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Abstract
The major objective of this thesis was to find hitherto unknown general and simple
solutions for fabrication of broadband high-extinction mode converters using local per-
turbations. This objective was successfully reached by generating two experimental
algorithms which are appropriate for different cases-

• For large coupling constant, a direct experimental algorithm to fabricate broadband
high-extinction mode converter using a single phase-shifted grating, without the
need to have the knowledge of how the writing of the grating with local perturbations
affects the fiber properties.

• For small coupling constant, a method to measure the effect of local perturbations
on the intermodal dispersion experienced by the two interacting modes, using
separate measurements of changes in corresponding two-mode interference (TMI)
under such perturbations. Once the modified intermodal dispersion is known,
coupling constant can be explicitly fitted using the spectra, and thereafter the
optimal placement of phase shifts to generate broadband spectra can be calculated
in a direct way.

Experimental verification was provided for these solutions for the LP01-LP02 mode pair.
The key enabling method of the second solution was the ability to measure the phase
shift between the modes introduced by each local perturbation, using changes in TMI
spectra. A host of other parameters were also estimated using measurements of the shift
in TMI spectra, namely

• TMI fringe shift was used for measuring effect of changes in temperature and strain
on intermodal dispersion. For exposure of the fiber with a scanning laser spot
of constant velocity, the change in intermodal dispersion due to such particular
exposure was also measured using TMI fringes.

• With carefully controlled experiments, the group-velocity equalization (GVE) wave-
length of the TMI fringes was measured to have linear dependency on temperature
and strain. This dependency was used for straightforward sensing of temperature
and strain, without suffering from any dependency on the fiber length like TMI
fringes. Using the shift of GVE wavelength during exposure of the full fiber with a
scanning laser spot, the change in core index was estimated with high resolution
using a simple model. Such estimation also allowed measurement of small index
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changes due to irradiation, which is not possible with fiber Bragg gratings (FBGs)
due to imperceptible strength of FBGs for small index changes, and also due to
the lower sensitivity of wavelength shift of FBG compared to GVE.

• Capability of differentiating strain and temperature by combining GVE and FBG
resonance wavelengths in the same fiber was explored. The GVE wavelength had
an approximately three times higher temperature sensitivity compared to FBG
resonance at similar wavelengths. The strain sensitivity of GVE and FBG resonance
wavelengths were of similar magnitude but of opposite sign. The temperature and
strain sensitivities of GVE was explained using a simple model consisting of only
material parameters.

New understanding of different modalities of few-mode fibers has been generated by
finding simple mathematical models linking different parameters to the intermodal phase
of the TMI, including a model linking the disparate fields of resonant mode conversion
and non-resonant TMI. Such models have been verified with precision experiments. The
thesis concluded with practical solutions to the important technical problem of broadband
high-extinction mode conversion in few-mode fibers.
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1 Introduction

Optical fibers are the key component of the internet revolution. Other than the ubiquity
of optical fibers, the scientific impact is evident form the 2009 Physics Nobel prize of
Charles Kuen Kao,”for ground breaking achievements concerning the transmission of light
in fibers for optical communication.” [9; 10]. An optical fiber is effectively a cylindrical
waveguide. The most common embodiment is a glass cylinder which is uniform along an
axis, along with a different doping material (e.g. germanium) or structures (air holes) at
and around the central region across the axis [11], called ”core”. In absence of nonlinear
interactions, Maxwell’s equations can be solved to obtain solutions of finite energy along
the transverse plane, which are described as a travelling wave along the fiber axis and
as a standing wave transverse to the axis. Such solutions are called ”modes” of the
fiber. The speciality of the modes is that the mode shape and size do not change over
propagation, thus obtaining diffraction free transmission which is theoretically impossible
with unguided optical wavefronts (unguided diffraction free beams should have infinite
energy [12; 13], which is physically impossible). Due to lack of diffraction (change of
beam shape during propagation due to loss of spatial frequencies), the modes of an
ideal lossless waveguide should maintain its power over any distance. However there are
multiple sources of loss from material effects, for example absorption losses, scattering
losses (Scattering from Rayleigh, Raman, Brillouin effects, phonon, defects etc) and
nonlinear losses. Breakthroughs of Charles Kao made silica fibers have low absorption
loss in the mid-infrared wavelength range, almost to the low level of the fundamental
limit of Rayleigh scattering. This made possible long-haul fiber optic communication in
the so-called telecommunication wavelengths. It is now common to transmit pulsed light
signals for typically 80 km without any amplification through optical fibers.

Multiple data channels can be created in the same single mode fiber in the temporal
domain, by combination of non-overlapping modulated ultrashort pulse trains. This is
known as time division multiplexing (TDM). The standard optical fiber communication is
based on wavelength division multiplexing (WDM) and polarization division multiplexing
(PDM) in fibers with a single mode at any of the used wavelengths. Closely placed
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sharp wavelength lines can be chosen as channels in the available wavelength range of
the amplification modules. Using WDM, any one of these distinct wavelength lines
are individually added or taken out using add-drop multiplexers, which consist of
couplers/isolators and filters of small bandwidth (generally thin-film filters, arrayed
waveguide gratings etc). The spacing of these wavelength lines is limited by the wavelength
broadening of the pulses during propagation through the fiber as well as the bandwidth of
the add-drop filter. For the most common erbium-doped fiber amplifier (EDFA) modules
operating in the 1535−1560 nm wavelength range, typically 50 distinct wavelengths are
used, along with two polarization channels for each wavelength. The total number of
communication channels is thus typically 2∗50 = 100. Polarization resolved detection
is used to differentiate the polarization modes [14]. This is called polarization division
multiplexing (PDM).

Due to the boom of the internet, explosive demand of information channels has almost
saturated the capacity of the long-haul communication networks [15]. Using multiple
spatial modes for the same wavelength as independent information channels is one
sought-after upgrade in the channel capacity of the upcoming fiber installations [16].
This technology is called mode division multiplexing (MDM) [17; 18; 19; 20; 21; 22; 23].
The technology used to differentiate the spatial modes is called multi-input-multi-output
(MIMO) processing [24; 25], which is based on encoding. MDM is still ridden with many
technological questions. For example, for both equal amplification and adding/dropping
of such modes at a fixed wavelength, a promising solution is to have a device fabricated
inside the fiber, which is capable of converting power from one chosen mode to another
and vice-versa. Although such mode converters (MC) can be made using a variety of
techniques, physically based on periodic perturbations along the fiber axis (grating)
causing mixing of modes [2], the bandwidth of such a conversion is very narrow, far
from the bandwidth of the EDFA based communication window [26; 27]. The capability
of exchanging powers between modes at desired locations in the fiber also enables the
usage of a host of waveguide and material effects. For example, higher order modes in a
fiber can be used to compress pulses which have been temporally broadened after some
propagation in the fundamental mode [28; 29]. In certain conditions MCs are also highly
affected by environmental parameters in deterministic ways, hence, making them suitable
candidates for sensing applications [30].

There are multiple open problems regarding mode converters in few-mode fibers (FMF)-

• The very limited available technology for making high-extinction (>99 % conversion)
broadband grating based mode converters works for specific wavelength ranges
particular to the mode pair and fiber [31], or using chirped gratings [32] with
demanding fabrication specifications.

• Even for grating based MCs of narrow bandwidth, the resonance (maximum
conversion) wavelength is highly dependent on the way the fiber is being perturbed
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during the MC fabrication [33; 34]. There is no technique to directly predict this
dependence.

Although the theoretical possibility of increasing the bandwidth of mode converters
by optimal placement of phase shifts is established [35], the unknown change of fiber
properties during any perturbation to make mode converters makes direct fabrication of
such devices very complicated and iterative for every new FMF. A direct and general
experimental algorithm to deterministically fabricate broadband high-extinction mode
converters in any FMF is coveted, as evident from multiple recent research attempting
to develop similar capabilities using various methods [36; 37; 38; 39; 40; 41].

This thesis culminates to a novel experimental algorithm for optimal and deterministic
placement of phase gaps in phase-shifted gratings for achieving broadband high-extinction
mode conversion in an FMF. The key to this algorithm is an invented technique for
estimating the change in the intermodal dispersion of an FMF due to perturbations, from
measurements of non-resonant two-mode interference of corresponding modes. Knowledge
of the coupling constant, and intermodal dispersion experienced by the modes while they
exchange energy in the region of the mode converter, enables direct design of broadband
high-extinction mode converters.

Two-mode interference (TMI), which is observed when two particular modes are selectively
in- and out-coupled from an FMF, provides a wrapped estimate of the differential phase
acquired by two modes after traversing through the FMF. Measurement capability of
this intermodal phase enables the measurement of the effects of a plethora of global (e.g.
temperature, strain, uniform irradiation, global bending) and local (e.g. local irradiation
with laser spot, local heating, local bending) perturbations to the FMF. In addition to the
novel application of two-mode interference in deterministic fabrication of mode converters
at desired wavelengths and with desired bandwidths, various other manifestations of the
TMI have been studied from the perspective of both scientific and technical questions
during the course of this thesis.

1.1 Summary of the chapters

• Chapter 2: This review chapter presents mathematical description of modes from
variational perspective, methods to solve the partial differential equation describing
the modes under different approximations, and mathematical modeling of mode
converters. Among semi-analytical solutions of optical fibers consisting of annular
regions of constant refractive index, the prototypical case of step-index fiber is
discussed in detail. Dispersion equations of TE and TM mode approximations
are presented. Further approximation of LP modes with the same dispersion
equation as TE mode is illustrated, which is used in the rest of the thesis. Finite
element method for simulating modes in general 2-dimensional waveguides is briefly
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mentioned. Without establishing the smoothness of the solutions, only existence of
solutions of the scalar wave equation is shown for a broad class of 2-dimensional
waveguides. These descriptions present the mathematical tools to model all the
experiments conducted during this thesis.

• Chapter 3: The common experimental tools used in the thesis are presented,
namely description of the few-mode fiber, description of used lasers and laser irradi-
ation techniques for fabricating gratings, and selective excitation and out-coupling
of LP01 mode among other modes in the few-mode fiber. As for grating fabrica-
tion, the used methods of Bragg grating fabrication using phase mask technique,
and grating mode converter fabrication using point-by-point laser irradiation, are
described. The used spectroscopic tools are also listed.

• Chapter 4: Description of a novel method to (a) identify LP01 and LP02 intramodal
reflection peak and intermodal reflection peaks from a fiber Bragg grating (FBG)
written in a 4-mode fiber, and (b) consequently estimate the offset of intermodal
dispersion of LP01-LP02 using the resonance wavelengths of the FBG, in addition
to higher order intermodal dispersion terms estimated from TMI phase unwrapping.
Presence of only LP01 and LP02 during centrosymmetric excitation confirms that
only LP01-LP02 two-mode interference is generated in that condition.

• Chapter 5: Description of a method to measure the effect of temperature, strain
and laser exposure (for scanning laser spot with constant velocity) on LP01-LP02

intermodal dispersion. Shift of LP01-LP02 group-velocity equalization (GVE) wave-
length for temperature, strain and scanning laser exposure is measured. Assuming
small change in the shape of the transverse refractive index profile under the effect
of these parameters, simple models are presented which explain the temperature
and strain shift. For scanning laser exposure which causes small refractive index
perturbation along the transverse axes such that the shape of the refractive index
profile does not undergo significant change, the model gives accurate estimate of
change in photosensitive core index. Using the independently measured temperature
and strain sensitivities of the GVE wavelength and FBG resonance wavelength,
temperature and strain differentiation capability of the combination of these are
explored.

• Chapter 6: Description of a new method which connects resonant (mode conver-
sion) and non-resonant (TMI) effects in a few-mode fiber. The extra phase change
due to each mark written consistently with laser irradiation, which is added to
the accumulated phase difference over the FMF between LP01 and LP02 modes, is
measured using TMI. This information is used to predict the change in intermodal
dispersion under periodic irradiation along the fiber axis. The prediction method
is verified by making MCs with precisely controlled irradiation conditions.

• Chapter 7: Evaluation of different methods for making broadband MC. New ideas
were evaluated by simulations: (a) irradiation of part of the core along the transverse
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axes to increase the coupling constants of different mode pairs and (b) MCs with
multiple phase shifts. Simulations indicated that for the first case, losses might
be too high due to poor mode overlaps, while for the second, indeed broadband
mode conversion with high extinction ratio is possible. However simulations show
that this method is highly sensitive to the change of alignment and irradiation
parameters.

• Chapter 8: Summary of the new measurements and methods conducted during
the course of this thesis, in light of future technical applications.
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2 Mathematical background

This chapter reviews the mathematical tools used in this thesis.The background theory
of modes in cylindrical waveguides from the variational perspective [42; 43] is presented,
which enables reformulation of the eigenvalue partial differential equation describing
the modes into a numerically tractable finite element problem. Particular cases which
allow semi-analytic mode solving are discussed. For fixed profile shapes the waveguiding
equation can be normalized to be independent of the material parameter, the solution of
which is known as the V-b diagram [44]. For step-index fibers the V-b diagram is fixed,
which allows for simple solution of dispersion equation and mode profiles. In addition
the modes are described well with LP-mode approximation when the core-cladding
index contrast is small [45]. Conversion of power between the orthogonal modes due
to mixing of modes under periodic perturbations is modeled using linear algebra. For
understanding complex irradiation profiles, a simple model is used which consists of
uniform irradiated segments along the fiber axis and arbitrary modified transverse profile
which is consistent over the axial length of the segment [46]. Modes are solved in the
modified transverse profile using finite element method, and mode propagation at the
boundaries of the perturbed segments is defined by the power coupling between the
modes of the unperturbed and perturbed segments via mode overlap.

2.1 Mathematical description of modes

Fibers are ideally described by cylindrical waveguides. Modes of ideally lossless waveguides
are defined as lossless and diffractionless solutions to Maxwell’s equations satisfying
the material and boundary conditions of the fiber. In an optical fiber the modes
are propagating waves along the z direction which can be represented by the general
stationary form ~A(x, y,λ)e i (ωt−β(λ)z). In the transverse direction (x, y) the solutions of the
electric/magnetic field ~A(x, y,λ) are standing waves, with finite energy solutions which are
square integrable along the transverse x − y plane and satisfying smoothness conditions
for Maxwell’s equations to be well defined. The existence proof for such solutions are
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described in [47] and [48].

Electromagnetic fields without any source or sink for a particular (vacuum) wavelength
λ are described by Maxwell’s equations [49]:

∇.~E(x, y, z,λ, t ) = 0

∇×~E(x, y, z,λ, t ) = −µ(x, y, z,λ)
∂~H(x, y, z,λ, t )

∂t
∇.~H(x, y, z,λ, t ) = 0

∇× ~H(x, y, z,λ, t ) = ε0(λ)n2(x, y, z,λ)
∂~E(x, y, z,λ, t )

∂t
(2.1)

where ~E(x, y, z,λ, t ) or ~H(x, y, z,λ, t ) is the vector electric or magnetic field. For dielectric
materials, µ(x, y, z,λ) =µ0, which is the permeability of free space. ε0(λ) is the permittivity
of free space and n(x, y, z,λ)is the refractive index of the medium. For general waveguides,
the structure and optical composition is given by n(x, y, z,λ). In the particular case of an
ideal unperturbed optical fiber with its axis aligned along z, the structure and optical
composition is given by n(x, y,λ). For such a structure, at fixed λ, the stationary form of
equation 2.1 is given by the following set of equations:

∇β× (∇β×~E(x, y,λ)) = k2
0n2(x, y,λ)~E(x, y,λ) (2.2)

∇β.(n2(x, y,λ)~E(x, y,λ)) = 0 (2.3)
∇β× (n−2∇β× ~H(x, y,λ)) = k2

0
~H(x, y,λ) (2.4)

∇β.(~H(x, y,λ)) = 0 (2.5)

where k0(λ) is the free-space wave-vector, and the operators ∇β× and ∇β. operating on
~A(x, y,λ) = Ax (x, y,λ)x̂+Ay (x, y,λ)ŷ+Az (x, y,λ)ẑ are defined in the following way, Ax (x, y,λ),
Ay (x, y,λ) and Az (x, y,λ) being scalar and x̂, ŷ , ẑ being unit vectors in x, y, z directions
respectively:

∇β×~A =


∂Az
∂y + iβAy

iβAx + ∂Az
∂x

∂Ay

∂x − ∂Ax
∂y

 ∇β.~A = ∂Ax

∂x
+ ∂Ay

∂y
− iβAz k0 = 2π

λ
(2.6)

If n(x, y,λ) is discontinuous in the x − y plane, ~E(x, y,λ) is not differentiable in x − y

plane, from equation 2.3. Thus it is easier to formulate the existence question of the
eigenvalue problem in terms of ~H(x, y,λ), which is differentiable for any n(x, y,λ) as long
as the magnetic permeability is constant, if an eigenvalue exists. Instead of brute force
method to find an eigenvalue, the problem can be reformulated in a variational form
which is easier to handle. The eigenvalue problems 2.4 and 2.5 can be reformulated to the
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question of existence of ~H(x, y,λ) which is square integrable in x − y plane and smooth
up to differentiation in x and y coordinates[48]. For fixed λ, given any ~H ′(x, y,λ) in the
field of square integrable functions with weak derivatives, ~H(x, y,λ) also belongs to this
field and satisfies [48]:

∫
R2

[ 1

n2 ∇β× ~H ∇β× ~H ′+ 1

n2
0

∇β.~H ∇β.~H ′
]

d xd y = k2
0

∫
R2 n2(x, y,λ)~H ~H ′ d xd y (2.7)

where n0(λ) is the refractive index of the cladding. In [47] it is shown using complex
analysis method of Riemann manifold that only finite number of real β(λ) can satisfy
equation 2.7 for any λ. For cylindrically symmetric waveguides consisting of uniform
annular segments, the basis functions of the modes is known in each segment. The
specific conditions to be satisfied at the boundaries of the annular segments are : (a)
continuous Ez (x, y,λ) or Hz (x, y,λ), and (b) curl-free (in x − y plane ) ~H(x, y,λ). This
provides a semi-analytic method to find eigenvalues.

2.1.1 Cylindrically symmetric waveguides

For cylindrically symmetric waveguides, the z component for both the electric and
magnetic fields completely describe the possible solutions of equations 2.2- 2.5. Of
particular importance is the fact that the method of separation of variables can be
applied on both of these. Denoting a general expression Az (x, y,λ) for the z component
of both the electric and magnetic fields, Helmhotz equations are derived for the modes:

∆Az (x, y,λ)+k2(r,λ)Az (x, y,λ) =β2(λ)Az (x, y,λ)

=⇒ ∆Az (r,θ,λ)+k2(r,λ)Az (r,θ,λ) =β2(λ)Az (r,θ,λ) (2.8)

where r =
√

x2 + y2 and θ is the angle defined by (x, y) with the x-axis. Cylindrical
symmetry further allows using the separation of variables Az (r,θ,λ) = R(r )Θ(θ)

∆= ∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂θ2 , k2(x, y,λ) := k2
0(λ) n2(r,λ)

=⇒
[
∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂2θ
+k2(r,λ)

]
Az (r,θ,λ) =β2(λ)Az (r,θ, ,λ) (2.9)

=⇒ Θ(θ,λ)

[
∂2

∂r 2 + 1

r

∂

∂r
+k2(r,λ)

]
R(r,λ)+R(r,λ)

1

r 2

∂2

∂θ2Θ(θ,λ) =β2(λ)R(r,λ)Θ(θ)

Equation 2.9 can be separated into two eigenvalue problems

∂2

∂θ2Θ(θ,λ)+m2Θ(θ,λ) = 0 (2.10)[
∂2

∂r 2 + 1

r

∂

∂r
+k2(r,λ)− m2

r 2

]
R(r,λ) =β2R(r,λ) (2.11)
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Integer eigenvalues m2 ≥ 0 are taken for the differential equation 2.10 with respect to
angle, since any other real eigenvalue m2 gives a solution which do not have a period
of 2π. Other than having a mathematical discontinuity in such cases, physically the
electromagnetic field defined by such a solution will destructively interfere with itself due
to random phases, thus inhibiting the existence of standing modes. The solution to the
angular part are equations cos(mθ) and si n(mθ), for integer m, for any λ. Since it is
known that the general eigenvalue problem in 2-dimension has finite solutions [47], the
only point needed to be checked is if equation 2.11 has valid solutions for some discrete
set of of limr→∞ i n f (k(r,λ)) ≤β(λ) ≤ limr→∞ sup(k(r,λ)). The function k(r,λ) attains its
extrema in r since it is bounded in value in a bounded domain of x − y plane by the
definition of a waveguide. Every mode also has two orthogonal local distributions of
polarization. In this thesis, such polarization modes have been assumed to be degenerate.

2.1.2 TE, TM and hybrid mode approximation

For simplifying the mode solving using equation 2.10 and 2.11, the solution space can
also be categorized by putting either Ez (r,λ) = 0 and m = 0 (TE modes), or Hz (r,λ) = 0

and m = 0 (TM modes), and the the rest of the possible conditions (hybrid modes). Table
2.1 lists the individual conditions to be satisfied for TE, TM or hybrid modes [50]:

Modes Zero quantities Continuous quantities

TE Ez (r,λ), Er (r,λ), Hθ(r,λ) Eθ(r,λ) = iωµ0

k2
0 n2(r,λ)−β2(λ)

∂Hz (r,λ)
∂r

and Hz (r,λ)

TM Eθ(r,λ), Hr (r,λ), Hz (r,λ) Ez (r,λ) and

Hθ(r,λ) =− iωε0n2(r,λ)
k2

0 n2(r,λ)−β2(λ)
∂Ez (r,λ)

∂r

Hybrid − Eθ(r,λ), Hθ(r,λ), Ez (r,λ) and Hz (r,λ)

Table 2.1 – Mode classification of cylindrically symmetric waveguides

This formalism becomes especially convenient for fibers composed of annular layers of
different compositions, since the solutions R(r,λ) inside each annulus can be represented
as a linear combination of Bessel functions and modified Bessel function, whereas for the
outermost layer (Assumed to be infinite for mathematical convenience) R(r,λ) is only
represented by a modified Bessel function to have finite energy solutions. Matching these
for linear combination of Bessel functions and modified Bessel functions with unknown
coefficients at the boundaries give a set of simultaneous equations, which can be written
as an associated matrix equation which equates to zero [51]. Since it is known from [47]
that non-trivial solutions corresponding to finite number of real nonnegative eigenvalue(s)
β(λ) exist, the determinant of the associated matrix must be zero for such β(λ). Thus
finding real β(λ) which make the associated matrix singular provides an algorithm to find
the eigenvalues. This method can be illustrated with the simple example of prototypical
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cylindrically symmetric step-index fiber, which can approximately model various real
fiber samples. An illustration of the refractive index profile at 1.55 µm wavelength for a
fused silica step-index fiber with core radius 5.0 µm and and 14 % GeO2 concentration
in the core is shown in figure 2.1.

Figure 2.1 – Two-dimensional refractive index profile for a step-index fiber.
The colorbar represents refractive index at 1.55 µm wavelength

The TE and TM modes equations for a step-index fiber can be normalized using unitless
normalized frequency V and normalized propagation constant b:

V-number: V (λ) = 2πa

λ

√
n2

1(λ)−n2
0(λ) = k0(λ) a

√
n2

1(λ)−n2
0(λ)

b-number: b(λ) = n2
e (λ)−n2

0(λ)

n2
1(λ)−n2

0(λ)
(2.12)

where the effective index ne (λ) = λ
2πβ(λ), a is the radius of the core, and n0(λ) and n1(λ)

are respectively the cladding and core refractive index at wavelength λ. Then equation
2.11 gets reduced to a waveguide-only equation free of any material parameters:

∂2

∂r 2 R(r,λ)+ 1

r

∂

∂r
R(r,λ)− m2

r 2 R(r,λ) = 1

a2 V 2(λ)b(λ)R(r,λ) ∀r > a

∂2

∂r 2 R(r,λ)+ 1

r

∂

∂r
R(r,λ)− m2

r 2 R(r,λ) =− 1

a2 V 2(λ)
(
1−b(λ)

)
R(r,λ) ∀r ≤ a (2.13)

Matching the boundary conditions at r = a then give the following dispersion equations
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Chapter 2. Mathematical background

for the normalized parameters u(n1(λ),n0(λ), a) =V
p

1−b and w(n1(λ),n0(λ), a) =V
p

b :

J1(u)

u J0(u)
=− K1(w)

wK0(w)
:TE mode (2.14)

J1(u)

u J0(u)
=−n2

0(λ)

n2
1(λ)

K1(w)

wK0(w)
:TM mode (2.15)

[ J ′m(u)

u Jm(u)
+ K ′

m(w)

wKm(w)

] [ J ′m(u)

u Jm(u)
+

(n0(λ)

n1(λ)

)2 K ′
m(w)

wKm(w)

]
(2.16)

= m2
[ 1

u2 + 1

w2

] [ 1

u2 +
(n0(λ)

n1(λ)

)2 1

w2

]
:Hybrid mode (2.17)

where Jm and Km are Bessel functions and modified Bessel functions, respectively. (The
indices m and m̂ have been used for the angular indices of hybrid modes and LP modes
respectively, in contrast to usage of n and m in [44]. This is to avoid possible confusion
between the azimuthal number for hybrid modes and transverse refractive index n(x, y).)
The plot of b as a function of V for TE modes of step-index fibers is independent of
material parameters [44]. Given the waveguide parameters and the wavelength, this
makes is simple to look up the solutions of eigenvalues of TE, TM and hybrid modes
by referring to the V −b diagram using 2.12. Solving the dispersion equation for b

number for a certain V number which incorporates material parameters, geometry and
wavelength, all parameters of the step-index fiber modes can be explicitly calculated.

2.1.3 Weakly guiding approximation and LP modes

For small index contrast, the factor
(

n0(λ)
n1(λ)

)2
can be ignored in the dispersion equation.

For m = 0, TE and TM modes then have the same dispersion equation (equation 2.14).
For m > 0, the solutions are categorized using the convention of HE and EH modes [50]:

Jm+1(u)

u Jm(u)
=−Km+1(w)

wKm(w)
:EH mode (2.18)

Jm−1(u)

u Jm(u)
= Km−1(w)

wKm(w)
:HE mode (2.19)

Under the approximation
(

n0(λ)
n1(λ)

)2 ≈ 1, collecting the same dispersion equations of TE,
TM, EH and HE modes to categorize the modes is called the LP mode approximation,
which is the approximate model for the fiber used in this thesis [45]. The dispersion

12



2.1. Mathematical description of modes

equations are:

J0(u)

u J1(u)
= K0(w)

wK1(w)
:LP0l mode, m̂ = 0

Jm̂(u)

u Jm̂−1(u)
=− Km̂(w)

wKm̂−1(w)
:LPm̂l mode, m̂ > 0 (2.20)

where non-negative integer-valued m̂ corresponds to different angular eigenvalues of TE,
TM and hybrid modes

LPm̂l =


T E0l or T M0l for m̂ = 1

E Hm̂−1 l for EH mode

HEm̂+1 l for HE mode


The vector modes corresponding to LP01, LP11, LP21 and LP02 modes are listed in table
2.2.

LPm̂l mode designation l Vector mode designation

LP01, m̂ = 0 1 HE11

TE01

LP11, m̂ = 1 1 TM01

HE21

LP21, m̂ = 2 1 EH11

HE31

LP02, m̂ = 0 2 HE12

Table 2.2 – Link between the LP and vector modes for first four LP modes
in a step-index fiber

Figure 2.2 illustrates LP modes at 1.55 µm wavelength for the fiber profile in figure 2.1.
The angular part can be represented by one of the two orthogonal solutions cos(m̂θ)

or si n(m̂θ), which give the two degenerate modes for the same m̂ ≥ 0 in cylindrically
symmetric fibers.
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Chapter 2. Mathematical background

Figure 2.2 – LP modes for the step-index fiber profile in figure 2.1. The size
of the plot boxes are 10 µm × 10 µm.

