1/2, where µ= s
m

1
ln(n/δ)‖Z‖2

F . We can write R A =
√

m
s

∑
i∈[d ]δiσi Ai , where

Ai is the i th row of A. Note that E[δiσi Ai ] = 0 and ‖δiσi Ai‖2 ≤ ‖Ai‖2 ≤ ‖A‖op. Also note that

∑
i∈[d ]

E
[
(δiσi Ai )(δiσi Ai )∗

]= ∑
i∈[d ]

s

m
‖Ai‖2

2 =
s

m
‖A‖2

F ,

and, ∑
i∈[d ]

E
[
(δiσi Ai )∗(δiσi Ai )

]= ∑
i∈[d ]

s

m
A∗

i Ai = s

m
A>A.

Therefore,

max


∥∥∥∥∥ ∑

i∈[d ]
E
[
(δiσi Ai )(δiσi Ai )∗

]∥∥∥∥∥
op

,

∥∥∥∥∥ ∑
i∈[d ]

E
[
(δiσi Ai )∗(δiσi Ai )

]∥∥∥∥∥
op

≤ s

m
‖A‖2

F .

By Lemma D.2.1,

Pr

∥∥∥∥∥ ∑
i∈[d ]

δiσi Ai

∥∥∥∥∥
op

≥ t

≤ (n +1) ·exp

(
−t 2/2

s
m ‖A‖2

F +‖A‖opt/3

)
.

Hence if t = C ′
2 ·

(√
s

m ln(n/δ)‖A‖F + ln(n/δ)‖A‖op

)
, then Pr

[∥∥∑
i∈[d ]δiσi Ai

∥∥
op ≥ t

]
≤ δ. By

plugging ‖R A‖2
op = m

s · ‖∑
i∈[d ]δiσi Ai‖2

op into the above we get the following,

Pr

[
‖R A‖2

op ≤ C ′2

2

(m

s
· ln2(n/δ)‖A‖2

op + ln(n/δ)‖A‖2
F

)]
≥ 1−δ.

Now note that for the choice of A = Z (Z>Z +µIn)−1/2, we have ‖A‖2
op ≤ ‖Z>Z‖op

‖Z>Z‖2
op+µ ≤ 1 and

also ‖A‖2
F = ∑

i
λi (Z>Z )

λi (Z>Z )+µ ≤
∑

i λi (Z>Z )
µ = m

s ln(n/δ). By plugging these into the above we find

that,

Pr
[∥∥R Z (Z>Z +µIn)−1/2

∥∥2
op ≤C ′2 · m

s
· ln2(n/δ)

]
≥ 1−δ.

Hence,

(Z>Z +µIn)−1/2Z>R>R Z (Z>Z +µIn)−1/2 ¹C
m

s
· ln2(n/δ)In ,

with probability 1−δ, where C =C ′2. Composing both sides of the above on the left and right

with the positive definite matrix (Z>Z +µIn)1/2 gives (recall that µ= s
m · ‖Z‖2

F
ln(n/δ) ),

Z>R>R Z ¹C
(m

s
· ln2(n/δ)Z>Z + ln(n/δ)‖Z‖2

F In

)
.

By applying Claim D.2.2 with failure probability εδ
dkµF

on each of U j ’s and then applying union

bound, we find that Pr[R ∈ E ] ≥ 1− εδ
dmµF

. From now on, we condition on R ∈ E and proceed.
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Upper bounding
∥∥U>(Ik ×R)>(Ik ×R)U

∥∥
op. From the fact that we have conditioned on R ∈ E,

note that,

L
def= ∥∥U>(Ik ×R)>(Ik ×R)U

∥∥
op = ∥∥U>

1 R>RU1 +·· ·U>
k R>RUk

∥∥
op

≤
∥∥∥∥∥ ∑

i∈[k]
C

(
m

s
ln2

(
ndkµF

εδ

)
·U>

j U j + ln

(
ndkµF

εδ

)
‖U j‖2

F · In

)∥∥∥∥∥
op

=
∥∥∥∥C

(
m

s
ln2

(
ndkµF

εδ

)
·U>U + ln

(
ndkµF

εδ

)
‖U‖2

F · In

)∥∥∥∥
op

≤C

(
m

s
ln2

(
ndkµF

εδ

)
·µ2 + ln

(
ndkµF

εδ

)
·µF

)
.

