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1 Introduction

One can define a quantum field theory (QFT) non-perturbatively as a renormalization

group (RG) flow from the UV to the IR fixed point. The fixed points are assumed to have

conformal invariance and are described by conformal field theories (CFTs). In this work,

we will focus on massive QFTs, i.e. the IR CFT is trivial. To specify a particular QFT it is

sufficient to provide the UV CFT and the relevant deformation triggering the RG flow. We

would like to determine IR observables like the mass spectrum and scattering amplitudes

from the UV data. However, generically, the RG flow is strongly coupled and it is not

possible to compute IR observables using perturbation theory around the UV CFT. In

these cases, one has to resort to numerical methods (like lattice field theory, Hamiltonian

truncation, tensor networks, etc) that require a UV cutoff and a costly extrapolation to

the continuum limit. This calls for modern non-perturbative bootstrap methods that can

constrain the space of QFTs directly in the continuum. Unfortunately, the present boot-

strap methods study the UV and the IR separately. Namely, one can use the conformal

bootstrap [1]1 to study the UV CFT data or the S-matrix bootstrap [3–8] to study scat-

tering amplitudes of light particles. Ideally, we would like to connect these two bootstrap

approaches. This work is a step in this direction.2

Our strategy is simple. We consider a set of states that include asymptotic scattering

states and states created by local operators acting on the vacuum. In the simplest setting,

we consider the following three states3

|ψ1〉 = |p1, p2〉in , |ψ2〉 = |p1, p2〉out , |ψ3〉 =

∫
dxei(p1+p2)·xO(x)|0〉 . (1.1)

Unitary implies positive semi-definiteness of the matrix 3

〈ψa|ψb〉 =




1 S∗ F∗2
S 1 F2

F2 F∗2 ρ


 � 0 (1.2)

where S denotes the 2 to 2 scattering amplitude, F2 denotes the two-particle form factor

of the operator O and ρ its spectral density.

Notice that the S-matrix bootstrap can be formulated in the same way if we only use

scattering states (|ψ1〉 and |ψ2〉 in this case). The presence of the spectral density ρ ∼ 〈OO〉
in the setup makes it straightforward to establish a connection with the UV CFT: at large

energies all the correlation functions should coincide with the ones of the UV CFT. For

example in the case of the two-point function of the stress-tensor, conformal invariance in

the UV fixes its form uniquely up to a constant known as the CT central charge [9]. Notice

1See also the review [2].
2The study of QFT in Anti-de Sitter (AdS) spacetime is another promising strategy to connect the

conformal and the S-matrix bootstraps [3]. However, this approach requires the introduction of an IR

cutoff (the AdS radius). The limit of large AdS radius leads to the usual conformal bootstrap for operators

with large scaling dimension, which is very challenging with current methods.
3These formulas are schematic. The precise formulas are given in section 3.
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that even if we knew the S-matrix for all energies it would not be easy to extract from it

information about the UV CFT.4

In this work we test this strategy in 1+1 dimensional QFTs. In this case, we can write

the central charge c of the UV CFT as an integral over the spectral density of the trace

of the stress tensor. This allows to address the following question: what is the minimal

central charge of a UV CFT that can give rise to a massive QFT with a given set of masses

and couplings5 of stable particles?

In practice, we use analyticity of the amplitude and form factor, to write a general

ansatz for the amplitude, the form factor and the spectral density. Then we numerically

optimize the parameters of the ansatz such that unitarity is obeyed at all energies and the

value of the central charge is as low as possible. In several cases we find that the optimal

form factors are given by known integrable theories such as the sine-Gordon, the E8 and

the O(N) models.

The structure of the paper is as follows. In section 2 we review all the basic ingredients

in a consistent manner for generic number of dimensions and provide all the normalization

conventions. In section 3 we formulate unitarity as the semipositive definite condition on

the three by three matrix 〈ψa|ψb〉 and discuss its implications. Then, we illustrate how

this works with analytic examples from 2d integrable models like the sine-Gordon, the

E8 and O(N) models, which we review in section 4. In section 5 we define and set up

the numerical linear optimization problem for 2d QFTs. We also present our results and

compare them with the analytic formulas for integrable models. We conclude and briefly

discuss applications to higher dimensions in section 6. We derive various auxiliary results

in appendices A, B and C.

2 Review of basic ingredients

We work in (1, d− 1) Minkowski space with the mostly plus metric

ηµν = {−,+, . . . ,+}. (2.1)

The position and momentum in this d-dimensional space are denoted respectively by

xµ = {x0, ~x}, pµ = {p0, ~p }, (2.2)

where ~x and ~p are the position and momentum in the (d−1) Euclidean subspace. We refer

to p0 as energy and x0 as time.

We study unitary quantum field theories with restricted Poincaré symmetry group.6

When working in d = 2 in addition we will also assume parity. In what follows we summa-

rize our conventions and review basic ingredients such as asymptotic states, scattering and

4In d ≥ 3 using holography one can argue that the regime of hard scattering (high energy and fixed

angle) should be directly related to the UV CFT [10]. However, the present S-matrix bootstrap methods

are not precise enough in this regime.
5We define couplings from the physical S-matrix. For example, cubic couplings are given by residues of

poles of the 2 to 2 scattering amplitudes.
6It is defined as the Poincaré group without parity and time-reversal discrete subgroups.
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partial amplitudes, spectral density and form factors. We will conclude with a discussion

of unitarity and its implications.

