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Abstract

Refractive microlenses and microlens arrays are key components for many applications such

as optical data communication, laser and medical devices, or cameras. In particular, refractive

micro-optics enables the miniaturization of high-tech systems but also offers novel optical

functionalities. The success of this technology lies in the wafer-level fabrication technique,

using the method of photoresist reflow with a subsequent pattern transfer into the substrate by

reactive ion etching. Indeed, it allows the manufacturing in parallel of thousands of spherical

or aspheric microlenses smaller than 1 mm. Their characterization is usually performed

by measuring their surface, as this allows at the same time the evaluation of the microlens

performance and feedback for fabrication process optimization. In this thesis, we assess

this characterization approach to understand the fabrication process better and to improve

the microlenses performance. Concretely, we first study surface form tolerancing, which is

crucial to ensure the microlenses quality. However, the link between the surface form of a

microlens and its performance is not straightforward, usually resulting in over-restrictive

tolerances. Here, we investigate this connection for simple cases and then compare different

approaches to tolerance typical micro-optical systems. Practical guidelines are proposed

based on the results. Secondly, we present methods to improve surface measurements. For

this, we develop an original calibration procedure that takes into account the aberrations of the

imaging system. In the presented example, the accuracy is increased by a factor 7, rendering

the characterization of diffraction-limited microlenses with high numerical apertures possible.

Thirdly, we model the fabrication process to find correlations with the manufactured surface.

Thereby, the fabrication optimization is made faster and more accurate. We validate this

approach by increasing the uniformity of a large (100mm×100mm) microlens array by a factor

∼ 3. Finally, we evaluate another microlens characterization that consists of probing the optical

functionalities in transmission and compare it to surface measurements. Particularly, we give

the reasons for our doubts about its application to wafer-level microlenses. In conclusion,

we show that a quantitative analysis of the microlens characterization allows for a significant

improvement of the microlens quality and a better understanding of the fabrication process,

resulting in lower production cost. For this reason, we believe that the results presented in this

thesis will help to render wafer-level refractive micro-optics a more mature technology and

build its bright future.
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Résumé

Les microlentilles réfractives et les réseaux de microlentilles sont des composants clés pour

de nombreuses applications telles que la communication optique de données, les dispositifs

laser et médicaux, ou encore les caméras. Plus particulièrement, la micro-optique réfractive

permet la miniaturisation de systèmes de haute technologie, mais offre également de nou-

velles fonctionnalités optiques. Le succès de cette technologie réside dans la technique de

fabrication sur substrat, utilisant la méthode reconnue de fusion de résine photosensible

suivie d’un transfert des structures dans le substrat par gravure ionique réactive. En effet, elle

permet la fabrication, en parallèle, de milliers de microlentilles sphériques ou asphériques

inférieures à 1 mm. Leur caractérisation s’effectue généralement par la mesure de leur surface

par des profileurs optiques de surface, car cela permet à la fois d’évaluer la performance de

la microlentille, et d’obtenir un retour d’informations qui servira à optimiser le processus

de fabrication. Dans cette thèse, nous évaluons cette approche de la caractérisation pour

mieux comprendre le processus de fabrication et améliorer la performance des microlen-

tilles. Concrètement, nous étudions d’abord le tolérancement de la forme des surfaces qui

est crucial pour assurer la qualité des microlentilles. Cependant, le lien entre la forme de la

surface d’une microlentille et sa performance est complexe, ce qui entraine généralement

des tolérances trop restrictives. Ici, nous étudions cette connexion pour des cas simples, puis

comparons différentes approches pour tolérancer des systèmes micro-optiques typiques.

Des recommandations pratiques sont proposées sur la base des résultats. Deuxièmement,

nous présentons des méthodes pour améliorer les mesures de surface. Pour cela, nous dé-

veloppons une procédure d’étalonnage originale, qui prend en compte les aberrations du

système d’imagerie. Dans l’exemple présenté, l’exactitude est augmentée d’un facteur 7, ce

qui rend possible la caractérisation de microlentilles à haute ouverture numérique et limitées

par diffraction. Troisièmement, nous modélisons le processus de fabrication pour le mettre en

corrélation avec la surface fabriquée. De ce fait, l’optimisation de la fabrication est rendue

plus rapide et plus exacte. Nous validons cette approche en augmentant l’uniformité d’un

grand réseau de microlentilles (100mm×100mm) d’un facteur ∼ 3. Enfin, nous évaluons une

autre caractérisation de microlentilles examinant les fonctionnalités optiques en transmission

et la comparons aux mesures de surface. En particulier, nous expliquons les doutes que nous

avons quant à son application aux microlentilles fabriquées sur substrat. En conclusion, nous

montrons qu’une analyse quantitative de la caractérisation des microlentilles permet une

amélioration significative de leur performance et une meilleure compréhension du proces-
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Résumé

sus de fabrication, résultant en une baisse des coûts de production. Pour cette raison, nous

pensons que les résultats présentés dans cette thèse contribueront à rendre la micro-optique

réfractive sur substrat plus mature et à construire son brillant avenir.
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Preface

It is a great honor and pleasure to have the opportunity to write the preface of Jeremy Béguelin’s

PhD thesis. Jeremy’s work on the assessment of aspheric microlenses represents a big step

forward for our company. A big step forward to ensure that we always deliver “perfect” mi-

crolenses to all our customers. Whereas “perfect” is related to the performance, the robustness,

and the resilience of our microlenses within the application, the module or system of our

customer. Jeremy has helped much to understand what is really important for characterizing

a microlens and – if the surface is the key parameter – then get the error values below some 20

to 30 nanometers.

When we started the SUSS MicroOptics about 20 years ago, the micro-optics’ world was much

simpler. The common questions were: “What is a microlens, what is it good for and why

should I use it?”. Well, “a microlens is like a big lens, take - for example - the lens of your photo

camera, but we make it much smaller. It is micro!” The answer to the second question was a

bit more difficult. Micro-optics was still a kind of “exotic” product with a small supplier’s base

and even these suppliers had difficulties to tell their customers what the perfect parameters of

the microlens they need are. Why should anybody use micro-optics? Well, the third question

is answered today. Micro-cameras and microlens-based sensors are in all our smartphones,

microlens fiber couplers are found in all data centers of the world, micro-optics is key for laser

beam shaping, in life science, displays, sensing – microlenses are key enabling technology for

many consumer and industrial products today. The next killer application for micro-optics

seems to be automotive lighting. Microlens-based modules for interior, exterior lighting,

microlens headlights, daylights and taillights are under development today. Why should

microlens arrays be used in a car? Smaller, cheaper and better. Replacing big and heavy

headlights by a small and more efficient microlens headlight might be a big step e.g. for

electric cars to reduce weight and improve the range of the electric battery. Yet, integrating

micro-optics in a car means that you have to fulfil the harsh quality standards of automotive

industry. Once again, the correct assessment of aspheric microlenses is key to success.

Pioneer work on microlens testing was done by Prof. Johannes Schwider in the 1990. He and

his PhD students were inventing various interferometers for microlens metrology. When we

started the company, we installed his Mach-Zehnder and Twyman-Green interferometers in

our first fab. This helped a lot to optimize our manufacturing processes. But still did not answer

the question about the “perfect” lens parameters for our customer’s specific application. We

also found out that there are two fundamental limits of interferometric methods. First, the
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sampling theorem and second, the fitting of a profile to the measured data. Over the years,

we developed our internal tools and spent a lot of time improving our manufacturing and

testing methods. However, a production team has certain limits of time and knowledge. This

is where Jeremy stepped in and started to dig much deeper than anybody has done before

within the frame of his PhD thesis work. Working already as a student at our company 5

years ago, he quickly got in and was well connected to our production and metrology teams.

His supervisors Wilfried Noell and Toralf Scharf helped him much to go the very limits of

microlens assessment.

In this thesis, Jeremy started by studying surface form tolerancing and its link to the optical

performance related to different applications. He developed guidelines for specifications and

tolerancing. Customers often tend to demand very harsh specifications. Just to be on the

safe side. Often these specifications are not even related to the application but significantly

reduce the yield in production. A smarter choice of tolerances allows to reduce costs and to

improve the performance and process robustness of the customer’s application. In a second

step, Jeremy analyzed our different tools for contact and non-contact metrology of microlens

surface profiles. A deep analysis of the process and instrument-related errors enabled him

to significantly improve the instruments and methods. Finally, he transferred the obtained

to optical design and modelling. This now allows “design for manufacturing” for microlens

arrays. With more than 40’000 wafers (8”) in our production today, the effects of Jeremy’s work

on cost reduction and quality improvement are very significant every day.

Jeremy’s thesis is very well written, interesting to read and the obtained results are a big

step forward for SUSS MicroOptics to keep our leading position in the micro-optics market.

Congratulations to Jeremy for this extraordinary PhD thesis.

Dr Reinhard Voelkel, CEO SUSS MicroOptics
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The first principle is that you must not fool

yourself and you are the easiest person to fool.

— Richard P. Feynman

À toutes les personnes que j’aime.





1 Introduction

Refraction is the change of propagation direction that happens to a ray of light when going

from one medium to another one, in which the light travels at different speeds (v1 6= v2), see

Fig. 1.1a. This phenomenon is described by Snell’s law,

sinθ1

sinθ2
= v1

v2
, (1.1)

which was first demonstrated by Sahl back in 984 [1, 2], see Fig. 1.1b. However, lenses that

exploit the refraction to focalize beams of light and produce images have been manufactured

and used since antiquity [3]. Examples of lenses are found in nature for a longer time as eyes

are a vision system based on the principle of refraction.

Even though refraction is a simple and well-understood physics phenomenon, it has played

v1
θ1

θ2

v2

(a) Refraction of a ray of light between two
media in which the light travels at different
speeds. In this example, v2 < v1.

(b) The first proof of the law by Ibn Sahl around
984.

Figure 1.1 – The law of light refraction.
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Chapter 1. Introduction

and still plays a fundamental role in our lives and human history. For example, telescopes

allow us to observe and study the universe, microscopes allow us to observe and study the

microscopic objects such as micro-organism and thus have been a fundamental tool for

biology and medicine.

A refractive microlens is nothing else than a classical lens, but with dimensions in the micro-

range. In a certain sense, refractive microlenses are the most recent and advanced form of

refractive lenses. Typical microlenses have a diameter between 100µm and 1000µm and

a height between 1µm and 300µm. Microlenses can be used individually, but one major

advantage of refractive micro-optics is the possibility to create microlens arrays (MLAs) when

fabricated at wafer-level. A microlens is the smallest possible refractive lens as the diffraction

starts to be significant at smaller dimensions. For light control at a smaller scale, one has to rely

on physical optics and the electromagnetic properties of light, as it is the case for metasurfaces,

for instance.

There is no fundamental difference between a classical lens and a microlens since they both

use refraction to shape beams of light. Besides the dimensions, fabrication and testing meth-

ods are the main differences. One can confidently say that the starting point of refractive

micro-optics technology is the monolithic fabrication method that has been proposed in 1988

by Popovic & al. [4]. However, refractive micro-optics also exists in nature for a long time [5].

Moreover, biological systems are still inspiring engineers for developing new devices [6, 7].

At this point, we should motivate the use of micro-optics. The first reason for the existence of

micro-optics is the general down-scaling trend in technology. For this reason, some means

for controlling the light propagation at the micro range are needed. Another reason is the

capability to create arrays that offer new optical functionalities. Among the main applications

of refractive microlenses, we can mention their role in the following systems: fiber and waveg-

uide couplers [8] for data communication [9], photolithographic systems [10, 11], wavefront

sensors [12–14], and beam shaping systems [15–17]. More recently, refractive microlenses

have been used as a key enabling component in systems such as cameras [18–20], in lighting

systems of cars [21], and in the newly developed augmented/virtual reality displays [22]. All of

these application fields are under thorough research and development.

In the end, all these systems rely on a curved surface, which is spherical or aspheric and which

is the microlens key component. This thesis mainly focuses on such surfaces.

1.1 Purpose of the thesis

The goal of this thesis is to understand and improve the metrology of aspheric refractive mi-

crolenses fabricated at wafer-level. Indeed, it is evident that it is only possible to manufacture

what can be measured, and thus the measurement accuracy poses the fundamental limit of the

achievable microlens quality1. This fact is especially true for refractive micro-optics as the un-

1Throughout this thesis, the term quality refers to the optical performance of a microlens.
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1.2. Background and addressed problems

certainty of the surface measurements is sometimes above the tolerances. As a consequence,

the first goal of this thesis is to assess and improve the accuracy of such measurements.

However, this is not the only limitation of the microlens quality. Indeed, to optimize the

fabrication process, one has, as manufacturers, to link the surface parameters to the process

parameters. When the correlation between the two sets of parameters is not entirely known,

which is the case in reality as the fabrication process is complex, a certain unpredictability

exists, which also limits the possibility of improving the fabrication process.

Finally, establishing the quality of a microlens from surface information is usually not a

deterministic task. Again, the unknown relation between quality and surface, which means a

non-perfect correlation, provokes a certain uncertainty that prevents the perfect knowledge of

the optical performance of a given microlens.

In conclusion, the achievable quality is the combination of these three different uncertainties.

Therefore, the goal of this thesis is to reduce them to improve the quality of the manufactured

microlenses.

At this point, we should emphasize that this work is done in an industrial environment. The

purpose of such research is thus not to improve one particular design and to produce a single

microlens. It is rather to improve the quality of dozens of different microlens designs that

span a large dimensional range and to improve the quality of thousands of microlenses. In

consequence, practical considerations such as time, cost, and simplicity are crucial and drive

the choice of the methods used for fabrication and characterization.

1.2 Background and addressed problems

In this thesis, we focus on aspheric microlenses, which allow a better optical performance

compared to spherical microlens [23]. At SUSS MicroOptics, one fabricates the most common

type of aspheres which are defined as conical surfaces whose sags are expressed by

z = r 2

R

(
1+

√
1− (1+κ) r 2

R2

) , (1.2)

with r 2 = x2 + y2, R the radius of curvature (ROC) at the vertex, and κ the conic constant.

The surface is elliptic (κ ∈ (0,−1)), parabolic (κ = −1) or hyperbolic (κ < −1) and is thus a

generalization of a spherical surface (κ= 0), see Fig. 1.2.

Designing such a surface consists thus of determining R and κ. This task is performed by the

optical designer, who is usually the customer of the manufacturer. In principle, as manufactur-

ers, we do not participate in this process step, we only confirm the feasibility of the microlens

design.

3



Chapter 1. Introduction

rz

κ= 0

κ=−0.4
κ=−1
κ=−2

Figure 1.2 – Illustration of different aspheric profiles defined by a single ROC R < 0 and multiple
conic constants κ.

After the design of a surface is completed, the second step to undertake is tolerancing. Indeed,

a microlens design is not complete if tolerances are not established. This step represents the

major part of the interaction between the designer and the manufacturer. First, it has to be

decided how the quality is assessed, meaning what should be measured. As the manufacturer

is responsible for the quality control, this step is commonly performed through surface

measurements, and for this reason, the surface has to be toleranced. Also, an inevitable

negotiation happens as the manufacturer must propose realistic tolerances and as the designer

always want the smallest tolerances possible.

Once the design and the tolerances are set, the microlens can be manufactured. Many different

techniques exist to fabricate refractive microlenses [24]. Most of them use a substrate, usually

a wafer, and process it to create a curved surface on one side. For this reason, microlenses

are usually a plano-convex, even though curved surfaces can be created on both sides of the

substrate. Usually, microlenses are convex, but concave microlenses also exist.

However, for high volume production, only the techniques that process the microlenses in a

parallel way are suitable [25]. The first introduced and most common technique consists of

the reflow of patterned photoresist cylinders with a subsequent transfer into the substrate by

reactive ion etching (RIE) [4, 26], see Fig. 1.3. As this technique is used at SUSS MicroOptics for

the fabrication of glass (fused silica) and silicon microlenses, this thesis focuses mainly on

this fabrication technique. However, most of the considerations presented in this thesis are

independent of the fabrication technique.

Another fabrication technique is replication by UV-imprint [27, 28]. This technique allows

the fabrication in high volume production of polymer microlenses at wafer-level. Finally, we

can also mention the direct writing [29–31] and micro-machining [32, 33] techniques that

allow the fabrication of more complex surfaces with high accuracy. The drawback of these two

methods is the time needed for fabrication, which prevents them from being used for high

volume production at the moment. However, they can be used to create master templates for

the UV imprint replication process.

To establish a manufacturing process, a certain number of trials are usually necessary. For each
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1.2. Background and addressed problems

(a) (b)

(c) (d)

(e) (f)

Figure 1.3 – Schematic of the microlens fabrication based on resist reflow with a subsequent
reactive ion etching process. (a) A photoresist layer is spin-coated on the wafer. (b) The
photoresist is exposed to ultraviolet radiation. (c) After development, cylinders of resist remain.
(d) The wafer is heated for the resist to melt and form spherical caps by surface tension. (e)
The RIE process transfers the spherical surface into the substrate. (f) Final microlenses.

trial, information about the surface, generally acquired by surface measurements, is required

to provide feedback to optimize the process. This optimization process might seem evident if

the surface deviation from the nominal surface is computed. However, the link between this

quantity and the process parameters, typically the photoresist thickness or gas flows during

the RIE process, must still be quantitatively established. We address this knowledge gap for

the resist reflow with the subsequent RIE fabrication process.

Even if the process is optimized, the quality of the produced microlenses must still be verified

after the surface fabrication. It does exist a list of standards by the International Organization

for Standardization (ISO), ISO-14880 [34–38] that addresses the testing of microlenses, but

it is already old and thus restrained. Indeed, the content of these standards is limited to

low numerical apertures (NAs) and spherical microlenses. At SUSS MicroOptics, the most

common and practical way to characterize microlenses is to measure their surface by optical

surface profilers. The quality of a microlens is then ensured by tolerancing its surface. Ideally,

the tolerances must be well correlated to the optical performance. Otherwise, quality control

may be deficient, or the tolerances must be set too tight, which results in a costly fabrication.

Nevertheless, tolerancing the surface form has not been explicitly addressed for micro-optics

and conical surfaces, and we tackle this problem here.

Instead of measuring the surface to assess the microlens quality, it is also possible to directly

probe the optical functionality. However, as mentioned previously, this operation is not
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Chapter 1. Introduction

standard and approved for aspheric microlenses. Here, we discuss the possibility of using

such an approach for the characterization of high NA microlenses.

The full fabrication process flow, from microlens design to quality assessment, is depicted in

Fig. 1.4.

Surface design 

Tolerancing

Surface 

measurement

Measurement of 

optical functions

Determination of 

tolerance parameters

Sorting

Information for 

process 

optimization

Characterization

Designer task

Manufacturer task

Common process Possible alternative

Fabrication process

Figure 1.4 – Full process flow of a microlens surface fabrication. Once the surface design is
made, i.e. determining the parameters R and κ, the surface can be manufactured. In parallel,
tolerances must be established to determine the quality of the completed microlens. Once
the surface is created, it is measured. Based on this measurement, two tasks are performed:
firstly, information is extracted to provide feedback for process optimization. Secondly, the
measured surface is compared to the tolerances to assess the quality. In red are the steps that
we define as the characterization of the microlens, and this is what we consider in this thesis.
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1.3. Thesis structure

In summary, the problems we address to achieve the goal of this thesis can be synthesized by

the following points:

• Assessment of the optical quality of a microlens based on its surface form and its

corollary, tolerancing the form of the microlens surface.

• Evaluation and improvement of the accuracy of surface measurements by optical profil-

ers.

• Modeling of the fabrication process to link process parameters to surface form.

• Evaluation of the possible characterization based on the measurement of the optical

functionality (wavefront, point spread function (PSF)) in transmission.

As the microlens fabrication process is becoming more and more industrialized, the full

process flow must be characterized and optimized to be more efficient in terms of cost and

time. For this reason, the work presented in this thesis is inevitably quantitative: mathematical

and statistical tools are thoroughly used for modeling purposes. We strongly believe that only

such an approach allows us to push the achievable microlens quality further.

1.3 Thesis structure

Following the schematic Fig. 1.4 and the addressed problems, this thesis is divided into four

core chapters:

In the first chapter, dedicated to tolerancing the surface form of aspheric microlenses, we start

from the basics by deriving Eq. (2.1) from optical principles and show the optical signification

of the geometrical parameters. Using ray optics, we link the surface form to the optical

performance for simple cases to understand how tolerancing should be performed. The

different approaches for tolerancing are then compared for real examples, and practical

guidelines are given.

In the second chapter, we discuss the measurement of the microlens surface by optical

surface profilers. In particular, we show that errors in the measurement appear, especially

when the surface slope is significant. We first investigate these errors and then propose

methods to correct them. We also estimate the accuracy of such measurements by deriving

the uncertainties.

In the third chapter, we model the microlens manufacturing based on photoresist reflow with

a subsequent RIE process. Such modeling is intended to provide quantitative feedback to

optimize the fabrication process. As a practical application and validation, we use the derived

models to improve the uniformity over a large ( > 100mm×100mm) MLA.

In the fourth and final chapter, we discuss the characterization in transmission of high NA
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Chapter 1. Introduction

microlenses whose surface cannot be measured in reflection. Measurement of the PSF and

wavefront are discussed and compared.

Finally, a conclusion summarizes the results presented in this work and discusses how the

goal of the thesis is achieved. An outlook about future work is also given.
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2 Microlens Surface Form Tolerancing

In this chapter, we discuss the process of tolerancing the surface form of aspheric microlenses.

We first review and discuss the existing surface representations. Then, we link the surface

form to the optical performance for simple systems, thus suggesting optimal representations

for tolerancing. Finally, we compare the different approaches for idealized and real systems.

Based on the results, we propose practical guidelines.

2.1 Introduction

The optical characteristics of a plano-convex aspheric refractive microlens are determined by

the form of its curved surface. For this reason, tolerancing effectively the form of such surfaces

is an essential step towards the performance control of microlenses.

The subject of tolerancing the form of optical surfaces is discussed in different works [39, 40]

and is summarized by a series of the ISO standards [41]. However, these approaches have

been mainly created for spherical lenses, and their generalization to aspheric surfaces is rather

general as there are many different ways to define aspheres. In particular, the case of conical

surfaces that we are interested in has not been specifically studied, and for this reason, we

discuss it here in more detail. Another originality of the work presented here is the adaption

of the tolerancing procedure to micro-optics. Even though the operating principle between

classical lenses and microlenses is identical as they both rely on refraction, the fabrication

and the testing methods are very different, and we propose a few adjustments.

Wafer-level optics (WLO) fabrication techniques allow the manufacturing in parallel of up to

tens of thousands of microlenses on a single wafer. An avoidable drawback of the wafer-level

fabrication is that the surface of the individual microlenses cannot be formed independently. It

may happen that over one substrate, there are elements that meet the optical specification and

others that do not. For this reason, it is essential to tolerance effectively wafer-level aspheric

microlenses. Indeed, tighter tolerances than needed results in an unnecessary discarding

of microlenses and an increase in the fabrication cost. Another drawback of wafer-level
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Chapter 2. Microlens Surface Form Tolerancing

fabrication is its difficulty in producing arbitrary surface forms. This is why microlenses are

usually restricted to conical surfaces, which are considered here.

The metrology of the microlenses surface is also different from its macroscopic counterpart.

The surface form measurement of microlenses usually relies on optical surface profilers,

whereas for classical lenses, this operation is mainly based on wavefront deformation mea-

sured by interferometry [42]. This difference leads to slight deviations in the definition of the

surface form tolerances.

The process of tolerancing can be described in two steps. First, a surface form representation,

i.e., a set of parameters that represents the surface form, is chosen. This choice is fundamental:

indeed, if the correlation between these parameters and the optical performance is weak,

then it is difficult to establish the quality of the microlens. To motivate a reasonable choice of

surface representation, we investigate here the link between the optical performance and the

surface form for simple systems by using ray-optics. The second step is an evaluation of the

performance degradation of the optical system as a function of random perturbations of the

surface form. To perform this step as accurately and realistically as possible, we include, as a

manufacturer of wafer-level optics, typical distributions of measured surface form deviations.

Once the optical performance is evaluated for the simulated distribution of microlenses, the

tolerances for each parameter of the surface representation are determined. This step is an

optimization problem since the number of elements that fulfill the optical specification must

be maximized. We address this optimization by using global optimization algorithms. This task

of performance degradation assessment by perturbation simulation is of major importance

when the correlation between the chosen surface representation and the optical performance

is not excellent. On the other hand, if the correlation between surface representation and

optical performance is perfect, this step is useless.

Here, we make the exercise of tolerancing the surface form based on different representations

to compare them. First, for simple systems and then for typical real systems. Based on the

results, we propose guidelines to tolerance effectively aspheric microlenses used in different

optical systems. Moreover, all parameters and terms that are used or introduced are defined

and motivated. It is done to avoid any confusion and to stress the need for standardization in

this domain.

