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Abstract

Musical source separation is a complex topic that has been extensively explored in the
signal processing community and has benefited greatly from recent machine learning
research. Many deep learning models with impressive source separation quality have
been released in the last couple of years, all of them dealing with studio recorded music
split into four instrument categories, vocals, drums, bass and other. We study how we
can extend the number of instrument categories and conclude that electric guitar is
also feasible to separate. We then turn our attention towards learning relevant signal
encodings using parameterized filterbanks and we observe that filterbanks can not improve
over simple convolutions on their own, but can help if the encoder is composed of both
convolutions and filterbanks. Finally, we try to adapt models trained on studio music to
live music separation and conclude that models trained on clean data also provide the
best performance on live music as well.
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Chapter 1

Introduction

1.1 Motivation and objectives

The topic of musical source separation has been extensively researched in the audio signal
processing community, many advances being made especially in the last decade, after deep
learning techniques have started being used. Musical source separation is a particular
case of blind source separation, in which given a mixture signal of several sources, we
wish to recover the individual source signals.

The applications of musical source separation are numerous: surround sound generation,
music transcription, karaoke track generation, individual instruments manipulation etc.
Imagine for example that you are a DJ and you want to mute the vocals and make the
bass sound louder. In order to make this kind of manipulations you need access to the
individual instrument tracks. Here is where the musical source separation models come
into play.

The three objectives of the project are the following:

• analyze musical source separation with multiple instruments

• explore ways of learning useful encodings of the music signals that would facilitate
the separation

• adapt the source separation models to perform good separation on live music

Most of the literature concerning musical source separation in the last years makes use
of the MUSDB18 dataset [1]. This dataset consists of music tracks separated into four
source classes: bass, drums, vocals and other. Therefore, all of the models developed using
this dataset were used for four-class separation only. We aim to perform separation in
more classes using our own proprietary dataset.

The first part of performing source separation consists of encoding the mixture signal
in a relevant way. This is either done through some handcrafted transformation, such
as STFT, or through some convolutional layers whose parameters are learned. While
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Chapter 1. Introduction

handcrafted transformations offer the advantage of interpretability and use of domain
knowledge, they can not adapt to different data and tasks. The convolutional layers
on the other hand are flexible, but less interpretable and do not allow the use of prior
knowledge. Using parameterized filterbanks, we hope to find a balance between the two
encoding methods, as we build convolutional filters that respect some functional form
that uses fewer learnable parameters than the convolutional filter size.

Both the MUSDB18 dataset and our proprietary dataset used for multi-instrument
separation consist of music tracks that were recorded in a studio setting. The source
signals therefore contain no noise and no interference with other instruments. In live
concerts however, we can not perfectly isolate an instrument and recording it leads to
also leaking crowd noise and other instruments. We explore how we can take advantage
of the existing musical source separation models by using a dataset comprised of music
from the Montreux Jazz 2018 festival.

1.2 Report structure

The thesis is organized as follows:

• Audio source separation problem description - We describe the problem of
source separation and the evaluation metrics generally used.

• Literature review - We summarize the research on musical source separation,
with a focus on the methods that are of interest for the current project.

• Multi-instrument source separation - We discuss source separation of songs in
more than four instrument categories.

• Learnable signal encodings - We explore the use of parameterized filterbanks
to encode signals.

• Live music source separation - We present experiments with musical source
separation models on live music.

• Conclusion - We summarize our study, draw the main conclusions and indicate
possible future work.
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Chapter 2

Audio source separation problem
description

2.1 Problem statement

Let x ∈ R2×T , with T ∈ N∗ the number of samples, be a stereo signal composed of the
source signals si ∈ R2×T , i ∈ {1, 2, ...,K}, with K ∈ N∗ the number of sources:

x =
K∑
i=1

si (2.1)

The goal of audio source separation is to determine the source signals si given only x.

2.2 Evaluation metrics

Evaluation itself is an open-question in the audio source separation community. Many
times, when evaluating an audio source separation model both objective and subjective
measures are used.
In our work, we use the objective evaluation metrics described in [2]. According to this
evaluation procedure, a source signal estimation ŝ can be decomposed as follows:

ŝ = s+ espat + einterf + eartif (2.2)

where s is the clean source signal, espat is the error due to spatial distortions, einterf is
the error due to interference with other sources and eartif is the error due to artifacts.
The errors espat, einterf and eartif are computed based on the following projection matrices

Psj = Π{sj} (2.3)

Ps = Π{(sj′)1≤j′≤n} (2.4)

3



Chapter 2. Audio source separation problem description

as follows:

espat = Psj ŝj − sj (2.5)

einterf = Psŝj − sj − espat (2.6)

eartif = ŝj − sj − espat − einterf (2.7)

From this decomposition we get the following metrics:

• Source to Distortion Ratio

SDR = 10 log10

‖s‖2

‖espat + einterf + eartif‖2
(2.8)

• Image to Spatial Distortion Ratio

ISR = 10 log10

‖s‖2

‖espat‖2
(2.9)

• Source to Image Ratio

SIR = 10 log10

‖s+ espat‖2

‖einterf‖2
(2.10)

• Source to Artifacts Ratio

SAR = 10 log10

‖s+ espat + einterf‖2

‖eartif‖2
(2.11)

The usual way of evaluating these metrics on a dataset, that we also use, is by computing
the median of these metrics over all the songs in a dataset. For one song, we split it in
windows and take the median of these metrics over the windows.

We also use the Scale-Invariant SDR [3] defined as:

SI-SDR(s, ŝ) = 10 log10

||αs||2

||αs− ŝ||2
, α =

ŝT s

‖s‖2
(2.12)

The Scale-Invariant SDR, as opposed to SDR, can not be tweaked artificially by just
changing the scale of the estimation. For SI-SDR, we compute the median over songs,
and for one song, we compute the SI-SDR over the entire signal, no splitting in windows.
The SI-SDR is also used in the loss functions of our models.
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Chapter 3

Literature review

Over the past two decades, there has been a lot of research efforts in the topic of blind
source separation. The early models made use of signal processing techniques which
leveraged prior knowledge, such as the shapes of the spectrograms for specific musical
instruments. However, in the last decade, as machine learning became a viable option
due to the increase of computing power and adaptation of neural networks for training on
GPUs, most of the researchers started concentrating their efforts onto this path. Therefore,
the direction changed from prior knowledge-based source separation to data-driven source
separation, where the models usually perform better the more data they have for training.

Nowadays, all the best performing audio source separation models make use of deep
learning techniques, as it can be seen in the last Signal Separation Evaluation Campaign
(SiSEC) [4]. We take a look at classic signal processing techniques and then put the
emphasis on the relevant deep learning models that we used in our project.

3.1 Signal processing models

All the initial research in audio source separation and even past decade research has
focused on developing solutions based on prior knowledge about the music signals. [5]
presents an overview of the most prominent such methods. They can mainly be split in
two broad categories: parametric and non-parametric audio source separation algorithms.

A first popular choice for parametric source separation consists of a range of non-negative
matrix factorization (NMF) algorithms, which take advantage of several properties of the
music structure to perform the factorization. Generically, given a matrix of non-negative
values X ∈ RN×M

+ , a NMF algorithm aims to find non-negative matrices B ∈ RN×K
+ ,

called the dictionary, and H ∈ RK×M
+ , called the activation matrix, such that X = BH

and K � N,M . The rows of B can be interpreted as embeddings for each of the N
entries of X, while the columns of H contain the scaling factors of the elements of these
embeddings. In our case, X would be the magnitude of the spectrogram. [6] were the
first ones to use NMF for music in the context of polyphonic music transcription. NMF
models were used to either model the parameters of the musical instruments or rely on
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Chapter 3. Literature review

musical signal properties.
In the case of the instrument properties modeling, [7] exploits harmonicity and inhar-
monicity in the form of constraints on the partial frequencies in order to transcribe piano
music. [8] make use of the time evolution by applying an Auto-Regressive Moving Average
(ARMA) model for constraining the activation matrix. Yet another choice is to represent
an instrument as a source-filter model (such as vocal cords as a source and vocal tract
as a filter), an approach found in [9]. There, a distinction is made between vocals and
background by writing the magnitude spectrogram as |X|2 = WF︸︷︷︸

filter

WF0︸︷︷︸
source

+ BMHM︸ ︷︷ ︸
background

. The

filter matrix is then decomposed intoWF = BFHFHΦ, with dictionary BF providing the
atomic filter elements, HF generating the filter shapes and HΦ weighting these shapes.
The source matrix is also factorized as WF0 = BF0HF0 , with BF0 gathering the source
spectra for a predefined range of frequency patterns and HF0 weighting these spectra.
For the NMF models handling sound properties, we have two types of models. First,
there are models which exploit the distinction between harmonic and percussive sound
structure, such as in [10] where the magnitude spectrogram is decomposed into a harmonic
component and a percussive one by structured projective NMF: |X|2 = BhHh︸ ︷︷ ︸

harmonic

+ BpHp︸ ︷︷ ︸
percussive

,

with the harmonic component being obtained by projective NMF, while the percussive
one is obtained by regular NMF. Second, other models apply musical constraints, such as
[11] where they rely on the beat structure.

