
Mitochondrial cristae modeled as an out-of-equilibrium membrane driven by
a proton field
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As the places where most of the fuel of the cell, namely ATP, is synthesized, mitochondria are crucial organelles
in eukaryotic cells. The shape of the invaginations of the mitochondria inner membrane, known as cristae,
has been identified as a signature of the energetic state of the organelle. However, the interplay between
the rate of ATP synthesis and the crista shape remains unclear. In this work, we investigate the crista
membrane deformations using a pH-dependent Helfrich model, maintained out-of-equilibrium by a diffusive
flux of protons. This model gives rise to shape changes of a cylindrical invagination, in particular to the
formation of necks between wider zones under variable, and especially oscillating, proton flux.

I. INTRODUCTION

Mitochondria are important organelles of eukaryotic
cells often called the powerhouses of the cell, due to
their role in the synthesis of Adenosine Tri-Phosphate
(ATP) from Adenosine Di-Phosphate (ADP) and an in-
organic Phosphate (Pi). These organelles of micromet-
ric size comprise an inner membrane (IM), which delim-
its a region called the matrix, and an outer membrane
(OM)1,2. The volume between the IM and the OM is
called the intermembrane space (IMS). The inner mem-
brane presents numerous tubular invaginations of nano-
metric size, called cristae, where ATP synthesis takes
place. The liquid inside the cristae is isolated from the
IMS by the cristae junction, an aggregate of proteins that
limit the diffusion3. Recently, it has been shown that
cristae have a higher membrane potential than the inter-
vening boundary membranes, involving confined proton
loops and individual functioning of each cristae within
the same mitochondria4. It has been observed exper-
imentally in isolated mitochondria that the cristae as-
sume different shapes depending on the state of ATP
production. Five stationary states (State I to State V)
have been introduced to describe the energy status of iso-
lated mitochondria5, but most present research focuses
on State III and State IV, since it allows to mimic the in
vivo situation where an increase of energy demand and
energy production occurs. Here, we will only consider
these two states. A high rate of proton injection by the
respiratory chain and of ATP production (State III) is
associated with bumpy and wide cristae tubules, while a
low rate of proton injection and ATP production State
IV) is associated to a more regular cylindrical shape as
illustrated by Fig. 1. Moreover, recent experiments em-
ploying super-resolution imaging techniques have directly
evidenced the dynamical deformations of cristae in culti-
vated cells6.

The endothermic reaction ADP +Pi → ATP , is cat-
alyzed by the ATP-synthase which is located in the

FIG. 1. Cross section of a mitochondrion in different states of
ATP production7. (a) State III, for which sugar in excess is
available leading to a high rate of ATP production. (b) State
IV, for which no sugar is available leading to a vanishing ATP
production rate. Mitochondria (left to right) have diameters
of 1500 nm and 500 nm.

curved zone of the crista membrane8. Traditionally, the
ATP synthase enzyme was supposed to use the bulk pro-
ton electrochemical potential gradient, involving both the
bulk pH and the electric potential difference between the
cristae and the matrix, as energy supply9. More recently,
it has been established that the proton flux going down
the gradient and allowing the rotor to turn with respect
to the stator in the ATP synthase enzyme is probably lo-
calized on the surface of the crista membrane10,11. This
flux is established and maintained by the respiratory
chain which injects protons from the matrix on the IMS
part of the crista membrane. The proteins of the respira-
tory chain are located in the weakly curved zones of the
invagination and thus are spatially separated from the
ATP-synthases. Recent in vivo pH measurement show
that the pH decreases along the crista membrane between
the proton source (the respiratory chain proteins) and the
proton sink (the ATP synthase)12.

Membrane deformation driven by out-of-equilibrium
chemical dynamics is an ubiquitous phenomenon in living
cells. A mechanism of hydro-osmotic instabilities gener-
ated by ion pumps has been recently suggested to de-
scribe the dynamics of the contractile vacuole complex13.
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Surface deformation driven by diffusion of an ‘active’
species is commonly observed in vivo such as the division
of eukaryotic cells by accumulations of myosin motors at
the cell ring14. A phenomenological model has been pro-
posed to study the coupling between diffusion of active
agents and surface shape by introducing a modified Hel-
frich model associated with an active tension coupled to
the 2-dimension diffusion of the chemical regulator on
the deforming surface15. Note that the coupling between
a diffusive active agent and the bending of a membrane
has not been included in the model16.

The dynamical coupling between crista shape and ATP
production rate is a recent discovery and the physico-
chemical mechanism at the origin of this coupling still
needs to be characterized. The lipid composition of the
IM has been pointed out as a key point for the ATP-
synthesis machinery. Indeed, the crista membrane is en-
riched in cardiolipin, and loss of mature cardiolipins af-
fects the shape of the cristae and perturbs its function17.
These lipids possess a protic hydrophilic head and in vitro
experiments have shown that tubular invaginations can
be created by an externally controlled pH gradient in gi-
ant vesicles comprising cardiolipins18. A theoretical de-
scription modeling these giant vesicles as locally planar
bilayer membranes with lipid density and composition
heterogeneities in each monolayer19 has successfully re-
produced the dynamics of the membrane in the regime
of small deformations20. In this model, composition can
represent e.g. the acid and the basic form of cardiolip-
ins, which is controlled by the local pH field. However,
because the crista membrane is enriched in proteins, rep-
resenting up to 50 per cent of its mass, a detailed model
describing a pure lipid bilayer and including the slippage
between the two monolayers may not be necessary to
describe this system. Therefore, here we consider a sim-
pler and more phenomenological Helfrich model with pH-
dependent parameters.

