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Abstract—In the last years, remote health monitoring is becom-
ing an essential branch of health care with the rapid development
of wearable sensors technology. To meet the demand of new more
complex applications and ensuring adequate battery lifetime,
wearable sensors have evolved into multi-core systems with
advanced power-saving capabilities and additional heterogeneous
components. In this paper, we present an approach that applies
optimization and parallelization techniques uncovered by modern
ultra-low power platforms in the SW layers with the goal of
improving the mapping and reducing the energy consumption of
biomedical applications. Additionally, we investigate the benefit
of integrating domain-specific accelerators to further reduce
the energy consumption of the most computationally expensive
kernels. Using 30-second excerpts of signals from two public
databases, we apply the proposed optimization techniques on
well-known modules of biomedical benchmarks from the state-
of-the-art and two complete applications. We observe speed-
ups of 5.17× and energy savings of 41.6% for the multi-
core implementation using a cluster of 8 cores with respect to
single-core wearable sensor designs when processing a standard
12-lead electrocardiogram (ECG) signal analysis. Additionally,
we conclude that the minimum workload required to take
advantage of parallelization for a hearbeat classifier corresponds
to the processing of 3-lead ECG signals, with a speed-up of
2.96× and energy savings of 19.3%. Moreover, we observe
additional energy savings of up to 7.75% and 16.8% by
applying power management and memory scaling to the multi-
core implementation of the 3-lead beat classifier and 12-lead ECG
analysis, respectively. Finally, by integrating hardware (HW)
acceleration we observe overall energy savings of up to 51.3%
for the 12-lead ECG analysis.

I. INTRODUCTION

INCREASING healthcare costs [1] and hospital overcrowd-
ing call for new technological advances that improve re-
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mote health monitoring and enable self-diagnose, early inter-
vention or prevention [2]. In addition, population aging and
the consequent higher incidence of noncommunicable diseases
(NCDs) create the need for long-term health monitoring.
Within NCDs, cardiovascular diseases (CVDs) in particular—
which are characterized by abnormal events that need to be de-
tected in real-time—are the major cause of death globally [3].
To prevent, predict and detect NCDs, there is an increasing
need of automatic applications that continuously and remotely
monitor relevant biosignals, such as the electrocardiogram
(ECG) [4].

In the context of remote health monitoring, wearable sensor
nodes (WSNs) have proven capable of attaining accurate
inference with minimal power consumption [5]. In this way,
WSNs have evolved from single-core systems [6], [7] into
ultra-low power (ULP) [8] and multi-core parallel computing
platforms [9]–[13]. Most of the typical WSN-based biomedical
applications in the state-of-the-art have been implemented on
single-core processors [6], [7], [14], [15]. To exploit the new
parallel capabilities of modern WSN platforms in the context
of biomedical applications, per-lead (i.e. channel) multi-core
computation is a natural option to achieve low-power oper-
ation, as in the case of multi-lead ECG analysis [10], [16].
However, more general WSN-based biomedical applications
for monitoring of NCDs typically include several building
blocks which often are not amenable to per-lead parallelization
[7], [11], [14], [15], [17]–[22]. Modern platforms have also
evolved into hybrid systems with a main core and an additional
cluster of cores [9] that allow flexible design of efficient
single-core and parallel modules, in applications where several
modules cannot be parallelized easily.

In addition to parallelization, modern platforms offer clock-
and power-gating mechanisms to reduce both dynamic and
static (leakage) power when the system is not actively com-
puting (e.g., when waiting for new samples to arrive in an
input buffer considering the usual low sampling frequency
of biomedical applications). Some platforms include special-
ized direct memory access (DMA) engines that execute data
capturing tasks within tight power budgets while the rest
of the system is clock-gated or executing other tasks [12],
[13]. Additionally, other platforms contain SRAMs structured
in independent banks that can be power-gated depending
on the application needs [12], [13]. Moreover, application
modules typically contain computationally expensive kernels
that can be accelerated with domain-specific hardware such
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as coarse-grained reconfigurable arrays (CGRAs) [10]. Thus,
hardware (HW) acceleration is an orthogonal benefit to the
parallelization and it can benefit both single-core and multi-
core application design.

In this work, we tackle the challenge of exposing the
parallelization and power-saving capabilities of modern ultra-
low power platforms to the designer of WSN-based biomedical
applications. Our main contributions are:

• We show how to parallelize the modules of typical
biomedical applications at different levels of abstraction
(i.e., lead, sample analysis-window, heart beat or data-
level) to maximize speed-up and consequently reduce
energy consumption up to 41.6%.

• We explore how to reduce static power by exploiting
power management and SRAM-bank memory scaling
with additional energy savings of up to 16.8% for a state-
of-the-art application.

• We investigate the use of programmable domain-specific
accelerators to perform intensive computations at lower
power than with general-purpose processors obtaining
energy savings up to 46.7% in the multi-core implemen-
tation of the state-of-the-art application.

• Finally, we show the orthogonality of the previous opti-
mizations achieving accumulated energy savings of up to
51.3%.

The rest of this paper is organized as follows. Section II
explores the parallelization and power-saving features of mod-
ern ultra-low power platforms (Section II-A), an analysis on
the optimal exploitation of these features and the typical
modular organization of WSN-based biomedical applications
(Section II-C). Then, Section III explains how to exploit
those features during a typical WSN-based application im-
plementation. Section IV presents the software / hardware
experimental setup used in Section V to analyze the impact of
our proposed methods. Finally, in Section VI we summarize
the main conclusions of our work.