Other parametric approaches concentrate only on harmonic instruments, taking advantage
of the structure given by the pitch and overtones. A first set of such methods focuses
on pitch estimation, which mainly reduces to estimating the fundamental frequency F0

and applying a mask on the spectrogram according to the harmonic structure. There
are such methods that work in the time domain [12], frequency domain [13], or even
make use of information from both time and frequency domains [14]. The multi-pitch
estimation allows us to perform the separation according to pitches, but it does not offer
instrument identification as well. For this, a second set of methods deals with timbre
modeling. To perform instrument recognition in polyphonic music mixtures, [15] use
the uniform discrete cepstrum (UDC), a timbre representation that can be computed
from isolated spectral points, as opposed to the MFCC that needs the full spectrum,
which makes it infeasible for representing the spectral envelope of a single source that
has not been separated. Other techniques perform clustering on different representations
of harmonic features, such as in [16] where they use Gammatone Frequency Cepstral
Coefficients (GFCC) to cluster TF units for speech separation. Last but not the least,
when we have access to the score, this can especially aid the separation, as seen in [17].
Of particular interest is using score information to perform the separation in real-time,
like in [18].

Instead of modeling the signals through a parametric model, we can also apply non-
parametric methods to obtain usually more efficient separation algorithms that do not
impose some functional form to the signals. Harmonic-Percussive Source Separation
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(HPSS) [19] applies median filters on the spectrogram, one along the time axis to get
the harmonic contribution and another one along the frequency axis to obtain the
percussive component. REPET [20] exploits the repetitive nature of accompaniment in
order to separate the singing voice, while REPET-sim [21] does not assume a perfect
periodicity, but rather only leverages the similarity between time frames. Finally, Kernel
Additive Modeling (KAM) [22] provides a bridge between HPSS and REPET. Figure 3.1
shows different kernels used to detect percussive, harmonic, repetitive and smooth sound
patterns.

Figure 3.1: Kernels used to model (a) percussive, (b) harmonic, (c) repetitive and (d)
smooth sounds, as presented in [22]

All the methods described perform separation without the knowledge of what the resulting
instruments are. A more exotic approach that also lets the user separate one specific
instrument is provided in [23]. There, the user provides a sound that mimics the instrument
they want to separate (by humming, for example) and this information is used to point
the separation algorithm towards the desired instrument’s signal.

3.2 Deep learning models

Audio source separation models based on signal processing techniques have the advantage
that they are interpretable. However, most of them do not provide a clear instrument
identification, as we saw in the previous section, but rather perform an unsupervised
separation based on features of the signal. Also, they mostly rely on our prior knowledge
about music data, which may not be optimal. As an alternative, deep learning techniques
have started to be used, which proved to bring a clear improvement.

The usual deep learning model consists of three parts:

• an encoder, which takes the mixture signal and generates an appropriate represen-
tation of it

7



Chapter 3. Literature review

• a separation module, also called masking module, which computes a mask to be
applied to the mixture’s encoding in order to obtain the encoding corresponding to
the source we want to separate

• a decoder, which reconstructs the source signal from its encoding

Based on how the encoding and decoding are performed, we distinguish two types of
models:

• spectrogram-based models, which use a Short-Time Fourier Transform (STFT), a
mel-transform or a similar fixed time-frequency transformation for encoding

• waveform-based models, which learn the encoding and decoding modules jointly
with the separation module

In what follows, we present a few spectrogram-based and waveform-based models which
we used in our work.

3.2.1 Spectrogram-based models

Until recently, the most successful deep learning models to hold state of the art perfor-
mance in audio source separation have been spectrogram-based. The best performing
spectrogram-based model is MMDenseLSTM [24] where they combine DenseNet [25] and
LSTM, and which outperforms the Ideal Binary Mask oracle [4]. However, they do not
provide an open-source implementation. The best model which provides code is therefore
Open-Unmix [26], which is intended to serve as an easily extensible baseline for the source
separation community. Figure 3.2 presents the architecture of Open-Unmix.

Figure 3.2: The architecture of the Open-Unmix model [26]

8



3.2. Deep learning models

The input to Open-Unmix separation module is a magnitude spectrogram, so phase
information is not used and the phase of the mixture is applied at the end when re-
constructing the signal. The model starts with a fully-connected layer, which applies
a linear transformation to the normalized input magnitude spectrogram. The output
is passed through a batch-normalization and a tanh activation before being fed to a
three-layer bidirectional LSTM, which learns from the sequence data. The output and
input of the bidirectional LSTM are concatenated and passed through a sequence of two
fully-connected layers with batch-normalization and ReLU activations, which yields the
mask that is applied to the input spectrogram to obtain the spectrogram of the source
that we want to separate. The sources are ultimately separated using a Multi-channel
Wiener Filter (MWF) initialized with the estimated sources. The optimization criterion
used is the L2 loss between the estimated and the actual magnitude spectrograms of the
individual instrument signals.
Note that the network only separates one source, so we need one network for each of the
sources that we want to separate. Note also that due to the bidirectional LSTM, the
model is non-causal. Replacing the bidirectional LSTM with a simple LSTM leads to a
decrease in performance. We use Open-Unmix in the first and third parts of our project.

3.2.2 Waveform-based models

The usual source separation pipeline would normally include first computing a spectrogram
of the signal and taking the magnitude for further processing, thus losing phase information.
Due to this loss of information, researchers have tried to build end-to-end systems, which
would hopefully also exploit the phase. The first attempts to circumvent the use of
time-frequency representations for signal encoding and to train an end-to-end system did
not lead to state of the art performance. Among these, we remind [27] who reuse the
Wavenet architecture [28], used initially for audio generation, and [29] who adapt the
U-Net architecture for one-dimensional audio data.

Nevertheless, recent efforts have proven that end-to-end systems which operate directly in
the waveform domain can successfully outperform their spectrogram-based counterparts.
These models take inspiration from Conv-TasNet [30], a model that successfully surpassed
the performance of the Ideal Ratio Mask oracle [4] in the speech separation task. This
model came as an improvement over the TasNet model [31], which they argued was inflex-
ible due to the LSTM module that it incorporated. Figure 3.3 depicts the architecture of
Conv-TasNet.
The encoder consists of just one convolution and the decoder, symmetrically, of a trans-
posed convolution. The separation module is a temporal convolutional network, composed
of stacks of convolutional blocks with exponentially increasing dilation factors, which
have both skip connections and residual connections, and ending with a 1x1 convolution
followed by a sigmoid that produces the masks for each of the sources. A convolutional
block uses 1x1 convolutions and a depthwise convolution, to reduce the number of param-
eters, as well as group layer normalization and PReLU activations. The model is trained
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Chapter 3. Literature review

Figure 3.3: The architecture of the Conv-TasNet model [30]

using SI-SDR as the cost function.
In case the network needs to be used in a causal fashion, the group layer normalization
can be replaced by a causal layer normalization, however this impacts the performance of
the model. The use of many stacked convolutional blocks, along with increasing dilation
factors, provides the receptive field size needed to have enough context when computing
the separation masks. We insist on these details as we use this architecture extensively in
the second part of the project. Note that unlike Open-Unmix, where we needed to use
one network to separate each of the sources, Conv-TasNet produces all the source signals
using one network only.

In [32] they adapt the Conv-TasNet architecture for musical source separation, by
significantly increasing the model size, and they claim to achieve state of the art by
surpassing Open-Unmix. They also propose their own model, called Demucs, which when
trained on MUSDB18HQ only has a bit lower scores than the adapted Conv-TasNet
model, but higher subjective evaluation scores.
Another model based on Conv-TasNet, that we use in the first and third parts and take
inspiration from in the second part of the project, is Meta-TasNet [33], depicted in figure
3.4.
Here, only the encoder and decoder are learnt directly, while the separation module’s
weights are generated for each of the instruments. The parameter generating module in
figure 3.4a produces the parameters for each of the layers in the separation module by
using an embedding of the instrument we want to separate that is passed through two
fully-connected layers. To be able to work with different signal resolutions, the mixture is

10
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(a) One stage

(b) Resampled stages (c) Encoder architecture

Figure 3.4: The architecture of the Meta-TasNet model [33]
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downsampled from 44.1 kHz to 8, 16 and 32 kHz and the separation is done for each of
these signals in stages, as shown in figure 3.4b. The encoder also has increased capacity
compated to the one in Conv-TasNet, as it consists of both convolutions and an STFT
transform, as shown in figure 3.4c.
When learning, apart from optimizing the SI-SDR, the loss also includes three additional
terms: a dissimilarity loss that encourages the encodings of different sources to be different,
a similarity loss that ensures that the encodings of the same source are similar, and
a reconstruction loss that makes the decoding of an encoded source signal to be the
same as the original source signal. This model surpasses Open-Unmix and Demucs and
provides a new approach to source separation, as we can argue that using embeddings
of the instruments to generate the network parameters makes the model have a better
understanding of the various instruments’ characteristics.

