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S1 Dual intensity modulation

S1.1 Introduction
When measuring the Brillouin gain in low-pressure gas, the peak gain is relatively low (e.g. in 1 bar CO2,
it is about 10−3 m−1W−1 in our HCF). In this situation, the pump reflection at the SMF-HCF coupling
interface, directly entering into the detector, is the source of fluctuations screening the gain to be measured.
This reflection issue is resolved by introducing a dual intensity modulation at frequency fS/2 and fP /2 on
the probe and pump beam, respectively. The modulators are Mach-Zehnder modulators and their bias is set
to suppress the carrier. As a consequence, the probe and pump light intensities are modulated at a frequency
fS and fP , respectively. Since stimulated Brillouin scattering is a non-linear process involving the product
of pump and probe powers, sum and difference of frequencies are generated. After Brillouin interaction with
the pump inside the gas-filled hollow-core fibre (HCF), the probe intensity is detected and band-pass filtered
at a frequency f∆ = fS − fP using a lock-in amplifier. Hence, the pump beam directly reaching the detector
is filtered out in the radio frequency (RF) domain, since the detection is made at a frequency very distant
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from fP
a. The experimental set-up is illustrated in Fig. S1. Note that the frequency difference, f∆, should

remain much smaller than the Brillouin linewidth to secure steady-state acoustic waves. A similar technique
is used to filter out stray light in Brillouin microscopy [1].

Bias

1
2

3

ν0

νSCAN

→

→
Isolator

Reference

HCF

DFB

ECDL

Isolator

 

 

PD

  

Laser

IM

PC

PC

Bias

50m gas-filled

Probe beam

Pump beam

IM

fΔ = fS − fP 

2
fP 

2
fS

Lock-in amplifier

ν
ν0 νSCAN

fPfS

75 kHz
BPF

Figure S1: Dual intensity modulation (DIM) experimental set-up. Experimental set-up for Brillouin
gain spectrum measurement using an intensity modulation for both pump and probe beams. Detection is
performed at the frequency difference. Note that the three radio-frequency sources are synchronised to the
same frequency standard. ECDL, external-cavity diode laser; DFB laser, distributed feedback laser; IM,
intensity modulator; PC, polarisation controller; PD, photodetector; BPF, band-pass filter.

S1.2 System response
In this derivation, it is assumed that both intensity modulation frequencies fS and fP are much smaller
than the Brillouin frequency shift νB . Moreover, the frequency difference fP − fS is assumed to be much
smaller than the Brillouin linewidth ΓB/2π. Then, the acoustic wave governing the interaction at frequency
f∆ can be approximated to be at steady-state. Furthermore, absence of pump depletion is assumed. We
assume the probe beam to co-propagate along the HCF (z-axis) and the pump beam to counterpropagate
along the z-axis. In these conditions, the probe electric field amplitude along the z-axis, Es(z), in presence
of stimulated Brillouin scattering, is governed by the following differential equation [2]:

∂Es
∂z

+
ng
c

∂Es
∂t

=
1

2
gBLAPPEs −

α

2
Es, (1)

where gB is the peak Brillouin gain, as defined in Eq. (1) in the main manuscript, c is the speed of light, ng
is the group refractive index of the fibre, α is the fibre loss in unit 1/m, PP (z) = PP0e−α(L−z) is the pump

aHowever, the reflection still needs to remain limited as to not damage the photodetector in the case of a high pump power.
Furthermore, the photodetector may show a slight nonlinearity. In that case, the presence of both pump and probe beams at
the detector could lead to sum-frequency difference generation within the detector itself, generating a background noise that
may cover the desired signal. In our case, angled-cleaved SMFs are used to sufficiently reduce the reflection.
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power along the HCF, PP0 being the input pump power at z = L, where L is the fibre length, and

LA(Ω) =
iΩΓB

Ω2
B − Ω2 + iΩΓB

(2)

is the probe (amplification) field lineshape, for which the pump-probe detuning frequency Ω/2π = νSCAN−ν0,
the Brillouin frequency shift νB = ΩB/2π, and the Brillouin linewidth (full width at half maximum),
∆ν = ΓB/2π, are defined. This definition assumes the probe wavelength to be larger than that of the pump
beam (amplification side).

The equation is converted in units of power by using PS = Aeff‖Es‖2/2η, where Aeff is the fibre effective
area and η is the gas impedance:

1

PS

(
∂PS
∂z

+
ng
c

∂PS
∂t

)
= gBLIPP − α, (3)

where LI(Ω) = ‖LA(Ω)‖2 is the intensity lineshape. In order to solve Eq. (3), we change the coordinate
frame from (z, t) to (z′, t′) by performing the following change of variable:

z (z′, t′) = z′,

t(z′, t′) = t′ +
ng
c
z′.

(4)

Using these expressions for the original coordinates as a function of the new coordinates, we apply the chain
rule and express:

∂PS(z, t)

∂z′
=
∂PS(z, t)

∂z

∂z

∂z′
+
∂PS(z, t)

∂t

∂t

∂z′
=
∂PS(z, t)

∂z
+
ng
c

∂PS(z, t)

∂t
,

∂PS(z, t)

∂t′
=
∂PS(z, t)

∂z

∂z

∂t′
+
∂PS(z, t)

∂t

∂t

∂t′
=
∂PS(z, t)

∂t
.

