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Abstract 16 

1) Stable isotope ratios of water (𝛿18O, 𝛿2H) have long been used to study a core question in plant 17 

ecology and ecohydrology: “From where do plants take up water?”  Indeed, decades of research has 18 

involved sampling potential plant water sources in the subsurface, classifying those sources as distinct 19 

endmembers (e.g., deep versus shallow soil waters), and then evaluating their contributions to a 20 

xylem water sample through mixing-model analysis to identify the depths of root water uptake. 21 

2) However, more detailed interrogations of the subsurface and plant domains have revealed under-22 

considered transport and isotopic-fractionation phenomena.  These now apparent complexities raise 23 

new questions and challenge the many past assumptions inherent in endmember-mixing models that 24 

now seem overly simple.   25 
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3) Here, we introduce discussions of these recent insights and provide an overview of isotope effects 26 

that occur naturally in the root zone and in the plant, as well as artificially during sample handling.  27 

Better accounting for these complexities and their associated uncertainties can lead to more accurate 28 

and robust study designs, analytical frameworks, and, ultimately, inferences.   29 

4) Finally, to more robustly characterize plant water sources using 𝛿18O and 𝛿2H, we provide some 30 

practical recommendations that aim at maximizing the isotopic contrast between endmembers 31 

and/or minimizing potential uncertainties. 32 

 33 
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 36 

1. Introduction and motivation 37 

Plant water use can represent up to 90% of terrestrial evapotranspiration (Jasechko et al., 2013), and 38 

therefore is an important driver of the global water cycle (Sellers et al., 1997).  Because plant water relations 39 

are closely linked to carbon and nutrient relations (Schulze, 1982), understanding plant-water supplies is also 40 

key to predict global carbon and nutrient cycles (Lange, Kappen, & Schultze, 2012), and to scale plant functions 41 

to the ecosystem- and land-surface levels (Feddes et al., 2001; Grossiord et al., 2017; Javaux, Couvreur, 42 

Vanderborght, & Vereecken, 2013). 43 

Root morphology (e.g. root diameter, root branching, root suberization, root hairs, rooting depth) and 44 

the ability of roots to adjust their structure and physiology to environmental factors are two major drivers of 45 

plant water uptake (Jackson, Sperry, & Dawson, 2000).  These multiple rooting properties have been poorly 46 

assessed thus far compared to aboveground functions and structures of plants, in part because of the difficulty 47 

to access and measure belowground compartments (Isaac & Anglaaere, 2013).  Destructive methods, such as 48 

excavating the whole root system of plants, inform how roots occupy soils; however, knowledge about where 49 

roots are located does not necessarily imply where water uptake occurs from (Ehleringer & Dawson, 1992).  50 

Whereas excavation studies can be useful to understand plant-physiological variations across climates, species 51 

and soils, they do not provide insights into how zones of active root water uptake vary in time and space, and 52 

how they correspond with soil-water conditions and plant functions. 53 
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For nearly 50 years, the analysis of stable isotope ratios of water (𝛿18O, 𝛿2H) has provided a powerful 54 

tool to study plant water uptake processes (e.g., Dawson & Ehleringer, 1998; Dawson & Pate, 1996; Ehleringer 55 

& Dawson, 1992; Flanagan, Ehleringer, & Marshall, 1992; Penna et al., 2018; Phillips & Gregg, 2003; Unkovich, 56 

2001; White, Cook, Lawrence, & Broecker, 1985; U. Zimmermann, Ehhalt, & Muennich, 1967 and many more).  57 

Isotope data of xylem and root-zone water are often used in linear endmember-mixing models, under the 58 

assumption that the isotopes represent conservative tracers with no fractionation occurring during water 59 

uptake by the roots (U. Zimmermann et al., 1967) so that the isotope ratios in xylem water reflects the mixture 60 

of water sources that supply functional roots.   61 

The simplest case of a linear endmember-mixing model that uses one isotope ratio (e.g., 𝛿18O) to 62 

differentiate between the relative contributions (f) of two sources 1 and 2 (e.g., deep and shallow soil water) 63 

to a mixture (e.g., plant xylem water) takes the form (Phillips & Gregg, 2001) 64 

𝛿𝑚𝑖𝑥 = 𝑓1 ∙ 𝛿1 + 𝑓2 ∙ 𝛿2 ,  (1) 65 

where 66 

1 = 𝑓1 + 𝑓2   (2) 67 

Through combining equations (1) and (2), the relative fractions of source 1 in the mixture can be quantified: 68 

𝑓1 =
𝛿𝑚𝑖𝑥−𝛿2

𝛿1−𝛿2
   (3) 69 

An analytical solution for f1 and f2 can only be obtained if the number of sources is n+1, with n being the 70 

number of isotopic tracers; even when measurements of both 𝛿18O and 𝛿2H are available, they often cannot 71 

be treated as independent tracers because they strongly co-vary (Craig, 1961).  In cases where a mixture 72 

contains more than two water sources but only one isotope tracer (𝛿18O or 𝛿2H) can be used, the bounds for 73 

each individual fraction  f1, f2, …, fn+i can be estimated statistically (e.g., IsoSource, Phillips & Gregg, 2003; SIAR, 74 

Parnell, Inger, Bearhop, & Jackson, 2010).  Often, these multi-source mixing models have been implemented 75 

into a Bayesian framework to include prior information about soil properties, root distribution, climate etc. 76 

(Moore & Semmens, 2008; Rothfuss & Javaux, 2017).   77 

Most importantly, these mixing-model approaches allow for quantifying the uncertainties in the 78 

relative source contributions f on the condition that the uncertainties of the individual endmembers are 79 
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known (these endmember uncertainties due to analytical errors and spatiotemporal heterogeneity will be 80 

discussed in more detail below).  Phillips and Gregg (2001) present the analytical solution for calculating the 81 

standard error (SE) in f1 for a two-source mixture (Eq. 1): 82 

𝑆𝐸𝑓1

2 =
1

(𝛿1−𝛿2)2 ∙ [𝑆𝐸𝛿𝑚𝑖𝑥

2 + 𝑓1
2 ∙ 𝑆𝐸𝛿1

2 + (1 − 𝑓1)2 ∙ 𝑆𝐸𝛿2

2 ]  (4) 83 

Additional methods for propagating the errors in endmember signatures into the uncertainty in f have been 84 

extensively reviewed by others (e.g., Evaristo, McDonnell, & Clemens, 2017; Rothfuss & Javaux, 2017; Wang, 85 

Lu, & Fu, 2019). 86 

Using linear mixing models requires that the endmembers capture the sources of plant water and that 87 

those defined endmembers are fully isotopically distinct; thus, intensive sampling can be required.  Usually this 88 

involves sampling the vertical isotopic profile of the root zone so that variations across depths are understood.  89 