12



Chapter 4

Multi-instrument source separation

The goal of musical source separation is to separate different instrument categories from
a song, usually with the aim of isolating the instrument categories as much as possible
from one another and without adding any noise. Ideally, we would want to separate each
instrument from a song, but this is difficult for both unsupervised algorithms, which may
face difficulties when trying to differentiate instruments with similar frequency content,
and supervised algorithms, which would need large amounts of data for each of the
possible instruments that we would like to separate. Because of such limitations, most of
the latest literature on the subject has concentrated on performing four-class separation,
consisting namely of vocals, drums, bass and other, using primarily a standard dataset
called MUSDB18 [1].
In this part of the project, we try to increase the number of instruments to separate by
using a new dataset which includes the individual tracks for each of the instruments of a
song. To our knowledge, there is no study in the literature regarding the separation of
more than four classes in songs that include both vocals and different types of instruments.

4.1 Dataset

As the MUSDB18 dataset only provides the four classes mentioned, we needed to collect
some other data in order to extend the separation. Therefore, we decided to collect data
from a website called Karaoke Version [34]. They provide studio recorded tracks for each
instrument of a multitude of songs from various genres. The tracks are in mp3 format
and are sampled at 44.1 kHz with a bitrate of 16 bits.
The music tracks are not provided for free, so we first downloaded metadata for all the
songs available on the website and analysed distributions of genres, release years, number
of instruments per song etc. This way, we were able to decide which songs to buy in order
to keep nearly uniform distributions of release years and main genres, so that we would
have enough diversity in the data. The entire dataset that we downloaded consisted of
1500 songs, 10 times more than in the MUSDB18 dataset.
The next problem was to prepare the dataset for training our model and here we

13
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encountered the questions of how to mix the instruments together into instrument
categories and, more importantly, what instrument classes we should use.

4.1.1 Initial choice of instrument classes

In order to answer the first question, of how to mix instruments, we first needed an
initial set of instrument classes. After downloading the songs and examining the different
instruments, we came up with 11 instrument categories: vocal, drum, bass, guitar, piano,
synth, strings, brass, woodwind, percussion, other.
The idea behind this categorization was to start from the initial classes, that we could
already separate well, and to add other instrument classes whose instruments would
provide perceptually similar sounds. We also took into account to have a reasonable
number of songs in our dataset (above 200) for each of the instrument categories.
The effort of separating such a large number of classes would however prove too ambitious
and possibly infeasible, as we have concluded after some objective analysis. Nevertheless,
this initial categorization served our exploration for a suitable mixing procedure of the
instrument signals.

4.1.2 Instrument tracks mixing

Having established an initial set of instruments, we then needed to decide how to mix
instrument tracks. There are a few points to keep in mind before deciding how to mix
the signals:

• The most naive way of mixing would be to just add the signals together. However,
this procedure could result in integer overflow, which would impose clipping the
mixture signal, an effect that we do not want to see.

• Songs may include an unbalanced number of instruments from different instrument
categories. For example, many songs contain multiple guitars, but only one set of
drums.

• Intuitively, the safest way of ensuring that a model would learn to separate every
instrument category would be to make them equally loud.

• Naturally, the mixture signal should be the sum of the instrument category signals.

These observations and intuitions led to four different mixing procedures:

• summing - We simply add together instrument signals into instrument category
signals. Then, we add the instrument category signals into the mixture signal.

• averaging - We take the average of the instrument signals to form instrument
category signals. Then, we take the average of the instrument category signals to
form the mixture signal.

14
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• scaling - We add instrument signals into instrument categories and rescale the
results to avoid overflowing. We repeat the same procedure when mixing instrument
category signals into the mixture signal.

• adaptive rescaling - We add instrument signals into instrument categories and
rescale the results to avoid overflowing. We then add instrument category signals
together and compute the rescaling factor α needed to avoid overflowing. Lastly, we
apply the rescaling factor α to the mixture signal and to the instrument category
signals as well.

To evaluate how well we could separate each of the instrument categories, we use the
Ideal Ratio Mask (IRM) oracle [4]. Given single channel spectrograms yj(f, t) of the
sources 1 ≤ j ≤ J , with J the number of sources, IRM computes the masks of each of
the sources as:

Mj(f, t) =
|yj |α∑
j′ |yj′ |α

(4.1)

In our case, we choose α = 2 to obtain a Wiener filter. We chose this type of oracle as it
is the best performing one used in the literature for comparison with source separation
models.
These masks are applied to the mixture spectrogram to determine estimates of the
spectrograms of the sources. These objective evaluation scores of the estimation act as
an upper bound for magnitude spectrogram-based masking methods.
For each of the instrument classes, we extracted 50 songs that contained them and we
computed both the SDR and the SI-SDR using IRM. The SDR for a song was computed
as the median over 6 second chunks and, for a set of songs, we took the median of these
values. On the other hand, we computed the SI-SDR on whole songs and took the median
over all songs. This way, for SI-SDR, if an instrument was not very active in a song, it
could still have a good score if IRM separated it well. Table 4.1 illustrates the scores that
we obtained for the four mixing procedures.
We see that the scaling and adaptive rescaling procedures yield the same SI-SDR, as
expected, as the only difference between the two is the scale of the signals. However, SDR
is sensitive to scale, so the average and scaling procedures, for which the mixture is not
the sum of the instrument categories, have low SDR scores.
Overall, as the adaptive rescaling procedure yields the best SI-SDR scores for six out of
eleven classes and also computes the mixture as the sum of the instrument categories, it
is the most suitable for mixing. Compared to summing or averaging, it also preserves
the property of having the mixture signal equal to the sum of the instrument categories
signals.

4.1.3 Refining the choice of instrument classes

After initial experiments with guitar separation (the toughest class to separate according
to SI-SDR), we realised that it may be infeasible to try to separate that many classes. We
therefore tried to group instruments in fewer categories, so that separation would become
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summing averaging scaling adaptive rescaling
SI-SDR SDR SI-SDR SDR SI-SDR SDR SI-SDR SDR

vocal 10.961 9.930 10.516 0.684 9.027 3.573 9.027 8.077
drum 6.864 7.460 8.081 0.691 5.659 3.115 5.659 6.486
bass 6.594 7.173 7.997 5.802 8.855 3.799 8.855 9.276
guitar 4.272 5.122 0.631 0.340 3.353 2.434 3.353 4.806
piano 2.724 3.576 4.527 0.491 3.706 2.059 3.706 3.934
synth 3.940 3.138 2.803 0.337 5.650 2.389 5.650 4.358
strings 2.574 2.624 3.948 0.397 4.695 1.781 4.695 3.401
brass 6.141 1.491 7.613 0.240 5.621 1.224 5.621 2.041

woodwind 5.010 0.250 6.518 0.053 8.574 0.333 8.574 0.546
percussion 4.206 3.754 4.880 0.386 7.142 2.497 7.142 4.923

other 2.127 2.814 3.480 0.338 4.567 1.762 4.567 3.474

Table 4.1: IRM performance for different mixing procedures on Karaoke Version dataset

SI-SDR SDR
vocals 10.328 9.274
drums 8.531 8.704
bass 6.338 6.924
other 7.582 7.844

Table 4.2: IRM performance on MUSDB18HQ dataset

more feasible. The scores obtained with IRM on the MUSDB18HQ dataset would be
good indicators of the scores we should expect for the instrument categories we would
want to separate. These results are presented in table 4.2.
We see that we should achieve SI-SDR scores of around 6 to expect a separation comparable
to that obtained for the classes from the MUSDB18HQ dataset.
As guitar proved hard to separate and it was one of the classes that we wanted to separate
the most, we also decided to split the guitar class into electric guitar and acoustic guitar.
This proved that the acoustic guitar was the one that was dragging down the scores for
the guitar class.
After grouping the initial instrument classes in several ways, we ended up with the
configuration presented in table 4.3.
The wind class is composed of the brass and woodwind classes. The other class is
composed of the remaining instrument classes, including acoustic guitar.

vocal drum bass wind electric guitar other
9.438 5.597 10.997 7.362 5.427 5.548

Table 4.3: SI-SDR for IRM on the final list of instrument categories
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4.2 Experiments

4.2.1 Open-Unmix guitar separation

Before diving into separating all the instrument categories that we identified (and before
definitively establishing which instrument categories to separate), we tried training the
Open-Unmix model to separate guitar. We used the same architecture configuration as
the one that was previously used successfully for vocals, drums and bass and we expected
to see comparable results for guitar. We initially trained with 100 samples and then with
200 samples, but each time the SDR score for guitar was below 0 dB when testing on a
test set of 50 samples.
This was an indicator that we should look into the problem of how well we could expect
to separate each instrument. Also, note that IRM, the oracle model used to indicate
the classes to separate, provided an upper bound of the performance we could expect
for magnitude spectrogram-based models. Therefore, we also redirected our attention
to using a model operating directly in the waveform domain, that may have a chance of
surpassing this upper-bound. This is how we shifted towards Meta-TasNet [33], a model
that learns the encoding to be applied to the signal and also learns how to generate
parameters for the separation module based on instrument embeddings.