This work proposes a model for the dynamics of the
deformation for the crista membrane between state IV
and state III. We start with a reaction-diffusion system
describing the proton flux on a cylinder (representing the
crista membrane) which contains a proton source, a pro-
ton sink and a reflecting barrier. The resulting proton
concentration field will be considered as the driving force
inducing the membrane deformation. We then propose
a pH-dependent Helfrich model, in which the bending
modulus, spontaneous curvature and tension depend on
the local proton concentration, assuming small variations
of this concentration. We derive the Green function of
the system and study the phase diagram of the crista
shape in this model. Finally we solve the hydrodynamic
equations of the system for a proton field oscillating be-
tween the state III and the state IV and show that such
a model generates dynamical deformations of the mem-
brane, as well as the formation of necks and bumps, along
the cylinder leading to a rougher surface in state IV. The
last part is devoted to the conclusion.

II. MODEL OF A MITOCHONDRIAL CRISTA

A. Proton field along the crista

We model the crista as an axisymmetric cylinder of
membrane of finite length L closed by a spherical cap
(see Fig. 2). In experimental observations21, cristae fea-
ture different shapes, the most common being an elon-
gated pancake, with rows of ATP synthase situated at
the rim of the protrusion and respiratory chain proteins
located in the flat zone. We nevertheless chose to work
in the cylinder geometry, which is a simple special case of
this pancake shape. Indeed, this geometry is analytically
tractable, and despite its simplicity, it captures several
key ingredients of the system, such as the nanometric
confinement and the presence of zones of various curva-
tures. The protons diffuse on the crista surface at the
concentration

[H+](s) = [H+]IV + h(s), (1)

where s is a coordinate parameterizing the position along
the tube, while [H+]IV represents the constant concentra-
tion in state IV taken as a reference, and h(s) is the vari-
ation in the proton concentration induced by the func-
tioning of the respiratory chain and the ATP synthases.
Note that the concentration is expressed as a number
of protons per unit of length, taking advantage of the
one-dimension symmetry of the problem. At one end of
the cylinder, s = 0, one finds a reflecting barrier for the
protons modeling the cristae junction, while at the other
end, s = L, a ring-shaped proton sink models the ATP
synthases. Between the two, at s = Ls, a ring-shaped
proton source models the respiratory chain. This model
for the geometrical confinement of the ATP synthesis ma-
chinery takes into account the spatial separation of the
proton source and sink and their respective localization
in zones of low and high curvature21.

We assume that h(s) is small, i.e. h(s)/[H+]IV � 1,
and that the tube shape does not deviate much from a
regular cylinder. In this framework, the equation gov-
erning the proton concentration on the surface can be
written as follows,

∂h(s, t)

∂t
= D

∂2h(s, t)

∂s2
+ Sin(s, t)− Sout(s, t) (2)

∂h(s, t)

∂s

∣∣∣∣
s=0

= 0 (3)

where Eq. (3) illustrates the reflecting barrier, D is the
diffusion coefficient and Sin(s, t) and Sout(s, t) are the
source and the sink of proton respectively. We consider
a system oscillating with a period T = 2π/ω between
a state IV of homogeneous proton concentration and a
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FIG. 2. Schematic representation of a crista. A. The plots
represent the proton concentration on the surface in state III
and IV. The tubes represent the shape of the invagination in
state III and IV. B. Deformation fields of the membrane and
intrinsic basis of the deformed surface.

state III associated with a maximal proton flux and write

Sin(s, t) =
ksc (1− cos(ωt))

2
√

2π∆2
1

exp

(
−(s− Ls)2

2∆2
1

)
(4)

Sout(s, t) =
ksk (1− cos(ωt))

2
√

2π∆2
2

(
[H+]IV + h(s, t)

)
× exp

(
−(s− L)2

2∆2
2

)
(5)

with ksc the maximal rate of injection of the proton
source, ksk([H+]IV + h(s, t)) the maximal rate of the
proton sink. The spatial extensions of the source and
of the sink are modeled by two Gaussian functions of
widths ∆1 and ∆2 respectively. The system oscillates
between state IV (Sin(s, t)=0, Sout(s, t)=0) for tIV = 0
modulo T, noted [T ], and state III (where the source
and the sink function at their top rates) for tIII = T/2
[T ] with a frequency ω. We assume that there is no
proton accumulation in the cristae during a period, i.e.∫ L

0
ds
∫ 2π/ω

0
dtSin(s, t) =

∫ L
0
ds
∫ 2π/ω

0
dtSout(s, t), which

sets the value of the ratio ksc/ksk.
The proton concentration h(s, t) is obtained by solving

numerically Eq. (3) with an initial vanishing concentra-
tion field h(s, 0) = 0, using the parameter values given
in Table I. The profiles of the proton concentration along
the tube at different times, shown in Fig. 3, are obtained
assuming a diffusion coefficient of D=10−7 cm2.s−110,
which corresponds to the estimated diffusion coefficient
of protons along a lipid membrane. The system oscillates
between state IV, in which the source Sin(s, t) and the
sink Sout(s, t) vanish and the field h(s, tIV) is uniform and
equal to zero along the cylinder and state III, for which
the proton concentration is approximately homogeneous
between the junction (L=0) and the source (L = Ls) and

L 150 nm R 10 nm

ksc 600 s−112 ksk 2.7.104 s−112

D 10−7 cm2.s−110 ω 0.63 s−1

σ0 10−7 N.m−120 κ0 10−19 N.m

ηb 10−9 N.s.m−120 ηs 5.10−10 N.s.m−120

TABLE I. Parameter values estimated from recent experimen-
tal measurements.
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FIG. 3. Dynamics of the proton field along the cristae. The
plots represent the field h(s, t) solution of Eq. (3) for param-
eter values given in Table I and for tIV = 0 [T ], tIV→III = T/4
[T ], tIII = T/2 [T ], tIII→IV = 3T/4 [T ]. The concentration
h(s, t) is expressed in proton per nm.

decreases between the source and the sink. Note that pro-
tons diffuse with a characteristic time τD = L2/D=0.25
ms between the source and the sink. An injection rate ksc
equal to 600 protons per second at the maximum rate,
which is a reasonable value for a crista of this size12,
leads to a concentration of 8 10−2 proton per nanometer.
These plots are obtained in the case of an oscillating pe-
riod much longer than the typical diffusion time along
the tube, 2π/ω � L2/D.