Then, natural isotopic break points are selected so that the endmembers describing different subsurface water 90 

pools can be identified (e.g., <0.3 m versus >0.3 m deep soil water in Figure 1).  Alternatively, instead of 91 

defining plant source water endmembers by depth, they can be defined with respect to seasonal precipitation, 92 

which can provide different insights into how root distributions interplay with infiltration patterns (e.g., Allen, 93 

Kirchner, Braun, Siegwolf, & Goldsmith, 2019; Ehleringer, Phillips, Schuster, & Sandquist, 1991).  In any case, 94 

the endmembers must be carefully defined because this process often involves assuming a binary division of 95 

the subsurface when root-zone waters actually vary gradually and continuously.  Indeed, intensive sampling of 96 

root-zone water often reveals isotopic heterogeneities within defined endmembers, which influences the 97 

errors, and thus the strength of inference obtained from endmember-mixing models (Goldsmith et al., 2019; 98 

Oerter, Siebert, Bowling, & Bowen, 2019).  99 

Advances in experimental and analytical methods have revealed many challenges in sampling all 100 

potential plant water sources and defining non-overlapping endmembers.  In recent years, the isotopic 101 

composition of plant root zones has been increasingly investigated across diverse settings (see reviews by 102 

Penna et al., 2018 and Sprenger, Leistert, Gimbel, & Weiler, 2016).  Importantly, some studies have linked 103 

root-zone isotopic heterogeneities to small-scale heterogeneities in transport and mixing processes (Sprenger, 104 

Llorens, Cayuela, Gallart, & Latron, 2019), and suggested the occurrence of isotopic fractionation effects at 105 

mineral-water interfaces (Y. Lin & Horita, 2016) and root-water interfaces (Vargas, Schaffer, Li, & Sternberg, 106 
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2017).  Whereas the effects of these and other phenomena should manifest in temporally and spatially 107 

(laterally and vertically) variable root-zone isotope ratios, most practical field sampling designs will not allow 108 

for the over-sampling required to fully characterize and account for those heterogeneities in mixing-model 109 

analyses (Goldsmith et al., 2019).  Thus, careful design, application, and interpretation of root-water uptake 110 

studies is warranted. 111 

In this review, we show the diversity of isotope ratios that can naturally occur in the root zone and in 112 

plants and how this diversity can influence the identification of potential plant source waters.  We then discuss 113 

these isotopic variations and the measurement and prediction challenges they convey in the context of 114 

traditional mixing model analyses.  Our ultimate objective is to offer practical guidance to facilitate inferring 115 

the water sources used by plants through using stable water isotopes. 116 

 117 

2. Root-zone water: Characterizing and sampling across natural variations in 118 

isotope endmembers 119 

Isotope endmembers of the root-zone water (𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒) are typically characterized using one or 120 

several isotope profiles of the subsurface, which are determined by extracting water from soils or other porous 121 

media sampled at various depths.  Conventionally, it has been assumed that these isotope profiles are near-122 

monotonic, with heavier isotope ratios in shallower depths and lighter isotope ratios in greater depths (solid 123 

red line in Figure 1).  This characteristic isotope-depth profile often occurs when shallow soil waters become 124 

enriched as isotopically lighter water is preferentially evaporated (U. Zimmermann et al., 1967; Barnes & 125 

Allison, 1984) or when isotopically heavier growing-season precipitation recharges the soils that supply 126 

evapotranspiration (however, not always the most-recent precipitation is evapotranspired; Allen, von 127 

Freyberg, Weiler, Goldsmith, & Kirchner, 2019).  Beneath the maximum evaporation penetration depth, 128 

infiltrated precipitation water mixes with previously stored water over seasons and years so that the isotopic 129 

signature of soil water represents the long-term average of previous precipitation events that have recharged 130 

these soils; thus, deeper soil waters are usually isotopically lighter than shallow soil waters. 131 
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 132 

Figure 1: Hypothetical example of soil moisture content (grey dashed line) and soil-water 𝛿18𝑂 (red solid line) for a sandy-133 
loam soil profile occupied by shallow-rooted plants.  It is commonly assumed that the soil-water isotope profile is near-134 
monotonic with disproportionate amounts of the heavier isotopologues in the shallow layers mainly due to evaporative 135 
fractionation.  Isotopic inversions in the top few cm (red dashed line) result from fractionation associated with phase 136 
changes of water within the profile.  Figure re-drawn after Barnes and Allison (1983). 137 

 138 

2.1 Evaporation and transport result in lateral heterogeneities and non-monotonic isotope profiles 139 

In most natural systems, 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  values do not monotonically decrease with depth if precipitation 140 

inputs are isotopically variable (and they usually are; Dansgaard, 1964, Munksgaard, Wurster, Bass, & Bird, 141 

2012) or if evaporatively enriched pore waters are transported downward.  Such variations are likely to be 142 

more extreme in regions with highly variable weather conditions; for instance, in a drying phase, the 143 

evaporation penetration front near the soil surface will move progressively downward into the deeper 144 

subsurface (Rothfuss et al., 2015).  With precipitation, the (evaporatively enriched) isotope composition in the 145 

upper depth profile may become attenuated or displaced downward such that the pre-event and post-event 146 

isotope profiles differ (Sprenger et al., 2016).  Figure 2a illustrates how dramatically 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  can vary across 147 

a desert soil profile in Arizona, USA; isotope ratios in root-zone water up to 25cm depth seasonally vary by 148 

more than 90‰ in 𝛿2H and 20‰ in 𝛿18O.  Even for wetter environments, such as on the humid Kohala 149 

pensinsula on Hawaii, the complex interplay between wetting and drying of the soil profile can result in up to 150 

15‰ vertical variations in 𝛿18O (Figure 2b).  The occurrence of these isotope fluctuations in the subsurface 151 

imply that under-sampling certain depths could result in failing to identify the appropriate plant-water 152 

sources. 153 
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 154 

Figure 2: a) Seasonal variations of 𝛿18𝑂 and 𝛿2𝐻 in soil water in a nearly bare desert soil (figure re-drawn from Liu, Phillips, 155 
Hoines, Campbell, & Sharma, 1995).  b) δ18O values in soil water under pasture grass in a weathered volcanic ash soil 156 
(Andisol) on the island of Hawaii.  The climatic conditions were humid with a high variability in rainfall.  Isotope data from 157 
two samples per campaign were averaged (original data from Table 4 in Hsieh, Chadwick, Kelly, & Savin, 1998).  158 