2.1 States

The state of a system described by the unitary QFT is represented by a “state” vector in

an infinite dimensional Hilbert space. In this space it is convenient to choose a basis of

state vectors (or simply states) in such a way that they are eigenstates of the generators of

translations Pµ with eigenvalues pµ and transform in the irreducible representation of the

Little group SO(d − 1) which leaves invariant the d-vector {p0,~0}. We will always work

with states which have a strictly positive energy p0 > 0. We also restrict our attention

to traceless symmetric representations of the SO(d− 1) Little group. Then any state will

have at least three labels

|p, j, µ〉. (2.3)

The label j is a non-negative integer called spin (j = 0, 1, 2, . . .). The label µ denotes the

components of the spin j irreducible representation of SO(d− 1). In the case of d = 4, one

can choose µ = −j, . . . ,+j to be the helicity, i.e. the projection of spin j on the direction

of ~p. The normalization of the states (2.3) is chosen as

〈p′, j′, µ′|p, j, µ〉 = (2π)dδ(d)(p′ − p)δj′jδµ′µ (2.4)

except for the special case of one particle states that are normalized as in (2.8). We

note that from this normalization condition it follows that the dimensionality of the state

vector is [
|p, j, µ〉

]
= −d

2
. (2.5)

For further discussion, see construction of irreducible unitary representations of the re-

stricted Poincaré group [11, 12].

2.1.1 Free particle states

As we review in the next section, the asymptotic states of an interacting massive QFT are

in one-to-one correspondence with the states of a non-interacting QFT. For this reason,

we first consider a free QFT. There is a special set of states, called the one particle states,

which describe a single freely propagating particle. The tensor product of one particle

states defines multi particle states which describe a system of multiple non-interacting

particles. The Hilbert space spanned by all the possible one and multi particle states is

called the Fock space.

The states (2.3) which obey the “mass-shell” condition

p2 = −m2 ⇒ p0 =
√
m2 + ~p 2, (2.6)

where m is a discrete real non-negative number, called mass, are referred to as one particles

states (1PS). We can denote them as

|m, ~p 〉. (2.7)

– 3 –
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We focus only on scalar particles in this work, thus we omit the spin labels j = µ = 0. The

one particle states are normalized as

〈m′, ~p ′|m, ~p 〉 = 2p0δm′m × (2π)d−1δ(d−1)(~p ′ − ~p). (2.8)

From the above normalizations it is clear that the one particle states have the following

mass dimensions [
|m, ~p 〉

]
= −d− 2

2
. (2.9)

We define the n particle state as

|n〉 ≡ |m1, ~p1〉 ⊗ . . .⊗ |mn, ~pn〉. (2.10)

The n particle state has a well defined total d momentum which reads as

pµ = pµ1 + . . .+ pµn. (2.11)

Due to the very definition of the Fock space one can write the completeness relation in this

space by summing over n particle states and integrating over their phase space as

I =
∑∫

n

|n〉〈n|,
∑∫

n

≡
∞∑

n=0

∫
dΦn, (2.12)

where the phase space Φn for n identical particles is defined in (A.19).

Let us finish this section by focusing on two particles states |2〉 of identical particles

with mass m. Writing all the labels explicitly we denote it by

|m, ~p1;m, ~p2〉 ≡ |m, ~p1〉 ⊗ |m, ~p2〉. (2.13)

This state does not transform in the irreducible representation of the restricted Poincaré

group (like any other n particle state with n ≥ 2) simply because it is not in the irreducible

representation of the SO(d − 1) Little group. We can project it however to irreducible

representations. For simplicity we focus on the two particle states in the center of mass

frame defined as ~p2 = −~p1 and the vector ~p1 has an angle θ1 with the x1 axis and θ2 =

. . . = θd−2 = 0. See (A.4) for our conventions for spherical coordinates. The projection is

done by integrating over the (d− 1) scalar spherical harmonics, which are the Gegenbauer

polynomials, as7

|p, j〉 = Πj |m, ~p1;m,−~p1〉 ≡ γj ×
∫
dΩd−1C

(d−3)/2
j (cos θ1) |m, ~p1;m,−~p1〉, (2.14)

where γj is some coefficient fixed by the normalization, which we derive in (2.18). In the

left-hand side (2.14) we dropped the label µ because we are considering states with zero

spin projection along ~p1 and invariant under SO(d− 3) rotations that leave the scattering

plane (θ2 = . . . = θd−2 = 0) invariant.

7Strictly speaking (2.14) holds only for d ≥ 4 when the Little groups is non-Abelian. The d = 2 and

d = 3 are special. In the former case the Little group is Z2 and in the latter it is Abelian SO(2).
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The normalization of the two particle state (2.13) is fixed by the normalization of one

particle states (2.8). One has

〈m, ~p ′1 ;m, ~p ′2 |m, ~p1;m, ~p2〉
= 4p0

1p
0
2 × (2π)2 (d−1)δ(d−1)(~p ′1 − ~p1)δ(d−1)(~p ′2 − ~p2) + (~p1 ↔ ~p2)

=Nd × (2π)dδ(d)(p′1 + p′2 − p1 − p2)× (2π)d−2
(
δ(d−2)(Ω′ − Ω) + δ(d−2)(Ω′ + Ω)

)
.

(2.15)

Notice that the normalization (2.15) reflects explicitly that the system is symmetric under

the permutation of particles 1 and 2. In the second line of (2.15) we have performed a

change of variables, see (A.17). For identical particles the factor Nd, derived in (A.18),

reads as

Nd ≡ 2d−1√s
(
s− 4m2

)(3−d)/2
, (2.16)

s ≡ −(p1 + p2)2. (2.17)

In (2.15) the spherical angles Ω and Ω′ correspond to the (d − 1) vectors ~p1 and ~p ′1 re-

spectively. The δ-function in spherical coordinates is defined in (A.8).8 The Mandelstam

variable (2.17) defines the square of the total energy for the two particle state in the center

of mass frame. We can now evaluate the value of the constant γj . Using (2.4), (2.16) and

the orthogonality relation (A.11), we get9

|γj |−2 = (1 + (−1)j)×Nd(2π)d−2Ωd−2 × ν(d−3)/2
j , (2.18)

where the coefficient ν
(d−3)/2
j is defined in (A.11).