Figure 2.3 shows the V −b diagram of a step-index fiber in the range V ∈ (0.6,5.1), obtained
by numerically solving equation 2.13 for different values of V . Given the refractive indices
of core and cladding at some wavelength, and core size, the effective index of a guided
mode can be calculated by applying equation 2.12 on the corresponding b number.The b

number can be obtained from interpolation from a library of V −b values, or by solving
the normalized equation 2.13 for the given V number. The cut-off V numbers of an
LP mode in a step-index fiber, denominated as Vc , is such that the particular mode
is not guided for smaller V numbers, and is given by Jm(Vc ) = 0 [45]. The cut-off V

for the first 5 supported modes with increasing V are Vc(LP01)=0, Vc(LP11)=2.405,
Vc(LP21)=Vc(LP02)=3.832, Vc(LP31)=5.136. Therefore in fibers where the V (λ) is a
decreasing function of wavelength, the fiber starts guiding a new LP mode when the
wavelength is made smaller than the cut-off wavelength of that mode λc defined by
V (λc ) =Vc .

Figure 2.3 – V −b diagram of step-index fiber, calculated for LP01, LP11, LP21

and LP02, calculated using equation 2.13 for the range V ∈ (0.6,5.1).
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2.1. Mathematical description of modes

2.1.4 Finite element method

For more complicated index profiles (Figure 2.4), it is almost always impossible to find
an analytical solution to the set of equations 2.3, 2.2, 2.5 and 2.4. Fortunately methods
from functional analysis can be used to establish the existence of weak solutions [52]
to the equivalent variational problem 2.7. The weak solutions belong to the class of
weakly differentiable square integrable functions in 2-dimension, referred as W 1,2(R2) in
the terminology of Sobolev space theory [52]: The eigenvalues are given by [48]:

λm(β) = supm i n fH∈H⊥
m

∫
R2

[
1

n2 ∇β× ~H ∇β× ~H + 1
n2

C l addi ng
∇β.~H ∇β.~H

]
d xd y∫

R2 ~H ~H d xd y
(2.21)

where H⊥
1 =W 1,2(R2), and H⊥

m := H ∈W 1,2(R2) : (H , H ( j )) = 0 ∀ j = 1, ...,m −1. The method
of finite element [42; 43] consists of discretization of the physical space, then approxi-
mating the solution with the basis of piecewise polynomials in the discrete mesh. The
minimization problem 2.21 then becomes equivalent to equating the partial derivatives
of the functional in 2.21 to zero, with respect to the coefficients of the basis polynomials.
This provides an associated matrix equation (generally very large) equating to zero whose
eigenvectors are the coefficients of the solution basis. To have a non-trivial solutions
at any particular λ, real β(λ) are found which make the determinant of the associated
matrix zero.

Figure 2.4 – Two-dimensional refractive index profile for an arbitrary index
bump
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Chapter 2. Mathematical background

2.1.5 Scalar wave equation

Although solutions to equation 2.21 give exact solutions to 2.3, 2.2, 2.5 and 2.4, for most
practical applications solving the scalar wave equation for E(x, y,λ) using finite element
method and ignoring the boundary conditions is sufficient to approximately describe the
solutions of equations 2.3, 2.2, 2.5 and 2.4 [53].

∆E(x, y,λ)+k2
0n2(x, y,λ)E(x, y,λ) =β2(λ)E(x, y,λ) (2.22)

The variational formulation is especially simple with respect to finding the eigenvalue

β2
m(λ) = supm i n fψ∈ψ⊥

m

∫
R2 −(|∇ψ(x, y,λ)|2 +k2

0n2(x, y,λ)|ψ(x, y,λ)|2)d xd y∫
R2 |ψ(x, y,λ)|2d xd y

(2.23)

=⇒ β2
m(λ) ≤ sup

R2

(
k2

0(λ)n2(x, y,λ)
)

(2.24)

where ψ⊥
1 =W 1,2(R2), and ψ⊥

m :=ψ ∈W 1,2(R2) : (ψ,ψ( j )) = 0 ∀ j = 1, ...,m −1

As for the existence of such eigenvalues, if n(x, y,λ) is bounded, the absolute value of
possible eigenvalues are bounded above due to equation 2.24. This holds true for optical
fibers with standard guiding. If there is even one ψmi n(x, y,λ) such that the functional
in 2.23 is positive, then the mathematical set consisting of the possible values of the
functional is non-empty and bounded above. In that case, by the least upper bound
property of real number sets, the functional has a supremum, or least upper bound.
Under the weak sense of derivatives, the Sobolev space W 1,2(R2) also turns out to be
complete, implying that the limit of any sequence of functions also lies in W 1,2(R2). Thus
the minimizer(s) ψmi n(x, y,λ) is(are) weakly differentiable square-integrable functions
satisfying 2.22.

The only thing left to prove is that there exists some ψ(x, y,λ) for which the functional
in 2.23 is positive. This is easy for optical fibers due to two reasons [48]:

• Fibers with standard guiding mechanism have the structure that the average of the
index bump is positive, implying 0 < ∫

R2

(
n2(x, y,λ)−n2

0(λ)
)
d xd y = ∫

Ω⊂R2

(
n2(x, y,λ)−

n2
0(λ)

)
d xd y <∞, where Ω is the domain where the value of the bump is different

from the value of n(λ)2
0. Since Ω is bounded, the average is always well-defined.

• Under the previous condition, for the special case of two-dimensions, a sequence of
explicit trial functions ψN (x, y,λ) can be created for natural number N such that

16



2.1. Mathematical description of modes

the functional in 2.23 can be made positive for sufficiently large N .

ψN (x, y,λ) =


1 i f

√
(x2 + y2) < N

ln(2N )−ln(
√

(x2+y2))
ln(N ) ,d x i f N <

√
(x2 + y2) < 2N

0 i f 2N <
√

(x2 + y2)

(2.25)

where ln(x) is the natural logarithm of x. For any N , lim√
x2+y2→∞ψN (x, y,λ) = 0, implying

square-integrability. For the particular choice of trial functions in equation 2.25, the
integral in x − y plane for both |ψN (x, y,λ)|2 and |∇ψN (x, y,λ)|2 are explicit functions of
N . From these, explicit bounds for parts of the the functional in 2.23 can be obtained as
functions of N :∫

R2
|ψN (x, y,λ)|2d xd y = 2π

∫
R
|ψN (r )|2r dr ≥ 2π

∫ N

0
r dr = N 2

2
(2.26)

∫
R2

(|∇ψN (x, y,λ)|2d xd y = π

2

∫ 2N

N
| xî + y ĵ

ln(N )(x2 + y2)
|2r dr

= π

2

∫ 2N

N

1

ln2(N )(x2 + y2)
r dr = π

2ln2(N )

∫ 2N

N

dr

r
= π

2ln(N )
(2.27)

Thus the functional in 2.23 can be bounded above using this sequence of functions

supm i n fψ∈ψ⊥
m

∫
R2 −(|∇ψ(x, y,λ)|2 +k2

0(λ)n2(x, y,λ)|ψ(x, y,λ)|2)d xd y∫
R2 |ψ(x, y,λ)|2d xd y

(2.28)

≥− π

N 2ln(N )
+

∫
R2 k2

0(λ)n2(x, y,λ)|ψ(x, y,λ)|2)d xd y∫
R2 |ψ(x, y,λ)|2d xd y

(2.29)

≥− π

N 2ln(N )
+

∫
R2

[
k2

0(λ)n2(x, y,λ)−n2
0(λ)

]
d xd y +n2

0(λ) (2.30)

For sufficiently large N , the condition π
N 2ln(N ) <

∫
R2

[
k2

0(λ)n2(x, y,λ)−n2
0(λ)

]
d xd y can be

fulfilled, thus providing a candidate ψN (x, y,λ) to make the functional in equation 2.23

positive. this establishes the existence of weak solutions of the scalar wave equation in
two dimensions. Consequently finite element method can be applied to equation 2.23.

When multiple eigenvalues exist for linear eigenvalue differential equations, the eigenmodes
are orthogonal. For an optical fiber this means that the different spatial modes for a
particular wavelength do not intermix, as long as they exist and as long as there is no
irregularity in the waveguide. Thus power conversion between such modes have to be
induced by modifying the structure of the fiber locally.

17



Chapter 2. Mathematical background

2.1.6 Mode conversion theory

Only the scalar wave equation 2.22 has been used to study mode conversion in this thesis.
The overlap of two eigenmodes Em(x, y,λ)e iβm (λ)z and En(x, y,λ)e iβn (λ)z is defined as

< Em(x, y,λ)e iβm (λ)z ,En(x, y,λ)e iβn (λ)z >

< A(x, y),B(x, y) >=
∫
R2 A(x,y)B(x,y)d xd y√∫

R2 A(x,y)A(x,y)d xd y
∫
R2 A(x,y)B(x,y)d xd y

(2.31)

Modes corresponding to distinct eigenvalues βm(λ) and βn(λ) of equation 2.22 have
zero overlap: < Em(x, y,λ)e iβm (λ)z ,En(x, y,λ)e iβn (λ)z > = 0 ∀m 6= n. The modes locally
interact when the orthogonality of the waveguide is broken e.g. by non-adiabatic
perturbation of the fiber using physical deformation, local heating, acousto-optic effect
[54], laser exposure [31] etc. For example, at an ideal sudden discrete jump in the core
refractive index at the location Z along the fiber axis:

lim
∆z→0,∆z>0

< Em(x, y,λ)e iβm (λ)Z−∆z ,E ′
n(x, y,λ)e iβ′

n (λ)Z+∆z > 6= 0 (2.32)

where Em(x, y,λ)e iβm (λ)z and E ′
n(x, y,λ)e iβ′

n (λ)z are the fields for the pristine fiber and the
modified field for z < Z and z > Z , respectively. However, the modes still interact very
weakly when the intermodal dispersion δβ(λ) = βm(λ)−β′

n(λ) has large magnitude for
m 6= n. The normalized average value of the overlap integral over a beat length T = 2π

δβ(λ)

of the two modes can be very small:

δβ(λ)
∫

T

∫
R2

< Em(x, y,λ)e iβm (λ)z ,E ′
n(x, y,λ)e iβ′

n (λ)z > d z << 1 ∀|δβ(λ)| 6= 0 (2.33)

Only when a perturbation of the refractive index along the z direction, n(x, y, z,λ) =√
ε(x,y,z,λ)
ε0(λ) has a periodic component of periodicity T , strong mode conversion is achieved

near the resonance wavelength(s) λMC satisfying |δβ(λMC )| = 2π
T .

δβ(λ)
∫

T

∫
R2

< Em(x, y,λ)e iβm (λ)z ,E ′
n(x, y,λ)e iβ′

n (λ)z > d z 6= 0 (2.34)

Such perturbations often have a finite length along z, especially when induced with a
focused laser spot, which is hereafter referred to as a ”mark”. For periodic and repeatable
exposure of marks, the mode coupling over a period of length ΛMC can be simplified to a
single parameter κ(λ). This is a measurable quantity for N marks with the ratio of the
mark length along z to the period length (duty cycle1) less than 1, due to the following

1Duty cycle of a periodic perturbation, such that the marks are non-overlapping, is defined as the ratio
of the effective mark length Lmar k along the fiber axis z to the period length ΛMC . The effective mark
length along z is obtained by fitting a rectangle function over z to the refractive index perturbation
describing the mark, together with a baseline of value equal to the refractive index of the unperturbed
core.
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2.1. Mathematical description of modes

equation describing the power conversion I1(λ) → I2(λ) at wavelength λ from mode 1 to
mode 2 [55; 56] :

I2(λ)

I1(λ)
= κ2(λ)

ξ2(λ)
si n2(ξ(λ)NΛMC ) (2.35)

where the following parameters completely describe lossless mode conversion

ξ(λ) =
√
κ2(λ)+δ2(λ) (2.36)

Detuning parameter δ(λ) = 1

2
δβMC (λ)− π

ΛMC
(2.37)

Average intermodal dispersion over ΛMC δβMC (λ) = 1

ΛMC

∫ z+ΛMC

z
δβ(λ, z ′) d z ′

(2.38)

where a new MC period is starting at z. Since the the relevant parameters for mode
conversion are the coupling and phase accumulation over a period length, describing
mode conversion in terms of local values δβMC (λ, z) and κ(λ, z) [55] of these quantities is
avoided. Also, the local values are hard to measure without microscopy whereas chapters
6 and 7 describe methods for measuring the coupling and phase accumulation over a
period length only using the spectra of the modes. The full complex amplitude over N

full periods z = NΛMC , which represents the length of a standard MC grating with N

periods, is described by [55; 56]:

 E1(λ, NΛMC )

E2(λ, NΛMC )

= M(λ, N )

 E1(λ,0)

E2(λ,0)

 (2.39)

where the transfer matrix M(λ, N ) is a function of κ(λ), δ(λ) and N in the following way:

M(λ, N ) =

 cos(ξ(λ)NΛMC )+ i δ(λ)
ξ(λ) si n(ξ(λ)NΛMC ) i κ(λ)

ξ(λ) si n(ξ(λ)NΛMC )

i κ(λ)
ξ(λ) si n(ξ(λ)NΛMC ) cos(ξ(λ)NΛMC )− i δ(λ)

ξ(λ) si n(ξ(λ)NΛMC )



=⇒ M(λ, N ) = M(λ,1)N (2.40)

The transfer matrix M(λ, N ) in equation 2.40 should also be able to represent the phase
δβ(λ)z added between the two modes over a length z = NΛMC in the pristine fiber,
which is represented by κ(λ) = 0. Indeed for κ(λ) = 0, ξ(λ) = δβ(λ)

2 − π
ΛMC

, thereby reducing
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M(λ, N ) to the following matrix:

M(λ, N )|κ=0,ΛMC=∞ =

 cos(φ(λ))+ i si n(φ(λ)) 0

0 cos(φ(λ))− i si n(φ(λ))



=

 e iφ(λ) 0

0 e−iφ(λ)

 (2.41)

where φ(λ) = δβ(λ)NΛMC

2 −Nπ. The matrix in equation 2.41 indeed represents a phase shift
of 2φ(λ) = δβ(λ)NΛMC between the two modes for a length NΛMC of the pristine fiber.
Following similar convention for representing phase shift over a length of the pristine
fiber, extra phase shift corresponding to gap of length Λs can be represented by [57]:

P (λ,Λs ,δβ(λ)) =

 e i δβ(λ)Λs
2 0

0 e−i δβ(λ)Λs
2

 (2.42)

Thus an MC of M segments with constant pitch ΛMC and mark shape, along with phase
shift between every segment can be represented as

 E1(λ,
∑

j
(
N jΛMC +Λs, j

)
)

E2(λ,
∑

j
(
N jΛMC +Λs, j

)
)

=
[
ΠN

j=0P (λ,Λs, j )M(λ, N j )

] E1(λ,0)

E2(λ,0)

 (2.43)

where N j is the number of marks in the j th segment and Λs, j is the length of the (possible)
gap after the j th segment. When estimates of δβ(λ), δβMC (λ) and κ(λ) are available,
this representation can be used to simulate both phase-shifted and chirped MCs.

2.1.7 Simulation of discrete segment

Mode-solving of complicated irradiation profiles across the transverse directions of a
step-index fiber can be done using finite element method. One model for simulating
irradiation of distinct and repeatable laser marks is to consider the modified waveguide
at the irradiated zones along the transverse axes of the fiber, which is uniform along
the fiber axis for the effective length of the irradiation [46]. Figure 2.5 shows a simple
example, where the index change still has a step-index profile due to uniform irradiation:
n′

1(λ), δβ′(λ), Λ′
M represent the core index, intermodal dispersion between two modes

described by fields E1(λ, z) and E2(λ, z) and the length of the irradiated segment equivalent
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2.1. Mathematical description of modes

to mark length, respectively. n1(λ), δβ(λ), ΛM represent same for an unirradiated segment,
the length of which is defined as ΛM =ΛMC −Λ′

M where ΛMC is a full period of the axial
profile with periodic perturbation. Figure 2.5 describes the scheme for such a periodic
perturbation. Symbols with ’ sign belong to the modified segment.

Figure 2.5 – Discrete segment model for simulating a periodic laser exposure,
where Λ′

MC represents the mark length and ΛM is defined as ΛM =ΛMC −Λ′
M .

The duty cycle is given by Λ′
M

ΛMC

Assuming the mode travelling from negative to positive z, the coupling at the starting
boundary of irradiated segment is defined by the matrix of overlap integrals. For ∆z > 0

this is given by

lim
∆z→0

 E1(z +∆z,λ)

E2(z +∆z,λ)

= C (λ) lim
∆z→0

 E1(z −∆z,λ)

E2(z −∆z,λ)

 (2.44)

C (λ) = lim
∆z→0

 < E1(z −∆z,λ),E ′
1(z +∆z,λ) > < E1(z −∆z,λ),E ′

2(z +∆z,λ) >
< E2(z −∆z,λ),E ′

1(z +∆z,λ) > < E2(z −∆z,λ),E ′
2(z +∆z,λ) >


(2.45)

where Ek (z,λ) and E ′
k (z,λ) represent the transverse mode amplitudes of the k th mode in

the unirradiated and irradiated segments, respectively. At the ending boundary of an
irradiated segment, the coupling is given by the matrix C T (λ), which is the transpose
of C (λ). For repeated exposures of length ΛMC =Λ′

M +ΛM with possible extra gaps of
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length Λs, j after the j th segment , complex mode amplitudes are given by:

 E1(λ,
∑

j
(
N jΛMC +Λs, j

)
)

E2(λ,
∑

j
(
N jΛMC +Λs, j

)
)

=
[
ΠN

j=0P (λ,ΛM +Λs, j ) C T (λ) P ′(λ,Λ′
M , j ) C (λ)

] E1(λ,0)

E2(λ,0)


(2.46)

P ′(λ,Λ′
M , j ) = P (λ,Λ′

M , j ,δβ′(λ)) is the phase matrix in the modified region. This model
is useful for simulating complex transverse inverse profiles of the irradiated segments,
especially when the simulation algorithm cannot compute the effect of continuous change
of the index profile over z in the modified segment.

2.2 Conclusions

This chapter discusses the existence of modes for two-dimensional waveguides in x − y

plane with an refractive index bump inside a constant cladding index, which satisfies
(a) the bump equals cladding index outside a finite region in the x − y plane (defined as
core), (b) the index is bounded, and (b) the average of the core-cladding index difference
is positive and finite. Existence of weak solutions can be found from the variational
formulation of stationary Maxwell’s equation. Such a formulation also allows the use of
finite element method for arbitrary two-dimensional waveguides. The particular case of
annular index regions is solvable semi-analytically, which gives a method for comparing
the accuracy of finite element method. Classification of the modes of prototypical step-
index fibers are discussed, under different assumptions. The approximation of LP modes
is used for the rest of this thesis.

Periodic local modifications of the fiber can lead to coupling of modes under certain
conditions, namely (a) breaking the orthogonality of the modes locally and (b) matching
the intermodal dispersion of the interacting modes with the wavevector of the periodic
modification. Two general models for simulating MCs are discussed:

• Model based on coupling theory, which is useful for simulating standard, phase-
shifted and chirped MCs when experimental estimates of δβ(λ), δβMC (λ) and κ(λ)

are available.

• Approximate model based on discrete segments, which is useful for simulating
standard, phase-shifted and chirped MCs when the transverse index profile of the
modified segment is complicated and needs to be solved for modes using finite
element method.
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3 Sample details, preparation and
general experimental methods

This chapter describes the few-mode fiber (FMF), a method to selectively excite modes,
methods to fabricate fiber Bragg gratings (FBG) and mode converter gratings (MC),
and the spectroscopy apparatus. All FMF experiments presented in this thesis are based
on this particular fiber. In conjugation with the mathematical tools in Chapter 2, the
hardware tools and experimental methods listed here form the backbone of this thesis.

3.1 Few-mode fiber

The few-mode fiber used in this thesis exhibits four LP modes LP01, LP11, LP21 and
LP02 (introduced in chapter 2.1.3) in the wavelength range of 1.46 µm to 1.72 µm.
The transverse refractive index profile for a single 50 cm long sample of this fiber was
measured by the company Interfiber Analysis LLC, using spatially resolved Fourier
transform spectroscopy [58]. The refractive index profile along a diameter of the cross
section of the fiber is shown in figure 3.1, for two different wavelengths.

Figure 3.1 – Diametric refractive index profile of the FMF, offset by the
cladding index, as obtained from Interfiber Analysis LLC
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Chapter 3. Sample details, preparation and general experimental methods

The core size is 10.0±0.05 µm. In the core region, the calculated average refractive
index difference between the core and cladding is 0.021 at 633 nm wavelength and 0.020
at 970 nm wavelength. The refractive index distribution along the measured diameter
resembles a step-index profile, other than a dip in the center of the fiber. Assuming
step-index profile, the V number in the wavelength measurement range from 1.46 µm
to 1.72 µm varies from approximately 4.4 to 5.2. Thus in terms of LP modes, the fiber
is a four-mode fiber in this wavelength range. The refractive index was assumed to be
a linear combination of fused silica and germanium oxide refractive indices, which are
described by Sellmeier equations [7; 8]. To match the index contrast, the germanium
concentration was determined to be approximately 14 %. According to the purchased
measurement report from Interfiber Analysis LLC, compared to silica index matching
liquid, the fiber cladding had an index difference of -0.0004, suggesting that its draw
tension was around 80 grams[59].

The local refractive index of the fiber n(λ, x, y, z) is assumed to be a linear combination
of the refractive index of fused silica nSiO2 (λ) and Germanium oxide nGeO2 (λ) [60]:

n(λ, x, y, z) = (1− f (x, y, z))nSiO2 (λ)+ f (x, y, z)nGeO2 (λ) (3.1)

where f (x, y, z) is the fractional concentration of GeO2 at the location (x, y, z) in the
fiber. Under the assumption that the centrosymmetric fiber has the same refractive index
profile at any cross-section of the fiber, f (x, y, z) = f (r ), where r =

√
x2 + y2.

Sellmeier equation for refractive index n(λ) is given by the following formula

n2(λ)−1 =
3∑

i=1

Aiλ
2

λ2 −B 2
i

(3.2)

Table 3.1 presents the values of the Sellmeier coefficients for fused SiO2 and GeO2.

Material A1 B1 A2 B2 A3 B3

Fused SiO2 [7] 0.6961663 0.0684043 0.4079426 0.1162414 0.8974794 9.896161
GeO2 [8] 0.80686642 0.068972606 0.71815848 0.15396605 0.85416831 11.841931

Table 3.1 – Sellmeier coefficients of fused SiO2 [7] and GeO2 [8]

Representing this fiber with a perfect step-index profile with radius acore and 14 %
Germanium concentration at the core ( f (r < acore) = 0.124), and using Sellmeier equations
for the wavelength dependence of fused silica and Germanium oxide, V-numbers can be
calculated for different wavelengths. Table 3.2 shows approximate V-numbers at the edges
of wavelength measurement range, at the center of the telecom wavelength range at 1.55
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3.1. Few-mode fiber

µm, and at the wavelength where the V-number reaches the cut-off condition of LP02, i.e.,
V=3.832. For the step-index model, the cut-off wavelength of the LP02 is thus within the
interval 1.985±0.005 µm. Since the upper limit of wavelength measurement at 1.72 µm is
far from the LP02 cut-off wavelength, and the V-number at at 1.46 µm is smaller than the
cut-off wavelength of the next LP mode, the first four LP modes LP01, LP11, LP21 and
LP02 are supported in 1.46 µm-1.72 µm. Table 3.2 represents the indicative V-numbers
calculated based on the core and cladding refractive indices at different wavelengths,
particularly corresponding to the edges of the available measurement range, the center
of the telecom wavelength range and calculated GVE from step-index simulations for
different LP01-LPm̂l mode pairs.

Description Wavelength V-number Refractive index

(µm) cladding core

Lower limit of SI 155 interrogator 1.46 5.19 1.445 1.465

Center of telecom wavelength 1.55 4.89 1.444 1.464

Measured LP01-LP02 GVE 1.64 4.63 1.443 1.463

Upper limit of Ando OSA 6317Q 1.72 4.41 1.442 1.462

Simulated LP01-LP21 GVE 1.97 3.86 1.438 1.459

Simulated LP21 and LP02 cut-off 1.98 3.84 1.438 1.459

Simulated LP01-LP11 GVE 2.64 2.91 1.427 1.448

Table 3.2 – Specific wavelengths corresponding to the measurement setups
and the step-index modeling of the few-mode fiber, together with the corre-
sponding V-number, core refractive index and cladding refractive index

Although LP01 can potentially be converted to LP11 [2] or LP21 [61; 62], that was not
pursued in this thesis since the intermodal dispersion curves of LP01-LP11 and LP01-
LP21 mode pairs could not be estimated due to the inability to selectively excite these
mode pairs with available setup. The cut-off wavelengths of LP11 and LP21 modes are
larger than that of LP02. According to the step-index simulation (table 3.2), the GVE
wavelengths for both the LP01-LP11 and LP01-LP21 mode pairs are beyond 1.8 µm, which
was above the measurement limit of available spectroscopic setup .
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3.2 Lasers

The properties of the lasers used in this thesis are listed below:

Laser Pulse Wave-
length

Average 1
e2 Repeti-

tion
Phase
mask

(Company) duration power diameter frequency pitch

(s) (nm) (mW) (mm) (Hz (µm))

Argon, 2H
(Coherent)

CW 244 200* 0.6* − 1.060

ArF Ex-
cimer
(Coherent)

15×10−9 193 150 20 (|| to
fiber), 8 (⊥
to fiber)

10 1.07931

ArF Ex-
cimer
(Optec)

6×10−9 193 150 N.A.∗∗ 200 −

fs laser
Yb:YAG,
4H
(Pharos)

0.18×10−12 257 40* 4.1* 1000 −

Table 3.3 – Lasers used during the thesis. Values indicated with * are
measured, while the others are specified by the corresponding manufacturing
companies. The Coherent excimer laser had rectangular beam shape, whereas
the other lasers had elliptical beam shape. ** For the commercial Optec
Excimer laser setup, the beam diameter was not available, whereas only the
spot size was measured from fluorescence of the fiber core as seen under a
microscope. Average power for a periodically sequenced pulses is defined over
the sequence period, which was the quantity measured by power meters

2H and 4H implies second and fourth harmonic, respectively, of the fundamental beam
with 1030 nm wavelength. The higher harmonic wavelengths were generated using
high-harmonic modules adjoined to the Pharos laser. The Argon laser model was Sabre
FRED. The Optec excimer laser is located in the CMI facility of EPFL. It is provided as
a package complete with microscope, apertures and translation stage by the company
Atlex. All the parts of the Atlex system could be controlled from the same computer.
For the other two systems, Matlab was used to communicate between the spectrometers,
translation stages and laser/shutters.
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3.3. Fiber-Bragg grating fabrication

3.3 Fiber-Bragg grating fabrication

Fiber Bragg-gratings are periodic perturbations in the index profile along the fiber
axis, the wavevector of which matches the difference in axial wavevectors of two counter-
propagating modes [63; 64; 65]. Reflection peak(s) is(are) observed at wavelength(s) where
the perturbation wavevector 2π

ΛF BG
matches the difference of in axial wavevectors of any two

counter-propagating modes: ΛF BG |~β1(λ)− ~β2(λ)| =β1(λ)− (−β2(λ)) = β1(λ)+β2(λ) = 2π
ΛF BG

[66].