This chapter starts with a discussion about the representation of aspheric surfaces, Section 2.2.

It also includes typical surface form deviations. In Section 2.3, we try to derive ideal surface

form tolerances by linking optical merit functions and surface forms for simple systems. The

comparison between selected surface form representations is made for these simple systems

in Section 2.4 and in Section 2.5 for real micro-optical systems. Discussion of the results, as

well as the general guidelines, are presented in Section 2.6. Finally, conclusions are presented

in Section 5.5.
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2.2. Aspheric surface representation and fabrication

2.2 Aspheric surface representation and fabrication

In this work, by an aspheric surface, we mean a rotationally symmetric conical surface defined

by its sag [43]

z(r ) = r 2

R

(
1+

√
1− (1+κ) r 2

R2

) , (2.1)

with R the ROC, κ the conic constant, and r 2 = x2 + y2 the radial position. In micro-optics,

higher-order surfaces defined with supplementary even polynomials are usually not consid-

ered because of fabrication limitations. The resist reflow produces a spherical cap, and the RIE

process sets the asphericity. However, it is technologically difficult to produce large deviations

from a spherical form, and no other parameters are thus needed to quantify the achievable

surface forms.

2.2.1 Aspheric equation derivation

This section aims to motivate the use of conical surfaces and to link the geometrical parame-

ters, R and κ, to the optical ones, the focal length in particular. To do so, the equation Eq. (2.1)

is derived from optical principles. To start, we consider the case of a plano-convex lens that

focuses a plane wave towards its front focus, see Fig. 2.1.

y

z
fE, f

z0

Figure 2.1 – Plano-convex lens with an effective front focal length fE, f

.

The lens surface z = s(y) is unknown, and we express the optical path difference (OPD) at the

focus by using ray optics and the law of refraction. By convention, the phase at the vertex

position is set to zero. On-axis, at an arbitrary position z0 into the substrate, the phase of the

plane wave is φ0 = knz0, k being the wave number 1 and n the refractive index. Any ray that is

only defined by its y-position ỹ hits the surface at a position
(
ỹ , z̃ = s(ỹ)

)
with a phase

φ=φ0 +kn(z̃ − z0) = knz̃. (2.2)

After the refraction, rays are linear functions y = m(z − z̃)+ ỹ . The slope m is obtained by the

1The wavenumber k should not be confused with the conic constant represented by the Greek letter kappa (κ).
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Chapter 2. Microlens Surface Form Tolerancing

law of refraction and is given by:

m = tan
(
arcsin

(
n sin

(
arctan

(
z̃ ′)))−arctan

(
z̃ ′)) , (2.3)

with z̃ ′ = d s(ỹ)/d y . Thus, the phase of the rays at the front focal position fE, f is:

φ= knz̃ +k
√

ỹ2 + ( fE, f − z̃)2 = k
[

nz̃ + ( fE, f − z̃)
√

m2 +1
]

. (2.4)

The phase of the ray that follows the optical axis is given at the focus by k fE, f . If the lens is

ideal, then the phase of all rays is the same. This gives:

fE, f = nz̃ + ( fE, f − z̃)
√

m2 +1. (2.5)

In the ideal case, m can be rewritten:

m =− ỹ

fE, f − z̃
, (2.6)

and Eq. (2.5) can be expressed as√
( fE, f − z̃)2 + ỹ2 = fE, f −nz̃. (2.7)

This is a standard second-order equation whose solutions are given by

−A±
√

A2 +B ỹ2

B
or by

ỹ2

A+
√

A2 +B ỹ2
, (2.8)

with A = fE, f (1−n) and B = n2 − 1. By identification with Eq. (2.1), we finally obtain R =
fE, f (1−n) and κ=−n2. In other words, an aspheric conical surface focuses perfectly a plane

wave traveling parallel to the optical axis towards its front focus and for any NA within limits

imposed by total internal reflection.

If the plane wave comes from the front side and the light is focused in the substrate, similar

relations can be found: R = n−1
n fsub with fsub the focal length defined from the lens vertex

and κ=−1/n2.

In other situations, when the light is refracted at the two interfaces, a conical surface does

not produce an aberration-free image of an on-axis point source. However, practically, such

surfaces still give good enough results and can be used as a design surface. As the two

analytical examples are two extreme cases, the optimal conic constant value lies in the interval

[−n2,−1/n2].
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2.2. Aspheric surface representation and fabrication

2.2.2 Definition of tolerances

In practice, there is always a deviation from the surface design. Such deviation can be quan-

tified by using different tolerances. ISO 10110-5 proposes a non-exhaustive list of these

parameters. Here, we clarify the definition of some of them in the case of micro-optics and

extend them to the case of conical surfaces.

The microlens tolerancing depends obviously on what quantity is measured, but also on how

it is measured. The measurement of the microlenses surface is commonly performed by

optical surface profilers such as confocal microscopes or coherence scanning interferometers

or by mechanical stylus profilers. All instruments directly provide the surface sag (the z

position). This is different from classical optics, where lens surfaces are usually tested by

interferometry [42, 44]. In interferometric testing, the surface form deviation is measured as

a wavefront deformation and is defined perpendicularly to the surface [41]. For this reason,

all the surface form tolerances established for classical optics, except the sagitta deviation,

are defined to be perpendicular to the nominal surface. In the context of micro-optics, we

propose to reuse most of the terms defined in ISO 10110-5 [41] but to define them to consider

deviations along the z-axis. In our approach, sagitta deviation and surface form deviation are

thus equivalent for microlenses.

Another specificity of micro-optics is the substrate, which is considered to be the reference flat.

In this case, it does not make sense for the tilt to be excluded from the total surface deviation.

An important parameter that has to be redefined for conical surfaces is irregularity. For a

spherical surface, irregularity is defined as the best sphere fit residual. Consequently, it is the

component of the surface form deviation that cannot be compensated by refocusing [45]. For

this reason, we propose to keep the term irregularity for the surface deviation from the best

aspheric fit with the ROC R as a fit parameter but with the conic constant κ being fixed at its

nominal valueκn . Indeed, only a deviation of ROC can be compensated by refocusing, whereas

a deviation of conic constant provokes spherical aberration that cannot be compensated. We

propose to use the term aspheric irregularity for the similar case where κ is also considered as

a variable of the fit. Similarly, we also define the irregular slope deviation root mean square

(RMS) that is not defined in ISO 10110-5. All these quantities are summarized in Table 2.1.

This list is not exhaustive and may be completed when needed.
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Chapter 2. Microlens Surface Form Tolerancing

Table 2.1 – Explanation of the terms used in this thesis. Most of them are inspired by ISO
10110-5, but deviations are always computed along the z-axis. The variables X ,Y , and Z
represent the position of the surface vertex, which is, by definition of Eq. (2.1), positioned at
(0,0,0).

Surface form tolerance Nomenclature Fit variables
total surface deviation RMS RMSt X ,Y , Z

irregularity RMS RMSi X ,Y , Z ,R
aspheric irregularity RMS RMSai X ,Y , Z ,R,κ
total slope deviation RMS RMSt∆S X ,Y , Z

irregular slope deviation RMS RMSi∆S X ,Y , Z ,R

2.2.3 Fabrication methods and typical surface form deviations

As previously mentioned, when the correlation between the optical merit function and the

chosen tolerances is not ideal, which is usually the case in practice, it is important to simulate

perturbations of the surface form that are as close as possible to reality to assess the perfor-

mance degradation. When the simulation does not correspond to reality, there is a risk of two

failures. Firstly, the performance degradation is overestimated, which leads to tolerances that

are too tight. Secondly, the inverse, the degradation is underestimated, with the consequence

that the optical system does not work correctly.

For this reason, we provide two examples of surface form deviation. For a qualitative assess-

ment, these surface deviations are decomposed into Zernike polynomials [46]. Figure 2.2

presents typical surface form deviations produced by the photoresist reflow with the subse-

quent RIE process fabrication method. One advantage of this fabrication method is that the

produced surfaces mainly consist of low spatial frequencies, and thus the 30 first Zernike

polynomials are usually sufficient for accurate modeling. The remaining RMS value of the

Zernike representation (roughness) is typically a few nanometers and is thus negligible. The

distribution in Fig. 2.2 is obtained by measuring the surface of 300 microlenses in silicon

(diameter 2a = 480µm,R = 525µm,κ=−2.5) with a confocal microscope. Defocus is clearly

the main component of the surface form deviations. We explain this by the non-uniformity of

the etching chamber, and we can correct it as discussed in [47] and Section 4.4. The measured

second and third orders have a quasi null value, which confirms that the microlenses are not

tilted.

Figure 2.3 presents the same distribution but for polymer microlenses replicated by UV imprint

on a glass substrate (2a = 790µm,R = 1043µm,κ = −0.4). The same main conclusions can

be done: defocus is the main component, and tilt is negligible. However, we note that the

amplitude of the deviation is lower in this specific example.

These measured surface form deviations can be used to create a random distribution of

surfaces during the tolerancing process.
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Figure 2.2 – (a) Zernike representation of the surface form deviation for a typical measured
distribution over one wafer of silicon microlenses manufactured by reactive ion etching. Value
is given as the distribution average. Error bars half-length is one standard deviation. Indexing
follows Noll’s convention [48]. It is seen that process non-uniformity is mainly translated into
a spread of focal lengths. (b) Zernike representation of the surface irregularity.
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Figure 2.3 – (a) Zernike representation of surface forms deviation for a typical measured
distribution over one wafer of replicated microlenses manufactured from a resist reflow
template. Value is given as the distribution average. Error bars half-length is one standard
deviation. Indexing follows Noll’s convention [48]. (b) Zernike representation of the surface
irregularity.

2.2.4 Simulated distribution of microlenses

The Zernike representation of the surface form deviation allows us to simulate the pertur-

bations to perform tolerancing. Indeed, the coefficient of each Zernike polynomial can be

assumed to be a random variable with a particular distribution. The uniform distribution is

chosen here instead of the normal distribution because it is considered to be more conserva-

tive [45].
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Chapter 2. Microlens Surface Form Tolerancing

In this chapter, we construct a perturbation distribution that mimics the distribution in

Fig. 2.2a because this thesis focuses on the photoresist reflow with the subsequent RIE process

technique. The designer should, however, use the most realistic distribution for its product.

To create this distribution, we consider only the Zernike orders 4 to 30. Also, for simplicity, we

assume that all random variables (coefficients) are independent. We also assume that they all

have the same uniform distribution with a mean of zero. The only exception is the defocus,

which is assumed to have a standard deviation 8 times higher, see Fig. 2.4.
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Figure 2.4 – Zernike representation of the simulated surface form deviations used in this
chapter. The coefficients are independent uniform random variables, and the error bars half-
length is one standard deviation of the distribution. Indexing follows Noll’s convention [48].

In order to obtain perturbations with increasing amplitudes, for each trial, only the relative

value of the coefficients is used. Each coefficient is then normalized to produce a surface form

deviation with the desired RMS value.

It has to be stressed again that the choice of the distribution only matters when the correlation

between the surface form tolerances and the optical figure of merit is weak. In this case, the

optical designer is encouraged to get an insight into typical surface form deviations from the

manufacturer.

2.3 Surface form deviation and optical performance

To link the lens surface form and the lens optical performance, we first have to establish what

is usually the optical performance. Among the most popular optical figure of merit (FOM), we

can mention [49] the RMS spot size, the modulation transfer function (MTF), the wavefront

aberration, and the Strehl ratio. Here, we consider the RMS spot size and the RMS wavefront

aberration depending on the desired optical quality of the microlens.

In this section, we restrict our discussion to the case of a plane wave focused on-axis. This

restriction is motivated by several reasons: firstly, because important applications of mi-

crolenses are on-axis systems such as fiber coupling or beam shaping. Secondly, it is a simple
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2.3. Surface form deviation and optical performance

case that allows analytical derivations and consequently offers an excellent platform to discuss

concepts. Finally, it can be seen as the starting point for an off-axis focusing description, when

the latest is considered to be a perturbation of the on-axis case, which is reasonable for small

angles. The off-axis case is nevertheless considered in Section 2.5.2.

The optical systems considered in this section and in the next one, Section 2.4, are depicted

in Fig. 2.5. Typical geometrical parameters are chosen for the microlens. As defined in ISO

14880-1 [34], they are: diameter 2a = 300µm, ROC R = 500µm, conic constant κ=−2.25 or

κ=−0.54, refractive index n = 1.5 and substrate thickness T = 500µm.

)

5E, 5

(a) Front side focusing

)

5E,1

(b) Back side focusing

Figure 2.5 – Schematic of the optical systems considered in Sections 2.3 and 2.4. A plane wave
is focused on-axis by a microlens towards its front side (a) or its backside (b). The microlens
parameters are: diameter 2a = 300µm, ROC R = 500µm, refractive index n = 1.5 and substrate
thickness T = 500µm. Conic constant optimal value is κ=−0.54 for backside focusing and
κ=−2.25 for front side focusing.

2.3.1 Ideal aspheres

First, we focus on "ideal" aspheres. This means aspheric surfaces whose ROCs and conic

constants deviate from their nominal values but without any irregularity. This makes the

situation easy to work with because the surface is defined by only 2 parameters and allows for

a graphical representation.

In this example, the figure of merit is chosen to be the on-axis RMS spot size. It is calculated as

a function of R and κ for the system considered in Fig. 2.5b. Figure 2.6a presents the results

without focus compensation. The RMS spot size is almost constant along a diagonal in the

R/κ space. By looking at Fig. 2.6e, we observe that the RMS spot size is mainly a consequence

of defocus, which seems to be a linear function of ∆R and ∆κ. In the next section, we confirm

this linear relation and show how to derive it. A change of conic constant thus provokes a

defocus on top of spherical aberration. For this reason, the RMS spot size provoked by a

change of ROC can be partially compensated by a change of conic constant. Finally, Fig. 2.6c

shows that RMSt is well correlated to RMS spot size in this particular case.
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Figure 2.6 – RMS spot size with and without focus compensation as well as different surface
form tolerances for ideal aspheres in the range R = 500±20µm and κ=−0.54±1. It is seen
that RMS spot size is well correlated with RMSt and Zernike defocus c4. Likewise, if focus
compensation is used, RMS spot size is well correlated to RMSi and Zernike primary spherical
c11. The relation between these parameters can be mathematically explained.

With focus compensation, see Fig. 2.6b, the RMS spot size becomes almost uniquely a function

of the conic constant. This is explained by the fact that the level of spherical aberration is

uniquely defined by the conic constant deviation, see Figure 2.6f. Finally, Fig. 2.6d shows that

RMSi is well correlated to RMS spot size in this particular case.

These results lead to ways of tolerancing ideal aspheres: for systems without focus compensa-

tion, because the defocus is a linear function of∆κ and∆R , tolerances of the form R = Rn ±∆R

and κ = κn ±∆κ are inefficient. Graphically, this can be seen by the fact that the tolerance
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2.3. Surface form deviation and optical performance

bands can only represent a rectangle in the R/κ space, which cannot fit the diagonal observed

in Figs. 2.6a, 2.6c and 2.6e. Different ways are possible to increase the tolerancing efficiency:

tolerance RMSt or tolerance c4 and c11 at the same time, meaning constructing a trapezoid in

the R/κ space. Another option is to create a function of R and κ that can be used to perform

the tolerancing.

It is interesting to note that, for systems with focus compensation, tolerances of the form

R = Rn ±∆R and κ= κn ±∆κ are efficient. Indeed, the optical performance is well correlated

to the conic constant.

Relation between R, κ, and Zernike defocus coefficient c4

To qualitatively understand the results about ideal aspheres, we investigate the link between

three parameters: R, κ, and Zernike defocus coefficient c4. To allow analytical derivations, we

consider the Taylor expansion of Eq. (2.1) to the 4th order:

z(r ) ∼ 1

2R
r 2 + (1+κ)

8R3 r 4. (2.9)

For a microlens with R =500 um, 2a = 300µm and κ=−0.54, the RMS value of the difference

between the Taylor expansion and the complete expression is 1.2 nm. This is acceptable for

tolerancing purposes when small perturbations of the surface are considered.

The defocus c4 is given by the scalar product of the defocus polynomial expression and the

aspheric formula. The scalar product is the integral over a unit disk, and for this reason,

the variable change r = a% is made, a being the semi-aperture and % the normalized radial

position. This is expressed by

c4 =
∫ 2π

0
dθ

∫ 1

0
d%

√
(3)

(
2%2 −1

)( a2

2R
%2 + (1+κ)a4

8R3 %4
)

. (2.10)

And after integration, by:

c4 =
πa2

15R
+ 3π(1+κ)a4

140R3 . (2.11)

Again, it has to be stressed that we are interested in small perturbations, thus in the differential

form of this equation which reads,

c4 =
(
− πa2

15R2
n
− 9π(1+κn)a4

140R4
n

)
δR + 3πa4

140R3
n
δκ. (2.12)

The subscript "n" is here to stress that we consider a deviation from the nominal surface.

Defocus is thus a linear function of δR and δκ, which is confirmed in Fig. 2.6e. This means

that a change of radius of curvature can be compensated by a change of conic constant. This

also means that if a lens suffers from spherical aberration, it is possible to reduce it by slightly

moving the lens out of its paraxial focus.
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Chapter 2. Microlens Surface Form Tolerancing

What is also interesting to look at is the amount of information carried by R and κ that is

actually supported by c4. To do so, we calculate the projection of the 4th order in Eq. (2.9) on

c4. Because this is independent of the vector length or polynomial coefficient, it is given by:

cos(θ) = 〈x2, x4〉
|x2| |x4| =

p
45

7
≈ 0.96. (2.13)

This shows that defocus contains most of the information represented by R and κ. This

explains why, in Fig. 2.6, the RMS spot size, RMSt, and c4 have an excellent correlation.

This fact and Eq. (2.12) are a justification for the fact that R and κ should not be toleranced

independently when refocusing cannot be performed.

2.3.2 Arbitrary aspheric surface forms

The surface of a microlens needs an infinite number of parameters to be defined, or practically,

a high enough number of coefficients for a given accuracy. An intuitive approach to tolerance

arbitrary surface forms would be to transfer the methods discussed for ideal aspheres and

to tolerance the aspheric irregularity, which is the deviation from the best asphere fit, R and

κ being fit parameters, see Table 2.1. This approach, which one commonly encounters in

practice as manufacturers, is compared to others in the next section, Section 2.4.

Another option is to express the optical figure of merit (FOM) as a function of the surface and

investigate the link between surface form deviation and optical performance degradation.

Unfortunately, this is impossible in practice for most cases because the merit function cannot

be analytically expressed as a function of the surface. An exception is the case of a plane wave

focused towards the front focal spot of a plano-convex microlens, see Fig. 2.5a, when the FOM

is represented by the geometrical lateral aberration (spot size) or by the wavefront aberration.

These two cases are treated here consecutively.

RMS spot size

To start the investigation, we note that when the lens surface z = s(y) is optimized, all rays

have zero lateral aberration u at the focal spot z = fE, f . As in Section 2.2.1, a ray is defined

only by its y position ỹ when collimated and by a linear function, y = ỹ +m(z − s(ỹ)), after

refraction. In this ideal case, all rays thus satisfy the following condition:

υ≡ ỹ +m( fE, f − s) = 0. (2.14)

Now, a real surface has a certain surface form deviation, which is usually small compared to

the nominal surface itself. One can take a first-order perturbative approach and rewrite the

previous equation:

υ+δυ= ỹ + (m +δm)( fE, f − (s +δs)) ≈ y +m( fE, f − s)+δm( fE, f − s)−mδs. (2.15)
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2.3. Surface form deviation and optical performance

By identification, when the second orders are neglected, the lateral aberration at the focal spot

is given by:

δυ≈ δm( fE, f − s)−mδs ≈ (n −1)δs′( fE, f − s)− (n −1)s′δs, (2.16)

with s the microlens sag, δs the surface form deviation, s′ the slope, δs′ the slope deviation, n

the refractive index and fE , f the effective front focal length. Typical values for these parameters

are: |s| < 30µm, |δs| < 1µm, |δs′| < 50 mrad, |s′| < 0.5 rad, and fE , f ≈ 1000µm. This means

that the first term,

δυ≈ (n −1)( fE, f − z̃)δs′, (2.17)

is usually the most significant and because fE , f À s, it can be assumed to be a linear function

of δs′. This reads

δυRMS ∝ δs′RMS . (2.18)

This suggests that the slope deviation should be toleranced, as already mentioned by ISO

10110-5. This is confirmed in Fig. 2.7a, which shows the excellent correlation between the on-

axis RMS spot size and the slope deviation RMS for the simulated distribution of microlenses

defined in Section 2.2.4 above.

Likewise, Figure 2.7b presents the RMS spot size as a function of the irregular slope deviation

RMS for the same distribution of microlenses, but when defocus is compensated. In this case,

the correlation is not as good as before. This is likely because the fit parameter R and focus

compensation do not exactly represent the same degree of freedom.
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Figure 2.7 – On-axis RMS spot size as a function of slope deviation for the simulated distribu-
tion of surfaces as described in Section 2.2.4. Without focus compensation, the correlation
between RMS spot size and total slope deviation RMS is almost perfect, thus suggesting that
the total slope deviation RMS might be a powerful surface form tolerance. With compensation,
the correlation between irregular slope deviation and RMS spot size is less good but still a
right candidate for tolerancing.
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Wavefront aberration

Following the same idea, it is possible to perform a perturbative approach to approximate the

wavefront aberration for the same optical system. We start by considering the phase at the

vertex plane for a ray ỹ . Using optical path length, see Section 2.2.1, it is written:

φ= ks
(
n −

√
m2 +1

)
. (2.19)

In the case of the paraxial approximation, all the trigonometric functions are linearized and

m ≈ (n −1)s′. Also, if the square root is replaced by its Taylor expansion, the phase becomes

φ= k(n −1)s

(
1− n −1

2
s′2

)
. (2.20)

Now the wavefront aberration can be approximated by the total differential: δφ≈ ∂φ
∂s δs+ ∂φ

∂s′δs′.
Finally, the wavefront aberration is explicitly given by

δφ≈ k(n −1)

[(
1− n −1

2
s′2

)
δs − (n −1)ss′δs′

]
, (2.21)

which is a function of the surface form deviation δs, of the slope deviation δs′, but also of the

surface s and its derivative s′. In this case, the dominant term is k(n −1)δs, which is nothing

else than the phase change produced by a thin element of thickness δs [50]. This suggests

that for small surface form deviations, RMSt (or RMSi if focus compensation is assumed) may

be used to tolerance the surface form when the optical performance is represented by the

wavefront aberration RMS.

2.3.3 Microlens arrays

Tolerancing a MLA is a bit different than tolerancing a single microlens. Indeed, the fabrication

process produces inevitable inhomogeneities with the consequence that the forms of the

microlenses are slightly different across the array. In particular, the focal lengths of the

individual microlenses are different. If the system allows for focus compensation, only the

average defocus can be compensated. Consequently, a tolerance has to be set to control this

non-uniformity. If no compensation is available, uniformity does not need to be controlled,

and all microlenses should be compared to the nominal surface.

A second inhomogeneity that appears during the MLA fabrication provokes an edge effect.

It means that the surfaces of the microlenses at the MLA edge are slightly different from the

rest of the array. As a manufacturer, one observes this edge effect in UV imprint and RIE

techniques. This edge effect depends on different factors, for instance, on the gap between

the microlenses or on their positions on the wafer. As this effect is unavoidable, a solution to

attenuate its impact is to put dummy microlenses or structures outside the effective active

area of the MLA.

22



2.4. Comparison between different surface form representations

Figure 2.8 presents the ROC non-uniformity within an MLA that consists of a single row

of 32 spherical microlenses. Microlens parameters: diameter 2a = 940µm, R = 3845µm.

Fabrication non-uniformity, as well as edge effect, can be observed. Knowing these effects

helps to tolerance effectively.

Edge effect
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Figure 2.8 – Example of ROC non-uniformity across an MLA of 30 mm length manufactured
by resist reflow and reactive ion etching. Microlens parameters: diameter 2a = 940µm, R =
3845µm. A non-random non-uniformity - average linear trend - is observed. Edge effect
caused by symmetry breaking of the layout, a missing neighbor microlens, is also seen.

2.4 Comparison between different surface form representations

An ideal tolerancing process is a method that accepts all the elements that respect the spec-

ification on the optical performance and which rejects all the out-of-spec elements. This

is, however, impossible to achieve in practice. Thus, to quantitatively evaluate the different

surface form representations, which we define to be the set of parameters and surface form

tolerances to which tolerances are assigned, we introduce the notion of tolerancing efficiency.

We define this quantity to be the ratio of the number of elements that are within the tolerances

to the number of elements that are optically in-spec. This definition makes sense only if

there is, at the same time, control of the out-of-spec elements that lie within the tolerance

bands (false positive). Here, we adopt the convention that consists of rejecting all out-of-spec

elements.

