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A B S T R A C T

Being bounded by hydrological (inflow and barrier) boundaries, natural aquifers have regular/irregular shapes.
Here, we consider aquifers bounded by segmental inflow (variable head) boundaries in which water is extracted/
injected by a multi-well system. Steady state analytical and semi-analytical solutions are derived to delineate the
capture envelopes of the multi-well system. The multi-well system includes any number of extraction or injection
wells, each with an arbitrary flow rate. The aquifer is bounded by an arbitrary number of boundary segments,
with and without uniform regional flow. The solution is fully analytical, and involves hypergeometric functions
if the number of boundary segments exceeds three. A sensitivity analysis shows that number, position and
extraction/injection rate of wells, numbers and geometry of boundary segments, distance between wells and
boundaries, and direction and rate of regional flow independently and collectively control the size, shape and
pattern of the capture zones. The derived solutions are useful for sustainable water resources management in
terms of both quality and quantity.

1. Introduction

A well capture zone is the volumetric portion of an aquifer from
which the well withdraws its water (Intaraprasong and Zhan, 2007;
Todd and Mays, 2005). As pumping proceeds, the capture zone grows in
size. At steady state, it reaches a maximum size called the capture en-
velope (Samani and Zarei-Doudeji, 2012). It is affected by pumping
rates, hydraulic conductivity, type and configuration of boundaries, and
type and position of wells. The delineation of the capture zone in an
aquifer-well-stream system plays an important role in the management
of surface and subsurface water in terms of both quality and quantity.
Javandel and Tsang (1986) presented a series of capture-zone type
curves as tools for the design of aquifer clean-up projects. Zarei-Doudeji
and Samani (2014) provided capture type curves to design in situ
groundwater remediation systems, to contain contaminant plumes, to
evaluate surface-groundwater interactions and to verify numerical
models. Intaraprasong and Zhan (2007) developed a semi-analytical
method to calculate the stream depletion in an aquifer bounded by two
parallel streams with and without a streambed. In assessing ground-
water-surface water interactions and estimating the stream depletion
rate (SDR) due to pumping near a meandering stream, Huang and Yeh
(2015) applied the image well method and derived an analytical

solution by treating a low-permeability streambed as a Robin condition.
They verified the solution with a finite element model and concluded
that a meandering stream has a significant effect on SDR compared with
a rectilinear geometry. Huang and Yeh (2016) considered a hetero-
genous confined aquifer with an irregular outer boundary under Di-
richlet, Neumann or Robin conditions (or a mix of them) and developed
an analytical solution for drawdown. Efforts have also been devoted to
quantify the capture time (Zhan and Cao, 2000; Luo and Kitanidis,
2004; Xia et al., 2020).

Capture zone modeling methods may be classified into three model
types: analytical, semi-analytical and numerical. Analytical modeling
was initiated by Muskat (1946). Bear (1972,1979) extended Muskat’s
solution for a single fully penetrating well in an infinite confined
aquifer with uniform flow using complex velocity potential theory. The
approach was generalized to a multi-well system in infinite confined
and unconfined aquifers via the superposition principle (Christ and
Goltz, 2002; Grubb, 1993; Javandel et al., 1984; Javandel and Tsang,
1986; Shan, 1999; Zhan and Zlotnik, 2002; Zlotnik, 1997). The con-
jugating image well method (Ferris et al., 1962) with the complex ve-
locity potential as the dependent variable and superposition led to
modeling of capture zones in bounded aquifers. Analytical models that
predict capture zones include the following cases: single well near an
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inflow boundary (Strack, 1989; Asadi-Aghbolaghi et al., 2011, 2013),
single well between two parallel streams (Intaraprasong and Zhan,
2007), extraction well in a right-angled triangular aquifer (Asadi-
Aghbolaghi and Seyyedian, 2010), multi-well system in a wedge-shaped
aquifer (Samani and Zarei-Doudeji, 2012), and peninsula-shaped
(Zarei-Doudeji and Samani, 2014) and rectangular bounded aquifers
(Zarei-Doudeji and Samani, 2018). Conformal mapping is often used
instead of the image well method to obtain solutions (Lu et al., 2015;
Strack, 1989; Wilson, 1993) since it handles complex boundary condi-
tions, irregularly-shaped aquifers and multiple wells much more con-
veniently.

For complex situations, semi-analytical and numerical methods are
needed, e.g., the capture zone for partially penetrating wells considered
by Faybishenko et al. (1995), in which the Range-Kutta method was
used. Zlotnik (1997) and Fienen et al. (2005) extended the work of
Faybishenko et al. (1995) to the case of an anisotropic aquifer using a
similar approach. Schafer (1996) determined the three-dimensional
capture zone around horizontal drains and vertical wells by a Range-
Kutta particle-tracking algorithm. The capture zone and optimal well
spacing of two wells pumping at different flow rates was obtained by
Christ and Goltz (2002). They applied the Newton-Raphson method to
determine the stagnation point positions.

A range of numerical methods were used for capture zone delinea-
tion under different circumstances. For instance, Ahlfeld and Sawyer
(1990) described a methodology to determine capture zones for con-
taminated groundwater remediation. They found well locations and
optimal pumping rates under a minimum cost constraint using the finite
element method with the optimization handled by a linear program-
ming scheme. Bair and Roadcap (1992) modelled the capture zones of
wells in leaky-confined fractured-carbonate aquifers by particle
tracking. They used a finite-difference scheme to solve their three-di-
mensional steady-state flow model, in which they considered five
model layers, specified-flux boundary conditions, spatially variable
recharge, and recharge from a lake. Capture zones for wells in a stra-
tified-drift buried-valley aquifer were computed by Springer and Bair
(1992). Gailey and Gorelick (1993) produced contaminant capture

designs under the constraint of minimized pumping rates using the
SUTRA model (Voss, 1984). Tiedeman and Gorelick (1993) investigated
the uncertainty in optimum extraction rates with a Monte Carlo ana-
lysis. The effects of variable density groundwater flow on capture zones
were assessed by Taylor and Person (1998) using the finite-element
method. A useful tool for numerical modeling of capture zones is
MODPATH, which uses the particle-tracking method (Pollock, 1994).