Figure 3.2 – Phase matching of an FBG: Matching of the difference in axial
wavevectors of a forward (β1(λ)) and backward propagating mode, (−β2(λ))

The method used in this thesis to introduce such index perturbations was illumination
from the side though a phase mask [1].

Figure 3.3 – Phase mask side-illumination for fabricating FBG [1]

The Argon laser and Coherent ArF excimer [1] laser were used for writing FBGs reported
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Chapter 3. Sample details, preparation and general experimental methods

in this thesis, with corresponding phase masks of pitch 1060 nm from Ibsen photonics
and 1079.31 nm from QPS technology, respectively. A cylindrical fused silica lens was
used to focus the Coherent excimer beam perpendicular to the fiber, with an estimated
1
e2 diameter of 0.5 mm perpendicular to the fiber. The estimates of corresponding energy
density per pulse (energy per pulse / spot size at fiber location) and total fluence (energy
density per pulse × number of pulses = average intensity × exposure time) were 150
mJcm−2 and 900 Jcm−2 respectively. The phase masks consist of periodic lines etched in
silica, thus forming a line grating. The period of the grating is chosen to be the desired
pitch of the FBG. When laser was illuminated perpendicular to the phase mask, multiple
diffraction orders were transmitted through the phase mask. The depth of the periodic
lines of the masks were adjusted such that power in the 0th order diffraction is minimized.
The -1 and +1 diffraction orders have the maximum transmitted power. The interference
of these two orders is imprinted in the photosensitive core of the optical fiber. The UV
absorbing coating of the fiber was removed by mechanical stripping, in order to expose
the fused silica cladding. The residues were cleaned by wiping with isopropanol, so that
residues do not contaminate the delicate phase mask. Sufficient length of coating was
removed from the fiber such that the coating does not touch the phase mask. On the
other hand, the removed length of the coating was limited such that on both sides of the
removed region, the coating touches the unpatterned boundary of the phase mask, in
order to control vibration instabilities. During irradiation, the contact was maintained
by applying slight controlled strain.

Generally the index profile of the modified core for standard FBGs at any fixed wavelength
is represented by [56]

n1(z) = n0(z)+∆ndc (z)

(
1+ v(z) cos(

2π

ΛF BG
z +φ0)

)
(3.3)

where ∆ndc (z) is the induced refractive index change averaged over a grating period
with center at z, v(z) ≤ 1 is the fringe visibility at z, and φ0 is some constant. An
illustration of an FBG represented by equation 3.3 , with ΛPhasemask = 1 µm and therefore
ΛF BG = 0.5 µm, Gaussian ∆ndc (z) = 0.006 e( z−600

25 )2 with z in microns, n0(z) = 1.463 and
v(z) = 0.85 is presented in figure 3.4. The pitch of the interference of the -1 and +1
diffraction orders was half of the phase mask pitch. The minima of the perturbations are
slightly raised from the baseline, which represents a loss in contrast, corresponding to
v(z) < 1. Such loss of contrast can arise from vibrations, which is why contact is maintained
between the fiber coating and unpatterned edges of the phase mask during irradiation.
For no loss of contrast, corresponding to v(z) = 1, the minima of the perturbations will
touch the baseline. Since refractive index change induced by the Gaussian shaped Argon
laser beam in the few-mode fiber is positive, such an illustration represents a realistic
perturbation profile in presence of some vibration, when the index change in linear.

For two counter-propagating modes with magnitudes of propagation constants βx (λ) and
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3.3. Fiber-Bragg grating fabrication

βy (λ), reflection peaks for an FBG with pitch ΛF BG appear centerd at the resonance
wavelengths λx,y where the following condition is satisfied [66]:

2Mπ=ΛF BG

[
βx (λx,y )+βx (λx,y )

]
, M ∈N (3.4)

orMλx,y =ΛF BG

[
ne,x (λx,y )+ne,y (λx,y )

]
, M ∈N (3.5)

Figure 3.4 – Illustration of an FBG represented by equation 3.3 , with
ΛF BG = 0.5 µm, Gaussian ∆ndc (z) = 0.006 e( z−600

25 )2 with z in µm, n0(z) = 1.463
and v(z) = 0.85. An FBG fabricated with this refractive index profile along
the fiber axis would have resonance wavelengths 1.4690 µm, 0.7345 µm and
0.4897 µm for the first (M = 1), second (M = 2) and third order (M = 3)
reflection peaks respectively

The reflection strength (normalized intensity) at the resonance wavelength(s) λx,y of the
FBG is(are) described by the following formula [66]:

R(λx,y ) = t anh2(κL) (3.6)

where L is the length of the FBG. The coupling constant κ is defined by:

κ= KF ηx,y
∆nac

λx,y
(3.7)

ηx,y is the overlap integral of the two counter propagating modes at λx,y inside the core
of the fiber. KF is a constant which depends on the envelope of the irradiation. For
top-hat profile FBGs KF =π. The t anh2(κL) functionality implies that even for small κ,
FBGs can be made strongly reflecting by increasing the length L.
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3.4 Mode converter fabrication using laser irradiation

Mode converter gratings are periodic perturbations in the index profile along the fiber
axis, the wavevector of which matches the difference in axial wavevectors of two co-
propagating modes (Figure 3.5). Conversion peak(s) is(are) observed at wavelength(s)
where the perturbation wavevector matches the difference in axial wavevectors of any two
modes, which is called resonance wavelength [56]. The perturbations can be made using
arcs [67], CO2 laser [39], UV laser [31] etc. Although modes with different symmetry can
be coupled in reflection with non-uniform transverse index change of the core by laser
irradiation [68], it takes sophisticated fabrication strategies to couple co-propagating
modes of different symmetry using MCs [39]. This is mainly because of the coupling
constant between modes of different symmetry is very small for an MC without tilt,
unlike FBGs where the coupling constant is large.

Figure 3.5 – Phase matching of an MC: Matching of the difference in axial
wavevector of two different co-propagating modes, β1(λ) and β2(λ)

For two co-propagating modes with magnitudes of propagation constants βx (λ) and βy (λ),
and an MC with pitch ΛMC , the resonance wavelength λx,y satisfies the following [66]:

2Mπ =ΛMC |βx (λx,y )−βx (λx,y )| M ∈N (3.8)

or Mλx,y =ΛMC |ne,x (λx,y )−ne,y (λx,y )| M ∈N (3.9)

The conversion strength of the MC, which is the ratio between the original and converted
mode intensities at a given wavelength, is described by the following formula [66]:

T (λ) = κ2(λ)

δ2(λ)+κ2(λ)
si n2

(
L
√
δ2(λ)+κ2(λ)

)
(3.10)
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3.5. Selective coupling of LP01 mode

where L is the length of the MC, κ(λ) coupling constant as a function of wavelength
and δ(λ) = |βx (λ)−βy (λ)

2 |− π
ΛMC

is defined by the intermodal dispersion |βx (λ)−βy (λ)| and
MC pitch ΛMC . The detailed mathematical model of MC transmission and extinction
ratio has been described in more detail in chapter 2.1.6. For fabrication of MCs in this
thesis, the fiber was iteratively translated along the fiber axis, while exposing it with the
laser for controlled periods of time between the translations [2]. An illustration is shown
in figure 3.6. The point-by-point irradiation using a high-precision translation stage,
instead of using an amplitude mask, gave more flexibility and resolution in choosing
the value of the pitch. The flexibility and precision is crucial since slight changes in
pitch cause large shift in resonance wavelength. For the LP01-LP02 mode pair in the
wavelength range of 1.5 µm-1.7 µm, the sensitivity of resonance wavelength with respect
to MC pitch | ∆λMC

∆ΛMC
| > 0.05 (Detailed calculation in figure 4.8). The shutter could be an

external shutter for the Argon laser, external trigger for the Optec Excimer laser [29], or
pulse-picker of the femtosecond laser [69], all of which could be controlled with a master
PC. The translation stage was Aerotech ANT130, which had a translation range of 5 cm
in two perpendicular horizontal directions, and a resolution of 10 nm. From the practical
viewpoint, it is crucial to maintain suitable ratio of the perturbation size along the axis
to the period length (duty cycle), in order to achieve high-extinction MC conversion [70].

Figure 3.6 – Illustration of MC irradiation using a translation stage and
shutter [2]

3.5 Selective coupling of LP01 mode

Although it is ideally possible to in- and out-couple only the LP01 mode in the FMF
by splicing with a SMF with same mode-field diameter as the LP01 mode of the FMF,
in practice splicing with most fibers excites some amount of higher order mode. Espe-
cially while splicing with centrosymmetric SMF, centrosymmetric LP02 mode is excited
whenever the mode field of LP01 is not matching between the SMF and FMF. This is
especially problematic during the fabrication of strong LP01-LP02 mode converters, due
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to the presence of LP02 TMI, thus degrading the spectrum of the MC conversion peak.
Consequently it becomes hard to determine high extinction ratios. To retain only LP01

at the region of irradiation and output of the FMF, the higher order modes are forced
to experience stronger loss compared to LP01 under bending of the fiber [71; 72; 73].
Splicing OFS CS0424630 SMF pigtails excited approximately 5 % LP02 in the FMF. It
was experimentally determined that 30 turns of diameter 7 mm got rid of LP02, beyond
the detection limit even at 99.99 % mode conversion by MCs. The loops were made by
winding around the tip of a pen, which was then removed and arrested in place with
scotch tapes. MC exposure was done on a part of the fiber between two consecutive
loops. An example of fiber loops is shown in figure 3.7.

Figure 3.7 – Fiber loops for getting rid of higher order modes in MC samples

3.6 Spectroscopy apparatus

Two types of spectroscopic apparatus were used for different experiments-

• Micron Optics SI 155 interrogator, which had wavelength scanning laser output
and photodetector at each of its 4 fiber-coupled ports, enabling direct reflection
measurement from samples. For transmission measurements, the sample had to be
attached between two ports, with an intermediate fiber isolator blocking any light
going into one of the ports, including reflections from the sample. The acquisition
time for the wavelength range 1.46 µm to 1.62 µm was 0.1 s. Therefore this was
used whenever the wavelength range was sufficient.

• When larger spectral range needed to be measured, combination of SuperK Extreme
broadband light source from NKT photonics with Ando OSA 6317Q spectrometer
was used. Measurements in the wavelength range 1.5 µm to 1.7 µm were done with
this device combination. Transmission signal could be measured by placing fiber
samples between these two devices. For reflection experiments, both the devices
were attached to the input port of a 50-50 fiber coupler, while the sample was
attached on an output port. The output power of the SuperK Extreme broadband
light source was low, thereby often requiring long acquisition times for decreasing
the noise of the spectra.
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4 Determination of intermodal
dispersion in a few-mode fiber

Knowledge of the intermodal dispersion δβ(λ) of the pristine fiber is important for
fabricating mode converters (MC) [30] as well as for understanding the temperature and
strain response of both MCs [74] and TMI [75; 76]. Although it is long known how to
measure the higher order dispersion coefficients of the intermodal dispersion curve using
two-mode interferometry [77; 78], the offset of the dispersion curve is indeterminate due
to phase offset indeterminacy inherent to any interferometric signal. A novel method
is presented here which enables determining the offset of intermodal dispersion, using
resonance peaks of an FBG written in the FMF [79]. Combining this method with the
estimates of higher order dispersion terms from TMI, the intermodal dispersion was fully
characterized for LP01-LP02. This estimate of δβ(λ) was used as a first guess for choosing
the MC pitch for a desired resonance wavelength, on top of which more sophisticated
estimation tools have been built in this thesis, as described in chapter 6.

Development of this method was inspired by the lack of methods for accurately estimating
the intermodal dispersion of the pristine fiber including its offset. Only recently some
methods were reported e.g. using imaging of the scattering of the modal beat pattern [80]
or using acousto-optic gratings [54]. MC resonance using weak acousto-optic gratings can
provide very accurate estimate of the offset of δβ(λ). Although acousto-optic gratings
can only couple two modes with ∆m̂ = ±1 (Equation 2.20), as has been reported for
LP01-LP11 mode pair in reference [54], the method is easily scalable to other modes by
sequential combination of different mode pairs with ∆m̂ = ±1 [81]. For example, first
determining the intermodal dispersion of LP01-LP11 followed by the determination of
the intermodal dispersion of LP11-LP02 with high precision, over a range of wavelength,
will provide estimate for intermodal dispersion of LP01-LP02 in that range using simple
combination of the previous two estimates. The advantage of this method is that the
same maximum coupling can be maintained for a smaller perturbation by increasing the
coupling length, whereas the bandwidth of the conversion peaks decrease with increasing
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Chapter 4. Determination of intermodal dispersion in a few-mode fiber

length [35]. As claimed in [54], in this way, by using a long coupling length of 50 cm, it
was possible to resolve the vector modes. LP modes are combinations of vector modes [44]
under the assumption of degeneracy of modes with close dispersion values, and therefore
the estimates of intermodal dispersion from vector modes can be used for estimating
the intermodal dispersion of the corresponding LP mode. Since vector modes were
not relevant for the experimental results and scope of this thesis, detailed discussion of
vector modes is skipped here, and can be followed in the relevant textbook [44] if needed.
Also since the index perturbation was small for a 50 cm long grating, the determined
intermodal dispersion is close to its value in an unperturbed pristine fiber. Previous to the
method of acousto-optic mode converter gratings and the novel method presented in this
chapter, only very approximate methods existed for estimating the intermodal dispersion
of a pristine fiber [82], which suffer from errors of neglecting significant contributions from
some effects. On the other hand, while trying to estimate intermodal dispersion of the
pristine fiber at the resonance wavelength of an MC written using strong perturbations,
the estimation becomes biased since intermodal dispersion of the pristine and exposed
fiber are significantly different [33; 34]. However strong perturbation is often necessary
for fabricating an MC within a limited exposure length, and to obtain sufficient depth
of the conversion peak such that the resonance wavelength can be determined with
precision against the background noise in the transmission spectrum. Since the resonance
wavelength varies strongly with the pitch, it becomes difficult to a priori estimate the
needed pitch for a desired resonance wavelength, without having a good estimate of the
intermodal dispersion. On the other hand, (a) FBGs which are a few mm long, with
discernible reflection peaks, can be easily fabricated with small perturbations, and (b)
the resonance peaks do not shift as strongly as an MC when the perturbation strength
or the FBG pitch is changed. Especially based on these practical points, the presented
method was developed and applied on fabricated FBGs in the few-mode fiber.

4.1 Mathematical description

Intermodal dispersion between two modes with propagation constants β1(λ) and β2(λ),
where β2(λ) < β1(λ), is defined as δβ(λ) = β1(λ)−β2(λ). Intermodal dispersion can be
expressed as a Taylor expansion around a wavelength of interest, which is generally the
GVE wavelength (also known as achromatic fringe) [77]:

δβ(λ) =
∞∑

n=0

1

n!
(λ−λ0)n ∂

nβ(λ0)

∂λn (4.1)

With precise alignment, two modes of a few-mode fiber with real-valued electric field
amplitudes Eβ1 (λ) and Eβ2 (λ) can be selectively excited by coupling the mode of a single
mode fiber (SMF), with real-valued electric field amplitude ESMF (λ), at junction between
the cleaves of these fibers e.g. splice or physical contact. The coupling can be further
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varied by coupling the diffracted field after propagation outside the SMF cleave to
the modes on the few-mode fiber at its cleaved end, at the expense of having lesser
coupling and physical stability compared to a splice [83]. At splices on both ends of
the few-mode fiber, if the normalized inner products Aβ1 (λ) =< ESMF (λ),Eβ1 (λ) > and
Aβ2 (λ) =< ESMF (λ),Eβ2 (λ) > (equation 2.31)dominate with respect to the nomalized inner
products of ESMF (λ) with other modes in the few-mode fiber, then the transmission
spectrum through the SMF-FMF-SMF system shows particular oscillating intensity called
two-mode interference (TMI) [77; 84; 85; 86], given by the following formula:

IT M I (λ) = ISMF (λ) |Aβ1 (λ)e i Lβ1(λ) + Aβ2 (λ)e i Lβ2(λ)|2 = Idc (λ)+ Iac (λ)cos
(
φ(λ)

)
(4.2)

where φ(λ) = ∫ L
0 δβ(λ, z) d z, ISMF (λ) =< ESMF (λ),ESMF (λ)>, Iac (λ) = 2ISMF (λ) Aβ1 (λ) Aβ2 (λ)

and Idc (λ) = ISMF (λ)
(

A2
β1

(λ) + A2
β2

(λ)
)
, and Iac (λ) ≤ Idc (λ). The quantity δβ(λ, z)

is the intermodal dispersion as a function of position along the fiber axis, which is
assumed constant (= δβ(λ)) for the pristine fiber. Therefore for the pristine fiber∫ L

0 δβ(λ, z) d z = Lδβ(λ).

Phase extraction of TMI gives estimates of higher order coefficients of equation 4.1, up
to a certain finite number Ns which depends on the signal quality and the noise [78; 79].

δβ(λ) =
Ns∑

n=0

1

n!
(λ−λ0)n ∂

nβ(λ0)

∂λn +ε(λ−λ0) (4.3)

where ε(λ−λ0) is too noisy for reliable polynomial fitting of degree higher than Ns .

By fitting equation 4.2 to the measured TMI signal, estimate can be obtained for the shape
of Lδβ(λ). However, periodic nature of the cosine function introduces an indeterminacy
of integer multiples of 2π in estimating the offset of Lδβ(λ) from phase unwrapping of
TMI.

4.2 Identification of TMI modes

The identification of the modes producing the TMI needs to be confirmed with some
mode selective method e.g. far-field imaging [87] or reflection peaks from FBGs [88]. In
the FMF used here, identification of the modes which exhibit TMI with GVE at 1.639
µm is done using reflection peaks from FBG written in the fiber.

In general, different collections of resonance peaks can be observed in presence of an
FBG in the few-mode fiber, under different excitation conditions:
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Chapter 4. Determination of intermodal dispersion in a few-mode fiber

• In presence of only two modes, one intermodal and two intramodal reflection peaks.

• In presence of multiple modes, a mixture of intramodal and intermodal reflection
peaks.

• In presence of a single mode, only one intramodal reflection peak.

Since the resonance peaks occur due to phase matching 2Mπ=ΛF BG |~βx (λx,y )− ~βy (λx,y )| =
ΛF BG |βx (λx,y )+βy (λx,y )| where M is a natural number, and since for fibers with profiles
close to step-index have bLP02 (λ) < bLP21 (λ) < bLP11 (λ) < bLP01 (λ) (Figure 2.3), formula 2.12
implies that βLP02 (λ) < βLP21 (λ) < βLP11 (λ) < βLP01 (λ). Since for any mode index x, βx (λ)

is a monotonically decreasing function of λ for fibers with transverse refractive index
profiles resembling step-index fibers, amongst all possible reflection peaks in the 4-mode
FMF, the extremal peaks must be from LP01 and LP02. An FBG with pitch 530 nm in
the FMF, written using the Coherent ArF Excimer laser, was excited by scanning a
single-mode SM1500 fiber across its cleaved end, using a mechanical alignment stage
(schematic shown in figure 4.1). The two excitation conditions are visible in figure 4.2,
which corresponded to no offset between the axes of the fibers (plot on bottom) and with
offset (plot on top). Since for a centrosymmetric FMF only LP01 and LP02 should be
excited in absence of any offset and there are only three peaks with two of them being
extremal (among all possible peaks), the excitation of only LP01 and LP02 was verified.
After splicing, only these three peaks were retained. Thus it was deduced that the TMI
in figure 4.4a, exhibited by a spliced SM1500-FMF-SM1500 sample comes from LP01 and
LP02.

Figure 4.1 – General schematic for exciting modes in a cleaved FMF (con-
taining FBG) using scanning of a cleaved SMF with spectroscopic set up
attached on the other end. In general, the strengths of the reflection peaks
depend on the mode coupling at the beginning of the few-mode fiber, and
therefore has more prominence when (1) an SMF with suitable mode field
diameter is spliced, or (2) appropriate gap is put between the neighboring
SMF and FMF ends such that diffracted output of the SMF couples into
higher-order modes of the FMF
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Figure 4.2 – Bragg resonance peaks due to intramodal and intermodal
coupling of LP modes from an FBG of pitch 530 nm written inside the FMF,
when excited with the scheme in figure 4.1 using an SM1500 SMF. The
wavelength of resonance between LPx and LPy mode is denominated by λx−y .
The spectrum on top shows the reflection peaks through the SMF, when
the end of the SMF was put in contact with the end of the particular FMF
sample at a slight offset, such that maximum number of peaks were observed.
The spectrum at bottom shows reflection peaks through the SMF when the
offset was minimized. After splicing the SMF to the particular FMF sample,
three reflection peaks similar to the no-offset condition were observed

4.3 Estimating higher order dispersion coefficients

When the fiber contains only two centrosymmetric modes, for example LP01 and LP02,
TMI can be generated by splicing two ends of the few-mode fiber (FMF) with single
mode fibers of suitable mode field diameter. The overlap of the mode-field diameters
of the single-mode and few-mode fibers determine the ratio of Eβ1 (λ) and Eβ2 (λ) is
equation 4.2, which determines the TMI contrast. Maximum contrast occurs when
|Eβ1 | = |Eβ2 |. In this case, the LP01-LP02 TMI is generated by automatic splicing of the
FMF (∆n ≈ 0.02, acor e = 5 µm) with SM1500 single mode fiber pigtails with mode field
diameter 4.2µm (Figure 4.3). The splicer used was Fujikura FSM-20CS. Figure 4.4a
shows the TMI from a sample of length 869±0.5mm.
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Chapter 4. Determination of intermodal dispersion in a few-mode fiber

Figure 4.3 – Schematic of TMI sample. The SMF are SM1500, and spliced
to FMF on both ends without offset

The TMI shows an oscillating signal of varying period, where the period is decreasing on
both sides of a certain wavelength, which is named as the group-velocity equalization
wavelength (GVE) (Figure 4.4a). Physically GVE is the wavelength where the group
velocities of the two corresponding modes is the same, implying that temporal pulses
of the two modes with peak wavelengths at the GVE wavelength travel with the same
speed through the fiber. In order to extract the phase of the TMI signal in figure

(a) (b)

Figure 4.4 – (a) LP01-LP02 TMI signal (b)Phase unwrapped signal with
unknown offset for 869±0.5 mm few-mode fiber

4.4a, between every neighbouring minimum and maximum, a zero wavelength was
identified as the wavelengths where the interpolated TMI signal attained the average
of its neighbouring extrema. The zero wavelengths were assigned increasing phases
(−N2π− π

2 ,−(N2 − 1)π− π
2 , ...,−5π

2 ,−3π
2 ) with N2 number of zero wavelengths which are
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4.4. Determination of offset

shorter than GVE wavelength, while for N1 number of zero wavelengths larger than GVE
wavelength were assigned phases in decreasing order (−3π

2 ,−5π
2 , ...,−(N1−1)π− π

2 ,−N1π− π
2 ).

Figure 4.4b shows the extracted phase curve which is forced to have ∂2δβ(λ)
∂λ2 < 0 in 1.0

µm ≤ λ ≤ 1.6 µm, from previous MC fabrications done in this FMF [29]. The degree
Ns of the fitted polynomial φ f i t (λ) is determined such that the sum of square errors∑
λ |φ f i t (λ)−φ(λ)|2 does not change significantly for N > Ns , in comparison to the change in

sum of square errors observed for N ≤ Ns . In the dataset of figure 4.4a, the corresponding
fitting degree was Ns = 4. The root of the derivative of the fitting polynomial gives
the GVE wavelength λe :

dφ f i t (λe )
dλ = 0, 1.52µm < λe < 1.72µm. The extracted phase is

divided with the length and transformed to equation 4.3 with unknown offset δβ(λe ).
The extracted coefficients of 4.3 without the offset are presented in table 4.1.

λe δβ(λe ) ∂δβ(λe )
∂λ

1
2
∂2δβ(λe )
∂λ2

1
3!
∂3δβ(λe )
∂λ3

1
4!
∂4δβ(λe )
∂λ4

(µm) (µm−1) (µm−2) (µm−3) (µm−4) (µm−5)

1.639 N.A. 0 -0.0805 -0.388 -2.97

±5×10−4 – ±5×10−5 ±1×10−4 ±2×10−3 ±8×10−2

Table 4.1 – Higher order LP01-LP02 intermodal dispersion coefficients from
TMI phase unwrapping of FMF with length 869±0.5 mm, with unknown
offset

The determination of zero wavelengths become unreliable in presence of high noise (for
example when the TMI signal is weak in strength), which can be mitigated by better
fitting algorithms to estimate the locations of maxima and minima wavelengths, or for
direct normalization of the data to remove Idc (λ) and Iac (λ) (equation 4.2 ). Such data
treatment became necessary for the experiments reported in the next chapters. In this
chapter, phase extraction using zero wavelength is described since it was reported in the
same form in conference talks and proceedings [79].

4.4 Determination of offset

In order to estimate the offset of the intermodal dispersion curve of LP01-LP02, a new
method was developed which gives estimates for δβ(λ) at specific wavelengths by using
reflective resonance peaks from fiber Bragg gratings (FBG). In presence of two modes with
effective indices ne,1(λ) > ne,2(λ), an FBG with pitch ΛF BG can exhibit three resonance
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Chapter 4. Determination of intermodal dispersion in a few-mode fiber

peaks λF BG ,1 >λF BG ,2 >λF BG ,3 with the following phase matching conditions:

λF BG ,1 = 2ΛF BG ne,1(λF BG ,1)

λF BG ,2 =ΛF BG

(
ne,1(λF BG ,2)+ne,2(λF BG ,2)

)
(4.4)

λF BG ,3 = 2ΛF BG ne,2(λF BG ,3)

Under the first order approximation that the value of the effective indices of the two modes,
ne,1(λ) = ne,1 and ne,2(λ) = ne,2 are constant over the wavelength range

[
λF BG ,3,λF BG ,1

]
,

any pair of equation 4.4 can be solved to get an estimate for ne,1 and ne,2. From that an
estimate of the intermodal dispersion at λF BG ,2 can be obtained:

δβ1−2(λF BG ,2) ≈ 2π
(ne,1 −ne,2)

λF BG ,2
(4.5)

For an FBG of pitch 530 nm made with a phase mask imprint from the side with
Coherent ArF excimer laser (table 3.3), the resonance peaks observed for LP01 and
LP02 (Figure 4.2) are presented in table 4.2. Using these peaks, three estimates of

λF BG ,3 =λ02−02 λF BG ,2 =λ01−02 λF BG ,1 =λ01−01

(µm) (µm) (µm)

1.5353 1.5422 1.5491

ne,LP01

ne,LP01+ne,LP02
2 ne,LP02

1.4484 1.4549 1.4614

± 0.0002 ± 0.0002 ± 0.0002

Table 4.2 – Effective index estimates of LP01 and LP02 modes, at the intermodal
resonance wavelength of an FBG with pitch 530 nm. The nomenclature λF BG ,x

corresponds to equations 4.4-4.5 and the nomenclature λx−y corresponds to
figure 4.2

ne,LP01 −ne,LP02 = {0.00650,0.00655,0.00610} were obtained, with relative errors ±4×10−4.
This gives the final estimate δβ01−02(λ01−02) = 0.0531±0.0004µm−1. According to this
estimate, when the pitch used to fabricate an MC with weak index perturbation is

2π
δβ01−02(λ01−02) = 118.3±0.9µm, the resonance will happen at 1.5422 µm wavelength.
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4.4. Determination of offset

4.4.1 Limitations

Before moving on to making MCs with this estimate, the validity of this method should
be verified with simulation of the well-understood step-index model. The solid curves in
figure 4.5 shows the effective indices for LP01 and LP02, and their average for a step-index
fiber with 5 µm radius and 14 % GeO2 concentration at the core, calculated using formula
2.12 and the V −b diagram for step-index fibers (Figure 2.3). In the presence of an FBG
with pitch ΛF BG , the intersection of these curves with λ

2ΛF BG
gives the corresponding

resonance wavelengths.

