
Sparse convolutional plane-wave compounding for
ultrasound imaging

Baptiste Heriard-Dubreuil∗†, Adrien Besson∗, Frédéric Wintzenrieth∗, Jean-Philippe Thiran†‡

and Claude Cohen-Bacrie∗
∗E-Scopics, Saint-Cannat, France

†Signal Processing Laboratory (LTS5), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
‡Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

Email: firstname.lastname@e-scopics.com or firstname.lastname@epfl.ch

Abstract—Ultrafast ultrasound imaging enables imaging at
kilohertz frame rates, at the cost of a degraded image quality in
terms of contrast and resolution. To reach an image quality com-
parable to focused imaging, the standard technique is coherent
compounding, which requires a high number of transmissions
and reduces the effective frame rate. In this paper, we introduce
a COnvolutional Compounding Algorithm (COCA), a non-linear
compounding method that aims at improving the quality of
plane-wave imaging by virtually creating new angles. It enables
to perform high-quality imaging with a significantly reduced
number of emissions. Tests carried out on simulations, in vivo and
in vitro experiments, using the Plane-wave Imaging Challenge
in Medical UltraSound (PICMUS) dataset, show a significant
improvement in terms of contrast and resolution compared to
coherent compounding, increasing lateral resolution by 15 to 30 %
and contrast by 6.8 dB in average, reaching an overall quality
almost comparable to a coherent compounding of 75 angles with
only 7 angles.

Index Terms—Convolutional compounding; non-linear beam-
former; plane wave imaging.

I. INTRODUCTION

Ultrafast Ultrasound imaging is a recently proposed tech-
nique that aims at increasing dramatically the frame rate,
reaching the kilohertz range where the standard imaging
method, focused imaging, was limited to 30–40 Hz ([1], [2]).
This technique is based on the emission of unfocused plane
waves that can insonify the whole medium and give access to
one image per wave. Due to the lack of focusing, image quality
is reduced, but can be restored using several plane waves with
different angles, via coherent compounding, as shown in [3],
[4]. However, the number of plane waves required to reach a
decent image quality is high, reducing the effective frame rate.

The trade-off between quality and frame rate creates a
need for more advanced beamformers in plane wave imaging.
Recently introduced convolutional or multiplication based
beamforming techniques like the Filtered Delay Multiply And
Sum (FDMAS) technique [5] yield interesting experimental
results with improved lateral resolution and better contrast than
Delay-And-Sum (DAS) beamforming.

COnvolutional Beamforming Algorithm (COBA) [6] brings
a theoretical justification to these results, especially for sparse
configurations, pointing out that they virtually create new
elements on the probe array. Indeed, those methods multiply the
signals received by the transducers elements pairwise, creating

as many signals as the number of pairs of elements. Using
a far field approximation, Regev et al. [6] showed that each
obtained signal way is equivalent to the signal that would have
been received by another (virtual) element.

Those methods work exclusively in the transducer elements
dimension. We suggest a new compounding method, inspired by
COBA but based on auto-convolutions in the angular dimension.
This convolutional compounding method uses plane wave
pressure field properties to virtually create new steering angles
from a given set of plane waves.

Such a method aims at improving contrast and lateral reso-
lution while being linear with respect to the tissue reflectivity
function (TRF) and compatible with real-time implementations.
It can be used with any given set of plane waves, complete or
sparse.

In the following sections, we study theoretically the process
of plane wave imaging and coherent compounding, and use this
theoretical framework to analyse the proposed COnvolutional
Compounding Algorithm (COCA) and its implications. We
then test our method on the PICMUS dataset [7], with different
angle sequences. Finally, we present and comment the obtained
results in terms of contrast and resolution.

II. MATERIALS AND METHODS

A. Plane Wave Imaging and Coherent Compounding

Plane wave imaging consists in transmitting unfocused plane
waves by emitting almost simultaneously with all transducers.
Such waves are then reflected by scatterers in the medium.
Beamforming the backscattered echoes allows us to create a
map of the tissue reflexivity function (TRF). With a single
insonification, the whole medium is insonified and a low quality
image can be obtained with a simple DAS algorithm.

In this work, we consider a point P located at r = (x, z)
in the medium. For the sake of simplicity, we suppose a
uniform medium, with no absorption, a constant speed of
sound c, and punctual transducers. Moreover, we derive the
theoretical analysis for a unity amplitude, monochromatic wave
of pulsation ω.

The pressure field at point P for a steered plane-wave
insonification of angle α is of the form (as derived in [3]):

p(t) = e jωte−jk(x sinα+z cosα), (1)



where k = ω
c is the wave number.