B. Model of the membrane

To model the membrane of a mitochondrial crista, we
start from the Helfrich model for elastic membranes. De-
veloped by Wolfgang Helfrich in 197322, this effective en-
ergy functional of a membrane takes into account molec-
ular properties of lipid membranes such as the fluidity
and the absence of in-plane shear stress but is written at
a continuous coarse-grained scale. We modify the stan-
dard model by introducing pH dependent parameters,

H =

∫
Ω

[
1

2
κ(s)(C − C0(s))2 + σ(s)]dA, (6)
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where C is the local curvature of the surface and dA the
area of a surface element. The surface tension σ(s), the
bending modulus κ(s), and the spontaneous curvature
parameter C0(s) are assumed to depend linearly on the
surface proton concentration as follows,

κ(s) = κ0 + h(s)δκ (7)

σ(s) = σ0 + h(s)δσ (8)

C0(s) = C00 + h(s)δC0. (9)

with h(s) defined in Eq. (1). For simplicity the Gaus-
sian curvature is not considered here. In this chemico-
mechanical model, the chemical reaction of ATP synthe-
sis generates a dynamical field h(s, t) on the membrane
and will drive the deformation of the cylinder.

III. DYNAMICAL EQUATIONS OF THE SURFACE
DEFORMATION

We consider an initial equilibrium state defined by a
vanishing field h(s, t) = 0 and a finite cylinder of length
L and of radius R. In this case, the Hamiltonian given
in Eq. (67) restricts to the Helfrich model in which the
spontaneous curvature C00 is a phenomenological param-
eter, illustrating an asymmetry in the membrane. A non-
vanishing, non homogeneous proton field h(s) will lead
to a deformed cylinder. The initial surface and the de-
formed surface, can be respectively parametrized by the
three-dimensional vectors X0 and Xt, defined as follows:

Xt = X0 + δXt, (10)

with

X0 =

 R cos(θ)
R sin(θ)

z

 , δXt =

 un(z, t) cos(θ)
un(z, t) sin(θ)

us(z, t)


with z ∈ [0, L], θ ∈ [0, 2π]. (11)

The surface is thus parametrized by the variables z, θ
such that any point on this surface can be uniquely rep-
resented by a value of each of these parameters: Xt(s, θ).
The deformed state Xt is characterized by two fields
un(z, t) and us(z, t) defined in Fig. 2B. In this work,
we consider only small deformations, i.e. us(z, t)/R,
un(z, t)/R much smaller than 1. In the following, we
will work in the intrinsic basis of the deformed surface
represented in Fig. 2B, and use the curvilinear abscissa
s. To first order, the derivatives with respect to z and s of
the deformation fields are equal: ∂zui(z, t) = ∂sui(s, t),
with i = s, n, and we will use the second ones.

A. Some elements of differential geometry for an
axisymmetric membrane

We wish to describe the dynamics of the axisymmet-
ric membrane Xt driven by the concentration field h(t).
Let us first introduce some terminology and results from

differential geometry and their expressions to the first or-
der in the deformation field. Note that to simplify the
notations, we denote the fields un(s, t) and us(s, t) as un
and us and the spatial derivative ∂sui(s, t) = u′i, with
i = s, n. The tangent vectors on the surface are defined
as

es = ∂sXt =

u′n cos(θ)
u′n sin(θ)
1 + u′s(s)

 ,

eθ = ∂θXt =

−(R+ un) sin(θ)
(R+ un) cos(θ)

0

 . (12)

The normal vector can be expressed as

n =
eθ ∧ es
| eθ ∧ es |

=

cos(θ)
sin(θ)
−u′n

 , (13)

and the metric of the surface is defined as gab = ea · eb,
with (a = (θ, s), b = (θ, s)) and is equal to

gab ≈
(
R2 + 2Run 0

0 1 + 2u′s

)
. (14)

The curvature tensor, also known as the second fun-
damental form, is defined as Kab = ea · ∂bn using the
convention that for a pointing outward normal vector,
the curvature is positive23. It gives :

Kab =

(
R+ un 0

0 −u′′n

)
. (15)

Finally, the sum C = Ks
s+Kθ

θ of the principal curvatures
can be written as,

C =
1

R
− (

un
R2

+ u′′n). (16)

using Ka
b = Kakg

kb, with gab = (gab)
−1.

Finally, we recall the expression of the covariant deriva-
tive of a tangential vector xaea,

∇axb = ∂ax
b + Γbacx

c (17)

and of a tensor tabea ⊗ eb,

∇atbc = ∂at
bc + Γbadt

dc + Γcadt
bd, (18)

where the Christoffel symbols can be written as

Γsab =

(
−Ru′n 0

0 u′′s

)
, Γθab =

(
0

u′
n

R
u′
n

R 0

)
. (19)

To characterize the dynamical deformation of the tube,
we introduce the flow velocity of the surface elements of
the membrane,

v(s, t) = vs(s, t)es + vn(s, t)n (20)

with vs = ∂tus and vn = ∂tun. It is composed of an
in-plane flow vs = vses and a term describing the defor-
mation of the surface vn = vnn.
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B. Stress tensor acting on the deforming surface

Next, we determine the stress tensor f acting on the
surface Xt. General surface stresses are complex objects
that one can grasp by asking the question: “What forces
should be exerted onto a membrane edge with unitary
length to prevent it from shrinking?”23. In this case, the
stress tensor is the sum of two contributions: a mechan-
ical stress tensor fH deriving from the Helfrich energy
given in Eq. (67) and a viscous stress tensor fη.