Figure 4.5 – Simulated effective indices for step-index fiber with radius 5.0
µm and 14 % GeO2 concentration in the core (Solid curves). The dashed
gray line represents λ

2ΛF BG
. The intersection of the dashed line with the solid

curves give the values of the resonance wavelengths for an FBG of pitch
ΛF BG = 530.15 nm

In figure 4.5 three FBG resonance wavelengths are {1.5355 µm, 1.5422 µm, 1.5488 µm},
which gives an estimate of δβ(1.5422 µm) = 0.0511 µm−1. According to the simulation
results illustrated in figure 4.6, the exact value of the intermodal dispersion at the peak
wavelength is β01(1.5422 µm)−β02(1.5422 µm) =0.0508 µm−1. Compared to the exact
value, using the new method gives a relative error of 0.6 %, which is a good starting
point for MC and TMI studies.

Regarding the technical aspect of attaining grating resonance at desired wavelength,
FBGs are much more robust compared to MC, since slight changes in FBG pitch ΛF BG

and correspondingly the wavevector 2π
ΛF BG

still match the dispersion β(λ) of individual
modes close to the original resonance wavelength. On the other hand, the magnitude and
curvature of δβ(λ) is quite smaller in comparison, which causes hundreds on nm of shift in
resonance wavelength for few microns of change in the MC pitch, the sensitivity of which
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Chapter 4. Determination of intermodal dispersion in a few-mode fiber

Figure 4.6 – Simulated difference in propagation constants of LP01 and LP02

modes for a step-index fiber of radius 5.0 µm and 14 % GeO2 concentration
in the core. According to the simulation, the exact value of δβ(1.5422 µm) =
0.0508 µm−1

has been calculated in the next section for the MC resonance between LP01 and LP02 in
this FMF. Permanent FBGs can be reliably made using phase mask side-illumination
technique, while temporary FBGs can be made using Brillouin gratings [89; 90]. The
guess of δβ(λ) can be used as the starting point for the iteration of making MCs, with
further iterations with a few µm on each side of the guess.

The simulation can be used to compare the estimation error for the offset of δβ(λ) with
the higher-order error in the assumption that the effective index is constant over the
range defined by the intramodal resonance wavelengths of the two corresponding modes.

As illustrated in figure 4.7, δne (λ) =λ
δβ(λ)

2π for LP01 and LP02 varies between 0.0124-0.0125
in the wavelength range of 1.542±0.007 µm, which corresponds to a relative error of 0.5
%. For the simulation, the relative error in estimating the value of δβ(λ= 1.542µm) using
the novel method is 0.6 %.

In addition to such an expected approximation error inherent to this novel method, it
is also known that the intermodal dispersion experienced by an MC differs from that
of a pristine fiber due to change in the local intermodal dispersion due to perturbation
[33; 34]. A conservative relative error estimate of 2 % was therefore assigned in the
determination of the pitch for a desired resonance wavelength, encompassing the error of
the novel method with FBG peaks and the change in δβ(λ) due to perturbation.

In section 4.4, an estimate of δβ(λ= 1.5422 µm) was obtained from experimental mea-
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Figure 4.7 – Effective index difference of LP01 and LP02 for the simulated
step-index fiber in figure 4.5

surements of FBG reflections peaks. Using this estimate gives ΛMC = 2π
δβ(λ) = 118.3 µm

at λ= 1.5422 µm, a 2 % error on which implies a range of ΛMC = (116.0,120.7) µm for
resonance at λ= 1.5422 µm. Assuming an exact value of δβ(λ= 1.5422 µm), this range
exceeds the variation of ΛMC (λ) = 2π

δβ(λ) due to the measured shape of δβ(λ) (table 4.1)
over the whole wavelength range of (1.46,1.62) µm (See sections 4.5 and 4.6). Therefore
it does not make sense to illustrate a graph for ΛMC (λ) with realistic errors at this stage.
Generally it might be more useful to utilize more precise estimates of the offset of δβ(λ)

using non-permanent acousto-optic [54] or Brillouin gratings [89; 90; 91] with weak index
perturbations, if available.

4.5 Sensitivity of MC resonance wavelength with respect
to pitch

Given the estimate of δβ(λ), the sensitivity of the MC resonance wavelength λMC with
changes in the MC pitch ΛMC can be understood by taking differentials along the contour
line of the phase φ(λ,Λ) =ΛMCδβ(λ) at the phase-matching value of 2π = φ(λMC ,Λ) =
ΛMCδβ(λMC ), as a function of wavelength and pitch [33].
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dφ(λ,Λ)

dΛMC
= ∂φ(λ,Λ)

∂ΛMC
+ dλMC

dΛMC

∂φ(λ,Λ)

∂λ

∣∣∣
λ=λMC

= 0

=⇒ δβ(λMC )+ dλMC

dΛMC
ΛMC

∂δβ(λ)

∂λ

∣∣∣
λ=λMC

= 0

=⇒ δβ(λMC )+ dλMC

dΛMC

2π

δβ(λMC )

∂δβ(λ)

∂λ

∣∣∣
λ=λMC

= 0

=⇒ dλMC

dΛMC
=− 1

2π

δβ(λMC )2

∂δβ(λ)
∂λ |λ=λMC

(4.6)

Figure 4.8 shows the sensitivity of dλMC
dΛMC

for resonance between LP01 and LP02 in the FMF
as a function of resonance wavelength λMC , which has been calculated using equation
4.6 and the estimates from tables 4.1 and 4.2. In the whole wavelength range of 1.5 µm
to 1.7 µm, | dλMC

dΛMC
| > 0.05. This implies that a change of 1 µm in pitch ΛMC = 2π

δβ(λMC ) will
lead to at least 50 nm shift in resonance wavelength λMC . | dλMC

dΛMC
| also becomes bigger

without any bound as the resonance wavelength approaches the GVE wavelength.

Figure 4.8 – The calculated sensitivity of LP01-LP02 MC resonance wavelength
with change in the MC pitch for the FMF, as a function of the resonance
wavelength. | dλMC

dΛMC
| > 0.05 in the whole wavelength range of 1.5 µm to 1.7

µm, and becomes bigger as the resonance wavelength gets closer to the GVE
wavelength
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4.6 Sensitivity of MC resonance wavelength with respect
to offset

Another sensitivity that can be estimated only with the knowledge of the shape of δβ(λ)

(4.1), without knowing any material parameters or the exact value of the offset of δβ(λ),
is the sensitivity of the resonance wavelength with respect to an error in determining the
offset.

For some pitch Λ whose exact value is unimportant for this analysis, the exact δβ(λ)

gives a resonance wavelength at some λ less than GVE wavelength given by δβ(λ) = 2π
ΛMC

.
If another estimate δβ∗(λ) has been made due to an added error of ∆> 0 in estimating
the offset, implying δβ∗(λ) = δβ(λ)+∆, the resonance would be guessed at some other
wavelength λ−∆λ, ∆λ > 0 by δβ∗(λ−∆λ) = 2π

ΛMC
. The phase matching relation would

then give

δβ∗(λ) = δβ∗(λ−∆λ)+∆λ∂δβ∗(λ)
∂λ + (∆λ)2

2
∂2δβ∗(λ

′
)

∂λ2 ...for some λ−∆λ<λ
′ <λ

=⇒ δβ∗(λ) = δβ∗(λ−∆λ)+∆λ∂δβ(λ)
∂λ + (∆λ)2

2
∂2δβ(λ

′
)

∂λ2 ...since δβ∗(λ) = δβ(λ)+∆

=⇒ δβ(λ)+∆= δβ∗(λ−∆λ)+∆λ∂δβ(λ)
∂λ + (∆λ)2

2
∂2δβ(λ

′
)

∂λ2 ...replacing δβ∗(λ) = δβ(λ)+∆

=⇒ ∆=∆λ∂δβ(λ)
∂λ + (∆λ)2

2
∂2δβ(λ

′
)

∂λ2 ...since δβ∗(λ−∆λ) = δβ(λ) = 2π

ΛMC

=⇒ ∆≤∆λ∂δβ(λ)
∂λ =⇒ ∆λ≥ ∆

∂δβ(λ)
∂λ

...since ∂2δβ(λ)

∂λ2 < 0 and ∂δβ(λ)

∂λ
> 0

=⇒ |∆λλ | ≥ | ∆

λ
∂δβ(λ)
∂λ

| = | δβ(λ)

λ
∂δβ(λ)
∂λ

|× | ∆
δβ(λ) | (4.7)

For 1.5 µm≤ λ≤ to 1.7 µm, the quantity | 1
λ
∂δβ(λ)
∂λ

| > 50 µm, which implies that an error

of ± 5×10−4 µm−1 in determining the offset of δβ(λ) (corresponding to approximately
± 1 % error for LP01-LP02 mode pair) will lead to at least 25 nm error in determining
the resonance wavelength for some pitch. The absolute value of the sensitivity of the
resonance wavelength with determination error or changes in value of the offset of δβ(λ)

also increases in an unbounded manner as the resonance wavelength gets closer to the
GVE wavelength.

4.7 Conclusion

In this chapter a new method for determining the intermodal dispersion coefficients of a
few mode fiber, from combination of TMI phase extraction and multiple resonance peaks

45



Chapter 4. Determination of intermodal dispersion in a few-mode fiber

from FBG written in the FMF is presented. The modes with highest and lowest effective
indices can be identified from the reflection peaks, using differential excitation of the
modes by scanning a single mode fiber across the cleaved end of the FMF. Using this
method the TMI was ascertained to be from LP01 and LP02. The determined intermodal
dispersion is used for the studies of different perturbations on TMI, and as starting
guesses for making mode converters, which are presented in the following chapters.
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5 Effect of perturbations on two-
mode interference

5.1 Introduction

Modal interference in optical fibers has been studied extensively for use in devices. For
example, multimode interference fringes have been used as temperature and strain sensors
[84; 92; 93], temperature and strain differentiation [94], bending sensors [95], refractive
index sensors [92] etc. The two-mode interference (TMI) fringes shift when any parameter
change induces a change of intermodal phase between the corresponding modes [84]. It
is thus important to know the response of the intermodal dispersion δβ(λ) with respect
to these parameters [76; 96]. In this chapter experiments on three different parameter
estimates is presented-

• Subsection 5.2.1 presents a method to estimate ∂δβ(λ)
∂T from the few-mode fiber

length, phase shifts due to temperature and the intermodal dispersion curve of the
unperturbed fiber (Estimated in chapter 4). This has very recently been reported
also by [76].

• Subsection 5.2.2 presents a method to estimate ∂δβ(λ)
∂ε from the few-mode fiber

length, phase shift due to strain and the intermodal dispersion curve (Estimated in
chapter 4).

• Subsection 5.2.3 presents a method based on similar principles for estimating the
change in δβ(λ) with laser fluence, under the condition that the laser spot is scanned
at constant speed over the whole length of the FMF. Enforcing such scanning
implied that every spot in the FMF was equally irradiated.
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Regarding sensing, the following modalities of TMI have been explored-

• Relative wavelength shift of both TMI fringes and MC resonance are described by
the same equations, with the only different term being the intermodal dispersion
of the FMF and the MC. The intermodal dispersion of an MC converges to the
intermodal dispersion of the FMF when the index perturbation is made smaller.
The relative shift of TMI fringes and MC resonance wavelength is experimentally
compared in 5.2.1, along with the comparison of relative wavelength shifts of FBG
and GVE wavelength.

• The group-velocity equalization (GVE) wavelength has also been used in sensing: e.g.
in temperature sensing [84], temperature and strain differentiation [94], refractive
index sensing with etched FMF [92], and bending characterization of an FMF [96].
Although mathematical explanations exist for effects of temperature and strain
on two-mode interference, there is no simple model describing the sensitivity of
GVE wavelength to temperature, strain and photoinduced change in core refractive
index. Section 5.3 presents a simple model for these sensitivities and experimentally
verifies the model for temperature and strain (subsection 5.3.1 and 5.3.2).

• Subsection 5.3.3 presents a novel and precise method to measure the change in
refractive index of the photosensitive core due to UV laser exposure, under the
assumption that the change in the shape of the refractive index profile due to
the perturbation is insufficient to cause significant change in the V-b diagram
for that profile shape. Under this assumption, the relative shift in the V-number
corresponding to the GVE wavelength is negligible compared to the relative changes
of the GVE wavelength and change in refractive indices. This method allows the
estimate of small UV-induced refractive index changes of the photosensitive core,
without the need of detailed calculations of the V −b diagram of the fiber [97].

• The last subsection 5.4 illustrates investigations on simultaneous temperature and
strain determination, which is a highly studied topic [98; 99; 100; 101; 102; 94; 103].
The capability of using the combination of GVE wavelength and FBG resonance
peak for temperature and strain differentiation was explored. A complete error
analysis was done for this method, with care taken to consider every algorithmic
step from the measurement to the estimation.

5.2 Effect of perturbation on fringes

The TMI fringes are characterized by constant phase φ(λm(X ), X ), with respect to
the change in a parameter X (e.g temperature, strain or UV laser exposure). The
change in a fringe wavelength due to a change in X corresponds to a locus on the
contour curve for (λ, X ) :φ(λm , X ) = Km in the (λ, X ) landscape, where Km is a constant
dependent on the natural number m. Since φ(λ, X ) is smooth with respect to both the
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parameters, the magnitude of the relative shifts in (λm(X ), X ) is related by multi-variable
calculus. Following a fringe wavelength corresponds to keeping the phase constant, i.e.
∆φ(λm(X ), X ) = 0 [104]:

dφm

d X
= ∂φ(λm,0)

∂X
+ dλm

d X

∂φ(λ)

∂λ

∣∣∣
λ=λm,0

= 0 (5.1)

where λm,0 =λm(∆X = 0). Equation 5.1 provides an estimate for the shift of λm

dλm

d X
=−∂φ(λm,0)

∂X

/∂φ(λ)

∂λ
|λ=λm,0

... Rearranging equation 5.1

= 1

φ(λm,0)

∂φ(λm,0)

∂X

/[
− 1

φ(λm,0)

∂φ(λ)

∂λ
|λ=λm,0

]
= 1

φ(λm,0)

∂φ(λm,0)

∂X

/[
− 1

δβ(λm,0)

∂δβ(λ)

∂λ
|λ=λm,0

]
... Since L is independent of λ

= λm,0

φ(λm,0)

∂φ(λm,0)

∂X

/[
− λm,0

δβ(λm,0)

∂δβ(λ)

∂λ
|λ=λm,0

]
= γ(λm,0)

λm,0

φ(λm,0)

∂φ(λm,0)

∂X
... Renaming − (

λm,0

δβ(λm,0)

∂δβ(λ)

∂λ
|λ=λm,0

)−1

(5.2)

where γ(λ) is defined as γ(λ) =−
(

λ
δβ(λ)

∂δβ(λ)
∂λ

)−1
, which is a completely waveguide-dispersion

dependent term. Once δβ(λ) has been estimated, γ(λ) can directly be calculated. For
X which uniformly affects the whole length of the FMF, the relative change in phase

1
φ(λm,0)

∂φ(λm,0)
∂X can be written in terms of relative changes of FMF length L and δβ(λ) with

X 1

1

φ(λm,0)

∂φ(λm,0)

∂X
=



[
α+ 1

δβ(λm,0)
∂δβ(λm,0)

∂T

]
= ΓT (λm,0) for X = T (Temperature)[

1+ 1
δβ(λm,0)

∂δβ(λm,0)
∂ε

]
= Γε(λm,0) for X = ε (Strain)[

1
δβ(λm,0)

∂δβ(λm,0)
∂F

]
= ΓF (λm,0) for X = F (Laser fluence)

(5.3)

where strain is defined as ε= ∆L
L , and laser fluence F is the product of average intensity

and exposure time. The equation involving fluence holds when the full FMF sample
has been uniformly irradiated, for example by scanning a laser spot with fixed intensity
across the full length of the FMF with constant speed.

1For local perturbations as well, equation 5.2 still holds
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For any perturbation X which uniformly affects the whole length of the fiber, the fringe
wavelength for a fixed phase (fixed m) exhibits the same shift for any length of the
fiber. The length dependence of fringe wavelength shift arises implicitly; for fixed m,
|λm(L1)−λe | < |λm(L2)−λe | for L1 < L2. Normalizing with the fringe wavelength removes
the implicit dependency on both length and m [105]. The definition of ΓX (λ) = 1

φ(λ)
∂φ(λ)
∂X

is motivated from [105], in which similar term was defined for LPG resonance sensitivity.
The quantity α= 1

L
dL
dT is the thermal expansion coefficient of fused silica, with a value

of 0.6×10−6 ◦C−1 [106]. Although germano-silicate glass has doping dependent thermal
expansion coefficient [60], since the cladding occupies an ≈ 155 times more area than the
core in a cross-section of the FMF, the thermal expansion of the fused silica cladding
dominates compared to the thermal expansion of the germano-silicate core. Therefore
the value of fused silica was used for α. The dispersion-only term γ(λ) has a singularity
at the GVE wavelength λ = λe and changes sign at λe . Since 1

L
∂L
∂X + 1

δβ(λm,0)
∂δβ(λm,0)

∂X is
positive for strain,temperature change and uniform laser exposure across the core of the
FMF, the following are observed, as expected from previous studies [84; 93; 76]

• Sensitivity increases as the fringe wavelength gets closer to λe .

• The fringes move in opposite directions on two sides of λe , for any perturbation.

Figure 5.1 – Calculated γ(λ) based on the estimate of δβ(λ) in chapter 4

The novelty here is better estimate of γ(λ), due to accurate estimate of δβ(λ) using
the method described in chapter 4. This allows precise estimates for ∂δβ(λm,0)

∂T [76] and
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∂δβ(λm,0)
∂ε , following from the differential formula of φ(λ):

dφ(λm,0)

d X
=

(
L
∂δβ(λm,0)

∂X
+δβ(λm,0)

∂L

∂X

)
= 0 =⇒

∂δβ(λm,0)

∂T
= 1

L

∂φ(λm,0)

∂T
−α δβ(λm,0) for X = T (5.4)

∂δβ(λm,0)

∂ε
= 1

L

∂φ(λm,0)

∂ε
− δβ(λm,0) for X = ε (5.5)

.

5.2.1 Temperature response of TMI

The temperature response of TMI was studied by slow and gradual cooldown using a
water bath described in figure 5.2a. The TMI sample was loosely wrapped around a
hollow aluminum cylinder (radius 9 cm, height 27 cm) with holding hooks and one closed
face, without tension or tight winding to avoid strain from expansion of the aluminum
cylinder. The aim was to provide uniform temperature all over the fiber, avoiding
both radial and vertical gradients. The sample holder was suspended on an aluminum
cylinder in the middle of a glass beaker of 5 L volume (diameter 20 cm). The beaker
was kept inside a styrofoam box. The beaker was filled with boiling water, followed
by closing the styrofoam box for reducing the cooling rate. Two K-type thermocouples
were introduced through holes on top of the styrofoam box. One of the thermocouples
measured the temperature at the closed planar face of the aluminum cylinder, while
another flexible thermocouple was wound around the aluminum cylinder before wounding
the fiber. The difference between the readings of the two thermocouples provided an
estimate of the radial temperature gradient (Figure 5.2b). Pigtails from the TMI sample
were passed through small holes in the cover of the styrofoam box. Spectra were excited
using supercontinuum SuperK Extreme source and recorded using Ando OSA 6317Q
spectrometer. OSA parameters were set to the following- resolution of 50 pm, sensitivity
setting of MID against the other available settings NORM, HIGH1 and HIGH2, 10000
data points and 200 nm span centered at 1600 nm. Each spectrum took approximately 20
seconds to record in these settings, while the NORM setting gave very noisy measurements
and HIGH1 and HIGH2 settings took more than 3 min to record a single spectrum.
Fitting a 4th order polynomial through the logged thermocouple temperature gives a
maximum rate of change of temperature dT

d t = 1.1×10−3 ◦Cs−1.Thus the fastest rate at
which a cooldown of 0.1◦C (resolution of the thermocouples) can happen is approximately
91 s. A 20 s time resolution of the spectrum acquisition in the MID setting thus gave a
temperature resolution < 0.22 ◦C, whereas the long acquisition times of the HIGH1 and
HIGH2 settings gave <1.98 ◦C resolution. Since accurate phase extraction was possible
in the MID setting, it was deemed appropriate for the measurements irrespective of the
better spectral quality in HIGH1 and HIGH2 settings.
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Chapter 5. Effect of perturbations on two-mode interference

For all the TMI measurements reported in this chapter, the TMI was excited using
centrosymmetric splicing of SM1500 on both sides of the FMF piece, as has been described
in chapter 4.

(a) Water bath (b) Temperature measured by different thermo-
couples

Figure 5.2 – (a) Cooldown setup and (b) temperature decay of the bath
with time, measured from two different thermocouples; one placed at the
center of FMF coils, another placed right next to the FMF by concentric
coiling. The two thermocouples showed slightly different temperatures, and
the thermocouple right next to the FMF was used to get the temperature
experienced by the FMF

The fringes move away from λe with increasing temperature (Figure 5.3), as expected
from the sign arguments in equation 5.2. λe increases with increasing temperature.
The shift is negligible compared to neighboring fringes: 1.6337 µm≤λe ≤ 1.6349 µm for
25.3 ◦C<T<53.7 ◦C.

Figure 5.3 – 3D plot of measured spectral evolution of TMI with temperature,
where the spectral intensity (a.u.) is represented by color
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5.2. Effect of perturbation on fringes

From background and amplitude normalized signal of the last frame (lowest temperature),
wavelength values of maxima corresponding to phases of 2Mπ : M ∈Z were extracted.
Due to small changes in temperature, the extrema wavelengths can be continuously
tracked from the last frame to the first frame recorded during cooldown (Figure 5.3).
The relative fringe shifts appear to be linear (Figure 5.4). The same can be done for
minima wavelengths, corresponding to φM = 2Mπ±π : M ∈Z

Figure 5.4 – Measured relative wavelength shifts of spectral maxima in figure
5.3 with temperature, which indicate linear shift for each measured maxima
wavelength

The lines which are increasing with temperature correspond to maxima wavelengths
larger than λe , whereas the lines which are decreasing with temperature correspond to
maxima wavelengths smaller than λe . On both sides of λe , maxima wavelengths which
are closer to λe have larger absolute value of their linear slopes. Due to the linear shift
of the tracked fringes in figure 5.4, fitting straight lines to the relative wavelength shift
gives an estimate of 1

λm,0

dλm
dT for the tracked extrema wavelengths. These estimates are

illustrated in figure 5.5. As expected from the singularity in γ(λ) in equation 5.3, 1
λm,0

dλm
dT

has a singularity at λe (∆T = 0).
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Chapter 5. Effect of perturbations on two-mode interference

Figure 5.5 – Extracted linear slopes of relative wavelength shift of the extrema.
These represent the left-hand side of the equation 5.3, for temperature

Each spectrum was fitted with equation 4.2, by taking the extracted wavelengths and
values of the extrema, together with the assigned phases, as guesses. The extracted phase
as function of temperature, φ(λ,T ) was fitted with a two-dimensional polynomial which
is linear in temperature and of fourth order in wavelength. Applying equation 5.4 on the
fitted phase, along with using the estimate of δβ(λ) from chapter 4, the relative change
in intermodal dispersion with temperature is obtained, which is plotted in figure 5.6.

Figure 5.6 – Measured relative change of δβ(λ) with temperature (coincid-
ing blue and red colored solid curves corresponding to 4th and 5th order
2-dimensional polynomial fitting of extracted phase with respect to wave-
length), obtained using equation 5.4, exhibiting a strong change compared
to the relative change in refractive index with temperature for fused silica
(dashed gray curve) and 14 % GeO2-doped silica (dashed green curve) in the
wavelength range 1.5 µm-1.7 µm
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5.2. Effect of perturbation on fringes

Thus 1
δβ(λ)

∂δβ(λ)
∂T can vary significantly (2.5×10−6−6.5×10−6 µm−1) for 1.5 µm≤λ≤ 1.7 µm.

For most of this wavelength range, the values of 1
δβ(λ)

∂δβ(λ)
∂T are also outside the range

defined by the thermo-optic coefficients ( 1
n

dn
dT ) of fused silica [107] (5.9× 10−6 ◦C−1,

indicated by dashed gray curve in figure 5.6) and 14 % GeO2-doped silica [108] (6.2×
10−6 ◦C−1, indicated by dashed green curve in figure 5.6).

Figure 5.7 compares the measured relative wavelength shifts of GVE (see subsection
5.3.1), FBG resonance, closest TMI zero wavelength less than the GVE wavelength,
MC resonance and farthest TMI zero wavelength less than the GVE wavelength, all
weighted against the slope of the relative FBG wavelength shift [109]. The FBG was made
using the Argon laser and phase mask of pitch 1079.31 nm. The MC pitch, duty cycle,
intensity and exposure time per mark were 116 µm, 0.52, 5 kWcm−2 and 10s, respectively.
Compared to the relative shift of the FBG resonance wavelength, the relative shift of
the GVE wavelength and MC resonance wavelength at λMC = 1.5142 µm are 2.9 and -5.4
times, respectively. The absolute value of relative wavelength shifts of the TMI fringes
increases as the fringes are closer to the GVE wavelength. Compared to the relative
shift of the FBG resonance wavelength, the relative wavelength shift of the farthest and
closest TMI fringes from the GVE wavelength had values -4.7 and -17.6, respectively.
The interpolated relative wavelength shift of TMI fringes (figure 5.5) at λ= 1.5142 µm is
-4.9 ◦C−1, while the measured value for the MC is -5.4 ◦C−1. The error is less than 10 %.
The small difference comes from the fact that δβ(λ) and ∂δβ(λ)

∂T change upon exposure.

Figure 5.7 – Measured relative wavelength shift with temperature change for
GVE, FBG, nearest fringe of TMI, MC and farthest fringe of TMI

Graphs of the MC and FBG spectra at the lowest temperature of the cooldown experiment
are shown in figure 5.8. The temperature and strain response of MC resonance is a
highly studied topic in itself due to the possibility of tuning the sensitivity by making the
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Chapter 5. Effect of perturbations on two-mode interference

resonance wavelength close to the GVE wavelength, although it was not concentrated on
in this thesis.