The aim of this research is to obtain analytical/semi-analytical so-
lutions for the capture envelope of a multi-well system in aquifers
limited by segmental inflow (variable head) boundaries. The areal ex-
tent of the irregularly-shaped aquifer is semi-infinite or finite, solved
using complex velocity potentials and conformal mapping. The aquifer
system with or without regional groundwater flow includes any number
of extraction/injection wells. This paper is organized as follows: Section
2 introduces the conceptual models of investigated aquifers; Section 3
presents a systematic mathematical formulation of the capture zone
from simple to complicated boundary conditions; in Section 4 the
proposed capture zone models are applied in hypothetical aquifer-well
boundary systems and results are discussed. In Section 5 the analytical
solutions are validated numerically; Section 6 presents the application
of solution in groundwater in situ remediation projects and finally in
Section 7 conclusions are summarized.

2. Conceptual model

Aquifers bounded by a stream(s) could have regular or irregular
geometries. Fig. 1 gives a schematic plan view of the aquifer-well-
boundary systems considered in this paper. The bounding stream can
consist of up to n segments and can form finite/semi-infinite shaped
aquifers. In semi-infinite cases, aquifers extend to infinity on the un-
bounded sides. In Fig. 1, the aquifer boundaries are fully penetrating
streams (variable head/inflow boundaries) that have no hydraulic re-
sistance with the aquifer. If the uniform regional flow is perpendicular
to the inflow boundary, the boundary may be regarded as a constant
head boundary. The aquifer is homogeneous and isotropic with uniform
thickness. The flow is two dimensional (2-D) and steady. A vertical well

Notation

aj Coordinate of intersecting points in the plane
b Aquifer thickness (L)
c +1 or -1 for extraction and injection wells, respectively
d Distance between two boundaries (L)
dD Dimensionless distance between two boundaries

F2 1 Hypergeometric function
h Hydraulic head (L)
h0 Average of the initial hydraulic head (L)
j Summation index
K Hydraulic conductivity (LT−1)
l Aquifer length (L)
N Number of wells
q0 Regional uniform flow per unit width (L2T−1)
q D0 Dimensionless regional uniform flow per unit width
Qw Pumping or injection rate (L3T−1)
QwD Dimensionless pumping or injection rate
QwDj Dimensionless pumping or injection rate of the jth well
s Drawdown (L)
sD Dimensionless drawdown
xwDj Dimensionless x position of the jth well
ywDj Dimensionless y position of the jth well
z Complex coordinate in the physical plane
zDsg Stagnation point coordinate
zwj Coordinate of the jth extraction or injection well
zwDj Dimensionless coordinate of the jth extraction or injection

well

Greek

Boundaries intersection angle (rad)
Angle of the flow direction with the x axis (rad)
Coordinate of the extraction or injection well in the
plane
Complex conjugate of

j Coordinate of the jth extraction or injection well in the
plane

j
' Coordinate of the jth extraction or injection well in the

plane
Complex coordinate in the imaginary plane
Ratio of length to width of the aquifer
Complex coordinate in the second imaginary plane
Discharge potential and the real part of the complex po-
tential function, (L3T−1)

0 Initial potential along the inflow boundary (L3T−1)
D0 Dimensionless form of 0

D Dimensionless form of
Stream function and imaginary part of the complex po-
tential function, (L3T−1)

D Dimensionless
Complex potential function (L3T−1)

D Dimensionless complex potential function
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at zw fully penetrates the aquifer and is either an extraction or injection
well. Although only one well is shown in Fig. 1, the solution derived
below is valid for a multiple well system (well field) with or without
ambient regional flow (spatially uniform far from the well field), with
each well having the same or different extraction/injection rates. The
wells can be located anywhere within the aquifer domain.

The simplest bounded aquifer is shown in Fig. 1a. It is a semi-in-
finite aquifer an inflow boundary (stream/a stream segment) on one
side. It extends to infinity in the other sides. Two streams that intersect
at angle form a bounded, wedge-shaped aquifer (Fig. 1b). Streams
often meander in plains. If the meander is idealized as a semi-rectangle,
it forms a peninsula-shaped aquifer that is bounded by three inflow
boundary segments and extends to infinity on the fourth side (Fig. 1c).
Coastal aquifers may also be peninsula-shaped. In Fig. 1d, the three
stream segments intersect and form a triangular aquifer. More often, the
number of boundary segments exceed three and form aquifers of finite
or semi-infinite extent. Examples are shown in Fig. 1e–h.

3. Mathematical formulation of the multi-well capture zones

3.1. Case 1: Aquifer bounded with one stream segment

The aquifer of Fig. 1a is first considered that is limited in one side by
an inflow boundary (a stream or a segment of a stream), extended to
infinity in the other sides and extracted by a well. Using the image well
method and due to the linearity of the Laplace equation the complex
discharge potential for such a system is written as (Strack, 1989):

= + Q z z
z z

(z)
2

lnw w

w
0

(1)

where 0 is the initial potential in the absence of extraction and re-
gional flow,Qw and zw denote, respectively, the extraction rate and well
position in the complex plane (z), and zw is the complex conjugate of
zw.

Eq. (1) may be rewritten for a multi-well system in the presence of
(uniform) regional flow, q0 [L

2 T−1], at an arbitrary direction (ra-
dians) relative to the positive direction of the x axis (Nagheli et al.,

Fig. 1. Schematic plan view of semi-infinite and finite regular and irregular-shaped aquifers. The blue and broken black lines show the inflow and infinite boundaries,
respectively. The solid diamond indicates the well location (zw). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2020):

= +
=

q i c
Q z z

z z
(z) zexp( )

2
ln

j

N

j
wj wj

wj
0 0

1 (2)

where i is the complex root, N is the number of wells and j is the
summation index. The constant c is +1 for extraction wells and −1 for
injection wells.

Introducing the following dimensionless (normalized) parameters:

= = =

= =

z z Q

q z

, , ,

, ( )

D
z
l wDj

z
l wDj

Q
Kbl

D
q
Kb D

z
Kbl0

( )

wj wj

0
(3)

where, K is hydraulic conductivity, and b and l are the aquifer thickness
and length of the boundary segment, respectively, Eq. (2) becomes:

= +
=

q i c
Q z z

z z
z exp( )

2
lnD D D D

j

N

j
wDj D wDj

D wDj
0 0

1 (4)

The real and the imaginary components of D, are the dimensionless
discharge potential and stream function, respectively.