In this section, we want to compare different surface representations; it means we want to

compare their tolerancing efficiencies. To do so, we have first to establish the tolerances for

the selected surface form representations. Here, we perform the process of tolerancing as

follows: we first simulate a distribution of microlenses, see Section 2.2.4, that is supposed

to represent well the potentially manufactured microlenses. Then, for a given surface form

representation, the tolerances are found for each parameter. We restrict ourselves to finding

tolerances for each parameter independently and in a symmetrical form for non zero target

values (e.g. R ±∆R, RMSi < Threshold,...).
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Chapter 2. Microlens Surface Form Tolerancing

Mathematically, the problem is to determine the tolerance bands which maximize the number

of accepted elements under the constraint that all elements within the tolerance bands must

be optically in-spec. When the surface representation consists of a single parameter, this can

easily be done by hand. However, when using multiple parameters, finding the tolerances

becomes an optimization problem in a multidimensional space that may have a multitude

of local optima. Global optimization methods are thus needed. Here, we use both a genetic

algorithm [51] and simulated annealing [52] to find the optimal tolerances. The optimization

run is done several times with both techniques to increase the chance of finding the global

optimum. Any additional constraint that the manufacturer may set, for instance, a minimum

tolerance of 1% on the ROC value, can directly be integrated into the global optimization

process.

Then, the comparison of the different surface representations is made for the following case:

the merit function is the on-axis RMS spot size of the system presented in Fig. 2.5b. Practically,

a distribution of 2500 simulated microlenses is considered. Their total surface deviation RMS

ranges from 0 nm to 1000 nm. First, no focus compensation is assumed. Arbitrarily, elements

with a RMS spot size smaller than 15µm are considered to meet the optical specification.

Tolerances for selected representations are given in Table 2.2 as well as their tolerancing

efficiency. The definition of the different parameters is found in Table 2.1. A first simple

approach is to tolerance RMSt, but its efficiency is only 54.9%, which is the lowest in this

test. Another representation with a single parameter is the total slope deviation. As shown in

Section 2.3.2, this parameter is well correlated to the on-axis RMS spot size, which we consider

here as our figure of merit. This is confirmed since the efficiency is 100%, which makes it

the best approach for this specific case. The representation based on R and RMSi gives an

efficiency of 80.9%. The approach based on the generalization of ideal asphere with additional

RMSai has an efficiency of 74.0%. As expected, it should not be used in such a case. Replacing

R and κ by defocus and using the RMS of the surface form deviation without the defocus

component, RMS∗, allows for an improvement of ∼ 9%, giving an efficiency of 82.6%.

Table 2.2 – Comparison between selected approaches for tolerancing aspheric surfaces used
in the setup presented in Fig. 2.5b. No focus compensation is considered. RMS∗ is the RMS of
the surface form deviation without the defocus component. The total slope deviation RMS,
thanks to its good correlation to RMS spot size, see Eq. (2.18), has an efficiency of 100% and is
the best approach.

Parameters RMSt RMSt∆S R / RMSi R/κ / RMSai c4 / RMS∗

Tolerances <332 nm < 31 mrad
±41.5µm ±76.7µm ±0.56µm

< 303 nm
±4.64 <310 nm< 242 nm

Efficiency (%) 54.9 100.0 80.9 74.0 82.6
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Some lessons can be learned from these results: firstly, RMSt is not an efficient parameter,

at least when we consider microlens far from the diffraction limit. Secondly, the total slope

deviation RMS is ideal for tolerancing systems whose performance is well described by the

RMS spot size. Thirdly, as already mentioned, the conic constant should not be toleranced

together with the ROC when no focus compensation is considered. Finally, increasing the

number of parameters, for instance, from R/RMSi to R/κ/RMSai, does not necessarily increase

the efficiency.

The same example is considered when focus compensation is assumed. We arbitrarily fix

that elements with a RMS spot size smaller than 10µm meet the optical specification. The

results are provided in Table 2.3. Most of the conclusions drawn in the case without focus

compensation are also valid in this case: RMSt has a low efficiency of 45.5% and should not be

used. This was expected because it is the only representation that does not take into account

the degree of freedom provided by the focus compensation. The representation based on

slope deviation is again the most efficient even though it has only 86.9% of efficiency this time.

All remaining representations are pretty equivalent in this case and of lower efficiency.

A few more points need to be discussed: one might think that increasing the number of

parameters increases the tolerancing efficiency, but this is correct only if the parameters are

independent, which is incorrect for a given representation as the parameters are derived from

the same fit. Also, for a high number of parameters, the tolerancing procedure becomes more

complicated because of the global optimization process. Increasing the number of parameters

to increase the tolerancing efficiency should thus be done very carefully.

Also, on a single wafer, microlenses do not have RMSt from 0 nm to 1000 nm, but are more

condensed around a specific value. The entire wafer can be largely in-spec, and the repre-

sentation choice has no real importance. It may also happen that the microlens distribution

center is not far from the spec limit, and in this case, the representation choice is even more

critical than in the presented example.

Table 2.3 – Comparison between selected approaches for tolerancing aspheric surfaces used
in the setup presented in Fig. 2.5. Focus compensation is considered. RMS∗ is the RMS of
the surface form deviation without the defocus component. Again, the slope deviation based
representation is the best approach even though it has no more 100% of efficiency.

Parameters RMSt R / RMSi∆S R / RMSi R/κ / RMSai c4 / RMS∗

Tolerances <237 nm
±39.1µm ±39.1µm ±45.7µm ±0.49µm

<18 mrad < 233 nm
±3.34 < 233 nm< 233 nm

Efficiency (%) 45.5 86.9 77.1 77.6 75.9

25



Chapter 2. Microlens Surface Form Tolerancing

2.5 Applications to real systems

The complexity of real systems comes from different features: first, from the illumination. For

instance, the apodization might be non-uniform, and the incoming light may have a certain

angular spectrum. On-axis considerations need thus to be generalized. It also comes from the

physical model needed to propagate the light: physical optics may be required. Finally, more

complex FOMs, such as the coupling efficiency into a waveguide, might also be considered.

To show the impact of such advanced considerations, we present two examples inspired by real

systems. The first one, presented in Section 2.5.1, presents a microlens that couples an on-axis

Gaussian beam into a single-mode fiber (SMF). The second example, found in Section 2.5.2,

presents the case of an MLA that acts as a projector. It is an off-axis example.

2.5.1 Fiber coupling

One major application of refractive microlenses is to couple light into waveguides and optical

fibers. Aspheric microlenses can do it perfectly in theory [8]. Here, we consider a collimated

Gaussian beam that is coupled into a standard single-mode fiber (Cornell SMF-28), see Fig. 2.9.

The microlens is in fused silica and its geometrical properties are: diameter 2a = 500µm,

ROC R = 600µm, conic constant κ = -0.49 and substrate thickness T = 500µm. The light

wavelength λ is 1.55µm. In this configuration, the optimized coupling efficiency is 95 %.

Gaussian
beam

Figure 2.9 – Schematic of a collimated Gaussian beam coupled into a single-mode fiber. In
order to achieve a good coupling efficiency, the microlens has to be actively aligned.

Fiber coupling imposes tight tolerances, and active focus compensation is usually performed.

For this reason, we only compare representations that take into account this degree of freedom.

Based on the results of Table 2.3, we consider irregularity RMS and irregular slope deviation

RMS for the tolerancing. In order to go one step further, the apodization should be considered

as well. For this reason, we also weight the RMS value of the surface form tolerances according

to the beam apodization.

The coupling efficiency is calculated for a simulated microlens distribution, as described in

Section 2.2.4. The calculation is done with the software FRED from Photon Engineering [53].

We decide to set the optical specification to be a reduction of the coupling efficiency of less

than 20%. Tolerances are found according to the procedure described in Section 2.4.

The results of this tolerancing process are presented in Table 2.4. RMSi provides a better
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tolerancing efficiency than RMSi∆S in this case. For this reason, we also use this representation

with a Gaussian weight. As expected, the tolerancing efficiency is increased in this case.

Figure 2.10 shows how the correlation between coupling efficiency and RMSi increases when

weighted according to the beam apodization.

In conclusion, for fiber coupling, a simple and efficient way to tolerance a microlens is to use

the ROC and the irregularity RMS with a weight that corresponds to the beam apodization.

Table 2.4 – Comparison between selected approaches for tolerancing aspheric surfaces of
microlenses used for fiber coupling, see Fig. 2.9. In this case, the RMSi gives better results
than RMSi∆S. As intuitively expected, weighting the surface form to mimic the apodization
increases the tolerancing efficiency.

Parameters R / RMSi∆S R / RMSi R / RMSi weighted

Tolerances
±57.2µm ±57.2µm ±52.9µm
<11.7 mrad < 341 nm < 306 nm

Efficiency (%) 72.3 84.7 91.3
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Figure 2.10 – Reduction of the coupling efficiency as a function of RMSi and weighted RMSi.
With a Gaussian weight, the correlation between coupling efficiency and RMSi is increased,
allowing a more efficient tolerancing process, see Table 2.4.

2.5.2 Micro-projector

One recent application of MLAs is pattern projection [54, 55]. The working principle is pre-

sented in Fig. 2.11. A chromium layer buried in the substrate is illuminated and imaged at

infinity by a projection microlens. This operation is performed in parallel by every microlens

through the MLA. The final projection is thus the sum of the single projections.

From a design and tolerancing point of view, such a system can be described using backprop-
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Figure 2.11 – Representation of a single channel of a micro-optical array projector. A chromium
pattern buried in the substrate is imaged at infinity and can thus be projected on a screen.
The final image is the superposition of the projection of all channels. Microlens properties are:
diameter 2a = 300µm, ROC R = 500µm, conic constant κ = −0.44, refractive index n = 1.5
and substrate thickness T = 1477µm.

agation: the microlens is illuminated by plane waves with different angles and imaged on

the chromium layer, which lies in the focal plane of the microlens. Because of the angular

spectrum, the imaging is performed within a certain field of view and not only on-axis. If the

angular spectrum is large, images in the field cannot be diffraction-limited, and aberrations

are mainly geometrical. In this case, it is advised to take the RMS spot size as the performance

metric. Practically, the merit function should be the average RMS spot size over the field of

view.

For each angular component, the RMS spot size is computed with respect to the RMS spot

centroid produced by the nominal surface. The system distortion is thus not taken into

account. This is not a limitation for such a projection system since this distortion can be

compensated in the chromium pattern design. However, such systems are not compensated

for defocus due to fabrication and utilization constraints. Microlens properties are: diameter

2a = 300µm, ROC R = 500µm, conic constant κ=−0.44, refractive index n = 1.5 and substrate

thickness T = 1477µm.

The average RMS spot size is computed for the simulated microlens distribution, as explained

in Section 2.2.4. Here, we are interested in generalizing the results obtained for the on-axis

system. For this, the average RMS spot size is compared to the total surface deviation RMS

and the total slope deviation RMS. The results are presented in Fig. 2.12. As for the on-axis

system, the correlation between RMSt and average RMS spot size is poor, whereas the total

slope deviation RMS is extremely well correlated to the average RMS spot size.

In conclusion, these results show that the off-axis case can be handled similarly to the on-axis

case. In particular, the total slope deviation RMS is also a very efficient parameter to tolerance

microlens surfaces used in off-axis optical systems whose performance is well described by

the RMS spot size.
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Figure 2.12 – RMS spot size averaged over the full field of view as a function of the total surface
deviation RMS and of the total slope deviation RMS for the simulated distribution of surface
described in Section 2.2.4. Like for the on-axis case, the correlation between the RMS spot size
and the total slope deviation RMS is excellent.

2.6 Discussion

Application domain of the results: In this thesis, we focus on rotationally symmetric surfaces.

However, the results of this work can be extended without problem to circular and non-circular

cylindrical microlenses. Nevertheless, the useful tool that is the Zernike polynomials cannot

be used anymore. Historically, because of fabrication process limitations, microlenses have

been limited to spherical or conical surfaces. Nowadays, thanks to micromachining and

imprint technology as well as direct writing techniques, it is also possible to manufacture

freeform surfaces. Going from spherical to aspheric surfaces requires an additional parameter:

the conic constant. For freeform surfaces, a high number of parameters might be required,

or the surface may not even be defined by an explicit equation. In these situations, certain

surface form tolerances such as irregularity are no more defined nor relevant. Also, a freeform

surface has, by definition, a more complex optical function than a classical lens and cannot

be reduced to a focusing element. For all these reasons, tolerancing freeform surfaces is out

of the scope of this work even if some of the presented conclusions, notably that the slope

deviation is an effective tolerancing parameter, could probably be applied to such complex

surfaces.

Guidelines: Some conclusions can be drawn from the results presented in this chapter. The

first one is that the parameters used for the surface design, R and κ in the present case, are

not necessarily the best ones for tolerancing, see Fig. 2.6 and Tables 2.2 and 2.3. Indeed, the

slope deviation RMS is demonstrated to be a more effective surface form tolerance in many

situations and should be used.
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A second lesson, as it is seen in Table 2.2, is that tolerancing the conic constant might be

inefficient. This is explained by the strong correlation between R and κ. Moreover, the Zernike

representation of the surface form deviation presented in Fig. 2.2a does not show that Zernike

spherical coefficients, which represent the asphericity set by the conic constant, have larger

amplitudes than any other specific coefficients. This suggests there is no reason why c11 or κ

should be specifically toleranced. In conclusion, the approach of tolerancing R, κ, and RMSai

should be avoided.

We have to mention that these recommendations are not specific to micro-optics. Indeed,

similar conclusions have been derived for classical lenses [40, 45, 56]. This is not surprising

since, in both cases, the light is mostly shaped by means of refraction.

ISO standards about surface form tolerances have not been developed or adapted for mi-

crolenses nor conical surfaces. In this chapter, we show some of the differences between

micro- and classical optics and why it is difficult to use the exact ISO definitions for aspheric

microlenses. The lack of standards might be an obstacle for the communication between

the manufacturer and the designer as most surface form tolerances have to be redefined

and clarified. We also want to stress this problem and to advocate an extension of the ISO

standards to micro-optics. As the tolerances we propose here as an alternative are, however,

not fundamentally different from the ISO standards, they could be the first step towards such

an extension.

Tilt and centering tolerances: In this chapter, we focus on surface form tolerancing. However,

other microlens geometrical features also influence the optical performance, and we also want

to discuss them.

First, the tilt of the microlens. Because of the wafer-level fabrication techniques, there is

always the substrate flat-area around a single microlens or an MLA. An implicit assumption

that is motivated by the flatness of wafers is to consider this flat area as being perpendicular to

the optical axis. Based on this, the tilt can be either toleranced or included in any surface form

deviation. However, by looking at the Zernike representation of the surface form deviation

provided in Figs. 2.2 and 2.3, the tilt is, in practice, usually negligible compared to other

aberrations.

Secondly, the microlens centering. This is especially important for single microlenses that are

not actively aligned or for MLAs. Particularly, this is of uttermost importance for MLAs that

couple light simultaneously in multiple waveguides. Centering accuracy is dictated by the

photomask for RIE microlenses, by the template for their imprint counterparts, and by the

fabrication process local variation. As already mentioned in Section 2.3.3, an edge effect exists

in MLA and also impacts the pitch, see Fig. 2.13. We observe that the first and last pitches

have slightly different values. As already mentioned for ROC, this demonstrates the need for

dummy microlenses/structures to prevent this edge effect.
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2.6. Discussion

A last important parameter is the thickness of the microlens substrate T . The effect of thickness

variation can be evaluated by the definition of the effective back focal length,

fE,b = R

n −1
− T

n
. (2.22)

A thickness variation thus mainly provokes a focal change. Thickness tolerance should thus be

coupled to a defocus tolerance, e.g. to a ROC tolerance.
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Figure 2.13 – Measured pitches within a 9 columns 1 row MLA. The microlens diameter
is 245µm, and the nominal pitch value is 250µm, so the gap between the microlenses is
5µm. Expanded uncertainty estimated from optical surface profiler calibration is ±0.375 nm.
The first and last pitches are clearly larger than the other ones. This is explained by local
inhomogeneity of the RIE process caused by symmetry breaking in the MLA layout.

Tolerancing and machine learning: Besides the challenges of surface form representation

determination, and of tolerances determination, there is one more assumption that limits the

effectiveness of the tolerancing procedure: the independent tolerancing of the parameters.

This is highlighted for ideal aspheres without focus compensation: the problem is not the

choice of the parameters R and κ, because, by definition, the surface is entirely defined by

them, but the independent tolerancing of these parameters. As suggested, tolerancing the

correct function of R and κ could solve this problem. However, finding such a function would

be difficult in a higher-dimensional space.

A tolerancing process is nothing else than a classification problem. An efficient way to address

such a problem is by using machine learning methods [57], which could take care of the

challenges mentioned above: determination of an optimal surface representation and deter-

mination of the optimal decision boundaries (tolerances). By using deep learning methods,

input data could be in basic shape: for instance, Zernike coefficients or even meshed surfaces,

like images that feed convolutional neural networks (CNNs). In these cases, however, the set

of training data has to be pretty large.

Nonetheless, approaching the tolerancing process with machine learning methods has few
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Chapter 2. Microlens Surface Form Tolerancing

drawbacks: this is non-standard, and no information can be put on a technical drawing.

Moreover, the algorithm should be shared between the optical designer and the manufacturer.

This poses the issue of software compatibility.

2.7 Conclusion

Tolerancing the surface form of an aspheric microlens is an important step towards the quality

control of this microlens as its optical function is not necessarily tested. Tolerances must

thus ensure the quality, but they should not be over-selective as this unnecessarily increases

the fabrication cost. For this, tolerances and optical performance must be as correlated as

possible. This tolerancing task is especially important for wafer-level fabrication techniques

as up to tens of thousands of microlenses are processed at the same time on a single substrate

without the possibility to shape the microlenses individually.

This work addresses this challenge from a practical point of view but is not an exhaustive

treatment of the topic. Indeed, only a few surface tolerances are considered. We rather

suggest a general approach that motivates the use of specific surface form tolerances: we

analytically link the surface form and the optical performance with the help of ray optics. A

perturbative formulation of the derived connection suggests the use of specific tolerances.

Then, we compare these suggested tolerances with more common parameters for typical

micro-optical systems, thus leading to important guidelines. In particular, we show that

the slope deviation RMS should be toleranced as it has a strong correlation with the optical

performance when represented by the RMS spot size. We also emphasize that the parameters

used for the design, the radius of curvature and the conic constant, are not ideal for tolerancing

purposes. Moreover, the conic constant should not be toleranced. In this regard, this work

is more a practical extension and an adjustment of ISO 10110-5 developed for classical lens

surfaces rather than a completely new approach. However, we believe that the guidelines

proposed here should help any optical designer in the task of tolerancing the surface form of

the microlens they request.

In the future, this work could be extended by including new tolerance parameters, other

optical figures of merit, and other types of surfaces. For instance, one could also consider

the Peak-to-Valley value of the different deviations as tolerance parameters. We could also

represent the optical performance not only by a single number but by a function, for instance,

the modulation transfer function. Finally, we could consider more advanced surfaces such as

freeform microlenses that can now be manufactured by direct writing techniques.
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3 Microlens Surface Measurement

Measuring the surface of microlenses by optical surface profilers is the prominent way to

characterize microlenses. Indeed, this allows for quality assessment and feedback for process

optimization. However, the measurement accuracy is reduced by errors in the measurement,

limiting the achievable microlens quality. In this chapter, we study these errors and propose

methods to correct them.

3.1 Introduction

The key element of a refractive microlens is its curved surface, usually spherical or aspheric,

where the light refraction occurs. Measuring and characterizing the form of such surfaces is

of central importance for two reasons. Firstly, it provides the necessary piece of information

for the manufacturer to optimize the fabrication process. Secondly, it allows us to asses the

optical performance of the microlens. Even if the microlens quality can be evaluated by

different optical techniques [35, 36, 58], its assessment by surface measurements has several

significant advantages: first, commercial instruments that are easy to use and can be fully

automated for wafer-level optics are available. Moreover, the measurements are quite fast,

and the measuring instrument configuration does not depend on the microlens geometry

(focal length and asphericity). Measuring the surface is also quite insensitive to the microlens

material because no signal is transmitted through the microlens, allowing to characterize

polymer, glass, and particularly silicon microlenses that are not transparent in the visible

range. For all these reasons, surface measurement is at the heart of the microlens metrology

and is thus of great importance for micro-optics manufacturers.

The instruments available to measure microlenses surfaces can be sorted in two categories:

on the one hand, there are the 2D contact probe surface profilers such as the mechanical

stylus. On the other hand, there are the areal surface texture measuring instruments that

allow recording the full 3D surface topography. Even though aspheric microlenses have a

rotationally surface, the surface form deviation is not always symmetrical, and knowledge of

the full surface is thus desirable. Since 2D surface profilers need multiple scans to achieve this

33



Chapter 3. Microlens Surface Measurement

task, the measurement time is larger compared to 3D surface measuring instruments and thus

less suited for a high volume production environment.

Among the 3D surface measuring instruments, two of them are especially suited for microlens

surface measurements: the confocal microscope [59, 60] and the coherence scanning interfer-

ometer (CSI) [61, 62]. Typical configurations of these instruments are presented in Fig. 3.1 and

Fig. 3.2. They possess a vertical nanometric resolution and can measure a few microlenses per

minute. Also, these technologies are well established, and many instruments are commercially

available.

Even if CSIs and confocal microscopes are quite similar in terms of performance, two differ-

ences are essential for microlens surface measurements. Firstly, the vertical resolution of CSI

is independent of the microscope objective NA and can be subnanometric. On the other hand,

the vertical resolution increases with the NA for confocal microscopes and generally reaches

1 nm only for the highest NAs, thus the highest magnifications. The second difference is the

type of microscope objectives that can be used. A CSI requires interferometric objectives, and

for a given magnification, the NA is generally smaller than the confocal microscope equiv-

alence, see Fig. 3.3. From these facts, flat lenses are better resolved by CSIs, but when the

microlens surface is steep, confocal microscopes are superior.

As just mentioned, the main limitation of 3D surface microscopes is their limited capability in

terms of size and slope. When the surface starts to be too steep, microscope objectives with

a higher NA must be used but with the drawback of a field of view (FOV) reduction. Image

stitching may thus be needed. This operation is reasonably implementable only when few

images have to be stitched together. Otherwise, the measurement becomes dramatically long.

Beyond this limit, the use of contact probe profilers with multiple scans becomes the best

alternative.

In this chapter, we discuss the measurement of microlens surface by CSIs and confocal

microscopes and particularly the accuracy of such measurements. First, we discuss the ideal

geometrical model of such instruments and its typical calibration. In a second time, we show

that a surface error appears when non-flat surfaces are measured. This error can be larger

than the surface deviation tolerance, thus making impossible the use of such measurements

to characterize microlenses. Consequently, we discuss the extension of the original model and

propose a new calibration procedure that allows us to correct this error.

Throughout the discussion, we also calculate the uncertainties of the different measured

parameters. All the calculations are done following the rules of the Guide to the expression of

uncertainty in measurement [63] and of the related documents [64–67], which are the reference

documents on this topic.
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Figure 3.1 – Simplified schematic of the confocal microscope µsurf as presented by the manu-
facturer Nanofocus: a microscopic object is illuminated and imaged by a microscope objective
on a camera. Due to the multi-pinhole disk, only the reflected light that is in focus reaches the
camera. Consequently, images taken at different vertical positions allow extracting the vertical
position of the surface accurately.
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Figure 3.2 – Simplified schematic of the coherence scanning interferometer Nexview as pre-
sented by the manufacturer Zygo: a microscopic object is illuminated and imaged by an
interferometric microscope objective on a camera. Due to the light source partial coherence,
the reflected light that is in focus coincides with the highest contrast fringe. Consequently,
images taken at different vertical positions allow extracting the vertical position of the surface
accurately.
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Figure 3.3 – Maximum slope that can be measured using specular reflection on an optically
smooth surface as a function of the x dimension of the FOV for the confocal microscope µsurf
and the CSI Nexview. These values are derived from the NA of the microscope objectives. In
reality, the measurable maximum slope is reduced by different factors, notably the signal-to-
noise ratio. However, this shows that the confocal microscope µsurf is capable of measuring
a wider parameters range without using image stitching. Parameters of typical microlenses
produced at SUSS MicroOptics (SMO) are presented.

This chapter is organized as follows: in Section 3.2, we discuss the calibration of the ideal model

of confocal microscopes and CSIs as well as the resulting expected accuracy. In Section 3.3, it is

shown that this original ideal model is not sufficient to describe the measurements accurately

as errors appear in particular situations. We also discuss the already proposed approaches

to correct these errors and explain why we believe none of them can be directly applied for

the characterization of microlenses. Consequently, in Section 3.4, a model to calibrate the

instrument and to avoid the error in spherical surface measurement is proposed. We use

it for the measurement of different reference balls as well as for one aspheric surface. In

Section 3.5, we consider another type of error that arises in CSI measurements, which we

name phase jumps. We propose a method to correct this phase jumps error for microlens

surface measurements. Finally, we provide a summary of this chapter in Section 3.6.