Figure 5.8 – Measured MC and FBG spectrum for the lowest temperature of
the cooldown experiment

5.2.2 Strain response of TMI

Strain was applied on the whole few-mode fiber through translation stages. Coatings
from parts of the single-mode pigtails were stripped, which was then glued with UV-cured
resin on the translation stages (Figure 5.9). Stripping was necessary for avoiding partial
force transfer through the coating of the fiber. In order to avoid temperature changes,
this setup was covered with a polycarbonate box with a small hole through which the
knob of the translation stage stuck out. Temperature inside the box was tracked with a
thermocouple. Strain measurements were done once the temperature stabilized.
The fringes moved away from λe with increasing strain (Figure 5.10), as expected from
the sign arguments in equation 5.2. λe itself shifted slightly with strain, whereas its
relative shift was orders of magnitude smaller than the relative shift of the fringe extrema
wavelengths . It stayed in the range 1.6368 µm ≤λe ≤ 1.6377 µm for 0 < ε< 8.5×10−4.
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5.2. Effect of perturbation on fringes

Figure 5.9 – Strain setup for TMI samples

Figure 5.10 – Measured TMI transmission intensity spectrum (a.u.) for a
325±0.5 mm long few-mode fiber sample, for different applied strains

From background and amplitude corrected signal of the first frame (zero strain), maxima
and minima wavelengths corresponding to phases of 2Mπ : M ∈Z and 2Mπ±π : M ∈Z
were extracted. Applying strain in small incremental values allowed continuous tracking
of the extrema wavelengths and phase (without phase indeterminacy). The relative
fringe shifts shown in figure 5.11 were linear. The lines which are increasing with strain
correspond to maxima wavelengths larger than λe , whereas the lines which are decreasing
with strain correspond to maxima wavelengths smaller than λe . The absolute value of
the slope of the relative fringe shift increases as the maxima wavelengths get closer to λe .
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Chapter 5. Effect of perturbations on two-mode interference

Figure 5.11 – Measured relative wavelength shifts of spectral maxima in
figure 5.10. The apparent nonlinearity of the curves with extreme slopes
come from the technical difficulty in precise determination of the two maxima
wavelengths close to the GVE wavelength, to which these particular curves
correspond

The slopes from linear fitting of the relative shift of the extrema wavelengths gave
estimates of 1

λm

dλm
dε (figure 5.12) at the fringe wavelengths. 1

λ
dλ
dε seemed to blow up

at λe (ε = 0). The functionality of 1
λm

dλm
dε can be used to approximately predict the

ratio of relative wavelength shifts of two MCs fabricated at different wavelengths,
since the equations are the same for TMI and MC other than difference in the in-
termodal dispersion term. For MCs fabricated with weak index perturbations, 1

λMC

dλMC
dε =

γ(λMC )
[

1+ 1
δβMC (λ)

∂δβMC (λ)
∂ε |λ=λMC

]
≈ γ(λMC )

[
1+ 1

δβ(λ)
∂δβ(λ)
∂ε |λ=λMC

]
.

Figure 5.12 – Extracted linear slopes of relative wavelength shifts of extrema
with applied strain.
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5.2. Effect of perturbation on fringes

TMI phase was sequentially extracted from the frames, by taking the phase of the previous
frame as guess. φ(λ,ε) was fitted with a two-dimensional polynomial which is linear in
strain and of fourth order in wavelength. Similar to cooldown experiments, the linearity of
the phase with strain is justified by the linearity of the fringe shift with strain. Figure 5.13
shows the estimate of the relative change of intermodal dispersion with strain ( 1

δβ(λ)
∂δβ(λ)
∂ε ),

which is obtained by applying equation 5.5 on the extracted phase change, together with
the estimate of δβ(λ) from chapter 4. The quantity is highly dependent on wavelength,
varying monotonically from to -0.28 to -0.80 for 1.5 µm≤ λ≤ 1.7 µm, which has been
illustrated as the solid blue curve in figure 5.13. In comparison, 1

β01(λ)
∂β01(λ)
∂ε ≈ 1

β01(λ)
∂β01(λ)
∂ε

[110], which has a value ≈−pe =−0.22, the strain-optic coefficient of silica [3; 4; 5]. The
strain-optic coefficient of silica has been illustrated as the solid blue curve in figure 5.13.
Therefore 1

δβ(λ)
∂δβ(λ)
∂ε 6= −pe . This implies that ignoring 1

δβ(λ)
∂δβ(λ)
∂ε for estimating δβ(λ),

which was suggested by [82], is highly susceptible to errors.

Figure 5.13 – Extracted relative shift of LP01-LP02 intermodal dispersion with
strain (blue curve), obtained using equation 5.5, indicating a strong change
in the wavelength range 1.5 µm-1.7 µm compared to that obtained by simply
using the strain-optic coefficient of fused silica (dashed gray curve)[3; 4; 5]

5.2.3 Scanning laser exposure response of TMI

Use of fiber Mach-Zhender interferometer with two physically separate arms consisting
of two single mode fibers, for measuring the change in propagation constant in one of
the single mode fibers due to laser irradiation, is long-known [111], . For a TMI sample,
Mach-Zhender interferometer shares a common physical path but different optical lengths
for the two modes. This enables measurement of the change in intermodal dispersion
arising from UV exposure with a laser spot, and has already been measured with high
resolution [97]. In the following measurements, uniformity of the laser exposure along
the fiber axis was ascertained by scanning a laser spot with constant speed v along the
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Chapter 5. Effect of perturbations on two-mode interference

fiber axis. Under such exposure condition, the change in the intermodal dispersion curve,
∆δ(β(λ)), can be estimated using the following formula:

φ(t )−φ(0) =
∫ L

0
δβ(λ, z) d z −

∫ L

0
δβ(λ) d z

=
∫ LF=v t

0

(
δβ(λ)+∆δβ(λ)

)
d z +

∫ L

LF

δβ(λ) d z −
∫ L

0
δβ(λ) d z

=
∫ LF

0

(
δβ(λ)+∆δβ(λ)

)
d z −

∫ LF

0
δβ(λ) d z

=
∫ LF

0
∆δβ(λ) d z

= LF ∆δβ(λ)

= v t ∆δβ(λ)

=⇒ dφ(λ)
d t = v ∆δβ(λ) (5.6)

where t represents time, L is the length of the FMF and LF is the length of the exposed
part. The estimate from this method is only indicative with respect to periodic exposure
of marks along the fiber axis for making MCs , since the index change from a static
laser spot and a scanning laser spot are different, depending on the beam shape and
photosensitivity response. Using multiple passes over the exposed length, it is possible
to estimate the change for different fluence for the same intensity.

For this experiment, the Pharos 4H laser beam (table 3.3) was focused using a cylindrical
fused silica lens of effective focal length 10 mm. At the position of the fiber axis, the
1
e2 diameters of the beam profile with assumed elliptical cross-section were 60 µm and
1800 µm along the fiber and perpendicular to the fiber, respectively. The spot size was
roughly estimated from throughfocus measurements, taking care to incorporate the fiber
cross-section in the optical path, and assuming no self-focusing. The average laser power
was 40 mW, 1 KHz repetition rate and pulse duration of 180 fs, corresponding to peak
intensity of approximately 0.5×1012W cm−2. Energy per pulse was 40 µJ. The speed
of scanning along the fiber axis was v =20 µms−1. Figure 5.14 shows the shift of TMI
fringes with exposure. Four scanning exposures were performed over a length of 43 mm in
alternating directions, whose spectra are separated by the red lines in figure 5.14. L = 51

mm was taken to have enough number of fringes in the TMI spectra. Single spectral
acquisition after every 60 s was done using the si155 MI interrogator (0.1 s acquisition
time). For the data analysis, only the spectra concurrent with the scanning of the laser
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5.2. Effect of perturbation on fringes

spot were used. From visual inspection, the induced photosensitive change is maximum
for the first scan, and decreasing with each subsequent scan, probably due to decrease
in photosensitivity with increased fluence. Eleven spectral frames are missing from the
beginning of the first scan.

Applying equation 5.6 to the extracted phase change over the first scan (cumulative
exposure of ∆t = 3 s per point from 1 scan of the laser spot), and separately over the
second scan (cumulative exposure of ∆t = 6 s per point from 2 scans of the laser spot), the
change in intermodal dispersion, ∆δ(β(λ)) for the corresponding exposure conditions have
been estimated. Equations 5.2 and 5.3 with X = t relates the fringe shift to the unwrapped
phase. Different two-dimensional polynomials, of degrees 2,3 and 4 in the wavelength
variable, and degree 1 (linear) in the time variable, were used to fit the extracted phase
over these two sets of exposure, which verifies the accuracy of the fitting method. The
third and fourth scans are not reported since the fitting results for different degrees of
polynomials were significantly different for each of those scans, therefore deeming the fits
unreliable. The relative change in δβ(λ) for each of the first and second scans is shown
in figure 5.16, for different degrees of fitting polynomial in the wavelength variable for
each individual scan. Compared to the magnitude of the intermodal dispersion of the
pristine fiber, 0.0533 µm−1 ≤ δβ(λ) ≤ 0.0536 µm−1 for 1.46 µm≤λ≤ 1.62 µm, the measured
perturbation ∆δβ(λ) is less than 3×10−4 µm−1 over four scans, which corresponds to
less than 0.6 % change in δβ(λ). The low value is due to the small intensity of the laser
spot, arising from the lack of focussing in the directional perpendicular to the fiber axis.
∆δβ(λ) might have arisen from changes in both the core and cladding index, induced by
the high peak power. Since measurements were not done to identify whether the index
change happened only for the core or also for the cladding, speculations were avoided.

Figure 5.14 – Measured TMI fringe shift with exposure for four scans with
translation speed v =20 µms−1 over the whole length of the FMF in the TMI
sample. The red lines delineate the start of a new scan
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Chapter 5. Effect of perturbations on two-mode interference

Figure 5.15 – Timing diagram of figure 5.14

The timing diagram of the spectra in figure 5.15 is illustrated in figure 5.16.

Figure 5.16 – Change of intermodal dispersion with scanning laser spot,
obtained using equation 5.6 on the extracted phase of the TMI in figure 5.14,
for the first (3 s exposure per point on the FMF) and second scan (6 s total
exposure per point on the FMF from 2 consecutive scans of the laser spot)

5.3 Effect of perturbations on GVE

In addition to fringe shift, the GVE wavelength λe can also shift with temperature [84],
strain, laser exposure and bending [96; 112]. The dispersion curves can be described by
the normalized V −b parameters with some fixed dependency, as long as the shape of the
fiber index profile does not change significantly under such perturbations.
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V =2πa

λ

√
n2

1 −n2
0 (5.7)

b =n2
e −n2

0

n2
1 −n2

0

(5.8)

where λ is wavelength, a is the core radius, n0 is the cladding index and n1 is a well-defined
index corresponding to the core, for example the maximum of the core index.

If the perturbation does not significantly affect the shape of the refractive index profile
and consequently the V −b diagram compared to the changes in a,n0 and n1, the relative
change of Ve =V (λe ) can be ignored with respect to the these parameters. Differentiating
the logarithm of equation 5.7 gives

2

Ve

dVe

d X
= 2

a
d a
d X + 2

n2
1(λe )−n2

0(λe )

[
n1(λe ) dn1(λe )

d X −n0(λe ) dn0(λe )
d X

]− 2
λe

dλe
d X = 0

=⇒ 1
λe

dλe
d X = 1

a
d a
d X + 1

n2
1(λe )−n2

0(λe )

[
n1(λe ) dn1(λe )

d X −n0(λe ) dn0(λe )
d X

]
(5.9)

5.3.1 Effect of temperature on GVE wavelength

Figure 5.17 shows the measured shift of GVE wavelength with temperature, which
appears to be highly linear. The linear fit of measured GVE wavelength gives λe (T ) =
(4.077±0.004)×10−5T + (1.632657±0.000002) µm, where T is in ◦C, which corresponds to
measured 1

λe

dλe
dT = (2.497±0.003)×10−5 K−1.

For X = T (temperature), most of the parameters in equation 5.9 are known; 1
a

d a
dT =

0.6×10−6 K−1 [106] and dn0(λe )
dT = 8.46×10−6 K−1 (Following from figure D.3 in the PhD

thesis [108], which also matches the average of the numbers corresponding to wavelengths
1.5 µm, 1.6 µm and 1.8 µm in table 6 of [107] for fused silica at 300 K temperature). For
the FMF, n0(λe ) = 1.443 and n1(λe ) = 1.463, where n1 is defined as the maximum index of
the index profile. n1(λe ) = 1.463 is achieved when the concentration of GeO2 in the glass
is 14 %. For this concentration of GeO2 in silica, dn1(λe )

dT = 9.13×10−6 K−1 (Following
from figure D.3 in the PhD thesis [108]). Putting this in equation 5.9, an estimate of
1
λe

dλe
dT = 2.6×10−5 K−1 is obtained. The estimate from equation 5.9 is less than 14 % off

from the measurement. Following equation 5.9, 1
λe

dλe
dT should approximately be same for

all mode pairs.

λe is intrinsic to intermodal dispersion, which depends on the transverse refractive
index profile of fiber and does not depend on length of the TMI sample [77]. For the
temperature range 25.3 ◦C<T<53.7 ◦C, GVE showed a linear shift. Since the linear shift
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is confirmed by both step-index simulations with appropriate material parameters and
measurements performed in this thesis, it is highly likely that nonlinear shift of GVE
wavelength with temperature reported in literature [84] is from systematic error. Such
systematic error can easily arise in absence of precise phase unwrapping and in presence
of large temperature change during acquisition of a single spectrum. Such problems are
mitigated in this work by precise phase unwrapping and slow cooldown rate.

Figure 5.17 – Measured temperature response of GVE wavelength

It is also important to take into consideration the shift of GVE due to bending while
undertaking sensing experiments [96; 112]. Other than observing a a 4 nm shift in the
GVE wavelength when it was wound around the aluminum cylinder, no further systematic
characterization was done in this thesis.

5.3.2 Effect of strain on GVE wavelength

Figure 5.18 shows the measured response of λe with strain ε, which shows linear de-
pendence. A linear fit of the measurements gives λe (ε) = (1.01± 0.01)ε+ (1.637681 ±
0.000004) µm. This corresponds to measured 1

λe

dλe
dε = (−0.62±0.006).

For X = ε (strain), − 1
a

d a
dε = ν, Poisson’s ratio and 1

n0(λe )3
dn0(λe )

dε = 1
n3

1(λe )
dn1(λe )

dε =− p12−ν(p11+p12)
2

from photoelasticity theory [113; 114] . Thus from equation 5.9

1

λe

dλe

dε
=−ν− n4

1(λe )−n4
0(λe )

n2
1(λe )−n2

0(λe )

p12 −ν(p11 +p12)

2

=−ν− (
n2

1(λe )+n2
0(λe )

) p12 −ν(p11 +p12)

2
(5.10)
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Figure 5.18 – Measured strain response of GVE wavelength

In a first approximation, p11 = 0.12, p12 = 0.27 [4] and ν = 0.164 [5] is taken to be the
values of fused silica, since the contribution from the cladding dominates compared to
the core, as the former has ≈ 155 times larger area in the cross-section. This gives an
estimate 1

λe

dλe
dε =−0.60. The estimate from equation 5.10 is less than 3.5 % off from the

measurement. Therefore material parameters are dominant in 1
λe

dλe
dε , which implies that

it should have similar value for any mode pair, independent of the modes, according to
equation 5.9.

5.3.3 Effect of laser exposure on GVE wavelength

From accurate measurements of TMI shift under local irradiation, the change in photo-
sensitive core index can be estimated by incorporating explicit calculations of the V −b

diagram of the fiber [97]. However a direct method does not exist in literature which
avoids calculating the V −b diagram of the FMF. Such a novel method is presented
here which works for certain irradiation conditions, and is based on shift of the GVE
wavelength.

For X = F (laser fluence), photosensitivity can be estimated under the particular conditions
that only the core should be affected (a) by uniform photo-induced index change along
the core (e.g. UV laser exposure which does not cause nonlinear effects in fused silica),
or (b) by such a small amount that even non-uniform photo-induced index change does
not change the transverse index profile significantly to cause a significant change in the
V −b diagram of the FMF. In such cases 1

n0(λe )
dn0(λe )

dF = 0 and 1
a

d a
dF = 0 in equation 5.9,
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thus leading to

1

λe

dλe

dF
= n1(λe )

n2
1(λe )−n2

0(λe )

dn1(λe )

dF

= n2
1(λe )

n2
1(λe )−n2

0(λe )

(
1

n1(λe )

dn1(λe )

dF

)
(5.11)

Thus for small fluence, and if n0(λe ) and n1(λe ) are known, estimate of dn1(λe )
dF is obtained

from the shift of the GVE wavelength using equation 5.11. Compared to the relative
shift of an FBG resonance wavelength (≈ 1

n1(λ)
dn1(λe )

dF ) due to uniform exposure across

the grating length, the relative shift of GVE wavelength approximately n2
1(λe )

n2
1(λe )−n2

0(λe )
times

larger, by equation 5.11. Care has to be taken to expose the full length of the few-
mode fiber uniformly before recording a new spectrum to determine the shifted GVE
wavelength, so that the GVE pertains to the full fiber. Otherwise the formula of the
GVE coming from dissimilar segments is complicated.

Figure 5.19 – Measured TMI spectrum for FMF length 37 mm. Due to small
number of fringes, phase unwrapping using zero wavelengths like chapter
4 was unreliable. Therefore smoothing spline was fitted to the first frame
with a smoothing factor=0.9999 as defined in Matlab curve fitting toolbox to
obtain a smooth fit, on which the extrema could be detected with certainty
and thereby the phase could be estimated by cosine fitting of the normalized
TMI spectrum. For further frames, the fitted intensity envelope and phase
for the previous frame was used as guess for directly fitting equation 4.2

Figure 5.19 shows the measured TMI spectrum from a TMI sample containing a 37
mm long few-mode fiber. There are less than 10 fringes for such a short sample, in
addition to high noise at longer wavelengths. To have reliable normalization using all
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available fringes, the background corrected spectra were individually smoothed with cubic
smoothing splines, with suitable smoothing factors. Figure 5.20 shows the GVE extracted
from each normalized spectrum, as a function of exposure time per point on the fiber
axis. The laser spot size and intensity are same as section 5.2.3: A focused cylindrical
spot of the Pharos 4H laser beam with assumed elliptical cross-section had diameter of
60 µm and 1800 µm along the fiber and perpendicular to the fiber, respectively. The
average laser power was 40 mW, 1 KHz repetition rate and pulse duration of 180 fs,
corresponding to peak intensity of approximately 0.5×1012W cm−2. Energy per pulse
was 40 µJ. For a scan over 41 mm with a speed of 1.2 mm/min, every point was exposed
for 3 s during each scan. Therefore the laser fluence/dose per scan was 141 Jcm−2 per
point of the exposed fiber. Spectrum was gathered at the end of each scan. 41 scans
were performed.

Figure 5.20 – Measured shift of GVE wavelength with laser exposure

The minimum measured shift of λe is 1×10−4µm. Given λe = 1.6319 µm, n0(λe ) = 1.443 and
n1(λe ) = 1.463, this corresponds to an index change ∆n1(λe ) = 2.4×10−6. In comparison,
the resolution for measuring effective index change via the shift of the resonance of a
weak FBG (around λe) is ∆n1(λe ) = 9×10−6, when measured with a spectrometer with
resolution of 10 pm (e.g. MI si155 interrogator). In addition, measuring TMI fringes do
not require very high spectral resolution (50 pm is this particular case). The maximum
index change was ∆n1 = 1.6×10−4. Following the treatment of [115; 116], shown in figure
5.21, the following power law dependence is obtained for constant spot intensity and
laser pulse-width:

∆n1(t ) =C t (0.426 ± 0.007) (5.12)
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Figure 5.21 – Change of core index with exposure time, t0=1 s

For finding the power law exponent similar to [115; 116], fitting with respect to t suffices
for constant intensity and pulse-width, since t is then proportional to the number of
pulses. Neither actual measurement nor systematic variation was done for the intensity
(considering focusing and losses by the fiber itself) and the pulse-width; a 10 % error in
the intensity gives a >20 % error in the square of the fluence. Therefore the analysis was
restrained to only the power law exponent which can be determined with high confidence.
The value of the exponent of time seems small compared to existing literature (0.7
reported by [116] for fused silica, and 0.66 reported by [115] for 5.5 % GeO2 concentration
in the core). This might be due to the lack of measurement points at low fluence,
resulting in large uncertainty in determining the exponent, or due to other mechanisms
of photosensitivity. Judiciously avoiding speculations on such mechanisms without
undertaking appropriate experiments, it is shown here as a proof-of-principle that such
exponents can be measured using the GVE wavelength, which can be later used for
fabrication or material studies.

5.4 Temperature and strain differentiation

Resonant structures fabricated in fibers are widely used for sensing modalities [110; 117].
As in the general theme of the thesis to use non-resonant and resonant spectral responses
in FMF either individually or in combination to measure various modalities, the capability
to differentiate temperature and strain using such a combination is explored. This method
has a few benefits-

1. Non-resonant devices are less demanding to make technically.
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2. For the particular combination of GVE wavelength and FBG resonance wavelength
used here, the signs of sensitivities improve both the accuracy and the differentiation
capability of the method.

5.4.1 Working principle

Most generally, temperature or strain is differentiated by tracking two quantities which
vary linearly with these parameters. For example, some reported combinations are
resonance peaks of gratings (FBGs in spliced dissimilar fibers [118; 119], two FBGs with
one isolated from strain [120], FBG and LPG [121], different resonances from the same
FBG in a few-mode fiber [100], some function of the strength of grating combinations
(LPG and FBG) [101], FBG and in-fiber Mach-Zhender interferometer [122; 123], FBG
and TMI peak [102] etc. The benefit of finding linearly dependent parameters with
temperature and strain is that the dependence can be written as a linear equation: p1

p2

=

 K1T K1ε

K2T K2ε


 T

ε

 (5.13)

p1 and p2 are the two parameters which are experimentally tracked, T represents
temperature and ε represents strain. K1i are the coefficients of the linear variations of these
parameters with fixed strain, and K2i are the coefficients of the linear variations of these
parameters with fixed temperature. If the temperature coefficient is independent of strain
and vice versa, the coefficients are just constant numbers. Under these circumstances,
the temperature and strain is then estimated by solving this linear equation for measured
p1 and p2 , which gives the solution: T

ε

= 1

K1T K2ε−K2T K1ε

 K2ε −K1ε

−K2T K1T


 p1

p2



= 1

K1T K2ε−K2T K1ε

 p1K2ε−p2K1ε

p2K1T −p1K2T

 (5.14)

The accuracy depends on the error of determining p1 and p2, combined with the errors
in measuring Ki j . The standard deviations in estimating the slope and intercept of
a linear least square fitting from measurements with error bars is given by standard
regression theory. The errors in determining p1 and p2 depend on the measurement and
data analysis technique used. An useful way to determine the total error estimate of any
similar method is to consider the error analysis of the following function, which is the
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general description of the terms in the formulae for T and ε in equation 5.14 [98; 124]:

f (x1, x2, y1, y2) = x1 y2 −x2 y1 (5.15)

|∆ f (x1, x2, y1, y2)

f (x1, x2, y1, y2)
| ≤

|x1 y2|(|∆x1
x1

|+ |∆y2

y2
|)+|x2 y1|(|∆x2

x2
|+ |∆y1

y1
|)

|x1 y2 −x2 y1|
(5.16)

The error bounds in equation 5.16 can be applied individually for the terms K1T K2ε−
K2T K1ε, p1K2ε−p2K1ε and p2K1T −p1K2T in equation 5.14, since all these terms are of
the form in equation 5.15. The denominator in equation 5.16 implies that the total
relative error of a function of the form 5.15 is smaller when one of the parameters among
(x1, x2, y1, y2) has opposite sign compared to the others, for the same relative error of the
individual parameters. This is a criteria for choosing a method with better accuracy,
which holds in the case of this FMF since only K2ε has a negative value when p1 =λF BG

is the resonance wavelength of an inscribed FBG and p2 =λe is the GVE wavelength of
LP01 −LP02 mode pair.

The sensitivities and differentiation efficiency can be understood by normalizing the rows
of the dependence equation [98]

 p1

p2

=


K1T√

K 2
1T +K 2

2T

K1ε√
K 2

1ε+K 2
2ε

K2T√
K 2

1T +K 2
2T

K2ε√
K 2

1ε+K 2
2ε


 T

√
K 2

1T +K 2
2T

ε
√

K 2
1ε+K 2

2ε

=P

 T
√

K 2
1T +K 2

2T

ε
√

K 2
1ε+K 2

2ε

 (5.17)

The coefficient in each individual column of P is the projection of some two-dimensional
unit vector. Considering only the magnitude of sensitivity, the measured parameters p1

and p2 will have larger change for the same change in either T or ε when the factors
Ki j are larger in magnitude. This leads to the simple conclusion that the sensitivity
of the method is more when the magnitudes of the coefficients of P are larger. On the
other hand, since temperature and strain are independent quantities, the differentiation
efficiency is maximized if p1 and p2 are also independent. For this to happen, the matrix
P should be a composition of rotation(s) and/or reflection(s) matrices, and consequently
the determinant of P, name det (P) has value ±1. For practical cases, the differentiation
efficiency is more for larger values of |det (P)|. Compared to all coefficients having the
same sign, |det (P)| increases when one of the four coefficients of P has a sign which
is different to the other three coefficients. This condition is satisfied by the tracking
parameters used here: p1 =λF BG is the resonance wavelength of an inscribed FBG and
p2 =λe is the GVE wavelength of LP01 −LP02 mode pair. Only the GVE wavelength has
a negative proportionality constant with strain while all the other three proportionality
constants are positive.
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5.4.2 Experiment parameters

The following parameters corresponding to a few-mode fiber (FMF) were used in our
experiments for temperature and strain differentiation:

Parameter Abbreviation Description

p2 λe Group-velocity equalization (GVE) wavelength of the
LP01 and LP02 mode in the FMF.

p1 λ01 Resonance wavelength of LP01 mode from a Fiber Bragg
Grating (FBG) written in the FMF.

For determining the resonance wavelength of the FBG LP01 −LP01 reflection peak, λ01,
full-width half-maxima wavelength is used. This wavelength is defined as the average of
nearest wavelengths corresponding to half of the FBG peak strength, which are nearest
to and on two sides of the FBG resonance wavelength. This method is robust to noise
than direct peak wavelength detection, due to the sharp slopes near the half-maxima
wavelengths and the noise at the strongest parts of the peak.

Different setups were used to study the temperature and strain responses. Insulated water
bath (figure 5.2a) was used for the temperature studies, while translation stages with UV
glue (figure 5.9) was used to apply strain. For TMI spectra, SuperK Extreme broadband
light source from NKT photonics was used as the source. The spectrometer was the
Ando OSA 6317Q, operated with a resolution of 50 pm, sensitivity “Mid” and fixed
equispaced sample of 10000 points between 1.46 µm and 1.73 µm. For FBG spectra, the
experiments were repeated using tunable laser interrogator from Micron Optics (si155).

5.4.3 Measurements and analysis

Both the GVE wavelength and the FBG resonance wavelength turned out to be highly
linear with both temperature and strain (figure 5.23). The measurement range for
temperature was T∈ (22.9◦C, 55◦C) for FBG resonance wavelength and T∈ (25.3◦C, 55◦C)

for GVE wavelength, with ε= 0 (Figure 5.23a 5.23b) . For strain, the measurement range
was ε ∈ (0, 0.001) for T = 22.9◦±0.1◦C (Figure 5.23c, 5.23d). The fitted curves are

λe (T ) = [
(4.077±0.004)×10−5T + (1.632657±0.000002)

]
µm (5.18)

λe (ε) = [
(−1.01±0.01)×ε+ (1.637681±0.000004)

]
µm (5.19)

λF BG (T ) = [
(1.098±0.002)×10−5T + (1.573126±0.000001)

]
µm (5.20)

λF BG (ε) = [
(1.186±0.003)×ε+ (1.560693±0.000001)

]
µm (5.21)
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where the unit of T is ◦C. FBG reflection spectra recorded at temperatures 22.9 ◦C
and 55.0 ◦C are shown in figure 5.22. Since the maximum of the LP01-LP01 peak was
noisy with respect to wavelength, the average of the wavelengths corresponding to half
of the maximum of the peak strength was defined as the FBG wavelength λF BG (T ) for
the temperature T corresponding to each recorded FBG spectrum.