= +

+
+
+ +=

q x y

c
Q x x y y

x x y y

( cos sin )

4
ln

( ) ( )
( ) ( )

D D D D D

j

N

j
wDj D wD D wD

D wD D wD

0 0

1

2 2

2 2
(5)

=

+
+

=

q y x

c
Q y y

x x
y y
x x

( cos sin )

2
tan tan

D D D D

j

N

j
wDj D wD

D wD

D wD

D wD

0

1

1 1

(6)

A stagnation point exists where the flow velocity is zero. A
streamline passing through a stagnation point forms the capture en-
velope and separates the regions of flow. The positions of stagnation
points are defined where the gradient of the complex potential (Eq. (4))
vanishes:

=

=
=

c

q iexp ( ) 0

d
dz

j

N

j
Q

z z z z

D

1
2

1 1

0

D
D

wj
D wDj D wDj

(7)

The roots of Eq. (7) define the position of stagnation points (z )Dsg .
For a single well, the positive root can be calculated analytically as:

= + + + +z z z z z z z
q exp i

z z1
2

( 2 ) 4( )
( )Dsg wD wD wD wD

wD wD

D
wD wD

2 2

0

1
2

(8)

For the multiple-well systems the roots of Eq. (7) are determined
numerically. Plotting Eqs. (5), (6) and (8) results in the capture zone
consisting of equipotential lines and streamlines.

3.2. Case 2: Aquifers bounded with two stream segments

The aquifer of Fig. 1b is limited by two inflow boundaries or two
segments of an inflow boundary intersecting or connecting each other
at an angle (α) and forming a wedge-shaped aquifer. The solutions of
Samani and Zarei-Doudeji (2012) for wedge-shaped aquifers are limited
to the case of α being a multiple of π. If α is too low, the number of
image wells becomes large, making the solution cumbersome. There-
fore, the application of image well method is not recommended in this
case. A better approach is to map the model from the physical plane (z)
onto a simpler plane ( ) (Fig. 2) based on the Schwarz-Christoffel
transformation (Driscoll and Trefethen, 2002). The origin of the x-y
axes is located at point 2. In the -plane, the axis is the horizontal axis
and the axis is perpendicular to it at point 2. Based on the Schwarz-
Christoffel transformation, the relation between z and is (Strack,
1989):

= +z C d C( ) 1
1

2 (9)

where, = + = +z x iy i, and C1 and C2 are constants. Substituting
the positions of points 2 and zw in the z and - planes into Eq. (9) gives
the z and values as (see also Table 1)

=z
z| |w (10)

Or

= z
z| |w (11)

The complex discharge potential in a wedge-shaped aquifer for a
well in the -plane is (Strack, 1989):

= + Q( )
2

lnw
0

(12)

where is the position of the well in the -plane and is the complex
conjugate of .

Applying the superposition principle, Eq. (12) may be extended for
a multi-well system in a wedged-shaped aquifer with a uniform regional
flow as:

= +
=

q z i c
Q

( ) | | exp( )
2

lnw
j

N

j
wj j

j
0 0

1 (13)

Based on Eq. (11), Eq. (13) is transformed to the z-plane:

= +
=

( ) ( )
( ) ( )

z q z i c
Q

ln( ) exp ( )
2j

N

j
wj

z
z

z
z

z
z

z
z

0 0
1

| | | |

| | | |

wj
wj
wj

wj
wj
wj

(14)

Fig. 2. Mapping the wedge-shaped aquifer from the physical plane (z) to the imaginary plane ( ). Solid diamonds are locations of the real wells. Hollow circles
illustrate image wells of the opposite type to the real well. shows the spatial location of the extraction or injection well in the plane and is complex conjugate of
.
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Table 1
Schwarz-Christoffel transformation for each aquifer type.

Number of aquifer boundary segments Aquifer type Schwarz-Christoffel transformation

One (Fig. 1a) Semi-infinite aquifer = z
Two (Fig. 2) Wedge-shaped aquifer

= z
zw| |

Three (Fig. 3) Peninsula-shaped aquifer = ( )sinh z
d

2

Triangular aquifer
= =

+ +
z m M ( )

F2 2 1 1 1, 2 ; 2 1;

2

= M z( )1

Semi-infinite aquifer

Four (Fig. 5) Rectangular aquifer =

=

=

=

+

+

( )
z

sn

Re

d
K m

d
m

zK m
d

sn xK m
d

dn yK m
d

icn xK m
d

dn xK m
d

sn yK m
d

cn yK m
d

cn yK m
d

msn xK m
d

sn yK m
d

i

( ) (1 2)(1 2)
( )

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

Four or more (Fig. 4) Semi-finite/finite regularly- or irregularly-shaped aquifer = +=z C a d C( )j
N

j j1 1
1 1 2, Numerical solution

Fig. 3. Mapping the aquifers with three boundary segments from the physical plane (z) to the plane. Solid diamonds show position of the real wells. Hollow circles
indicate image wells of the opposite type to the real well. shows the spatial location of the extraction or injection well in the plane and is complex conjugate of .
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Using the following dimensionless parameters:

= = =

= =

z z Q

q z

, , ,

, ( )

D
z
r wDj

z
r wDj

Q
Kbr

D
q
Kb D

z
Kbr0

( )

wj wj

0
(15)

where r is the radius of the wedge, Eq. (14) becomes:

= +
=

( ) ( )
( ) ( )

q i c
Q

lnz exp ( )
2D D D D

j

N

j
wDj

z
z

z
z

z
z

z
z

0 0
1

| | | |

| | | |

D
wDj

wDj
wDj

D
wDj

wDj
wDj

(16)

Substituting +r i(cos sin )D for zD, the dimensionless discharge
potential is given by the real part of Eq. (16):

= + + ×
=

+

+ +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q r ccos ( )

ln

D D D D
j

N

j
Q

cos cos sin sin

cos cos sin sin

0 0
1

4
wDj

rwDj
w

rwDj
w

rwDj
w

rwDj
w

1
2

1
2

1
2

1
2

(17)

The imaginary part of Eq. (16) is the stream function:

= + ×
=

+( ) ( )
( ) ( )

( ) ( )
( ) ( )

q r csin ( )

tan tan

D D D
j

N

j
Q

sin sin

cos cos

sin sin

cos cos

0
1

2

1 1

wDj

rwDj
w

rwDj
w

rwDj
w

rwDj
w

1

1

1

1

(18)

Calculating the derivative of Eq. (16) and setting it to zero gives the
coordinates of stagnation points:

=

+ =
= ( ) ( )

q i

c

exp ( )

0

d
dz D

j

N

j
Q z

z z

z

z z

0

1
2

D
D

wDj D

D wDj

D

D wDj

1 1

(19)

As mentioned above, equations of the discharge potential (Eq. (17)),
stream function (Eq. (18)) and the stagnation points (Eq. (19)) are
solved and plotted to delineate the capture zones.