The mechanical stress tensor fH can be written as a

3x2 tensor24,25 that can be decomposed into a surface
stress tensor fabH generating forces tangent to the sur-
face and a 2x1 tensor fnH = fanH n × ea generating forces
normal to the surface. To derive the expression of f, we
follow the approach developed by Guven and coworkers,
presented in Appendix A. Instead of varying the shape of
the membrane ( Xt → Xt + δXt) and explicitly tracking
the changes of the intrinsic basis, the metric, the cur-
vature and the energy of the deformed membrane, this
elegant approach enforces the geometric relations asso-
ciated with the fundamental forms of the membrane by
introducing Lagrange multipliers. We introduce the ex-
tended functional

Hc = H +

∫
Ω

λab(gab − ea · eb)dA+

∫
Ω

Λab(Kab − ea · ∇bn)dA+

∫
Ω

fa · (ea −∇aX)dA

+

∫
Ω

λa⊥(ea · n)dA+

∫
Ω

λn(n2 − 1)dA. (21)

in which H is given in Eq. (67), the matrices λab and
Λab enforce the definition of metric and the curvature,
fa pins the basis vector to the tangent of the surface, λa⊥
enforces the normal vector to be perpendicular and λn its
normalisation. The minimisation of the Hamiltonian Eq.
(21) with respect to the, now, 12 independent functions
gives26

fabH = T ab −HacKb
c (22)

fanH = −(∇bHab) (23)

with

Hab =
δH
δKab

(24)

T ab = − 2
√
g

δ
√
gH

δgab
(25)

with H = 1
2κ(s)(C − C0(s))2 + σ(s), the mechanical en-

ergy density of the membrane (Details of the calculation
are given in Appendix A).

In our case, the mechanical stress associated to the
surface Xt depends both on the deformation fields
(us(s, t), un(s, t)) and on the concentration field h(s, t).

The surface stress tensor fabH and the normal stress tensor
fanH expanded to first order in the fields can be expressed
as

fabH = fabH0 + fabH1 (26)

fanH = fanH0 + fanH1 (27)

with

fabH0 =

(
κ0(1−X2)−2σ0R

2

2R4 0

0 − (1−X)2κ0

2R2 − σ0

)
, (28)

and fanH0 = 0, and where the first order part,

fabH1 = fabh + fabM (29)

fanH1 = fanh + fanM (30)

is the sum of a term fab1h depending on the concentration
field h(s, t) and of a term fab1M depending on the defor-
mation fields un(s, t), us(s, t).

Using the expression of the Hamiltonian given in Eq.
(67), the dependences of κ, C00 and σ on h(s, t) given in
Eqs. (7)-(9) and the expression of the stress tensor given
in Eq. (29, 79), we derive the expression of the stress
tensor to first order in the fields and find,

fab1M =

(
(2R2σ0+(2−X2)κ0)un(s)−R2Xκ0u

′′
n(s)

R5 0

0 1−X
R3 κ0un(s) + (1−X)2κ0+2R2σ0

R2 u′s(s)

)
(31)

fan1M =
(

0,
κ0

R2
u′n(s) + κ0u

′′′
n (s)

)
(32)

fab1h =

(
− 2R2δσ+2RXκ0δC0−(1−X2)δκ

2R5 Rh(s) 0

0 2R((1−X)κ0δC0−Rδσ)−(1−X)2δκ
2R2 h(s)

)
(33)

fan1h =

(
0,
Rκ0δC0 − (1−X)δκ

R
h′(s)

)
. (34)
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The stress tensor depending on the proton field in-
volves both the field h(s, t) in its tangential component
fab1h, and its spatial derivative h′(s, t) in its normal com-
ponent fan1h . The latter contribution will vanish for a
constant field h. In fact, a constant field h simply in-
duces a renormalisation of the parameters of the Helfrich
model. By contrast, a spatially non homogeneous field
h(s, t) will generate forces on the normal direction that
tend to pinch or expand the tube.

The viscous stress tensor for a deforming membrane
is a surface tensor that can be obtained from the two-
dimensional strain rate,

vab =
1

2
(∇avb +∇bva) +Kabvn (35)

where v is given in Eq. (20), that is derived from the
strain tensor of a three dimensional fluid shell taken in
the limit of a small thickness27. The viscous stress in
compressible thin films can be expressed as

fab,η = 2ηs(vab −
1

2
vccgab) + ηbv

c
cgab, (36)

which involves the two-dimensional strain rate vab and
phenomenological coefficients ηs and ηb that are the
shear and bulk viscosity of the film. The viscous stress
fη = fab,ηe

a × eb can be written as 2x2 matrix, whose
components are given in covariant coordinates in Eq.
(36)23. It yields the force generated by the flow within
the membrane surface. Note that we do not account for
the bulk viscosity of the fluid surrounding the membrane

in our force balance. Indeed, its contribution can be ne-
glected for strongly curved membrane buds28 and tubes29

with characteristic sizes smaller than a few micrometers,
which is the appropriate regime for cristae.

In the absence of deformation, i.e. when the fields vn,
vs, un, us, h vanish, the viscous stress also vanishes and
the equilibrium shape of the surface can be obtained by
setting to zero the divergence of the stress tensor fabH,0
given in Eq. (28).