(5)

These expressions allow rewriting the partial differential equation, Eq. (3), as:

1

PS(z, t)

∂PS(z, t)

∂z′
= gBLIPP (z′, t′)− α, (6)

where the pump power PP is now expressed as a function of the new coordinates. Since the time derivative
disappears, it is now easier to solve the equation. An expression for the the pump power generated by the
Mach-Zehnder modulator, PP (z, t), is derived in section S8. Using this derivation and the fact that the
modulator bias is in carrier-suppressed configuration, PP can be expressed as:

PP (z, t) = P̃P0e−α(L−z)

(
1−

∑
n

Jn(2ςP ) cos
(
n(KP z − ΩP t)

))
, (7)

where PP0 = P̃P0 (1− J0(2ςP )) is the time-averaged input pump power at the end of the HCF (z = L),
ΩP = πfP and KP = −ΩPng/c. We now transform this expression from (z, t) to the new coordinate frame,
(z′, t′). Given that the pump counter-propagates, KP < 0, and the expression becomes:

PP (z′, t′) = P̃P0e−α(L−z′)

(
1−

∑
n

Jn(2ςP ) cos
(
n(2KP z

′ − ΩP t
′)
))
, (8)

which, to simplify subsequent integration, can also be expressed as:

PP (z′, t′) = P̃P0

(
e−α(L−z′) − e−αL Re

{∑
n

Jn(2ςP )e(α+2inKP )z′−inΩP t
′

})
. (9)
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Replacing pump power expression, Eq. (9) into Eq. (6) and integrating both sides along z′ yields:

ln {PS (z(z′, t′), t(z′, t′))}
∣∣∣∣z′=L
z′=0

=

∫ L

0

(gBLIPP (z′, t′)− α) dz′

=

(
gBLI P̃P0

(
1

α
e−α(L−z′) − e−αL Re

{∑
n

Jn(2ςP )
e(α+2inKP )z′−inΩP t

′

α+ 2inKP

})
− αz′

)∣∣∣∣z′=L
z′=0

.

(10)

Hence we obtain the general solution:

PS(L, t) = PS(0, t− ngL/c)e−αL exp

(
P̃P0gBLILeff

(
1− Re

{∑
n

Jn(2ςP )ζne−inΩP t

}))
, (11)

where

Leff =
1− e−αL

α
(12)

is the fibre’s effective length and

ζn =
1

Leff

α− 2inKP

α2 + (2nKP )2

(
einKPL − e−inKPL−αL

)
(13)

is a modulation-dependent unitless parameter. The input probe power can be expressed as:

PS(0, t− ngL/c) = P̃S,0

(
1−

∑
m

Jm(2ςS) cos
(
mΩSt+mΦs

))
, (14)

where ΩS = πfS is the modulation angular frequency, PS,0 = P̃S,0 (1− J0(2ςS)) is the time-averaged input
probe power at z = 0, Φs contains both a phase shift between pump and probe modulations as well as the
phase shift due to the probe propagation along the fibre. ςS is the probe modulation depth. Section S8
gives a detailed derivation of intensity-modulated signals using a Mach-Zehnder modulator, including the
definition of the modulation depth, ς. Since this technique was developed for the measurement of small
Brillouin gains, we can now apply the small-gain approximation. After applying this approximation, the
obtained expression consists of:
• A DC term.
• A term oscillating at multiples of the probe frequency, fS .
• A term oscillating at multiples of the pump frequency, fP .
• A term oscillating at multiples of the difference between the pump and probe frequencies, fS − fP .

As the detection is performed at the difference of the frequencies, only the last term is considered. The
power in the small-gain approximation can then be written as:

PS,(ΩP ΩS)(L, t) ∼= −P̃S,detP̃P0gBLILeff Re

{∑
n

∑
m

Jn(2ςP )Jm(2ςS)ζne−inΩP t cos (mΩSt+mΦS)

}
, (15)

where PS,det = P̃S,det (1− J0(2ςS)) is the time-averaged probe power at detection. Since the lock-in amplifier
only responds to the frequency difference Ω∆ = 2 (ΩS − ΩP ), only the terms n = ±2,m = ±2 are kept:

PS,Ω∆
(L, t) ∼=− 2P̃S,detP̃P0gBLILeffJ2(2ςS)J2(2ςP )

·
(

cos (Ω∆t) (Re {ζ2} cos (2ΦS) + Im {ζ2} sin (2ΦS))

+ sin (Ω∆t) (Re {ζ2} cos (2ΦS) + Im {ζ2} sin (2ΦS))

)
.

(16)

The photoreceiver delivers a voltage equal to Vdet = ρpdPdet, where ρpd is the power-to-voltage conversion
factor. Then, in presence of a voltage signal of type A cos(Ωt) +B sin(Ωt), the lock-in detection outputs the
magnitude

√
A2 +B2 , which gives:

S4



Vs,det
∼=

2J2(2ςS)J2(2ςP )

(1− J0(2ςS)) (1− J0(2ςP ))
ρpdPS,detPP0gBLILeff ‖ζ2‖ . (17)

The dependence of the set-up’s response on the length and modulation frequency is given by the parameter:

‖ζn‖ =
1

Leff

√
1 + e−2αL − 2e−αL cos (2nKPL)

α2 + (2nKP )2
. (18)

The parameter ζn quantifies the interference effect occurring when the wavelength related to the modulation
frequency fP becomes comparable or smaller than the effective length of the fibre. That is, when the
following condition: Λ < Leff , where Λ = c/(ngfP ), is met, the system’s response significantly decreases.
On the contrary, when Λ � Leff , the parameter ζn ≈ 1. Note that the pump beam is also attenuated by
the probe beam. As a result, a π-phase shifted signal, co-propagating with the pump beam and of same
magnitude as the one described above, is also generated. If the reflection of the HCF is too large (e.g. >
−20 dB), then the reflection of this signal will interfere significantly with the main signal and this can be no
longer neglected. In our case, the angled-cleaved SMF and the HCF connector generate <−36 dB reflection.
We can therefore neglect the contribution from the pump reflection. Finally, note that in the special case of
a bias at the quadrature-point for the two modulators (as used for the distributed temperature experimental
set-up, section S3), the result given by Eq. (17) is modified to:

Vs,det,QP
∼= 2J1(2ςS)J1(2ςP )ρpdPS,detPP0gBLILeff ‖ζ1‖ . (19)

S1.3 Experimental verification
Here, we experimentally verify the set-up response provided by Eq. (17) and compare it with a single
modulation set-up.
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Figure S2: Experimental verification of the dual intensity modulation method. (a) Comparison
of the measured system response with the calculated response given by Eq. (17), showing good qualitative
agreement. (b) Comparison of the performances with the single modulation set-up in presence of a −48 dB
reflection at the fibre coupling interfaces. In the case of the single intensity modulation method, the Brillouin
gain signal is fully screened by the background fluctuations due to the pump reflection. By contrast, the
signal from the dual intensity modulation method is not perturbed by this reflection and is able to accurately
measure the gain.