3.3. Case 3: aquifers bounded with three stream segments

The aquifers of Fig. 1c–e are surrounded by three inflow (variable
head) boundary segments. To derive the capture zone equations, the
aquifers are transformed from the z-plane to the upper half -plane
(Fig. 3) using the Schwarz-Christoffel transformation. After transfor-
mation, the coordinates of points 1–3 in the -plane are: =1 , = 12
and = 03 . The Schwarz-Christoffel transformation for these aquifers is:

= + +z C d C( ) ( 1)1
1 1

2
1 2

(20)

where, C1 and C2 are constants that control the size of figures and the
location of origin in the z-plane, respectively. C2 equals to zero because

=z 0 corresponds to = 0.
Case 3a: For the case of peninsula-shaped aquifer (Fig. 1c), 1 =

2 = /2 and Eq. (20) is rewritten as:

= + +z C d C( ) ( 1)1 2
1

2
1

2 (21)

At points 3 and 2, = 0 and = 1, respectively, so =C d/1 and
=C 02 . Therefore, the relation between z and is:

= + +z d ln ( 1)1
2

1
2 (22)

or

= z
d

sinh2
(23)

where, d is the aquifer width (Table 1).
The complex potential for a multi-well system in this aquifer is

obtained in the -plane by the application of the image well method and
the superposition principle:

= + + +
=

dq
i c

Q
( ) ln( 1 )exp( )

2
ln

j

N

j
wj j

j
0

0

1

(24)

Based on Eq. (23), Eq. (24) can be rewritten in terms of z as:

= +
= ( )

( ) ( )
( )

z q z i c
Q

ln
sinh sinh

sinh sinh
( ) exp ( )

2j

N

j
wj

z
d

z
d

z
d

z
d

0 0
1

2 2

2 2

wj

wj

(25)

Using the following dimensionless parameters:

= = = =

= = =

z z Q q

z x y

, , , ,

( ) , ,

D
z
d wDj

z
d wDj

Q
Kbd D

q
Kb

D
z

Kbd D
x
d D

y
d

0
( )

wj wj 0

(26)

Eq. (25) is generalized as:

=

+
=

q z i

c

exp ( )

ln

D D D D

j

N

j
Q z z

z z

0 0

1
2

sinh ( ) sinh ( )
sinh ( ) sinh ( )

wDj D wDj

D wDj

2 2

2 2
(27)

The real part of Eq. (27) gives the dimensionless potential:

= +

+
+
+ +=

q x y

c
Q f f g g

f f g g

( cos sin )

4
ln

( ) ( )
( ) ( )

D D D D D

j

N

j
wDj D D D D

D D D D

0 0

1

1 2
2

1 2
2

1 2
2

1 2
2

(28)

while the imaginary part gives the dimensionless stream function:

= q y x( cos sin )D D D D0

+
+

=
c

Q g g
f f

g g
f f2

tan tan
j

N
j

wDj D D

D D

D D

D D
1

1 1 2

1 2

1 1 2

1 2 (29)

where f f g, ,D D D1 2 1 and g D2 are given in Appendix A. The roots of the
first derivative of Eq. (27) give the stagnation points:

= +d
dz

q iexp( )D

D
D0

=
=

c
Q sinh z cosh z

sinh z sinh z
sinh z cosh z

sinh z sinh z2
2 ( ) ( )

( ) ( )
2 ( ) ( )

( ) ( )
0

j

N

j
wDj D D

D wDj

D D

D wDj1
2 2 2 2

(30)

Roots of this equation (coordinates of stagnation points) were cal-
culated numerically in MATLAB.

Case 3b: For the cases of the triangular (Fig. 1d) and the semi-in-
finite aquifers (Fig. 1e), Eq. (20) equals (Appendix B and Table 1):

=
+ +( )

z
C F 1, ; 1;1 2 1

2 1 2 2

2
(31)

where, F2 1 is a hypergeometric function. Based on Appendix B, Eq. (31)
can be written as:
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=
+ +

=
( )

z m
F

M
1, ; 1;

( )
2 12

1 2 2

2

(32)

where m is defined in Eq. (B-2) in Appendix B and

= M z( )1 (33)

The complex potential for a multi-well system in these aquifers in
the -plane is:

= +
=

q M i c
Q

( ) ( )exp( )
2

ln
j

N

j
wj j

j
0 0

1 (34)

Eq. (34) can be rewritten in terms of z using Eq. (33):

= +
=

z q z i c
Q M z M z

M z M z
( ) exp( )

2
ln ( ) ( )

( ) ( )j

N

j
wj w

w
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1
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(35)

Using the following dimensionless parameters:

= = =

= =

z z Q

q z

, , ,

, ( )

D
z
d wDj

z
d wDj

Q
Kbd

D
q
Kb D

z
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( )

wj wj

0
(36)

Eq. (35) is rewritten as:

= +
=

q z i c
Q M z M z

M z M z
exp( )

2
ln ( ) ( )

( ) ( )D D D D
j

N

j
wDj D wD

D wD
0 0

1

1 1

1 1

(37)

Setting the real part and the imaginary part of M 1 equal to U and V,
respectively, the real part of Eq. (37) is the dimensionless discharge
potential and the imaginary part equals the dimensionless stream
function as follows:

= +

+ +
+ +=

q x y

c
Q U U V V

U U V V

( cos sin )

4
ln ( ) ( )

( ) ( )

D D D D D

j

N

j
wDj D wD D wD

D wD D wD

0 0

1

2 2

2 2
(38)

and

= q y x( cos sin )D D D D0

+ +
=

c
Q V V

U U
V V
U U2

tan tan
j

N
j

wDj D wD

D wD

D wD

D wD1
1 1

(39)