Finally, let us invert the projection (2.14) by means of the orthogonality relation (A.12).

One finds

|m, ~p1;m,−~p1〉 =
∞∑

j=0

Cj(cos θ1)|p, j〉, (2.19)

where the Clebsch-Gordan coefficient Cj(cos θ1) reads as

Cj(cos θ1) =

((
1 + (−1)j

)
Nd(2π)d−2

Ωd−2ν
(d−3)/2
j

)1/2

× C(d−3)/2
j (cos θ1). (2.20)

2.1.2 Asymptotic states

This section is based on chapter 3.1 of [11].

We work with states in the Heisenberg picture (states do not evolve in time) and

describe the entire evolution of the system. They are defined however with an implicit

choice of a reference frame f . Suppose we have another reference frame f ′ with time

8Given a spherical angle Ω of a d− 1 vector ~p, we schematically denote by −Ω the spherical angle of a

d − 1 vector −~p. If the former has the angles (θ1, . . . , θd−3, θd−2), the latter has all the angles shifted as

(π − θ1, . . . , π − θd−3, π + θd−2). This is easy to see from (A.4).
9Without loss of generality the factor γj is chosen to be purely real in the rest of the paper.
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t′ = t + τ .10 If a state |ψ〉 is seen by an observer in f , the same state will be seen by an

observer in f ′ as |ψ′〉. Due to time translation invariance these two states are related as

|ψ′〉 = e−iHτ |ψ〉. (2.21)

In strongly interacting theories with a mass gap one can define a (complicated) state in

the reference frame f , which for an observer in the reference frame f ′ either in the far past

(τ → −∞) or in the far future (τ → +∞) however will look like a set of non-interacting

(free) particles. We call states with such a property the asymptotic in and out states. In

what follows we will make this statement formal.

We assume that the strongly interacting Hamiltonian of our system can be written in

the following way

H ≡ P 0, H = H0 +Hint, (2.22)

where H0 is a free Hamiltonian (with the mass spectrum including stable composite par-

ticles and bound states) and Hint is the “interaction part”. Note, that Hint is not a small

perturbation around H0 and we do not know how to construct it explicitly.11 As a conse-

quence the expression (2.22) is highly formal. The eigenstates of the free Hamiltonian H0

are nothing but the n particle states defined in (2.10), in other words

H0|n〉 = p0|n〉, (2.23)

where pµ is the total d-momentum of the n-particle state (2.11).

We can now define the in state |n〉in and the out state |n〉out via the following

conditions12

lim
τ→−∞

e−iHτ |n〉in = lim
τ→−∞

e−iH0τ |n〉,

lim
τ→+∞

e−iHτ |n〉out = lim
τ→+∞

e−iH0τ |n〉.
(2.24)

Here the asymptotic and the free n particle states are defined in the reference frame f and

are required to match in the reference frame f ′. Given the condition (2.24) one can express

the in and out states in terms of the free n particle states as

|n〉in = Ω(−∞)|n〉, |n〉out = Ω(+∞)|n〉, (2.25)

where we have defined the operator

Ω(τ) ≡ e+iHτe−iH0τ , (2.26)

known as the Møller operator. For details see [13]. Clearly, the Møller operator is unitary

Ω†(τ)Ω(τ) = Ω(τ)Ω†(τ) = 1. (2.27)

10If some event happens at t = 0 in f , the very same event happens at t′ = τ in f ′.
11Not all the systems can be written in such a way. Notable example are system with long-range inter-

actions.
12The relation below should be understood in a sense of wave packets.
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From this it follows that the normalization of the asymptotic states is the same as the one

of the n particle states

in〈m|n〉in = out〈m|n〉out = 〈m|n〉. (2.28)

Let us from now assume that all the asymptotic states in the theory span a complete

basis of states. Then the completeness relation (2.12) can also be written for the asymptotic

states. Multiplying (2.12) by Ω(∓∞)Ω†(∓∞) and using (2.27) and (2.25) we simply get

I =
∑∫

n

|n〉in in〈n| =
∑∫

n

|n〉out out〈n|. (2.29)

2.2 Scattering and partial amplitudes

The scattering process of n free particles in the far past and m free particles in the far

future is described by the n→ m scattering amplitude defined as follows.

S(p1, . . . , pn; p′1, . . . , p
′
m)× (2π)dδ(d)(p′ − p) ≡ out〈m|n〉in = 〈m|S|n〉. (2.30)

Here pi and p′i describe the d-momenta of the one particle states constituing |n〉 and |m〉,
p and p′ denote the total incoming and outgoing momenta. In (2.30) we have explicitly

extracted the overall δ-function. The scattering operator S due to (2.25) reads as

S ≡ Ω†(+∞)Ω(−∞). (2.31)

It can be split into the trivial and the interacting part as

S = 1 + iT. (2.32)

From now on let us focus on the 2 → 2 processes of identical scalar particles. The

expression (2.30) then reads as

S(s, t, u)× (2π)dδ(d)(p′1 + p′2 − p1 − p2) = 〈m, ~p ′1 ;m, ~p ′2 |S|m, ~p1;m, ~p2〉, (2.33)

where we have defined the three Mandelstam variables as

s ≡ −(p1 + p2)2, t ≡ −(p1 − p′1)2, u ≡ −(p1 − p′2)2, (2.34)

which obey the standard constraint

s+ t+ u = 4m2. (2.35)

Notice, that the s variable has already appeared in (2.17).

The partial amplitude of the 2 → 2 process is defined as a matrix element of the S

operator between the states (2.14), namely

Sj(s)× δj′j(2π)dδ(d)(p− p′) ≡ 〈p′, j′|S|p, j〉. (2.36)

We would now like to write the relation between the partial amplitude Sj(s) defined

in (2.36) and the scattering amplitude (2.33). In principle this can be done by simply

– 7 –
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plugging (2.14) into (2.36), however it is easier to derive this relation in the following way.