C. Hydrodynamic equations for the tubular membrane

We now consider the response of the membrane to a
time varying field, h(s, t). In the absence of inertia, cor-
responding to the low-Reynolds number regime which is
appropriate at the lengthscales considered, the dynamics
of the system derives from the force balance, which can
be written in the tangential basis of the surface as,

∇afab +Kabf
a
n = 0, (37)

∇afan −Kabf
ab = 0. (38)

where the stress tensor f = fH + fη is the sum of the
viscous and the mechanical stress tensor. The first equa-
tion, Eq. (37), corresponds to the force balance on the
surface along es and eθ. The third equation, Eq. (38),
often called the shape equation of the surface is the force
balance in the normal direction. Expanding the covari-
ant derivatives in Eqs. (37 ,38) and collecting the first
order terms in the fields vn, vs, un, us, h, we derive the
hydrodynamic equations governing the time evolution of
the system

(ηs + ηb)∂sv
s
s + (ηb − ηs)∂svθθ + ∂sf

s
H1,s +

(
fsH0,s − fθH0,θ

)
Γssθ +Rfns = 0 (39)

(ηs + ηb)
vss
R

+ (ηb − ηs)
vθθ
R

+ ∂sf
ns
H1 − usfssH0 −RfssH1 + u′′nf

θθ
H0 = 0. (40)

The force balance along eθ vanishes for symmetry rea-
sons. Replacing the mechanical tensors fab0H , fab1H , fan1H by
their expressions given in Eqs. (28,29,79), we finally ob-
tain the dynamical equations of the system as a function
of the velocity, displacement and concentration fields:

a1 v
′
n + a2v

′′
s + a3h

′ = 0 (41)

b1 vn + b2v
′
s + b3un + b4u

′′
n + b5u

′′′′
n

+ b6h+ b7h
′′ = 0 (42)

where the coefficients ai, (i=1,...,7) and bi, (i=1,...,3) are
given in Appendix 2 and where u′i and v′i note the spatial
derivative u′i = ∂sui(s, t) and v′i = ∂svi(s, t) for i = s, n.

IV. STATIC GREEN FUNCTION OF AN INFINITE
MEMBRANE CYLINDER

To gain physical insight on the model and on the static
solutions of Eqs. (39, 40), we derive the static Green
function of the system. We consider as a reference equi-
librium state an infinite cylinder of radius R and a van-
ishing field h(s)=0. The shape equation for this system,
given in Eq. (38), can be written as

σ0 −
(1−X2)κ0

2R2
= 0, (43)

where we have employed the expression of fabH0 given in
Eq. (28). Given that R, σ and κ are necessarily positive,
this equation admits a solution for

X = C00R ∈ ]− 1, 1[. (44)
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In this range (see Fig. 4A), the radius of the equilib-
rium cylinder R can be expressed as a function of the
parameters of the non-perturbed Helfrich model,

R =
1√

C2
00 + 2σ0

κ0

. (45)

The stationary shape of a deformed cylinder associated
with a perturbation field h(s) 6= 0 is given by the dis-
placement fields (un(s), us(s)) that are solutions of the
Eqs. (41,42) where vn and vs are set to zero. Replac-
ing the coefficients (ai, bj) by their expressions given in
Appendix 2, we obtain,

(
4Rσ0δC0

1 +X
− 2δσ − δκ(1−X)2

R2

)
h′(s) = 0 (46)

− 2σ0

R2(1−X2)

(
un(s) + 2R2Xu′′n(s) +R4u′′′′n (s)

)
=

2((1 +X)δσ −Rσ0δC0)

R(1−X2)
(h(s) +R2h′′(s)). (47)

The first equation corresponds to the force balance
along the vector es. The second equation is the shape
equation. We observe that this system of equations does
not depend on us. A non-homogeneous perturbation
field h(s), which yields non-homogeneous tension, bend-
ing rigidity and spontaneous curvature, can lead to a sta-
tionary shape in the cylinder geometry only if the condi-
tion (

4Rσ0δC0

1 +X
− 2δσ − δκ(1−X)2

R2

)
= 0 (48)

between the perturbation parameters, (δκ, δσ, δC0), is
satisfied. Assuming that this condition holds, we express
δκ as a function of δσ and δX,

δκ =
4Rσ0

(1−X)
2

(1 +X)
δC0 −

2R2

(1−X)2
δσ. (49)

Let us now consider a localized perturbation in the
proton concentration: h(s) = h0δ(s) with h0 = 1 intro-
duced to dimension h(s) , and derive the Green function
Gn(s) yielding the deformation field un(s) in response
to this perturbation. Performing a Fourier transform of
the shape equation given in Eq. (47) and introducing
ũn(q) = 1/2π

∫
dseiqsun(s), the normal deformation field

in the Fourier space, we find

ũn(q) ≡ G̃n(q) =
R(q2R2 − 1)[(1 +X)δσ −Rσ0δC0]

σ0

√
2π(1− 2Xq2R2 + q4R4)

.

(50)

Performing the inverse Fourier transform of G̃n given
in Eq. (50), we obtain the expression of the Green func-
tion in real space

Gn(s) = GnR sin (
|s|
R

√
1 +X

2
) exp (−|s|

R

√
1−X

2
)

(51)
where we have introduced

Gn = Gnσ(X)
δσ

σ
+GnC(X)RδC0

with

Gnσ(X) = − (1 +X)√
2
√

1 +X
, GnC(X) =

1√
2
√

1 +X
.(52)

The deformation induced by a localized perturbation is
thus an oscillating and exponentially decaying function,
as shown in Fig. 4B1. The characteristic lengths of os-
cillation λo and decay λd are given respectively by

λo = R
√

2
1+X (53)

λd = R
√

2
1−X (54)

for X satisfying the condition given in Eq. (44).
Fig. 4B2 represents λo and λd as functions of X for the

range of possible equilibrium cylinders. The decay length
λd is an increasing function of X that diverges for X =
1. Thus, cylinders with larger spontaneous curvatures
are deformed on a longer range by a heterogeneous h.
The oscillation length λo, on the contrary, is a decreasing
function of X.