The stagnation points computed using Eq. (34) are:

Fig. 4. Mapping the semi-finite and finite aquifers from the physical plane (z) to the imaginary plane ( ). Solid diamonds and the hollow circles illustrate position of
the real wells and image wells of the opposite type to the real well, respectively. indicate the position of the extraction or injection wells in the plane and is
complex conjugate of .
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= + +

+ =

+ + + +

+

=

( )
( ) ( )

q i m F

c

exp( ) 1, ; 1;

0

d
d D

q i m F

j

N

j
Q

( )
0

1
2 1

exp( ) 1 2, 1; 2;

1

1
2

1 1

D

wj
j j

2 1 2 2

0
2 1 1 2 1 1 2 2

2

(40)

Eq. (40) is solved numerically using MATLAB, with the stagnation
points in the z-plane determined with Eq. (33).

3.4. Case 4: Aquifers bounded with four or more stream segments

The number of boundary segments for the rectangular/polygonal-
shaped aquifers of Fig. 1f–h is greater than three, while the aquifers
may have finite or semi-finite extent. To model their capture zones, the
aquifers of Fig. 1f–h are mapped from the z-plane onto the -plane
using the Schwarz-Christoffel transformation (Fig. 4).

The Schwarz-Christoffel transformation for these aquifers is:

= +
=

z C a d C( )
j

N

j1
1

1
1

2j

(41)

where, a is prevertex position in the -plane, equals angle between
boundaries in radian and N is number of vertices.

Case 4a: When the rectangular aquifer is transformed from the
z-plane to the upper half of the -plane (Fig. 5), the coordinates of
points 1–4 in the -plane are: =1 , = 02 , = 13 and = 1/m4 while

=1 =2 =3 4 = /2, so Eq. (41) can be written as (Lu et al., 2015):

= +z C
m

d C( 1) 1
1 2

1
2

1
2

1
2

(42)

where, C1 and C2 are constants that control the size of rectangle and the
location of origin in the z-plane, respectively. C2 is zero because the
origin of the z-plane corresponds to the origin of the -plane. To sim-
plify the solution further, the -plane is transformed onto the -plane
through the transformation equation = 1/2 (Fig. 5), in which case Eq.
(42) is given by Lu et al. (2015) as (Table 1):

=z d
K m

d
m( ) (1 )(1 )2 2 (43)

and

= =

=

+

+
( ) ( ) ( ) ( )

( )sn

Re

zK m
d

sn dn icn dn sn cn

cn msn sn

i

( )
xK m

d
yK m

d
xK m

d
xK m

d
yK m

d
yK m

d
yK m

d
xK m

d
yK m

d

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) 2 ( ) 2 ( )

(44)

where is the ratio of the aquifer’s length to width and sn, cn and dn are
standard Jacobi elliptic integrals denoting, respectively, the sine, cosine
and delta amplitude elliptic functions; sn y( ) stands for sn y m( , 1 ) and
similar definitions are made for cn y( ) and dn y( ) (Lu et al., 2015); =R

+U V2 2 and = tan V U( / )1 .
The complex potential for a multi-well system in a rectangle aquifer

in the -plane is:

Fig. 5. Mapping the conceptual model from the physical plane (z) to the conformal mapping planes ( and ). Solid circles are the image wells of the same type as the
real well (i.e., injection/extraction). shows the spatial location of the extraction or injection well in the plane and is the complex conjugate of .
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Eq. (45) can be rewritten in terms of z using Eq. (44):

= + ×
=

+

+

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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where K(m) is the complete elliptic integral. Using the following di-
mensionless parameters:

= = =
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Eq. (46) becomes:
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The dimensionless discharge potential ( D) is the real part of Eq.
(48) and the imaginary part is the dimensionless stream function ( D):

= + + ×
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+ + + + +
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and

=
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(50)

As before the first derivative of the discharge potential (Eq. (45)) is
set to zero to calculate the stagnation point coordinates, which are then
converted to the z-plane using Eq. (44):

=

+ + =
=

+ +

q exp i

c

( )

0

d
d

d
K m m

j
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j
Q
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(51)

Case 4b: In aquifers of irregular/regular shape bounded by more
than four boundary segments, the values of C1, C2 and aj in Eq. (41)
must be calculated numerically. It is then convenient to compute these
unknowns using the Schwarz-Christoffel toolbox in MATLAB as it pro-
vides a collection of M-files for the computation and visualization of
Schwarz-Christoffel conformal maps (Driscoll and Trefethen, 2002).

The complex potential for a multi-well system in regular/irregular-
shaped aquifers in the -plane is:

= +
=

Q c
Q

( ) ( )
2

ln
j

N

j
wj j

j
0 0

1 (52)

where Q ( )0 is the regional flow, which is a function in the -plane that
depends on the shape of the aquifer.

To rewrite Eq. (52) in the z-plane, it is solved numerically based on

Eq. (41). The real and imaginary parts of the complex potential (Eq.
(52)) in the z-plane are the discharge potential and stream function,
respectively. They are plotted using dimensionless parameters given in
Eq. (3).

To find the positions of the stagnation points, the derivative of the
complex potential (Eq. (52)) is calculated with respect to and set
equal to zero:

= + =
=

d
d

dQ
d

c
Q( ) ( )
2

1 1 0
j

N

j
wj

j j

0

1 (53)

The form of the first term in the right-hand side depends on the
regional flow functional form in the -plane. The roots of Eq. (53) are
the locations of stagnation points in the -plane, and are found nu-
merically using MATLAB. The locations are then easily transformed to
the z-plane.

The above results are obtained for confined aquifers with constant
saturated thickness. For unconfined aquifers the saturated thickness
varies. Eqs. (3), (15), (26), (36), (47) and (52) maybe rewritten to give
an approximation for unconfined aquifers by replacing the thickness b
with h0 (the average saturated thickness) in the dimensionless terms.
The derived discharge potential equations can also be rewritten in
terms of drawdown (Supplementary Materials).