4.2.2 Meta-TasNet multi-class separation

Opposed to Open-Unmix, Meta-TasNet separates all the instrument categories simultane-
ously. As we would expect, it needs more parameters than each Open-Unmix module
dedicated to some instrument. Therefore, given the limited computational resources, we
reduced our experiments to only using 8 kHz signals as input. Originally, Meta-TasNet
was using three stages of separation of signals sampled at 8, 16 and 32 kHz. We trained
using only the first stage, at 8 kHz, and expected that reasonable performance at this
sampling rate would be an indicator that we could perform good separation when scaling
up.
We initially built a training set of 900 samples and a validation set of 100 samples by
randomly picking songs from the entire 1500 dataset. We then reduced the size of the
one-stage model and trained with several such configurations. Every time, the original
classes, vocal, drum and bass, were decreasing their validation losses, while for the new
ones the validation losses increased. Figure 4.1 shows this behaviour for a full-sized
one-stage Meta-TasNet model, model that we call all_data. As the losses were not
evolving well, we stopped the training after 62 epochs.
Due to this behaviour we decided to filter from the training and validation datasets the
songs that did not contain all the instrument classes. We therefore ended up with 287
samples for training and 38 samples for validation. Training again a full-sized one-stage
model, this time for 250 epochs, we now obtained the validation loss curves in figure 4.2.
We call this model all_instruments.
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Figure 4.1: Validation loss for all_data model

Figure 4.2: Validation loss for all_instruments model

We notice that the validation losses for the electric guitar, wind and other classes now
evolve normally, even though their values are very low. We need to keep in mind that
these classes should be much harder to separate than the ones from the MUSDB18HQ
dataset and that we are using a model reduced in size and signal resolution.
For objective evaluation of the two models, we used a test set of 48 songs containing all
the instrument classes. Table 4.4 provides the results.

all_data all_instruments
SDR SIR ISR SAR SDR SIR ISR SAR

vocal 3.059 8.176 5.717 2.948 3.507 9.757 5.870 3.271
drum 8.908 14.568 6.553 3.945 4.173 15.593 7.052 4.589
bass 10.689 15.882 13.927 10.494 11.206 16.957 14.134 10.796

electric guitar 0.982 -0.767 3.247 3.068 1.351 1.171 3.532 2.284
wind -6.660 -13.256 0.977 -0.231 -5.326 -12.828 1.635 0.242
other 1.509 -0.255 4.098 3.627 1.877 0.915 4.511 2.979

Table 4.4: Meta-TasNet scores for six class separation

To verify how these scores translate into perceptive impression, we also listened to some
separation samples. The wind class, like the scores indicate, does indeed contain a lot of
interference with other classes, especially vocals. The electric guitar and other classes
yield scores that look promising for an eventual scaling up of the model and also sound
clean enough when listened to.
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4.3 Conclusion

The four instrument categories from the MUSDB18 dataset present quite distinct time-
frequency features. Bass occupies the lower frequency spectrum, drums have specific
impulses well-localized in time and spread in frequency, while vocals present distinctive,
irregular harmonic patters, due to the source-filter structure (the vocal cords acting as
the source and the vocal tract playing the role of a filter). This may be one reason why
researchers try to improve deep learning models in this context.
Moving to the next step, that of separating other instrument classes, first requires finding
a good dataset and taking care of how to prepare it. Then, deciding what instruments to
separate is another challenge that is not well-defined. Last but not the least, tailoring
a model for the new set of instruments could start from already existing architectures,
but may need further improvements targeted at the new classes in order to achieve a
performance comparable to the separation of the initial classes.
In our experiments, we managed to successfully separate electric guitar with a decent
SDR score of 1.35, even with a model trained on 8 kHz data only. This is an indication
that with enough computing resources, using a full-sized Meta-TasNet model should
provide competitive separation on electric guitar. To our knowledge, our study is the
first one to try extending the number of classes used for separation. Of course, this
was just an initial exploration using one type of deep learning model that was originally
developed for four class separation. Nevertheless, Meta-TasNet seems to be a good option
for heading towards multi-instrument separation due to its procedure of representing
instruments through embeddings and using those to dictate the separation. However,
further adjustments may be brought to the system, and more musicology expertise may
be beneficial for defining the changes required.
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Learnable signal encodings

When a signal is processed by a neural network to be separated in instrument signals,
it is typically first encoded either using a fixed transformation, such as STFT, or by
applying some transformation learned by some convolutional filters. While the STFT is
easily interpretable, it is also rigid, while the convolutional filters are hardly interpretable,
although they give a lot of flexibility. Our objective is to see if we can find a middle-ground,
namely use some convolutional filter that respects a well-known functional form with
a reduced number of parameters to learn. The idea of using filterbanks for learning
encodings was inspired from [35].

5.1 Dataset

For this part of the project, we used the MUSDB18HQ dataset [1], which consists of 150
studio-recorded songs, 86 for training, 14 for validation and 50 for testing, with a total of
9.82 hours of music. Each song comes with five files corresponding to the mixture and
the instruments: mixture.wav, bass.wav, drums.wav and vocals.wav. The tracks are stereo
and sampled at 44.1 kHz with bitrate of 16 bits. We downsampled the songs at 8 kHz
and used them to allow faster training and evaluation.

The musdb Python library is generally used to load the MUSDB dataset. However, we
wrote our own dataset class to have more flexibility in terms of data handling and to
allow loading other datasets as well. There are three types of augmentations that we
apply to the data:

• randomly choose one of the two channels for an instrument signal

• randomly apply a scaling factor between [0.75, 1.25] to each instrument

• shuffle instrument channels in half of the batch
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5.2 Models

For this task, we started from the architecture of Conv-TasNet [30], which performs the
encoding and decoding using one convolution layer each, as described in subsection 3.2.2.
As the encoding and decoding modules are well delineated, we decided to replace these
with our own encoder and decoder setups and keep the masking module’s structure.
Apart from Conv-TasNet, in order to faster evaluate the quality of an encoder, we also
used a separation module based on the Ideal Ratio Mask [4]. We call this family of models
FB-IRM. Figure 5.1 shows a high-level diagram of how this model operates.

Figure 5.1: High-level diagram of a FB-IRM model

Given J encoded source signals yj(n, t), 1 ≤ j ≤ J , with n the encoding dimension and t
the time dimension, the Ideal Ratio Mask separator computes the mask to be applied to
the mixture encoding as:

Mj(n, t) =
|yj(n, t)|∑
j′ |yj′(n, t)|

(5.1)

We decided to use two types of filterbanks:

• the sinc filters from SincNet [36], which were successfully used for speaker recog-
nition. Given two frequencies f1 and f2, the nth value of the filter is g[n, f1, f2] =

2f2sinc(2πf2n) − 2f1sinc(2πf1n). f1 and f2 will be the learnable parameters of
the filterbank.

• a parameterized gammatone filter. Gammatone filters are used to model the auditory
system. Given filter order k, center frequency f , phase φ and bandwidth b, the nth

value of the filter is g[n, k, f, b, φ] = nk−1e−2πbncos(2πfn+ φ). We set k = 2 and
use f , b and φ as learnable parameters of the filterbank.

The impulse responses of the two types of filters are displayed in figure 5.2.
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(a) Impulse response of a SincNet filter (b) Impulse response of a gammatone filter

Figure 5.2: Impulse responses of the filters used

The first encoder-decoder architecture that we tried consisted only of one filterbank in
the encoder and another one in the decoder, as depicted in figure 5.3. We simply called
this type of encoding filterbank.

Figure 5.3: Encoder-decoder pair for the filterbank type of encoding

This type of encoding proved to be less successful than the simple convolution encoder
used in the default implementation of Conv-TasNet. Therefore, we tried using filterbanks
in new encoding setups. The first type of setup was inspired from the Meta-TasNet
encoder and is called hybrid. It is represented in figure 5.4.
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Figure 5.4: Encoder-decoder pair for the hybrid type of encoding

We took the encoder from Meta-TasNet and replaced the branch where STFT was applied
with a set of filterbanks. The number of filter channels for the filterbanks is set by default
to be equal to that of convolutions in the other encoding branch. The convolutions and
the filterbanks may have multiple filters, each new filter having double the kernel size of
the previous one, but also including padding to account for this increase in kernel size.

Last but not the least, we also tried stacking up filterbanks, to obtain the encoding type
called deep. It is depicted in figure 5.5.

Figure 5.5: Encoder-decoder pair for the deep type of encoding

The kernel size of all the layers in the deep encoder are kept the same.
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When referring to the original one convolution encoder used in Conv-TasNet, we will
simply call it the convolutional encoder.

5.3 Results

To be able to perform a fast enough exploration of the several encoding configurations,
we trained our models on 8 kHz data. We judged the relative performance of the different
encoders by looking at the validation losses. After deciding on the most promising
configuration that used filterbanks, we trained that one on 44.1 kHz data and with a
large separation module. We present both the exploration and the results of the larger
model. We also include a list of all the configurations tried and brief observations about
them in the appendix.

5.3.1 Encoder architecture exploration

For the exploration phase, we tried the various types of encoders described in the previous
section on 8 kHz signals with both the FB-IRM model and the Conv-TasNet model with a
separation module consisting of 3 stacks of 6 conv blocks each. The FB-IRM was used to
get an initial impression of what encoder would work best, while the Conv-TasNet model
was used for confirmation for the best configurations obtained with FB-IRM. When not
explicitly mentioning FB-IRM, the Conv-TasNet model was used.