Beyond the vertical variability in 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  profiles, recent studies highlight substantial 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  159 

heterogeneity in the lateral dimension.  Lateral isotopic variations have been attributed to subsurface 160 

properties, canopy interception and shading effects (e.g., Goldsmith et al., 2019; McCole & Stern, 2007).  For 161 

instance, Figure 3a shows extremely heterogeneous shallow 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  across a 1-ha forest plot; isotope ratios 162 

were weakly spatially autocorrelated, and thus their variations could not be easily predicted without this level 163 

of extensive sampling (Goldsmith et al., 2019). 164 

Where lateral heterogeneities in 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  are prominent, mixing-model analyses should consider 165 

the full range of individual potential endmember values instead of simply averaging across all 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  166 

values, which would dampen true variations and would yield a subsurface characterization that seems more 167 

well-mixed than probably ever actually exists (Figure 3a).  When we calculate the relative source contributions 168 

f (Eq. 3) through including all potential endmember values we will obtain a range of solutions for each xylem 169 

water mixture (Figure 3c).  Through combining each xylem water sample with each possible shallow-soil water 170 

endmember, one can see that the uncertainty in the two-component endmember mixing approach can be 171 

substantial, e.g., contributions of shallow soil water to Picea abies can vary from zero to 100% (Figure 3c).  172 

Thus, misinterpretations of endmember-mixing analyses are likely to happen if the heterogeneity of soil water 173 

(and xylem water) isotopic composition is not well characterized. 174 
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 175 

Figure 3: δ18O of soil water from two depths, δ18O  of xylem water from two species, and inferred use of shallow water from 176 
mixing-model analysis, all from a single-day snapshot sampling across 1 ha of a forested hillslope in Switzerland (data are 177 
from Goldsmith et al., 2019).  All water samples (149 shallow soil samples, 8 deep soil samples, 22 Picea abies samples, and 178 
35 Fagus sylvatica samples) were extracted by cryogenic vacuum distillation and then analyzed on a mass spectrometer; 179 
detailed methods are described in the original Goldsmith et al. (2019) study.  Here, we show these data to demonstrate that 180 
intensive sampling can reveal wide ranges in isotope ratios within the endmember samples (panel a) and mixtures (b); these 181 
ranges are often not revealed through typical sampling strategies, and means (± standard errors) can poorly capture the 182 
distribution of actual potential values; the mixing-model standard errors were calculated using IsoError (Phillips & Gregg, 183 
2001).  Importantly (but not shown here), the shallow soil-water heterogeneity was not strongly structured, so any sample 184 
could be associated with any tree; thus, the mixing-model analysis (c) shows the range of solutions for all trees for all 185 
combinations of potential endmember values.  While there are significant differences between the shallow and deep soil 186 
water δ18O mean values, or the two species xylem δ18O water values, the distributions in panel (c) strongly overlap.  While 187 
the mixing-model analysis suggests that P. abies used shallower water than F. sylvatica, the ranges exceed 0-1 in both 188 
(indeterminate values were cropped from the figure) and thus no clear characteristic depth of uptake could be inferred for 189 
each species.  Goldsmith et al.’s findings demonstrate that using mean values in the model could result in a 190 
mischaracterization of the population (or even the sample).  Furthermore, they suggest the need to approach such analyses 191 
qualitatively, especially when samples sizes are insufficient for capturing the true isotopic variation. 192 

 193 

2.2 In-situ sampling methods cannot mimic when and where plant roots access water 194 

The distribution of roots in the subsurface is often the first-order constraint over potential water 195 

sources: uptake is unlikely to occur from zones that lack functional roots (but see papers on hydraulic 196 

redistribution and mycorrhizal-mediated water transport; e.g., Augé, 2001; Dawson, 1993).  It should be noted, 197 

however, that roots differ in their functional or physical roles, e.g., anchorage and transport in suberized root 198 

tissues versus resource acquisition in un-suberized tissues (Taiz & Zeiger, 2010).  Furthermore, the role of a 199 

root also depends on the interplay between its water potential and the surrounding soil’s water potential, the 200 

latter of which is a function of soil texture, water content and osmotic potential.  These factors vary across 201 

species, time and space, resulting in uptake dynamics with subtleties that are difficult to match with the 202 

sampling methods used by researchers. 203 

Some in-situ approaches sample water across a membrane using a pressure gradient, mimicking the 204 

process used by plant roots (Steudle, 1994).  For instance, suction lysimeters use buried porous ceramic cups 205 

with a suction force applied to extract freely draining water and pore water.  Depending on the ceramics’ 206 
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porosity and the applied suction force, these lysimeters can extract water held at matric tensions reaching 207 

‑103hPa (Sprenger, Herbstritt, & Weiler, 2015).  Another benefit is that they allow repeated sampling of 208 

particular locations in the root zone, which can potentially be useful to monitor small-scale temporal isotopic 209 

variations of subsurface water.  Importantly, where suction lysimeters differ from plant roots is the timing of 210 

water uptake and the sizes of sampled pores: much of the applied potential may be satisfied following rainfall 211 

events, and larger more conductive pores in the ceramic material may disproportionally transmit water 212 

(Hansen & Harris, 1975; Weihermüller et al., 2007).  This contrasts with the natural behavior of plant roots 213 

when there is generally low transpirational demand after rainfall events (because atmospheric humidity is 214 

high) and when soil water bypasses the rooting zone as it drains rapidly downward through the largest pores 215 

(Brooks, Barnard, Coulombe, & McDonnell, 2010).  Consequently, the isotopic composition of the water 216 

extracted by suction lysimeters may differ from the surrounding pore waters that are later used by plants; 217 

details of this process, however, have not been quantified experimentally. 218 

Gas-permeable membranes have recently been used to extract subsurface water vapor in-situ for 219 

direct isotope analysis to characterize the isotopic composition of the unsaturated zone (Oerter, Perelet, 220 

Pardyjak, & Bowen, 2017; Rothfuss, Vereecken, & Brüggemann, 2013; Volkmann & Weiler, 2014; West, 221 

Patrickson, & Ehleringer, 2006).  This approach allows for characterizing water vapor that has equilibrated with 222 

the liquid water in soils, reflecting water across a large variety of pores that surround the membrane probe.  223 

For translating vapor isotope measurements into liquid water isotope data (relative to Vienna Standard Mean 224 

Ocean Water, V-SMOW), calibration standards need to be generated by combining dry substrate from the 225 

study site with waters of known isotopic composition.  With this, potentially-confounding effects of isotopic 226 

fractionation from clays or organic matter (Chen, Auerswald, & Schnyder, 2016; Oerter et al., 2014) can be 227 

implicitly included in the calibration.  To correct for fractionation effects during equilibrium exchange between 228 

liquid water and vapor (Majoube, 1971), standards must be measured across a temperature range similar to 229 

that of each sampling depth (Rothfuss et al., 2013).  Limitations in the practical application of the in-situ 230 

equilibration method can arise from condensation, mixing and diffusion of water vapor in the tubes leading 231 

from the membrane to the laser spectrometer.  232 

Although these and other in-situ sampling methods have been developed to characterize isotope 233 

ratios in root-zone water (Orlowski, Pratt, & McDonnell, 2016; Sprenger et al., 2015), these methods may 234 
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sample differently across the subsurface spatiotemporal heterogeneities that we know to occur.  It also needs 235 

to be recognized that plants may root across each soil horizon (Dekker & Ritsema, 1996; Stewart, Moran, & 236 