4. Results and discussion

In the following, the above-presented solutions are used to plot a
variety of capture zones. The plotted capture zones delineate the in-
teraction of aquifer-well-boundaries, which are useful for the sustain-
able management of aquifers in terms of quality and quantity. The ef-
fects of the numbers of boundaries or wells, rate and direction of reginal
flow and extraction rates on the shape and properties of capture zones
are readily investigated. Due to numerous parameters (number, type,
location and extraction/injection rates of wells and the rate and di-
rection of regional flow, number of boundary segments) that influence
the flow field, many capture envelopes can be simulated.

a) Capture zones of a multi-wells system in a semi-infinite aquifer (Case 1)

The semi-infinite aquifer shown in Fig. 1a is considered for the case
of five wells with extraction rates and positions as given in Table 2. We
assume that the regional flow rate (dimensionless) and direction are
0.001 and π/2 rad, respectively. Eqs. (5)–(7) are solved and the equi-
potential lines, streamlines, stagnation points and the capture envel-
opes of the five wells are plotted in Fig. 6. In Fig. 6a, the capture en-
velope of wells 2, 3 and 5 establish a connection with the stream, i.e.,
the wells are fed by the stream. However, wells 1 and 4 gain their water
from the aquifer (which is of infinite extent). In this pumping scenario,
if the stream is polluted, wells 2, 3 and 5 will be contaminated. In
Fig. 6b, well 3 is assumed to be a wastewater disposal well. In this case,
the pattern of the capture envelopes is quite different from that of the
first scenario and all extraction wells are contaminated by well 3. These
two hypothetical scenarios elucidate the surface and subsurface water
interaction in terms of water quality and quantity.

Table 2
Extraction rates and coordinates of wells in Fig. 6.

Fig. 6 Well number xwD ywD QwD

a, b 1 0.125 0.9 0.01
2 0.375 0.2 0.02
3 0.625 0.5 0.03
4 0.75 0.65 0.01
5 0.875 0.3 0.02
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b) Capture zones of a multi-wells system in a wedge-shaped aquifer (Case 2)

In this section, a wedge-shaped aquifer that is limited by two in-
tersecting inflow boundaries or two segments of a stream is considered.
With the data given in Table 3, Eqs. (17)–(19) are solved for four dif-
ferent scenarios, which are plotted in Fig. 7. Fig. 7 illustrates the po-
tential, streamline, stagnation points and capture envelopes for one,
two, three and five wells. In Fig. 7a, the wedge angle and regional flow
rate and direction are 0.19 rad, 0.001 and 0.09 rad, respectively. The
well captures the regional flow and water gained from the streams.

In Fig. 7b, which considers two pumping wells, the angle between
intersecting boundaries is 0.42 rad. There is no regional flow, which
causes the equipotential lines to be parallel to the boundaries. A water-
line divide is formed between the wells, which are fed by the streams.
The capture zone for three wells in a 90°-wedge =( /2) with a re-
gional flow direction of /4 rad is illustrated in Fig. 7c. Well 1 captures
its water from the western boundary. Independently, well 2 receives
water from the southern boundary. Well 3, however, shows flow lines
to the streams that encompass the capture envelopes of wells 1 and 2.
Fig. 7d illustrates the capture zones of five wells in a 127°-wedge-
shaped aquifer ( = 0.7 ) without regional flow. The interaction of the
aquifer-well-boundary system is self-explanatory in that well 1 is fed by
the eastern stream, wells 2 and 3 are fed by the both streams and wells 4
and 5 are supplied by the southern stream. Note that well 3 is also
recharged by the infinite boundary.

c) Capture zones of a multi-well system in a peninsula-shaped aquifer (Case
3a)

Here, a peninsula-shaped aquifer is considered. Capture zones for
one, two, three and five wells are generated by solving Eqs. (28)–(30)
based on the data given in Table 4. A regional flow rate of 0.001 at an
angle of /4 is assumed. Therefore, the potential along the boundaries
is variable.

Fig. 8a depicts the capture zone of a single well. The well is fed by
water from the inflow boundaries and the regional flow. Its capture
zone covers over half of the aquifer. Fig. 8b illustrates the capture zone
of two extraction wells. A water-divide line is formed between the wells
and acts as a barrier boundary for well 2. Well 1 captures the regional
flow and blocks flow to well 2. As the result, well 2 gains water from the

northern and southern streams so that the streamlines of well 2 that are
close to the water-divide become parallel to it. In Fig. 8c, where three
extraction wells are operating, a water-divide forms and well 3 cannot
receive water from the western boundary. Well 1 is fed from the
southern and western boundaries, and by capturing the regional flow it
prevents any regional flow reaching wells 2 and 3. Well 2 instead re-
ceives water from the three boundaries. Fig. 8d shows the capture zones
of five extraction wells. Two water-divide lines are formed, one be-
tween wells 4 and 5 and another between wells 3 and 4. Well 3 is fed by
three boundaries only whereas the others receive water from one or two
boundaries. The capture zone of well 4 separates those of wells 3 and 5.

d) Capture zones of multi-well system in triangular aquifers (Case 3b)

Based on Eqs. (38)–(40) and data in Table S1, the capture zones of
three wells are plotted for the case of a triangular aquifer. The angles of

1 and 2 are 0.37 and0.47 , respectively. In Fig. S2, the case of re-
gional flow of 0.001 at an angle of /4 rad is considered. Therefore, the
potential along boundaries is variable. Fig. S2 shows that well 1 is
mainly supplied by the lower boundary and well 2 is fed by the three
boundaries. Although the pumping rate of well 3 is higher than those of
other wells, it is not supplied by the boundary along the y-axis, but is
fully fed by the stream segments in its vicinity. A water-divide line
separates the capture envelope of well 3 from that of well 2 and the

Fig. 6. Capture zone in a semi-infinite aquifer for five extraction/injection wells. In this figure and Figs. 7–11, thick black curves show the limit of the capture
envelopes, black thin curves with arrow are streamlines, and green broken lines are equipotential lines. Black, hollow and green diamonds represent the extraction,
injection wells and the stagnation points, respectively. The blue arrow illustrates the direction of regional flow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 3
Extraction rates and coordinates of wells in Fig. 7.