Take the two particle states in the center of mass frame 〈m, ~p ′;m,−~p ′| and |m, ~p;m,−~p〉.
We align the incoming particle ~p with the x1 axis. The outgoing particle ~p ′ will have an

angle θ1 with the x1 axis. All the other angles for incoming and outgoing particles are

chosen to be zero. In this frame it is very convenient, instead of using (s, t, u) obeying

the constraint (2.35), to use the variables (s, cos θ1). The variables t and u can then be

written as

t = −s− 4m2

2
(1− cos θ1), u = −s− 4m2

2
(1 + cos θ1). (2.37)

We consider the scattering amplitude (2.33) and apply the decomposition of states (2.19).

Using the definition (2.36) we can write

S(s, cos θ1) =
∞∑

j=0

Cj(1)Cj(cos θ1)Sj(s). (2.38)

This relation can be inverted by means of (A.11) and leads to

Sj(s) = κj ×
∫ +1

−1
dx (1− x2)

d−4
2 C

(d−3)/2
j (x)S(s, x), (2.39)

x ≡ cos θ1, (2.40)

where the coefficient κj reads as

κj ≡
Ωd−2

2Nd(2π)d−2C
(d−3)/2
j (+1)

=
j! Γ

(
d−3

2

)

4(4π)(d−1)/2Γ(d− 3 + j)
×
(
s− 4m2

)(d−3)/2

√
s

. (2.41)

Notice, that for identical particles only the partial amplitudes with even spin j exist. The

partial amplitudes (2.39) with odd spin j vanish due to the x ↔ −x symmetry of the

scattering amplitude and the antisymmetry of the Gegenbauer polynomial.

To conclude let us address the consequences of (2.32). The scattering amplitude (2.33)

can be split into the connected and the disconnected parts according to (2.32). Using (2.15)

we can write

S(s, t, u) = Nd × (2π)d−2
(
δ(d−2)(Ω′ − Ω) + δ(d−2)(Ω′ + Ω)

)
+ iT (s, t, u), (2.42)

where we have defined

T (s, t, u)× (2π)dδ(d)(p′1 + p′2 − p1 − p2) ≡ 〈m, ~p ′1 ;m, ~p ′2 |T |m, ~p1;m, ~p2〉. (2.43)

The connected (interacting) part of the amplitude T (s, t, u) should not be confused with

time-reversal operator T which we unfortunately denote in the same way. Combining (2.39)

and (2.42) we can also write a similar expression for the partial amplitude

Sj(s) = 1 + i κjTj(s), (2.44)

Tj(s) ≡
∫ +1

−1
dx (1− x2)

d−4
2 C

(d−3)/2
j (x) T (s, x). (2.45)

This matches precisely the expression given in equation (10) of [5].

– 8 –
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2.3 Spectral density

In this section we will discuss two important instances of two-point correlation functions,

namely the two-point Wightman and time-ordered correlation functions. We will define the

notion of spectral density and show how both types of two-point functions can be rewritten

in terms of the spectral density.

Wightman correlation functions. Let us consider a local operator O(x) and study

the Wightman two-point correlation function

〈0|O†(x0
1 − iε1, ~x1)O(x0

2 − iε2, ~x2)|0〉, ε1 > ε2, (2.46)

where εi are infinitesimal positive numbers. See (A.20) for slightly more details. In what

follows we will not display the iε’s in order not to complicate the notation. They are however

always present and must be taken into account when we deal with Wightman functions.

By using translation operators we can write13

O(x) = e−iP ·xO(0)e+iP ·x. (2.47)

Assuming that the basis of asymptotic states is complete, we can inject the completeness

relation (2.29) into (2.46) and using (2.47) we find

〈0|O†(x1)O(x2)|0〉 =

∫
ddp

(2π)d
eip·x12 (2π)θ(p0)ρ(−p2), xµij ≡ x

µ
i − x

µ
j , (2.48)

where θ is the step function and ρ is the spectral density defined via14

(2π)θ(p0)ρ(−p2) =
∑∫

n

(2π)dδ(d)(p− pn)|〈0|O†(0)|n〉in|2, (2.49)

=
∑∫

n

(2π)dδ(d)(p− pn)|〈0|O†(0)|n〉out|2. (2.50)

The Fourier transform of the Wightman function (2.46) is related to the spectral

density in the following simple way

ξ(k2) ≡
∫
ddx e−ik·x〈0|O†(x)O(0)|0〉 = (2π)θ(k0)ρ(−k2). (2.51)

When taking the Fourier transform we integrate over coincident points which is potentially

dangerous. The presence of iε’s in the time components ensures that the integral always

converges since it gives a dumping prefactor e−Hε with ε > 0.

The spectral representation (2.48) can be further rewritten by injecting an additional

δ-function and integrating over it. One then has

〈0|O†(x1)O(x2)|0〉 =

∫ ∞

0
dµ2ρ(µ2)∆+(x12;µ2), (2.52)

13Translations by aµ are given by the operator U(a) = e−iP ·a. We follow the conventions of chapter 2 [11].
14Notice that 〈0|O(0)|n〉in = in〈n|O†(0)|0〉∗ and 〈0|O(0)|n〉out = out〈n|O†(0)|0〉∗.
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where we have defined the Wightman propagator as

∆+(y;µ2) ≡
∫

ddp

(2π)d
eip·y (2π)θ(p0)δ(p2 + µ2), (2.53)

which satisfies the Klein-Gordon equation

(∂2
y − µ2)∆+(y;µ2) = 0. (2.54)