Upper bounding
∥∥∥E[(

U>(Ik ×R)>(Ik ×R)U
)2

]∥∥∥
op

. Using the condition R ∈ E , it follows that

E
[(

U>(Ik ×R)>(Ik ×R)U
)2

∣∣∣R ∈ E
]

¹ E
[∥∥U>(Ik ×R)>(Ik ×R)U

∥∥
op ·

(
U>(Ik ×R)>(Ik ×R)U

)∣∣∣R ∈ E
]

¹ L ·E[
U>(Ik ×R)>(Ik ×R)U

∣∣R ∈ E
]

¹ L

Pr[R ∈ E ]
·U>U

where the last line follows from the fact that the random variable U>(Ik ×R)>(Ik ×R)U is posi-

tive semidefinite and the conditional expectation can be upper bounded by its unconditional

expectation as follows,

E
[

U>(Ik ×R)>(Ik ×R)U
∣∣R ∈ E

]¹ E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[R ∈ E ]

= U>U

Pr[R ∈ E ]
.

Therefore, we can bound the above operator norm as follows,

M
def=

∥∥∥E[(
U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥

op
≤ 2L ·∥∥U>U

∥∥
op ≤ 2L ·µ2.

Combining one-dimensional OSNAP transforms. To conclude, we note that the Gram ma-

trix, S>S ∈Rd×d , is the average of m independent copies of R>R with R defined as in (D.4) –

i.e., S>S = 1
m

∑
i∈[m] R>

i Ri for i.i.d. R1,R2, . . . ,Rm ∼ R, and therefore,

(Ik ×S)>(Ik ×S) = 1

m

∑
i∈[m]

(Ik ×Ri )>(Ik ×Ri ).

Note that by union bound, Ri ∈ E simultaneously for all i ∈ [m] with probability at least 1− εδ
dµF

.

Now note that the random variables R>
i Ri are independent conditioned on Ri ∈ E for all
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i ∈ [m]. Furthermore, we can bound the following conditional expectation,

E
[

U>(Ik ×R)>(Ik ×R)U
∣∣R ∈ E

]
º E[

U>(Ik ×R)>(Ik ×R)U
]−E[

U>(Ik ×R)>(Ik ×R)U
∣∣R ∉ E

] ·Pr[R ∉ E ]

ºU>U −d‖U‖2
F Pr[R ∉ E ] · In

ºU>U −d‖U‖2
F · ε

2
· In .

Moreover, we have shown earlier that,

E
[

U>(Ik ×R)>(Ik ×R)U
∣∣R ∈ E

]¹ E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[R ∈ E ]

¹ U>U

1− εδ
dµF

.

These two bounds together imply that,∥∥E[
U>(Ik ×R)>(Ik ×R)U

∣∣R ∈ E]−U>U
∥∥

op ≤ ε/2.

Now, using the upper bounds L ≤C
(

m
s ln2

(
ndkµF

εδ

)
·µ2 + ln

(
ndkµF

εδ

)
·µF

)
and M ≤ 2Lµ2, which

hold when R ∈ E , we have that by Lemma B.1.1 (see Appendix B.1),

Pr
[∥∥U>(Ik ×S)>(Ik ×S)U −U>U

∥∥
op ≥ ε

]
≤ Pr

[∥∥U>(Ik ×S)>(Ik ×S)U −E[
U>(Ik ×R)>(Ik ×R)U

∣∣R ∈ E
]∥∥

op ≥ ε

2

∣∣∣R ∈ E
]
+Pr[R ∉ E ]

≤ 8n ·exp

(
− mε2/8

M +εL/3

)
+δ/2 ≤ δ,

where the last inequality follows by setting the parameter s =Ω
(
log2

(
ndkµF

εδ

)
log nd

δ · µ
2
2
ε2

)
and

m =Ω
(
log

(
ndkµF

εδ

)
log nd

δ · µ2µF

ε2

)
. This shows that Ik ×S satisfies the

(
µF ,µ2,ε,δ,n

)
-spectral

property.
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