Fig. 7 Well number xwD ywD QwD

a 1 0.5 0.15 0.01

b 1 0.3 0.2 0.01
2 0.5 0.7 0.02

c 1 0.3 0.5 0.01
2 0.5 0.2 0.02
3 0.7 0.55 0.03

d 1 −0.2 0.7 0.01
2 0 0.3 0.02
3 0.2 0.5 0.03
4 0.4 0.4 0.01
5 0.7 0.1 0.02
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capture zone of well 2 surrounds that of well 1.
In Fig. 9a, a semi-infinite aquifer with three inflow boundary seg-

ments is examined. Five extraction wells are assumed as given in
Table 5. The direction of the regional flow is from east to west ( = ).
The capture envelopes are calculated based on Eqs. (38)–(40). Except
for well 1, the other wells are fed by the inflow boundary. The effect of
the regional flow direction is obvious and the capture envelopes trend
to the east. If well 1 were a wastewater disposal well, then well 2 would
be contaminated only due the low injection rate of well 1 and the di-
rection of the regional flow (Fig. 9b).

e) Capture zones of a multi-wells system in a rectangular aquifer (Case 4a)

In Fig. S3, a rectangle aquifer with four wells is considered. The well
coordinates and rates are tabulated in Table S1 and their capture zones
are obtained by Eqs. (48) and (49). A regional flow of 0.001 at the
direction of /3rad is considered. Therefore, the potential along
boundaries is variable. In Fig. S3a, the capture zone of well 1 trends in

the direction opposite to the regional flow to reach the streams while
well 2 is fed by three boundaries and its capture envelope encompasses
that of well 1. The capture zone of well 3 is limited by the two water
divides formed at the right and left sides of the well. Well 3 prevents
regional flow reaching well 4, which is fed by the eastern and northern
streams. The aquifer of Fig. S3b is the same as that in Fig. S3a but wells
2 and 3 are injection wells. Well 1 is fed by wells 2 and 3. As a result, if
well 2 is a wastewater disposal well it would contaminate well 1 as well
as the western, southern and northern boundaries. With the same as-
sumption, injection well 3 contaminates well 1, well 4 and the western,
southern and northern streams. Note that well 4 is fully supplied by
well 3 and is no longer connected to the boundaries. A closed-loop flow
is established between wells 3 and 4, which reflects the usefulness of
the derived capture zone models for the entrapment of contaminant
plumes that may be exist in the aquifer.

f) Capture zones of a multi-well system in a finite or semi-infinite aquifer
bounded by five or more stream segments (Case 4b)

Fig. 10 examines the interaction of aquifer-well-boundary system in
an irregularly-shaped aquifers of semi-infinite or finite extent. In
Fig. 10a, a semi-infinite aquifer bounded by eight stream segments is
pumped by six wells. The extraction rates and positions of the wells are
given in Table 6. The rate and direction of the uniform regional flow are
0.001 and /4, respectively. Well 1 is supplied by regional flow and has
no connection with the stream. In contrast, wells 2 and 3 are fed by the
regional flow and by the first, third and last stream segments, respec-
tively. The stream fully supplies wells 5 and 6. The capture envelope of
well 4 surrounds the capture envelope of well 2. Well 4 is supplied
along the three segments of the stream and along a narrow strip by the
regional flow. Fig. 10a is replotted as Fig. 10b by installing an injection
well (well 6). The pattern of capture zones changes and wells 3, 4, 5 and
7 are influenced by well 6 while there is no flow between well 6 and
wells 1 and 2, although the extent and size of their capture envelopes

Fig. 7. Capture zones for one (a), two (b), three (c) and five (d) wells in wedged-shaped aquifers.

Table 4
Extraction rates and coordinates of wells in Fig. 8.

Fig. 8 Well number xwD ywD QwD

a 1 0.5 0.5 0.01

b 1 0.5 0.3 0.01
2 1.5 0.7 0.02

c 1 0.5 0.25 0.01
2 1 0.7 0.02
3 1.5 0.45 0.03

d 1 0.2 0.9 0.01
2 0.4 0.25 0.02
3 0.8 0.5 0.03
4 1.2 0.8 0.01
5 1.6 0.4 0.02
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are affected indirectly. The so-formed water divide separates the
northern and southern portions of the aquifer. Fig. 10c and d are plotted
for a finite, irregularly-shaped aquifer (island-aquifer) based on data
given in Table 7. The difference between Fig. 10c and d is that in the
former case the three wells are extraction wells whereas in Fig. 10d well
1 is an injection well, which recharges the other wells. As the result of
the injection well, the capture zone pattern of Fig. 10d changes mark-
edly compared to that of Fig. 10c.

5. Validation of the solution

To validate the developed capture zone solutions, the capture zones
of Fig. 6a, Fig. 7c and Fig. 9a were generated by MODFLOW 2000
(Harbaugh et al. 2000) and MODPATH (Pollock, 1994) and plotted in
Fig. S4. The capture zones and the pattern of streamlines in Fig. S4
generated by the numerical models are comparable to the analytical
model capture curves (i.e., Fig. 6a, 7c and 9a). The slight difference is

mainly due to the approximation inherent in the numerical models. It is
worth mentioning that the usage of the capture zones equations de-
veloped in this paper is far easier, more accurate and less time con-
suming using the abovementioned numerical models, although nu-
merical models are more flexible in dealing with complicated boundary
conditions. Fig. S4 demonstrates the credibility of the developed ana-
lytical capture zone models and their potential to verify the accuracy of

Fig. 8. Capture zones of one (a), two (b), three (c) and five (d) wells in peninsula-shaped aquifers.

Fig. 9. Capture zones of five wells in a semi-infinite aquifer bounded by three stream segments.

Table 5
Extraction rates and coordinates of extraction wells in Fig. 9.

Well number xwD ywD QwD

1 0.8 0.5 0.01
2 1 0.8 0.02
3 1 2 0.03
4 2 1.6 0.01
5 2.5 1.8 0.02
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numerical models.

6. Groundwater remediation scheme design

The above dimensionless capture zone solutions can be used to
design groundwater remediation projects such a bioremediation, pump-
and-treat, plume containment, etc. In such projects, polluted ground-
water is typically extracted using one or more wells, treated and pos-
sibly reinjected. The capture zone, the optimal number of wells, the
optimal injection/extraction rates, and the layout of wells with respect
to the plume are the main components of an efficient and cost-effective
design (Javandel and Tsang, 1986; Zarei-Doudeji and Samani, 2018;
Nagheli et al. 2020).