Wood, 1999), which may further complicate practical attempts to isotopically characterize plant water 237 

sources.  In conclusion, we advocate for choosing the sampling technique(s) depending on the subsurface 238 

properties of the study site and we provide some practical recommendations in Sect. 5. 239 

 240 

2.3 In-lab extraction methods homogenize water across functionally distinct pores 241 

For applications where in-situ sampling is not ideal, root-zone water can also be extracted – as vapor 242 

or liquid – in the laboratory from samples collected in the field.  Being relatively cheap and technically easy, 243 

augering into soils is common practice for collecting samples and characterizing subsurface properties up to a 244 

few meters depth.  However, augering is destructive, and thus repeated augering in a small area could 245 

fundamentally alter the local infiltration pathways.  Moreover, augering only provides integrated samples at 246 

any particular depth, and thus the mixture of waters with distinct isotope ratios in any chunk of soil cannot be 247 

resolved and the spatiotemporal resolution of such isotope data sets remains generally low (Landon, Delin, 248 

Komor, & Regan, 1999).  249 

Various techniques are used for extracting water from porous media in the laboratory, most 250 

commonly cryogenic vacuum distillation and direct water vapor equilibration, that have been extensively 251 

tested and evaluated in multiple studies (e.g., Araguás-Araguás, Rozanski, Gonfiantini, & Louvat, 1995; Kübert 252 

et al., 2020; Orlowski et al., 2016; Sprenger et al., 2015; Thoma, Frentress, Tagliavini, & Scandellari, 2018; 253 

Volkmann, Kühnhammer, Herbstritt, Gessler, & Weiler, 2016).  Analytical uncertainties of cryogenic vacuum 254 

distillation can result from incomplete extraction leading to partial distillation from the sample such that the 255 

extracted water is isotopically lighter than that in the original sample (Stoll, Hissler, & Legout, 2014; 256 

Thielemann, Gerjets, & Dyckmans, 2019).  While cross-laboratory comparisons have attempted to quantify 257 

errors involved in cryogenic extraction, such tests usually use soil samples that have been oven-dried at very 258 

high temperatures (e.g., 105°C) and then spiked with water of known isotopic composition (e.g., Orlowski et 259 

al., 2018).  This approach might, however, introduce variable isotopic fractionation processes associated with 260 

the re-hydration of oven-dried matrix materials, which is not representative of real-world soils (Gaj, Kaufhold, 261 

& McDonnell, 2017; Sprenger et al., 2015).  This suggests that such tests of the cryogenic extraction method 262 
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might exaggerate the true isotopic uncertainties (Newberry, Nelson, & Kahmen, 2017).  Furthermore, because 263 

of the extremely low water potentials used in cryogenic distillation, small residual water pools (e.g., 264 

hygroscopic and biologically-bound water) are collected that would rarely, if ever, be usable by plants.  Thus, 265 

particularly for soil samples with low moisture and/or high clay contents, cryogenic extraction may not 266 

perfectly retrieve soil-water isotope ratios that match the water that is specifically available to plants.  267 

Although cryogenic extraction is widely used, systems and user protocols can vary across laboratories 268 

(Orlowski et al., 2018) and thus, uncertainties introduced by this method should always be quantified. 269 

The direct equilibration method allows for water vapor of a moist soil sample to be measured directly 270 

with a laser spectrometer in the lab (Hendry, Schmeling, Wassenaar, Barbour, & Pratt, 2015; Mattei et al., 271 

2019; Wassenaar, Hendry, Chostner, & Lis, 2008).  Here, water vapor is extracted from a substrate sample in a 272 

tightly sealed bag or container, taking advantage of the equilibrium vapor-liquid isotopic offset (Majoube, 273 

1971).  Similar to the in-situ equilibration method, vapor measurements are calibrated relative to V-SMOW by 274 

measuring alternatingly water vapor from bags filled with isotope standards (Garvelmann, Kulls, & Weiler, 275 

2012; Wassenaar et al., 2008).  Uncertainties in the measured isotope ratios can increase when the water 276 

content in the bag becomes too small (e.g., <3g in a 1-L bag; Hendry et al., 2015); also, volatile organics in the 277 

water vapor, either already in the sample or due to microbial activity, can cause analytical interferences 278 

(Gralher, Herbstritt, Weiler, Wassenaar, & Stumpp, 2018; Hsieh, Savin, Kelly, & Chadwick, 1998). 279 

Other, less frequently used water extraction methods, such as centrifugation, mechanical squeezing, 280 

azeotropic distillation and microwave distillation have also been evaluated for their capability to retrieve 281 

representative root-zone water samples for isotope analysis (e.g., Adams et al., 2020; Figuéroa-Johnson, 282 

Tindall, & Friedel, 2007; Kelln, Wassenaar, & Hendry, 2001; Munksgaard, Cheesman, Wurster, Cernusak, & 283 

Bird, 2014).  Some limitations of the methods have been identified, e.g. that squeezing and centrifugation yield 284 

comparable results to direct equilibration only when used for coarse soils with >20% water content (Orlowski 285 

et al., 2016); however, more testing is needed across a large range of soil types and extraction conditions to 286 

facilitate a more widespread application of these alternative methods. 287 

Whereas in-lab extraction methods typically cannot deliver the high-frequency measurements useful 288 

for matching xylem water to the constantly changing isotope values in the root zone – e.g., because frequent 289 

coring may fundamentally alter the infiltration properties of the subsurface – in-situ methods rarely provide 290 
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insights into the spatially variability in 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒.  Choosing one sampling or extraction strategy over others is 291 

implicitly a compromise that requires considerations of its inherent limitations and the associated 292 

uncertainties (but see Sect. 4 and 5).  293 

 294 

3. Xylem water: Characterizing and sampling across natural variations in isotope 295 

mixtures 296 

Our review of the spatiotemporal heterogeneity within root-zone water endmembers points towards 297 

the importance of their careful characterization; similarly, variability in xylem water isotopic composition 298 

(𝛿𝑥𝑦𝑙𝑒𝑚) should be carefully considered when defining xylem water as a mixture of root-zone water sources.  299 

An inability to attribute xylem water mixtures to potential root-zone water endmembers may not only be due 300 

to under-sampling of subsurface water sources, but also due to challenges in determining 𝛿𝑥𝑦𝑙𝑒𝑚 values.  301 