Filterbank encoders

For the filterbank encoder, apart from the type of filterbank to use, we also had to choose
whether we would compute the decoder as the pseudoinverse of the encoder or let the
two adapt independently. Figure 5.6 shows the FB-IRM model for these two cases for the
sinc filter, along with the convolutional encoder.
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Figure 5.6: FB-IRM validation loss for convolutional encoder (in green), filterbank sinc
encoding with decoder as the pseudoinverse of the encoder (in red) and filterbank sinc
encoding with independent encoder and decoder (in orange)

We see that the setup with the pseudoinverse filter performs better in case of sinc, a fact
which is confirmed for the gammatone filter as well. However, both of these filterbanks
have performance clearly below that of the convolutional encoder, as it can be seen
in figure 5.7, where both filterbanks are used in the pseudoinverse setup. Still, the
gammatone filter performs better than the sinc one, obtaining around 2 dB more for
every instrument class.
For completion, we also ran the convolutional encoder and the filterbank encoders, in the
pseudoinverse setup, with the Conv-TasNet model and obtained the validation losses in
figure 5.8. We notice that the gammatone filter performs better than the sinc filter in the
real setting, just as previously predicted with FB-IRM. In addition to that, the filterbank
encoder with gammatone filter provides similiar performance to the convolutional encoder,
even surpassing it for vocals. Morevover, the filterbank encoder with sinc filter also obtains
similar performance to the convolutional encoder on vocals, which is consistent with the
successful application of the sinc filters for speech recognition in [20].

The conclusion of these experiments is that filterbanks alone would not be enough to
surpass the convolutional encoder when scaling up the model size (at least not for all the
instrument classes). Therefore, we should look for more complex encoder architectures
to bring improvements over the original Conv-TasNet model. We also conclude that
gammatone filterbanks are preferable to the sinc filterbanks, so they will become the
main focus for the next explorations.
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Figure 5.7: FB-IRM validation loss for convolutional encoder and filterbank encoders

Figure 5.8: Conv-TasNet trained with convolutional encoder and filterbank encoders
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Hybrid encoders

The first thing to check about hybrid encoders was to see if they could improve over
the convolutional encoder. For this, we ran the FB-IRM model with both types of
filterbanks for the hybrid encoder and we obtained the results in figure 5.9. In both
sinc and gammatone configurations, we used one layer of convolutions and one layer of
filterbanks for encoding.

Figure 5.9: FB-IRM validation losses for convolutional encoder (in blue), hybrid encoder
with sinc filterbank (in red) and hybrid encoder with gammatone filterbank (in orange)

We can see that the hybrid encoders clearly outperform the convolutional encoder due
to their increased capacity. This benefit of increasing the capacity of the encoder was
already previously tested in [33].
The next step was to see how different setups of hybrid encoders would perform when
training a Conv-TasNet model. For this we prepared four different setups: an encoder
where the filterbanks were actually set as simple convolutions (called conv), an encoder
with sinc filters (called sinc), an encoder with gammatone filters (called gammatone) and
an encoder like the one in Meta-TasNet, with an STFT instead of the filterbanks (called
stft). The validation loss for these models can be seen in figure 5.10.
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Figure 5.10: Validation losses for hybrid encoders: conv (in blue), sinc (in red), gammatone
(in pink), stft (in grey)

We see that the best configuration is that of the Meta-TasNet encoder, which uses STFT.
However, both filterbank-based encoders perform better than the one consisting only
of convolutions and the gammatone-based encoder comes close enough to the STFT-
based one. This means that there is benefit in mixing the flexible representations of
the convolutions with the more rigid and robust ones of the filterbanks as opposed to
using only convolutions. Regarding the better performance of the Meta-TasNet encoder,
we argued that the STFT branch, which consisted not only of the STFT but also a
convolution of kernel size 1 applied on top of the spectrogram, may have given the edge
to this encoder. However, we also tweaked the hybrid gammatone encoder by adding one
convolution of kernel size 1 on top of the filterbank layer, but still did not manage to
outperform the STFT-based encoder.

Next, we tried to see if we could improve the gammatone-based encoder by using two
layers instead of one or by increasing the kernel size from 20 to 100 (also increasing
the stride from 20 to 100), which would give a better-defined shape of the gammatone
filter. The results in figure 5.11 show that increasing the kernel size actually diminished
the performance of the system, while increasing the number of layers did not bring any
improvement either, as was the case when using STFT instead of gammatone filterbank.
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Figure 5.11: Validation losses of hybrid gammatone encoders: with default configuration
(in grey), with two layers (in green) and with kernel size 100 (in light blue)

We next explored how the number of filter channels allocated to the filterbank branch of
the encoder would influence the performance. By default, the number of filter channels of
the convolution and filterbank branches are split equally. We chose configurations where
the ratio of the filterbank filter channels in the encoder were 0 (only convolutions), 0.5,
0.75 and 1 (only filterbanks). We performed these tests with both gammatone (in figure
5.12) and sinc filters (figure 5.13).
Notice that changing the number of filterbank filter channels does not make too big of
a difference in case of the average performance of the gammatone filterbank. However,
for the sinc filter, we see that using convolutions clearly helps and using convolutions
only is not the best option. If we want to understand why this happens, we need to
take a look at the Conv-ReLU-Conv bottleneck applied at the end of the encoder. The
outputs of the convolutional and the filterbank branches are concatenated and then the
first Conv layer in the bottleneck is applied to that. In case of the gammatone-based
encoder, the weights applied to the convolution branch output are one or two orders of
magnitude higher than those applied to the filterbank branch output. This means that
more emphasis is put on the convolutions, so the filterbank acts more as a regularizer
in this case. In case of the sinc-based encoder, the weights applied to the convolution
branch output and those applied to the filterbank branch output are of the same order of
magnitude, so both encoder branches contribute equally.

Last but not the least, we pretrained the default hybrid gammatone encoder-decoder
on FB-IRM and used it to train the separation module of Conv-TasNet. This decision
was inspired by the fact that spectrograms, which are fixed transformations, were used
successfully for source separation before. Therefore we thought that if we could use a
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Figure 5.12: Validation loss for different gammatone filterbank filter channel ratios in
the encoder: 0 (in pink), 0.5 (in orange), 0.75 (in light blue) and 1 (in dark blue)

Figure 5.13: Validation loss for different sinc filterbank filter channel ratios in the encoder:
0 (in red), 0.5 (in green), 0.75 (in orange) and 1 (in pink)
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Figure 5.14: Validation losses for default hybrid gammatone encoder setup (in orange)
and the setup with fixed pretrained encoder-decoder (in blue)

fixed encoding that was finetuned for musical source separation, it could provide more
stable learning than jointly optimizing the encoder and decoder along with the separation
module. The results in figure 5.14 however show that learning the encoding jointly with
the separation module is still better than having a fixed encoder.
Overall, we could say that the best encoding architecture that we found is the one from
Meta-TasNet, consisting of convolutional and STFT representations processed together.
Nevertheless, the gammatone filters also come close to STFT and are beneficial when
used alonsgide convolutions.

Deep encoders

We briefly inspected the deep type of encoder by stacking two layers of gammatone
filterbanks together. We trained a Conv-TasNet model and we used kernel sizes 20, 16 and
10 for both layers in the encoder. The decoder consisted of two transposed convolutions
with the same kernel sizes as in the encoder. Figure 5.15 presents the validation losses
for the deep encoders as compared to a filterbank encoder using gammatone filters. The
filterbank encoder had a kernel size of 20.
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Figure 5.15: Validation losses for a gammatone-based encoders: filterbank (in dark blue),
deep with 2 layers and kernel size 20 (in light blue), deep with 2 layers and kernel size 16
(in red) and deep with 2 layers and kernel size 10 (in pink)

We see that for most of the classes, the deep encoders actually perform worse than the
filterbank encoder. A reduced kernel size of 10 for the deep encoder seems to bring a
clear improvement over the larger kernel size. Decreasing the kernel size even further will
however completely render the gammatone structure of the filter irrelevant, as the filter
will consist of too few taps.
As the results of the deep encoders were not promising, we chose not to pursue them
and decided that the hybrid encoders are the best option to use when scaling up the
Conv-TasNet model size.

5.3.2 Large model results

We decided that the most promising type of encoding using filterbanks is the hybrid
encoder with gammatone filterbanks, with an equal number of filter channels for both
filterbanks and convolutions. Therefore, we trained a model with this type of encoding
on 44.1 kHz data and with a separation module consisting of 4 stacks of 10 conv blocks
each. The full configuration of the model is provided in the appendix. This separation
module configuration was taken from [32], however with a smaller number of parameters
for the separation module, as the full-size model could not fit our GPUs.
The SDR scores of this model, named Conv-TasNet-filterbanks, are provided in table 5.1.
We also provide the results of Open-Unmix, Meta-TasNet and the Conv-TasNet model
from [32] for comparison.
We see that the performance of our model is far from that of the state-of-the-art models,
but that is expected given the smaller scale of our model. We would have expected to see
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vocals drums bass other avg
Open-Unmix [26] 6.32 5.73 5.23 4.02 5.36
Meta-TasNet [33] 6.40 5.91 5.58 4.19 5.52
Conv-TasNet [32] 6.81 6.08 5.66 4.37 5.73

Conv-TasNet-filterbanks 4.07 4.63 4.54 2.89 4.03

Table 5.1: SDR scores of Conv-TasNet with filterbanks compared to baselines

our model perform on par with the other ones if we could train it at the same size as the
Conv-TasNet model from [32].