Time-ordered correlation functions. Now let us consider the time-ordered correlation

function

〈0|O†(x1)O(x2)|0〉T ≡ θ(x0
1−x0

2)〈0|O†(x1)O(x2)|0〉+θ(x0
2−x0

1)〈0|O(x2)O†(x1)|0〉. (2.55)

Plugging here the expression (2.52) we obtain the Källén-Lehmann spectral representation

of the time-ordered two-point correlation function

〈0|O†(x1)O(x2)|0〉T = −i
∫ ∞

0
dµ2ρ(µ2)∆F (x12;µ2), (2.56)

where the Feynman propagator is defined as

− i∆F (x12;µ2) ≡ θ(x0
1 − x0

2)∆+(x12;µ2) + θ(x0
2 − x0

1)∆+(x21;µ2). (2.57)

Equivalently, we can write the Feynman propagator (2.57) in its standard form15

∆F (y;µ2) = lim
ε→0+

∫
ddq

(2π)d
eiq·y

1

q2 + µ2 − iε . (2.58)

From the above expression it is clear that the Feynman propagator satisfies the Klein-

Gordon equation with a source

(∂2
y − µ2)∆F (y;µ2) = −δ(d)(y). (2.59)

Finally, the Fourier transform of the time-ordered two-point function reads as

ξT (k2) ≡
∫
ddx12 e

−ik·x12〈0|O†(x1)O(x2)|0〉T =

∫ ∞

0
dµ2ρ(µ2)

−i
k2 + µ2 − iε . (2.60)

High energy behavior. In the UV, due to the presence of conformal symmetry, the

Wigthman function (2.46) is completely fixed and reads as16

〈0|O†(x1)O(x2)|0〉CFT =
c〈O†O〉(

−(x0
1 − x0

2 − iε)2 + (~x1 − ~x2)2
)∆ , (2.61)

where ∆ is the scaling dimension of O and c〈O†O〉 is a normalization constant. One can

straightforwardly establish the relation between the two-point function (2.46) at generic

15To see the equivalence between (2.58) and (2.57) just integrate over q0 in (2.58) using the residue

theorem.
16For the special cases of scaling dimensions ∆ = d/2 + n, where n is a non-negative integer we may also

have contact terms like ∂2nδ(d)(x12). We disregard these cases.
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energies and the two-point function (2.61) in the UV (at extremely large energies) via their

Fourier transforms (2.51) as

lim
s→+∞

ρ(s) = ρCFT(s), (2.62)

ρCFT(s) = const× sδ, (2.63)

δ ≡ ∆− d/2. (2.64)

where ρCFT(s) simply follows from (2.61). The precise value of the constant factor is

irrelevant for this work. It is found straightforwardly by performing the Fourier transform

carefully. For its value see (2.4) in [14] and section 2 in [15].

2.4 Form factors

Consider the following matrix elements called the form factors

Fn(p1, . . . , pn) ≡ out〈n|O(0)|0〉, Gn(p1, . . . , pn) ≡ 〈0|O†(0)|n〉in. (2.65)

Using (2.47) and the definition (2.65) we have

out〈n| O(x) |0〉 = e−ip·xFn(p1, . . . , pn),

〈0|O†(x)|n〉in = e+ip·xGn(p1, . . . , pn),
(2.66)

where p is the total d-momentum of the in and out asymptotic states. The Fourier trans-

form of the matrix elements (2.66) reads as
∫
ddxe−ik·xout〈n| O(x) |0〉 = (2π)dδ(d)(k + p)Fn(p1, . . . , pn), (2.67)
∫
ddxe−ik·x〈0|O†(x)|n〉in = (2π)dδ(d)(k − p)Gn(p1, . . . , pn). (2.68)

Let us now discuss the structure of Fn(p1, . . . , pn) for n = 0, 1, 2. When n = 0 or n = 1

we simply get

F0, F1 = const. (2.69)

since it is impossible in these cases to construct a scalar function out of zero or one d-

momenta. When n = 2 we can form only one scalar object out of two d-momenta p1 and

p2 which is simply the s Mandelstam variable (2.34). We can write then

F2(p1, p2) = F2(s). (2.70)

Analogous statements hold for Gn.

CPT invariance. As a consequence of the CPT theorem [16] there is always an anti-

unitary operator Σ in the theory which acts on scalar local operators and asymptotic states

(of scalar neutral particles) as

ΣO(x)Σ† = O†(−x), Σ|n〉in = out〈n|. (2.71)

We can use this fact to write the following equality

〈0|O†(0)|n〉in = 〈0|Σ†ΣO†(0)Σ†Σ|n〉in = out〈n|O(0)|0〉, (2.72)

which equates the two form factors (2.65), in other words

Fn(p1, . . . , pn) = Gn(p1, . . . , pn). (2.73)
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Relation to spectral density. Using the definitions of the Fourier transformed form

factors (2.65) one can rewrite the spectral density (2.49) in the following way

(2π)θ(p0)ρ(−p2) =
∑∫

n

(2π)dδ(d)(p− pn)|Fn|2. (2.74)

From the definition of the spectral density (2.49) we see that the one particle state

according to (A.19) gives the following contribution

∫
ddp1

(2π)d
(2π)θ(p0

1)δ(p2
1 +m2)× (2π)dδ(d)(p− p1)|out〈1|O(0)|0〉|2 = |F1|2 × (2π)δ(s−m2).

Analogously the two particle states contribute to the spectral density as

1

2

∫
dd−1p1

(2π)d−1

1

2p0
1

∫
dd−1p2

(2π)d−1

1

2p0
2

(2π)dδ(d)(p− p1 − p2)|out〈2|O†(0)|0〉|2

= |F2(s)|2 × Ωd−1

2Nd(2π)d−2
× θ(s− 4m2),

where we have performed the change of variables according to (A.17). Combining the above

we get the following expression for spectral density

ρ(s) = ρ1(s) + ρ2(s) + . . . , (2.75)

where the one and two particle contributions read as

ρ1(s) ≡ |F1|2 × δ(s−m2), ρ2(s) = |F2(s)|2 × Ωd−1

2Nd(2π)d−1
× θ(s− 4m2) (2.76)

and the dots denote the contribution of n ≥ 3 particle form factors.