System response

A 5-m-long standard ITU G.652 single-mode fibre was connected to the experimental set-up shown in Fig.
S1 (replacing the gas-filled HCF with the 5-m-long SMF). Both pump and probe modulation frequencies
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were gradually increased from 2 MHz to 110 MHz by 2 MHz steps, such that their difference, f∆, remained
constant and equal to 75 kHz for the entire sequence. For each frequency step, the Brillouin gain was
acquired and its peak value recorded. Figure S2(a) plots the results as a function of the pump modulation
frequency, together with the theoretical curve obtained from Eq. (17), assuming a Brillouin gain of gB = 0.25
m−1W−1. We can observe that the measurements match well with the theoretical curve. Small deviations
are observed and likely come from the presence of the connecting patchcords showing a slightly different
Brillouin frequency shift.

Robustness to reflections

In order to verify the robustness of the dual intensity method against reflections, a 52-cm-long small-solid
core fibre (ultra-high NA fibre with 1.8 µm core diameter), with its both ends spliced to a single-mode fibre
patchcords was used (i.e. replacing the gas-filled HCF with the small-core fibre in Fig. S1). This sample
exhibits a reflection of −48 dB at the coupling interfaces caused by the effective index mismatch between
the two fibre types. The gain of the second acoustic mode (high-order acoustic mode) of the small core fibre
(gB ≈ 0.062 m−1W−1) was measured using the single modulation set-up and the dual modulation set-up
with the same parameters (same pump power, probe power and modulation depth). The time-averaged
pump power, just before entering the sample, was 14 dBm and the detected probe power (time-averaged for
the dual modulation case) was −8 dBm. The results are shown in Fig. S2(b). We can see that in the case
of the single modulation, the pump reflection (≈ −34 dBm) reaching the detector is sufficient to generate
background fluctuations fully screening the Brillouin gain signal. On the other hand, in the case of the dual
modulation set-up, the reflection is filtered out and the Brillouin gain can be measured with a good SNR.

S1.4 Experimental Brillouin gain calculation
Here, we use Eq. (17) to compute the Brillouin gain. The parameters are listed in Table S1.

Parameter name Parameter description Value
ςP Pump modulation depth 1.15
ςS Probe modulation depth 1.15
PP0 Pump power at the input of the HCF (inside the HCF) 7.8 dBm
PS,det Probe power at the photodetector −7.5 dBm
fP /2 Pump modulation frequency 714.623 kHz
fS/2 Probe modulation frequency 752.123 kHz
f∆ Detection frequency 75 kHz
α HCF optical attenuation (including the 0.5 dB CO2 absorption) 5.99 km−1

ng (41 bar) HCF group refractive index 1.01804
ρpd Photodetector power-to-voltage conversion factor 3.75 V/mW
αF Voltage attenuation factor due to the band-pass filter 0.827
Vs,det (41 bar) Lock-in amplifier voltage corresponding to the peak Brillouin gain 60.8 mW

Table S1: Parameters used for computation of the Brillouin gain from the dual intensity mod-
ulation system response. Note that the values of ng and Vs,det are given at 41 bar CO2-filled HCF as an
example, and the pump and probe power are the time-averaged values.

Using these values along with Eqs. (12) and (18), we can compute Leff = 43.21 m, ‖ζ2‖ = 0.657. We
now add αF to Eq. (17) and rewrite it to obtain the expression of the Brillouin gain:

gB =
(1− J0(2ςS)) (1− J0(2ςP )) · Vs,det

2J2(2ςS)J2(2ςP )ρpdPS,detPP0LeffαF ‖ζ2‖
. (20)

By evaluating this equation using values for all parameters, we obtain gB = 1.68 m−1W−1 for 41 bar CO2,
which is in good agreement with our Brillouin amplification and lasing measurements.
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S2 Detailed experimental set-up for signal amplification
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Figure S3: Detailed experimental set-up for the signal amplification measurement. ECDL,
external-cavity diode laser; IM, intensity modulator; AOM, acousto-optic modulator; EDFA, erbium-doped
fibre amplifier; PD, photodetector.

Parameter description Value
HCF attenuation (including the 0.5 dB CO2 absorption) 5.99 km−1

Signal power at the input of the HCF (inside the HCF) −34 dBm
Signal modulation frequency f 37.5 kHz
Lock-in amplifier detection frequency 75 kHz
Lock-in amplifier, signal power (average optical power) to voltage transfer coefficient 5.36 V/mW

Table S2: Experimental details for signal amplification measurement.

The detailed experimental set-up used for signal amplification measurements is shown in Fig. S3. Pump and
probe (signal) beams are both from the same external-cavity diode laser. The pump light was generated by a
Mach-Zehnder electro-optic modulator (with carrier-suppressed bias set-up) at modulation frequency fSCAN

and then amplified by an erbium-doped fibre amplifier. The signal goes through an intensity modulator at
frequency f=37.5 kHz (carrier-suppressed bias, hence the power is modulated at frequency 2f = 75 kHz)
and then is frequency blue-shifted by an acousto-optic modulator (fAOM = +110 MHz), in order to break
the pump sideband symmetry. Therefore, only one pump sideband is used for the Brillouin interaction (here,
only the higher-frequency sideband of the pump beam interacts with the signal). The injected signal power
(average power) is −34 dBm, which is more than 40 dB smaller than the pump power, hence satisfying the
small-signal amplification condition (i.e. absence of pump depletion).