5.4 Conclusion

Signal encoding for musical source separation has been done primarily using either
fixed transformations, that were known to extract relevant features, or flexible learnable
transformations using convolutions. We explored the possibility of mixing the flexibility
of a learnable encoding with the benefit of including prior knowledge by imposing some
functional form on the convolutional filters used in the encoding, exposing only a few
learnable parameters. Our experiments yielded the following main observations:

• Filterbanks used only by themselves to perform the encoding perform worse than
simple convolutions.

• Combining the outputs of convolutions and filterbanks when performing the encoding
brings an improvement over using convolutions only.

• Combining the outputs of convolutions and a spectrogram on which we apply a
convolution with kernel size 1 achieves the best performance.

Trying our best encoding configuration that uses filterbanks on the MUSDB18 dataset,
we were able to achieve reasonable separation (despite the 2.7 dB deficit below the best
performing model) given that our model size could not be increased to a level at which
we would have expected it to be competitive. We believe that with more computing
resources, our model could be scaled up to compete with the current state-of-the-art
models. At the same time, we think that in order to make better use of filterbanks, other
encoding architectures and parameterized filterbank types should be explored.
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Live music source separation

As opposed to clean music, live music also contains noise from the crowd. When recording
instruments on stage, we can not isolate them properly from each other and from the
crowd, so the recording of each instrument will also contain crowd noise and interference
from other instruments. Therefore, if training some model using live music data, we can
not hope to cleanly separate the instruments, like we could aim for in case of studio
recorded music. We can nevertheless try to emphasize each of the instruments, which
would lead to a good enough separation in terms of subjective evaluation.
Using objective evaluation metrics, like the ones introduced in section 2.2, is not as useful
as in the case of studio recorded music. That is because live music training data itself
contains noise in the individual instrument tracks, noise that we can not aim to perfectly
replicate. However, objective scores still provide a hint of how well the separation models
perform, so we will use these metrics for live music as well.

6.1 Dataset

The dataset used in this part of the project is proprietary, belonging to the EPFL
Cultural Heritage & Innovation Center. It consists of concerts from the 2018 Montreux
Jazz Festival. The raw dataset contains recordings of the instruments in each concert and
from different parts of the concert stages. As some of the instruments contained mono
recordings while others contained 2 or 3 channels, we averaged the channel signals for
each of the instruments, producing mono signals for each instrument. Our models operate
on stereo recordings by default, so we replicated the channels of each of the instruments
to obtain stereo instrument tracks.
To make the dataset usable for training musical source separation models, we grouped
the instrument recordings into the four instrument categories from the MUSDB dataset:
vocals, drums, bass and other. To obtain these categories, along with the mixture, for
each of the concerts, we took the following steps:

• we manually distributed the instrument tracks into the four categories

• we added all the signals together into a signal stotal
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• we computed the scaling factor α that applied to stotal gives mixture signal smix =

αstotal which avoids overflow

• for each category, we added the instrument tracks belonging to it and scaled the
result by α to obtain instrument category tracks svocals, sdrums, sbass, sother

As 4 out of 16 concerts did not contain tracks for all of the instrument categories, we
decided to take these out of the dataset.
Songs in a concert are separated by breaks when only the crowd can be heard. We did not
want to keep this information, so we manually selected the time intervals corresponding
to the actual songs. The final version of the dataset, after all the processing, thus consists
of 12 concerts with a total of 156 songs and 12.53 hours of music. The amount of data is
thus comparable in size to that of the MUSDB dataset.
The last step was to do the split of the data into train, validation and test. We listened
to each concert and decided which had more and which had less crowd noise. Then, we
distributed the songs into the sets such that each set would have a similar distribution of
crowd noise and the ratio of songs per set would be similar to that in MUSDB. The train
set consists of 88 songs, the validation set of 16 songs and the test set of 52 songs.

6.2 Models

For this task, we used the original configurations of the Open-Unmix and Meta-TasNet
models in the following setups:

• unmix: Open-Unmix pretrained on MUSDB

• meta: Meta-TasNet pretrained on MUSDB

• tl: Open-Unmix initialized with pretrained weights for which we train the last two
fully-connected layers on Montreux Jazz data

• retrain: Open-Unmix initialized randomly and trained from scratch on Montreux
Jazz data

• finetune: Open-Unmix initialized with pretrained weights and trained from scratch
on Montreux Jazz data

We also wanted to experiment with transfer learning, as for setup tl, on Meta-TasNet,
but we could not perform the training on our GPUs due to memory limitations.

6.3 Results

After objective evaluation on the test set of the five setups, we obtained the following
SDR scores:
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vocals drums bass other avg
unmix 4.51 3.24 2.53 2.96 3.31
meta 5.14 3.37 3.47 3.30 3.81
tl 2.32 1.35 1.38 1.27 1.58

retrain 3.92 2.10 1.68 1.90 2.40
finetune 3.92 2.90 2.16 2.56 2.88

We see that the models trained on clean data obtain scores of more than 0.4 dB higher
than the ones trained on live music data. When listening to the separations performed
by the different models, we notice that the ones that were trained with live music add
more noise and distortion than the ones trained with clean data from MUSDB. This
should be due to the fact that if we train with noisy data, the models will try to replicate
that noise. However, crowd noise and random interference between instruments have no
clear structure which the neural networks could identify, as opposed to clean instrument
signals. Therefore models tl, retrain and finetune struggle to replicate the noise that
they find in the Montreux Jazz dataset instead of perfecting instrument isolation and in
doing so they manage to distort the separation.

We conclude from these experiments that the best way to separate live music is to train
models on clean music first and then apply them to the live music data. Trying to finetune
the models with live music only confuses the models and decreases their performance as
they can not find any structure in the noise from the live music data.
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Chapter 7

Conclusion

We brought the following contributions through our study:

• We pushed towards increasing the number of instrument classes to separate from a
song. In the process, we proposed a way of predicting how well we could separate
one instrument class by using an oracle model.

• We explored the possibility of using parameterized filterbanks, as a trade-off between
the flexibility of convolutions and the relevance of handcrafted fixed transformations,
for finding a good learnable encoding of the music signal that would enhance source
separation.

• We investigated techniques for extending musical source separation from studio
recorded music to live music.

In terms of extending the number of instrument categories, we concluded that this should
be feasible using existing techniques, given that sufficient data is available, careful data
preprocessing is performed and the instruments that we try to separate are not too much
alike or have little activity. Deciding what instruments we want to separate put us in
front of a complicated choice, but we managed to find an indicator for this task using
the Ideal Ratio Mask oracle [4]. Overall, we were able to provide a decent separation for
electric guitar along with the initial vocals, drums and bass classes found in most of the
latest research.

Concerning learnable encoding representations, we discovered that it is unlikely that an
encoder consisting of parameterized filterbanks only will perform better than simple con-
volutions. Using filterbanks along with convolutions does improve over using convolutions
only. However, we can obtain better performance by replacing the filterbanks in a hybrid
encoder with a module consisting of a spectrogram passed thorugh a convolution with
kernel size 1. Thus, other filterbank types and encoder architectures using them should
be explored to make filterbank use relevant.

Finally, regarding live music separation, we found that training a model on clean studio
recorded tracks provides the most robust models. Trying to adapt models to replicate
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Chapter 7. Conclusion

the noise found in the live music dataset when performing the separation only affected
the quality of the separation. As noise is of random nature, finetuning models pretrained
on clean data using live music data corrupted with noise led to overfitting on the noise,
which in turn translated into a distorted and noisy source separation.

In our opinion, future work could focus on developing models for different genres, as these
present different sets of instruments and distinct musical features (harmonics, timbre
etc.). Given enough data, it may be easier to initially train models specialized per genre.
Another key task, that would enable sophisticated source separation models to run in
real-time on mobile devices, is to develop techniques of distilling the knowledge from
large network architectures, like Meta-TasNet [33] into more lightweight architectures.
For models like Open-Unmix [26], which make use of recurrent neural networks, training
a small student network with a large network used for language modelling [37], could
represent a starting point.
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Appendix A

Learnable signal encodings
experiments

In our filterbank experiments, we have tested several setups, which we include here.
The ones marked in bold are mentioned in the thesis and are the most representative.
Experiments are grouped in categories based on the type of encoder or type of experiment
performed.
The parameters of the Conv-TasNet network are presented in table A.1. For every
configuration, we mention only the parameters that were changed from the default value.
The sample rate is 8 kHz for all models except the ones in the last section, "Large models".
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Appendix A. Learnable signal encodings experiments

Name Description Default
B input dimension of the conv blocks in the separation module 160
bs batch size to use in training 4
causal whether the system is causal False
encoding type of encoding to use from [’simple’, ’filterbanks’, ’hybrid’,

’deep’]
’hybrid’

fb_ratio proportion of the channels in the encoder which are used for
filterbanks