While it has been previously assumed that the isotope ratios of water extracted from plant xylem exactly 302 

reflect that of the water taken up by roots, we discuss evidence suggesting that 𝛿𝑥𝑦𝑙𝑒𝑚 should be used as an 303 

approximation – not an exact reflection – because fractionation effects and heterogeneity create 304 

uncertainties.  305 

 306 

3.1 Uncertainties in xylem water isotope values associated with extraction, analysis and natural 307 

variability within the plant 308 

Flow through vascular plants involves many of the same processes as flow through soils, such as 309 

preferential flow through certain pores and mixing of new inputs with stored water.  Thus, heterogeneities in 310 

the xylem water properties arise and the best practices for sampling plants may be very similar to those for 311 

soils: sample extensively and often.  However, paralleling the measurement challenges in plants with those in 312 

soils, plant-sampling methods are limited in their ability to extract the water flowing in xylem (without also 313 

extracting stored waters) and are not weighted by the relative importance to the transpiration stream.  Most 314 

commonly, tree tissue is obtained from coring tree trunks or sampling thicker branches with bark (Dawson & 315 

Ehleringer, 1993), from which xylem water is extracted via cryogenic vacuum distillation, microwave extraction 316 

or high-pressure mechanical squeezing (e.g., Koeniger, Marshall, Link, & Mulch, 2011; Millar, Pratt, Schneider, 317 
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& McDonnell, 2018).  Alternative methods include xylem-water vapor sampling with the direct equilibration 318 

method (Millar et al., 2018), or with vapor-permeable membranes implanted into the tree’s water-conducting 319 

xylem (Marshall, Cuntz, Beyer, Dubbert, & Kuehnhammer, 2020; Volkmann et al., 2016).  Analytical 320 

uncertainties associated with each of these extraction methods and subsequent isotope analysis can be 321 

substantial (but see reviews of Martín-Gómez et al., 2015; Millar et al., 2018; West, Goldsmith, Matimati, & 322 

Dawson, 2011), and thus requires a careful selection of an approach based on the research’s specific goal, as 323 

well as on the sample types, costs and needed precision.   324 

In addition to analytical errors, uncertainties in 𝛿𝑥𝑦𝑙𝑒𝑚 can arise due to the natural spatiotemporal 325 

heterogeneity of water flow in plants.  E.g., different parts of the tree crown can be supplied by different flow 326 

pathways through the tree, potentially connected to roots tapped into different water pools (Schulte & 327 

Brooks, 2003; M. H. Zimmermann, 1983).  A single snapshot of 57 trees across 1ha (Goldsmith et al., 2019) 328 

showed strong variation in 𝛿𝑥𝑦𝑙𝑒𝑚 among individual branches (intra-crown variability; Table 2), which was 329 

attributed to sectorality.  Xylem sectorality is also hypothesized to explain the 6.5-9.3‰ variation in 𝛿18O 330 

measured in single redwood trees that were 80-107m tall (T. E. Dawson, personal communication, May 2020).  331 

Additionally, it is assumed that heartwood water does not substantially contribute to transpiration, but it is not 332 

well known how hydraulically isolated heartwood water remains until it is needed, e.g., during drought (Scholz, 333 

Philips, Bucci, Meinzer, & Goldstein, 2011).  Systematic comparisons of sapwood versus heartwood are needed 334 

to better inform best practices for stem sampling (but see White et al., 1985).  While the generality of these 335 

findings for all plant types and environments is yet unknown, they suggest that single xylem water samples can 336 

only provide a partial view into any tree’s water sources. 337 

Post-uptake processes in the plants themselves can also affect the isotope composition of xylem 338 

water.  For herbaceous plants, transpiration occurs in most above-ground tissues, such that evaporative 339 

fractionation at the leaf-atmosphere interface leads to isotopic enrichment compared to source water (Craig & 340 

Gordon, 1965; Farquhar et al., 1993; Helliker & Ehleringer, 2000).  In this case, herbaceous-plant tissue should 341 

be sampled from root crowns as they are the least isotopically variable and seem most reliable (Barnard, Bello, 342 

Gilgen, & Buchmann, 2006).  For trees, evaporative fractionation should also be considered for sections close 343 

to the leaf-atmosphere interface, or in green stems that contain stomata or lenticels where isotopically 344 

enriched water may diffuse backwards and re-mix (Ehleringer, Roden, & Dawson, 2000; Lehmann et al., 2018).  345 
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As a result, 𝛿𝑥𝑦𝑙𝑒𝑚 values within small stems or leaves can differ substantially from each other and from those 346 

within the larger trunk. 347 

There can also be meaningful variations in 𝛿𝑥𝑦𝑙𝑒𝑚 values among closely spaced individuals, that 348 

should not be ignored through averaging.  While often site-level or species-level plant-source water inferences 349 

are sought, pursuing those should include accounting for among-tree (or even within-tree) variations in water 350 

sources (Figure 3).  Combining sample data from across parts of the plant to capture this multi-scale 351 

hierarchical heterogeneity (e.g., twigs, branches or trunk cores of trees) should complement xylem water 352 

studies, to enable reporting uncertainties in individual 𝛿𝑥𝑦𝑙𝑒𝑚 values.  353 

 354 

3.2 Water-transport lags within trees complicate endmember mixing analyses 355 

Time lags from water traveling from roots to stem to twig exist, so we should understand the range of 356 

temporal variations in root-zone water over recent times and not just at the instant of sampling.  Soil water 357 

and xylem water are often collected at the same time, an thus endmember-mixing analyses implicitly neglect 358 

the lags between time of uptake and time of water reaching the stem or twig that is sampled.  Those travel 359 

times and transport velocities of water in the plants are not well quantified.  Some studies have combined 360 

measurements of stable water isotopes and sap flux to estimate the time from uptake to transpiration, mostly 361 

showing that peak tracer concentrations lag inputs by one day to one week (e.g., Gaines, Meinzer, Duffy, 362 

Thomas, & Eissenstat, 2016; Schwendenmann, Dierick, Kohler, & Holscher, 2010), but also lag times as long as 363 

2-3 weeks have been observed in 1-m diameter 50-m tall trees (Meinzer et al., 2006).  As a consequence of the 364 

wide range of water residence times that can exist in trees, synchronizing the sampling of subsurface material 365 

with the sampling of plant material for subsequent isotope analysis remains challenging. 366 

 367 

3.3 Fractionation during root water uptake should not be ignored 368 

The assumption that the isotope composition of root-zone water exactly matches that of the plant’s 369 

xylem water is based on early investigations that found no evidence for isotope fractionation during the 370 

uptake process (Washburn & Smith, 1934).  Several subsequent studies also reported data that supported this 371 

claim (Dawson & Ehleringer, 1991; Walker & Richardson, 1991; U. Zimmermann et al., 1967).  In the first paper 372 
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we could find on this topic, Washburn and Smith (1934) grew plants hydroponically and measured the change 373 

in density of the remaining water as a proxy for isotopic fractionation; no change in density was seen after 374 

approximately 99% of the hydroponic water was removed by transpiration.  These results formed the initial 375 

basis for the assumption that plants do not discriminate against any isotopologues of water during uptake.  376 