3.2 Geometrical model of optical surface profilers

Even though these two techniques, confocal microscopy and coherence scanning interferom-

etry, are different, the basic model that describes them is identical. Ideally, it is possible to

consider both of them as instruments that record ideal 2D geometrical images at different ver-

tical positions. A mechanical driver determines the positions of these images. Usually, a piezo

actuator is used to perform vertical scanning. In this model and for a confocal microscope,

the intensity recorded as a function of the z-position consists of a delta Dirac function, the

non-null value corresponding to the surface height. For a CSI, the intensity as a function of
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3.2. Geometrical model of optical surface profilers

the z-position presents fringes, the most visible one corresponding to the surface height. For

an ideal system, only two parameters must be defined: the lateral scaling, which is nothing

else than the magnification M , and the vertical scaling. Most utilization of these instruments

relies on this idealized model with a small correction for flat surfaces, i.e., the residual flatness

correction described in Section 3.3.

3.2.1 Standard calibration and uncertainty

In order to use this ideal model, at least two calibrations must be performed [68]: firstly, the

calibration of the magnification (also called field amplification coefficient) of the imaging

system (microscope objective plus an eventual zoom lens), which links the coordinates of

the image plane (the camera sensor) (χ,ζ) to the object plane (x, y) (the sample). This link is

written as:

x = χ

M
and y = ζ

M
. (3.1)

Secondly, the calibration of the vertical amplification coefficient αz , which links the measured

height zm to the actual height z:

z =αz zm . (3.2)

When the instrument is not calibrated, it is possible to rewrite the parameters as follow:

M ′ = M +δM = M

(
1+ δM

M

)
:= McM and α′

z =αz +δαz =αz

(
1+ δαz

αz

)
:=αz cαz . (3.3)

This leads to the definition of non-calibrated coordinates,

x ′ = cM x, y ′ = cM y and z ′ = cαz z. (3.4)

The coefficients cM and cαz are by definition 1 when the instrument is correctly calibrated.

When measured with a non-calibrated instrument, an aspheric surface,

z = r 2

R
(
1+

√
1− (1+κ)r 2/R2

) , (3.5)

becomes

z ′ = cαz

c2
M

r ′2

R

(
1+

√
1− (1+κ)

c2
M

r ′2/R2

) , (3.6)

which is also the equation of an asphere with a ROC R ′ and a conic constant κ′. By identifica-
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tion, one finds:

R ′ =
c2

M

cαz

R := γR and κ′ =
c2
αz

c2
M

(1+κ)−1. (3.7)

These relations can be used to determine the uncertainty of the aspheric surface parameters

induced by the instrument calibration. The uncertainties of both coefficients are deduced

from the standards used for the calibration. The pitch reference standard used here is the

model NIST SRM 476 / BC-E-023-1-E-5, which gives a standard uncertainty ucM = 0.067%. As

step height standard, a SHS-76.0 Q is used and provides a standard uncertainty ucα = 0.23%1.

The uncertainty of the ROC is given by following the rules of the Guide to the Expression of

Uncertainty in Measurement [63]. One finds:

uR = R
√

4u2
cM

+u2
cα = 0.0025R, (3.8)

i.e. 0.25%. For comparison, typical ROC tolerance that is received from the optical designer is

about 3%. Likewise, the conic constant uncertainty is given by:

uκ = 2(1+κ)
√

u2
cM

+u2
cα = 0.0048(1+κ). (3.9)

This derivation is valid only within the considered ideal model and when both the ROC

and the conic constant are parameters of the surface determined from the measurement

by a least-square regression. When the conic constant is not a fit variable anymore, an

additional uncertainty has to be considered for the ROC, which is the part of the conic constant

uncertainty that is transferred to the ROC. Indeed, these two parameters are not independent.

This additional uncertainty can be evaluated using Eq. (2.12):

δR = 3a2R
140
15 R2 +9(1+κ)a2

δκ. (3.10)

In this case, uR becomes a function of the diameter 2a and of the conic constant κ.

3.2.2 Reference balls and the random ball test

Another calibration artifact that may be used for the calibration is reference balls. Many

suppliers exist, and the ball quality is defined in a standard from the Deutsches Institut für

Normung (DIN) [69]. When considering balls from the best class (G3), the Peak-to-Valley (PV)

deviation from the perfect shape is <80 nm, and the surface roughness is <10 nm. It is also

possible to make these balls certified by national institutes of metrology.

The key point is that the relative uncertainty of the ball diameter is smaller in comparison with

1ucαz
is replaced by ucα to lighten the notation
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the relative uncertainties of the other standards previously mentioned. Indeed, the expanded

uncertainty (95% confidence) is 0.2µm for a ball diameter of 2000µm, meaning a relative

standard uncertainty of 0.005%, which is > 50× better than the uncertainty value given in

Eq. (3.8). However, it is not possible to use this value when measuring the surface locally with

an optical surface profiler. Indeed, the ball is not perfectly round, and thus the local ROC

deviates from the diameter half value.

The close geometry of balls allows us to solve this problem. The surface of a ball can be

described as an ideal sphere with a small perturbation expressed in spherical harmonics [70].

In spherical coordinates, the surface is written:

r̃ (θ,φ) = r̃0 +
∑
l ,m

Y m
l (θ,φ), (3.11)

with r̃ , θ and φ the spherical coordinates as commonly defined, and Y m
l a given spherical

harmonic of degree l and order m. The average radial distance r̃0 is defined by:

r̃0 =
1

4π

∫
S

r̃ (θ,φ)dΩ, (3.12)

with S being the surface of the ball. Consequently, the integral of the spherical harmonics

expansion vanishes: ∫
S

(∑
l ,m

Y m
l (θ,φ)

)
dΩ= 0. (3.13)

In other words, if the ball surface is measured locally at different positions, the average of the

measurements converges towards a perfectly spherical surface. Moreover, the ROC of this

average surface converges towards half the ball diameter, which is known with high accuracy.

This process, known under the name of a random ball test, can thus be used to calibrate

the instrument. It is also used in spherical surfaces testing by interferometry in the null

configuration to suppress the wavefront error caused by the reference ball surface [71, 72].

In principle, using a random ball test to obtain the measurement of a reference surface

known with high accuracy allow us to calibrate both the magnification and the amplification

coefficients. For this, the ROC and the conic constant of this reference surface must be

determined, and thanks to Eq. (3.7), calibration coefficients may be retrieved. However, the

uncertainty of the conic constant by the common calibration method is only 0.0048. For the

measurement of a 1000µm ROC ball over a diameter of 300µm, this uncertainty represents a

vertical difference of 0.3 nm, which is smaller than any instrument resolution. Consequently,

the second part of Eq. (3.7) cannot be used, and only the ROC is useful for the calibration. For

this reason, we focus on determining the coefficient γ= R ′/R from the random ball test.

In practice, the integration step in Eq. (3.13) is approximated by a finite number of surface

measurements, with a finite spatial extent. This approximation adds a supplementary uncer-

tainty that we want to assess. To do so, the ROC is calculated for each local measurement and

considered as a random variable. Indeed, the location where the ROC is measured is randomly
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chosen. Then, the distribution mean, R̄, is determined, and its uncertainty is assessed by the

central limit theorem. The ROC calculation from a measurement is a non-linear operation,

and the average ROC does not exactly converge towards r̃0. However, since the deviation from

a perfect sphere is very small, this shift is negligible. We demonstrate this fact by simulation

later in this section.

As a practical illustration, we consider surface measurements of a 1000µm ROC ball performed

by the CSI Nexview equipped with a 50× microscope objective and a zoom lens 0.5×. Each

measured spherical surface is cropped on a diameter of 300µm and the ROC is determined by

a least-squares fit.

To attribute a probability distribution to R, we simulate the measurement process: this con-

sists of creating a ball with a deviation of ∼ 80nm by using the 50 first spherical harmonics.

The coefficients are determined randomly and normalized to obtain the desired roundness

deviation. Then, the ball surface is measured at 5000 randomly chosen locations, and the

ROC is determined by a fit. Figure 3.4 shows the obtained distribution. It looks like a Normal

distribution, even though it does not perfectly match. However, this is of no concern because

the only necessary condition to apply the central limit theorem is the existence of a value for

the standard deviation. In this simulation, the average ROC R̄ is 1000.0047µm, which confirms

that R̄ converges towards r̃0, at least with sufficient accuracy for our purpose.

The same operation is done experimentally. The distribution for 50 trials is presented in Fig. 3.5.

The average radius R̄ is 1000.56µm and the sample standard deviation σ = 0.23µm. However,

this distribution does not originate only from the surface. It also contains the repeatability of

the measurement process. In order to access it, the surface ball is measured 100 times in a

row at the same location. The sample standard deviation σ is found to be 0.17µm. Under the

−1 −0.5 0 0.5 1
0

1

2

3

R − R̄ (µm)

Figure 3.4 – Empirical probability density function of R based on 5000 simulated measure-
ments: R̄ = 1000.0047µm andσ= 0.16µm. The measured ROC R can be modeled by a random
variable with a Normal distribution (black line) defined with the sample average and variance.
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Figure 3.5 – Empirical probability density function of R based on 50 experimental trials: R̄ =
1000.56µm and σ= 0.23µm.

assumption of independence, the standard deviation of the R distribution is given by

σ=
√

0.232 −0.172 = 0.15µm, (3.14)

which is close to the value provided by the simulation. This shows that the modeling of the

surface deviation by spherical harmonics represents well the reality. However, it has to be

mentioned that these values are valid for a given measurement instrument, a ball with a given

ROC, and a given diameter.

Knowing the standard deviation, it becomes possible to calculate the uncertainty of R̄ by

using the central limit theorem. With 50 trials, one finds uR̄ = 0.15/
p

50 = 0.02µm. This

uncertainty has to be combined with the uncertainty coming from κ, uR(κ) = 0.02µm, and

with the uncertainty of the diameter ur̃0 = 0.05µm provided by the certification. Finally, the

combined uncertainty of R is:

uR =
√

0.022 +0.052 +0.022 = 0.06µm. (3.15)

This represents an extended uncertainty of 0.012% at a 95% confidence level. We recall that

this value is the uncertainty of the ROC value of the reference ball.

Finally, the goal is to adjust the calibration parameters, for the magnification cM and for the

amplification coefficient cα, based on this procedure. However, how to modify them based

only on the value of γ? We note that the uncertainty of cα is larger than the uncertainty of cM

and γ. Consequently, we propose to used cM and γ for the calibration and to use Equation (3.7)
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to determine cα with lower uncertainty. This reads,

ucα

cα
=

√
u2
γ+2

(
ucM

cM

)2

= 0.11%, (3.16)

which is an improvement by a factor > 2 for the amplification coefficient determination.

To summarize, it is possible to measure the ROC of spherical surfaces with an expanded

uncertainty (95% confidence) of 0.012% by using a random ball test compared to 0.5% with the

common calibration procedure. However, this is done under the assumption that the simple

geometrical model is valid. Intuitively, this model is only an approximation of reality, and a

more sophisticated model that takes into account perturbations is needed. Consequently, in

reality, the uncertainties of ROC measurements are likely higher.

3.3 Advanced models of optical surface profilers

A real optical surface measuring instrument is a complex imaging system, and its modeling

by ideal geometrical optics is likely not sufficient to explain its behavior. The measurement

of a reference flat surface illustrates this fact as it does not appear flat [73]. For this surface,

it is possible to correct the error by measuring a reference flat mirror. Thanks to its quality,

it is usually made of silicon carbide, the residual from the flat is considered to be an error of

the measurement system. It is thus recorded and subtracted in subsequent measurements.

This calibration procedure can be seen as a null test for flat surfaces. This operation is called

residual flatness correction or calibration and is part of ISO 25178-607 [59].

Such an approach is quite empirical as the causes of the error are not investigated nor modeled.

For this reason, it is very unlikely that this calibration removes the error in other surface

measurements. Indeed, as in any null test, a reference surface is needed for every different

surface geometry.

Similar errors are found in optical testing by interferometry. In this case, these errors are called

retrace errors, and different methods exist to correct them in the non-null test configuration

[74, 75]. However, the considered interferometers are systems devoid of microscope objectives

and of scanning mechanisms, thus rendering these correction methods meaningless in our

case.

What we call error, height error, or surface error in this context, is nothing else than the behavior

of the measuring instrument that cannot be explained by the ideal geometrical model. To

address this problem, we propose a generalization based on two additional features:

1. Physical optics: a real imaging system, even if perfect, undergoes diffraction, and thus an

image of a point source is not a point but has an inevitable spread in all three dimensions.

The imaging process may thus be described by a 3D point spread function.
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3.3. Advanced models of optical surface profilers

2. Aberrations: a real imaging system is never perfect and contains aberrations.

When taking these two features into account, the image formation process, as well as the

surface height derivation, becomes difficult to model. Some works have been published,

notably by taking a linear filtering operation approach [76–80]. However, the assumption that

the PSF of the imaging system is identical throughout the FOV (shift invariance) is required.

As a side note, this assumption is correct for on-axis imaging systems that obtain areal infor-

mation by scanning in all three directions x, y, z. However, for the systems we consider here,

this assumption is not valid, especially for high NA microscope objectives or when the field

curvature is not corrected [81].

Moreover, distortion in the imaging system is not considered even though it is clear that

distortion also produces a surface error. It is possible to correct it by using many different

techniques [82, 83]. However, these methods assume the distortion to be constant. When

measuring slopes, the backscattered rays do not fill the entire objective lens pupil, and the

distortion might thus slightly change compared to the flat surface case. Hence, the distortion

is expected to also depend on the measured object.

To illustrate the problem, Fig. 3.6 presents the surface error of two tilted mirror measurements

by the confocal microscope µsurf by Nanofocus. A shift-invariant PSF cannot explain this

error since the surface is itself shift-invariant. Indeed, the z difference between two positions

of a tilted plane surface is only a function of the distance between them, not of their locations

in the FOV. Because the shape of the surface residual is different for the two tilts, a distortion

cannot explain it either.
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Figure 3.6 – The surface error of a tilted reference mirror measurement performed by a confocal
microscope equipped with a 20× NA 0.6 microscope objective. An aberrated shift-invariant
PSF does not provoke any surface error in this case because the surface is also shift-invariant.
Either distortion has to be considered, or shift-invariance rejected. Moreover, because the
shape of the surface error is different for the two tilts, a fixed distortion alone cannot explain
these errors.
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When the assumption of shift-invariance is abandoned, a model of the system becomes

even more complex and has to be developed. In order to avoid such complexity, empirical

approaches could be considered. Firstly, we can consider null tests. If a spherical microlens

has to be measured, the surface error can be assessed by measuring a reference ball with the

same ROC. A random ball test can be used to increase the accuracy of the method [84]. As for

every null test, the drawback is to obtain a reference. For instance, reference balls can only

be obtained for discrete ROCs. This is even more problematic for aspheric surfaces. A first

but rough approach is to use the closest reference ball in terms of surface deviation to get the

surface error and then subtract it from the considered asphere. However, the error can only be

partially corrected.

Another empirical approach based on the recording of the error as a function of the surface

slope has been published by Sensofar Tech SL, another manufacturer of confocal micro-

scope [85]. However, in this work, only surfaces with slopes below 10° are considered, and

the demonstrated accuracy after correction does not reach the required level for high-quality

microlens fabrication. Indeed, to manufacture diffraction-limited microlenses, surface devia-

tions RMS in the order of 50 nm have to be measured [86]. The exact value depends on the

microlens material and on the operation wavelength.

For all the reasons mentioned above, we propose our model, in which we make no assumption

about the properties of the system, such as shift-invariance or what kind of aberration it

contains.

3.4 Local plane surface approximation model

The model we propose is based on one assumption: the surface of the measured object can be

locally approximated by planes. This approximation is motivated by the following assumption:

the spatial extension of the imaging system PSF and the distortion are in the range of a few

microns. It means that within this range, any surface s = z(x, y) with a radius of curvature of

several hundreds of microns can be approximated by planes. In other words, this assumption

allows the surface error ε to be seen as a function of the surface gradient and of the position

within the FOV::

ε= ε
(

x, y,
∂s

∂x
,
∂s

∂y

)
. (3.17)

This approximation is illustrated in Fig. 3.7 and is similar to the one done in wave-optics

propagation known as the local plane interface approximation [87].
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Aberrated

PSF with 

distortion
Ideal PSF

Local plane approximation of a sphere

Local planes

Figure 3.7 – Illustration of the local plane approximation made in this work. On the left, it can
be seen that an aberrated PSF with distortion provokes almost the same error for the spherical
surface or for the plane approximation thanks to the small surface curvature. In other words,
the effect of the surface curvature on the light-surface interaction is neglected. An example of
a local plane approximation for a sphere is presented on the right.

3.4.1 Calibration

Since this model aims to correct the deviation from the ideal geometrical model, the calibration

procedure consists of recording the error function and of subtracting it. Before performing

this, the instrument must already be calibrated, as discussed in Section 3.2. Then, the error

function is determined experimentally for all angles within the accessible NA and positions

within the FOV. In this regard, it is a generalization of the residual flatness correction to slopes

above 0°.

In order to record the error ε, one intuitive idea would be to measure tilted reference planes

and take the deviation from the best plane fit as the error. Although this approach is quite

difficult to implement in practice because tilting the mirror takes time and presents the risk

to crash the microscope objective into the sample, this approach does not work for more

fundamental reasons. To show this, we start by remarking that the measurement of a tilted

plane can be expressed by

z = cx x + cy y + z0 +ε(x, y), (3.18)

with ε the height error produced by the measuring instrument in this specific measurement,

z0 a general offset and cx , cy the coefficients of the plane equation. The error can be rewritten:

ε(x, y) = ε0 +εx
1 x +εy

1 y +ε2(x, y), (3.19)

with ε0 = S−1
∫

S d x d y ε(x, y). When the measurement is fitted by the plane equation the

measured height can be rewritten:

z = c ′x x + c ′y y + z ′
0 +ρ(x, y), (3.20)

with ρ(x, y) the best plane fit residual. By definition of least square fit,
∫

S d x d y ρ(x, y) = 0.
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Thus, by comparing the terms,

ρ(x, y) = ε2(x, y), (3.21)

which shows that the best plane fit residual gives access only to the non-constant and non-

linear part of the error. If the exact tilt of the plane would be known by any technical means, in

other words, if cx and cy are known, then the residual would be ρ = ε−ε0. First, this means

that the tilt provoked by the error should be detectable, and likely no mechanical actuator can

provide this accuracy. Secondly, the average value of the error is still missing. We believe this

derivation demonstrates that this approach cannot be used to record the height error function

ε= ε(x, y,∂s/∂x,∂s/∂y).

Consequently, we propose a different approach to record the height error: using a reference

ball instead of plane surfaces. Indeed, it is sufficient to move it throughout the FOV to obtain

the different angles for all positions, when its ROC is well chosen. Practically this is easily

performed since CSIs and confocal microscopes may be equipped with a xy-stage that can be

automated.

The measurement of the ball surface when the ball is placed at a position (x0, y0) provides a

spherical cap described by the equation:

z(x, y) = R −
√

R2 − (
(x −x0)2 + (y − y0)2

)+ε(x, y). (3.22)

Since the ROC of the ball is assumed to be known with a very high accuracy, which can be

achieved through a random ball test as mentioned in Section 3.2.2, the best sphere fit has only

three parameters that are the position of the top of the ball x0, y0, z0. When the measurement

is fitted, it can be rewritten as:

z(x, y) = R −
√

R2 − (
(x −x0)2 + (y − y0)2

)+ z0 +ρ(x, y). (3.23)

Here, we actually make an assumption: since the position of the ball is not known and thus

fitted, the error will slightly modify x0 and y0. Consequently, they are not the same variable

in the two previous equations. However, we assume that the difference between these two

quantities is very small and that the error is almost constant on the scale of this difference.

These two assumptions are necessary to record the error and can be validated at the end of

the correction process.

Under these assumptions and by identification, the error can finally be written:

ε(x, y) = z0 +ρ(x, y). (3.24)

To determine the unknown offset z0, we remember that a flat surface presents no error when
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residual flatness calibration has been performed. In other words, ε(x0, y0) = 0, which leads to :

z0 =−ρ(x0, y0), (3.25)

and to the final expression for the error:

ε(x, y) = ρ(x, y)−ρ(x0, y0). (3.26)

The slope for each position is simply found by the analytical expression of the sphere derivative,

explicitly:
∂z

∂x
(x, y) = x√

R2 − (x2 + y2)
(3.27)

and likewise for the slope along y .

Practical recording of the error function

To illustrate this correction method, measurements performed by the confocal microscope

µsurf custom from Nanofocus are evaluated. In particular, we choose the 20× NA 0.6 micro-

scope objective. This microscope objective is chosen because it extends the measurement

capability compared to the CSI Nexview as seen in Fig. 3.3 and is thus an essential configura-

tion for the production of microlenses. The instrument is already calibrated according to the

standard procedure: calibration of the magnification, of the vertical amplification coefficient,

and correction of the residual flatness.

The choice of the reference ball to record the surface error is based on dimensional considera-

tions: the field of view when using the 20× NA 0.6 microscope objective under consideration

is 800µm×800µm. The maximum measurable slope is 36°, but, because of noise, the limit is

fixed at 25°. Therefore, balls with a ROC value R =400µm can be measured only on a diameter

of 320µm, which corresponds to the FOV of the 50× microscope objective. In this case, this

larger magnification has to be used as it gives a better signal to noise ratio due to its higher NA.

The ROC range considered in this work is thus R >400µm. This motivates the choice of the

550µm ROC ball to record the surface error.

In order to record the height error, the reference ball is measured at 961 locations within the

field of view. These positions are arranged on a grid whose pitch is 25µm. This operation

takes about 6 h, which is an overnight process, but this has to be done only once for a given

microscope objective.

In the confocal microscope µsurf, confocal images are created with the help of a multi-pinhole

rotating disk and are recorded on a camera. Since images consist of 512×512 pixels, the surface

error function ε is obtained for more than 2.5 ·108 observations from the 961 measurements.

To simplify the data processing, we only consider surface slopes that have a component

exclusively along the gradient ∂s/∂r̃ , with r̃ = (x2 + y2)
1
2 the radial distance defined with

47



Chapter 3. Microlens Surface Measurement

respect to the FOV center. This simplification is relevant since spherical objects are usually

positioned at the center of the FOV. This placement is ensured by noting that the reflected

light in confocal mode describes a circle on the spherical surface in focus, thus allowing to

manually position the circle center at the FOV center with high accuracy. This simplification

can nevertheless be suppressed without difficulty. With this simplification, the dataset is

reduced to a design matrix of dimension 2.3 ·105-by-4. Figure 3.8 shows the surface error

as a function of the slope, which is analytically derived from the spherical equation, for the

different recorded positions x and y .
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Figure 3.8 – Measured surface error ε as a function of the radial slope. The error amplitude is
mainly proportional to the slope. However, multiple values of ε for a given slope value means
that the error is also a function of the location within the FOV.

Regression with neural networks

This dataset is used to correct subsequent measurements that consist of < 2.5·105 pixels. Since

frames are corrected pixel by pixel, a lookup table approach to calculate the surface error of

a single measurement would render the correction procedure too slow to be practical. An

alternative approach is to perform a regression of the function ε= ε(x, y,∂s/∂r ) with a neural

network [88].

This task is performed using the Neural Net Fitting app included in the Deep Learning toolbox

of Matlab. The feed-forward neural network has a single hidden layer which contains a chosen

number of neurons equal to 50. 70% of the dataset is used for the training, 15% for the

validation, and 15% for the testing. The data partitioning is realized randomly. The training

step depends on the initial conditions, which are also randomized. For several independent

training processes, the number of completed epochs is between 500 and 1000, making the

training time to be about 5-15 min on a standard commercial computer. The prediction rate

of the trained network is about 4 ·105 examples per second. This corresponds to a maximum

correction time of 0.625 sec when the surface occupies the entire FOV. Such a short time

renders this procedure practical, especially for high volume production. The main steps of the

correction method are summarized in Fig. 3.9.
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Figure 3.9 – Summary of the steps involved in the proposed correction method.

3.4.2 Results and discussion

Spherical surfaces

In order to illustrate the benefit of this method, measurements of different reference balls

with nominal ROCs Rn ranging from 450µm to 875µm are corrected. Results, comprising the

corrected and uncorrected ROC values Rc and Ru , respectively, as well as the best sphere fit

residual ρ, are presented in Table 3.1. For each ball, the measured surface is cropped at a

diameter 2a such that the maximum considered slope is 25°.
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Table 3.1 – Effect of the correction on different reference ball measurements. The cropped
diameter 2a is chosen to obtain a maximum slope of 25°. The uncorrected ROC value Ru has a
constant offset of 1.2 % compared to the nominal value Rn . After correction, the ROC value Rc

converges towards Rn . The RMS value of the spherical fit residual ρr ms is also decreased by a
factor > 6. Uncertainties are given as a 95% level confidence interval.