II. BACKGROUND AND MOTIVATION

A. Modern ultra-low power WSN platforms

The main goal of multi-core ultra-low power WSN plat-
forms is reducing energy consumption to maximize battery
lifetime, while still running complex algorithms on the nodes.
Multiprocessing has been proved effective in reducing energy
consumption—through lower operating frequencies and sup-
ply voltages—while preserving performance in the biomedi-
cal [16] and multimedia [9] domains. However, SW tasks must
be divided into parallel subtasks or organized as independent
parallel ones, i.e. application modules. Often, a major obstacle
to achieve adequate speed-ups is the overhead of synchroniza-
tion. Fast HW event managers offer single-cycle synchroniza-
tion and enable clock-gating the processors while waiting for
events, hence saving significant amounts of energy even with
fine-grained parallelization [13], [23]. A novel architecture
that can overcome these obstacles and ensure flexible design
of modular WSN-based biomedical applications, is the open-
source RISC-V based PULP platform [9]. In this section, we

describe the energy saving capabilities of parallel implemen-
tation on multi-core platforms based on PULP. Moreover, we
describe the power and memory management possibilities in
modern ULP platforms. Finally, we explore the architectural
heterogeneity of adding CGRAs to accelerate computationally
intensive kernels.

1) Parallelization in the PULP platform: In this work, we
target the PULP platform [9], which is divided into a main
streamlined processor, the fabric controller (FC), and an 8-
core parallel compute cluster (CL). PULP includes a multi-
banked 512KiB L2 memory, a HW event synchronizer and
a shared multi-banked 64KiB L1 memory with single-cycle
latency in the cluster side. Both FC and cluster are power-
gated while the DMA fills the required L2 memory bank
during sample acquisition. Each of the cores in the cluster can
be independently clock-gated to reduce dynamic power. For
example, the cluster cores become clock-gated after reaching
a synchronization point. This flexibility allows to easily im-
plement parallel and single-core modular applications.

2) Power and memory management: In addition to par-
allelization, WSN-based biomedical applications need power
management to ensure continuous remote monitoring. A com-
mon technique to save energy is clock-gating, which re-
duces dynamic power. In the context of the PULP platform,
architecture-level clock-gating is applied at different levels.
The SoC is clock-gated when waiting for an event, such as
a DMA transfer or the end of a computation on the cluster.
Additionally, if no workload is assigned to some cores of the
cluster, they are automatically clock-gated. This is relevant in
the context of modular WSN-based biomedical applications,
because an optimal assignment of resources to the modules
reduces energy consumption. Conversely, power-gating inter-
rupts the power supply to parts of the circuit that are unused
for longer periods, hence suppressing leakage current. Power-
gating has a larger physical overhead than clock gating—
due to the power switches and controllers around the power
gated area. Hence, it is applicable only for large blocks (e.g.,
a cluster of processors). Moreover, the recovery period for
power-gating can be in the order of tens of thousands of
cycles, particularly if clock generators are affected, making it
suitable only for applications that undergo long idle periods.
Typical WSN-based applications are characterized by low
sampling frequency (e.g., ECG acquisition is in the standard
range of 250Hz–500Hz), hence, the main SoC can be power-
gated while waiting for the next sample. Additionally, modern
platforms divide SRAM memories in several banks that can be
independently power-gated or set to retention mode according
to the amount of memory required at a given moment.

3) HW acceleration: Finally, domain-specific accelerators,
either programmable (e.g., CGRAs [10]) or task-specific (e.g.,
for FFT or sample-rate conversion [8]) are added to accelerate
intensive application kernels. In this case, energy savings
stem from the shorter execution times and the specialized
implementations of the accelerators. Hardware accelerators
can be introduced at the end of the optimization process to
offload kernels assigned to particular cores. In this work, we
implement a CGRA, designed to execute small loop-based
kernels with high numbers of iterations. We describe in detail
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Fig. 1. Potential energy savings in Mr.Wolf, an implementation of the PULP
platform, according to the application duty cycle and the attainable speed-
up through an 8-core parallelization in the cluster. On the left, we show the
analysis on Mr.Wolf with its 8 memory banks active. On the right, we show the
analysis on Mr.Wolf with only 1 bank active. The dotted lines mark different
levels of energy savings.

the architecture of the CGRA and the computational kernels
accelerated in Section III-D.

B. Motivational analysis for optimizations in PULP

Considering the low duty cycle of WSN-based biomedical
applications, we conduct an analysis of the impact of the
application duty cycle and the attainable speed-up in an 8-core
parallelization on the energy savings in the PULP platform. In
this analysis, we assume that the 8 cores are all used during
the active part of the duty cycle, while during idle periods they
are power-gated. In contrast, in many biomedical applications
or its modules, as the ones we present in Section V, it may
happen that only some of the cores are active, while the
remaining are clock-gated (i.e., unused). Moreover, we show
how activating one bank (of 64KiB) or the full memory (i.e.,
8 banks for a total of 512KiB) affects the energy savings.
Finally, this analysis shows that the percentage of energy
consumed during idle time is proportionally inverse to the
duty cycle. Consequently, platforms that execute very low
duty cycle applications need to optimize energy consumption
during idle periods (e.g., turning off unused memory banks).
In contrast, with higher duty cycles, the energy consumed
during active time prevails, hence, it becomes more relevant to
optimize computation (e.g., increasing the speed-up to reduce
active time) in order to lower the total energy consumption.