Figure 5.22 – Measured reflection spectrum from an FBG written in the
FMF, at 22.9 ◦C and 55.0 ◦C

It was noted after the submission of this thesis that the resonance wavelength of the FBG
used for strain measurements corresponded to an effective index of 1.446 for LP01, which
is too low for the FMF. Possibly due to an accidental mixing up of fibers before FBG
irradiation, another fiber like SM 1500 was irradiated and used for this set of experiments.
However, since relative wavelength shift of FBG resonance in fibers with strain is almost
similar for different GeO2 concentrations, the measured proportionality coefficient may
suffice for the presented proof-of-principle studies.
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(a) Temperature response of GVE
wavelength

(b) Strain response of GVE wave-
length

(c) Temperature response of FBG
LP01−01 resonance wavelength

(d) Strain response of FBG
LP01−01 resonance wavelength

Figure 5.23 – Measured temperature and strain dependence of λe and λF BG ,
with corresponding linear fits

Putting together the linear slopes from equations 5.18, 5.19, 5.20 and 5.21 in the inverted
matrix equation 5.14 gives:

 T

ε

= 1

(5.94±0.02)×10−5

 (1.186±0.003) (1.01±0.01)

−(1.098±0.002)×10−8 (4.077±0.004)×10−8


 λe

λF BG


(5.22)

Assuming a nominal value of |∆λe
λe

| ≤ 3×10−6 from the error estimate of polynomial root
determination based on its coefficients, and |∆λF BG

λF BG
| ≤ 5× 10−6 from the resolution of

the tunable laser interrogator, relative errors of 1.4 % and 1.1 % were determined for
temperature and strain respectively using equation 5.16. This corresponds to an error in
estimating temperature of 0.8 ◦C at 55 ◦C. For strain, the error is 1.1×10−5 at a strain
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of 0.001.

5.5 Conclusion

In this chapter, the following methods have been presented:

• Experimental methods to estimate ∂δβ(λ)
δT , ∂δβ(λ)

δε and ∂δβ(λ)
δF , for temperature (T ),

strain (ε) and fluence (F ), using TMI fringes. The method for estimating the effect
of fluence works under the condition that the laser spot is scanned across the fiber
at constant speed. The method for ∂δβ(λ)

δT has also been reported by another group
in January 2019 [76]

• The temperature and strain dependence of GVE wavelength is explained, using
simple model from the V −b diagram, based only on material parameters. The
error between the estimate and the measurements were less than 3 %, showing that
material terms dominate in the GVE wavelength shift.

• A new method is presented for measuring the index change of the photosensitive
core on UV irradiation, based on GVE. The novelty lies in the capability to directly
estimate changes in the core index without undertaking the calculation for the V −b

diagram of the fiber [97]. Unlike FBGs, this method allows the exact measurements
of the change of index starting from no exposure. The resolution is also high
compared to measuring FBG resonance spectra with same spectral resolution . The
method is valid only when the whole few-mode fiber is scanned with a laser spot,
which limits speed and puts technical tolerances based on the measurable spectral
range and number of fringes needed for phase estimation.

• Proof-of-principle of temperature and strain differentiation is shown using GVE
wavelength and LP01−01 resonance wavelength from an FBG written in the same
fiber. Relative errors of 1.4 % and 1.1 % were obtained respectively for temperature
and strain, which offer a promising proof-of-principle. However full characterization
by varying both temperature and strain for different values of each other was not
done. The error on all the steps of the estimation algorithm was carefully tracked,
including fitting GVE and FBG resonance wavelength, and the matrix inversion
necessary to estimate temperature and strain from that.
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6 Effect of irradiation of marks on
intermodal dispersion

Although resonances of gratings composed of weak index modulations closely follow the
intermodal dispersion of the pristine fiber [54], the effect of strong index modulation on
the intermodal dispersion felt by the MC can be significant [33; 34]. It is understood
that for a step-index fiber the MC feels the average of the core index along the location
of the MC [33]. However, there is a lack of techniques to directly predict the effect of a
particular mark irradiation condition on the intermodal dispersion experienced by an
MC. The situation is even more complex for non-step-index fibers. There are empirical
publications on this topic [34], which ask for attention to find possible methods to predict
the effect of irradiation on the intermodal dispersion curve experienced by an MC.

This chapter presents a novel way to predict this effect, which works by connecting two
measurable quantities- (a) additional intermodal phase introduced per mark, measured
from shift of non-resonant TMI and (b) single points on MC dispersion curve δβMC (λ),
defined by the MC pitch ΛMC and the resonance wavelength λMC by the relation

2π
δβMC (λMC ) = ΛMC . Once the TMI phase shift has been measured for any particular
irradiation and alignment condition with a pitch which does not cause resonant mode
conversion, consequently resonance wavelength can be predicted for the full measured
wavelength range. Experimental verification is presented and technical requisites for the
model to work are discussed.

6.1 Theory: Connection between intermodal dispersion and
TMI

Due to index change in the core from periodic irradiation of N marks along the fiber axis,
the MC does not feel only the intermodal dispersion curve of the pristine fiber, δβ(λ) [34].
If the exposure conditions (mark shape, intensity (I) and fluence (F)) are maintained over
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the different exposed marks, then each mark adds an extra phase ∆φ(λ, I ,F ) between the
two corresponding modes, without causing any change in the period length. The phase
experienced by the interacting modes can be calculated by adding the phase coming from
the pristine fiber ΛMCδβ(λ) over the period length ΛMC , with the phase added by a mark
∆φ(λ, I ,F ). The sum of these is the actual phase difference experienced per period length
of the MC by the interacting modes, and therefore satisfies the following equation:

ΛMCδβ(λ)+∆φ(λ, I ,F ) =
∫ z+ΛMC

z
δβ(λ, z ′) d z ′ (6.1)

where an MC period is starting at z, and δβ(λ, z ′) is the modified intermodal dispersion at
location z ≤ z ′ ≤ z+ΛMC . With respect to this actual phase per period length experienced
by the modes, the phase-matching condition at the resonance wavelength λMC is give by

ΛMCδβ(λMC )+∆φ(λMC , I ,F ) =
∫ z+ΛMC

z
δβ(λMC , z ′) d z ′ = 2π (6.2)

=⇒ δβ(λMC )+ ∆φ(λMC , I ,F )

ΛMC
= 2π

ΛMC

Equation 6.2 is particularly amenable to accurate experimental verification using fabri-
cated MCs, once estimate of ∆φ(λ, I ,F ) for the corresponding irradiation condition is avail-
able from a complimentary TMI measurement method introduced in chapter 6.3.1. With
respect to definition of average intermodal dispersion per period length experienced by the
interacting modes introduced in section 2.1.6, δβMC (λ, I ,F,ΛMC ) = 1

ΛMC

∫ z+ΛMC
z δβ(λ, z ′) d z ′,

equation 6.1 can be rewritten as:

δβMC (λ, I ,F,ΛMC ) = 1

ΛMC

∫ z+ΛMC

z
δβ(λ, z ′) d z ′ = δβ(λ)+ ∆φ(λ, I ,F )

ΛMC
(6.3)

In order to verify equation 6.2, estimates of δβMC (λ, I ,F,ΛMC ) over measured wavelength
range were compared to the MC wavevectors 2π

ΛMC
at resonance wavelengths, for MCs

fabricated using small, medium and large duty cycles. For a complementary verification
of equation 6.2, as well as to get a more accurate estimation for the unknown offset of
δβ(λ) compared to chapter 4, the estimated values of δβ(λ) at a fixed wavelength were
compared for different duty cycles.

In existing literature, there is no method which can directly measure the extra phase
coming from every exposed mark, ∆φ(λ, I ,F ). A novel method to measure ∆φ(λ, I ,F ),
coming from each mark is presented here, which uses periodic or aperiodic writing of
non-resonant marks, such that no mode conversion takes place. Resonant writing is
avoided as it mixes the effects of mode conversion and addition of phase from every
irradiated mark, which is complicated to separate.

Writing non-resonant marks in the FMF shifts the TMI phase. Measurement of the
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phase shift before and after writing a mark directly gives an estimate of ∆φ(λ, I ,F ). In
practical experiments, the phase change ∆φ(λ, I ,F ) estimated from writing a single mark
is highly noisy, along with the risk of having an error from the indeterminate offsets
in the pre- and post-exposure spectra. This is solved by writing multiple non-resonant
marks, then manually correcting spurious phase-unwrapping offsets and finally fitting the
phase change at every measured wavelength with a linear curve. Since the independent
variable in the fitted linear curve is the number of marks N , there is physically no possible
source of nonlinearity as long as the environmental parameters (temperature, strain) and
the exposure parameters are reasonably maintained. Since the effect of temperature on
δβMC (λ) is much smaller(chapter 5.2.1) than the irradiation, it was ignored during the
MC exposure experiments. Although strain could have been ignored as well due to the
same reason(5.2.2), equal amount of small strain was applied on each sample by using
a removable pivot and magnetic weights. This additionally helped in keeping the fiber
straight. Twists were avoided in the sample during loading.

With respect to the number of written marks N and wavelength, a two-dimensional
polynomial was fitted to the extracted phases
φ̃N (λ,0 ≤ n ≤ N ) = c̃0,N+∑d

m=1(c̃m,Nλ
m+n cm,Nλ

m−1) = c̃0,N+∑d
m=1

(
c̃m,Nλ

m+n ∆φN (λ, I ,F )
)
,

where the quantity φ̃N (λ,n) is the extracted phase of the TMI spectra recorded after
writing n-number of marks, which has a degree d in wavelength. Assuming repeatable
phase change from each mark, the dependency of φ̃N (λ,n) with n was taken to be linear.
Therefore an estimator of the extra phase added per mark is given by the partial derivative
of φ̃N (λ,n) with respect to n. The limit of this estimator, provided it converges within a
preset tolerance, gives precise estimate of the extra phase added per mark within that
tolerance.

∆φN (λ, I ,F ) = ∂

∂n
φ̃N (λ,n) =

d∑
m=1

cm,Nλ
m−1

∆φ(λ, I ,F ) = lim
N→∞

∆φN (λ, I ,F ) (6.4)

6.2 Experimental setup

6.2.1 Femtosecond laser setup with spherical lens

From the engineering perspective, laser power was easily maintained from the ”power
setting” mode of the Pharos SP-06-200-PP laser with the 4H (fourth harmonic) module
(Table 3.3). The laser was single mode and the angular stability of the beam was in
µrad range when it is started in ”cold start” mode. For maintaining similar ∆φ(λ, I ,F )

for the marks, the crucial parameters were the transverse axis Y (perpendicular to both
the laser and fiber axis) and the axial alignment along X (along the laser axis) of the
fiber core with respect to the laser focal spot (Figure 6.1). X and Z axes are adjusted
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with Aerotech translation stage, which has 10 nm resolution. Jitter of the stage along
both axes when the stage is stalled is ±20 nm. Transverse alignment along Y axis was
done with motorized screws of 30 nm resolution (model Newport 8742 motorized screws,
the control GUI of which is shown in bottom right of figure 6.2). The fiber core was
approximately coincided with the laser focus along the fiber axis, with the optical path
shift due to the fiber taken into consideration. Transverse alignment along Y was done
by checking the symmetry of the far-field fringes after the FMF, from the line scan of
images of the far-field fringe pattern (Figure 6.2). Only the largest peaks in the fringe
were used to check symmetry. For peak intensity of 0.7×1013 Wcm−2 and fluence of
3500 Jcm−2, change in λMC of up to 7 nm was observed for sub-micron misalignments
along the laser axis, for a spot size of approximately 25 µm along the fiber axis. Such a
large shift in resonance was probably caused by a shift in the center of the self-focused
spot due to misalignment, thereby causing a different profile of index perturbation. The
possible self-focusing of the beam comes from nonlinear refractive change caused by the
peak intensity of the laser spot, which can be characterized using the formula 0.148λ2

0
ncl ad nN L

[125] for the critical power, above which a linearly polarized Gaussian laser beam at
wavelength λ0 self-focuses in a material which has linear and nonlinear refractive indices
ncl ad and nN L. For λ0 = 0.257 µm, the material constants for fused silica are ncl ad = 1.504

and nN L = 2.44×10−16 Wcm−2 [126], which gives a critical power of 0.3 MW. The peak
power of the laser beam before being incident on the fiber was 0.4 GW, which is far above
the calculated critical power. Ionization of the focused spot in air was also observed
with the spherical lens. Therefore given the high peak power and peak intensity for
the spherical lens, and further focusing of the beam by the fiber itself perpendicular to
its axis, self-focusing was expected for the spherical lens. Thus the alignment of the
laser spot perpendicular to the fiber axis was crucial for maintaining the irradiation
parameters over different parts of the fiber.

Figure 6.1 – Schematic of mark irradiation with fs laser for MC and TMI. Z
is the fiber axis. The figure on the left shows the view from the X direction,
while the one on the right shows the view from the Z direction
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Figure 6.2 – The monochrome image shows a far field fringe behind the FMF
after focusing the femtosecond laser spot. The green inset on top shows a
line scan of the fringe along the red line, which is placed along the horizontal
axis of symmetry of the fringe. The fiber is aligned using the buttons of GUI
on the bottom right, till the line scan of the fringe becomes symmetric, as is
presented in the inset line scan (green box on top right)

For alignment along laser axis, two complementary methods were used.

• The location of the core was checked with respect to a fixed point drawn on a CCD
camera screen (Figure 6.3), while the camera imaged the FMF perpendicular to
both the fiber axis and the laser axis. The camera was mounted at a fixed location
and orientation on the optical table.

• The strengths of the largest peaks (equalized by transverse alignment) in the fringes
was made to be the same on both the ends of the sample.

Axial and transverse alignment were iteratively repeated till all these criteria were satisfied
to the available resolution. At the end of such an iteration cycle, the distance of the core
from the fixed point on the camera screen was checked visually while translating the
fiber along the fiber axis. This gave additional information whether the axial alignment
was maintained over the whole sample length, which could not be checked with fringes
as exposure would have changed the sample. This step was important since the Aerotech
translation stage could not maintain exact alignment along the fiber axis for the entire
available range of its translational motion. The effect of this was observed on screen but
could not be quantified due to lack of resolution. Out of the available range Z=(-27.5
mm, 28.5 mm) along the fiber axis, only the range Z=(-27.5 mm, 23.5 mm) was used
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after visual verification of the alignment on the screen, which sufficed for the verification
of equation 6.2 for small and large duty cycles. Loading and unloading the fiber caused
changes in all the alignments. Since the quality of the far-field fringes from a particular
point in the fiber degraded quickly with exposure, the fiber was oscillated along the fiber
axis for a distance of 0.3 mm with a speed of 5 mm/min during the alignment procedure
with sufficient intensity for far-field imaging.

Figure 6.3 – Axial alignment at Z=-27.5 mm. The black arrow points the
reference dot drawn on the camera screen

6.2.2 Excimer laser setup from Optec

The excimer laser used was a commercial LSV3 ArF laser from Optec, at 193 nm (table
3.3). The setup contains an inverted microscope aligned along Y axis (Figure 6.4), both
for imaging and beam delivery, and the Aerotech translation stage. The laser spot at the
focus of the microscope objective can be chosen to have circular shape with different sizes,
using one of the many available circular apertures inside the beam-delivery system. The
fiber was loaded parallel to the Z axis on two X-Y-Z flexure stages which were mounted
on the translation stage. The focusing of the fiber through the objective was determined
optimal when the edges of the FMF core had showed maximum image contrast. The fiber
height was maintained by checking the focusing of the fiber on the extremal ends of the
translation stage movement. The spot size was measured by clicking the two edges of the
fluorescence coming from the fiber core during exposure, using the ”line measurement”
tool inbuilt in the laser control software. For the transverse alignment along X (Figure
6.4), the fiber core was aligned with the cross in the imaging screen along X at the two
extremes of the movement range of the translation stage, as shown in figure 6.5. An
external trigger generated from the Aerotech translation stage after each translation was
used to trigger the shooting of laser pulses. The number of laser pulses for each interrupt
was preset in the laser control software. The entire procedure was automated using the
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programming interface of the translation stage provided by Aerotech.

Figure 6.4 – Schematic of mark irradiation with Optec LSV3 excimer laser
for MC and TMI. The figure on the left shows the view from the X direction,
while the one on the right shows the view from the Z direction

Figure 6.5 – FMF viewed at the focus of the imaging and beam-delivery
objective of the Optec LSV3 Excimer setup, showing cross-arrows for the
center of the focus. The white lines showing coordinates has been added
laser for showing the actual coordinates aligned with fiber axis

6.3 Experimental results

6.3.1 Phase unwrapping from TMI and MC fabrication

Once the alignment was completed, marks were written with a constant pitch. The pitch
had to be chosen carefully, sometimes with a few iterations, to maintain the following
conditions:

• In TMI samples, avoid mode conversion even at wavelengths slightly outside
the measurement range, which otherwise scrambles the extrema intensities in an
an unpredictable manner. This adds systematic error to the determination of
∆φ(λ, I ,F, N ), as illustrated later in figure 6.9.
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• In MC samples, avoid conversion to cladding modes which have a peak close to the
resonance wavelength, so that the peaks from the LP01-cladding mode resonance
and the LP01-LP02 resonance do not coincide.

Figure 6.6 shows the shift of TMI fringes after writing each mark, using a pitch which
avoids the onset of any mode conversion between the corresponding modes. The fringes
shift away from GVE wavelength with the irradiation of each mark. The fringe shift
is faster for the fringe wavelengths closer to GVE wavelength. For the first frame, the
phase was extracted by fitting equation 4.2 to the spectrum, where the offset of the phase
was arbitrarily assigned. Every other frame was also fitted with equation 4.2 to extract
the phase, with the difference being that the guess of the fitting algorithm was taken to
be the fitting outputs of the previous frame.

Equation 5.2 with X = N , number of marks, relates the fringe shift to the unwrapped
phase.

Although at each wavelength, the phase added per mark was linear, the slope of the
cumulative phase as a function of wavelength is unstable for small number of marks.
Therefore sufficient number of marks needed to be written to have a stable estimate of
∆φ(λ, I ,F ). The number of needed marks for stable estimation was determined by checking
when the estimate ∆φN (λ, I ,F ) (Equation 6.4) from the spectral series of frames {1,2...,N}
(Figure 6.6) converged to a limit, as shown in figure 6.7. In this particular case, the fitted
∆φN (λ, I ,F ) achieved limit within tolerance of 10−4 radians from 190 marks onwards.
Thus writing 200 marks was deemed sufficient for estimating ∆φ(λ, I ,F ) =∆φ200(λ, I ,F )

with this tolerance. It is important to keep in mind that a systematic or sudden shift in
alignment will cause a systematic shift in ∆φN (λ, I ,F ) with the number of written marks,
thus adding uncertainty in determining whether ∆φN (λ, I ,F ) has achieved a limit. This
is another reason why precise alignment is a prerequisite for this method.

Note that, since the actual axial shape and amplitude of the marks are already clumped
together in the term ∆φ(λ, I ,F ), the exact knowledge of those parameters becomes
unnecessary for estimating δβMC (λ). For low-loss marks, the only other term κ(λ)

needed to explicitly represent the mode conversion spectrum is measurable, and is
cumulatively defined per period length of the MC (see equation 2.43). Therefore further
microscopic details of both ∆φ(λ, I ,F ) and the coupling constant κ(λ) are redundant,
except the dependence of maximum achievable extinction ratio on the duty cycle which
was experimentally observed.

Furthermore, it is also noteworthy that if TMI is excited in an FMF containing an MC,
the MC scrambles the neighboring extrema intensities of the TMI fringes differently in an
unpredictable manner over a wavelength range broader than the MC peak. This indicates
that the mode conversion and TMI are originating from the same mode pair. In contrast,
conversion to another core mode or a cladding mode only reduces the TMI fringe contrast
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locally in an uniform way, without affecting the neighbouring fringe maxima differently.

Figure 6.6 – 3D plot of measured evolution of TMI spectrum with mark
number N . The pitch was chosen to be 105 µm such that no mode conversion
happens between LP01 to higher order LP modes within the measured range
of wavelength. At each wavelength, phase was added linearly per mark. The
mark length was 95 µm. Colorbar shows transmission in arbitrary units. The
fringes appear smudged around 1.52 µm after writing sufficient number of
marks, which is due to the appearance of a cladding mode

Figure 6.7 – Estimated average phase added per mark (Equation 6.4), showing
convergence after writing sufficient number of marks

Further errors in phase unwrapping can arise from the method used in normalizing the
TMI spectra and guessing the phase from cosine fitting with polynomial phase. This was
characterized by checking estimates of ∆φN (λ, I ,F ) for sufficiently large N with respect
to polynomial fitting degrees of wavelength. An estimate was considered usable only
if it did not vary too much for the different fitting degrees, as was the case of the 200
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marks presented in figures 6.6 and 6.7. The different fitting degrees for wavelength for
this particular measurement is presented in figure 6.8. An unusable example is presented
in figure 6.9, which is the result of phase extraction from a TMI sample contaminated by
the sidebands of an undesired MC. Since increasing the fitting degree gave inconsistent
results, such data is deemed unsuitable for estimating the average phase added per mark
and not analyzed further. In order to generally avoid such situations, the pitch was
carefully chosen such that no mode conversion occurs while measuring the TMI shift.

Figure 6.8 – In a measurement without mode conversion, comparison between
different degrees of fitting polynomial for the average phase added per mark
estimated using equation 6.4. once is has stabilized for 200 marks. The
results for different fitting degrees are overlapping, deeming this measurement
suitable for making estimations
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Figure 6.9 – In a measurement with mode conversion, comparison between
different degrees of fitting polynomial for the average phase added per mark,
once the estimate using equation 6.4 has stabilized after writing 200 marks.
The inconsistency between different fitting degrees deems this measurement
unsuitable for making estimations

Once reliable estimates of the average phase added by every laser mark was achieved,
mode converters were fabricated at different pitches using the same conditions for exposure
and alignment as the TMI. The evolution of the mode converters were monitored during
exposure. If the resonance wavelength deviated significantly during the exposure, the
laser was stabilized and the alignment procedure was repeated. Only MC exposures
where the wavelength deviation during exposure was less than ±1 nm were accepted.
Figure 6.10a and 6.10b show an example of an exposure using the femtosecond laser
(table 3.3) with an average intensity 0.3×1013 Wcm−2 before the fiber, exposure time of
5 s, with a mark of 1

e2 diameter of 95±1 µm and 1800±2 µm, along the fiber axis and
perpendicular to the fiber axis. The pitch was 117.5 µm, thereby giving a duty cycle of
0.81.
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(a) 3D plot of measured MC spectral
evolution with number of marks, N.
The colorbar represents normalized
LP01 transmission intensity

(b) Measured evolution of normal-
ized LP01 transmission intensity
spectrum during MC fabrication,
visualized for some chosen marks
amongst the full spectral set in fig-
ure 6.10a

Figure 6.10 – Example of MC fabrication with stable resonance wavelength.

Since only 70 % conversion happens at 425 marks (Figure 6.10b), the coupling constant
is low. The resonance wavelength is at 1.495±0.001 µm. The bandwidth of the first zeros
of the conversion peak is 20 nm.

The residual intensity left in a mode after passing through an MC is given by the
coupled-mode theory [6; 56; 127]:

IMC (λ, N ,δβMC (λ),κ(λ),ΛMC ) = cos2(ξ(λ)NΛMC
)+ δ2(λ)

ξ2(λ)
si n2(ξ(λ)NΛMC

)
(6.5)

where κ(λ) is the coupling constant arising from mode mixing in the exposed parts
and δ(λ) = δβMC (λ)

2 − π
ΛMC

, and ξ(λ) =
√
κ2(λ)+δ2(λ). κ is generally 3 orders of magnitude

smaller than δβMC (λ)
2 . Even after subtraction with π

ΛMC
, |δβMC (λ)

2 − π
ΛMC

| dominates κ(λ)

within few 10s of nm on both sides of λMC (Figure 6.10b). Equation 6.5 says that the
strength of the intensity dip, I (λMC , N ), in the transmission spectrum of the converted
mode will follow a specific trigonometric functionality with N .

I (λMC , N ) = 1− A si n2(NΛMCκ) (6.6)

This information can be used as another method to characterize the stability of the
photoinduced effects coming from every mark. To isolate the effect, wavelengths far
away from λMC can be used to characterize the loss with each mark. After correcting
the spectrum for loss by normalization, any systematic deviation of the evolution of the
transmission dip from equation 6.6 will imply systematic shifts of parameters during
the exposure. For example, figure 6.11 shows the evolution of the transmission dip
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strength of an overcoupled low-loss MC, which is fitted well with equation 6.6. Since the
functionality follows equation 6.6, it is confirmed that every mark has equal effect.

Figure 6.11 – Measured evolution of LP01 transmission intensity at λMC (red
curve) and far away from λMC (blue curve), from the spectra presented
in figure 6.10a. The lack of noticeable decay in transmission at the far
wavelength showed that the particular irradiation condition induced low loss

The factor A in equation 6.6 is a function of the mark shape and the duty cycle. This
becomes important when the extinction-ratio is desired to be high. For the duty cycle of
0.81, the coupling constant at λMC has a small value of < 31 m−1 .

For each irradiation condition, after achieving stable phase extraction from TMI, MCs
with repeatable and stable resonance wavelengths were fabricated using different pitches.
The collection of resonance wavelengths λMC from the fabricated MCs, along with the
extracted ∆φ(λMC ) and experimentally determined shape of the intermodal dispersion
curve (chapter 4) was used to verify the prediction model (equation 6.2) for intermodal
dispersion experienced by the fabricated mode converters. The verification with three
different duty cycles, with rough estimates of 0.81, 0.2, 0.51 are presented below1.

6.3.2 Model verification using large duty cycle

The femtosecond setup described in section 5.2.3 was used for large duty cycle, the only
changes being (a) having a spot size 95 µm along the fiber axis, and (b) irradiating
point-by-point instead of scanning the spot across the fiber. The spot size was roughly
estimated from through-focus measurements, taking care to incorporate the fiber cross-
section in the optical path, and assuming no self-focusing. Two MCs were fabricated
with this spot, one with ΛMC = 117.5 µm and 5s exposure per mark, and another with
ΛMC = 116.5 µm and 10s exposure per mark. The spectra for both these MCs after writing

1Duty cycles can be precisely estimated only if measurements of the refractive index perturbation for a
particular mark-writing condition is available, which was not possible with available equipment.
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425 marks is shown in figure 6.12, corresponding to maximum achievable conversion.
Average phase added per mark was estimated by applying equation 6.4 on unwrapped
phase of the TMI recorded during writing of 200 marks with pitch 105 µm, which is
illustrated in figure 6.13 for both the exposure times of 5s (solid blue curve) and 10 s
(solid red curve). The fitting polynomial was of degree 4 in wavelength.

Figure 6.12 – Spectra of the MCs in figure 6.14 for two different exposure
conditions (table 6.1), during the maximum conversion for each individual
MC

Figure 6.13 – Estimates of extra phase added per mark from 200 marks,
using equation 6.4, for total exposure times 5 s (blue curve) and 10 s (red
curve) per mark. Exposure conditions are detailed in table 6.1

Figure 6.14 shows the resonances of two MCs for different irradiation conditions and
pitch, compared to the predicted δβ(λ)+∆φ(λ,I ,F )

ΛMC
curves corresponding to the respective

irradiation conditions and pitch. The MC with ΛMC = 117.5 µm and 5 s exposure time
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showed resonance at λMC = 1.495± 0.001 µm (green circle in figure 6.14), which was
used to fix the offset of δβ(λ)+∆φ(λ,I ,F )

ΛMC
(solid blue curve in figure 6.14) by matching

δβ(λMC )+∆φ(λMC ,I ,F )
ΛMC

= 2π
ΛMC

= δβMC (λMC ) (equation 6.2), thereby also fixing the offset of
the δβ(λ) curve (dashed blue curve in figure 6.14). For the other MC fabricated with
pitch ΛMC = 116.5 µm and 10 s exposure time, the measured resonance wavelength (violet
cross in figure 6.14) matched the wavelength where predicted δβ(λ)+∆φ(λ,I ,F )

ΛMC
(solid red

curve in figure 6.14) equals 2π
ΛMC

within 2 nm, which gives a relative error < 2×10−3.