Rn Ru Ru −Rn Rc Rc −Rn ρr ms 2a
(µm) (µm) (µm) (%) (µm) (µm) (%) (nm) (nm) (µm)

450±0.4 454.9±2.6 +4.9 +1.23 447.9±0.5 -2.1 -0.47 137.6 32.0 380
500±0.4 505.7±2.8 +5.7 +1.14 499.2±0.4 -0.8 -0.16 140.1 20.6 420
550±0.2 556.3±3 +6.3 +1.15 549.8±0.4 -0.2 -0.04 144.1 21.7 460
750±0.4 759.3±4.2 +9.3 +1.24 751.7±0.3 +1.7 +0.22 145.2 11.7 640
875±0.4 886.6±5 +11.6 +1.33 877.8±0.2 +2.8 +0.32 129.7 21.3 740

The effect of aberrations can be divided into a ROC shift and a residual deviation r from the

spherical shape. Before the correction, the relative ROC shift seems to be a constant function.

Its average value is 1.22 %. After the correction, its average value decreases to 0.24 %. However,

the corrected shift is not constant and increases when Rn deviates from 550µm, the ROC of

the ball used to record the error function. This is not surprising since the curvature of the ball

is not taken into account.

These values have to be put in perspective with the uncertainty of the nominal ROC Rn , the

uncorrected ROC Ru , and the corrected ROC Rc . The uncertainty of Rn is derived from the

manufacturer specifications and by ball roundness simulation, as done in Section 3.2.2. For

the 550µm ball, because a random ball test is performed, the uncertainty is reduced. The

uncertainty of Ru is derived from the uncertainty of the magnification and amplification

coefficient uncertainty combined with the repeatability uncertainty. Finally, the uncertainty

of Rc is derived from the uncertainty of the 550µm ball and the repeatability. A more detailed

discussion about the uncertainty calculation is found later in this chapter, Section 3.4.3.

The comparison of the different uncertainties shows that even though the correction procedure

well reduces the ROC shift, it is still higher than the uncertainty. Moreover, it has a general

trend. All this shows that the correction procedure does not correct all the errors and may be

improved.

The RMS value of the spherical fit residual ρr ms is quite constant before correction with an

average value of 139.3 nm. In the corrected case, this average value drops to 21.5 nm, i.e.,

a reduction by a factor > 6. However, from the ball specification, an RMS value < 10nm is

expected, which shows the imperfection of the method again. As an illustration, the residual

deviation of the 500µm ROC ball is depicted in Fig. 3.10.
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(a) Uncorrected spherical fit residual ρ:
R = 505.7µm, ρr ms = 140.1 nm.
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(b) Corrected spherical fit residual ρ:
R = 499.2µm, ρr ms = 20.6 nm.

Figure 3.10 – Spherical fit residual of the confocal microscope measurement of a reference
ball of nominal ROC value Rn = 500±0.2µm. Using the same color bar scale allows for clear
visualization of the improvement.

Calibration improvement

In the previous section, it is seen (Table 3.1) that the ROC shift is not completely corrected after

calibration. Here, we propose an explicit explanation and an additional method to correct it.

We assume that the magnification and the amplification coefficient of the system are not

ideally calibrated so that the measured surface of a reference ball with a ROC R0, using the

2nd order Taylor expansion to allow an analytical derivation, can be written as:

z = r 2

2γR0
. (3.28)

The coefficient γ is the same as in Section 3.2. For the calibration method we propose, the

considered error ε is written

ε= r 2

2γR0
− r 2

2R0
= r 2

2R0

(
1

γ
−1

)
. (3.29)

Now, we consider a second surface with a different ROC R1 = R0+∆R . Again, the surface sag is

given by z1 = r 2
1

2γR1
.

In this case, the error ε cannot be considered a function of the location within the FOV, but

only of the surface slope. Indeed, it is caused by a miscalibration of the magnification and

amplification coefficients, which are identical throughout the FOV.

51



Chapter 3. Microlens Surface Measurement

The position r0 used to record the error that is subtracted at a position r1, is thus determined

by equaling the slopes:
r0

R0
= r1

R1
→ r0 =

R0

R1
r1. (3.30)

The measured second surface after correction is thus written:

z1 =
r 2

1

2γR1
−ε= r 2

1

2γR1
− 1

2

R0

R2
1

r 2
1

(
1

γ
−1

)
= r 2

1

2R1

[
1

γ
− R0

R1

(
1

γ
−1

)]
:= r 2

1

2R ′
1

. (3.31)

This equation finally allows us to determine what is the impact of the calibration on the ROC

R1:
R1

R ′
1

= 1

γ
− R0

R0 +∆R

(
1

γ
−1

)
, (3.32)

which equals to 1 for all R1 when γ= 1 or when ∆R = 0 for all γ as we intuitively expect.

If the uncorrected ROC offset of 1.15% of the 550µm ROC ball is assumed to be a consequence

of a miscalibration of the magnification and of the amplification coefficient, the different

measured ROCs have an error that is presented in Figure 3.11. In this plot, a good agreement

between the experimental values and Eq. (3.32) can be seen. The observed differences may be

explained by the Taylor expansion approximation or by a coefficient γ non-equal to 1.15%.
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Figure 3.11 – Relative difference between the corrected ROC value Rc and the nominal value Rn

as a function of the nominal value. A good agreement is observed between the measurements
and the model. They both present an increase of the offset when Rn deviates from 550µm.
The remaining difference may be partially explained by the 2nd order approximation of the
model.

This result suggests an additional step in the correction procedure: since the change of 1.15%

seems due to a miscalibration of the ideal model and not induced by the deviation from this

one, the initial calibration should be modified accordingly. Determining the γ coefficient can

be done through the 550µm reference ball measurement, or it can be based on the average

ROC shift of all balls. However, in the second case, the full calibration procedure requires the

measurement of a few balls to be finalized. The effort to perform this task in terms of time is

small since it takes only a few minutes to be done. We thus consider it here. Results presented
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in Table 3.1 are analyzed a second time with this additional step and summarized in Table 3.2.

The comparison of the ROC shift value between these two tables shows that this additional

step improves the accuracy of the ROC determination.

Table 3.2 – Effect of the correction on different reference ball measurements with the additional
step that modifies the initial calibration (magnification and amplification coefficient) of the
instrument. In this case, the average absolute relative difference with the nominal value is
0.06%, whereas it is 0.24% without this additional step. Uncertainties are given as a 95% level
confidence interval.

Rn Ru Ru −Rn Rc Rc −Rn ρr ms 2a
(µm) (µm) (µm) (%) (µm) (µm) (%) (nm) (nm) (µm)

450±0.4 454.9±2.6 +4.9 +1.23 449.3±0.5 -0.7 -0.15 137.6 31.5 380
500±0.4 505.7±2.8 +5.7 +1.14 499.9±0.4 -0.1 -0.02 140.1 16.6 420
550±0.2 556.3±3.0 +6.3 +1.15 550.2±0.4 +0.2 +0.03 144.1 20.4 460
750±0.4 759.3±4.2 +9.3 +1.24 750.3±0.3 +0.3 +0.03 145.2 16.4 640
875±0.4 886.6±5.0 +11.6 +1.33 875.6±0.2 +0.6 +0.07 129.7 24.3 740

Aspheric surface

More generally, a microlens consists of an aspheric surface defined by its ROC R and its conic

constant κ [89]. In order to illustrate the correction method for this extended geometry, the

case of an aspheric microlens is presented.

The evaluation of the correction method accuracy is more tricky in this case as no reference

surface exists. A workaround is to measure this aspheric surface with an almost aberration-free

imaging system. This task is completed by using the CSI Nexview by Zygo configured with

its 50× NA 0.55 Mirau MO and a 0.5× zoom lens. However, the FOV in this configuration is

reduced to 340µm×340µm. In order to measure the full surface, image stitching has to be

used. A 50 % overlap between images is used to get rid of stitching artifacts. In the present

case, this corresponds to a measurement of 9 frames, taking 4 min to capture compared to

25 seconds for the confocal microscope measurement.

In order to show that this measurement system can be a reference, it is used to measure

a 600µm ROC reference ball. The ROC of this ball is chosen in order for the ball surface

to be the closest possible to the measured asphere. The results are presented in Fig. 3.12:

the measured ROC shift ∆R is 0.3µm and RMS value of the residual is 6.3 nm. Both values

are within the uncertainty values and negligible compared to the ones obtained with the

uncorrected confocal microscope measurement. Again, a random ball test can confirm this

conclusion. Even though it may be surprising that the more complex Mirau objective gives the

best results, it should be noted that the FOV is reduced by a factor of more than 2 for almost

the same NA and magnification.
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Figure 3.12 – Spherical fit residual of the CSI measurement of a reference ball of nominal ROC
value Rn = 600±0.4µm: R = 600.3±3.2µm, ρr ms = 6.3 nm.

Figure 3.13 presents the aspheric fit residual of the reference, the uncorrected, and the cor-

rected measurements. Table 3.3 presents the R and κ values for these three measurements.

After correction, confocal microscope and CSI measurements are consistent. Indeed, the RMS

value of the difference between the corrected confocal microscope and the CSI surfaces is only

14 nm. Such a good agreement is not evident since the measurements are carried out with

two different instruments with different working principles. Moreover, their calibration is not

performed using the same artifacts.

Table 3.3 – Effect of the correction on aspheric microlens parameters: R and κ are corrected,
and the RMS value of the fit residual ρr ms converges towards the reference value. Uncertainties
of R and κ measured with the reference system are given as expanded uncertainties and
derived from the uncertainties of the calibration standards, assuming no aberration in the CSI
measurement system.

Uncorrected Corrected Reference
R (µm) 523.9 528.3±0.4 528.4±2.8

κ -2.84 -2.59±0.04 -2.60±0.02
ρr ms (nm) 59.6 26.6 16.3
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(a) Uncorrected aspherical fit residual ρ:
R = 523.9µm, κ = -2.84, ρr ms = 59.6 nm.

(nm)
−200 0 200

−200

0

200

x (µm)

y
(µ

m
)

−40

−20

0

20

40

(b) Corrected aspherical fit residual ρ:
R = 528.3µm, κ = -2.59, ρr ms = 26.6 nm.
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(c) Reference aspherical fit residual ρ:
R = 528.4µm, κ = -2.60, ρr ms = 16.3 nm.

Figure 3.13 – The aspherical fit residual of the confocal microscope measurement of a strong
asphere before correction (a), after correction (b), and of the CSI measurement (c). The
diameter is 480µm, and the maximal slope is 21.7°. The shape of the confocal microscope
measurement residual after correction is qualitatively similar to the reference one, meaning
they both provide similar feedback for fabrication process improvement.

Impact on the optical performance assessment

As mentioned in the introduction, one role of the surface measurement is to control the optical

quality of the surface. It is thus important to evaluate the accuracy of the measurement in

terms of optical performance. A way to do this is to translate the ROC shifts into focal length

shifts, and the residual surface deviations into wavefront aberrations [90]. Quantitatively, the

focal shift is approximated by

∆ f = ∆R

n −1
, (3.33)

where n is the refractive index of the microlens. In the uncorrected case, for n = 1.5, values

presented in Table 3.1 lead to an average defocus of 2.44 %, which is corrected up to the

calibration uncertainty with the proposed approach. On the other hand, the value of the

wavefront error can be estimated using the thin element approximation. This estimate is
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appropriate since it is applied only to the surface deviation and not to the surface itself. Indeed,

the surface deviation and the corresponding slope deviation are much smaller than the surface

height, respectively than the surface slope. With this approximation, the phase shift ∆Φ under

a plane wave illumination [50] is given by

∆Φ= 2π

λ
(n −1)ρ, (3.34)

with the residual surface deviation ρ.

Without correction, the RMS surface deviation attributed to the measurement system is about

140 nm and about 20 nm after correction, see Table 3.1. For λ = 500 nm and n = 1.5, this

leads to an RMS wavefront error of λ/7 (Strehl Ratio ∼ 0.45) without correction and of λ/50

(Strehl Ratio ∼ 0.98) after correction. This demonstrates that this method is suited for the

characterization of diffraction-limited microlenses.

3.4.3 Uncertainties

The uncertainties provided in this section are given as standard uncertainties, meaning they

represent the estimated standard deviation of the measurement result. However, the final

statement about the uncertainty is given as a confidence interval, commonly a 95% confidence

interval. To derive this interval, a coverage factor that depends on the probability distribution

must be applied. Practically and for most cases, this coverage factor is close to 2 for a 95%

confidence level interval.

Nominal ROC: uRn is the combination of the diameter uncertainty ur̃0 with the uncertainty

due to the roundness, which is the standard deviation of the distribution of local ROC mea-

surements, ur dn = σR , when no random ball test is performed. When a random ball test is

performed, then the latter is reduced by a factor
p

N : ur dn =σR /
p

N . In summary,

uRn =
√

u2
r̃0
+u2

r dn . (3.35)

Measured ROC: uR is the combination of several uncertainties:

1. The repeatability uncertainty ur ep , which is assessed experimentally.

2. The calibration uncertainty ucal , which is due to the uncertainty of the magnification

and amplification coefficient calibration for the standard calibration. For the proposed

method, it is based on the uncertainty of the γ coefficient obtained with a random ball

test.

3. The uncertainty of the conic constant being fixed, uκ, which is derived from equation

Eq. (3.7).

56



3.4. Local plane surface approximation model

The combined uncertainty is thus given by:

uR =
√

u2
r ep +u2

cal or uR =
√

u2
r ep +u2

cal +u2
κ, (3.36)

depending if κ is a fit parameter or not.

Conic constant: uκ is the combination of the uncertainty due to calibration and the repeata-

bility:

uκ =
√

4(1+κ)2
(
u2

cM
+u2

cα

)+u2
r ep or uκ =

√
4(1+κ)2

(
u2
γ+3u2

cM

)+u2
r ep , (3.37)

depending if a random ball test is performed or not.

Residual error: The RMS value of the spherical deviation of a reference ball is < 10nm as

stated by the manufacturer and as it is confirmed by the measurement of the reference ball

by the CSI Nexview. This shows that the calibration procedure is not perfect and that some

residual error exists. Here, we want to calculate the uncertainty of the RMS irregularity value

RMSi due to this residual error.

First, it has to be recalled that a function can be seen as a vector and its RMS value as its

norm. This is valid for a residual, and we use this property here. The addition of RMS values of

two residual, ρ(1)
r ms and ρ(2)

r ms , obeys the vectorial addition and thus depends on the angle θ

between these vectors. This is written

ρtot
r ms =

√(
ρ(1)

r ms +cos(θ)ρ(2)
r ms

)2
+

(
sin(θ)ρ(2)

r ms

)2
(3.38)

and shows that when the form of the residual is identical, their norm simply adds, and when

they are orthogonal, the Pythagorean addition applies. The angle between the two residuals is

thus the key but unknown parameter. From observation, it is quite intuitive that it is more

likely that two residuals, coming from the manufacturing and the measurement tool, have not

much correlation. To estimate the uncertainty, we choose to define θ as a random variable

defined on the interval (0,π) with a Gaussian distribution centered at π/2. The standard

deviation is set to π/10.

The results in Table 3.2 give an RMS residual error ρεr ms of 19.4±3.7nm. If an RMS residual

ρm
r ms is measured, then the actual irregularity RMS can be estimated by inverting the previous

equation:

RMSi =
√(

ρm
r ms

)2 − (
sin(θ)ρεr ms

)2 − (
cos(θ)ρεr ms

)
, (3.39)
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which is also a random variable. We chose the expected value of its distribution as the estimate

and the standard deviation for the standard uncertainty. The determination of the uncertainty

for the aspheric surface correction is done using the following numerical values: ρεr ms = 20 nm,

ρm
r ms = 26.6 nm. This leads to

RMSi = 18.3nm±7.5nm, (3.40)

which is perfectly coherent with the value measured with the CSI Nexview of 16.3 nm. This

also confirms that the assumption of quasi orthogonality is relevant.

Possible improvements

The RMS value of the spherical deviation after correction is about 20 nm, see Table 3.1. The

reference balls specification as well as CSI measurements, see Fig. 3.12 for example, show that

the actual surface deviation RMS of reference balls is below 10 nm. This suggests that this

method can still be improved. Two points are believed to offer improvement potentially. First,

the second derivative of the surface could be taken into account. Practically, this means that

the surface error needs to be recorded for different curvatures for a given slope. This can be

achieved by measuring not only one, but several reference balls with different ROCs across the

FOV. Secondly, since only aberrations of the imaging systems have been considered, errors of

the mechanical displacement could also be taken into account. For instance, a misalignment

between the optical and mechanical axis could have an effect on the measurement.

It also has to be noted that this method can be extended directly to characterize cylindrical or

freeform surfaces.

3.5 Phase jumps in coherence scanning interferometry (CSI)

When microlens surface measurements are performed by a coherence scanning interferome-

ter, it may happen, especially when the surface slope is steep, that a surface error occurs caused

by phase ambiguity during the signal processing step converting the phase to the surface

height. This effect has physical origins, as it is enhanced by vibrations, steep slopes, and wrong

positioning of the reference mirror in the Mirau microscope objective. Figure 3.14 shows an ex-

ample of a microlens surface measurement performed by the CSI Nexview equipped with the

20× microscope objective. The microlens geometrical parameters are diameter 2a = 750µm,

R = 896µm, and κ=−4.35. When the surface is filtered with a high-pass filter, Fig. 3.14b, a

sudden change of height as well as spikes are observed. It is clear they are not caused by the

fabrication process but are the translation of the aforementioned phase jumps issue.

However, under the assumption that the surface is smooth, this error can be effectively

corrected. To do so, we start with the following observation: a phase jump occurs on a scale
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Figure 3.14 – Microlens surface sag (a) and its high spatial components (b) measured by the CSI
Nexview equipped with its 20× microscope objective. The microlens geometrical parameters
are: diameter 2a = 750µm, R = 896µm and κ = −4.35. Measurement artifacts (spikes) are
easily observed in (b).

of one pixel and thus provokes a sudden change of height but also of the surface slope. In

order to determine the change of values provoked by phase jumps and compare them to the

changes provoked by the surface, properties of the system have to be quantified. Again, the

measurements are performed with a 20× NA 0.4 zoom lens 0.5×. With this magnification, the

lateral spatial sampling is 0.82µm/pixel. The central wavelength of the light spectrum used in

the CSI is 500 nm, which means that a single phase jump of π leads to a change of 250 nm in

height, 17° in slope, and 0.38 mm−1 in the second derivative.

The same changes caused by the microlens surface are derived from the microlens parame-

ters. This leads to a maximum slope of 16.8°. For an ideally smooth surface, over one pixel,

the maximum change in height is 246 nm, the maximum change in slope is 0.03°, and the

maximum change in the second derivative is 6.1 ·10−4 mm−1. By comparing these values to

the one provokes by phase jumps, it is seen that looking at the slope or the second derivative

of the surface allows for easy identification of the phase jumps. However, when the surface

roughness provokes slope changes with an amplitude comparable to those provoked by phase

jumps, it is no more possible to differentiate them. The assumption of smoothness is thus

crucial. Luckily, optical surfaces generally require a very low roughness, and reflow with

subsequent RIE based microlenses generally have a roughness sq < 1 nm.

Based on these considerations, we choose to use the second derivative to identify the phase

jumps. Figure 3.15a plots the second derivative along x, Dx,x , of the measured surface. Spikes

that form rings are observed. This pattern is identical to the one observed in Fig. 3.14b.

Figure 3.15b shows the histogram of the second derivative along x. Several peaks are observed

and correspond to integer number (0,±1,±2, ...) of phase jumps. These peaks are equivalently

spaced by 0.4 mm−1, which is the effect of a single phase jump as previously calculated. The

width of the peaks is due to the roughness of the surface. However, the separation of the peaks
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Figure 3.15 – Second derivative along the x-axis Dx,x . (a) The spatial distribution of Dx,x is
identical to Fig. 3.14b allowing the spatial localization of the phase jumps. (b) The histogram
of Dx,x shows different peaks that correspond to an integer number of phase jumps. Because
the peaks are well separated, the number of phase jumps that occurs may be assessed and
thus corrected.

is very neat, the y-axis being in log scale. This suggests a way to correct this error: each peak

has to be brought back to zero.

If we name Dε
x,x the absolute value of the shift of 0.4 mm−1 produced by a single phase jump

in Dx,x , then for each Dx,x the corrected value Dc
x,x is:

Dc
x,x = Dx,x − round

(
Dx,x

Dε
x,x

)
. (3.41)

Once this correction is done for every pixel, the surface is reconstructed by two integration

steps. This can be done for every line of pixels independently, from left to right, for example,

as the first rows of pixels (x ∼−400µm) do not contain errors, see Fig. 3.15a.

The method we propose to solve this issue is summarized by the following steps:

1. Identification of the phase jumps locations by computing the second derivative with

respect to x, Dx,x .

2. Dx,x (x, y) is corrected according to Eq. (3.41).

3. The surface is reconstructed by a double integration.

To evaluate the effectiveness of this method, we present the surface irregularity over the clear

aperture before and after the correction procedure, see Fig. 3.16. Before the correction, surface

height errors due to phase jumps are visible. After correction, the surface appears smooth

as expected. The irregularity presents a radial symmetry, which is expected for an RIE based
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Figure 3.16 – Comparison between the irregularity before (a) and after (b) the correction
procedure. For this particular example, the phase jumps issue increases the RMS value by a
factor of 3.5 and provokes a ROC increase of 1.1%. Without this correction, the characterization
of the surface is impossible.

microlens. The RMS value of the irregularity, RMSi, goes from 103.9 nm before correction to

29.5 nm after correction. Likewise, the ROC R = 905.6µm before the correction and 896.0µm

after correction. This represents a difference of +1.1%. These numbers demonstrate that

without this correction procedure, the characterization of the microlens through this surface

measurement is impossible.

This method is likely not the only way to correct these errors. However, we believe it has

one clear advantage: the process is deterministic, and no iteration is needed. The correction

process is thus fast: in this example, it takes 0.16 sec to correct a measurement that consists of

1024×1024 pixels. This is negligible compared to the measurement time that is > 30seconds

for this microlens.

3.6 Conclusion

In this chapter, we discuss the measurement of microlens surfaces by confocal microscopy and

coherence scanning interferometry. We mainly focus on the accuracy of such measurements

and how to improve it by advanced calibration or correction procedures.

In particular, we show that a surface error appears when non-flat surfaces are measured

by optical surface profilers. We review the possible causes and propose a new calibration

procedure. This one is based on the fact that the surface can be locally approximated by planes,

and it is summarized in Fig. 3.9. We apply it to measurements performed by the confocal

microscope µsurf equipped with a 20× microscope objective. With the common calibration

procedure, ROC errors > 1% are observed as well as an RMS surface form deviation of ∼ 140nm.
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The proposed calibration procedure corrects the ROC deviation up to the measurement

uncertainty level, and the surface form deviation is decreased to∼ 20nm. This level of accuracy

allows the characterization of diffraction-limited microlenses.

In definitive, such calibration shows that it is possible, for a required magnification, to use

optical surface profilers equipped with higher NA microscope objectives over larger FOVs.

Even though these microscope objectives are more aberrated imaging systems, we show that

the characterization of diffraction-limited microlenses is possible. This obviously increases

the characterization capability in terms of microlens diameter and numerical aperture, with

the corollary of an extension of fabrication capability.

Even though the proposed approach for correction measurement is introduced for microlenses

and demonstrated for spherical and aspheric surfaces, it can be extended to any surface that

has a large curvature, and that is smooth. In particular, it can be applied to the measurements

of freeform surfaces that should be more common in the future in micro-optics.

In this chapter, we also propose a method to correct the error that may appear during the

surface reconstruction from phase information in CSI measurements. The procedure consists

of a post-processing of the measurement and is shown to be quick (< 1sec) and effective.

To conclude, we want to discuss the potential future of microlens surface metrology. As stated

in the introduction, surface metrology is very important for micro-optics because it allows

feedback for fabrication improvement and a quality evaluation at the same time, quickly,

in an automated way, and with high accuracy. However, the measurement of microlenses

surfaces by optical surface profilers is fundamentally limited by the microscope objective

properties, which are themselves limited by the law of optics. The availability of new micro-

scope objectives with a greatly extended capacity of NA seems thus illusory. In the near future,

surface metrology for high NA and large microlenses will likely rely on stitching and automated

contact probe profilers. The emergence of a completely new technique that outperforms the

existing ones is, in our opinion, purely speculative. Consequently, for the next years, an effort

has to be put in adapting the existing technologies to the specific case of micro-optics.
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4 Microlens Fabrication Modeling

This chapter addresses the modeling of the microlens fabrication at the wafer-level. We

focus on the photoresist reflow and reactive ion etching processes. In both cases, we use an

empirical approach based on experiments. To motivate the need for these models and provide

validation, we use them to improve the uniformity over large microlens arrays. The limits of

this fabrication technique are also discussed.