Figure 1 shows the previous analysis on one evolution of
the PULP platform, Mr.Wolf [13]. For each platform, the
graph reports the energy savings compared to a single-core
implementation of a generic application in the FC. Mr.Wolf
includes a core for the FC (Zero-riscy [24]) that is simpler
than the RI5CY cores of the cluster [25] and runs at a higher
frequency (170MHz for FC and 110MHz for the cluster) but
has a lower IPC. Moreover, Mr.Wolf is more efficient for
higher duty cycles because it was designed to handle high
computational load and the deep sleep mode is not optimized
for long idle periods—different PULP implementations with
a core optimized for deep sleep exist, tough. Therefore, our
analysis is applied on the Mr.Wolf architecture with a more

optimized deep sleep mode based on other PULP implemen-
tations. The graphs in Fig. 1 are generated using the energy
models in (1) and (2) for the single-core (ESC) and the multi-
core (EMC) configurations, respectively, where dc is the duty
cycle of the application, FC Pdyn and FC Pleak are the
dynamic and leakage power of the FC, respectively, DS P
is the power in deep sleep, CL Pdyn and CL Pleak are the
dynamic and leakage power of the CL, and fcr is the frequency
correction ratio ( 170MHz

110MHz ) for the FC and CL.

ESC = dc×(FC Pdyn+FC Pleak)+(1−dc)×DS P (1)

EMC =
dc× fcr
speedup

× (FC Pleak + CL Pleak + CL Pdyn)

+(1− dc× fcr
su

)×DS P

(2)

Finally, the ratio (in percentage) of potential energy savings
attainable by a multi-core configuration against the single-core
one is computed using (3).

E% = (1− EMC

ESC
)× 100 (3)

On the left side of Fig. 1, we show the analysis for Mr.Wolf
with the full memory active (i.e., 8 banks). It shows that
the energy overhead of the multi-core cluster is recovered
when a speed-up of 4.6× is reached and becomes more
energy efficient compared to the single-core implementation
for higher speed-ups. Additionally, each of the Mr.Wolf 8
memory banks of 64KiB can be powered-off depending on
the application. Consequently, on the right side of Fig. 1, we
show how the analysis changes if there is only one bank active.
Whereas the threshold of speed-up does not change, for lower
duty cycles it is possible to achieve higher energy savings.

We have also run the analysis on the full scale of duty
cycle values to explore the benefits attainable under higher
duty cycles. The architecture is able to achieve energy savings
up to 42% for 100% duty cycle and maximum speed-up with
the 8 cores and 8 banks always active. An interesting result
is that, for high duty cycle applications, memory management
has less impact than for low duty cycle ones. Nonetheless,
in this work we focus on the energy savings attainable on
low duty cycle which is a characteristic of typical biomedical
applications.

From this previous analysis, we can conclude that, for this
implementation of PULP, the speed-up required by the parallel
application has to be at least 4.6×. This shows the importance
of suitable optimizations (e.g., parallelization techniques) in
order to achieve energy efficiency on modern low power
heterogeneous platforms, which is the main motivation for this
paper. To achieve optimal speed-up, a modular approach to
SW parallelization is necessary. For this reason, we present
the typical modules of WSN-based biomedical applications in
Section II-C. Then, to maximize the speed-up of the overall
application, we consider different parallelization techniques
and HW acceleration. Power management is also a significant
factor in low duty cycle applications. Finally, memory bank
management plays an important role in energy saving and,
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Fig. 2. Typical modules of a general WSN-based biomedical application.

specifically, for applications with low memory footprint. In
Section III, we refer to a general conceptual architecture that
takes advantage of all the benefits of the PULP platform
discussed in this analysis.

C. Typical biomedical modules

Considering the characteristics of modern ULP platforms,
we propose a modular design approach for biomedical ap-
plications that combines different types of SW paralleliza-
tion to achieve optimal speed-up. Let us consider a typi-
cal WSN-based biomedical application for long-term health
monitoring, described in Fig. 2. First, the single or multi-
channel signal is filtered to remove high or low frequency
noise, baseline wandering or muscle noise. The second module
includes typically some additional preprocessing of the signal
to enhance specific characteristics or combine different chan-
nels. The third module is the extraction of patterns or features,
such as the signal main waveforms and time or frequency-
domain parameters. The final step, inference, includes any
kind of classification or regression technique that uses the
information of the extracted features to predict an outcome,
such as the occurrence of a pathology. In this work, we
apply the energy-saving capabilities of modern platforms to
an optimized single-core version of well-known instances of
each of those modules. Then, we evaluate them as part of
complete state-of-the-art applications.

1) Filtering: Digital filtering in biomedical applications is
used to remove undesired noise at specific frequencies or
isolate the frequencies of interest. In biosignal processing
there exist different types of filtering [26]. In this work, we
analyze the morphological filtering (MF), which extracts the
signal baseline based on the shape of the original signal and
then subtracts it. This method was originally used in image
processing and then modified to be used on a single or a multi-
lead ECG in embedded systems [27]. Additional techniques to
filter the raw ECG input data that are suitable for embedded
systems are described in [27].

2) Enhancement: Several techniques, such as the signal
derivative or the root-mean-square (RMS) combination, are
available to enhance a biosignal or combine different leads. We
study a light-weight example of short-term event amplification:
Relative Energy (Rel-En) [28]. In the context of an ECG
signal, this technique extracts the energy of specific windows
of analysis to amplify the R peaks, since the signal energy
is larger when an R peak occurs. The Rel-En method is
also used for K-complex detection in electroencephalography
(EEG) and pulse extraction in imaging photoplethysmography

(iPPG) [29]. Additionally, we consider the RMS lead combi-
nation as part of a full application in Section V.