By scanning the detuning frequency (fSCAN−fAOM) across the Brillouin frequency shift, we can measure
the Brillouin amplification spectra as a function of the pump-signal detuning frequency using different pump
powers. Here, the signal modulation frequency, 2f , is much smaller than the linewidth of the Brillouin
gain spectrum at 41-bar CO2 (i.e. 3.65 MHz). This means that the two probe sidebands have the same
Brillouin amplification coefficient. The output signal (inside the HCF before entering the output SMF) can
be expressed as: PS(L) = PS(0) exp (PP0gBLILeff − αL). By measuring the output signal (at 75 kHz) with
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a lock-in amplifier and converting the voltage to optical power, we obtain the output signal power. The
signal amplification is calculated as the ratio between the output signal power and the input signal power.

S3 Detailed experimental set-up for distributed temperature sens-
ing

The experimental set-up we used is shown in Fig. S4. It is essentially a combination of a Brillouin optical
correlation-domain analyser (BOCDA) based on phase modulation [3] with a dual-intensity modulation,
presented in section S1, in order to filter out the pump reflection at the coupling interface. An intensity
modulator generates two sidebands for the pump beam, used for the scanning. An AOM placed on the probe
line shifts the probe frequency and thus breaks the pump sideband symmetry. Therefore, only one pump
sideband is necessary for the scanning. The other unused sideband is not filtered but does not interfere in
any way with the measurement. Polarisation is handled by placing a polarisation scrambler on the pump
line. When the pseudo-random bit sequence (PRBS) generator is turned on, the random phase modulation
applied to both pump and probe beams allows the acoustic waves to grow only in a precise location inside
the fibre in which the phase of both pump and probe beams correlates and, thus, enables the experimental
set-up to be used for distributed temperature sensing.
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Figure S4: Experimental set-up for distributed temperature sensing in a gas-filled HCF by im-
plementing a BOCDA. The implementation is a combination of BOCDA technique with the dual intensity
modulation method (see text). Note that the three radio-frequency sources generating the frequencies fP ,
fS and f∆ are synchronised to the same frequency standard. PRBS, pseudo-random bit sequence; AOM,
acousto-optic modulator; IM, intensity modulator; EDFA, erbium-doped fibre amplifier; PD, photodetector;
AMP, radio-frequency amplifier; BPF, band-pass filter.

S3.1 Dual intensity modulation implementation
The pump and probe are intensity-modulated with a RF modulation frequency of fP = 1 MHz and fS = 1.075
MHz, respectively, so that the frequency difference is f∆ = fP − fS = 75 kHz. The modulator bias
configuration was tuned to the quadrature point, as illustrated in the spectrum of Fig. S4.
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S3.2 PRBS generator
The PRBS generator reference clock fPRBS was set to 11.7 GHz for HCF and to 4.5 GHz for SMF, leading
to a bit duration τb of 85.5 ps and 222.2 ps, respectively. These frequencies were experimentally chosen as
the highest frequencies for which our system still gave a reasonable signal-to-noise ratio (SNR > 10). The
resulting spatial resolutions, computed as the inverse of the bit duration, were 1.28 cm and 2.32 cm for HCF
and SMF respectively. The exact spatial resolutions are slightly higher (i.e. smaller length) than these values
[4]. The PRBS sequence length NPRBS was chosen as NPRBS = 215 − 1 such that the sequence length (420
m and 760 m for HCF and SMF, respectively) is large enough to cover the whole fibre length.

S3.3 Phase modulator
For proper functioning of the system, when the PRBS generator outputs a bit ’1’, a phase shift precisely
equal to π has to be reached as fast as possible to avoid unwanted activation of acoustic wave in the fibre
at specific locations corresponding to the switching of the PRBS sequence [4]. Hence, a low Vπ (Vπ ≈ 4 V),
high frequency (20 GHz) phase modulator was used in this experiment.

S3.4 Correlation location scanning
In order to adjust the optical path length difference, an optical delay-line able to delay an optical signal up
to a time τ = L ·n/c, where L is the measurement fibre length, would be required. Building such a delay-line
is very challenging. Thus, another option is commonly adopted. This alternative method takes advantage of
the fact that the total duration of the PRBS sequence, and thus the time at which the next sequences will
start, depends on the bit duration. This technique consists of adding a fixed delay-line, i.e. an optical fibre
of length Ldl > NPRBS · τb · ng/c (in our case, Ldl =1.6 km) in either the probe or pump path and slightly
tuning the PRBS bit duration to shift the time at which the next sequences will start. The change of the
correlation peak location ∆zcp as a result of a slight change of the PRBS clock frequency ∆fPRBS is found
to be given by [5]:

∆zcp =
1

2

∆fPRBS

fPRBS
· Ldl. (21)

Thus, in our case, the total change of the PRBS clock frequency ∆fPRBS required to scan the whole fibre
is: ∆fPRBS/fPRBS = 6%. This change of the PRBS clock frequency results in a 6% change in the spatial
resolution, which can be neglected here.

S3.5 Pump power
The pump power, before entering either the HCF or the SMF, was set to 100 mW. In the case of the HCF,
further increase in the power did not lead to an increase in the SNR. The power is estimated to be limited
by the reflection of the amplified spontaneous emission noise from the erbium-doped fibre amplifier, directly
entering into the photodetector.

S3.6 Probe signal acquisition
Probe signal was recorded by using a standard detector (NEP = 20 pW/

√
Hz ) followed by a 75 kHz

bandpass RF filter to select only the signal of interest. Measurement spectra were recorded using a 7.8 Hz
equivalent noise bandwidth (the lock-in amplifier was set to 10 ms time constant with 24 dB/octave filter
slope) and their peak gain frequency were estimated using the quadratic fitting described in section S3.7.

S3.7 Scanning, quadratic fitting and repeatability estimation
The scanning steps for HCF and SMF was 0.5 MHz and 1 MHz, respectively.