However, many of the early investigations used only one isotope (either H2  or O18 ) because their analysis was 377 

not easy, reliable or routine as it has become today.  This, in addition to smaller sample sizes, may be a reason 378 

why any isotope fractionation effects, if they were present, may have not been detected.  Using both 𝛿2H and 379 

𝛿18O, with which the deuterium excess can be calculated, makes it far easier to identify whether isotopic 380 

fractionation has altered a water sample (Dawson & Simonin, 2011; Sprenger et al., 2016). 381 

Furthermore, the studied plants in Washburn and Smith (1934) were never water limited; however, in 382 

unsaturated conditions where strong potentials are at play in the root-substrate interface, one may observe 383 

isotopic fractionation upon root water uptake.  Evidence suggests that (hydrogen) isotopic fractionation during 384 

root water uptake can occur in some specialized groups of plants that can live in salt water or saline soils 385 

(Ellsworth & Williams, 2007; G. Lin & Sternberg, 1993).  Recent potted plant experiments found that isotope 386 

values in xylem water were consistently lower than those in root-zone water (e.g., with absolute offsets in 𝛿2H 387 

averaging 9.2‰ in Vargas et al. (2017), 10.6‰ in Barbeta et al. (2020), and ranging from 2.9 to 15.6‰ in Poca 388 

et al. (2019)).  The processes leading to these isotopic offsets are not well understood, although the existing 389 

studies propose some possible explanations.  While uptake in most plants is an advective mass-flow process 390 

(apoplastic flow), Poca et al. (2019) speculated that uptake can also involve transmembrane water transport 391 

through aquaporins, which may discriminate against heavy isotopes.  In contrast, Barbeta et al. (2020) 392 

hypothesized that xylem water is isotopically lighter than root-zone water because xylem-water samples 393 

contain isotopically depleted water stored in stem tissue.  It is also possible that isotopic fractionation occurs 394 

during liquid-vapor phase transitions in the root-zone pore spaces located in close proximity to the plant roots.  395 

As first outlined in Allison, Barnes, Hughes, and Leaney (1984) and later elaborated on by others including 396 

Vargas et al. (2017), temperature and flow dynamics in the subsurface can yield liquid-vapor exchanges that 397 

are not explained by equilibrium fractionation factors and have directional effects on subsurface isotope 398 

values.  399 
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These recent studies suggest that for some plant species and environmental conditions, root water 400 

uptake may cause xylem water to be isotopically depleted relative to its source water, whereas other studies 401 

indicate that source and xylem waters are seemingly mismatched because of isotope variations within the 402 

sampled materials.  Experiments to better understand this depletion may need to focus on small-scale 403 

variations in water inside roots, xylem vessels or tracheids, and other storages.  Otherwise, until the physical 404 

and chemical processes underlying these apparent fractionations are understood well enough to account for 405 

them mechanistically, errors should be assumed to avoid compromising the validity of endmember mixing-406 

model analyses.  407 

 408 

4. Uncertainties abound: Determining mixture and endmember isotopic 409 

signatures is technically challenging and associated uncertainties are often unknown 410 

While the question often arises “Which method is the right one?” for identifying the root-zone water 411 

endmembers that plants may access, we should recognize that our tools are unlikely to be as flexible and exact 412 

as any plant root is.  Furthermore, every step towards quantifying an isotope ratio introduces uncertainty.  This 413 

poses real technical limitations for applying endmember measurements, rendering them only as an 414 

approximation and demanding the assumption that 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  values are uncertain.  These 415 

uncertainties – associated with natural variability, sampling limitations, and measurement or extraction 416 

analytical errors – vary widely, depending on the system conditions and how water is sampled, prepared, 417 

extracted, and analyzed. 418 

Only few studies have specifically investigated the 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  uncertainties that can 419 

naturally occur due to the heterogeneity inherent in natural systems, and some examples are shown in Table 420 

1.  These values can be large for both 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒 , suggesting that many samples need to be 421 

collected and analyzed to quantify the natural uncertainties in the mixture and endmember isotopic 422 

signatures, which then allows for more robust endmember-mixing analyses (e.g., such as in Figure 3c). 423 

 424 



Determining plant water sources with isotopes 

 18 

Table 1: Ranges of natural isotopic variability, expressed as 1 standard deviation (σ) or mean isotopic difference (Δ), that 425 
can occur within trees and soils.  These values only provide a limited selection of isotope uncertainties and more detailed 426 
analyses have been carried out elsewhere (references in Sect. 2.1 and 3.3). 427 

 
 

Observed natural 
variability (‰ 

VSMOW) 
 

 
Source of variability Experimental details  𝛅𝟏𝟖𝐎 𝛅𝟐𝐇 Reference 

a Within the tree crown P. abies branch xylem water (σ of 5 samples, 
averaged across 3 trees) 

1.6 4.4 Goldsmith et al. (2019) 

b Among-tree variability within 
plot 

P. abies branch xylem water (σ of 4-8 trees per plot, 
averaged across 71 plots) 

0.8 2.1 Allen, Kirchner, et al. 
(2019) 

c Laterally in deep soil Soil water from 40-50cm depth across 1ha (σ, n=8) 1.0 7.1 Goldsmith et al. (2019) 

d Laterally in shallow soil Soil water from 0-10cm depth across 1ha (σ, n=150) 1.7 10.6 Goldsmith et al. (2019) 

e Isotopic separation during root 
water uptake  

Irrigated sealed pots with Persea Americana, 
Δ=δsoil−δxylem (mean Δ, n=32) 

1.1 9.2 Vargas et al. (2017) 

 428 

Table 2 shows some typical uncertainty values due to sample extraction and analysis, which were 429 

retrieved from studies specifically targeted to quantify these uncertainties.  However, most of the studies that 430 

partially tested and evaluated laboratory and field-based extraction methods for soils (Orlowski et al., 2016; 431 

Orlowski et al., 2018; Sprenger et al., 2015; Sprenger et al., 2018; Thoma et al., 2018) and plants (Newberry et 432 

al., 2017; Martín-Gómez et al., 2015; Millar et al., 2018) have targeted the discussion on uncertainties at 433 

certain problems and thus are not directly transferable to other laboratory infrastructures or sample media.  In 434 

fact, such tests can be ambiguous; for example, studies that have attempted to quantify the difference 435 

between 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  face practical limitations such as when soils also undergo evaporation which 436 

likely causes isotopic enrichment of soil water and confounds inferring analytical errors (Millar et al., 2018; 437 