4.1 Introduction

Refractive microlenses are produced in high volume using wafer-level techniques. In particular,

glass and silicon microlenses are fabricated with the well-established technique of photoresist

reflow with a subsequent reactive ion etching process [26], see Fig. 1.3. In this chapter, we

focus on modeling this specific fabrication technique.

As for any manufacturing process P , it is ideal to have a full model to obtain complete pre-

dictability of the output parameters ~o, here the etched microlens surface, as a function of

the process input parameters~i , e.g. the resist spinning time, the reflow temperature, the

plasma composition and so on. This means having the relation~o = P (~i ). As for most real cases,

because of the process complexity, obtaining such a model is impossible. This is particularly

true in the present case, which involves two subsequent complex processes, the photoresist

reflow and the reactive ion etching process.

Then, how to determine the input that leads to a desired output? An answer that seems trivial

is by trial and error. In other words, by experience. The learning process is then nothing

else than an optimization process. In this case, it is the surface deviation with respect to the

nominal surface that has to be minimized.

Like in any optimization process, the function P must be evaluated for a given input~i as well

as its partial derivatives. An evaluation of P corresponds to a full fabrication process realized

with these given input parameters. However, the partial derivatives are still unknown without

a model and other trials (the exact number depends on the number of input parameters) are
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needed to determine them and to obtain an idea of the convergence direction. Each trial costs

resources, money, and time, so the convergence must be as fast as possible. The problem lies

in the fact that the number of involved parameters is huge in practice. In the case of a reactive

ion etching process, for instance, the plasma composition usually changes with time and is

thus a continuous function. Likewise, the output parameters consist of a surface.

It is thus complicated to find the correlation between the input and the output parameters

without prior knowledge. For example, it is difficult to link the ROC and the conic constant of

the final microlens to the plasma composition. Quantitative strategies must be set up for this

purpose.

For that, empirical models can be developed, and their parameters can be determined from

experiments. These models can then be used to predict, if not the output as a function of

a particular input, the gradient of a certain realization. This is the method we use here to

achieve our goals.

Conceptually, it is interesting to note that the modeling task cannot be avoided. Even un-

consciously, we make assumptions and evaluate the best improvement step based on our

understanding of the reality, which is nothing else than formally establishing a model to

determine the partial derivatives.

As the full fabrication process consists mainly of a photoresist reflow and an etching process,

the first section addresses the modeling of the thermal reflow. We first describe the conditions

needed to obtain an ideal spherical cap formed by surface tension. Then, from this reference

state, we use a perturbative approach to describe the change of shape, which mainly consists

of a change of radius of curvature.

The second section is about modeling the transfer of the resist microlens into the substrate by

a reactive ion etching process. The model we propose uses macroscopic parameters such as

etching rates and the selectivity to describe the dynamics of the process and its effect on the

microlens geometry. In particular, the difference between anisotropic and isotropic etching

components are discussed.

The third and final section is the application of the models developed to improve the unifor-

mity over one wafer. Indeed, for a given fabrication process, if an input parameter can be

modified locally, then the surface of the completed microlenses can be modified as a function

of the wafer location. Here we modify the volume of each microlens and show that this allows

increasing the uniformity of large MLA.
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4.2. Photoresist thermal reflow

4.2 Photoresist thermal reflow

The mechanism of photoresist thermal reflow consists of the continuous transition of the solid-

state of a polymer in its liquid state and is used to create 3D structures in microfabrication

[91]. Different contributions focus on the modeling of such a process [92–94]. Nevertheless,

here, we are not interested in the dynamics of the reflow neither in the involved complex

physicochemical reactions. Our interest lies in the prediction of the surface form after reflow as

a function of the initial state. In our case, the diameter and height of the patterned photoresist

cylinder are the main input parameters.

The main physical concept that describes resist reflow is surface tension. For this reason, we

start by considering the ideal case where surface energy minimization is sufficient to describe

the process. Then, we extend the discussion to cases where the effect of other parameters

must be included.

4.2.1 Spherical cap creation by surface energy minimization

When the reflow temperature and time are well-chosen, all the resist is molten. We can

consider that the resist is a liquid, and only the surface tension governs the equilibrium. By

saying so, we also assume that the dimensions we consider are smaller than the capillary

length [95] of the photoresist, which is confirmed by the experiment. It is known that in such a

case, the surface of the liquid droplet is minimized for a given volume [96]. Consequently, it

has a spherical form, which is described, when the contact angle θc is acute, by

z(r ) = R −
√

R2 − r 2, (4.1)

with r the radial coordinate and R the ROC. By using this fact, it is possible to determine the

initial shape of the resist pillar, it means its diameter 2ac and its height hc , to obtain a spherical

cap with a certain curvature. Another parameter is however required: the empirical reflow

resist shrinkage factor ηr which is defined to be the ratio of the resist microlens volume Vr to

the cylindrical one Vc ,

ηr =
Vr

Vc
. (4.2)

Typical values for the physical parameters are ηr ∼ 0.9 and θc ∼ 40°. The volume of the

spherical cap, Vr , is thus given by:

Vr = ηrπa2
c hc . (4.3)

With this volume, the spherical cap is completely determined. Indeed, the contact angle
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condition at the resist microlens edge must also be respected. This reads

tan(θc ) = d z(ar )

dr
= ar√

(R2 −a2
r )

, (4.4)

ar being the semi-diameter of the spherical cap. Since two conditions have to be met and two

parameters define the spherical cap, R and ar , these two parameters are completely linked. In

other words, for given input parameters ac and hc , there exists a function R = R(ar ).

However, from a practical point of view, the footprint of the photoresist must stay the same

during the reflow. Otherwise, we could have a fusion of adjacent microlenses or a reduction

of the fill factor. This constraint imposes the condition ar = ac := a and makes a the single

design input parameter. Now, we want to determine the ROC of the spherical cap and the

thickness of the resist layer that has to be applied for a desired diameter 2a.

The ROC is simply found by inverting Eq. (4.4) and is given by:

R = a

√
tan(θc )2 +1

tan(θc )
. (4.5)

To determine the resist layer thickness, the volume of the spherical cap determined geometri-

cally,

Vr =
hr

2π (3R −hr )

3
(4.6)

must be equaled to Eq. (4.3) to satisfy volume conservation. The height of the resist microlens

hr is given by hr = R −
p

R2 −a2. This finally provides the height of the resist pillar,

hc = a

(
2
(
tan2(θc )+1

)3/2 −3tan2(θc )−2

3ηr tan3(θc )

)
, (4.7)

which is proportional to the diameter. The resist thickness is plotted in Fig. 4.1 against the

contact angle θc and the microlens semi-diameter a for a shrinkage factor ηr of 0.9. For

microlenses with a diameter of over 1 mm, the resist layer thickness that must be applied

reaches about 100µm for a typical contact angle of 40°. In this case, it becomes difficult to

fulfill this condition because it is challenging to spin-coat such resist thickness.
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Figure 4.1 – (a) Resist layer thickness hc that provides a spherical cap after reflow without
footprint change as a function of the semi-diameter a and the contact angle θc . The resist
shrinkage ratio ηr is set to 0.9. We note that it becomes difficult to produce resist microlenses
with diameters over 1 mm when the contact angle is around 40°. Indeed, it is technologically
difficult to spin-coat resist layer with the required thickness higher than 100µm. (b) Section at
a = 300µm.

4.2.2 Deviation from the ideal spherical cap case

In practice, the conditions for the formation of a perfect spherical cap by means of surface

tension are rarely met at wafer-level. Indeed, the spin coating process induces some thickness

variations across the wafer, a typical value is 1% Peak-to-Valley for a thickness of 20µm.

Also, repeatability is difficult to achieve. Another reason is that very thick (> 30µm) or thin

layers (< 1µm) may not easily be produced, and we have to live with a non-ideal case. The

problem is that when the resist volume deviates from the ideal one, the footprint of the resist

microlens changes. This is highly problematic for MLAs as the gap between the individual

resist microlenses is needed and might be only a few microns. The risk is that the microlenses

merge, thus completely deteriorating their shape. Also, if the diameter is reduced, the fill

factor is decreased, which is not desirable.

The wafer surface can be processed to keep the footprint constant during the reflow. This is

confirmed experimentally, see Fig. 4.2, which presents the profile of resist microlenses for

different values of the resist thickness hc . Two observations can be done: firstly, the diameter

of the microlenses does not change even though the volume variation is important. Secondly,

the contact angle does not vary either.

When the footprint and the contact angle are constants, the dynamics of the reflow changes

[98] and the produced surface cannot be determined only by considering the principle of

surface energy minimization. Indeed, this principle would give a spherical surface that

cannot fulfill the contact angle condition, Eq. (4.4). To solve this issue, one approach is

the generalization of the Laplace equation to curvature terms [97]. This model is tested
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(a) Cylindrical microlenses: when the resist volume reduction starts to be significant, the profile
presents a dip. The dashed grey lines represent the predictions of the model proposed in [97]. The
agreement is qualitatively good as the dip is predicted, but quantitatively not accurate when the profile
deviates from the spherical cap, see blue and red curves.
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(b) Circular microlenses: the grey triangles represent the best-sphere fit for each measured profile. The
good agreement between the fits and the measurements confirms that the profile remains spherical
over most of the diameter when the resist volume change is small.

Figure 4.2 – Measured profiles of microlenses after reflow for different resist layer thicknesses.
For both geometries, the footprint and the contact angle remain constants as the resist volume
changes.

68



4.2. Photoresist thermal reflow

against experiments, and results are presented in Fig. 4.2a. Even if the model can predict the

appearance of dips when the resist volume is low, differences of several microns between

the predicted and measured profiles are observed. Other empirical models have also been

proposed [99, 100], but here, we use a perturbative approach to represent small deviations

around an equilibrium state, because this is more interesting for fabrication purposes. The

surface form at the equilibrium point is assumed to be not far from the ideal spherical cap

case.

The model we derive is based on an experimental observation: when the resist volume deviates

from the ideal spherical cap volume, the microlens surface is still spherical over most of the

microlens diameter, see Fig. 4.2b. A deviation occurs only at the edges. This is not problematic

from an optical point of view as, usually, the clear aperture of the microlens is set to 90% of the

diameter. Under this assumption, we can describe the surface change by a change of ROC as a

function of the photoresist volume difference. To obtain this relation, we assume that after

reflow, the microlens is still a perfect spherical cap, whatever the difference of volume. In other

words, this is equivalent to defining a contact angle that depends on the volume difference.

Following this assumption, and using the second-order Taylor approximation to allow analyti-

cal expressions, we write:

Vr =
∫ a

0
dr 2πr

r 2

2R
= πa4

4R
. (4.8)

However, the resist volume after reflow must also be equal to the value given by the cylinder:

Vr = ηrπa2hc . Combining these two equations provides the ROC R as a function of the

semi-diameter a:

R = a2

4ηr hc
, (4.9)

which is clearly an approximation that may not be really accurate. However, it should give a

good approximation of the differential form. At this point, two parameters change the ROC:

the initial resist thickness hc and the microlens semi-diameter a. The total differential thus

reads:

δR = a

2ηr hc
δa − a2

4ηr h2
c
δhc . (4.10)

This first term of this expression is compared to experimental data in Fig. 4.3a. The second

term is compared in Fig. 4.3b to the experimental data presented in Fig. 4.2b. We note that in

both cases, the model fits well the experiments.

This expression can thus be used to determine the change of ROC as a function of the resist
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(a) Measured difference of resist microlens
ROC ∆Rr as a function of the semi-diameter
variation ∆a. Initial parameters are Rr =
260µm and 2a = 315µm. The resist thickness
layer is constant with a value of 60µm.
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(b) Measured difference of resist microlens
ROC ∆Rr as a function of the resist thick-
ness variation ∆hc . Initial parameters are
Rr 1900µm and hc = 42µm. The diameter is
constant with a value of 1000µm.

Figure 4.3 – Measured change of ROC caused by a change of diameter (a) and by a change
of resist layer thickness (b). In both cases, the experiment and the model are in very good
agreement.

layer thickness variation, for example. This is useful to avoid the measurement of the surface

of the resist spherical cap to determine its ROC: the resist layer thickness measurement might

be sufficient. This result is also useful if we want on purpose to modify the ROC of the resist

microlenses locally. We use this effect in Section 4.4 to increase the uniformity within an MLA.

In this section, we do not provide a full model of the resist reflow for the creation of resist

microlenses. However, based on geometrical considerations and experimental evidence,

we give the conditions for the reflow to produce an ideal spherical cap and then consider

perturbations form this equilibrium case. This approach is thus sufficient to determine the

change of ROC induced by the change on the input parameters when the microlenses are

quasi spherical, which is usually the case in practice.

4.3 Reactive ion etching (RIE) process

Reactive ion etching is a dry etching process that uses a plasma to remove progressively non-

masked parts of the substrate [101, 102]. The reaction can be chemical, thus generating an

isotropic etching, or physical, thus etching the surface anisotropically [103]. The ratio between

these two etching components can be selected by tuning the plasma parameters.

The RIE process is complex, and we thus model it from a macroscopic point of view. To simplify

the discussion, we make some assumptions. We know that the presence of neighboring

microlenses influences the etching process, see Section 2.2. Here, we do not consider this
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effect, even though it may lead to severe issues in terms of optical performance. The reason is

that this effect cannot be corrected by modifying the RIE process parameters. Also, to simplify

the discussion, we consider only rotationally symmetrical surfaces. Their profiles are given

by a function z = s(r ) with r the radial coordinate. Finally, the process is assumed to consists

only of the variation of a single input parameter i = i (t ) such as a gas flow, for example. Here,

we adopt the convention of a normalized time, i.e. t ∈ [0,1].

The full fabrication process optimization that we address in this chapter can be reduced to

the RIE step. Indeed, the input parameters can be reduced to the ROC of the microlens resist,

which can be known by measurement, and the function i = i (t ). For this reason, qualitatively,

the optimization can be divided into two situations:

A. Given an etching process i , how is the output (the etched microlens surface) modified

when the input (the resist microlens ROC) is changed? This is typically the question that is

raised when the repeatability is evaluated. Another example where we face this situation is the

case of uniformity improvement over one wafer and is presented in detail in Section 4.4.

B. Given a known resist microlens and the result of a RIE process i , how the completed

microlens is modified when this process i is changed? Or equivalently, how to modify the

process to obtain the desired output change? This is the situation we face as a manufacturer

when we have to optimize the etching process i .

This section starts with the case of purely directional (anisotropic) etching. Then, the dis-

cussion is shifted to the isotropic case and is finally generalized to the combination of both

anisotropic and isotropic etching.

4.3.1 Directional etching

We first consider the case of purely anisotropic (directional) etching. Here, we only describe

an etching process that occurs in the z-direction, see Fig. 4.4.

Figure 4.4 – Illustration of a directional etching process. The surface can be seen as a collection
of points that are moving along the z-axis.
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The etching process can be macroscopically described by two functions of the input parameter

i : the etching rate of the resist νr = νr (i ) and the etching rate of the substrate νs = νs(i ).

Because the resist quantity varies along the process, the reactor chemistry may be modified, as

well as the etching rates. For this reason, these functions should also depend on the z-position

where the etching happens:

νr = νr (i , z),

νs = νs(i , z).
(4.11)

If these two functions were known, it would be possible to determine the function i = i (t ) that

should be applied as the input of the system to obtain the desired surface after the etching

process. Unfortunately, these functions cannot be determined from more fundamentals

physics laws and have to be guessed empirically.

The question is, thus, how to gain information about these two functions? For a given process

i = i (t ), the pieces of information we have are the measurements of the surface of the resist

and substrate microlenses, sr (r ) and ss(r ), respectively.

From geometrical considerations presented in Fig. 4.5, we note that during a time d t , the

thickness of resist that is etched is νr d t . Likewise, the thickness of the etched substrate is

νs d t . Moreover, the interface radial position is reduced by dr = νr (r )d t/s′r (r ) or equivalently

dr = νs(r )d t/s′s(r ). Thereby, the etching selectivity is

Σ(r ) = νr (r )

νs(r )
= s′r (r )

s′s(r )
. (4.12)

In other words, the selectivity is nothing else than the ratio of the slopes.

This result is an answer to the challenge posed by situation A: when the process is stable, the

microlens surface is measured before and after the RIE process and the ratio of the slope is

determined as a function of the radial position r . Like this, Σ(r ) can be determined. Now,

if the surface of the resist microlenses is slightly changed, and we assume this change does

not modify the process, the slope of the etched microlens can be obtained using Eq. (4.12). A

simple integration step allows the surface reconstruction.

However, this is not enough to address situation B. If a process defined by the function i

gives a surface sr , we can determine the change of selectivity δΣ(r ) that should be applied in

order to get the desired etched surface. Then, we have to determine the change of the input

parameter that provokes this change: δi (t ) → δΣ(r ). This operation consists of determining

i = i (r ), meaning the etching position r = r (t ) and then the derivative ∂Σ/∂i for all r positions.

The goal is thus to develop strategies to get this derivative effectively to obtain the fastest

convergence possible of the optimization process.
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d zr = νr d t

d zs = νs d t

dr

Figure 4.5 – Directional etching at the interface during a time d t . By trigonometrical con-
siderations, the ratio of the slopes is found to be equal to the etching rates ratio, thus to the
selectivity.

We could first make assumptions and use them to obtain the feedback. First, that the etching

rate νr is constant. This can be motivated by the fact that surface deviations are usually in

the nanometer range (along z) and have low spatial frequencies (dozens of microns along r ).

Under this assumption, the etching position r is known as a function of t , and is approximated

by the expression:

r (t ) = a
p

1− t . (4.13)

On top of that, if we assume the selectivity Σ to be a function of only i and not of z, then we

can use the variation of the selectivity during the process to estimate the desired gradient

∂Σ/∂i . The feedback is then obtained. These assumptions should, however, be confirmed as

they may be valid for specific processes and not for others.

Another strategy would be to use a more deterministic approach. If a process i0 = i0(t ) leads to

a certain selectivity Σ0 =Σ0(r ), we run a second process i ′ = i0 + A cos(ωt ). Consequently, the

difference of the selectivity between io and i ′ contains a pattern with waves. It is then possible

to make the correspondence between each node, maximum and minimum. By looking at the

nodes, we can estimate the function r = r (t ). By looking at the amplitude of the maximums

and minimums, we can have access to ∂Σ(i , z)/∂i for all z-positions.

4.3.2 Isotropic etching

In an RIE process, there is also an isotropic etching component that can be important. Be-

cause chemical etching can be way faster than physical etching, it is useful in a production

environment. However, this component is, in principle, more challenging to handle and has
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not the advantage of the directional etching in terms of surface form creation. Here, we model

this process and again propose techniques to fulfill the requirements posed by the situations

A and B, as discussed above.

The isotropic etching is, by definition, characterized by an etching rate identical in all direc-

tions. The etching process thus occurs perpendicularly to the surface of the object being

etched and not only along the z-axis as for the directional etching, see Fig. 4.6. A point of the

surface is thus moving on the axis that is defined by the surface normal. E.g., a sphere remains

a sphere, but its ROC is reduced during the etching process. At this point, we remark this is

comparable to the propagation of a wavefront, and we use the analogy with optics to model

the process. A ray or vector can thus represent a point of the surface.

Figure 4.6 – Illustration of an isotropic etching process. The surface can be seen as a collection
of points that are moving along the normal of the surface. This behavior is analog to the
propagation of a wavefront.

This picture is especially useful to understand the etching at the interface, see Fig. 4.7. At this

point, the slope of the rays changes as a result of the different etching rates. This effect is

identical to the refraction and can be expressed by:

Σ= νr

νs
= sinθi

sinθo
≈ s′r

s′s
, (4.14)

with θi = arctan(s′r ) and θo = arctan(s′s). The last approximation is accurate when the slopes

are not steep or when the selectivity is close to one.

As for the directional etching, these considerations allow us to describe the process with a

function Σ=Σ(r ) and express it as a function of the surface slope. However, this time, a point

of the surface changes not only its z-coordinate but also its radial one r .

If we define rr the radial position of a ray when intersecting the resist surface, ri the same

quantity but for the interface and rs for the completed surface, we obtain the following
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νr d t

νs d t

dr

Figure 4.7 – Isotropic etching at the interface during a time d t . From trigonometrical consid-
erations, the ratio of the etching rate is found to be the ratio of the sinus of the slope angle.
This is the analogy of the law of refraction.

relations due to geometrical considerations, see Fig. 4.8:

ri = rr − s′r (rr )s(rr )

ri = rs + s′(rs) (ss(0)− ss(rs))
(4.15)

This allows expressing the selectivity

Σ(ri ) = s′(rr )

s′(rs)
. (4.16)

As for the directional etching case, the selectivity is nothing else than the ratio of the surface

slopes but calculated at different positions.

rr

ri rs

Figure 4.8 – Definition of the different radial positions rr , ri , and rs .
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Again, this answers the question raised in situation A. To address case B, we can follow the

same reasoning as exposed in the case of directional etching. Similarly, we can either first

assume a constant etching rate and independence of the selectivity on the z position and

derive the gradient ∂Σ/∂g from the initial process. Alternatively, we can use two processes

that differ by a sinusoidal perturbation.

The main difference between directional and isotropic etching is the round edges observed in

the etched microlens surface, see Fig. 4.6. This has significant consequences that should be

discussed. As observed in Fig. 4.6, the edges of the resist microlenses are a singularity as the

change of slope (the curvature) is infinite at this point. This position can thus be seen as the

origin of a spherical wave. This provokes a concave area in the final surface, which does not

focus the light. The clear aperture (or optically effective surface) A is thus reduced, which is

undesired, for instance, because it reduces the fill factor of an MLA. For a process completely

isotropic, the clear aperture is given by:

A = 2

(
a − sin(θc )hs

Σ

)
, (4.17)

with hs = sr (0) the sag of the etched microlens. However, the height of the microlens, optically

speaking, is he = cos(θc )hs/Σ. Indeed, the height of the concave part does not change the

phase within a light beam. It can thus be considered as a part of the substrate. Figure 4.9 shows

the minimum achievable ROC of an etched microlens that keeps a clear aperture of 90% as a

function of the diameter and the contact angle of the photoresist. This shows that isotropic

etching is a limitation to the fabrication of high microlenses as the footprint is significantly

reduced. If the etching process cannot be adapted to reduce the isotropic component, one

other option would be to use a photoresist with a lower contact angle.

Figure 4.10 presents the example of an aspheric microlens etched by an isotropic etching
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Figure 4.9 – Minimum achievable ROC of a spherical microlens manufactured by isotropic
etching (Σ= 1) under the condition that its clear aperture is at least 90% of the diameter. The
ROC value is given as a function of the diameter 2a and the contact angle θc . A resist with a
smaller contact angle can be used to attenuate the effective aperture reduction.
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process. The concave part of the profile reduces the effective aperture of the microlens. By

using Eq. (4.17), the clear aperture is about found to be about 500µm, which corresponds to

the measured one. This suggests that the etching is almost entirely isotropic. In terms of slope,

this is translated into a sudden change of value. A sudden curvature change is also noted,

which demonstrates that the outer part of the microlens is concave. Also, the value of the local

concave ROC is almost constant and about 70µm, see Fig. 4.10c, which corresponds to the sag

of the etched microlens hs , confirming again that the etching process is isotropic.
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Figure 4.10 – Example of an aspheric microlens (diameter 2a = 600µm, R = 525µm, and conic
constant κ=−2.5) created by an isotropic etching process. (a) The concave part of the profile
reduces the effective aperture of the microlens, which is no more equal to the diameter. (b)
This effect is translated into a sudden change of slope value (blue dashed lines). (c) A sudden
curvature change, from positive to negative values, is also noted. This confirms the concavity
of the microlens outer part. This change can be used to determine the effective aperture,
which is about 500µm in this case. We also note that the value of the local ROC is about
−70µm at the edges. This value corresponds to the etched microlens height hs , confirming
that the etching is isotropic.
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4.3.3 General case

An arbitrary RIE process contains a directional and an isotropic component and can be

modeled by the addition of the two. In the models we derive for the directional and isotropic

etching, the selectivity is in both cases the ratio of the slopes. So, at the interface the selectivity

remains the ratio of the slopes:

Σ(ri ) = s′r (ri )

s′s(ri )
. (4.18)

However, the relation between ri , rr , and rs is unknown this time. To determine it, one could

use the average ratio of isotropic to directional etching to estimate the relation between the

different radial positions by considering a superposition of the two effects. A way to determine

this ratio is by measuring the radius of curvature of the concave part of the microlens Rcve or,

equivalently, the aperture reduction. This ratio ηe is given by:

ηe =
Rcve

hs
. (4.19)

This could be used to solve the issue A. In situation B, the link between δi (t ) → δΣ(ri ) must be

found. Again, a sinusoidal perturbation can be used. It has to be remarked first that,

δΣ=− sr

s′2s
δs′s , (4.20)

and thus, instead of deriving the selectivity, it is possible to directly obtain the final surface

slope change as a function of the input parameter change: δi (t ) → δs′s(rs). This shows that an

intermediate derivation of the selectivity is not necessary for the task of feedback in situation

B.