3) Feature extraction: This module enables the biosignal
abstraction through the extraction of the most relevant features,
from its waveforms or points to time and frequency domain
parameters [7], [11], [14], [17]–[19], [21], [22]. In ECG
analysis, for example, a common technique, called “delin-
eation,” abstracts the signal main waves (i.e. QRS complex, P
and T waves [30]) with three “fiducial points” representing
the onset, offset and peak. These points are the input to
the inference module or can be further processed extracting
additional features (e.g., QRS complex duration, QT interval,
etc.). In this work, we analyze the ECG delineation since it is
a relevant and well-known method for long-term monitoring
of NCDs. The process of delineation can be divided in
two parts. First, the R peak or QRS complex are detected,
often independently from the other ECG waves, since they
describe the heart rhythm and are relevant for the detection
of many arrhythmias [18]. As R peak detection technique,
we choose to implement REWARD [28] for its claimed low
computational load. REWARD uses amplitude thresholds to
isolate the R peak. Moreover, it analyzes physiological peak-
to-peak distance and peak width to filter false positives, such
as dominant T-waves. The remaining fiducial points can be
delineated in different ways. We choose a low-complexity
method [17] that assumes that the signal’s main waves are pos-
itive, which can be ensured by an RMS combination of leads
or choosing lead II of the 12-lead ECG technique [31]. Under
this assumption, the Q and S points are identified as minimum
within a physiological interval near the R peak. The P and T
peaks of the two other main waves are computed as maximum
within physiological windows between two R peaks. Finally,
the onset/offset of the P and T waves are computed considering
the minimum euclidean distance between the original waves
and their piece-wise linear approximation. The point with the
minimum euclidean distance that intersects the isoelectric line
is the onset/offset.

4) Inference: The last module is commonly a classification
or regression problem applied to a set of features that performs
an automatic diagnosis of a medical condition, such as the
occurrence of abnormal beats. Several types of arrhythmia can
change the heart electrical signal, thus causing abnormalities
in the ECG main waves. Therefore, automatically detecting
abnormal beats and their nature helps treating them and
prevents further complications [6], [20]. Other biosignals (e.g.,
photoplethysmogram (PPG), respiration, impedance cardio-
gram (ICG), etc.) also contain relevant features to classify
NCDs, such as sleep apnea [19], to monitor a subject state in
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stressful environments [22] or for gesture recognition [11]. In
this work, we analyze a classification module for detection of
abnormal beats from an ECG signal using random projections
and a neuro-fuzzy classifier [32].

III. SW AND HW OPTIMIZATIONS IN MODULAR
BIOMEDICAL APPLICATIONS

In this section, we do a top-down exploration of par-
allelization techniques at different abstraction levels. This
strategy helps to compose a modular biomedical application
in such a way that it can exploit the energy-saving platform
characteristics and maximize it taking into account the analysis
done in Section II-B. Additionally, we apply memory and
power management according to general characteristics of the
application (e.g., duty cycle, memory needed for acquisition,
etc.). Finally, we integrate a domain-specific accelerator that
can execute intensive kernels faster (and consuming less
energy) than the general purpose cores available. In Fig. 3 we
draw a conceptual architecture, based on the analysis reported
in Section II-B, which can be used to apply the SW and HW
optimizations described in this section.

A. Modular SW optimizations

Considering the characteristics of the algorithms described
in Section II-C, we present several techniques to extract
parallelism. We also propose a top-down order for exploring
them, as follows. The first choice of parallelization is by lead
(or channel). In fact, if leads are processed independently
throughout the application, it is the simplest and most efficient
implementation. However, many biomedical applications and
their modules only work on single-lead or multi-lead combi-
nation. Then, a window parallelization should be considered
where the cores work on subsegments of the signal. In some
cases, the characteristics of the signal and the application make
it necessary to consider a more specific type of parallelization,
such as a beat parallelization for cardiovascular-based signals.
This method can be extended to any kind of periodic or pattern
signals where the features within a period or pattern need to
be captured. When the previous methods cannot be applied, a

TABLE I
SUMMARY OF PARALLELIZATIONS APPLIED TO EACH MODULE

Module Algorithm Opt. Notes

Filtering Morph. Filt. (8L-MF) Lead Data-dependent
Enhance. Relative energy (Rel-En) Window Homogen., overlap
Enhance. Lead combination (RMS) Data Homogen., 1/8 samples
Feat. Extr. R-peak (REWARD) Window 8× 1.75 s windows
Feat. Extr. Fiducial points Beat Data-dependent
Inference Beat classification Beat Data-dependent

general data-level parallelization should be considered. Finally,
if none of the previous methods can be applied, or if the
obtained speed-up is not satisfactory, a pipelining strategy
can be considered, where a subset of the cores is assigned
to each of the pipeline stages. The cores at one stage process
segments of input data and produce segments of output, which
are processed by the cores in the next stage in a parallel
consumer/producer pattern. However, for accuracy and stan-
dardization purposes, biomedical applications often include
checks or feature combinations that need to be executed once
the complete output of a module has been generated [14],
[28], [33]. Given this limitation, and the fact that the effort to
implement pipelining is larger, we consider only the first four
types of per-module parallelization in the proposed top-down
order. Table I summarizes the different types of parallelization
techniques applied to each module described in Section II-C.

1) Lead parallelization: WSN-based biomedical applica-
tions commonly acquire multi-lead signals (e.g., 3–12 ECG
leads) to extract more information for highly accurate mon-
itoring. Multi-lead parallelization, where each core processes
the data corresponding to one lead in parallel, should be
applied first as it typically offers almost linear speed-ups.
The most common application is the filtering module, which
often works on multiple leads or channels [10], [11] or even
on multiple signals [14]. Another example from the literature
where this parallelization is applied is a multi-lead delineation
using multi-scale morphological derivatives (MMD) [10].

As shown in Fig. 3, in the PULP architecture the DMA
can access both the L2 and L1 memories. It can be used to
transfer the samples of each lead from L2 into separate areas
of L1, thus allowing the cluster of cores to implement the
per-lead filtering without interference. The MF algorithm of
our example is data-dependent; hence, the workload of each
core depends on the amount of noise of each lead (e.g., due to
problems in the electrode positioning). We consider an 8-lead
ECG (8L-MF).