Newberry et al., 2017).  The uncertainties in Table 2 are further compounded by the fact that the soil water 438 

measurements are not necessarily measurements of the specific soil-water that a plant might extract from the 439 

root zone; however, this additional uncertainty is not well quantified (Sect. 2).  Therefore, the uncertainties in 440 

Table 2 should rather be used to guide decisions about sampling- and analysis procedures. 441 

 442 

 443 

 444 

 445 
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Table 2: Analytical uncertainties of commonly-used extraction and measurement methods for stable water isotopes in soil 446 
and plant samples.  Error was quantified as the mean absolute deviation from an isotope reference value (mostly that of 447 
spike water) and repeatability was quantified as one standard deviation of that mean.  These values only provide a limited 448 
selection of isotope uncertainties and more detailed method comparisons have been carried out elsewhere (references in 449 
Sect. 2.2, 2.3 and 3.1). 450 

 
Extraction methods Experimental details Metric 

𝛅𝟏𝟖𝐎 (‰ 
VSMOW) 

𝛅𝟐𝐇 (‰ 
VSMOW) 

Reference 

1 Suction lysimeter (70–75kPa), 
IRMS 

Soil water, spiked sandy 
loam (n=10) 

Error 0.68 1.9 Thoma et al. (2018)  

Repeatability 0.71 1.5 
2 Centrifugation (5000rpm, 

15min), OA-ICOS 
Soil water, spiked silty 
sand, 20% GWC (n=5) 

Error 0.19 1.08 Orlowski et al. (2016)  

Repeatability 0.06 0.36 
3 Microwave extraction (330W, 

15min), OA-ICOS 
Soil water, spiked silty 
sand, 20% GWC (n=5) 

Error 0.57 24.95 Orlowski et al. (2016)  

Repeatability 0.32 1.47 
4 Cryogenic vacuum distillation 

(98°C, 45min), OA-ICOS 
Soil water, spiked silty 
sand, 20% GWC (n=5) 

Error 0.71 5.54 Orlowski et al. (2016)  

Repeatability 0.18 1.17 
5 Cryogenic vacuum distillation 

(100°C, 210min), IRMS 
Xylem water, root crown, 
irrigated open pots with 
Triticum aestivum L., (n=5) 

Error Not reported Millar et al. (2018)  

Repeatability 0.35 0.86 

- Cryogenic vacuum distillation 
(90°C, 120min), IRMS 

Xylem water, irrigated 
sealed pots with Salix 
viminalis (n=68) 

Error 0.84 Not 
signif. 

Newberry et al. (2017) 

Repeatability 1.13 Not 
reported 

6 Direct vapor equilibration 
method with bags (6d), OA-
ICOS 

Soil water, spiked coarse 
sand, medium sand, 
coarse silt, 8-50% GWC 
(n=9) 

Error 0.52 2.87 Mattei et al. (2019) 
Repeatability 0.76 4.67 

7 In-situ equilibration method 
with membranes (DDS, TI), IRIS 

Soil water, slightly clayey 
silt (n=9) 

Error 0.12 1.10 Volkmann and Weiler 
(2014)  

Repeatability 0.15 1.32 

 Analysis methods     

8 IRMS (Thermo Fischer Delta 
Plus Advantage mass 
spectrometer (Thermo Fisher 
Scientific Inc., Massachusetts, 
USA) connected to a GFL 1086 
equilibration device) 

Water, 10 replicates 
(n=13) 

Repeatability 0.02 0.46 Penna et al. (2012)  

9 OA-ICOS (Los Gatos Research 
Inc., off-axis integrated cavity 
output spectroscope model 
DLT-100 version 908-0008 or 
newer) 

Water, last 8 of 18 
injections (n=72) 

Repeatability 0.33 0.33 Penna et al. (2012)  

10 IRIS (Picarro Inc., model 
L1102‑i liquid analyzer or 
newer) 

Water, last 8 of 18 
injections (n=72) 

Repeatability 0.1 0.13 Penna et al. (2012)  

Figure 4 visually contrasts the values from Table 1 and Table 2 and demonstrates that the ranges of 451 

isotope variations attributed to natural heterogeneity mostly exceed analytical errors that have been the 452 

primary focus of past critiques on isotope-based plant-water uptake studies.  Thus, potentially large 453 

uncertainties in 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  values do not imply that stable water isotopes cannot be used to study 454 

plant water sources.  Figure 4 rather suggests that errors and uncertainties must be recognized and 455 

incorporated into mixing-model analyses.  Even if these errors and uncertainties cannot be quantified in a 456 

given study, assuming values with magnitudes similar to those in Table 1 and Table 2 would be a reasonable 457 

alternative.  458 
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 459 

Figure 4: Natural variability of isotope values in soils and plants, and uncertainties of isotope values (repeatability) due to 460 
extraction and analysis methods.  Information about the data and references are provided in Table 1 and Table 2. 461 

 462 

5. Looking forward: designing useful experiments given endmember challenges 463 

Isotope-based endmember mixing models are widely used to quantitatively determine which root-464 

zone water sources are taken up by plants.  Given that both the mixture and endmember terms can be 465 

challenging to characterize, we should assume mixing-model solutions to be inexact and design studies that 466 

maximize the isotopic contrast between endmembers and/or minimize potential uncertainties.  As a first step, 467 

uncertainties should be estimated or assumed to theoretically determine what the smallest isotopic difference 468 

between two endmembers needs to be to enable a robust endmember-mixing analysis (see Sect. 4, and 469 

example in Rothfuss & Javaux, 2017). 470 

To summarize and conclude, we provide some specific recommendations to maximize signal-to-noise ratios 471 

and thus to enable more confidently inferring plant source waters in physiological, ecological or eco-hydrologic 472 

studies.  These approaches (and any sampling design) should always be adapted to the specific properties of 473 

the study site: the soil and/or substrate type and structure, the climate, and the hydrological setting (e.g., 474 

hypothesized range of water sources), and of course, any knowledge of rooting patterns. 475 

1) Design experiments to maximize the isotopic contrast between endmembers 476 
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Exploit extreme isotopic anomalies in plant water sources 477 

Stable water isotopes may be best suited for identifying potential plant water sources such as fog, 478 

mist or dew (Dawson, 1998; Hill, Dawson, Shelef, & Rachmilevitch, 2015), or rock moisture in the 479 

deep weathered bedrock underneath hillslope soils (Oshun, Dietrich, Dawson, & Fung, 2016; 480 

Schwinning, 2010), where values deviate strongly from soil water.  Other isotopic contrasts between 481 

subsurface waters may occur due to mineral-water interactions that lead to strongly fractionated 482 

pore water (Y. Lin & Horita, 2016; Oerter et al., 2014), or when goundwater is more depleted than soil 483 

water because groundwater recharge was fed mostly by isotopically-light snowmelt (Dawson & 484 