The quadratic fitting algorithm first applies a low-pass filter to the Brillouin gain data points and takes
the maximum value in order to find the approximate peak position. Then, it keeps 17 original data points
on each side from the approximate peak data point and discards the remaining data points. Note that these
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data points are the original data (without low-pass filtering). Finally, it performs a least-square quadratic
fitting on these original data points.

The repeatability for the HCF and the SMF is computed as the average along 21 position points of the
standard deviations of 8 measurements, previously fitted with the aforementioned quadratic fitting.

S3.8 Test bench
In order to demonstrate the absence of strain sensitivity and to perform a fair comparison with the standard
single-mode fibre, a dedicated test bench was built, which enables us to apply both strain and temperature
changes at the same fibre location. The ends of both our 50-m-long HCF and of a 50-m-long ITU G.652
single-mode fibre used for comparison are placed inside this test bench, which consists of two parts:
• Temperature stage. The fibres are "sandwiched" between two 4-cm-long Peltier elements, placed below

and above the two fibres, respectively. The thermal conductivity between the Peltier elements and the
fibres is ensured by the presence of thermal paste. Furthermore, two metallic radiators are placed on
the other side of each Peltier element to provide/dissipate heat from/to the environment. In addition,
a fan forces the flow of air through these radiators in order to ensure a sharp temperature transition.
A PT-1000 thermometer was placed in the thermal paste between the Peltier elements at the vicinity
of the fibres and a proportional-integral (PI) controller was used for precise temperature stabilisation.

• Strain stage. The previously described temperature stage is placed in the middle of a 15-cm-long strain
stage. On one side, the fibres are glued onto a fixed metallic plate while on the other side, they are
glued onto a displacement stage. Note that the coating of the two fibres was removed at the gluing
points.

A picture of this test bench is provided in Fig. S5, including the various lengths. Note that the fan is not
visible in the picture.

HCF

SMF
Peltier

elements

4 cm7 cm 4 cm

Figure S5: Test bench for distributed temperature sensing. Test bench to demonstrate the absence
of strain sensitivity. A 4-cm-long temperature stage is placed in the middle of a 15-cm-long strain stage,
allowing to apply strain and temperature changes in the same region of the fibres. Both SMF and HCF cross
the test bench parallel to each other and are placed close to each other for a fair comparison.

S4 Theoretical calculation of the Brillouin gain
The acousto-optic overlap effective area is given by [8]:

Aao
eff =

[
〈f2(x, y)〉

〈ξ(x, y)f2(x, y)〉

]2

〈ξ2(x, y)〉, (22)
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Parameter name Parameter description Value (for CO2 at 41 bar)
Aao

eff Acousto-optic overlap effective area 80 µm2

ηs Shear viscosity [6] 1.5× 10−5 Pa·s
ηb Bulk viscosity [7] 4× 10−6 Pa·s
κ Thermal conductivity 0.01662 W ·m−1K−1

CP Specific heat at constant pressure 846 J · kg−1K−1

ρ Gas density 72.77 kg/m3

γ Heat capacity ratio (adiabatic index) 1.3
n Refractive index of the gas 1.01804
T Temperature 298 K
va Acoustic velocity 243.6 m/s

Table S3: Detailed parameters for the theoretical calculation of the Brillouin gain. Note that
ideal gas model was assumed for the calculation of CP , ρ and γ. More complex calculations taking into
account non-ideal gas models do not significantly alter the values.

where f2(x, y) and ξ(x, y) are the transverse optical intensity profile and acoustic pressure profile of the
fibre, respectively, and where the operator 〈..〉 performs an integration over the entire fibre cross-section. We
use the numerical simulation results shown in Figs. 1(c) and (d) in the main manuscript and make overlap
integration to obtain the acousto-optic overlap effective area: Aao

eff = 80 µm2. By plugging all the parameters
of 41-bar CO2 into Eq. (1) in the main manuscript, we can calculate the theoretical Brillouin gain to be 1.86
m−1W−1, which is very close to the measured Brillouin gain 1.68 m−1W−1. By inserting all the parameters
into Eq. (6) in the main manuscript, we obtain a Brillouin linewidth of 4.3 MHz, which is also close to the
measured linewidth 3.65 MHz.

S5 Calculation of Raman gain coefficient
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Figure S6: Raman gain coefficient as a function of hydrogen pressure at a wavelength of 1.55
µm and room temperature (Q(1) vibrational transition).

So far, hydrogen gas shows the highest Raman gain (at a detuning frequency of 125 THz for the Q(1)
vibrational transition) of any gas [9]. The peak plane-wave steady-state Raman-gain coefficient, gR (in units
of cm/W), for the Q(1) transition for pump-laser wavelengths from 190 nm to 2 µm, densities of 1-100
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amagats, at room temperature (298 K) is given as [10, 11]:

gR = 9.37× 106 · (52ρ/∆ν)(νp − 4155)

(7.19× 109 − νp2)2
, (23)

where ρ is the density in amagats, ∆ν is the Raman linewidth in MHz, given by ∆ν = (309/ρ) + 51.8ρ at
room temperature, νp is the pump laser frequency in inverse centimetres. This means when the density is
above 9 amagats, ∆ν ≈ 51.8ρ MHz. At room temperature, a pressure of 1 amagat corresponds to 1.1 bar.
As a result, the peak Raman gain is independent of density (i.e it is saturated) when the pressure is above 10
bar because the Raman linewidth is proportional to the pressure (pressure broadening region, caused by the
onset of inelastic rotational collisions [12]). By substituting this pressure into Eq. (23), we can compute the
Raman gain (in units of cm/W) as a function of pressure. The saturated maximum Raman gain coefficient
is calculated as 4.2 × 10−12 m/W at 1.55 µm. Assuming the use of the same HCF with a core diameter of
10.9 µm and an optical effective mode field area of 51 µm2 (calculated with COMSOL), the peak Raman
gain coefficient (in units of m−1W−1) as a function of pressure is plotted in Fig. S6. The highest Raman
gain for more than 10 bar (e.g. 41 bar) hydrogen is 0.08 m−1W−1, which is more than 20 times smaller than
the Brillouin gain in gas demonstrated in this paper.