2) Window parallelization: For subsequent modules in the
processing chain, or in the case of applications that obtain data
from a single lead, the data to be processed can be divided
in multiple windows [11], [17]. In this way, each window
is processed in parallel by a different core. Furthermore,
if the samples are directly collected by the DMA module,
this method enables power-gating of the platform cores over
larger periods. Energy savings stem from operating at lower
frequency and voltage than a single core and by a more
aggressive application of power-gating than is possible when
operating on a sample-by-sample basis.
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In our example, we apply this technique to the signal
enhancement (Rel-En) and the feature extraction (R peak
detection) modules. In the case of Rel-En, we divide the
window in smaller windows, with each core starting from the
first sample of each sub-window as explained in [34]. Since
the Rel-En algorithm computes the signal energy at the sample
n using information starting from (t(n) − 0.95

2 ) s, a small
window overlapping is necessary. Therefore, the computational
workload is in this case homogeneous among the cores, but
the speed-up is reduced by the introduced overhead.

On their side, R peak detection techniques usually con-
sider fixed windows of analysis to extract the peaks based
on physiological characteristics. In our case, the REWARD
algorithm [28] uses a fixed window of 1.75 s. Therefore,
considering 8 cores, our method collects a buffer of (8×1.75) s
so that each core will compute one fixed window.

3) Beat parallelization: The ECG and other cardiovascular-
based signals (e.g., PPG) are characterized by beats. Applica-
tions often perform the same operation for each beat in which
there is essential information. Therefore, beat parallelization
is the next step to explore in the top-down proposed order.
This technique can be applied to any upper-level feature,
time series or excerpt of relevant information from the signal.
There are several examples of classifiers and feature extraction
techniques in the literature where this type of parallelization
can be applied [17], [20], [32], [35]. However, for simplicity
we only analyze two of them, corresponding to two of the
modules described in Section II-C, namely the beat classi-
fication [32] and the delineation of fiducial points [17]. In
the former case, the beat is centered to the R peak; in the
latter, it comprises the signal between two R peaks. Again, to
match the characteristics of our platform, we collect 8 beats,
one per core. During beat classification, the workload is data-
dependent and varies also with the window length (which may
be fixed). In the case of the fiducial points delineation, each
core’s workload is linked to the natural variability of the RR
intervals (i.e., heart rate). In Section V, we show the effect of
the different workloads on speed-up and energy consumption.

4) General data-level parallelization: General-purpose par-
allelization techniques can be applied on the inner kernels
of each module. Good candidates at this stage common to
multiple applications are sorting algorithms, RMS combination
[11], [32], training algorithms running on node [11] or several
filtering techniques, such as those presented in [7]. In this
work, we study the RMS combination algorithm, which is also
used in the complete application that we analyze in Section V.
RMS is a signal enhancement technique that computes the
root-mean-square of a buffer of data. In WSN-based biomed-
ical applications, this is used to combine a multi-lead signal
into a single-lead one. Following the work presented in [32],
our implementation first computes the sum of squares of the
samples of the different leads and then applies a square-root
to the result. Since RMS works on sample ith from each
lead independently of the other samples, each core receives
a similarly-sized subset of the samples from all the leads.

B. Power management and memory bank scaling

When combining the modules into a full application, we
apply SoC and SRAM power-management. The FC in the
PULP platform is power-gated whenever the data is acquired,
while it needs to be clock-gated when the DMA stores
the data in L2. Considering the low duty cycles of typical
WSN-based biomedical applications, such as the one reported
in Section V, the time spent during acquisition and storing
is significantly high compared to the processing. The power
management strategy of power- and clock-gating during idle
time allows to significantly reduce the energy consumption.
Moreover, during the acquisition phase, banks not containing
new data (nor application code) can be powered off. Banks
that contain captured samples waiting to be processed can
be placed in retention mode. Finally, only the bank currently
receiving samples needs to be active. However, since the
memory needed for the analyzed biomedical applications is
significantly lower than 512KiB, we explore the possibility
of reducing the overall memory to 128KiB and assuming 8
banks scaling each bank size to 16KiB. This strategy allows a
smaller resolution in bank size and a better management of the
activated banks depending on the specific application, hence,
reduced energy consumption. For example, let us consider
an application that needs to process a signal window of 30 s
integer 16 bit acquired at a sampling frequency of 250Hz.
Since the buffer to store is 30 s ∗ 250Hz ∗ 2 = 15KiB,
only one bank needs to be active, on top of the banks
needed for the code. As shown in Fig. 3, the scaling strategy
can be pushed to the limits of feasibility and significantly
lower energy consumption, especially for applications with
low memory footprint. Memory scaling and management is a
relevant design factor orthogonal to parallelization for typical
low duty cycle biomedical applications.

C. Application-level optimizations

In addition to general purpose power and memory manage-
ment, specific algorithmic-level optimizations for WSN-based
biomedical applications need to be applied. For example, one
of the applications we evaluate is the beat classifier discussed
in Section II-C, which requires several of the modules de-
scribed previously. The single-core implementation of this
algorithm adapts its computational complexity based on the
outcome of the classification. First, it analyzes a single-lead
ECG and performs only R peak detection to save energy.
Then, if the algorithm detects an abnormal beat, it performs
an RMS combination of a 3-lead ECG and a full delineation.
However, this approach can be counter-productive in multi-
core platforms because the direct execution of the 3-lead ECG
analysis on three cores consumes roughly half time than the
“1+2” analysis approach. In particular, with the database used
in our experiments (MITDB, see Section IV), approximately
27% of the patients experience abnormal beats more than 50%
of the time, thus requiring the full 3-lead processing. This
can be exploited at run-time by determining the frequency
of execution of the full analysis: if a certain threshold is
exceeded, the system switches to the parallel version. Another
application that we evaluate is the delineation of a complete set
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of 12-lead ECG. The resources assigned in this case include
the full 8-core cluster. However, after processing 8 leads with
an approximately equal distribution of computation, 4 cores
are automatically clock-gated while the other 4 process the
remaining leads.