Ehleringer, 1991).  We can design sampling campaigns specifically to target these isotopic anomalies, 485 

or target circumstances where the isotopic differences between the endmembers are large, so that 486 

we can more robustly use mixing models.  487 

Ask questions about root-zone water uptake during the driest conditions 488 

During dry conditions, root-zone water isotope profiles will be more monotonic (mainly due to 489 

evaporative fractionation near the soil surface), compared to after-precipitation conditions when 490 

infiltrating water mixes with pre-event soil water (Sect. 2).  Thus, distinguishing among shallow and 491 

deep root-zone water sources with an endmember-mixing model is inherently easier (i.e., less 492 

uncertain) during dry periods and in dry regions.  493 

Study water uptake after precipitation events that follow dry periods 494 

Rather than orienting research questions around depth of water uptake, similarly useful insights can 495 

be gained by asking whether plants are using recent precipitation (or snowmelt) event water.  This 496 

approach requires that the isotope signal of the event water is very distinct from that already stored 497 

in the subsurface (i.e., pre-event water).  Thus, sampling root-zone and xylem water before and after 498 

events enables us to see whether recent water is taken up by the plant roots (Oerter and Bowen 499 

(2017), Zhang, Jiang, Wang, Jiao, and Wang (2018)). 500 

Perform artificial labelling experiments 501 

Applying isotopically enriched or depleted water to the root zone can increase the isotopic differences 502 

between the plant source water endmembers in the mixing analyses.  Labelled water can be sprinkled 503 

on experimental plots to better discern the contribution of “irrigation” versus “pre-irrigation” water 504 
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sources to plant water (Grossiord et al., 2014).  Alternatively, labelled water can be used to mark 505 

specific locations of the root zone to investigate the distribution of active roots (Beyer et al., 2016) or 506 

hydraulic redistribution processes (Zapater et al., 2011). 507 

2) Quantify and minimize uncertainties in endmembers and mixture 508 

Quantify xylem water isotopic heterogeneity at the plant- or plot-level 509 

While isotopic heterogeneity should be expected within soil samples and among soil samples at the 510 

same depths (Sect. 2), it can also be relevant among xylem samples within and among plants (Sect. 3).  511 

While identifying these heterogeneities may be of interest for some specific research questions, 512 

usually we are more interested in species-level or plot-level inferences, and thus want to include 513 

within-tree variability as an uncertainty term.  Optimally, not only individuals are sampled, but also 514 

multiple twigs from individuals, so that all 𝛿𝑥𝑦𝑙𝑒𝑚 values can then be incorporated in any endmember-515 

mixing analysis, e.g. by using iterations of mixing models for all permutations of individual sample 516 

values (Figure 3). 517 

Use the dual-isotope approach 518 

Both 𝛿18O and 𝛿2H can now be analyzed simultaneously at very low costs, so that isotopic 519 

fractionation effects can be tracked and quantified as deviations from precipitation using deuterium 520 

excess or line-conditioned excess (Landwehr & Coplen, 2006).  If the relationship between 𝛿18O and 521 

𝛿2H varies with depth across the root-zone profile (e.g., Figure 2a), both isotopologues can be used as 522 

individual endmembers in mixing models.  Alternatively, the deuterium excess or line-conditioned 523 

excess values themselves can be used to characterize depth-dependent endmembers and the 524 

mixture. 525 

Conduct potted-plant experiments 526 

Potted-plant experiments allow for controlling and monitoring all input and output water fluxes, 527 

which is useful for tracking variations in 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  at higher precision and resolution than 528 

would be possible in most natural systems.  Because the complexity inherent in most natural systems 529 

is reduced in such experiments, we can study individual processes in greater detail (such as 530 

fractionation effects during plant-water uptake; Sect. 3.3).  Although potted-plant experiments may 531 
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never fully represent natural systems,  a well-designed set-up allows for informative comparison 532 

analyses between different environmental conditions and plant species (Kawaletz et al., 2014). 533 

Monitor isotopic variations in root-zone and xylem water at high temporal resolution 534 

New sampling techniques, such as the in-situ equilibration method with membrane probes, 535 

potentially allow for measuring 𝛿𝑥𝑦𝑙𝑒𝑚 and 𝛿𝑟𝑜𝑜𝑡−𝑧𝑜𝑛𝑒  at sub-hourly resolution over periods of weeks 536 

and months (Sect. 2.2).  This might be particularly practical for detecting temporal isotopic anomalies 537 

in the root zone (due to fractionation or mixing of new water inputs), and thus may allow for more 538 

robust source water attribution.  Isotope time series data collected with such methods may also be 539 

well suited for calibrating mechanistic models (Knighton et al., 2020).  540 

 541 

6. Summary and conclusions 542 

Stable isotopes of water can provide powerful insights into plant water sources, however, accurately 543 

determining from when and from where plants take up water requires us to account for the potential sources 544 

of uncertainties and limitations associated with the isotope approach.  Isotope-based endmember mixing 545 

models should only be used to distinguish among highly distinct and well-characterized plant water sources.  546 

This means that the differences between endmembers need to be much larger than the uncertainties 547 

associated with sample extraction, analysis or modeling in order to yield robust and unambiguous results 548 

(Figure 4).  Nonetheless, numerous studies have shown truly distinct endmembers, enabling robust inferences 549 

on plant water sources, and advancing our understanding of plant water uptake (see references in Sect. 1).  550 

Ideally, all endmembers of a mixture should be known.  However, sampling all endmembers is often 551 

not practicable due to high sample extraction costs, technical limitations, or unpredictable root distributions.  552 

In those cases when not all endmembers can be quantified, we know that uncertainties still exist and thus 553 

their consequences for the endmember-mixing model results should be acknowledged.  Although we define 554 

distinct endmembers, and thus drastically simplify and discretize the complex subsurface water flow 555 

processes, endmember-mixing models still provide a route towards new understanding that is not always 556 

compromised by recent findings about isotopic variations in the root zone and in the plant.  Suggestions for 557 

best using this this route are provided in Sect. 5.  558 
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In addition to the uncertainties associated with the endmembers of plant water sources, we need to 559 

acknowledge the limitations of the concept behind isotope-based endmember mixing analyses.  While 560 

technology improves, it remains unlikely that mixing-model analysis will transition from a robust comparative 561 

method to one that provides exact information on depths of root water uptake.  In other words, isotope-based 562 

endmember mixing models allow us to identify which water sources the plant “uses” but it cannot always help 563 

us to identify the sources it “depends on”.  Nonetheless, new technologies have significantly increased 564 

temporal and spatial sampling frequencies, which can mitigate and constrain the uncertainties discussed in 565 

this paper.  We are hopeful that continuous progress and method development will provide new insights on 566 

plant- and ecosystem-level water relations. 567 
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