Crossing symmetry. Let us now consider the following matrix element

out〈p1|O(x)|p2〉in, where both p1 and p2 satisfy the “mass-shell” condition (2.6).

We demand that this matrix element satisfies crossing17 For the derivation of crossing

equations in the case of scalar form factors in 4d see chapter 7.2 in [19]. For the derivation

of crossing equations in the case of scattering amplitudes in 4d see section 5.3.2 in [20].

which can be written as

out〈p1|O(x)|p2〉in = out〈p1,−p2|O(x)|0〉 = F2(p1,−p2). (2.77)

Notice, that the right-hand side of (2.77) is not the usual form factor defined in (2.65),

because it has a negative energy −p0
2. Thus, the expression in the right-hand side of (2.77)

is related to the usual two particle form factor by an analytic continuation.

Constraint from the UV. Due to the relation of the form factors with the spectral

density (2.76) and the UV behavior of the spectral density (2.63) one obtains the following

bound on the large s behaviour of the two particle form factor

lim
s→+∞

F2(s) . s1+ ∆−d
2 . (2.78)

17The crossing equations for the form factors in 2d are discussed for example in [17] and [18]. In general

dimensions they can be derived in the QFT framework using the LSZ procedure.
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2.5 Unitarity constraints

We are now ready to discuss the implications of unitarity for scattering amplitudes, partial

amplitudes and form factors. In order to do this we will exploit the unitarity of the S

operator which follows from (2.31) and (2.27). Taking into account (2.32) it reads as

SS† = 1 ⇔ T − T † = iTT †. (2.79)

2.5.1 Appearance of poles

The main goal of this section is to argue that the interacting part of the scattering amplitude

and the two particle form factor contain simple poles and show how they are related.18

Scattering amplitude. We focus here on the interacting part of the two to two scat-

tering amplitude. Using (2.79) and the completeness relation (2.12) we can write

〈m, ~p ′1 ;m, ~p ′2 |T |m, ~p1;m, ~p2〉 − 〈m, ~p ′1 ;m, ~p ′2 |T †|m, ~p1;m, ~p2〉
= i
∑∫

n

〈m, ~p ′1 ;m, ~p ′2 |T |n〉〈n|T †|m, ~p1;m, ~p2〉. (2.80)

Let us focus on the left-hand side of (2.80) and evaluate it in the center of mass configu-

ration where ~p2 = −~p1 and ~p ′2 = −~p ′1 . Furthermore we use the following spherical angles

(0, 0, . . . , 0) for the vector ~p1 and (θ1, 0, . . . , 0) for the vector ~p ′1 . Labeling the states for

transparency by the square of the total energy s and the angle θ1 we have

〈s, θ1|T |s, 0〉 − 〈s, θ1|T †|s, 0〉 = 〈s, θ1|T |s, 0〉 − 〈s, 0|T |s, θ1〉∗

= 〈s, θ1|T |s, 0〉 − 〈s,−θ1|T |s, 0〉∗.

In the last equality we have used rotational invariance. Using the fact that the matrix

element depends on the angle via cos θ1 we conclude that the left-hand side of (2.80)

reads as

2iImT (s, t)× (2π)dδ(d)(0). (2.81)

Let us now discuss the right-hand side of (2.80) in a generic frame. We focus on the

special case of n = 1 where

∫
ddp

(2π)d
(2π)δ(p2 +m2)× 〈m, ~p ′1 ;m, ~p ′2 |T |p〉〈p|T †|m, ~p1;m, ~p2〉. (2.82)

Due to translation invariance we can extract an overall delta function of the matrix elements

entering (2.82) as

g(s)× (2π)dδ(d)(p1 + p2 − p) ≡ 〈p|T |m, ~p1;m, ~p2〉, (2.83)

18Strictly speaking the presence of poles cannot be deduced from the pure S-matrix approach and should

be accepted as an additional assumption. One can however trade this assumption for another one, namely

the existence of the relation (2.80) for complex values of external momenta, which in turn allows for all

the derivations in this section. In order to discuss rigorously the presence of poles one needs to appeal to a

higher level framework, e.g. quantum field theory, see section 10.2 in [11].
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where s = −p2 = −(p1 + p2)2 is the total energy. Notice that (2.83) does not exist for

physical (d − 1)-momenta and is defined via an analytic continuation. Plugging (2.83)

into (2.82) we perform the integral and get the final form of (2.82) which reads as

|g|2 × (2π)δ(s−m2)× (2π)dδ(d)(p1 + p2 − p′1 − p′2), g ≡ g(m2). (2.84)

We can now evaluate (2.84) in the center of mass frame and plug it into (2.80) together

with (2.81). Dropping the overall delta function we get the following expression

2iImT (s, t) = 2πi|g|2 × δ(s−m2) + . . . , (2.85)

where . . . denote the continuous part due to n ≥ 2 particle states. This corresponds to a

pole in the s complex plane,

T (s, t) = − |g|2
s−m2

+ . . . . (2.86)

Due to presence of n ≥ 2 particle states the imaginary part of the amplitude (2.85) is

non-zero for s ≥ 4m2. This implies that the amplitude itself develops a discontinuity or

equivalently has a branch cut19 along the real axis for s ≥ 4m2.