As an example, we consider a semi-infinite aquifer bounded with
three stream segments (Fig. 1e). The problem setup includes known
dimensions and hydraulic properties as tabulated in Table 7. A con-
taminant plume is located along the direction of regional groundwater
flow (from the east to the west, = 0). The aim is to contain the plume
hydraulically and prevent its extension downgradient using two or
three wells. A logical step is to position one or more extraction wells at
the leading edge of the plume and to place an injection well (to inject
treated water) in the vicinity of the contaminant source. A solution

Fig. 10. Capture zones of three wells in semi-infinite (a and b), and finite (c and d) irregular-shaped aquifers.

Table 6
Extraction rates and coordinates of wells in Fig. 10.

Fig. 10 Well number xwD ywD QwD

a 1 0.4 1.6 0.01
2 0.8 0.8 0.02
3 1.3 1.8 0.03
4 1.4 1.2 0.01
5 2 1.9 0.02
6 2.5 0.8 0.03

b 1 0.4 1.6 0.01
2 0.8 0.8 0.02
3 1.3 1.8 0.03
4 1.4 1.2 0.01
5 2 1.9 0.02
6 2 1.3 −0.04
7 2.5 0.8 0.03

c 1 1.5 1.5 0.01
2 2.3 2.3 0.02
3 2.3 1.5 0.03

d 1 1.5 1.5 −0.01
2 2.3 2.3 0.02
3 2.3 1.5 0.03
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could be determined manually by using Eqs. (38)–(40) to generate a set
of capture envelopes for various well layouts and extraction/injection
rates. This approach, although cumbersome, could achieve a satisfac-
tory plume capture design. Here, this practice was carried out by em-
bedding Eqs. (38)–(40) within an optimization algorithm, specifically
the Genetic Algorithm as presented by Nagheli et al. (2020). The result
is presented in Fig. 11 where a closed circulation loop is formed and the
optimal plan is achieved, i.e., the plume is contained and can be ex-
tracted without disturbing the flow regime of the aquifer. The opti-
mized well positions and extraction/injection rates are given in Table
S2.

Another example is illustrated in Fig. S5 where a contaminant
plume spreads in the direction of regional flow in a peninsula-shaped
aquifer. In Fig. S5a, a set of capture envelopes is plotted for various
extraction rates using Eqs. (28) and (29). As can be seen, the capture
envelope for =Q 0.005D fully encompasses the plume, i.e., the well
extracts the plume and prevents its spread in the aquifer. However, the
capture envelope reaches the stream. An improvement is the duplet
well system of Fig. S5b, which forms a closed water circulation loop
that separates the plume from the rest of aquifer, and so more effi-
ciently captures the plume than the single-well case presented in Fig.
S5a.

7. Conclusion

A systematic mathematical formulation for determination of well
capture zones consists of the stream function, discharge potential and
stagnation points. This work provides this formulation for any number
of extraction/injection wells in aquifers bounded by segmented inflow
(variable head) boundaries, with/without uniform regional flow.
Solutions are obtained based on the theory of complex discharge po-
tentials and the conformal mapping method. The solutions are provided
for simple (i.e., one stream segment) to complicated boundary condi-
tions (i.e., n stream segments). The areal extent of the aquifers is semi-
infinite or finite and can have regular or irregular shapes. The solutions
are provided in dimensionless form.

These solutions generalize existing solutions. The one-stream seg-
ment solution is similar to that of Asadi-Aghbolaghi et al. (2011) but
our solution generalizes this to consider multiple injection/extraction
wells with regional flow in any direction. The two-stream segments
solution (i.e., wedge-shaped aquifer), in contrast to Samani and Zarei-
Doudeji (2012), is simpler and independent of the wedge angle. The
three-stream segments solution is more general and flexible (in terms of
the segment interception angles) than the peninsula-shaped aquifers
considered by Zarei-Doudeji and Samani (2014). The triangular-aqui-
fers solution is similar to that of Asadi-Aghbolaghi and Seyyedian
(2010) but our solution is valid for multiple wells in scalene triangular
aquifers. Our rectangular-shaped aquifer solution is independent of the
number of wells in contrast to the single-well solution of Lu et al.
(2015). The solutions provided for regular and irregular polygonal-
shaped aquifers with any number of boundary segments have no
comparable existing solutions.

The examples in Figs. 6–11 demonstrate that the size and pattern of
the capture envelopes are controlled by the extraction/injection rate,
distance of wells from the boundary segments, distances between wells,
the rate and direction of regional flow and the initial head along the
boundaries. We suggest that the capture zone models presented here
can be used as a screening tool for better insight into problems such as
surface-subsurface water interaction, water rights adjudication, well
head protection plans, issuance of extraction and injection rate permits,
quality and quantity management of water resources, etc.
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Appendix A:. Parameters in Eqs. (27) and (28)

The following terms appear in Eqs. (27) and (28):

= +f x y x ysinh ( )cos ( ) cosh ( )sin ( )D D D D D1
2 2 2 2

Table 7
Aquifer parameter values for Fig. 11.

b (m) K (m/day) q0 (m
2/day) d (m) α

20 5 0.1 2270 1000 3100 127 198

Fig. 11. Groundwater remediation scheme. Solid and hollow diamonds show
extraction and injection wells, respectively. The colored area is the original
contaminant plume. The thick black line surrounding the plume is the dividing
streamline defining the capture zone that separates the plume from the rest of
the aquifer.
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= +f x y x ysinh ( )cos ( ) cosh ( )sin ( )D wjD wjD wjD wjD2
2 2 2 2 (A1)

=g x y x y2sinh( )cos( )cosh( )sin( )D D D D D1

=g x y x y2sinh( ) cos ( ) cosh ( ) sin ( )D wjD wjD wjD wjD2

Appendix B:. Parameter m in Eq. (32)

The derivation of Eq. (32) is based on the observation that, at point 2, z equals di and = = i1 exp( ), so that by Eq. (31),

=
+ +( )

di
C i Fexp( ) 1, ; 1; 11 2 2 1

1 2 2

2
(B1)

and

=
+ +( )C di

i Fexp( ) 1, ; 1; 1
1

2

2 2 1
1 2 2

(B2)

In Eq. (32), =m C1 as written here.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.hydroa.2020.100053.
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