S6 Acoustic velocity in CO2 at different gas pressures
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Figure S7: Acoustic velocity in CO2 at different gas pressures.

We measured the Brillouin gain spectrum at different gas pressures. The pump-probe frequency detuning at
the peak gain is called Brillouin frequency shift and is given by [6]:

νB =
2neffva
λP

, (24)

where neff is the effective refractive index of the optical mode, va is the acoustic velocity and λP is the
pump wavelength. As an approximation, we used the gas refractive index n as the effective refractive index
neff . We can derive the measured acoustic velocity (shown by blue stars in Fig. S6) from the Brillouin
frequency shift by using Eq. (24). The black dots in Fig. S6 is the measured results for low frequency
acoustic waves (several kilohertz) from Ref. [13]. Our results show a very similar trend. The mismatch of
the absolute value is probably due to the different values of the bulk modulus at different acoustic frequencies
(our frequency range is ∼ 320 MHz), possibly caused by translational-vibrational relaxation processes, since
CO2 is a polyatomic gas. The green diamond in Fig. S6 represents the measured acoustic velocity for a 500
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MHz acoustic wave at 1 bar from Ref. [6]. This value matches well with our measurement. The red square
in Fig. S6 shows the measured acoustic velocity at 40 ◦C from Fig. 5 in Ref [14]. This value is a little bit
higher than our result, probably because their temperature is higher than in our experiments.

S7 Axial strain finite-element simulation
An axial strain applied on the fibre will lead to the following effects:
• Due to the Poisson effect, the honey-comb structure will be distorted, modifying the effective refractive

index of the optical mode.
• In particular, the holes will shrink and the fibre will elongate, leading to a change in the volume

available for the gas along the fibre.
• The silica refractive index will change due to the photo-elastic effect, leading to a change in the effective

refractive index of the optical mode.
In order to quantify these effects, a finite-element simulation has been performed. To this end, defor-

mations of a 3D slice of the HCF subject to an axial strain, ε, were computed. The deformations in the
cross-section plane have subsequently been used to compute the resulting change in the effective refractive
index neff . Although this computation was performed assuming 40 bar gas pressure in the holes, the results
only weakly depend on the gas pressure. Figure S7(a) shows the deformed geometry (white lines) compared
to the original geometry (black lines) for a hypothetical strain of 20%, as well as the normalised electric
field for one fundamental mode in the deformed structure. Figure S7(b) shows the evolution of the effective
refractive index, neff , relative to the the effective refractive index in the undeformed case, neff,0, as a function
of strain, from 0 up to 2%. The red trace shows the contribution of the photo-elastic effect while the blue
trace shows the contribution of the structure deformation (as shown in Fig. S7(a)). These two contributions
show a linear evolution equal to: ∂neff/∂ε = −2.4× 10−3 and ∂neff/∂ε = +7.08× 10−4 for the photo-elastic
effect and for the deformation, respectively. We can see that the photo-elastic effect dominates and is partly
compensated by the contribution of the deformation. The black dotted line shows the total evolution of neff

as a function of the applied axial strain and has a linear value of: neff/∂ε = −1.7× 10−3.

(%)

21.510.50

(a) (b)

0

0.5

1

2 μm

Figure S8: Simulation of the deformation of the HCF’s cross-section in response to an axial
strain. (a) Normalised electric field magnitude of one of the two fundamental modes (optical wavelength:
1.55 µm) in the case of a hypothetical axial strain of 20%. White lines draw the deformed structure while
black lines draw the original, undeformed structure. (b) Evolution of the effective refractive index, neff , as
a function of the strain and relative to the effective refractive index in absence of strain, neff,0. The blue line
accounts only for the structure deformation, the red line accounts only for the photo-elastic effect and the
dotted black line accounts for the total evolution (i.e. the sum of these two contributions).
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We are now in position to estimate the local change in the Brillouin frequency shift due to an axial strain
along the HCF. The change of the Brillouin frequency shift due to an axial strain ε can be written as:

dνB
dε

=
νB
n

∂n

∂ε
+
νB
Va

∂Va
∂ε

. (25)

Considering the 40 bar CO2 Brillouin frequency shift of 320 MHz and n ≈ 1, the first term can be directly
evaluated to:

νB
n

∂n

∂ε
= −544 mHz/µε. (26)

In order to evaluate the second term, we consider that the fibre, of length L, is axially strained over a length
l. In these conditions, the total change in the gas pressure P is:

∆P

P
= −∆V

V
= −ε (1− 2κ)

l

L
, (27)

where we considered the change in volume of a cylinder of volume Vc, stretched by a strain εc, that can be
expressed as: ∆Vc/Vc = εc (1− 2κ), with κ being the Poisson ratio. Taking as an extreme example a 40-bar
gas-filled 50-m-long fibre whose entire length is strained by an axial strain of 2% (i.e. 1 meter elongation),
the total pressure change would be: ∆P = −0.5 bar. As the pressure-dependent Brillouin frequency was
found to be of ≈ −1 MHz/bar, the total change in the Brillouin frequency due to the gas pressure variation
would be of +0.5 MHz. In addition, the change in the Brillouin frequency due to the effective refractive
index variation would be of −10.8 kHz. We can see that these two effects have an opposite sign and partly
compensate for each other. For example, if we consider the same example but with the strain applied along
a 20 centimeter-long portion of the fibre only, the change in the Brillouin frequency due to the gas pressure
variation would be 10 kHz and would almost perfectly compensate for the change in the Brillouin frequency
due to the effective refractive index variation. In summary, we demonstrated that the change in the Brillouin
frequency due to an applied axial strain can be neglected in normal operation.