0.5

fb_type type of filterbank to use chosen from [’conv’, ’param_sinc’,
’pmpgtf’, ’stft’]; for filterbanks encoder only ’param_sinc and
’pmpgtf’ (parameterized gammatone filter) are allowed

’pmpgtf’

filters number of layers of convolutions and filterbanks to use 1
gammatone_init initialize the encoder and decoder convolutions with gamma-

tone filter parameters
False

H hidden size in the conv blocks of the separation module 160
ideal_mask use the ideal ratio mask for separation False
init_type what type of initialization to use for the filterbank from [’mel’

,’uniform’]
’mel’

kernel kernel size in the conv blocks in the separation module 3
L kernel size in the encoder and decoder 20
large_tcn use filters for each source in every layer of the separation

module
False

layers number of conv blocks in a stack of the separation module 10
lr learning rate to use for training 0.001
lr_decay_gamma learning rate decay factor used when validation loss does not

improve after some epochs
0.5

lr_decay_patience number of epochs with no improvement in validation loss
after which to decay the learning rate

3

N number of channels of the signal encoding 440
sample_rate sample rate of the signal in kHz 44.1
seed random seed used for reproducibility 42
sources the sources which to separate [’drums,

’bass’,
’other’,
’vocals’]

stack number of stacks of conv blocks in the separation module 4
threads number of workers used for loading data from disk 10
time_length number of seconds of the chunks of signals that are fed to

the network
8

track_samples number of chunks to sample for each song in the train dataset
in an epoch

64

W stride in the encoder 20
weight_decay weight decay used in training 0.0005
who_is_pinv ’enc’ if the encoder is the pseudoinverse of the decoder, ’dec’

if the decoder is the pseudoinverse of the encoder and None
if the encoder and decoder are independent

None

Table A.1: Parameters of the Conv-TasNet model with filterbanks
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A.1. One filterbank/convolution encoder

A.1 One filterbank/convolution encoder

Here the encoder and decoder consist of only one layer, be it convolution or filterbank.

A.1.1 Ideal Ratio Mask experiments

The experiments in this section are performed with the Ideal Ratio Mask oracle, so the
ideal_mask parameter is True.

• irm_fb_sinc_free
bs encoding fb_type L W
12 ’filterbanks’ ’param_sinc’ 25 25

• irm_fb_sinc_free_uniform
bs encoding fb_type init_type L W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 25

• irm_fb_sinc_free_uniform_lr0.003
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.003 25

• irm_fb_sinc_free_uniform_lr0.005
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.005 25

• irm_fb_sinc_free_uniform_lr0.007
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.007 25

• irm_fb_sinc_free_uniform_lr0.01
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.01 25

• irm_fb_sinc_free_uniform_lr0.03
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.03 25

• irm_fb_sinc_free_uniform_lr0.05
bs encoding fb_type init_type L lr W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.05 25

• irm_fb_sinc_pseudodec
bs encoding fb_type L W who_is_pinv
12 ’filterbanks’ ’param_sinc’ 25 25 ’dec’

• irm_fb_sinc_pseudodec_uniform
bs encoding fb_type init_type L W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 25 ’dec’

49



Appendix A. Learnable signal encodings experiments

• irm_fb_sinc_pseudodec_uniform_lr0.003
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.003 25 ’dec’

• irm_fb_sinc_pseudodec_uniform_lr0.005
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.005 25 ’dec’

• irm_fb_sinc_pseudodec_uniform_lr0.007
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.007 25 ’dec’

• irm_fb_sinc_pseudodec_uniform_lr0.01
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.01 25 ’dec’

• irm_fb_sinc_pseudodec_uniform_lr0.03
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.03 25 ’dec’

• irm_fb_sinc_pseudodec_uniform_lr0.05
bs encoding fb_type init_type L lr W who_is_pinv
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 0.05 25 ’dec’

• irm_fb_sinc_enc_conv_dec
The encoder consists of a sinc filterbank ant the decoder of a transpose convolution.
bs encoding fb_type init_type L W
12 ’filterbanks’ ’param_sinc’ ’uniform’ 25 25

• irm_simple
bs encoding L W
12 ’simple’ 25 25

• irm_fb_pmpgtf_free
bs encoding
12 ’filterbanks’

• irm_fb_pmpgtf_pseudodec
bs encoding who_is_pinv
12 ’filterbanks’ ’dec’

• irm_fb_pmpgtf_L100_W50
bs encoding L W
12 ’filterbanks’ 100 50

• irm_fb_pmpgtf_L100_W25
bs encoding L W
12 ’filterbanks’ 100 25
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A.1. One filterbank/convolution encoder

• irm_fb_pmpgtf_L100_W10
bs encoding L W
12 ’filterbanks’ 100 10

The initial experiments involved sinc filterbanks with a default kernel size of 25. They
were used either with mel initialization or uniform initialization. After these experiments
we concluded that mel initialization works better, pseudo-inverse decoders are better
than decoders trained independently of the encoder, and that increasing the learning rate
from the default 0.001 helps. We also noticed that using free convolutions instead of sinc
filterbanks helps, either if we use convolutions in both encoder and decoder or we mix
one filterbank in the encoder with a convolution in the decoder.
As an intermediary step, we tried initializing simple conv filters with the values from a
gammatone filterbank. The results were worse then when doing a Xavier initialization of
the convolutions.
The next step was trying gammatone filterbanks as well, with a default kernel size of
20. Using a pseudo-inverse decoder proved helpful here as well, but not as much as
before. We therefore increased the kernel size to 100 for an independent decoder and
tried several strides. The performance for a kernel size of 100 proved better than that for
20 and decreasing the stride also translated in a performance increase. Using gammatone
filterbanks clearly improved over the sinc filterbanks and when using a kernel size of 100
and strides above 25, we even surpassed the performance of simple convolutions in the
encoder and decoder.
The conclusion is that gammatone filterbanks with a large kernel size and much overlap
(small stride) are promising to use instead of simple convolutions, but take longer to train
then when using less overlap.

A.1.2 Conv-TasNet experiments

The experiments in this section are performed with the a Conv-TasNet architecture with
the separator consisting of 3 stacks with 6 conv blocks each. Therefore stacks=3 and
layers=6.

• large_fb_sinc_free
bs encoding fb_type H L W
8 ’filterbanks’ ’param_sinc’ 640 25 25

• large_fb_sinc_free_uniform
bs encoding fb_type init_type H L W
8 ’filterbanks’ ’param_sinc’ ’uniform’ 640 25 25

• large_fb_sinc_pseudodec
bs encoding fb_type H L W who_is_pinv
8 ’filterbanks’ ’param_sinc’ 640 25 25 ’dec’
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• large_fb_sinc_pseudodec_uniform
bs encoding fb_type init_type H L W who_is_pinv
8 ’filterbanks’ ’param_sinc’ ’uniform’ 640 25 25 ’dec’

• large_simple
bs encoding H L W
8 ’simple’ 640 25 25

• large_simple_L20_W20
bs encoding H
8 ’simple’ 640

• large_fb_pmpgtf_free
bs encoding H
7 ’filterbanks’ 640

• large_fb_pmpgtf_pseudodec
bs encoding H who_is_pinv
7 ’filterbanks’ 640 ’dec’

We confirm again for sinc filterbanks that mel initialization and pseudoinverse decoders
work better. Also, convolutions are again usually better than sinc filterbanks and convo-
lutions with kernel size 25 are better than those with kernel size 20. The demucs model
provides even worse performance than the simple convolutional model with kernel size 20.
For gammatone filterbanks we also get better performance when using pseudoinverse
decoders. They also work better than sinc filterbanks and get comparable performance
to the convolutions.
The conclusion is that we generally confirm the results of the ideal ration mask model,
especially that gammatone filterbanks are comparable to simple convolutions.

We conclude that gammatone filterbanks could prove to be a good replacement for simple
convolutions, but they do not improve over them. They are also preferable to sinc
filterbanks.

A.2 Hybrid encoder

Here the encoder consists of a combination of convolutions and filterbanks, while the
decoder is composed of convolutions only (except for the first two experiments for Ideal
Ration Mask and the first for Real separator).

A.2.1 Ideal Ratio Mask experiments

The experiments in this section are performed with the Ideal Ratio Mask oracle, so the
ideal_mask parameter is True.
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• irm_hybrid_sinc_free
The encoder and decoder consist of one conv layer and one sinc filterbank each.
The filterbanks are independent.
bs fb_type L W
12 ’param_sinc’ 25 25

• irm_hybrid_sinc_pseudodec
The encoder and decoder consist of one conv layer and one sinc filterbank each.
The filterbank in the decoder is the pseudoinverse of the one in the encoder.
bs fb_type L W who_is_pinv
12 ’param_sinc’ 25 25 ’dec’

• irm_hybrid_conv
bs fb_type L W
12 ’conv’ 25 25

• irm_hybrid_sinc
bs fb_type L W
12 ’param_sinc’ 25 25

• irm_hybrid_pmpgtf
bs
12

• irm_hybrid_stft
bs fb_type L W
12 ’stft’ 25 25

• irm_hybrid_pmpgtf_stft_capacity
The encoder uses a gammatone filterbank on top of which we add a convolution
with kernel size 1, like we had for the spectrogram in irm_hybrid_stft.
bs
12

In the first two experiments we used one conv and one sinc filterbank both in the encoder
and the decoder. We noticed that there is no difference in the performance if we restrict
the filterbank in the decoder to be the pseudo-inverse of the one in the encoder or not. If
we use a decoder consisting only of convolutions instead, we get a bit of improvement, so
we decided to stick to the configuration with convolutions only in the decoder.
When comparing hybrid encoders with different filterbanks, we saw that the order in
which they perform is stft, gammatone, sinc, conv. Therefore, the gammatone filterbank
proves to be a better choice than convolutions in this scenario. By increasing the capacity
of the encoder using gammatone filterbanks by adding a conv layer with kernel size 1 on
top of the filterbank, just like we had for stft, we don’t improve much over the initial
hybrid gammatone encoder. This means that the best encoder setup remains the one of
Meta-Tasnet.
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A.2.2 Conv-TasNet experiments

The experiments in this section are performed with the a Conv-TasNet architecture with
the separator consisting of 3 stacks with 6 conv blocks each. Therefore stacks=3 and
layers=6.