Form factors. Given the definitions of the form factors, we can use the completeness

relation (2.29) to write the following equality

out〈n|O(0)|0〉 =
∑∫

m

out〈n|m〉in in〈m|O(0)|0〉. (2.87)

Using the definition of the scattering amplitude (2.30) and its splitting into the trivial and

interacting part (2.32) we can re write the above relation as

out〈n|O(0)|0〉 = in〈n|O(0)|0〉+ i
∑∫

m

〈n|T |m〉 〈0|O†(0)|m〉∗in. (2.88)

In the first term of the right-hand side (2.88) we have used the normalization of multi

particle states which removes the sum over m and integration over the phase space. (This

normalization follows from (2.8). See the first line of (2.15) for the example of two identical

particles). Let us focus on the n = 2 case, using (2.73) this allows to write (2.88) as

F2(s)−F∗2 (s) = i

∫
ddp

(2π)d
(2π)δ(p2 +m2)× 〈m, ~p ′1 ;m, ~p ′2 |T |p〉 〈0|O†(0)|p〉∗in + . . . . (2.89)

Plugging here (2.83), analogously to (2.84), we get

F2(s)−F∗2 (s) = 2πig∗F∗1 × δ(s−m2) + . . . , (2.90)

where F∗1 is a constant as discussed below (2.69). We thus get an analogous expression

to (2.85). Assuming analyticity in some region of the complex plane we obtain the pole

structure of the form factor

F2(s) = − g∗F∗1
s−m2

+ . . . . (2.91)

Analogously to the discussion below (2.86) the form factor develops a branch cut along the

real axis for s ≥ 4m2 due to the contribution of two particles states (and higher) in (2.90).

19More precisely a set of branch cuts.
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2.5.2 Watson’s equation

Let us consider the two particle contribution to the completeness relation (2.12). Using

the change of variables to spherical coordinates (A.17) and (2.19) we can write

1

2

∫
dd−1p1

(2π)d−1

1

2p0
1

dd−1p2

(2π)d−1

1

2p0
2

|m, ~p1;m, ~p2〉〈m, ~p1;m, ~p2|

=

∞∑

j,j′=0

∫
1

2Nd
ddp

(2π)d
dΩd−1

(2π)d−2
Cj(cos θ1)Cj′(cos θ1)|p, j〉〈p, j′|

=

∞∑

j=0

∫
ddp

(2π)d
|p, j〉〈p, j|. (2.92)

In the last equality we have used the explicit expression of the Clebsch-Gordan coeffi-

cient (2.20) and the orthogonality of the Gegenbauer polynomial (A.11).

We can now consider matrix elements of the first unitarity condition (2.79) with two

particle states of definite spin (2.14). Injecting the completeness relation (2.12) and focusing

on the two particle contribution (2.92) we get the standard unitarity condition on the partial

amplitudes

Sj(s)S∗j (s) + . . . = 1, (2.93)

where the dots denote the n ≥ 3 particle contribution which starts at s ≥ (3m)2.

Let us now consider the two particle form factor and use the decomposition of the two

particle state into irreducible representations (2.19) to write the following equality

out〈m, ~p1;m,−~p1|O(0)|0〉 =

∞∑

j=0

Cj(cos θ1) out〈p, j|O(0)|0〉 = C0 out〈p, 0|O(0)|0〉. (2.94)

In the last equality we have used the rotation invariance and the fact that the local operator

O(0) is a scalar which selects j = 0 representations only. In (2.94) C0 is simply a real

constant which follows from (2.20) since the Gegenbauer polynomial is one for j = 0.

Consider now the relation (2.87) where instead of the two particle asymptotic state we

use the two particle state projected into j = 0 irreducible representation. We also rewrite

the two particle contribution in the completeness relation according to (2.92) in order to get

out〈p, 0|O(0)|0〉 = S0(−p2)〈0|O(0)|p, 0〉∗in + . . . (2.95)

where S0(s) is the zero spin partial amplitude and the dots denote the n ≥ 3 contribution

which starts at s ≥ (3m)2. This can be simply rewritten by using (2.94) to get the final

expression of interest

F2(s) = S0(s)G∗2(s) + . . . (2.96)

Using the equality (2.73) we obtain the Watson’s equation [21]

S0(s) =
F2(s)

F∗2 (s)
, s ∈ [4m2, 9m2]. (2.97)

In integrable models, there is no particle production and the Watson’s equation is valid

to all energies. One can solve the Watson’s equation (2.97) and obtain the form factor in
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terms of the partial amplitude up to an analytic function which is real on the real axis s,

see for example [22].20,21

2.6 Stress-energy tensor

We discuss here the stress-tensor in general dimensions. We show that there is an integral

of the two-point function of the stress-tensor which gives the central charge CT of the UV

CFT. We will work in Euclidean signature within this section. The final results however

are independent of the signature.

Consider the stress-energy tensor Tµν(x) operator, which satisfies the following con-

straints

Tµν(x) = T νµ(x), ∂µT
µν(x) = 0. (2.98)

The most general form of the two-point function of the stress-tensor [24] with appropriate

mass dimensions which respects Lorentz invariance is22

〈0|Tµν(x)T λσ(0)|0〉 =

5∑

i=1

1

x2d
hi(r)T

(µν),(λσ)
i , r ≡ |x|, (2.99)

where hi(r) are scalar dimensionless functions and Ti are dimensionless linearly indepen-

dent tensor structures which read as

T(µν),(λσ)
1 =

xµxνxλxσ

r4
,

T(µν),(λσ)
2 =

xµxνδλσ + xλxσδµν

r2
,

T(µν),(λσ)
3 =

xµxλδνσ + xνxλδµσ + xµxσδνλ + xνxσδµλ

r2
, (2.100)

T(µν),(λσ)
4 = δµνδλσ,

T(µν),(λσ)
5 = δµλδνσ + δνλδµσ.