The limit X = 1 is associated with a phenomenon of
buckling (λd = 0, λo = R) i. e. an infinite oscillat-
ing deformation wave. Indeed, X = 1 corresponds to a
cylinder with curvature along eφ equal to the spontaneous
curvature of the membrane. A sphere of radius R is an
equilibrium shape of such a membrane. A perturbation
of the cylinder will tend toward such shapes by forming
a succession of drops. Conversely, the limit X = −1 cor-
responds to a cylinder folded in the direction opposite
to that of the spontaneous curvature. The deformation
induced by a perturbation will then be purely decaying
with a characteristic length λd =R, thus minimizing the
energy of deformation.

The respective amplitudes Anσ, AnC of the deforma-
tions induced by perturbations in σ or in C0, and defined
as

Anσ(X) = Gnσ(X)
Gn(sm)

Gn
, (55)

AnC(X) = GnC(X)
Gn(sm)

Gn
, (56)

are plotted with respect to X in Fig. 4B3. Here, we have
introduced sm =

√
2/
√

1 +X sin−1(
√
X + 1/

√
2), which

is the coordinate of the maximum of Gn(s)/Gn. The ab-
solute values of the amplitudes Anσ, AnC are increasing
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functions of X but possess opposite signs. An increase
of the tension (δσ >0, h(s) > 0) leads to a constriction
of the cylinder (since Anσ < 0). On the contrary, an in-
crease of the spontaneous curvature (δC0 > 0, h(s) > 0)
leads to a dilatation of the cylinder (since AnC > 0). A
perturbation in the spontaneous curvature δC0R = 0.1
(respectively in the surface tension δσ/σ = 0.1) will in-
duce a variation of the radius of 5 percent (respectively
10 percent), for X → 1. For X negative or 0 < X � 1,
the deformation induced by a variation of h is negligible.

Fig. 4C shows three-dimensional representations of the
non-perturbed and of the perturbed cylinder for X = 0.9,
and with δσ > 0 and δσ < 0, respectively. This illus-
trates that the model proposed in Eq. (67) can generate
tubular membrane shapes of various curvature that can
resemble mitochondrial cristae.

A.

-1 0 1

oscillating exponentially 
decay

pure
decay buckling

no stable equilibrium 
shape

no stable equilibrium 
shape

X
B.

C.

X = -0.9

X =0

X =0.9
-10 -5 0 5 10

-0.10

-0.05

0.00

0.05

s /R

G
n(

s )
/R

λo /R
λd /R

-1.0 -0.5 0.0 0.5 1.0
0
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2

3

4

5

X

A nσ
AnC

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.5

0.0

0.5

X

1. 2.

3.
1.

2.

3.

FIG. 4. A. Stability diagram of a Helfrich cylinder as a func-
tion of X = C00R. B. 1. Gn(s)/R, Normalized Green func-
tions for different values of X = −0.9, 0, 0.9 and for δσ = 0.15
and δC0 = 0. 2. Characteristic lengths of oscillation λ0

and decay λd as a function of X. 3. Maximal amplitude
of the deformations driven respectively by a variation of σ,
Anσ, and by a variation of C0, AnC . C. Three dimensional
representations of a cylinder (top) deformed by h(s) = δ(s)
for (X=0.96, δσ = 0.2, δκ = 0, δC0 = 0) (middle) and for
(X=0.96, δσ = −0.2, δκ = 0, δC0 = 0) (bottom). All quanti-
ties are dimensionless.

Using the expression of the Green function given in Eq.
(51), we can find the stationary shapes generated by any
proton concentration field h(s) through

un(s) =

∫ ∞
−∞

h(x)Gn(s− x)dx. (57)

As a practical illustration, in Fig. 5, we consider a step
function for h(s),

h(s) = −1 s < 0, = 1 s > 0 (58)

C.

- 10 - 5 0 5 10
- 2
- 1
0
1
2

s

h

- 15 - 10 - 5 0 5 10 15
- 0.4
- 0.2
0.0
0.2
0.4

s

u n

B.

A.

FIG. 5. Infinite cylinder submitted to a step of proton con-
centration. A. Proton concentration h(s) along the cylinder.
B. Deformation field un(s) induced by a step of proton for
X = 0.9, δσ = 0.1, δC0 = −0.1. C. Three-dimensional rep-
resentation of the corresponding shape. All quantities are
dimensionless.

(see Fig. 5A). The corresponding deformation field un(s)
obtained using Eq. (57) is continuous, unlike the input
step function, and is an odd function of s that oscillates
before reaching a plateau of constant value, as shown in
Fig. 5B. The resulting stationary shape of the tube, rep-
resented in Fig 5C, corresponds to two cylinders of dif-
ferent radii welded together through an oscillating neck.

V. APPLICATION TO MITOCHONDRIA CRISTAE

In this section, we describe the dynamical deformation
of a finite tube of membrane of length L submitted to the
proton field h(s, t) solution of Eq. (3) and represented in
Fig. 3, which models a crista oscillating between state
IV and state III.