S8 Response of a Mach-Zehnder intensity modulator

S8.1 Introduction
In this section, we discuss the Mach-Zehnder modulator and derive an expression for the output intensity
in the special case of a RF sinusoidal modulation. A typical Mach-Zehnder modulator consists of a lithium
niobate (LiNbO3) substrate in which optical waveguides are imprinted. Metallic electrodes are subsequently
deposited on top of the substrate. A top view and a cross-section of a typical Mach-Zehnder modulator is
shown in Fig. S9(a) and (b) respectively [15].

The input waveguide is split into two arms and the top electrodes are used to induce an electric field
into the two arms. Thanks to Pockels effect, the induced electric field leads to a slight increase in the
refractive index to one arm and a slight decrease in the other arm. The two waveguides are then merged
into one output waveguide again, resulting in an interference of the two optical fields. The extinction ratio
is a parameter measuring the intensity ratio between constructive interference and destructive interference
and its value is typically ≈ 25 dB (however, in the modulators used in this work, it was larger than 35 dB).
Figure S9(c) shows the normalised output intensity (neglecting insertion loss) as a function of the applied
RF voltage, following a cosine variation. The voltage change required to go from a constructive interference
to a destructive interference is called Vπ.

In order to simplify the calculation, we assume a perfect modulator as possessing the following charac-
teristics:
• The modulator is lossless. However, insertion loss can be easily added by simple multiplication of the

results with a loss factor.
• The modulator has an infinite bandwidth. This essentially means that the modulation frequency is

much smaller than the modulator cut-off bandwidth and simplifies the derivation by ignoring the effects
of a finite bandwidth.

• The modulator has exactly equal arm lengths. While never the case in reality, compensation for unequal
arm lengths and temperature drifts can be easily done by adjusting the modulator’s bias voltage.
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• In the case of a destructive interference, no light intensity is present at the output (infinite extinction
ratio).

RF electrodes{ Bias voltage

LiNbO3 substrate

RF electrodes

(a)

(b) (c)

{

0

1

Figure S9: Mach-Zehnder modulator. (a) Top view of a typical Mach-Zehnder modulator. The waveg-
uides are drawn in red and the electrodes in gray (dark gray for the signal electrode and light gray for the
ground electrode). Light propagates from left to right. Expressions indicate the electric field at various
positions. (b) Cross-section of a typical Mach-Zehnder modulator showing the lithium niobate (LiNbO3)
substrate, the waveguide of the two arms in red and the electrodes in gray (dark gray for the signal elec-
trode and light gray for ground electrode). The arrows show the orientation of the electric field crossing the
waveguides when the RF voltage is positive. (c) Normalised output light intensity as a function of the RF
voltage, VRF, following a cosine function.

As shown in Fig. S9(a), in presence of an input electric field E0, the electric field at the output of the
modulator reads:

E = E0eφA cos (φRF + φB), (28)

where eφA is the phase shift induced by the light propagation across the modulator, φRF = πVRF/2Vπ is
the phase shift induced when applying a RF voltage VRF(t) to the electrodes and φB is the bias phase shift
induced when applying a certain voltage to the bias port. Since eφA is a common phase shift that is simply
due to transmission across the device, we disregard it from now on.

We now apply a sinusoidal RF voltage of frequency Ω/2π and of amplitude V :

VRF(t) = V sin (Ωt). (29)

The RF phase shift is:

φRF =
π

2

VRF(t)

Vπ
= ς sin (Ωt), (30)

where ς = πV/2Vπ is called the modulation depth. Inserting Eq. (30) into Eq. (28) and applying Jacobi-
Anger’s identity, we obtain:

E = E0 Re
{

eiς sin ΩteiφB
}

= E0 Re

{
eiφB

∑
n

Jn(ς)einΩt

}
= E0

∑
n

Jn(ς) cos (nΩt+ φB),

(31)
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where Jn are the Bessel functions of the first kind and n is a scalar going from −∞ to +∞. We will use
this equation to derive an expression for the output intensity, as observed when connecting the modulator
output to a photodetector.

S8.2 Intensity at a photodetector
We now calculate the output intensity I = ‖E‖2 /2η, where η is the medium impedance. We define I0 =

‖E0‖2 /2η as the input light intensity and take the magnitude squared of Eq. (31):

I(t) =I0
∑
n

∑
m

Jn(ς)Jm(ς) cos (nΩt+ φB) cos (mΩt+ φB)

=
1

2
I0
∑
n

∑
m

Jn(ς)Jm(ς)
[

cos
(
(n+m)Ωt+ 2φB

)
+ cos

(
(n−m)Ωt

)]
.

(32)

At this point, it is useful to rearrange the terms by defining the following variable change: p = n + m and
q = n −m. As illustrated in table S4, this procedure is equivalent to switching from a horizontal/vertical
indices scanning to a diagonal one. Note that p and q should have the same parity: when p is even, q also
has to be even and when p is odd, q also has to be odd. We thus separate the sum into two parts; one for
odd values of p and q and one for even values of p and q. The sums are thus rearranged and written as:

Table S4: Illustration of the variables change: p = n + m and q = n −m. Original horizontal and vertical
scanning for n and m indices of the summation is changed to a diagonal scanning for p and q. Note that
although the indices shown run from −3 to 3, the actual sum is infinite.

I(t) =
1

2
I0
∑
p

∑
q

Jp+q(ς)Jp−q(ς)
[

cos (2pΩt+ 2φB) + cos (2qΩt)
]

+
1

2
I0
∑
p

∑
q

Jp+q+1(ς)Jp−q(ς)
[

cos ((2p+ 1)Ωt+ 2φB) + cos ((2q + 1)Ωt)
]
.