Figure 6.14 – For the case of large duty cycle, the experimental comparison of
fabricated MCs for two irradiation conditions with the predicted intermodal
dispersion from equation 6.2. Exposure conditions are detailed in table 6.1

In figure 6.14, the possible mismatch for the predicted value for the 10 s exposure of
marks (solid red curve) is most likely due to overestimation of ∆φ(λ) for the 10 s exposure
condition, caused by overlap of the large marks (95 µm size) during TMI measurements
with pitch 105 µm for measuring ∆φ(λ). Possibly due to the same overestimation, the
offset value of δβ(λ) (dashed blue line) has been estimated to a low value, as compared
to other estimates presented in table 6.2

6.3.3 Model verification using small duty cycle

Experiments were performed with a small value of the duty cycle of approximately 0.22,
using marks with estimated diameter of about 25 µm, fabricated using the femtosecond
setup described in section 6.2.1. The spot size was measured using a phase-contrast mi-
croscope from the MICROBS laboratory in EPFL. The peak intensity was approximately
9.1×1013 Wcm−2. For such a mark size and irradiation condition, MCs were made using
exposure time of 5 s per mark. Figure 6.15 shows the spectra of two such MCs with
different pitch.
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Figure 6.15 – Spectra of two MCs with same exposure conditions and mark
size of 25 µm, but different pitch (Exposure details in table 6.1)

The corresponding estimate of average phase added per mark is shown in figure 6.16,
obtained by applying equation 6.4 on the unwrapped phase of the TMI recorded while
writing 200 marks with pitch 105 µm. The unwrapped phase was fitted with a fourth
order polynomial in wavelength.

Figure 6.16 – For small duty cycle, estimates of extra phase added per mark
from 200 marks, using equation 6.4, for total exposure times 5 s (blue curve).
Exposure conditions are detailed in table 6.1

The symbols in figure 6.17 show the intermodal dispersion experienced by two MCs
fabricated with different pitch but same irradiation condition corresponding to the
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estimated ∆φ(λ, I ,F ), at their corresponding resonance wavelengths. The pitch ΛMC =
115.7 µm showed resonance at λMC = 1.527 µm (green circle in figure 6.17), which
was used to fix the offset of δβ(λ)+∆φ(λ,I ,F )

ΛMC
(solid blue curve in 6.17) by matching

δβ(λMC )+∆φ(λMC ,I ,F )
ΛMC

= 2π
ΛMC

= δβMC (λMC ) (equation 6.2), thereby also fixing the offset of
the δβ(λ) curve (dashed blue curve in 6.17). The second pitch ΛMC = 114.5 µm was
chosen since the corresponding resonance wavelength was close to the GVE wavelength
and thereby is expected to be highly sensitive to any changes, including changes in
the pitch or the offset of δβ(λ). From the estimate of dλMC

dΛMC
in figure 4.8, near 1.6 µm

wavelength, the resonance will shift by 10 nm for a change of 0.1 µm of the pitch. Also
from equation 4.7, the resonance wavelength would shift by at least 20 nm for a change
of 1 % in the offset of δβMC (λ). Therefore for model verification of equation 6.2, for
nearby resonance and GVE wavelengths offer highly stringent conditions.

Caution needs to be followed in determining resonance wavelength close to GVE wave-
length from the minima of the MC peak. When these two wavelengths are close, the
spectral peaks on two sides of the GVE wavelength overlap, thus decreasing the sharpness
of the resonance peak. Therefore sufficient mode coupling needs to be achieved for reliable
determination of the resonance wavelength. After reliable determination of the resonance
wavelength for ΛMC = 114.5 µm from MC peaks with sufficient depth, the experimentally
determined value (violet cross in figure 6.17) matches the corresponding prediction using
equation 6.2 within 3 nm, which gives a relative error < 2×10−3.

Figure 6.17 – For small duty cycle, the experimental comparison of fabricated
MCs with same irradiation conditions but for two different pitches, with the
predicted intermodal dispersion (Equation 6.2). The predicted resonance
wavelength is only off by 3 nm even while being close to the GVE wavelength.
Exposure conditions are detailed in table 6.1
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6.3.4 MC fabrication using medium duty cycle

A better control over duty cycle was necessary for both increasing the coupling constant
and consequently decreasing the length of the MC, as well as for increasing the maximum
extinction ratio. To achieve such control, a commercial laser exposure setup (OPTEC
LSV3, described in section 6.2.2) consisting of on online camera and a set of selectable
apertures was used for better control of the duty cycle. The online camera also provided
both the capability of actively compensating misalignment of the translation stage, and
use of high focal spot intensity, whereas high focal spot intensity for the femtosecond laser
possibly caused self-focusing which could not be characterized due to lack of imaging
resolution in the femtosecond setup (section 6.2.2). Precise control of the mark size and
alignment generated MCs with high extinction ratio and repeatable resonance wavelength.

Figure 6.18 – Evolution of measured LP01 transmission spectrum while
writing resonant marks with 0.51 duty cycle for the LP01-LP02 mode pair.
The normalized transmission intensity is represented by color. The resonance
wavelength was stable within ± 1 nm, implying stability of the alignment
and laser parameters. A core-cladding mode resonance [6] was visible at
λ≈ 1.49 µm, which was carefully separated from the LP01-LP02 resonance
peak by choosing the appropriate combination of pitch, intensity and fluence,
through iterations

Figure 6.18 shows the evolution of an MC written with pitch ΛMC = 116 µm and measured
spot size of 59 ± 0.5 µm (measured using the fluorescence recorded under the microscope
during exposure), corresponding to duty cycle of 0.51. The laser power and frequency
was 150 mW and 200 Hz respectively, and exposure time per mark was 15 s, corresponding
to an average intensity of 5486±5 Wcm−2 (See table 3.3). Care had to be taken to
choose the intensity and fluence for a given pitch, in order to avoid overlap of the
core-cladding resonance (dip at λ≈ 1.49µm) with the LP01-LP02 MC resonance peak (dip
at λ= 1.56 µm). Although cladding mode simulations or experimentation using changes
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in external refractive index could further verify that the dip at λ≈ 1.49 µm is coming
from core-cladding mode resonance, it was evident from the method of elimination. For
the used pitch, it was possible to convert only between LP01 to LP02 core modes in the
measured wavelength range. Further, since the LP01-LP02 GVE wavelength was outside
the measured range, only one LP01-LP02 conversion dip was physically possible in this
range. Therefore one of the two observed spectral dips (both with resonance wavelengths
stable within ±1 nm) must correspond to core-cladding resonance. Due to the vicinity
of the LP01-LP02 GVE wavelength, the LP01-LP02 mode conversion peak was expected
to be wide, which established that the dip with larger spectral bandwidth corresponds
to LP01-LP02 mode conversion, and therefore the other spectral dip corresponded to
core-cladding conversion between LP01 and an unidentified cladding mode.

To verify repeatability of resonance wavelength and obtaining high extinction ratio, the
blue curve in figure 6.19 shows the strongest MC conversion spectrum from figure 6.18,
along with the strongest MC conversion spectrum of another exposure with the same
conditions (red curve). The grating in figure 6.18 achieved a depth of -28.13 dB at
resonance wavelength λMC=1.56 µm for 117 marks. The second MC a depth of -39.45
dB at λMC=1.559 µm for 107 marks. Thus λMC is stable within ±0.1 % between the two
gratings, while the coupling coefficient κ(λMC ) varied 117−107

117 = 8.5 % from the first MC
to the second. Accordingly δβMC (λ) was within ±0.1 % between the two exposures. Thus
δβMC (λ) was resilient while κ(λMC ) was seen to be highly sensitive to misalignment.

Figure 6.19 – Comparison of measured strongest conversion spectra of two
MCs fabricated using the Optec Excimer setup, with same irradiation con-
dition and pitch. Fabrication 1 (blue curve) corresponds to the spectra in
figure 6.18. The 20 dB bandwidths are 7 nm and 8 nm for fabrication 1 and
2 respectively. Exposure conditions are detailed in table 6.1

Thus it is experimentally verified that using precise control of duty cycle, strong mode
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conversion can be achieved. Similar to the marks written with femtosecond laser, for this
irradiation condition average phase added per mark was estimated by applying equation
6.4 on the unwrapped phase of TMI recorded during writing 100 marks with pitch 100
µm, which is shown in 6.20. The fitting polynomial was of degree 4 in wavelength.

Figure 6.20 – Average phase added per mark between LP01 and LP02 during
mark writing with the Optec Excimer laser, as extracted from experimental
data. Exposure conditions are detailed in table 6.1

An MC fabricated using the irradiation condition with estimated ∆φ(λ, I ,F ), and pitch
ΛMC = 116.0 µm, showed resonance at wavelength λMC = 1.560±0.001 µm (green circle
in figure 6.21). Fixing the offset of δβ(λ)+∆φ(λ,I ,F )

ΛMC
(solid blue curve in figure 6.21) by

matching δβ(λMC )+∆φ(λMC ,I ,F )
ΛMC

= 2π
ΛMC

= δβMC (λMC ) (equation 6.2) also fixed the offset of
the δβ(λ) curve (dashed blue curve in figure 6.21). Although verification of the model
was not done with these irradiation conditions for another pitch, the estimated offset of
the δβ(λ) was used for verifying equation 6.2 by comparing it with the offset estimates
from other duty cycles (Table 6.2).
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Figure 6.21 – Applying equation 6.2 to the estimated ∆φ(λ, I ,F ), shape of
δβ(λ) from chapter 4, and measured δβMC (1.56 µm) from an MC made with
0.51 duty cycle (table 6.1), the value of δβ(1.56 µm) was estimated, thereby
estimating δβ(λ) along with offset. The interpolated value δβ(λ= 1.5422 µm)
is compared with the estimates from other methods in table 6.2

6.3.5 Summary of fabricated MCs

Table 6.1 summarizes the 5 mode converters reported in this chapter together with the
corresponding fabrication parameters and measurement results. Ipeak refers to peak
intensity of the laser. Fluence is the product of average intensity and exposure time. Two
MCs were fabricated with different fabrication parameters for both the large and small
duty cycles. For each of these duty cycles, one MC was used to estimate the offset of
δβ(λ) in equation 6.4, whereas the resonance wavelength for the other MC was predicted
using the estimated ∆φ(λ, I ,F ) for the irradiation condition of the MC together with
equation 6.4. For both large and small duty cycles, the predicted resonance wavelengths
were within relative error < 2×10−3 of the measured valued.

95



Chapter 6. Effect of irradiation of marks on intermodal dispersion

Fig. La- Pitch ∆φ× δβMC Mark Duty Ipeak Flu-
ence

Mea- Pred- Rela-

ser ΛMC 100 = 2π
ΛMC

size cy-
cle

sured icted tive

λMC λMC error

(µm) (rad) (µm−1) (µm2) ≈ (Wcm−2) (Jcm−2) (µm) (µm) (%)

6.14 Fs 117.5 5.44 0.05347 95 ×
1800

0.81 3.3 ×
1011

1.5 ×
102

1.495

6.14 Fs 116.5 8.07 0.05393 95 ×
1800

0.81 3.3 ×
1011

3.0 ×
102

1.518 1.521 2 ×
10−3

6.17 Fs 115.7 9.86 0.05431 25×25 0.22 9.1 ×
1013

4.1 ×
104

1.527

6.17 Fs 114.5 11.7 0.05487 25×25 0.22 9.1 ×
1013

4.1 ×
104

1.615 1.612 2 ×
10−3

6.21 Optec
ArF

116.0 5.48 0.05417 59×59 0.51 9.1×109 8.2 ×
104

1.560

Table 6.1 – List of fabricated MCs with corresponding parameters. ∆φ

represents the value of ∆φ(λ, I ,F ) at the resonance wavelength. Table 3.3
lists the properties of the lasers

6.3.6 Summary of different estimates of δβ(λ) at a fixed wavelength

Other than accurate prediction of the MC resonance wavelengths, another verification of
equation 6.2 can be done by comparing different estimates of δβ(λ) at some chosen λ for
different duty cycles. Under the assumptions that (a) the pristine fiber has consistent
transverse index profile over the whole length of the fiber, and (b) the marks are not
overlapping, the estimates should be close in value. Table 6.2 presents estimates of
δβ(1.5422 µm) for large (≈ 0.81), small (≈ 0.20), and medium (≈ 0.51) duty cycle using
equation 6.2, as well as the estimate from FBG resonance wavelengths reported in section
4.4 under the rough assumption that the effective indices of LP01 and LP02 are constant
in the interval λ= 1.5422±0.007 µm.
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Fig. Method Laser Pitch Mark Duty Ipeak Flu-
ence

δβ(λ) Rela-
tive

size cy-
cle

error

(µm) (µm×µm) ≈ (Wcm−2) (Jcm−2) (µm−1) (%)

6.14 MC+TMI Fs 117.5 95×1800 0.81 3.3 ×
1011

1.5 ×
102

0.05339 0.32

6.17 MC+TMI Fs 115.7 25×25 0.22 9.1 ×
1013

4.1 ×
104

0.05356 0

6.21 MC+TMI Optec
ArF

116.0 59×59 0.51 9.1×109 8.2 ×
104

0.05360 0.07

4.2 FBG Co-
herent
ArF

0.530 − − 10×106 900 0.0531 0.8

Table 6.2 – Comparison of δβ(λ) estimates for the pristine fiber at λ =
1.5422 µm using different measurement conditions and methods. The estimate
for duty cycle ≈ 0.22 (highlighted in orange) was chosen as the best candidate,
since it predicted resonance wavelength accurately even in close vicinity of
the GVE wavelength (Figure 6.17). Ipeak refers to peak intensity of the laser.
Fluence is the product of average intensity and exposure time. Table 3.3 lists
the properties of the lasers

Duty cycle of 0.51 and 0.22 were expected to give similar estimates, since the overlapping
of marks was definitely avoided in these cases during the corresponding TMI experiments
to measure ∆φ(λ, I ,F ). Indeed the estimates differed only by a small ratio of 0.07 %,
whereas the estimate for large duty cycle of 0.81 was off by 0.32 %. The likely cause for
such a large error in this case was that the marks were overlapping while TMI fringe
shift was measured with a pitch of 105 µm, leading to systematic overshooting for the
determination of ∆φ(λ, I ,F ). The estimate from FBG resonance wavelengths was off by 0.8
%, which is justified since this particular estimate is made under the rough approximation
that the intermodal effective index is constant in the interval λ= 1.5422±0.007 µm and
therefore not expected to be very precise.

6.4 Conclusions

This novel method establishes a way to predict the resonance wavelength of MCs under
any fixed irradiation condition with high accuracy. It provides two precise measurements:

• Offset of the intermodal dispersion curve of the pristine fiber

• Intermodal dispersion curve experienced by an irradiated MC
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These two parameters define the differential phase gathered by the two corresponding
modes as they co-propagate through the pristine fiber and the MC, respectively. As
shown in chapter 7, the knowledge of these phases allows fabrication of broadband MCs
by concatenation of MC segments with controlled gaps. The increase of bandwidth is
achieved by the interplay of the MC coupling constant, MC phase and the fiber phase.
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7.1 Introduction

Controllable injection and exchange of power between modes, at desired locations of the
fiber and over a broad wavelength range, are of high research and technical interest. The
applications vary from space-division-multiplexing [128], dispersion control [29], vortex
generation [62] to femtosecond laser operation [129; 130]. In the context of telecommuni-
cations and lasers, broadband generally implies covering the amplifier bandwidth for the
communication or laser system, e.g. the C-bandwidth (1535 nm-1560 nm) of the EDFA
amplifiers [26; 27]. For MDM applications, large bandwidth at an extinction ratio of 20
dB is desired [31].

Multiple technical solutions for broadband selective excitation of modes in an FMF are
already available, e.g. by using (a) free-space phase plates [131; 132], (b) photonic lanterns
[133; 134], (c) multi-mode interference [135], (d) mode-selective coupler [136; 137; 138; 139]
etc.

In contrast, the reported methods of broadband high-extinction MC fabrication using
laser irradiation inside a fiber is limited. For example, 63 nm bandwidth was achieved at
an extinction ratio of 20 dB by superposition of two resonance peaks on both sides of
the GVE wavelength [31]. Although the performance is excellent, versatility is lacking
because the GVE wavelengths are inherent parameters of the fiber and can be hundreds of
nm apart from the wavelengths of interest. As for controlled mode excitation, multi-mode
interference effect has been successfully used, for example by introducing a precisely offset
multi-mode fiber between two cleaved ends of a two-mode fiber [140]. The multimode
fiber effectively worked as a phase segment for the FMF and converted 38 % power from
LP01-LP11 over 100 nm bandwidth, with 30 dB extinction ratio. Beyond the complexity
of the setup and the limited scope of only using two-mode fiber, such a device also acts
as a mode excitation apparatus, and not as a mode converter in the strict sense inside
the few-mode fiber. Recently a lot of research projects have been performed in the search
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of general methods to fabricate broadband mode converters [36; 40]. In the search of
more general and simple methods for broadband high-extinction mode conversion inside
the few-mode fiber, this thesis evaluated two other grating-based methods:

• Partial-core irradiation: Increasing the coupling between desired modes by
irradiating partial core, or by strong uniform irradiation.

• Phase-shifted gratings: Simultaneously deepening the side bands of the MC
resonance together with the central band, by introducing controlled phase shifts in
the grating.

The physical limitations and technical issues of both the methods are discussed in detail
in this chapter. Moreover, experimental verification of the phase-shifted broadband MCs
is presented.

7.2 Partial-core irradiation

7.2.1 Motivation

It is well known from free-space optics that end-to-end coupling of higher-order LP modes
from LP01 mode is possible by introducing phase plates which match the phase of the
higher-order mode [131; 132; 140]. The free-space phase plates for increasing the coupling
to different higher-order modes are illustrated in figure 7.1.

Figure 7.1 – Free-space phase plates for increasing the coupling from LP01 to
higher order LPm,l modes in a four-mode fiber

Similar idea was evaluated for in-fiber situation via simulations for partial core irradiation.
In figure 7.2, deep blue part of the core represents irradiated part of the core, which
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gained an extra effective index of ∆ne . The length L of such a segment should be such
that ∆ne L = λ/2, or equivalently ∆β(λ) L = π at the desired conversion wavelength λ

[140]. Equivalently, the partially irradiated core in figure 7.2 of length L would have
mode conversion at a central wavelength which satisfies ∆ne L = λ/2. However linear
modeling of two channels establishes that for strong conversion from a single segment,
the coupling ratio between the two different channels and the unperturbed fiber at both
ends of the segment has to be close to 1:1, thereby introducing additional fabrication
requirements.

Figure 7.2 – Schematic for writing 0−π phase segment inside a few-mode
fiber using laser irradiation

7.2.2 Simulation method

The index change due to laser exposure is simulated by changing the GeO2 concentration
in the considered segment of the core. Figure 7.3 shows the refractive index difference
between the core and cladding, for different values of GeO2 concentration of the core. The
ratio of GeO2 concentration between the upper and lower halves of the cores is designated
as doping ratio. Doping ratio of up to 1.5 is considered. Doping ratio corresponding
to higher refractive index changes are hard to achieve with laser irradiation, without
inducing losses in the fiber.
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Figure 7.3 – Core-cladding refractive index difference for different GeO2

doping represented by lines of different colors. These calculations were done
using Sellmeier coefficients for SiO2 and GeO2 (table 3.1) and equation 3.1

For feasible simulations with available software, the MC is approximated by discrete
marks of constant index profile along the fiber axis [46]. The intermodal phase per pitch
experienced by an MC with pitch ΛMC and duty cycle f is given by 1

ΛMCδβMC (λ) = (1− f )ΛMCδβ(λ)+ f ΛMC

(
δβ(λ)+∆δβ(λ)

)
=⇒ δβMC (λ) = δβ(λ)+ f ∆δβ(λ) (7.1)

where δβ(λ) is the intermodal dispersion curve of the pristine fiber, ∆δβ(λ) is the extra
intermodal dispersion introduced by irradiation in the mark region, and δβMC (λ) in the
average intermodal dispersion per period length (equation 2.36). The best conversion
is achieved at duty cycle f =0.5 [70]. If such a parameter value is maintained, the MC
will experience an intermodal dispersion curve δβMC (λ) ≈ δβ(λ)+ ∆δβ(λ)

2 . In that case
approximately twice the index change, corresponding to 2|δβMC (λ)−δβ(λ)| is necessary
to get the desired intermodal dispersion curve (Figure 7.6).

If the resonance wavelength is kept fixed and away from the GVE wavelength, the
bandwidth of an MC increases as (a) the intermodal dispersion curve becomes flatter
and (b) the coupling ratio introduced by the mark becomes larger (which is equivalent to
writing shorter mode converters) [35]. The meaning of ”flatter” is to have small values

1Equation 6.3 can incorporate complex mark profiles, and is more general than equation 7.1. The latter is
a particular case of equation 6.3, if the refractive index perturbation in a mark is exactly uniform along
the fiber axis. Since available software could only solve modes of 2-D structures, such a simplification
was necessary.
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7.2. Partial-core irradiation

for both the first and second derivative on the intermodal dispersion with respect to
wavelength.

Figure 7.4 – Simplified model for simulation of in-fiber phase segment, consist-
ing of two semi-circular regions (D1 and D2) in the cross-section of the core
with different refractive indices. The colorbar represents refractive indices at
1.55 µm wavelength

For the simulation, a simple model of exactly half of the step-index core having a
different uniform refractive index was used, which is illustrated in figure 7.4. The GeO2

concentration is changed for the upper semi-circular half in figure 7.4, while it is kept
fixed in the lower half of the core, thereby changing the GeO2 doping ratio. Naturally, the
doping ratio equals 1 when the core is uniform, corresponding to a standard step-index
fiber.

PDETool, the graphical-user-interface in Matlab for numerically solving partial differential
equations, was used to solve the finite element approximation of the Helmholtz eigenvalue
problem with different coefficients in the two halves of the core corresponding to the
different refractive indices. After creating a model for the partial differential equation, the
following conditions were chosen in order to ensure reliable mode-solving: (a) the mesh
length was set sufficiently small (0.1 µm), (b)the tolerances for determining convergence
of the numerical algorithm was set to be sufficiently small (model.SolverOptions.Abso-
luteTolerance=1.0e-32; model.SolverOptions.RelativeTolerance=1.0e-32; model.SolverOp-
tions.ResidualTolerance=1.0e-32;), and (c) the simulation domain was taken to be large
compared to the core size, so that the tails of the modes go below the arithmetic precision
of Matlab. For example, the radius of the simulated circular domain was 62.5 µm. These
parameters were determined by comparing the simulated eigenvalues βx (λ) of a step-index
profile with the exact dispersion equations of the LP modes.
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7.2.3 Simulation results

The simulation range was from 1 to 1.5 for the GeO2 doping ratio between the upper and
lower halves of the core in figure 7.4, in 5 equal steps of index change. The mode profiles
for 1.5 GeO2 doping ratio between the two halves of the core are shown in figure 7.5.

The location of the GVE wavelength is more important for the bandwidth of the MC
than the absolute value of intermodal dispersion. Thus for simulating the modes of the
semicircular segments, the GeO2 doping of the lower half in 7.4 was set to be 13.7 %,
such that the simulated LP01-LP02 GVE wavelength for the pristine fiber matched the
measured value. For this GeO2 concentration for a step-index fiber (Doping ratio of 1)
of radius 5.0 µm, the LP01-LP02 GVE wavelength was simulated to be 1.636 µm.

Figure 7.5 – Simulated LP mode profiles for a 1.5 GeO2 doping ratio between
the two halves of the core. The GeO2 concentration was 13.7 % in the
lower half of the cross-section of the fiber core (D2 in figure 7.4). These
simulations were performed using finite element method, with the help of
PDETool package in Matlab

The mode pairs LP01 −LP11a , LP01 −LP21b, LP11a −LP21a , LP11b −LP21b, LP11a −LP02

and LP21b −LP02 have zero overlap and thus cannot have mode conversion between the
modes in each of these pairs. For different mode pairs which can have mode conversion,
the intermodal dispersion in the exposed region are shown in individual panels of figures
7.6, for different GeO2 doping ratio between the two halves of the core.

Only the LP01 −LP11b (figure 7.6) intermodal dispersion curves seems to be flat, albeit
for a very high index change of 0.01 in half of the core, corresponding to 1.5 GeO2 doping
ratio between the two halves of the core. This is quite hard to achieve with only laser
irradiation in germano-silicate fibers, without introducing loss.
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7.2. Partial-core irradiation

Figure 7.6 – Simulated intermodal dispersion for different mode pairs of
homogeneous semicircular phase segment waveguides, plotted as a function
of GeO2 doping ratio between the two halves of the core. The dotted black
line in the top left panel represents the shift of GVE wavelength with varying
GeO2 doping ratio

Figure 7.7 shows the intermodal dispersion for different mode pairs for 1.5 GeO2 doping
ratio between the two halves of the core, which is achievable using UV irradiation of
a hydrogen-loaded fiber [141; 142]. At 1.5 GeO2 doping ratio between the two halves
of the core, 0.5 duty cycle and ΛMC = 2π

0.02645 µm = 237.5 µm can give broadband mode
conversion due to flatness of the LP01 −LP11b intermodal dispersion curve experienced
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by the MC. At the same conditions, there seems to be two intersections of intermodal
dispersion curves : one at λ<1.46 µm {LP01 −LP11b and LP11b −LP02}, and another at
λ>1.75 µm {LP01 −LP11b and LP11b −LP21b} (However LP11b −LP21b conversion cannot
occur due to symmetry and therefore can be ignored for the consideration). Although in
the simulated case the intersection wavelengths are far way from the C-band to cause
problems, for smaller changes in index the intersection can be close to the C-band (Figure
7.6), resulting in simultaneous power conversion for both the mode pairs. Such a situation
will result in a complex case of mode mixing. The presence of GVE wavelengths in the
simulated range also offer potential for broadening the MC spectrum by overlapping the
spectral peaks on both sides of the GVE wavelength [31]. As illustrated in figure 7.7,
the mode pairs LP01 −LP02, LP11a −LP21b and LP11b −LP02 have GVE wavelengths at
1.676 µm, 1.507 µm and 1.669 µm respectively. The only quantity still left unverified
for the mode conversion is the loss from such a device, which will be analyzed next by
simulating the mode conversion spectra.

Figure 7.7 – Simulated δβMC (λ) = δβMC (λ)+ f ∆δβMC (λ), for different mode
pairs for a duty cycle f = 0.5, and 1.5 GeO2 doping ratio between the two
halves of the core

The coupling at the boundaries of the discrete segments was calculated using the overlap
integrals of the modes of the irradiated and unirradiated segments, both individually
normalized with respect to their energy. Figure 7.8 shows the overlap integrals of LP01 of
the unperturbed fiber with {LP01′ ,LP11b∗ ,LP21a∗ ,LP02∗} modes of the irradiated segment.
Assuming the bandwidth to be proportional to the bandwidth of the first zeros λ±1 of
the LP01-LP01∗ transmission, it is possible to estimate the ratio of increase in bandwidth
with the GeO2 doping ratio between the two halves. Under a first order approximation of
κ(λMC ) = κ(λ±1), the bandwidth of the first zeros is given by ∆λ=λ+1−λ−1 = 2

p
3λMCκ(λMC )

π

[35]. This requires correlating an index change due to irradiation with κ(λMC ), which
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is a function of the overlap integrals at the boundaries of the irradiated segments. The
simulated functionality of the overlap integrals with index change is shown is figure 7.8.