D. HW acceleration for intensive computational kernels

MorphoSys [36] is one of the earliest examples of CGRAs
originally proposed to accelerate multimedia applications with
strong computational demands. Later works showed how a
CGRA can be used in the domain of biomedical applications
to reduce power by both accelerating common operations and
reducing the energy cost of executing those operations [10].
We extend the open-source PULP platform [37] with a
CGRA following the design presented in [10] for biomedical
applications, which is composed of 16 reconfigurable cells
(RCs) forming a 4× 4 torus interconnect. The CGRA can be
integrated in the SoC-domain (i.e., connected to the FC), or in
the cluster-domain (i.e., connected to the cores of the cluster),
accessing the L2 or L1 memories directly, respectively, as
shown in Fig. 3. In this work, we use a CGRA divided into
four independent columns of RCs; each kernel may use 1,
2 or 4 columns. Unused columns remain clock-gated. The
configuration memory is implemented as a 2KiB standard
cell memory (SCM). The cores make acceleration requests by
writing a kernel ID to the CGRA peripheral registers (one
per core). The CGRA synchronizer takes care of mapping
the request to the number of columns necessary to execute
the specified kernel. When a core requests an acceleration,
it becomes clock-gated until the request is completed. The
CGRA RCs have a 16-bit datapath, which is adequate for most
WSN-based biomedical applications whose input data is nor-
mally limited by ADC resolution. However, several modules,
such as the signal enhancement, require 32-bit accumulation;
thus, it cannot be accelerated with the current platform design.

1) Kernel selection: The kernel selection procedure for the
CGRA follows the steps described in [38, Chap. 3]. LLVM is
used to analyze the application from the C code and generate
an execution profile report. This enables the identification of
computationally intensive loops that are good candidates for
CGRA acceleration.1 Finally, kernels that do not meet the
design constraints of our CGRA are discarded. In that sense,
the main limiting factor is the small instruction memory of
the CGRA (16 32-bit instructions per RC), which restricts the
selection to short kernels. Table II lists the kernels executed
on the CGRA.

2) Kernel mapping: To map kernels on the CGRA, we
inspect the C code disassembly to identify operations that can
be parallelized. Then, these operations are translated to the
CGRA instruction set and distributed over the CGRA’s RCs
and columns. This last step is done manually to fully exploit
the torus interconnect of the CGRA—each RC is connected
to its neighbours—generating the data flow execution that is
one of the advantages of this CGRA design.

1If LLVM is not available for the target platform, cycle accurate simulators,
such as those available in the PULP SDK, can be used in combination with
processor hardware counters to profile the application main blocks.

TABLE II
COMPUTATIONAL KERNELS EXECUTED ON THE CGRA

Algorithm Kernel Notes

Morph. Filt. dblmin / dblmax Linear 1st and 2nd min./max.
search in a vector

Fiducial points maxpeak Linear peak (absolute max.)
search in a vector

Beat classification min max Circular min. and max. search
in a vector

IV. EXPERIMENTAL SETUP

A. Test benches for biomedical modules

We design a test bench for each module that includes
appropriate input signals. For the filtering, signal enhance-
ment and signal delineation modules, we consider excerpts
of signals from the Physionet QT database (QTDB) [39]. This
database was used to analyze the three single-core benchmarks
presented in Section II by [28]. We choose four signals from
the QTDB, as four examples that represent worst, best and two
average cases in terms of a combination of noise and shape of
the three ECG waves. For the inference module, we consider
the MIT-BIH Arrhythmia Database (MITDB) [40], as reported
in [32]. We choose four signals as worst, best and two average
cases in terms of percentage of abnormal beats over the total
number of annotated beats. Its output is a label classifying the
beat depending on the pathology: “N” for normal beats, “V”
for premature ventricular contraction, etc. For all the modules,
the choice of four cases should describe most of the design
space in terms of complexity and energy consumption due to
data-dependent variability.

B. Test benches for biomedical application

To better evaluate the impact of the proposed optimizations,
we evaluate two applications, with data capturing periods,
using our biomedical modules. First, we consider a 3-lead
heartbeat classifying application [32]. This application applies
filtering, relative energy, and R peak detection on one lead
(lead I). If the heartbeats are classified as normal, it stops there.
However, if any abnormality is detected, then it applies the
same methods to the other two leads (leads II & III) to supply
additional information. Second, we implement an application
processing the complete set of 12-lead ECG signals. Such
application is required for medical compliance and used in in-
tensive care units of hospitals, or in athletic or military training
supervision. It combines the modules MF, RMS (to combine
all the signals into a single one), R peak and fiducial points
detection. Both applications capture ECG samples during 15 s;
then, the system becomes active to process.

C. Multi-core WSN platform: PULP+CGRA

To measure the execution time of both independent modules
and full applications we used the open PULP platform [37].
PULP provides the RTL description of the multi-core platform
and an SDK to run RTL simulations, using Modelsim, in
order to obtain cycle accurate timings. Additionally, to further
explore the advantages of heterogeneous platforms, we added
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Fig. 4. Computation time of each module.