(33)
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We then use the following identities:∑
q

Jp+q(ς)Jp−q(ς) = J2p(2ς)

∑
p

Jp+q(ς)Jp−q(ς) =

{
1, q = 0

0, otherwise∑
q

Jp+q+1(ς)Jp−q(ς) = J2p+1(2ς)

∑
p

Jp+q+1(ς)Jp−q(ς) = 0,

(34)

which enable rewriting Eq. (33) as:

I(t) =
1

2
I0

(
1 +

∑
n

Jn(2ς) cos (nΩt+ 2φB)
)
. (35)

In order to isolate the different frequency components, we can modify the result as follows:

I(t) =
1

2
I0

(
1 + J0(2ς) cos (2φB) +

∞∑
n=1

Jn(2ς) cos (nΩt+ 2φB)

+

∞∑
n=1

(−1)
n
Jn(2ς) cos (nΩt− 2φB)

)
,

(36)

where the relation J−n(ς) = (−1)
n
Jn(ς) has been used. Using trigonometric relations and again separating

odd and even frequencies, it follows that:

I(t) = I0

(1

2
+
J0(2ς)

2
cos (2φB)

− sin (2φB)

∞∑
n=1

J2n−1(2ς) sin
(
(2n− 1)Ωt

)
+ cos (2φB)

∞∑
n=1

J2n(2ς) cos (2nΩt)
)
,

(37)

where the first line represents the DC part, the second line represents the odd harmonics and the third
line represents the even harmonics. From this expression, four particular values of the bias φB can be
distinguished:
• When φB = π/2 + zπ, z ∈ Z, only the even harmonics are present and the DC value is low. This

configuration is usually referred to as "carrier-suppressed".
• When φB = 0 + zπ, z ∈ Z, only the even harmonics are present and the DC value is high. This

configuration is usually referred to as "full-carrier".
• When φB = π/4 + zπ, z ∈ Z, only the odd harmonics are present. This configuration is usually

referred to as "quadrature point".
• When φB = 3π/4 + zπ, z ∈ Z, only the odd harmonics are present. This configuration is also usually

referred to as "quadrature point". The only difference with respect to the previous case is the presence
of a π-phase shift for the output intensity modulation.

S8.3 Analysis of the three bias configurations
Carrier-suppressed configuration

When the bias is set so that φB = π/2 + zπ, z ∈ Z, the output intensity contains only even multiples of the
modulation frequency:

I(t) = I0

(1

2
− J0(2ς)

2
−
∞∑
n=1

J2n(2ς) cos (2nΩt)
)
. (38)
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(a) (b) (c)

Figure S10: DC and AC intensities. (a) Evolution of the DC component of the modulator output
intensity as a function of the modulation depth ς. (b) Evolution of the AC component of the modulator
output intensity as a function of the modulation depth ς. (c) Evolution of the AC to DC ratio as a function
of the modulation depth ς.

When the modulation depth ς is moderate (< 2), the sum can be approximated by keeping only the first
term:

I(t) ∼= Idet

(
1− κS cos (2Ωt)

)
, (39)

where Idet = I0(1 − J0(2ς))/2 is the time-averaged detected intensity and κS = 2J2(2ς)/(1 − J0(2ς)) is the
ratio of the intensity at frequency 2Ω to the DC intensity. The evolution of this parameter as a function of
the modulation depth is plotted in Fig. S10(c).

Quadrature point configuration

When the bias is set so that φB = π/4 + zπ, z ∈ Z or φB = 3π/4 + zπ, z ∈ Z, the output intensity contains
only odd multiples of the modulation frequency:

I(t) =
1

2
I0

(
1± 2

∞∑
n=1

J2n−1(2ς) sin ((2n− 1) Ωt)
)
, (40)

where the sign in front of the sum depends on the choice of the bias points amongst the two cited above.
When the modulation depth ς is moderate (< 2), the sum can be approximated by keeping only the first
term:

I(t) ∼= Idet

(
1− κQ sin (Ωt)

)
, (41)

where this time Idet = I0/2, which is the time-averaged detected intensity, is independent from the modula-
tion depth. κQ = 2J1(2ς) is the ratio of the intensity at frequency Ω to the DC intensity. The evolution of
this parameter as a function of the modulation depth is plotted in Fig. S10(c).

Full carrier configuration

When the bias is set so that φB = 0 + zπ, z ∈ Z, the situation is similar to the carrier-suppressed situation
except that the DC component is higher and the modulation has a phase shift:

I(t) = I0

(1

2
+
J0(2ς)

2
+

∞∑
n=1

J2n(2ς) cos (2nΩt)
)
. (42)
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When the modulation depth ς is moderate (< 2), the sum can be approximated by keeping only the first
term:

I(t) ∼= Idet

(
1 + κF cos (2Ωt)

)
, (43)

where Idet = I0(1 + J0(2ς))/2 is the time-averaged detected intensity and κF = 2J2(2ς)/(1 + J0(2ς)) is the
ratio of the intensity at frequency 2Ω to the DC intensity. The evolution of this parameter as a function of
the modulation depth is plotted in Fig. S10(c).

Output intensity for the different carrier configurations

We now use the aforementioned expressions to compare the output intensities for each bias configuration.
Figure S10(a) shows the evolution of the DC component of the Mach-Zehnder output intensity as a function
of the modulation depth ς. Figure S10(b) shows the evolution of the AC component (at frequency Ω for the
quadrature point, at frequency 2Ω for the full-carrier and carrier-suppressed configurations) of the Mach-
Zehnder output intensity as a function of the modulation depth ς and Figure S10(c) plots the ratio of these
two quantities (i.e. AC-to-DC intensity ratio), κ. It can be seen that the highest AC intensity among the
three bias configuration is reached by the quadrature point. Moreover, for this bias configuration, the AC
component peak appears at lower values of the modulation depth ς. In practice, the RF source output power
is typically limited to ≈ 25 dBm and the Vπ of a standard modulator reaches 7 V, so the modulation depth
can typically reach a maximum value of ς ≈ 1.2. Hence, the quadrature point bias configuration is ideal to
achieve the highest modulation intensity. The parameter κ is experimentally useful to quickly estimate the
optical power at the modulation frequency by simply measuring the DC optical power using a power-meter.
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