Figure 7.8 – Simulated overlap integrals of LP01 of pristine fiber to LPm,l

modes of the irradiated segment (denoted by ∗) as function of GeO2 doping
ratio between the two halves of the core

However, this analysis was not carried forward since the segment based model introduced
too much loss due to poor mode overlap at the boundaries of the irradiated segments
(Figure 7.9). Is was ascertained that the loss is not arising from the discrete segment
model, since the loss at a segment boundary using Fresnel equations give ( 1.47−1.46

1.47+1.46 )2 < 10−4.
Smooth index profile along the transverse and fiber axis might introduce lower loss [143],
which could not be simulated due to Matlab PDETool giving spurious results for such
profiles.
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Figure 7.9 – Simulated transmission of LP01 at 1.55 µm wavelength during
writing of marks with 0.5 duty cycle, pitch ΛMC = 2π

0.02645 µm, corresponding
to the irradiation conditions of figure 7.7. Similar high loss is simulated in
the whole wavelength range of 1.46 µm-1.62 µm

Due to the anticipated loss, a new method of MC segments with phase shifts was
developed.

7.3 Phase-shifted MC

Broadening the bandwidth of MC gratings using phase shifts was first proposed in 2005
[35]. The analysis was based on the assumption that the coupling constant κ(λ) was
wavelength independent, as well as arithmetic progression was used for the number of
periods in every segment. By following exactly this recipe, (a) 120 nm broadband mode
converters were made at an extinction ratio of 20 dB in polymer two-mode waveguide
[144], and (b) 116 nm wide broad MC in two-mode fiber at an extinction ratio of 15 dB
using CO2 laser irradiation [145]. However, there is no report of broadband phase-shifted
MC at 20 dB extinction ratio in few-mode fibers. This chapter presents a general recipe
and experimental verification for fabricating high-extinction broadband MCs in few-mode
fibers, made using local marks with some kind of controlled perturbation e.g. exposure
with UV laser spot.

A ”segment” starts off with a mark, followed by consecutive periodic marks separated by
length ΛMC until a deliberately implemented breakage of the periodicity. The length of a
segment containing N number of marks is defined as NΛMC . The distance between two
marks, one at the end of one segment and another at the beginning of the consecutive
segment, is different than ΛMC . Instead of either skipping some length after every segment
[35] or having a mixture of skipping and adding extra gaps after different segments [144],
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7.3. Phase-shifted MC

it makes more sense from practical perspective to introduce extra gap after every segment
in a few-mode fiber [145]. This is because skipping lengths can cause overlap of the marks
written in a few-mode fiber, thus changing the phase between segments to an unexpected
value. This work dealt with two methods, appropriate for different conditions-

• In the general case when κ(λ) is not large, using three segments containing N1,N2

and N3 complete periods, with gaps of length π
δβMC (λMC ) introduced between the

segments [35; 144].

Figure 7.10 – Schematic of phase shifted gratings with three segments

• In the particular case when κ(λ) is large, using the novel idea of only two segments
containing N1 and N2 complete periods, with a gap of length π

δβMC (λMC ) introduced
between the two segments.

Figure 7.11 – Schematic of phase shifted gratings with two segments

For both the cases, the MC period and gap for the resonance wavelength λMC was deter-
mined from the method described in chapter 6, using complementary TMI measurements.

7.3.1 Modelling of phase-shifted MC

In the general case of N segments with the j th segment contains N j number of MC
periods, along with fixed extra gap of Λs introduced after each segment, the lossless
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conversion of power between the two modes is given by |E1(λ,Λ)
E2(λ,Λ) |2, where

 E1(λ,Λ)

E2(λ,Λ)

=
[
ΠN

j=0

 e i δβ(λ)Λs
2 0

0 e−i δβ(λ)Λs
2

M N j

] E1(λ,0)

E2(λ,0)

 (7.2)

where N j is the number of marks for j th segment, and M is the conversion matrix for
the complex mode amplitudes for a single MC period (Described in chapter 2.1.6).

Although often κ(λ) is assumed to be constant, as in references [35; 144; 145], in reality
it is a function of wavelength. This has to be considered when the MC bandwidth is
large. The bandwidth of phase-shifted MCs can be especially large when δβMC (λ) is very
flat, for example near the GVE wavelength. This is the case for the mode combination
LP01-LP02 presented in this chapter, which necessitated estimation of κ(λ).

For stable irradiation and alignment conditions, estimation of κ(λ) using two segments
can be understood analytically

 E1(λ,ΛMC (N1 +N2)+Λs)

E2(λ,ΛMC (N1 +N2)+Λs)

= M(λ, N2)

 e i δβ(λ)Λs
2 0

0 e−i δβ(λ)Λs
2

M(λ, N1)

 E1(λ,0)

E2(λ,0)


(7.3)

Following matrix multiplication rules and representing M(λ, N ) =
 M11(λ, N ) M12(λ, N )

M21(λ, N ) M22(λ, N )


gives the LP01 transmission through the single phase shifted mode converter to be

|E1(λ,ΛMC (N1 +N2)+Λs)

E1(λ,0)
| = |M11(λ, N2)M11(λ, N1)+e iδβ(λ)Λs M12(λ, N2)M22(λ, N1)|

(7.4)

Thus presence of two strong dips in the transmission at wavelengths λ−1 < λMC < λ+1,
corresponding to |E1(λ±1,ΛMC (N1+N2)+Λs )

E1(λ±1,0) | ≈ 0, give the relation:

M11(λ±1, N2)M11(λ±1, N1)

M12(λ±1, N2)M22(λ±1, N1)
=+e i

(
π+δβ(λ±1)Λs

)
(7.5)

Since the only undetermined quantity at this point in M(λ, N ) is κ(λ), trying different
values of κ(λ±1) in the vicinity of κ(λMC ) can be used to satisfy equation 7.5. For weak
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conversion peaks at λ±1, quadratic functionality of κ(λ) can be used with fixed κ(λMC )

to match the LP01 transmission spectrum for some N1 and N2.

The practical utility of estimating κ(λ) in this way is the engineering consideration that
it is only possible to write marks and not delete them effectively. Thus the following
experimental algorithm is useful to determine all the parameters of mode conversion by
writing number of marks less than N1 +N2, provided that the irradiation and alignment
conditions are precisely maintained throughout the experiment:

• Using TMI, determine ∆φ(λ, I ,F ) for a particular mark writing condition. Also
determine δβ(λ) with unknown offset using phase unwrapping of TMI or with offset
by some other method like long acousto-optic gratings of small index perturbations
[54].

• Write a single segment till the peak just gets overcoupled. This gives estimates
of the quantities λMC , δβMC (λMC ), κ(λMC ) and the maximum achievable mode
conversion ratio. Using equation 6.4, δβ(λ) and δβMC (λ) are determined completely.

• By introducing an extra a gap of length π
δβMC (λMC ) in the direction of mark writing

after the first segment, another segment is written till the appearance of distinct
sidebands with minima at λ±1, where λ−1 <λMC <λ+1. Note that λ±1 shifts with
the mark writing. Fitting the spectra of two evolving dips using equation 7.4 and a
polynomial model of κ(λ) with fixed κ(λMC ) obtained in the previous step, provides
estimate of κ(λ) for the interval (κ(λ−1),κ(λ+1))

• Use the estimates of δβ(λ), δβMC (λ) and κ(λ) to compute N1, N2 and N3 required
for broadband mode conversion with the desired extinction ratio (for example 99
%).

• Given these estimates, and the presence of the already written segments, write
appropriate number of extra marks required.

This algorithm was experimentally explored for LP01 and LP02 in the FMF.

7.3.2 Experimental verification for phase-shifted grating with three
segments

The fabrication of the phase-shifted MCs was done using the LSV3 ArF Excimer laser
setup from Optec together with the aerotech translation stage, as described in section
6.2.2. The irradiation condition described in section 6.3.4 was used for writing the marks.

Using the described method in the bullet points of section 7.3.1, bandwidth of 20 nm
at 20 dB conversion ratio could be achieved repeatably in two resonance peaks of the
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MC on both sides of the central wavelength of 1.56 µm. However, up to 8 % power was
left in a residual bump around 1.56 µm. A spectrum at the broadest conversion at 1.525
µm is shown in figure 7.15, which is from 337 marks written in a phase-shifted MC with
pitch ΛMC=116 µm. The phase gap was 58.6 µm after the 49th and the 118th mark.

Figure 7.12 – Evolution of LP01 transmission intensity spectrum during
writing of periodic marks at the first segment

The number of periods N1 is experimentally determined such that the extinction ratio
is around 50 % deep (figure 7.12). This provided an estimate λMC = 1.56 µm for the
resonance wavelength.

After introducing a gap of 58.6 µm, writing further periodic marks decreased the extinction
ratio at the beginning, followed by the appearance of two conversion peaks on both sides
of λMC = 1.56 µm. Writing further marks deepened the two peaks, at the same time
moving them closer.

To estimate κ(1.56 µm), the extinction ratio at λMC = 1.56 µm was plotted as a function
of number of written marks N (Figure 7.13). Fitting cos2(κ(λMC )NΛMC ) gives estimate
κ(1.56 µm) = 132 m−1.
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Figure 7.13 – Evolution of LP01 transmission intensity at 1.56 µm during
writing of periodic marks at the first segment

The number of periods N2 was determined such that the dip for λ<λMC = 1.56 µm has
maximum 25 dB extinction-ratio. The extinction ratio of 25 dB was selected since the same
writing conditions repeatedly produced stronger than 28 dB gratings at λMC = 1.56 µm
(Figure 6.19) for single segments. Writing of the second segment was stopped once the
extinction ratio of 25 dB was achieved, since writing further marks brings the two dips
closer and causes loss of bandwidth at the end of three segments. However, the central
wavelength where extinction ratio was minimum, shifted approximately 12 nm to 1.548
µm. In figure 7.14, the pitch in the simulation had to be shifted to ΛMC = 116.3 µm to
accommodate this. Taking a linear functionality of κ(λ), with κ(1.46 µm) = π

85 µm−1 and
κ(1.62 µm) = π

120 µm−1 fitted both the measured MC spectrum at the end of the second
segment, as well as κ(1.56 µm) = π

104 µm−1.
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Figure 7.14 – Measured normalized LP01 transmission intensity spectrum
after writing 118 marks, with a gap of 58.6 µm after 49 marks (first segment)

Writing further periodic marks in the third segment decreased the extinction ratio
of the two peaks again at the beginning. Continuing further, mark writing started
producing multiple conversion peaks which increased in conversion strength. At some
point some of the peaks started decreasing in conversion strength. Writing was continued
till conversion strength of the overall spectrum went beyond 20 dB. At 337 marks, the
broadest conversion was observed, which is shown as a blue line in figure 7.15. The
expected bandwidth of >35 nm was however not achieved, due to the presence of a
residual bump in the middle of the spectrum.

Figure 7.15 – Measured normalized LP01 transmission spectrum after writing
337 marks, with gaps of 58.6 µm introduced after 49 and 118 marks in the
previous segments

In order to understand how misalignment might cause such a loss of extinction ratio,
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a simulation was made with the same number of segments and phase shift as in the
experiment. Using simulation parameters of ΛMC = 116.3 µm, linear functionality of κ(λ),
δβMC (λ) and a multiplicative factor of 1.01 for κ(λ) in the third segment produces four
conversion peaks which match two peaks at the shorter wavelength (peaks 1 and 2 in
figure 7.15). However, the two peaks at longer wavelengths (peaks 3 and 4 in figure 7.15)
collapsed prematurely before peaks 1 and 2 deepened. This caused insufficient extinction
ratio at peaks 3 and 4. The problem was identified to be the nonlinear path traversed
by the translation stage when it is asked for a linear displacement along the fiber axis.
The misalignment was fully characterized by correcting the misalignment at every 5 mm
displacement using the translation stage controller. The value of the correction was noted
down, which is plotted in figure 7.16.

Figure 7.16 – Misalignment of translation stage during displacement

If the alignment was maintained, such that the peaks 3 and 4 in figure 7.15 would not
collapse prematurely, then simulation shows that the spectrum with broadest bandwidth
at 20 dB extinction ratio would be at N 1 = 49, N 2 = 116, N 3 = 178. The corresponding
spectrum should ideally have looked like the simulation shown in figure 7.17, with a
theoretically achievable bandwidth of 62.5 nm at 20 dB extinction ratio.

The misalignment was compensated by making the translation stage follow two linear
curves, and thereby the bandwidth could be improved upto an extinction ratio of
15.5 dB. Figure 7.18 shows a LP01 transmission spectrum for three segments of pitch
ΛMC = 116 µm shifted by half the intermodal beat length at 1.56 µm. The number of
marks are N 1 = 42, N 2 = 127, N 3 = 192, which showed stronger than 15.5 dB (extinction
ratio >97 %) conversion between 1542 nm to 1579 nm. The simulation which best
matched the measured spectrum in shape had a modified pitch of ΛMC = 115.6 µm. In
addition to the different pitch used for the simulation, the measurement also does not
exactly match with the simulation for the third segment. These indicate presence of
residual misalignment and instability of irradiation condition (for example due to residues
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of coating), which can be improved with better alignment and chemical cleaning of the
stripped part of the fiber (e.g. with dichloromethane).

Figure 7.17 – Simulated spectrum of broadband MC, in absence of translation
stage misalignment

The high sensitivity of the phase shifted MC irradiation can be understood by the
relatively large effect on the parameters κ(λ) and the effective δβ(λ) of the full MC, which
themselves have small values. The multiple resonance peaks in the phase shifted MC
can be approximately described by multiple phase matching of the effective intermodal
dispersion curve. Since the effective curve is quite flat, the peak wavelengths shift strongly
due to small changes in the irradiation. In addition, any defect in the irradiation can
have strong effect on the phase shifted MC spectrum, for example due to presence of
unremoved coating during irradiation.

Figure 7.18 – Measured spectrum of broadband MC, fabricated with com-
pensation of translation stage misalignment
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7.4 Broadband mode conversion with only two segments

Extensive simulations with different mode pairs further hinted that even without esti-
mation of ∆φ(λ) added by written marks, there exists a direct experimental algorithm
to fabricate high-extinction broadband mode converters. The algorithm consists of the
following steps-

1. A segment is written such that it reaches extinction ratio just below 50 %, as
guessed from the growth rate of the resonance dip.

2. A gap is introduced corresponding to a phase shift of π at λMC .

3. Writing of marks with same pitch as the first segment is continued, which will
give rise to two conversion dips on both sides of λMC , after initially reverting in
conversion strength. After writing sufficient number of marks in the second segment,
the two conversion dips will start to increase in conversion strength while their
individual minima wavelengths will start to move closer to each other. Writing
should be continued till optimum combination of bandwidth and extinction ratio
is reached. The stopping condition can be defined as the number of marks in the
second segment after which the spectral bandwidth or extinction ratio at one or
both dips start to decrease.

The only pre-existing knowledge needed for this method should be of the intermodal
dispersion of the pristine fiber δβ(λ), such that a phase gap of π can be introduced
between the two segments at the resonance wavelength.

This is the only existing method in literature, that exhibits broadband high-extinction
mode conversion in few-mode fibers using only two segments. The generality of this
method suggests an underlying mathematical proof for a flexible range of intermodal
dispersion and coupling constant. Such a proof was beyond the timeline of this thesis.

7.4.1 Experimental verification for phase-shifted grating with two seg-
ments

With careful control of duty cycle and laser power, k(λ) was increased in the exposure
setup. Thereafter, this algorithm was verified experimentally.

Instead of directly following the presented algorithm, at first an overcoupled segment was
written in order to quantify the maximum conversion strength achievable at the resonance
wavelength. As shown in figure 7.19, the conversion spectra increased in strength up to
20 dB for 76 marks, after which it started to revert in strength through overcoupling.
The mark writing was stopped at 77 marks at this point.
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After introducing an extra gap of 65 µm along the fiber axis in the direction of mark-
writing of the first segment, 38 more marks were written in the same direction. Afterwards,
writing of marks was continued for the first segment in the other direction. At first a
decrease in conversion strength was observed. This was followed by the appearance,
growth, and strength reversal with 130 additional marks for λ>λMC . After writing 125
marks, another dip could be seen appearing for λ<λMC , and kept increasing in strength
with further writing. From 140 marks onwards, as shown in figure 7.20, both the dips
kept increasing in strength up to 153 marks. The wavelengths of maximum conversion
kept moving towards each other between 140 and 153 marks. When the 154th mark was
written, the conversion dip for λ<λMC started reverting. Mark writing was stopped at
this point.

Figure 7.19 – Measured evolution of the normalized LP01 transmission spectra
with writing of marks without any phase shift, for segment 2 which contains
standard periodic marks. The maximum achievable extinction ratio was 20
dB at 76 marks, after which the depth of the spectrum started to revert with
writing of more marks due to overcoupling of the grating.

From the measured data, the direct experimental algorithm to fabricate broadband
high-extinction MC using only two segments with a phase shift was conditionally verified,
by achieving 41 nm bandwidth at 16 dB conversion strength. The conditionality comes
from the fact that with one segment only 20 dB maximum conversion strength could be
achieved at 76 marks. If a stronger maximum conversion strength can be achieved, the
conversion strength of the two dips for the two combined segments will scale proportionally.
Therefore it is predicted that using similar value of κ(λMC ) for the FMF, and for a 25
dB maximum conversion strength with a single segment, 41 nm bandwidth at 20 dB
conversion strength can be achieved using two segments.
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Figure 7.20 – Measured evolution of the normalized LP01 transmission spectra
after adding segment 1, containing 37 extra marks separated with a phase
shift of π at 1.55 µm, before segment 2. Further marks were written on the
other side of segment 2 without any extra phase gap, and the spectra were
recorded

7.5 Conclusions

Two new possible methods of fabricating broadband phase segments were evaluated using
simulations and experiments. The method of partial core irradiation was simulated using
uniform segment model, where a semicircular region of the core in the irradiated segment
had a different refractive index. Strong index change showed large increase in normalized
overlap integrals for orthogonal mode pairs of the pristine fiber. For some mode pairs the
intermodal dispersion curve also became flat. However high loss is introduced for strong
irradiation conditions, due to poor overlap of the mode fields. More precise simulations
using continuous index change patterns along z over the irradiated segment could not be
implemented and deserves attention.

The method of phase shifted gratings can potentially provide low loss MCs of bandwidth
larger than 35 nm at 20 dB extinction ratio. Phase shifted gratings made with 3 segments
of pitch 116 µm and gap of length 58.6 µm were fabricated. Without compensation of
misalignment (maximum 6 µm) of the translation stage, two peaks of 20 nm bandwidth
at 20 dB extinction ratio could be achieved, with a 11 dB bump left between these
peaks. On introducing compensation of the misalignment of the translation stage, 37
nm bandwidth was achieved at 15.5 dB extinction ratio. The location and strength of
the multiple overlapping conversion peaks of phase-shifted MC with three segments are
highly sensitive to changes in alignment and irradiation conditions. There is room for
experimentally achieving larger than 35 nm at 20 dB extinction ratio, by stabilizing these
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parameters over different marks.

For sufficiently large value of κ(λ) an experimental algorithm to fabricate broadband
high-extinction MC is presented which does not even require estimation of ∆φ(λ). The
method was experimentally verified to achieve a bandwidth of 41 nm at 16 dB conversion
strength.
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8 Summary and conclusions

Effects associated with two-mode interference were found to be useful for multiple sensing
modalities and parameter estimates. It was determined that the temperature sensitivity
∂δβ(λ)
∂T and the strain sensitivity of ∂δβ(λ)

∂ε were highly variable in the wavelength range of
1.46 µm-1.62 µm, both varying by factors more than 2.5 over this range in their relative
values. TMI shifts were used for parameter estimation in two different types of irradiation
conditions, namely (a) estimation of ∂δβ(λ)

∂F , where F is fluence, during scanning exposure
of the fiber with a laser spot moving with constant velocity, and (b) estimation of extra
phase introduced between two interacting modes in an irradiated region. Method (a)
is based on a cumulative effect, and thus allows for measurement of very small changes
in δβ(λ), by scanning over longer lengths of the FMF. By scanning over a 51 mm long
FMF, 0.6 % relative change in δβ(λ) could be determined. Method (b) is the only direct
experimental tool to predict the intermodal dispersion experienced by two modes when
they are resonantly interacting inside an MC. It also provides precise estimate for the
offset of the intermodal dispersion curve of the FMF (<0.1 % error).

GVE wavelength associated to TMI had 3 times larger linear thermal response compared
to an FBG resonance at similar wavelengths. The strain response was of similar magnitude
to an FBG but of opposite sign. Together these present the capability of temperature
and strain differentiation. Relative errors of 1.4 % and 1.1 % are obtained for sensing
temperature and strain individually. Under uniform scanning irradiation of the whole
fiber, GVE wavelength could also provide high-precision estimates for the change in
the core refractive index. The sensitivity of this method is more than 40 times larger
compared to sensing of core index change during irradiation using an FBG. Also the GVE
shift captures very small index changes right from the beginning of an irradiation albeit
for longer exposure times, whereas an FBG needs to acquire sufficient index perturbation
before the reflection peaks become discernible. The sensitivity of the GVE wavelength to
temperature, strain and laser exposure are only dependent on the material parameters
and not on the modes involved, as long as the fiber profile does not change significantly
during the change of these parameters.
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Chapter 8. Summary and conclusions

Multiple reflection peaks from two modes in a FMF containing an FBG were used for
approximate prediction of the offset of intermodal dispersion. The estimates turned
out to be correct within 0.8 %. The estimated intermodal dispersion curves and phase
change due to each mark were verified by matching the predicted resonance wavelength
of multiple mode converters with different pitch but same irradiation conditions.

Estimates of δβ(λ) and δβMC (λ) provides knowledge about the phase relation of the
corresponding modes travelling through the pristine fiber and the MC segment. Using
this the resonance wavelength could be maintained within precision of ±1 nm. Making
an MC with a single phase-shift allowed for estimation of the MC coupling constant as a
function of wavelength over 40 nm. Using these estimates, fabrication of MCs with two
phase shifts gave 20 nm bandwidth at 20 dB conversion ratio for a MC made without
compensating for translation stage misalignment. After compensating for translation
stage misalignment, 37 nm bandwidth was achieved at 15.5 dB extinction ratio.

Another experimental was developed for direct fabrication of broadband high-extinction
MCs using only two segments with a phase shift and the estimate of δβMC (λ), which
does not even require the knowledge of δβMC (λ). Using this method 41 nm bandwidth
was achieved at 16 dB conversion ratio at 1.56 µm wavelength.

In conclusion, multiple methods were developed based on two-mode interference and
associated GVE wavelength. A new relation between TMI and mode conversion was
found, which can be used to separate the intermodal dispersion terms in the mathematical
description of an MC. This allowed for independent determination of MC coupling as a
function of wavelength. Putting all the estimates together provides a recipe for fabricating
broadband MCs at high extinction ratio. However, the recipe is highly sensitive to any
errors in misalignment or irradiation conditions, and need strict engineering precision to
be achieved experimentally. The direct experimental algorithm using only two segments
is even more general and robust. If the coupling constant is large, the method with two
segments might suffice for a variety of scenarios needing broadband high-extinction mode
conversion.

The general method to estimate intermodal dispersion experienced by an MC will reduce
the experimental burden of iteratively finding the pitch for a desired resonance wavelength.
From the perspective of applications, broadband high-extinction mode converters can be
used for dispersion management in laser cavities.
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Chapter 10. Glossary of terms

10 Glossary of terms

10.1 List of symbols and operators

λ Free-space wavelength
T Temperature
ε Strain
ω Angular frequency
ε0 Permittivity of free space
k0(λ) Vacuum wavevector
n(x, y) Refractive index profile in x, y

k(x, y) Wavevector in x, y

N Natural numbers
Z Integers
R Real numbers
C Complex numbers
Rk , for some k ∈N The ordered tuple (a1, ..., ak ), with a1, ..., ak ∈R
W 1,2(R2) Space of square-integrable functions with weak

derivative in the sense of distributions
βn(λ) > 0 Propagation constant of the nth mode
a + i b Root of x2 −2ax + (a2 +b2) = 0 for a,b ∈R
a + i b = a − i b Complex conjugate operator, for a,b ∈R
|a + i b| =

p
a2 +b2 modulus operator, for a,b ∈R

e i x = cos(x)+ i si n(x) Euler’s formula
x̂ Unit vector in x direction
~A ~A(x, y, z) = Ax (x, y, z)x̂ + Ay (x, y, z)ŷ + Az (x, y, z)ẑ

Ax (x, y, z), Ay (x, y, z), Az (x, y, z) ∈C
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10.1. List of symbols and operators

~A.~B = Ax Bx + Ay By + Az Bz Dot product
∇.~A = ∂Ax

∂x + ∂Ay

∂y + ∂Az
∂z Divergence operator, which acts on

a vector to produce a real number
∇×~A =

(
∂Az
∂y − ∂Ay

∂z

)
+

(
∂Ax
∂z − ∂Az

∂x

)
+

(
∂Ay

∂x − ∂Ax
∂y

)
Curl operator, which acts on

a vector to produce another vector.
Divergence and curl satisfy ∇.(∇×~A) = 0,

for all ~A ∈Rn , n ∈N
∆= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 Laplace operator
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10.2 List of abbreviations

FMF Few-mode fiber
SMF Single-mode fiber
LP Linear polarization
TMI Two-mode interference
GVE Group-velocity equalization
FBG Fiber Bragg grating
LPG Long-period grating
MC Mode converter grating
EDFA Erbium-doped fiber amplifier
TDM Time-division multiplexing
WDM Wavelength-division multiplexing
PDM Polarization-division multiplexing
MDM Mode-division multiplexing
TE Transverse electric
TM Transverse magnetic
CMI Center of MicroNanoTechnology
ArF Argon Fluoride molecule
UV Ultra-violet
OSA Optical spectrum analyzer
2H Second harmonic
4H Fourth harmonic
N.A. Not available
a.u. Arbitrary units
Pitch Period length of a peridic perturbation along the fiber axis
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A Appendix

A.1 Material constants

The linear slopes of relative change in relevant parameters with temperature, which
are used in chapter 5, are consolidated in table A.1. Thermo-optic coefficient refers to
relative change of refractive index with temperature at 1.64 µm wavelength. Thermal
expansion coefficient refers to relative change of fiber length with temperature.

Thermal expansion coefficient Thermo-optic coefficient
(◦C−1) (◦C−1)

Fused silica 0.6×10−6 [106] 5.86×10−6 [108]
14 % GeO2-doped silica 1.7×10−6 [60] 6.24×10−6 [108]

Table A.1 – Material constants for fused silica and 14 % GeO2-doped silica

Table D.2 qnd figure D.3 in the PhD thesis [108] reports the sum of the thermo-optic and
thermal expansion coefficients (Equation A.1), from which the thermo-optic coefficient
was extracted. The extracted thermo-optic coefficient from [108] for fused silica matches
the systematic study [107] at 300 K temperature.

Equation A.1 presents the linear fitting result of the data in table D.2 of the PhD thesis
[108], up to 22 % GeO2 concentration.

1

L

∂L

∂T
+ 1

ne

∂ne

∂T
= (2.698×10−6)×dGe +6.462×10−6 (A.1)
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