This plane wave is reflected by point P with TRF coefficient
ρ ∈ R+. The reflected signal is received by all transducers,
delayed, time gated, and summed according to the DAS
algorithm to obtain the estimated TRF at P: y. The obtained
value is proportional to the reflected pressure field.

If we emit a sequence of N angles (αi)0≤i≤N−1, we obtain
an array of estimated reflexivity y, yi corresponding to the
estimate of the TRF obtained at angle αi , i = 0, . . . ,N − 1. The
coherent compounding method consists in delaying each plane
wave to align phases on a focus point F located at (xF , zF ).
We obtain:

yi = Cρe−jk((x−xF ) sinαi+(z−zF ) cosαi ), (2)

with C a complex constant depending on the reception focus
pattern but not on α.

Then, we take as final value ycc , the average of all
estimations:

ycc =
1
N

N−1∑
i=0

yi (3)

We will propose an alternative to coherent compounding
that virtually creates new plane waves with different angles
before summing them.

B. Convolutional Compounding

The idea of convolutional compounding is to increase the
size of y by taking its autoconvolution. This technique is
inspired by [6], but takes place along the angular dimension
instead of the element one.

For linearity concerns, we begin by taking the square root
of the modulus of our estimations, obtaining s such that:

si =
√
|yi |eφ(yi ), i = 0, . . . ,N − 1, (4)

with |.| the modulus and φ(.) the phase operator.
We then take the autoconvolution of s to obtain an augmented

vector of estimations:

ỹn = s ∗ s[n] =
∑
i+j=n

sisj, n = 0, . . . ,2N − 2. (5)

Let us consider n ∈ {0, . . . ,2N − 2}, and i and j natural
numbers so that i + j = n. We want to study the expression of
sisj . After few calculations, we obtain:

sisj = ρ|C |e2φ(C) · e j2k cos
(
αi−α j

2

)
((x−xF ) sin α̃i , j+(z−zF ) cos α̃i , j ),

(6)
with α̃i, j =

αi+αj

2 .

For small angles, we can assume that cos
(
αi−αj

2

)
≈ 1, such

that (6) can be expressed as:

sisj ≈ ρ|C |e2φ(C) · e j2k((x−xF ) sin α̃i , j+(z−zF ) cos α̃i , j ), (7)

Using (2), we notice that (7) corresponds to the DAS estimate
of the TRF for angle α̃i, j at frequency 2ω, up to a constant
phase shift.

Moreover, we observe that this new method is linear in the
TRF as ρ is left unchanged.

In a nutshell, the autoconvolution of an array of plane waves
virtually creates new plane waves with half angles. The last step
is then to coherently compound the estimates corresponding
to the augmented set of plane waves, taking into account
repetitions via weights for normalization purpose.

The final estimate is made of the sum of all virtually created
angles. As the efficiency of coherent compounding lies in the
number of angles summed, we want to calculate the number
of obtained angles. From an set of N angles, we create one
new angle per pair of angles. The number of pairs in a set of
cardinal N is N (N+1)

2 . However, as it is possible to obtain two
times the same half angle from two different pairs, this number
is only an upper bound to the actual number of obtained angles.
Thus, for well chosen angles, we can reach 28 virtual angles
from 7 or 45 from 9.

The whole COCA is described in Algorithm 1:

Algorithm 1 COnvolutional Compounding Algorithm
Input: Array of estimated reflexivity y, weights w.

1: Compute s following (4).
2: Obtain the augmented ỹ from (5).
3: Compound generated estimations with weights:

yCOCA =

2N−2∑
n=0

wn ỹn

Output: Final estimation yCOCA.

C. Experimental Setup

To validate the proposed method, we conduct several
experiments. To do so, we use the IEEE IUS 2016 Plane-
wave Imaging Challenge in Medical UltraSound (PICMUS)
dataset presented in [7].

To assess our method, we use the two simulations, two in
vitro and two in vivo acquisitions from PICMUS dataset.

The sequence is made 75 angles uniformly spread from −16°
to 16°. Each wave is emitted with a 2.5 cycles transmit pulse
of central frequency 5.208 MHz and bandwidth 67%.

For each experiment, we compare COCA and DAS with two
different subsequences. The first one contains all 75 angles.
The second one is made of 7 angles chosen among the 75
ones so that the cardinal of the augmented angle set (after
autoconvolution) is maximal. Chosen and augmented angles
are displayed Fig. 1.a and 1.b, respectively.

For each case, we beamform the signals with a F-number
of F] = 1.75, using a Tukey window with a 25% roll for
apodization.