Our formulation of the etching process requires only one input parameter i = i (t). Alterna-

tively, one could modify two or more parameters at the same time during the etching process.

However, from all these derivations, one can already see that optimizing a process with a single

input is not trivial. Extending this approach to two or more parameters renders the task even

more difficult because of the cross-correlations, thus resulting in more trials to determine the

optimized process.

Here, the feedback process is seen as an optimization process. In such process, an educated

guess for the starting point is needed. Here, we assume some background and experience that

allows us to set the initial conditions, which should not be too far from the optimum. In that

sense, the approach we propose is made for fine-tuning. However, fine-tuning is essential for

optical surfaces that require an irregularity RMS below 100 nm to achieve diffraction-limited

microlenses.
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4.4 Uniformity improvement of microlens arrays (MLAs)

Microlens arrays (MLAs) usually consist of a collection of microlenses arranged in a 1D or

2D pattern and attached to the same substrate. In most applications, the microlenses can be

seen as channels that have the same optical function. For this reason, all microlenses must

have the same properties, in particular the same surface form. Within an MLA, the number

of microlenses can reach several thousands. In order to manufacture such large MLAs, it

is advantageous for time and cost reasons to use wafer-level techniques that fabricate all

microlenses in parallel at the same time. The main drawback of these techniques is that the

surface manufacturing of the individual microlenses cannot be controlled independently.

An unavoidable consequence is a non-uniformity that appears throughout the MLA. This

section aims to propose a method that reduces this non-uniformity and to demonstrate its

effectiveness.

Again, we consider the well-established technique based on photoresist reflow with subse-

quent RIE. Indeed, it remains the most effective approach to manufacture large MLAs in fused

silica or silicon. The machines used during the fabrication are made to process wafers with

a diameter of up to 200 mm. Reasonably, we can expect that MLA with a spatial extension

of a few millimeters may not be impacted by non-uniformity. Here, we present the case of

a 100 mm×100 mm MLA used as a part of a microlens projection lithography system [104].

The microlenses are made in a fused silica substrate and are aspheric with nominal param-

eters Rn = 253µm, κn =−1.02, and diameter 2a = 315µm. Moreover, they are arranged in a

hexagonal lattice to maximize the fill factor.

The wafer non-uniformity is induced by all steps of the fabrication process illustrated in Fig. 1.3.

Firstly, the photoresist spinning produces a non-uniform thickness of the resulting layer. Then,

the illumination is not perfectly uniform, which means that after development, the resist pillars

do not have the same volume, and thus the resist microlenses have different ROCs after reflow.

Finally, the etching process takes place in a chamber that has a finite size. The electromagnetic

field, the temperature, and the plasma present spatial variations, which provoke an etching

rate that depends on the position. All these parameter variations are combined and provoke

a non-uniform distribution of aspheric surfaces within the MLA. To simplify the discussion

of the proposed correction method and allow a graphical representation, we represent the

aspheric surfaces by only two parameters instead of by a continuous function. They can be

the ROC R and the conic constant κ or equivalently, see Section 2.3.1, the defocus c4 and the

primary spherical c11. This restriction can, however, be suppressed without any difficulty.

Figure 4.11 illustrates the non-uniformity after the resist reflow step. The ROC difference ∆R =
R − R̄1 and the RMS surface form deviation for the spherical resist microlenses are provided

in Fig. 4.11a and Fig. 4.11b respectively. This non-uniformity is already the combination of

variations in the resist thickness, the illumination, and the development process.

1The bar notation means the average over the MLA.
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Figure 4.11 – Evidence of the non-uniformity after the photoresist reflow process. The MLA
sampling consists of measuring 225 microlenses out of ∼ 105. Variations of the resist thickness
layer and the illumination are the leading causes.

Figure 4.12 illustrates the non-uniformity for the completed etched MLA. The ROC difference

is shown in Fig. 4.12a, the conic constant difference in Fig. 4.12b and the RMS surface form

deviation for the fused silica microlenses in Fig. 4.12c. The comparison between the total

surface deviation RMS and κ shows that the non-uniformity is mainly translated into the

conic constant variation as the distributions present the same circular shape. We explain this

radial symmetry by the geometry of the plasma chamber. Also, by comparing the total surface

deviation RMS of the resist microlenses, Fig. 4.11b, to the etched microlenses, Fig. 4.12c, we

observe that the non-uniformity is more important at the end of the fabrication. The RIE step

is thus the primary source of variations in this example.

In order to compensate for this variation, one parameter of the process must be changed locally.

However, since all microlenses are processed in parallel, there is only one feature that can

easily be changed at the scale of one microlens: the photo-mask design. From the reflow study,

we know that is it possible to change the ROC of the resist microlens by modifying its volume,

either by gray-scale lithography, by modifying the resist layer thickness, or by modifying its

diameter. The resist layer thickness cannot be modified locally, so the two other options

remain. The gray-scale lithography is likely the ideal method as the diameter can be kept at its

nominal value, thus preserving the fill factor. However, it is more difficultly implementable

than a simple diameter change, as the link between the photo-mask structure and the volume

reduction is likely to be position-dependent and should thus be assessed experimentally. For

this reason, we choose to use the diameter change as the tunable parameter.

From the considerations about the resist reflow, the change of volume resist only affects the

ROC value, meaning that it is only possible to act on the symmetrical radial components of

the final surface. Since even order components above c4 have low amplitude, it is reasonable

for them to be neglected. This is a justification why using only the two parameters R and κ to

represent the surface is reasonable.
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Figure 4.12 – Evidence of the non-uniformity after the RIE process. By comparing (b) and
(c), we note that the non-uniformity is mainly translated into a dispersion of conic constant.
Also, by comparing the total surface deviation RMS after reflow, one notes that the etching
process is the primary source of the variations. The radial symmetry is likely explained by the
geometry of the reactor.

4.4.1 Methods

Now that we have identified a means to leverage the form of the etched microlenses surface,

we have to address the following question: what diameter change should be applied to in-

crease the MLA uniformity? Formally, the problem we want to solve is nothing else than an

optimization. The goal is to determine the resist volume change ∆Vc that we have to apply in

order to minimize a loss function representing the non-uniformity.

Thus, we first have to define the non-uniformity quantitatively. As previously mentioned, the

final interest is that all microlenses behave the same way from an optical point of view. By

looking at the total surface deviation RMS provided in Fig. 4.12c, we can estimate that the

aberration level caused by the non-uniformity is far from the diffraction-limited threshold and,

thus, the optical performance is well represented by the RMS spot size. From Section 2.3.2, we

know that this quantity is almost perfectly correlated to the RMS slope deviation. Consequently,

both quantities are equivalent to solve this optimization problem. For convenience, we thus
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Figure 4.13 – Total slope deviation RMS as a function of the differences ∆R = R −Rn and
∆κ= κ−κn , calculated from the nominal values. All microlenses along the blue diagonal have
the same focal length.

define the non-uniformity L (loss function) as the RMS slope deviation.

What is still to be specified is the reference used to calculate the slope deviation. Intuitively,

we may think that we should use the nominal surface. However, we only want to correct

the non-uniformity. It means that we assume that the process is already optimized in the

sense that R̄ ≈ Rn and κ̄ ≈ κn . However, it is clear that from wafer to wafer, there are some

unavoidable variations, of which the correction we apply must be independent. For this

reason, the slope deviation is calculated based on ∆R = R − R̄ and ∆κ = κ− κ̄. Figure 4.13

shows the RMS slope deviation for a typical dispersion of ROC and conic constant values.

Qualitatively, the combinations of R and κ that follow the blue diagonal have similar optical

performance, meaning the same focal length. More discussion about these considerations

can be found in Section 2.3.1. Figure 4.14 illustrates the loss function across a MLA.
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Figure 4.14 – Non-uniformity across the MLA as defined as the total slope deviation RMS.
Same example as in Fig. 4.12.
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Now that we have defined the loss function L = L(∆R,∆κ), we have to find the relation that

connects the input parameter ∆a to the process output parameters ∆R,∆κ,

∆a
reflow−−−−→∆Rr

RIE−−→ (∆R,∆κ), (4.21)

through the difference of microlens resist ROC ∆Rr . From the study of the resist reflow, we

know that

∆Rr =C ·∆a, (4.22)

with C a constant. The RIE process cannot be represented explicitly, but it is determined as

explained in Section 4.3. We name itΥ=Υ(∆Rr )

At this point, it may be useful to clarify the dependency of all these functions on the substrate

position (x, y). The reflow process does depend on the position only through the resist layer

thickness hc , and the constant C can thus be considered independent on the position as it

is confirmed in Fig. 4.3a, which presents data from all wafer positions. On the other hand,

the RIE process is a function of the position. As already discussed, the temperature and

plasma composition are different for distinct positions. The comparison between Fig. 4.11b

and Fig. 4.12c shows that the shape of the non-uniformity changes during the RIE process.

Practically, this means that the functionΥmust be determined for each microlens position

and that the optimization process must be performed independently for each microlens.

(µm)
−40 −20 0 20 40

−50

0

50

x (mm)

y
(m

m
)

−2

0

2

Figure 4.15 – The calculated semi-diameter change ∆a that minimizes the non-uniformity
defined by the total slope deviation RMS. The semi-diameter change function has a radial
symmetry similar to the one that is observed in Fig. 4.13. The maximum semi-diameter change
is about 5µm.

The optimization problem is thus defined by the determination of the function ∆a0(x, y) such

that:

L
(
Υ

(
C∆a0(x, y), x, y

))≤ L
(
Υ

(
C∆a(x, y), x, y

))
for all ∆a(x, y). (4.23)

This operation is realized numerically. The result of the optimization, the change of diameter

as a function of the MLA position, is presented in Fig. 4.15.
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4.4.2 Results and discussion

Based on the diameter change calculated in the previous section and presented in Fig. 4.15, a

new photo-mask is created. New MLAs are then manufactured with this new photo-mask but

by using the same process as before.

Figure 4.16 shows the non-uniformity of the ROC R and the conic constant κ. The comparison

with Figs. 4.12a and 4.12b shows that the conic constant distribution is not really modified

by the correction procedure, whereas the R distribution is clearly impacted. The R and κ

distributions are now quite well correlated to each other. This is expected since the change

of the loss function provoked by a difference of conic constant can be compensated by a

well-chosen change of ROC, as seen in Fig. 4.13.
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Figure 4.16 – Example of the R and κ distribution across a completed MLA after the correction
procedure. The conic constant variation is not impacted by the correction procedure, whereas
the R distribution is entirely different. It is now well correlated to the κ distribution as one
expects.

To evaluate the uniformity improvement, we have to look at the RMS slope deviation, which is

the loss function. Figure 4.17 presents an example of corrected and uncorrected MLA. In the

uncorrected case, the radial non-uniformity is visible but has completely disappeared in the

corrected case. The improvement is clearly observed.

To more accurately assess the improvement, the RMS slope deviation is calculated for 10

MLAs, 5 uncorrected and 5 corrected, and then compared. Visually, the improvement can be

observed in the R/κ space, see Fig. 4.18. The corrected distribution (green) is aligned along

the diagonal of reduced cost, whereas the uncorrected distribution (red) has no well defined

principal component. This plot also shows that it is the ROC that is impacted by the correction

procedure and not the conic constant in this particular example.
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Figure 4.17 – Comparison of the loss function value across an example MLA before (a) and
after (b) the correction procedure. A clear improvement is observed.
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Figure 4.18 – R/κ distribution of 5 uncorrected (red) and 5 corrected (green) MLAs. The
corrected distribution is now aligned along the blue diagonal that represents the loss function
minimum.

To quantitatively score the improvement, the empirical distributions of the loss function are

compared for these 10 MLAs, see Fig. 4.19. On average, the RMS slope deviation is 4.93 mrad

before correction and 1.48 mrad after correction. This is an improvement by a factor of 3.3.

To look at the extremes of the distribution, we can also determine the value of the RMS slope

deviation that comprises 95% of the distribution. It is 8.4 mrad in the uncorrected case and

3.1 mrad after correction. This is an improvement by a factor 2.7. These numbers demonstrate

the effectiveness of this method on average, but also in terms of extreme cases.
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Figure 4.19 – Empirical distribution of the loss function for 5 uncorrected (red) and 5 corrected
(green) MLAs. Distribution means are 4.93 mrad and 1.48 mrad, respectively. 95% of the
microlens are below 8.4 mrad in the uncorrected case and 3.1 mrad in the corrected case. Both
number show an effective improvement of the uniformity.

These numbers show that the procedure is effective to reduce the non-uniformity. How-

ever, the cost of the method in terms of money and time is also essential for its practical

implementation. To discuss it, we summarize first the steps involved in the procedure:

1. Measurement of the resist and etched microlenses surfaces for a MLA manufactured

with a stable process.

2. Process modeling based on the surface measurements.

3. Determination of the diameter change by optimization.

4. Creation of a photo-mask with modified structures.

Then, new MLAs can be processed. The measurement of the resist and etched microlenses

is usually a familiar process. The new steps involved in this method are the modeling of the

process and the optimization, which consist only of a software analysis. They may, however,

require some time and competences to be done correctly. Besides working time, the cost of the

method is due to the new mask that has to be ordered. In terms of time, the entire procedure

should take at least a few days.

The idea to modify the resist volume to change the spherical cap curvature and, finally, to

change the curvature of the completed microlens could be used to compensate for another is-

sue. Indeed, within an MLA, the microlenses at the edges, that miss one or several neighboring

microlenses, usually present differences compared to the inner microlenses, see Section 2.3.3.
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For instance, this results in quite a large difference in ROC, which is usually compensated by

designing dummy microlenses. The proposed method could be an interesting alternative.

The procedure described here, namely determining a loss function and one or more tunable

parameters, modeling the fabrication process, and determining by optimization the best input

parameters, applies to any manufacturing process, and other fabrication techniques of MLA in

particular. We can mention that MLA manufactured by UV imprinting are also subject to non-

uniformity caused by mold deformation and polymer shrinkage [105]. When the master mold

is created by direct writing, the surface itself can be modified without restriction, allowing,

in theory, a perfect compensation for these effects. For this, accurate process modeling is

required, which is not trivial.

In order to improve the method, grey-scale photolithography could be used instead of chang-

ing the diameter. Also, using a direct-writing based master mold and replication could replace

the reflow process for the creation of resist microlenses and thus be combined with RIE for

further uniformity improvement of silicon or glass MLA.

4.5 Conclusion

In this chapter, we intend to model the microlens fabrication process by resist reflow with

subsequent reactive ion etching. As a full model that allows complete predictability is impos-

sible to achieve, we use a more practical approach based on trial and error, in other words,

based on process optimization. However, since the number of parameters is huge, we use

empirical models that we calibrate with experimental measurements to obtain estimations of

the gradient in order to ensure and speed up the descend towards the optimum.

More concretely, we model both the resist reflow and the RIE process. First, we establish the

conditions to obtain a spherical cap with resist reflow. Then, from this ideal case, we show

how the ROC of the resist microlens changes as a function of the input parameters, namely

the microlens diameter and the resist thickness layer.

For the RIE process, we model the directional and isotropic etching separately and then

combine the results. In particular, we show that the ratio of the slopes between the resist

and the etched microlens is an indicator of the etching selectivity. Based on this and further

developments, we propose strategies to optimize the RIE process, which is usually represented

by a continuous parameter function of time.

We demonstrate the validity of these models as we use them to increase the uniformity of a

large MLA. Indeed, a controlled change of the microlens diameter allows to modify the resist

microlens ROC and compensate for etching variations. The uniformity is improved by a factor

∼ 3.

With these models, we can also estimate the fundamentals limits of the photoresist reflow with

subsequent RIE approach and what are the origins of these limitations. We identify mainly the

87



Chapter 4. Microlens Fabrication Modeling

photoresist layer thickness that can be dispensed and the isotropic component of the etching

process, which significantly reduces the microlens aperture. Overcoming these limitations

could be realized by replacing the resist reflow by a UV imprinting step based on freeform

mastering.
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5 Microlens Characterization in Trans-
mission

The characterization of high NA microlenses by surface measurements in reflection is no more

possible because of the steep surface slopes. As a possible alternative, we present and discuss

measurements of the PSF and of the wavefront performed in transmission. In particular, we

evaluate how these measurements can provide information about the surface for fabrication

process optimization and about the optical performance for quality evaluation.

5.1 Introduction

A convenient way to characterize microlenses is by measuring their surface in reflection

using optical surface profilers such as confocal microscopes or CSIs. However, for high NA

microlenses, the required steep surfaces prevent the reflected light from being collected by

the imaging system (microscope objective) of these instruments. Alternatives are the use of

higher magnification microscope objectives with smaller FOVs combined with image stitching

or the use of mechanical contact profilers. However, both approaches are rather slow. An

alternative that takes into consideration this drawback is to work in transmission and thus

directly examine the optical functionality of the microlens. One obvious condition is to

use, for the test, a wavelength in the transparent range of the material. This thus prevents

the measurement in transmission of silicon microlenses with visible light. However, this

condition is not a very strong drawback since most silicon microlenses are flat due to the high

refractive index (n ∼ 3.5) and can usually be characterized by surface measurements without

difficulty. This approach is thus considered for glass or plastic microlenses used in the visible

or ultraviolet (UV) range.

The full information about the function of a lens is included in the field scattered by this lens.

Phase and irradiance measurements allow probing selected optical functions of the lens. Here,

we consider the well-known wavefront [35, 58, 106, 107] and PSF measurements [108–110].

We discuss both approaches and determine what pieces of information can be obtained.

In particular, we discuss for both of them the possibility to evaluate the microlens optical

quality and to obtain information for fabrication process optimization, the two purposes of
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Chapter 5. Microlens Characterization in Transmission

the characterization. The novelty of the work presented here lies in three points: firstly, we

consider high NA aspheric microlenses. Secondly, we discuss the analysis of the measurements,

which is rarely done. Finally, we present a method to reconstruct the surface. Usually, only the

ROC is derived as a geometrical parameter.

This chapter starts with a description of the setup used to perform the measurements of the

PSF and the wavefront, Section 5.2. PSF measurements and their analysis are then discussed in

detail in Section 5.3. Similarly, Section 5.4 discusses the phase measurements and subsequent

processing. Finally, the principal results and conclusions are summarized in Section 5.5.

5.2 Experimental setup

In order to perform PSF and wavefront measurements, we use a high-resolution interference

microscope with spectral resolution [111]. The schematic of the setup is presented in Fig. 5.1.

The working principle is derived from a Mach-Zehnder interferometer and allows recording

irradiance and phase [112–115] at a desired wavelength and position after the microlens. The

light source of the setup is a supercontinuum (SuperK Fianium, NTK Photonics), and the

operating wavelength is selected by an optical variable filter within the range of 480-840 nm.

An optical delay line sets the optical path difference between the object and reference arms

to zero. Indeed, the optical path of each arm varies through different wavelengths because

of the dispersion of the optical components. A piezo mirror is deployed to vary the optical

Source

Camera

Beam splitter

Filter

Beam combiner

Optical delay
line

Microscope
objective

Tube lens

Piezo-Mirror

Piezo-Stage

Figure 5.1 – Schematic representation of the high-resolution interference microscope. The
field scattered by a sample, a microlens in this case, can be recorded in a specific volume thanks
to irradiance and phase measurement. This allows for PSF and wavefront measurements.
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path length of the reference arm, inducing the phase shifts that are necessary for the five-steps

phase-shifting interferometry technique [116,117] that is used to extract the phase information.

Equivalently, digital holography could be used for this operation [118]. An additional piezo

stage that moves the sample allows us to run measurements at different positions along the

optical axis. The position of the tube lens corrects residual wavefront errors of the objective so

that a flat phase profile can be achieved on the camera when no sample is present.

5.3 Point spread function (PSF) measurements

The point spread function of a lens is the response provided by this lens to a point source.

When the lens is not aberrated, the shape of the PSF is only the result of the diffraction caused

by the lens aperture [50]. For a circular aperture, it is represented in the focal plane by the

well-known Airy pattern [119]. The diffraction-limited PSF is thus the best achievable case,

and the comparison of a measured PSF to the ideal one is an indicator of the lens quality.

Figure 5.2 presents the measured PSF of a low (0.14) and high (0.4) NA microlenses illuminated

by a plane wave, see Fig. 5.1. For the low NA spherical microlens, the measurement presents an

almost ideal PSF as it is symmetrical. On the other hand, for the high NA spherical microlens,

a spherical aberration is detected, which is expected.

This spherical aberration is the reason why aspheric surfaces defined as conic sections are

used, see Section 2.2.1. However, the conic constant value that has to be set is a function of the

object position and of the refractive index n. Figure 5.3 shows the optimized conic constant

for an on-axis object as a function of the distance d between the microlens vertex and the

object. For such an imaging case, the conic constant is included in the interval [−n2,−1/n2].
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(a) Microlens parameters: diameter 2a =
250µm, ROC R = 425µm, and NA 0.14.
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(b) Microlens parameters: diameter 2a =
250µm, ROC R = 200µm, and NA 0.4.

Figure 5.2 – Measured irradiance at the focal spot for low (a) and high (b) NA spherical
microlenses. When the NA is low, the spherical aberration is not visible, and the focal spot is
close to the ideal one. For the high NA microlens, spherical aberration is visible, and the PSF is
no more symmetrical.
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Figure 5.3 – Optimized conic constant values that allow for an almost aberration-free image of
an on-axis point source as a function of its distance d from the microlens vertex. Microlens
parameters: ROC R = 500µm, diameter 2a = 500µm, substrate thickness T = 500µm and
refractive index n = 1.5. The conic constant value can be significantly different whether the
object is placed at infinity (κ=−0.6) or at the front focal plane of the lens (κ=−2.25).

The fact that an aspheric surface suppresses the spherical aberration only for on-axis objects

placed at one specific position shows that testing a lens with another illumination provokes

artificial aberration. The testing configuration must thus be equivalent to the working config-

uration for the correct PSF to be recorded. Thus, instead of illuminating the microlens with a

plane wave, a point source can be placed at the correct distance d . This can be realized by

using a single-mode fiber.

On top of that, the correct wavelength must be used for testing because of chromatic dis-

persion. This can be realized using a supercontinuum as the light source, as described in

Section 5.2. However, this condition limits the testing to the visible range, which is also the

working range of the optical elements in the measurement setup. In particular, PSF measure-

ment poses difficulty to characterize elements working in the UV range because of the lack of

highly corrected optical elements made for UV light. In conclusion, PSF measurements are

meaningful only when performed under proper working conditions.

5.3.1 Quality assessment

Based on PSF measurements, the optical quality of the lens is usually assessed by calculating

the Strehl ratio [120]. It is the ratio of the irradiance peak value I of an image produced by an

aberrated lens to the same quantity produced by a diffraction-limited lens, I0. It is written::

SR = I

I0
. (5.1)
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5.3. Point spread function (PSF) measurements

In the framework of the Fraunhofer diffraction theory, I0 is expressed as

I0 =
P0 A

λ2 f 2 = C · A2

λ2 f 2 = Cπ2a4

λ2 f 2 , (5.2)

with P0 =C · A, the power falling onto the aperture of area A, C being the constant of propor-

tionality when the illumination is uniform.

Most of the microlenses that are fabricated at SUSS MicroOptics have an irregularity RMS

below 150nm, which represents a wavefront error RMS smaller than λ/6 for glass microlenses.

At this level of quality, determining the Strehl ratio is still relevant, but this is not the case for

microlenses of low quality [121].

Equation (5.2) shows that the derivation of the Strehl ratio requires the value of the aperture

of the lens. The diameter of a microlens is usually fixed as a requirement of the design and

well known. However, is the diameter equivalent to the aperture? As seen in Section 4.3 and

illustrated in Fig. 5.4, microlenses fabricated by resist reflow with subsequent reactive ion

etching possess a concave area at the microlens edge, which reduces the effective aperture.

This raises the following questions: firstly, can the Strehl ratio still be derived using Eq. (5.2)? If

yes, how to determine the aperture?

The aperture could intuitively be defined by considering the inflection point, where the slope

decreases rapidly and which is close to a hard aperture definition. However, the profile has

still to be measured to determine this value. An optical surface profiler cannot perform this

operation in the case of high NA microlenses, and mechanical contact profilers have to be used.