TABLE III
EXECUTION TIME OF THE DELINEATION MODULE FOR DIFFERENT

SUBJECTS FROM THE PHYSIONET QTDB [39] AND THE SUBSEQUENT
VARYING SPEED-UPS

SUBJECT SINGLE-CORE MULTI-CORE SPEED-UP
(ms) (ms)

1 2.77 0.67 4.13×
2 3.66 0.78 4.69×
3 4.72 0.93 5.08×
4 3.88 0.75 5.17×

the CGRA to the cluster domain integrating it in the existing
cycle-accurate simulation flow. We use the power numbers
reported for a chip based on the PULP architecture imple-
mented in TSMC 40 nm LP CMOS technology, Mr.Wolf [13].
This SoC features a streamlined 12 k-gates RISC-V main
processor (Zero-riscy [24]) and an 8-core compute cluster with
DSP extensions (RI5CY). This platform includes 8 physical
memory banks for the 512KiB L2 memory. We pick the
lowest energy point of the platform, at 0.8V. The platform
requires 3.6 µW when power-gated2 and 12.6 µW with full L2
retention—since typical biomedical applications require small
amounts of memory, we reduce the size of the L2 to one
fourth (i.e., 128KiB), maintaining the same bank number, and
correspondingly reduce its power requirements. When the SoC
is active, it requires 0.98mW with its main processor clock-
gated, and 6.66mW with it operating at 170MHz. Once the
cluster is activated, it requires 0.61mW with all cores clock-
gated and 18.87mW with the 8 cores running at 110MHz.
We obtained the power estimations for the CGRA through pre-
layout netlist simulation with the TSMC 40 nm LP CMOS
technology. The CGRA requires 104 µW when idle, with an
average power of 669 µW when active. The CGRA and the
cluster are power-gated together.

First, we performed the RTL simulation and estimated
the energy consumption on the test benches for biomedical
modules to show the impact of the modular SW optimizations,
as shown in Section V-A. Then, we ran the RTL simulation
and estimated the energy consumption on the full applications
to report in Section V-B the impact of parallelization, memory

2As reported for GAP-8 [12], which is an industrial version of PULP with
SoA deep sleep optimizations not yet included in its academic counterpart.
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Fig. 5. Per-module energy consumption and savings (geometric mean)
compared to the single-core design.

TABLE IV
ENERGY SAVINGS IN THE DELINEATION MODULE ON FOUR SUBJECTS
FROM THE PHYSIONET QTDB [39] FOR THE SINGLE-CORE (S) AND

MULTI-CORE (M) PLATFORMS

SUBJECT SINGLE-CORE MULTI-CORE SAVINGS
(µJ) (µJ) (%)

1 18.4 11.3 38.6
2 24.3 13.6 44.0
3 31.4 16.4 47.8
4 25.8 13.2 48.8

scaling and HW acceleration.

V. EXPERIMENTAL RESULTS

A. Per-module speed-ups and energy savings on PULP

Figure 4 shows the execution time of each module with
the single- and multi-core implementations and the geometric
mean of the obtained speed-ups. The maximum speed-up
(7.1×) is reached in the Rel-En module, despite its small
overhead due to the window overlapping scheme. For the
remaining modules, the speed-up varies between 4.8× and
7.0×, which is above the threshold of speed-up for the PULP
platforms discussed in Section II-B. The RMS module, which
applies a data-level parallelization, reaches a speed-up of
7.0×, since the eight cores work independently on similar
workloads. The MF module is executed on the same trace
repeated for the 8 leads in order to have the same workload and
show a data-independent multi-core processing. This module
achieves a similar speed-up of 6.8×, which is justified by two
factors: the 8 cores in the CL run at a lower frequency than the
FC (i.e., ≈ 0.65×), but they have a higher IPC. The minimum
speed-up (4.8×) is obtained for the delineation module (Del)
because the workload cannot be divided evenly among the
cores: first, the R peak detection algorithm has several data-
dependent conditional branches that change the execution path
for different cores; second, the beat parallelization used during
the delineation depends on how many peaks are detected;
finally, the beat length (i.e., the RR interval) is variable and
hence the size of the input varies for each core. This effect
can be observed in the time spent in the delineation module
(Table III) for four different subjects from QTDB.
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TABLE V
AVERAGE RESULTS OF ENERGY CONSUMPTION (INCLUDING DATA

CAPTURE) AND EXECUTION TIME ON PULP (WITH MEMORY SCALING)
FOR THE COMPLETE APPLICATIONS ON FOUR SUBJECTS

# of leads Single core Multi-core
Energy Time Energy Savings Time Speed-up

(mJ) (s) (mJ) (%) (s) (×)

1 lead 0.326 0.025 0.302 7.3 0.019 1.28
1+2 leads 0.611 0.068 0.588 3.7 0.041 1.66
3 leads 0.611 0.068 0.493 19.3 0.023 2.95

12 leads 1.78 0.238 1.00 43.5 0.046 5.14

The previous speed-ups translate neatly into energy savings.
Figure 5 reports the geometric mean of the energy consump-
tion for each module over the four chosen subjects of [39]
and [40]. The maximum energy savings of the multi-core
design correspond to the RMS (60%) and Rel-En (58%)
modules, which are also the modules with the highest speed-
up, whereas it can save at least a 45% in the remaining
modules.

B. Application-level energy savings on PULP

We evaluate the impact of the previous optimizations
on two different modular applications, including the energy
spent during data capturing periods. First, we consider a
3-lead heartbeat classifying application [32] in three different
configurations depending on the optimizations discussed in
Section III-C. Then, we consider the 12-lead ECG delin-
eation application. Table V shows the energy and time results
for these applications. The values reported include memory
scaling to banks of 16KiB on both single- and multi-core
implementations.