To do so, we first specify the external mechanical forces
exerted on the axisymmetric membrane. Here, we do
not take into account extra external pressures or viscous
forces that could be applied to the membrane and we
consider that a constant tension fext is exerted by the
rest of the mitochondria on the tubule boundary rings in
s = 0 and in s = L. This force,

fext(0) = −
(
σ + (1−X2)

κ0

2R2

)
es,

fext(L) =
(
σ + (1−X2)

κ0

2R2

)
es (59)

balances the effective tension of the undeformed Helfrich
cylinder, defined by X0 in Eq. (11), and derives from the
zeroth order stress tensor fH0 given in Eq. (28). Conse-
quently, the first order forces deriving from the cylinder
deformation vanish at the boundary of the tubule, and
the first order stress tensors satisfy:

fs1,s(0, t) = 0, fs1,s(L, t) = 0 (60)

fsnH1(0, t) = 0, fsnH1(L, t) = 0. (61)
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where fs1,s = fsH1,s + fsη,s, and where the expression of

the stress is given in Eqs. (29, 79, 36). Moreover, the
edges of the cylinder are assumed to be pinned in s = 0
and s = L, which leads to a vanishing tangential velocity
vs in s = 0 and s = L,

vs(0, t) = 0, vs(L, t) = 0. (62)

In order to facilitate the numerical resolution of the hy-
drodynamical equations given in Eqs.(41, 42), the defor-
mation fields un(s, t), us(s, t) are expressed as function of
the velocity fields vn(s, t) and vs(s, t) and of the defor-
mation field at the time t− dt, using the backward Euler
method and a discretisation of the time with a time step
dt,

uts = ut−dts + dt× vts (63)

utn = ut−dtn + dt× vtn. (64)

where we have introduced the notation (uti, v
t
i) for

(ui(s, t), ui(s, t)). Inserting the expressions in Eqs.
(63,64) the deformation fields into Eqs. ( 41, 42) leads to
the following coupled system of equations for vts and vtn

a1 ∂sv
t
n + a2∂

2
sv
t
s + a3∂sh

t = 0 (65)

(b1+b3 × dt)vtn + b4 × dt∂svtn + b5 × dt∂4
svn

+ b2∂sv
t
s + b3u

t−dt
n + b4∂

2
su

t−dt
n

+ b5∂su
t−dt
n + a6h

t + a7∂
2
sh

t = 0. (66)

Assuming that the geometry of the system at the time
t−dt is known, the system to solve is a couple of ordinary
differential equations in space for vts and vtn for which the
6 necessary boundary conditions are given in Eqs. (60-
62). The complete dynamic of the system is obtained
by solving Eqs. (65, 66) starting at t = 0, when all the
fields, h0, u0

i , v
0
i , vanish. Then, knowing the geometry

of the system at the time t − dt, i. e., the deformation
fields ut−dti , and the concentration field at the time t, ht,
the velocities (vts(s), v

t
n(s)) are determined as solutions

of Eqs. (65, 66). Next, the deformation fields utn, uts at
time t are calculated using Eqs. (63, 64). The procedure
can then be iterated to obtain the state of the system at
time t+dt, and so forth. Further details on the numerical
resolution are given in Appendix 3.

Fig. 6A represents the shape of the tube for the oscil-
lating proton field given in Fig. 3. The tube alternates
between a quasi-non-deformed cylinder for a quasi van-
ishing proton field (see Fig. 3) and a tubular invagina-
tion presenting a bump and a neck for the top proton
flux. These oscillations are obtained in the regime of a
fast mechanical relaxation time τ0 = 2ηsηb/σ0(ηs + ηb)
compared to the oscillation period between state III and
IV, T = 2π/ω. It is thus the dynamics of the diffusive
process that governs the shape change dynamics in this
case. Fig. 6B represents the deformation fields associ-
ated with these shapes. We compute the bump-to-neck
ratio obtained in this framework and obtain 1.6. Measur-
ing the projected sizes of the bumps and necks in state III
on the 8 best visible cristae on Fig. 1 yields an average

State IV State III
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 III  IV
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B.

tIII IV

tIV

tIV III
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- 2
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2
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u
n
( s
)
( n
m
)

tIII

tIII

tIII IV
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tIV III
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- 2

- 1
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0.5
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u
s
(s
)
(n
m
)

FIG. 6. Model crista oscillating between states IV and III. A
finite membrane tube is submitted to the proton field h(s, t)
represented in Fig. 3.A. Representation of the shape of the
cylinder at different times of the period (the same ones as in
Fig. 3). B. Deformation fields un(s, t) and us(s, t) associated
to these shapes (same colors as in Fig. 3). The plots are
obtained for values given in Table 1, X = 0.8, δσ = −0.35σ
per h(s, t), δC0 = 1.05 per h(s, t).

bump-to-neck ratio of 1.9 (standard error of the mean:
0.3). The theoretical prediction is in agreement with the
measures. This shows that the model developed in this
work captures the salient features of the shape of the
cristae in state III and IV observed experimentally and
represented in Fig. 1 (regular tubes in state IV, bumpy
tubes in state III).

VI. CONCLUSION

Mitochondrial cristae are membrane protrusions that
confine the ATP-synthesis machinery. Experimental ob-
servations have shown that the shape of these protrusions
is coupled to the energetic state of mitochondria, as seen
in Fig. 1. However, the underlying physical mechanisms
controlling this coupling remain to elucidate.

We considered the hypothesis that the shape of the in-
vagination is driven by the flux of protons diffusing on the
membrane. Indeed, the absence of cardiolipins in crista
membrane induces anomalous crista shapes, and local pH
heterogenities induce cristae-like deformations of GUVs
comprising cardiolipins18. We described the mechani-
cal properties of mitochondrial crista membrane using a
pH-dependent Helfrich model coupled to a diffusive pro-
ton concentration field on the surface. We first derived
the stationary Green function of this system and showed
that it can qualitatively reproduce the bumpy shapes of
the mitochondrial invaginations observed experimentally.
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We then studied the dynamical shape change of the in-
vagination for a membrane tubule subjected to an os-
cillating proton concentration field, modeling the oscil-
lations between state IV (no ATP synthesis) and state
III (high rate of ATP synthesis). We showed that, for
appropriate values of the parameters, it can reproduce
the salient features of the experimentally-observed shapes
of the mitochondrial cristae, oscillating between regular
tubes in state IV and bumpy tubular protrusions in state
III.

As a next step, for more realism, less symmetric mor-
phologies closer to experimental observations of crista
shapes, such as flat balloons with proton sinks on the rim
and proton sources on flat zones, could be considered21.