In simulations and in vitro experiments, we measure the
axial and lateral resolution as well as the contrast. Resolution
is assessed by the full width half maximum (FWHM). Contrast
is measured with two metrics. Firstly, we use the contrast ratio



a)

0° 10°−10°
b)

0° 10°−10°

Fig. 1. Angles of emitted plane waves. a) Sequence of 7 angles emitted. b)
Resulting sequence after autoconvolution. Original angles are filled.

(CR), to obtain directly the difference between the gray level
of the two regions, i.e. the difference of the estimated TRF
in dB. Secondly, we use the contrast to noise ratio (CNR), as
defined in [7].

Each metric is assessed on several targets. For simulations,
axial and lateral resolutions are measured on 20 scatterers
and contrast on 9 anechoic objects. For in vitro experiments,
resolutions are measured on 7 scatterers and contrast on 2
objects. We also measure the contrast ratio of the 3 dB and
−3 dB objects with respect to the background level in the second
in vitro experiment to assess the linearity of COCA.

III. RESULTS AND DISCUSSION

Beamformed images are displayed Fig. 2. We obtained 24
images, from 6 experiments, with two sequences (75 and 7
angles), with COCA and DAS. Measured lateral resolution and
contrast ratio are reported in Table I.

We observe that COCA improves the lateral resolution
compared to the DAS on both simulated and in vitro exper-
iments. More precisely, we observe a 30% improvement for
the 75 angles sequence and a 15% for the 7 one. Obtained
lateral resolution for the 7 angle sequence with COCA is only
3% worse than the lateral resolution obtained with the DAS
algorithm and 75 angles..

Axial resolution is left unchanged by COCA. Indeed, this
resolution only depends on physical phenomena as diffraction,
or the length of the emitted pulse. Those phenomena happen
before all non linear operations, for all angles, at pulsation ω,
and have no reason to be modified by COCA.

Regarding the contrast ratio, COCA gives an improvment
of 6.6 dB in average for the 75 angles sequence and of 7.1 dB
for the 7 angles one. The contrast ratio of COCA with the 7
angles sequence is not as good as the 75 angles DAS one, but
it is at a difference of less than 4 dB.

The CNR was also measured along with the CR. However,
it is not significantly improved by COCA with respect to
DAS. Indeed, COCA modifies the speckle, creating darker
edges. Speckle signal does not follow a Rayleigh distribution

TABLE I
COMPARISON OF RESOLUTION AND CONTRAST.

Simulation In vitro
FWHM (mm) CR (dB) FWHM (mm) CR (dB)Axial Lateral Axial Lateral

75
angles

DAS 0.43 0.60 40.0 0.60 0.64 32.6
COCA 0.43 0.38 45.3 0.61 0.41 40.5

7
angles

DAS 0.43 0.72 28.2 0.60 0.78 23.7
COCA 0.43 0.61 36.2 0.60 0.66 29.9

anymore, and the variance of speckle areas increases, leading
to a lower CNR.

Nevertheless, the envelope mean value is unaltered, as shown
by the measurement of 3 dB and −3 dB objects contrast ratio
which is almost constant. This contrast ratio does not depend
on the emitted sequence nor on the algorithm used: CR differs
by less than 0.3 dB in all four pictures. This shows that COCA
is indeed linear in the TRF.

Finally, in vivo images validate the effect of COCA. The
edges look more defined due to the non linearity and a better
focusing in transmit induced by the higher number of waves.
Compared to DAS pictures, the contrast looks higher, and
clutter is reduced by the increase in the number of angles.
By visual assessment, we notice that the last rightmost image
corresponding to COCA with 7 angles is of similar quality to
the leftmost one corresponding to the DAS algorithm with 75
angles.

IV. CONCLUSION

In this paper, we present a new compounding technique
based on auto-convolution. We see that this technique virtually
creates new angles from a set of steered plane waves, and thus
can be used to reduce the number of emissions and increase
the frame rate.

Experiments on PICMUS dataset show that this technique
improves contrast and resolution, while maintaining linearity
properties with respect to the TRF. Results point out that this
algorithm applied to a well chosen 7 angles sequence can yield
very good results, with a resolution as good as the 75 angles
DAS reference, and contrast less than 4 dB lower.

However, as for most of non-linear technique, this method
alters the speckle pattern.

For future work, effect of angular apodization and methods
for sparse sequences generation will be studied and performance
will be evaluated on other geometries as well, e.g. convex or
phased arrays.
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Fig. 2. Obtained images of simulated, in vitro and in vivo experiments. By column, from left to right: a) DAS with 75 angles, b) COCA with 75 angles, c)
DAS with 7 angles, d) COCA with 7 angles. All pictures are displayed with a 60 dB dynamic range.