• large_hybrid_sinc_free
The encoder and decoder consist of one conv layer and one sinc filterbank each.
The filterbanks are independent.
bs fb_type H L W
8 ’param_sinc’ 640 25 25

• large_hybrid_conv
bs fb_type H L W
8 ’conv’ 640 25 25

• large_hybrid_sinc
bs fb_type H L W
8 ’param_sinc’ 640 25 25

• large_hybrid_pmpgtf
bs H
7 640

• large_hybrid_stft
bs fb_type H L W
8 ’stft’ 640 25 25

• large_hybrid_pmpgtf_stft_capacity
The encoder uses a gammatone filterbank on top of which we add a convolution
with kernel size 1, like we had for the spectrogram in large_hybrid_stft.
bs H
8 640

• large_hybrid_pmpgtf_L100_W20
bs H L W
7 640 100 20

• large_hybrid_pmpgtf_filters2
bs filters H
7 2 640

• large_hybrid_stft_filters2
bs fb_type filters H
8 ’stft’ 2 640

• large_hybrid_pmpgtf_N256
bs H N
7 640 256
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• large_hybrid_stft_N256
bs fb_type H N
8 ’stft’ 640 256

• large_hybrid_pmpgtf_pretrained_encoder
The encoder and decoder are fixed to the ones obtained after training irm_hybrid_pmpgtf
and only the separation module is changed.
bs H
7 640

• large_hybrid_pmpgtf_large_tcn
The encoder consists of one conv layer and one gammatone filterbank layer. The
encoding kernel size and the stride are 20. The separation module has 4 times more
channels in every layer than before, as we try to allocate channels for each of the
source classes.
bs H large_tcn
8 640 True

Again, a decoder composed only of convolutions performs slightly better. Almost the
same order applies in terms of the performance of the different filterbanks in the encoder,
with the exception that the conv filterbank is the worst performing one now.
Using a hybrid gammatone encoder again brings no significant improvement, which leaves
the Meta-Tasnet encoder with the best performance.
Increasing the kernel size for gammatone actually diminishes the performance. Using two
conv filters and two gammatone filterbanks doesn’t improve either.
If we instead use two conv filters and an stft, we do improve over the one conv filter +
stft setup.
Using a smaller encoding for the hybrid gammatone (256 instead of 440), decreases the
overall performance only very slightly.
Using a pretrained encoder and decoder for the hybrid gammatone model leads to a drop
in performance.
If for a hybrid gammatone encoder we increase the capacity of the separation module,
we get better performance then with the hybrid stft encoder with a normal capacity
separator.
Increasing the number of filterbanks in the encoder reduces the performance, so the conv
layer is still the one that keeps a good performance through its flexibility.

We conclude that a hybrid encoder consisting of convolutions and stft is probably the
best choice.

A.3 Deep encoder

Here the encoder and decoder consist of stacked layers, instead of layers ran in parallel
for which we concatenate the outputs, as we had in the "Hybrid encoder" section.
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Appendix A. Learnable signal encodings experiments

A.3.1 Ideal Ratio Mask experiments

The experiments in this section are performed with the Ideal Ratio Mask oracle, so the
ideal_mask parameter is True.

• irm_stacked2_fb_pmpgtf_conv
The encoder consists of a stack of one gammatone filterbank and one convolutional
layer. This is a custom implementation not reproducible with the last version of
the code.

• irm_stacked3_fb_pmpgtf_conv
The encoder consists of a stack of one gammatone filterbank and two convolutional
layers. This is a custom implementation not reproducible with the last version of
the code.

When stacking a gammatone filterbank and a conv layer and using a deep encoder, we
get better performance than with an encoder and a decoder consisting of one gammatone
filterbank each. However, if we stack a gammatone filterbank and two conv layers, the
model immediately gets stuck on small weights, leading to a score of zero.

A.3.2 Conv-TasNet experiments

The experiments in this section are performed with the a Conv-TasNet architecture with
the separator consisting of 3 stacks with 6 conv blocks each. Therefore stacks=3 and
layers=6.

• large_deep2_pmpgtf_L20_bs8
bs encoding filters H
8 ’deep’ 2 640

• large_deep2_pmpgtf_L20_bs16
bs encoding filters H
16 ’deep’ 2 640

• large_deep2_pmpgtf_L16_bs8
bs encoding filters H L W
8 ’deep’ 2 640 16 16

• large_deep2_pmpgtf_L16_bs16
bs encoding filters H L W
16 ’deep’ 2 640 16 16

• large_deep2_pmpgtf_L10_bs8
bs encoding filters H L W
8 ’deep’ 2 640 10 10
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A.4. Change number of channels of gammatone filterbanks in encoder

The only viable option is to use a small kernel size if we make deep encoders. The best
performance of a deep encoder, for a kernel size of 10, is only slightly better than if
we were to use only one filterbank in the encoder, but also a filterbank in the decoder,
instead of a deep convolutional structure.

We conclude that using deep encoders does not look promising, especially if we use too
large kernel sizes.

A.4 Change number of channels of gammatone filterbanks
in encoder

These experiments were performed on a Conv-TasNet architecture with a separation
module consisting of 3 stacks of 6 conv blocks each.

• large_hybrid_pmpgtf_fratio0.0_H160
bs fb_ratio
16 0.0

• large_hybrid_pmpgtf_fratio0.5_H160
bs
16

• large_hybrid_pmpgtf_fratio0.75_H160
bs fb_ratio
16 0.75

• large_hybrid_pmpgtf_fratio1.0_H160
bs fb_ratio
16 1.0

• large_hybrid_pmpgtf_fratio0.0_H640
bs fb_ratio H
7 0.0 640

• large_hybrid_pmpgtf_fratio0.5_H640
bs H
7 640

• large_hybrid_pmpgtf_fratio0.75_H640
bs fb_ratio H
7 0.75 640

• large_hybrid_pmpgtf_fratio1.0_H640
bs fb_ratio H
7 1.0 640
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Appendix A. Learnable signal encodings experiments

For a hidden size of 160, all models seem to perform similarly overall. The models have
very noisy validation scores for vocals, except for large_hybrid_pmpgtf_fratio0.75_H160.
The performance on the other class is very poor in all situations.
When moving to a hidden size of 640, there is not much difference in the evolution of the
validation scores. Still, having no filterbanks at all seems to be a bit better in all cases
except for other, where having 3/4 filterbanks is the best.
Increasing the hidden size from 160 to 640 did not translate into an increase of performance.

A.5 Change number of channels of sinc filterbanks in en-
coder

• large_hybrid_sinc_fratio0.0_H160
bs fb_type fb_ratio
16 ’param_sinc’ 0.0

• large_hybrid_sinc_fratio0.5_H160
bs fb_type
16 ’param_sinc’

• large_hybrid_sinc_fratio0.75_H160
bs fb_type fb_ratio
16 ’param_sinc’ 0.75

• large_hybrid_sinc_fratio1.0_H160
bs fb_type fb_ratio
16 ’param_sinc’ 1.0

When using only filterbanks, we clearly have the worst performance. The other three
setups are close to each other, but the learning does seem stabler when including
filterbanks. Overall, large_hybrid_sinc_fratio0.75_H160 has a bit of an edge over
large_hybrid_sinc_fratio0.5_H160.

A.6 Large models

Here we use models trained on 44.1 kHz signals.

• full_data_large_hybrid_pmpgtf_large_tcn

t
L large_tcn layers stacks W
100 True 6 3 100

• full_data_huge_hybrid_pmpgtf_large_tcn
L large_tcn W
100 True 100
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A.6. Large models

• full_data_huge_hybrid_pmpgtf_L100_W100
L W
100 100

• full_data_huge_hybrid_pmpgtf_L50_W50
L W
50 50

full_data_huge_hybrid_pmpgtf_large_tcn has better performance than
full_data_large_hybrid_pmpgtf_large_tcn, as we increase the separation module size,
and for the same reason it performs better than
full_data_huge_hybrid_pmpgtf_L100_W100. However,
full_data_huge_hybrid_pmpgtf_L50_W50 provides better scores at test time than
full_data_huge_hybrid_pmpgtf_large_tcn, which uses a separator module 4 times the
size.
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