The phenomelogical model introduced here is a coarse-
grained description of a membrane containing different
lipids, proteins, etc. It will be interesting to consider a
more microscopic model of the membrane to gain insight
on the values of the parameters δκ, δC0, δσ of this model,
and test whether realistic values yield membrane shapes
resembling experimental observations.

Finally, a coupling between the shape and the con-
centration field could be introduced by considering the
advection of the protons on the deformed membrane.

In vivo, the model could be tested with super-
resolution imaging techniques by changing the energy
demand and by monitoring crista morphology varia-
tion within mitochondria. Alternatively, experiments on

biomimetic membranes can be performed where a local
proton flux is introduced, and membrane fluctuations
are followed. ATP synthase and complexes of the res-
piratory chain can be co-reconstituted in liposomes to
closely mimic the functioning of the respiratory chain30.
Finally, proton diffusion along membranes mimicking the
lipid composition of inner mitochondrial membranes can
be estimated using lipid-anchored pH sensor fluorescent
dye. Such experiments should bring measurements al-
lowing to test the ability of our model to predict crista
morphology.

APPENDIX

1. Covariant stress tensor for a membrane

In this subsection we derive the stress tensor associated
with the Hamiltonian

H =

∫
Ω

[
1

2
κ(s)(C − C0(s))2 + σ(s)]dA, (67)

We consider an infinitesimal deformation of the surface
X → X + δX. Instead of tracking the variation of the
intrinsic basis and the fundamental forms of the surface
induce by this deformation, we enforce these geometrical
constraints by introducing Lagrange multipliers and we
work with a generalised Hamiltonian Hc,

Hc = H +

∫
Ω

λab(gab − ea · eb)dA+

∫
Ω

Λab(Kab − ea · ∇bn)dA+

∫
Ω

fa · (ea −∇aX)dA (68)

+

∫
Ω

λa⊥(ea · n)dA+

∫
Ω

λn(n2 − 1)dA. (69)

in which the matrices λab and Λab enforce the definition
of metric and the curvature, fa pins the basis vector to
the tangent of the surface, λa⊥ enforces the normal vec-
tor to be perpendicular and λn its normalisation. The
minimisation of the Hamiltonian Eq. (69) with respect
to the, now, 12 independent functions give the following
equations,

δHc

δX
= ∇afa (70)

δHc

δea
= −fa + (ΛacKb

c + 2λab)eb − λa⊥n (71)

δHc

δn
= (∇bΛab + λa⊥)ea + (2λn − ΛabKab)n (72)

δHc

δKab
= Λab +Hab (73)

δHc

δgab
= λab + λρρ

√
g
gab

2
+ λφρφ

√
g
gab

2
− 1

2
T ab (74)

where Hab and T ab are defined as the functional deriva-

tives of the Hamiltonian density, H = 1
2κ(s)(C −

C0(s))2 +σ(s) with respect to the two fundamental forms

Hab =
δH
δKab

(75)

T ab = − 2
√
g

δ
√
gH

δgab
. (76)

We notice that the Lagrange multiplier fa obeys a con-
servation law (∇afa = 0). Using that Eqs. (70-74) van-
ish, we eliminate the Lagrange multipliers present in Eq.
(71) and find

fa = (T ab −HacKb
c)eb − (∇bHab)n. (77)

The quantity fa can be identified as the surface stress
tensor23,31. The surface stress tensor is a 2x3 matrix and
its coordinates in the intrinsic basis of the surface can be
written as

fabH = T ab −HacKb
c (78)

fanH = −(∇bHab). (79)
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2. Coefficients for dynamical force balance equations

The full expression for the dynamical force balance
equations Eqs. (41),(42) can be obtained by inserting
the coefficients which are given as follows:

a1 =
ηb − ηs
R

(80a)

a2 = ηb + ηs (80b)

a3 = − (1−X)2

2R2
δκ− δσ +

2Rσ0

1 +X
δC0 (80c)

b1 =
ηb + ηs
R2

(80d)

b2 =
ηb − ηs
R

(80e)

b3 =
2σ0

R2(1−X2)
(80f)

b4 =
4Xσ0

1−X2
(80g)

b5 =
2R2σ0

1−X2
(80h)

b6 = − (1−X2)

2R3
δκ+

1

R
δσ +

2Xσ0

1−X2
δC0 (80i)

b7 =
1

R(1−X2)

(
2R3δC0σ0

− (1−X)2(1 +X)δκ
)

(80j)

Here κ0 has already been substituted in terms of σ0, R
and X using the relation between the Helfrich parameters
(45). If we set a1, a2, b1, and b2 to zero (i.e. no viscosi-
ties), we obtain the steady state force balance equations
for the Helfrich cylinder model.

3. Details of the numerical resolution of hydrodynamics
equations

The system of equations Eqs. (65,66) is solved nu-
merically at time t using the command NDSolve of the
Mathematica software. The solutions obtained for vts and
vtn are discretized in space on a regular grid with a step
equal to 10−2 for a cylinder with radius R = 1. The

discrete spatial derivatives of the velocities (v
(i),vect
n , (i =

1, ..4), v
(j),vect
s , (j = 1, 2) are derived on this grid.

The vectors are interpolated using polynomials of de-
gree 18 to obtain analytical functions (∂isv

pol
n , ∂jsv

pol
s , i =

1, ..., 4, j = 1, ..., 2) that are used to derive the deforma-
tion fields and their derivatives at the time step t,

∂isu
t
s(s) = ∂isu

t−dt
s + dt× ∂isvpols , i = 1, ..., 2 (81)

∂jsu
t
n(s) = ∂jsu

t−dt
n + dt× ∂jsvpoln , j = 1, ..., 4. (82)
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