Moreover, on a single wafer and from wafer to wafer, the values of the individual microlens

apertures vary caused by fabrication process variations. This imposes the measurement of all
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Figure 5.4 – Example of a measured microlens surface profile and slope. It illustrates the issue
concerning the aperture definition for microlenses fabricated by reactive ion etching. Indeed,
the continuous transition between the edges of the microlens that are concave and the convex
part of the surface prevents the definition of a hard aperture.
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of them. Indeed, for a Strehl ratio SR , a wrong aperture determination a +δa leads to a wrong

Strehl ratio SR ′, which is expressed as

SR ′ = SR
1

1+4δa
a

. (5.3)

This means that an error of 1% of the aperture value gives an error of 4% of the Strehl ratio.

Like this, Strehl ratios above 1 are derived when δa is negative. In conclusion, this means that

the PSF measurement alone cannot provide an accurate assessment of the microlens quality.

Another practical issue is the determination of P0. Practically, it can be estimated by integrating

the irradiance over all the camera when the measurement plane coincides with the focal plane.

However, the light coming from outside the effective aperture also fall onto the sensor. This

effect artificially increases the Strehl ratio and again adds uncertainty to its value.

In conclusion, even if the working conditions are reproduced, the quality of an RIE based

microlens is not accurately assessed through PSF measurements.

5.3.2 Feedback for process optimization

The second purpose of the characterization is to obtain feedback in order to optimize the

fabrication process. If we assume that the surface form of the microlens defines most of the

optical functionality, i.e., we do not consider the substrate thickness variation or the material

non-homogeneity, the goal is thus to determine the surface change that has to be applied to

obtain the ideal performance.

Besides the focal length that is linked to the microlens ROC, it is challenging to derive quantita-

tive feedback from a PSF measurement. In Fig. 5.2, spherical aberration is clearly visible for the

high NA microlens, but it is difficult to estimate how much surface deviation this represents.

Furthermore, this case is quite obvious, but when the amplitude of the aberration is smaller,

and the type of aberration is of a higher order, this task becomes even more difficult. We do

not claim this is not feasible, but we emit doubts.

In conclusion, quality testing of high NA microlenses through PSF measurements is quite

restrictive. Indeed, it requires that the testing conditions are equivalent to the working con-

ditions. Also, it is difficulty applicable for RIE microlenses because the diameter does not

correspond to the aperture, which has to be determined by a contact profilometer. Finally,

we do not see the possibility of obtaining quantitative feedback for a fine optimization of the

fabrication process.
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5.4. Wavefront measurements

5.4 Wavefront measurements

Measuring the output wavefront of a lens and determining the deviation from a reference -

generally, a plane wave or a spherical wave - is a well-established and standardized technique

to assess the quality of this lens [35,122]. As mentioned in Section 5.3, for high NA microlenses,

if the testing conditions are not similar to the working conditions, artificial aberrations appear.

However, in the case of phase measurement, one can find workarounds in order to suppress

this condition.

The PSF is the consequence of the diffraction and is the result of a complex integral calculation

performed over the lens aperture. On the other hand, the wavefront can be explained mainly by

geometrical optics and can be seen in a first approximation as a simple addition of phase shifts

without spatial dependence. Indeed, within the framework of the thin element illuminated by

a plane-wave, the phase φ at the exit pupil induced by a surface sag s is given by:

φ(x, y) = k(n −1)s(x, y). (5.4)

This shows that in this particular regime, the reference wavefront is of no importance as a

surface deviation ∆s provokes a wavefront aberration ∆φ which is not a function of the target

surface, thus of the reference wavefront.

For high NA microlenses, the bending of the rays cannot be neglected anymore and has to be

taken into account. From Section 2.3.2, we know that the phase at the exit pupil becomes:

φ(x ′, y ′) = ks(x, y)
(
n −

√
1+m2

x (x, y)+m2
y (x, y)

)
, (5.5)

with mx,y the slope of the ray after refraction, x ′ = x −mx s, and y ′ = y −my s the coordinates

in the exit pupil. However, in this case, the wavefront aberration depends on the reference

wavefront∆φ=∆φ(∆s,φ0) because of the terms that take the slope of the rays into account. We

can nevertheless note that the wavefront component that depends on the reference wavefront

is smaller than the linear part. This offers the possibility to use a perturbative approach and

thus use the wavefront provoked by the ideal surface under testing condition φt
0 as a reference:

∆φ=φ−φ0 ≈φt −φt
0. (5.6)

In other words, it is possible to use a plane wave illumination to characterize microlenses

that are not designed to work under this illumination if we accept the drawback to lose some

accuracy. However, the knowledge of φt
0 is required, which can be determined by Eq. (5.5) or

by any simulation software. To illustrate this, Fig. 5.5 presents a simulation that compares a

chosen wavefront aberration and its approximation under plane wave testing for a typical

aspheric microlens that is not designed to work under plane wave illumination (κ=−1.5). The
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(a) Chosen aberration under simulated work-
ing condition: Φr ms = 0.081λ.
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(b) Approximation of the aberration obtained
under simulated plane wave characterization:
Φr ms = 0.087λ.

Figure 5.5 – Comparison between a simulated wavefront aberration and its approximation by
Eq. (5.6). The amplitude and shape of these two wavefront aberrations are similar. Microlens
properties: R = 0.5 mm, κ=−1.5, diameter 2a = 0.5 mm, substrate thickness T = 0.5 mm and
refractive index n = 1.5.

amplitude and shape of the wavefront are similar which shows that this approach can be used

for testing the quality of the microlens.

5.4.1 Quality assessment

To illustrate this quality testing method, an interferometric measurement of a microlens is

presented. The microlens, made in Borofloat®33, is fabricated at wafer-level using photoresist

reflow with subsequent reactive ion etching. This specific microlens is chosen for three reasons:

firstly, because of its physical parameters (sag = 38µm, aperture = 180µm, R = 150µm, paraxial

effective front focal length ∼ 300µm, n = 1.476 at λ = 550nm), its NA of ∼ 0.4 is one of the

highest for such fabrication method. Secondly, this microlens is chosen because it has no hard

aperture, thus allowing to illustrate the issue presented in Section 5.3. Finally, this microlens is

spherical thus highly aberrated (∆φr ms > 0.5λ), which allows to evaluate the method far from

the ideal case.

The phase is recorded on a plane situated at a position zm , between the microlens vertex and

the front focal spot, where all the phase information can be recorded on the camera without

limitation caused by the field of view, see Fig. 5.6. This renders the procedure pretty insensitive

to the microlens diameter since there is always a position where the entire phase information

can be recorded whatever the field of view provided by the imaging system. The NA of the

microscope objective can thus be freely chosen to be above the NA of the tested microlens. In

this particular example, zm is ∼10µm. The microscope objective used for this measurement is

a 20× apochromat NA 0.4 manufactured by Leica.
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zm

Microscope objective
field of view

Figure 5.6 – Schematic of the measurement configuration. A plane wave is focused by the
microlens and the phase is recorded at a position zm where all information is included in the
field of view of the microscope objective.

Figure 5.7a presents the wrapped phase. Figure 5.7b shows a cross-section of the unwrapped

phase as well as its derivative. It can be observed that on a diameter of about 160µm, the

wavefront is convex and converges towards the focal spot. Outside this area, the wavefront

deviates dramatically from a spherical wave. This is the translation of the aperture issue

mentioned in Section 5.3. The sharp change in the wavefront derivative provides a convenient

way to define the aperture of the microlens.
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Figure 5.7 – Measured wavefront produced by the RIE based microlens. Measurement is
performed with a 20× NA 0.4 microscope objective at λ = 550 nm. The wavefront is convex
and spherical at the center and concave at the edges. A smooth transition between the two
regimes is observed.

From this phase measurement, the wavefront aberration is retrieved by subtracting a reference

wavefront. Figure 5.8 presents the wavefront deviation from a spherical wavefront as well as

its decomposition into Zernike polynomials. The RMS value of the wavefront aberration is

0.55λ and its PV value is 2.24λ. The wavefront aberration consists almost only of spherical

aberration, which is expected for a spherical microlens.
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Figure 5.8 – Wavefront aberration from a spherical wave reference and its Zernike polynomials
decomposition. RMS = 0.55λ, PV = 2.24λ. Indices as in [123]. As expected for a spherical
microlens, the main aberration is primary spherical.

5.4.2 Feedback for process optimization

The second objective of the characterization is to obtain feedback for fabrication process opti-

mization. In other words, we want to acquire information about the surface of the microlens.

When a plano-convex lens is thin and illuminated by a plane wave, a measurement of the

phase at the exit pupil gives the surface directly, see Eq. (5.4). The generalization of this

equation to hihg NA plano-convex lenses illuminated with a plane wave from the backside is

explicitly derivable. In this case, the phase φ at a position zm is written:

φ(x ′, y ′) = kns(x, y)+k(zm − s)
√

1+m2
x (x, y)+m2

y (x, y). (5.7)

This equation can be inverted to obtain the surface z = s(x, y):

s(x, y) =
φ(x ′, y ′)−kzm

√
1+m2

x +m2
y

k
(
n −

√
1+m2

x +m2
y

) . (5.8)

The wavefront measurement presented in Fig. 5.7 is used to reconstruct the surface of the

microlens. First, the unwrapped measured wavefront is cropped and decomposed into the

first 150 Zernike polynomials. This specific number is chosen for the decomposition to contain

all the relevant surface information and to remove the noise. Then, the surface is obtained

by using Eq. (5.8). In order to demonstrate that this approach is valid, the same microlens is

also measured with a mechanical stylus profiler along the x-axis crossing its vertex. Figure 5.9

presents both the reconstructed and measured profiles. A good agreement between them is

observed. To allow a better comparison between them, they are both fitted with the spherical

equation, and their fit residuals (irregularity) are presented in Fig. 5.10. The reconstructed ROC
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Figure 5.9 – Comparison between the stylus measurement (ROC R = 150.9µm) and the recon-
structed profile (ROC R = 152.5µm). Even if these two surface profiles do not perfectly agree,
they both provide similar feedback for fabrication process optimization.

value is in good agreement with the direct stylus measurement: R = 152.5µm vs. 150.9µm. The

RMS values of both irregularities are comparable, 46.1 nm vs. 67.5 nm, and their shapes are

qualitatively similar. These results show the validity of the approach for surface determination.

The maximum usable numerical aperture of this microlens can be estimated based on the

maximum slope of the surface, which is about 37°. This leads to a NA of almost 0.4. For this

surface to be characterized in reflection, a microscope objective with a NA of at least 0.6 is

required.

To reconstruct this surface, we require a plane wave illumination from the backside because

we do not think that an analytical reconstruction of the surface is possible in the general case

of a point source illumination. However, the goal is to obtain feedback for fabrication process
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Figure 5.10 – Irregularity comparison between stylus measurement and reconstructed surface:
the shape and amplitude are similar.
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optimization. In reality, the surface form deviation with respect to the nominal surface is

enough. In all configurations, an approximation of the surface deviation can be obtained

using the thin element approximation:

∆s(x, y) = ∆φ(x ′, y ′)
k(n −1)

. (5.9)

The relation between (x, y) and (x ′, y ′) can be estimated using geometrical considerations in

the aberration-free case. Even though this is only an approximation, it has to be noted that it

converges to a surface deviation of zero when the phase deviation is zero. This means that this

is usable in an optimization process, and this approximation does not alter the quality of the

lens manufactured with the optimized process, maybe more trials are needed.

In the example we present, the measured wavefront aberration suffers from the expected spher-

ical aberration, and the reconstructed profile is in good agreement with the mechanical stylus

measurement. However, how is it possible to evaluate the accuracy of such measurement?

Among the sources of error, we can mention:

• An error in the measurement plane position zm . In principle, positioning can be per-

formed accurately, and this uncertainty can be estimated.

• The homogeneity of the material. Local variations of the refractive index induce unde-

sired wavefront aberrations. However, these variations can be measured accurately, and

they are negligible for glass [124, 125].

• The diffraction is neglected: first, the finite extent of the aperture is not considered.

However, for an aperture > 150µm, this is not a problem [126]. Secondly, the intensity

variation of the transmitted light due to the transmission coefficient, which depends on

the surface slope [127], is not taken into consideration.

• Aberrations of the imaging system. This is the most problematic part as it is difficult, if

not impossible, to characterize and to correct.

A method that is used in classical optics to address this issue of accuracy is the null test [44]. It

can be done in reflection, but until recently and the development of direct writing, aspheric

micro-surface of reference could not be manufactured. The accuracy of such a surface should

also be verified. Another option in classical optics is the utilization of computer-generated

holograms (CGHs) [128–130]. However, in micro-optics, a microscope objective is required

to upscale the field to the classical scale to record it on a camera. Because of the fabrication

technique limitations, computer generated-holograms cannot shape wavefront at the micro-

scale, and the aberration of the microscope objective cannot thus be suppressed. An exception

is the 1D case of cylindrical microlenses tested with gratings [131]. One practical alternative

would be to use a golden sample that is well characterized by other means, e.g., by using an
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ultrahigh accurate 3D profilometer [132] with rigorous optical simulation to assess the error

produced by the optical imaging system.

5.5 Conclusion

This chapter discusses the characterization of high NA microlenses in transmission by prob-

ing their optical function. In particular, we report on a characterization based on PSF and

wavefront measurements.

Firstly, we show that a characterization based on PSF measurements allows us to evaluate

the microlens quality by deriving the Strehl ratio. However, we point out the fact that the test

conditions must be similar to the working conditions for this assessment to be meaningful.

This limits the versatility of the approach in terms of microlens geometries. Also, we discuss

the issue of aperture determination in the case of RIE based microlenses. On the other side,

we claim our doubts about the possibility of determining information in order to optimize the

fabrication process.

Secondly, we discuss wavefront measurements by interferometry. In this case, we show that

the testing conditions may be slightly different from the working conditions. This allows a

characterization without modifying the setup for different microlens geometries, which is a

clear advantage of this method. We also show how the phase information can be processed to

reconstruct the surface form, thus giving feedback for the manufacturer in order to optimize

the fabrication process. A single interferometric measurement can thus fulfill both purposes

of the characterization. For this reason, we believe that phase measurements are more suited

than PSF measurements for the characterization of high NA microlenses.

An important question that remains open is the expected accuracy of this method. Because

the measurements are not performed in a null test configuration, one may expect aberrations

from the optical systems which are difficult to assess or correct. For implementation in a

production environment, this problem and instrument automation are the main challenges

that have to be faced.
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6 Conclusion

6.1 Summary and discussion

The goal of this thesis is to improve the quality of wafer-lever microlenses by considering

selected steps involved in their manufacturing: the microlens surface measurement, the

performance assessment, and the fabrication process optimization.

To reach this objective, we firstly start by studying surface form tolerancing. As the surface is

the main component of a microlens, its form governs the optical performance. For this reason,

tolerancing the form of a microlens surface is a common way to control its quality. In this

thesis, we study the link between the surface form and optical performance to understand

which surface parameters are the most correlated to the optical performance. For instance, we

find that the slope deviation is an important parameter when the RMS spot size well describes

the optical performance. Then, we make a comparison between the suggested parameters and

conventional tolerances. Based on the results, we propose guidelines for typical applications.

In particular, we show that common ways of tolerancing that are used with the customers are

often not the most efficient approaches.

The direct effect of a smarter choice of tolerances is a better assessment of the microlens

quality, which allows larger tolerances and less discarded microlenses. In consequence, this

allows production at lower cost and with a lower risk of performance failure.

Second, we study the microlens surface measurement by optical surface profilers. This step is

essential as it enables the microlens quality control and fabrication process optimization. In

particular, we assess and improve surface measurement accuracy. More precisely, we show

that an error appears in such measurements, and we illustrate this in the particular case of

a confocal microscope. We discuss the origin of the error and propose a method based on

reference balls to correct it. In the presented example, the error value for typical spherical

surfaces goes from 140 nm RMS to 20 nm RMS after the correction procedure. This represents

an improvement by a factor of 7. This method also benefits from an original calibration

procedure that gives a ROC uncertainty of about 0.01%.

103



Chapter 6. Conclusion

An advantage of the proposed approach is the possibility to use microscope objectives that

have residual aberrations to measure the surface of microlenses accurately. This means the

possibility to use higher numerical aperture objectives for a given FOV. Without this method,

accurate measurements are limited to spherical microlenses with a radius of curvature similar

to existing reference balls. Consequently, it extends the characterization capability in terms of

diameter, surface slope, and surface form, which is especially crucial for aspheric microlenses.

Finally, we model the microlens fabrication process to be optimized more quickly and more

accurately. We start with an empirical description of the resist reflow process based on surface

tension and experimental evidence. In a second step, we create models for the reactive ion

etching process. Again, we use an empirical approach that relies on macroscopic parameters.

We also discuss the limitations of this technology. Then, we use these models to increase the

uniformity of a large (100mm×100mm) MLA by changing the photomask design. In terms of

optical quality, the average optical performance over the MLA is improved by a factor ∼ 3. This

shows that a correct tuning of the process parameters allows improving the average quality of

the microlenses, which is not possible without a reliable model of the process.

Improving the fabrication process means, in particular, a general quality improvement over

one wafer, which may signify more microlenses within the optical specification. Accurate

modeling also renders the process of fabrication optimization faster, meaning saving time and

resources.

Besides these three points, we also discuss an alternative of surface measurement to char-

acterize the microlenses. It is based on the measurement of the microlens optical function

in transmission. We show that such measurements allow assessing the microlens quality by

wavefront aberration determination and also allows the reconstruction of the surface, which

is necessary to optimize the fabrication process. The only doubt we have about the method is

its accuracy and its implementation in an industrial environment. Such a method would be

useful for microlenses that cannot be characterized in reflection by optical surface profilers.

To stress the significance of this work, we have to recall that wafer-level techniques are made

for high volume production of high-quality microlenses. Because thousands of microlenses

are manufactured in parallel, an enhancement of the microlens performance impacts the

thousands of systems where they are implemented. Small improvements have thus a high

impact.

In this thesis, we discuss a characterization based on surface measurements. Such an ap-

proach has crucial advantages in an industrial environment: the instruments are reliable and

commercially available, the measurement is relatively fast, the accuracy is generally sufficient,

and the measurement configuration does not depend on the microlens geometry. To give a

little more context, we list here the different types of microlenses for which this approach is

used and works, fails, and when alternatives must be found.

Firstly, the microlenses that can easily be characterized in reflection with optical surface
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profilers, and no significant error is present in the measurement. The characterization of such

microlenses does not present any particular difficulty. The microlenses that belong to this

category are typically large and flat, diameter 2a < 800µm and surface slope < 15°, or small

and steep, diameter 2a < 300µm and surface slope < 25°.

Secondly, the microlenses that can be characterized in reflection by surface optical profilers

but that require high NA microscope objectives for a given field of view with the consequence

of an error in the measured surface. In principle, confocal microscopes must be used instead

of coherence scanning interferometers for this type of microlenses. This thesis offers an

answer to this problem as it proposes a method to correct such error. Surface measurements

with the proposed correction method are thus still an excellent way to characterize this type of

microlenses. This category includes microlenses that have the following typical dimensions:

diameter 2a < 800µm and surface slope < 25° or diameter 2a < 300µm and surface slope

< 35°.

Thirdly and finally, the microlenses that cannot be characterized in reflection with a single

frame by optical surface profilers. These microlenses are typically large and steep. The

possible alternatives are optical surface profilers with high magnification (NA) microscope

objectives combined with images stitching, mechanical contact profilers that scan the surface,

or optical function measurements in transmission. The choice of the alternative is based on

considerations such as accuracy and time. However, most of the microlenses manufactured

by resist reflow and RIE fall in the first two categories and are thus well characterized based on

surface measurements by optical surface profilers.

It is also worth commenting on the case of MLAs, which is slightly different. Indeed, the quality

is no more defined by the microlenses surface, but by a collective effect of all the surfaces. As

it is difficult to estimate the MLA optical quality from the individual surface forms, it is usually

assessed by a functional test, which is specific to each MLA design. However, for process

optimization purposes, the surface of the individual microlenses have still to be measured,

and the comments mentioned above are thus valid.

6.2 Outlook

Even though some potentially useful results are obtained in this work, they still have to be

implemented and exploited. A successful implementation in an industrial environment is

a final test that validates the developed methods and ideas. Indeed, new concepts, even

beautiful from a theoretical point of view, may not be implemented with success if they do not

resist to considerations such as time and resources cost, automation, and complexity. Here,

we list the steps that should be undertaken to implement the results presented in this thesis.

Firstly, we can make a reliable implementation of the surface measurement correction pro-

cedure, which is based on multiple measurements of a reference ball, that we propose. In

particular, it could be interesting to check with the confocal microscope manufacturer if it
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would be willing to implement such a method directly in the instrument software instead of

using a separate post-processing script.

Secondly, we can propose and discuss the suggested methods to tolerance the surface form

of microlenses with customers. Also, we have to prevent the use of inefficient approaches.

Nevertheless, in practice, this is not as easy as it sounds. Indeed, the optical designer has the

final word on the method he wants to use and does not often understand the consequences of

such a choice. Such implementation is, in part, a pedagogical work.

Finally, we can implement tools to model the fabrication process based on surface measure-

ments automatically. This would help the engineers that set the fabrication process more

accurately. This would particularly help to assess the RIE process.

Besides the implementation of the results, this work could be pursed by extending some

investigations further. In the following, we propose the ideas that we consider as the most

relevant to be developed in the short term.

We can continue the investigation about microlens tolerancing. We can extend the idea we de-

veloped by introducing more surface parameters and by studying more real applications. Also,

we can extend it to freeform surfaces that are slowly being developed in micro-optics. Finally,

we can extend it to complex systems that consist of several MLAs and which performance is

the combination of a large number of parameters. The challenge would be to link the set of

parameters to the final optical performance. Ideally, if successfully done, this would render

the quality check based on a functional test useless. Also, this would allow the discarding of

bad elements early in the production stage, thus saving time and resources.

The methods developed here could also be adapted to other manufacturing techniques. In

particular, empirical models describing the UV imprint fabrication process would be useful.

Indeed, polymer shrinkage and mold deformations provoke modifications of the surface form

during the curing process. Accurate feedback is thus required to compensate for these effects,

and for this reason, a model is a necessary step towards successful manufacturing.

To conclude, we believe that a quantitative description of the full microlens fabrication process,

such as partially done in this thesis, should be continued and extended. Indeed, this allows for

better control and understanding of the microlens fabrication, thus allowing a better quality at

a more effective cost. This is especially important for us as a manufacturer because refractive

micro-optics is leaving the status of niche technology and is rapidly gaining in importance.
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Acronyms

CSI : Coherence Scanning Interferometer

FOM : Figure of Merit

FOV : Field of View

ISO : International Organization for Standardization

MLA : Microlens Array

NA : Numerical Aperture

PSF : Point Spread Function

PV : Peak-to-Valley

RMS : Root Mean Square

ROC : Radius of Curvature

UV : Ultraviolet
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Nomenclature

A : the area of an aperture.

a : the semi-diameter of a microlens.

ac : the semi-diameter of a resist cylinder.

as : the semi-diameter of a resist microlens.

αz : the amplification coefficient of a scanning optical surface profiler.

c1,c2, ... : the coefficients of the Zernike polynomials.

cαz : the calibration coefficient of the amplification coefficient.

cM : the calibration coefficient of the magnification.

D : the surface derivative.

d : a distance.

ε : a surface error.

ηe : the ratio between anisotropic and isotropic components in a reactive ion etching process.

ηr : the photoresist reflow shrinkage.

f : a focal length.

fE ,b : the effective back focal length of a microlens.
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Nomenclature

fE , f : the effective front focal length of a microlens.

fsub : the back focal length of a microlens when situated in the substrate.

γ : the ratio between the calibrated and non-calibrated value of the radius of curvature.

hc : the height of a resist cylinder.

hr : the height of a resist microlens.

hs : the height of an etched microlens.

I : an irradiance.

~i : a set of input parameters.

k : a wave number.

κ : the conic constant.

L : a loss or cost function.

λ : the wavelength of light.

M : the magnification of an imaging system.

m : the slope of a ray of light.

n : the refractive index.

νr : the resist etching rate.

νs : the substrate etching rate.

~o : a set of output parameters.

P : a fabrication process.

P0 : the light power falling on an aperture.

φ : the phase of a wave of light.
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Nomenclature

R : the radius of curvature.

r : the radial position.

ρ : a surface residual.

% : the normalized radial position.

S : a surface.

s : the sag of a surface.

SR : the Strehl ratio.

σ : a standard deviation.

Σ : the etching selectivity.

T : the substrate thickness.

θc : the photoresist contact angle.

Υ : a reactive ion etching process.

υ : a lateral aberration.

u : a standard uncertainty.

Vc : the volume of a resist cylinder.

Vr : the volume of a resist lens.

Y l
m : a spherical harmonic.
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