The multi-core configuration of the platform is the most
efficient option in the four cases analyzed. Even for the 1-lead
application, where MF is the most expensive module (i.e.,
81.6% of the active time) and it is executed on the FC, by
parallelizing the other modules on the cluster we obtain modest
energy savings (7.3%). The total speed-up is low (1.28×) due
to the small percentage of parallel code. However, the average
speed-up of all the other parallel modules (approximately
5.6×) and the memory scaling are enough to achieve fair
savings. However, when the application detects abnormal beats
the following strategies (1+2 leads and 3 leads) can be applied.
In the first case, which follows the optimizations of [32],
processing the additional two leads after the first one limits
the energy savings since the obtained speed-up is not enough
to offset the energy of the cluster cores during the extended
period. However, if the beat classifier detects abnormal events
often enough, the application can use the second strategy and
process the three leads in parallel. In that case, the parallel
version would achieve a reduction in computation time of 66%
and 19.3% in energy. In this way, the 3 leads are analyzed
simultaneously on 3 active cores of the cluster while the others
are clock-gated, enabling better energy savings.

Considering the low computational load of this application,
the energy savings of the multi-core optimization are modest
but still significant. However, applications requiring medical

3-Leads 12-Leads0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

En
er

gy
 [

m
J]

Acquisition
Single-core
Multi-core
Multi-core+CGRA

Fig. 6. Decomposition of energy consumption for the 3-leads and 12-leads
ECG applications for PULP, including memory scaling.

compliance such as in intensive care units of hospitals, or
in athletic or military training supervision, must process the
complete set of 12-lead ECG signals, which generates higher
computational load. The last row of Table V shows that the
parallel version achieves in this case a speed-up of 5.14× and
energy savings of 43.5%.

We investigate the use of HW acceleration for the cases of
3-lead and 12-lead ECG signals, which can be observed in
Fig. 6. The savings achieved by accelerating some intensive
computational kernels in the 3-lead beat classifier application
are 67% in time and 2.9% in energy compared to the
multi-core implementation. The reason for the modest energy
saving is the low computational load of the 3-lead application.
Moreover, our minimalist CGRA design covers only a small
amount of the total number of executed instructions, which
limits its impact. Compared to the single-core implementa-
tion, it represents 21.6% of energy savings. For the 12-lead
application, the impact is more significant due to the higher
computational load, with 9.6% of additional energy savings
compared to the multi-core implementation. However, as the
figure shows, for low duty cycle applications, such as the 3-
leads beat classifier, the energy consumed by the memories
during sampling, although not dominant, is significant. In the
case of the 12-lead application, the energy consumed during
computation is much higher than the energy consumed by
the memories during the sampling period (Fig. 6), hence the
higher savings achieved. In fact, we scale the size of each
memory bank from the original 64KiB of [13] to 16KiB and
we apply memory management to keep only the bank needed
by the application in active or retentive state. In applications
with low computation load, one possible solution would be to
design the SRAMs with a larger number of banks and scale
to the feasible resolution to enable a more aggressive power
management during data sampling periods.

Finally, in Table VI we show a summary of the energy
savings compared to the single-core configuration applying
the optimizations described in Section III. The three main
optimizations, including parallelization, memory scaling and
HW acceleration, can be applied orthogonally and significantly
reduce the energy consumption compared to the traditional
single-core implementation. For example, we can apply mem-
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TABLE VI
SUMMARY OF ENERGY SAVINGS APPLYING THE SW PARALLELIZATION TECHNIQUES, THE HW ACCELERATION AND THE MEMORY SCALING FOR THE

ANALYZED APPLICATIONS ON THE PULP PLATFORM

Single-core Multi-core Single-core Single-core Multi-core Multi-core Single-core + CGRA Multi-core
Energy + CGRA + Memory + CGRA + Memory scaling + Memory scaling + CGRA

scaling + Memory scaling
(mJ) (%) (%) (%) (%) (%) (%) (%)

1 lead 0.43 6.51 3.61 23.45 6.59 29.95 27.05 30.03
1+2 leads 0.71 3.18 4.68 14.05 6.37 17.23 18.73 20.42
3 leads 0.71 16.56 4.68 14.05 18.58 30.60 18.73 32.62

12 leads 1.86 41.57 3.61 4.53 46.73 46.10 9.03 51.26

ory scaling directly to the single-core implementation and
have energy savings of up to 23.45% (this result corresponds
to the value of the first column of Table V within a small
rounding error). Additionally, we can apply HW acceleration
not only on the multi-core implementation but on the single-
core design, achieving energy savings from 9.03% up to
27.05%. Therefore, the designer of WSN-based biomedical
applications should take into account modularity and parallel
implementation, memory scaling and HW acceleration.

VI. CONCLUSIONS

Modern ultra-low power WSN platforms offer character-
istics such as multiprocessing, clock- and power-gating that
enable power and memory management and HW acceleration.
In this work, we have proposed a top-down approach to ex-
pose these characteristics to the SW layers via parallelization
techniques to improve the mapping of modular biomedical
applications. Additionally, we have shown how heterogeneous
platforms can benefit from domain-specific accelerators, such
as CGRAs, and memory scaling to further reduce energy
consumption.

We have demonstrated our proposal on a set of independent
modules typical of WSN-based biomedical applications and on
two composed multi-lead ECG-based applications. Our results
show energy savings of up to 60% for the RMS module and
up to 41.6% for a complete multi-core application processing
12-lead ECG signals for a general PULP platform. Further-
more, we demonstrated that memory scaling is an orthogonal
optimization that can be exploited to achieve additional energy
savings up to 23.45%. Finally, our experiments have also
established that our domain-specific accelerator can increase
the energy savings to 46.7% for the 12-lead delineation and
18.6% for the complete heartbeat classifier. Thus, the overall
combined energy savings reach up to 51.3%.
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