Notice, that away from fixed points one is required to have dimensionful parameters to

construct dimensionless functions hi(x). At fixed points there are no dimensionful param-

eters and thus all the functions hi(x) are simply constants. Let us also define the following

three contracted two-point functions

A(r)

r2d
≡ 〈0|Tµµ (x)T νν (0)|0〉,

I(r)

r2d
≡ 〈0|Tµν (x)T νµ (0)|0〉,

J(r)

r2d
≡ xλxσ

r2
× 〈0|Tµλ (x)Tµσ(0)|0〉.

(2.101)

20See also [22] for a nice application of pion form factors in phenomenology.
21In the S-matrix literature it is common to use the term real analytic function which means an analytic

function which takes real values on some interval of the real axis. In mathematics instead the term real

analytic function means a function on (an interval of) the real axis which allows analytic extension to its

neighborhood. The function itself may be real or complex on the real axis, see for example [23].
22In d = 2 and d = 3 there are additional parity odd tensor structures which we omit here.

– 16 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

Comparing these expressions with (2.99) we can write

A(r) = h1(r) + 2d h2(r) + 4h3(r) + d2h4(r) + 2d h5(r),

I(r) = h1(r) + 2h2(r) + 2(d+ 1)h3(r) + d h4(r) + d(d+ 1)h5(r), (2.102)

J(r) = h1(r) + 2h2(r) + (d+ 3)h3(r) + h4(r) + (d+ 1)h5(r).

Let us apply the conservation equation (2.98) to the two-point (2.99) using (2.104).

Setting to zero coefficients of three independent tensor structures we get the following three

conditions

rh′1(r) + rh′2(r) + 2rh′3(r) = (d+ 1)h1(r) + 2(d+ 1)h2(r) + 4(d+ 1)h3(r),

rh′2(r) + rh′4(r) = (d+ 1)h2(r)− 2h3(r) + 2d h4(r), (2.103)

rh′3(r) + rh′5(r) = −h2(r) + d h3(r) + 2d h5(r).

Here we have used the fact that

∂µhi(r) = rh′(r)× xµ
x2
. (2.104)

There are five functions hi(r) with three differential constraints on them. There are thus

only two independent functions which define the two-point function of the stress-tensor. We

can take various linear combinations of three equations (2.103) to form a single differential

equation. Following [24] we can write for example

C(r) ≡ h1(r) +
d2 + d+ 2

2
h2(r) + (d+ 3)h3(r) +

d(d+ 1)

2
h4(r) + (d+ 1)h5(r),

(2.105)

rC ′(r) = (d+ 1)

(
A(r) +

(d− 1)(d− 2)

2
h2(r)

)
. (2.106)

Another expression, more convenient for d ≥ 3 is as follows

H(r) ≡ h1(r) + 2h2(r) + (d+ 3)h3(r) + h4(r) + (d+ 1)h5(r), (2.107)

rH ′(r) = I(r) + d J(r). (2.108)

Integral expressions for the central charges. In the presence of conformal symmetry

the form of the two-point function (2.99) is severely restricted. According to [9] it reads as23

〈0|Tµν(x)Tλσ(0)|0〉CFT =
CT
x2d
×
(

1

2
(Iµλ(x)Iνσ(x) + Iµσ(x)Iνλ(x))− 1

d
δµνδλσ

)
, (2.109)

Iµν(x) ≡ δµν −
2xµxν
x2

. (2.110)

Here CT is one of the central charges of the UV CFT. Comparing this form with (2.99) we

deduce that in CFT

h1(r) = 4CT , h2(r) = 0, h3(r) = −CT , h4(r) = −CT /d, h5(r) = CT /2. (2.111)

23In d = 2 the two-point function of the stress-tensor has an extra parity odd tensor structure with a

new independent coefficient.
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Provided that our QFT is defined as a flow between the UV and IR fixed points (which are

reached at r = 0 and r = ∞) we can write the differential conditions (2.106) and (2.108)

in an integral form using (2.111). We get two equivalent expressions

CUV
T − CIR

T = (d+ 1)

∫ ∞

0

dr

r

(
1

d− 1
A(r) +

d− 2

2
h2(r)

)
, (2.112)

CUV
T − CIR

T =
2d

(d− 1)(d− 2)

∫ ∞

0

dr

r

(
I(r) + d J(r)

)
. (2.113)

Notice, that the latter holds only for d ≥ 3. In a massive QFT, the theory in the IR is

empty and thus we have

CIR
T = 0. (2.114)

Stress-tensor form factor. Let us consider the two particle form factor of the stress-

tensor. It has the following most generic form

out〈m, ~p1;m, ~p2|Tµν(0)|0〉 =
1

4
F (1)

2 (s)× (p1 − p2)µ(p1 − p2)ν

+ F (2)
2 (s)×

(
(p1 + p2)µ(p1 + p2)ν − (p1 + p2)2δµν

)
, (2.115)

which is symmetric in both indices and satisfies the conservation condition (2.98) written as

(p1 + p2)µ out〈m, ~p1;m, ~p2|Tµν(0)|0〉 = 0. (2.116)

Taking the trace of (2.115) we obtain the form factor of the trace of the stress-tensor Θ ≡ Tµµ

FΘ
2 (s) =

1

4
(p1 − p2)2F (1)

2 (s). (2.117)

Normalization of the stress-tensor. We can form the following conserved charges

Pµ ≡
∫
dd−1xT 0µ(x), Mµν ≡

∫
dd−1x

(
xµT 0ν(x)− xνT 0µ(x)

)
(2.118)

which are the generators of translations and Lorentz transformations respectively. In par-

ticular the Hamiltonian is H = P 0 as in (2.22). Let us now evaluate the matrix elements

of Pµ with one particle states. Since they are the eigenstates of Pµ we get the following

expression

〈m, ~p1|Pµ|m, ~p2〉 = 2p0
1p
µ
1 × (2π)d−1δ(d−1)(~p1 − ~p2), (2.119)

where p0
1 satisfies the “mass-shell” condition (2.6). On the other hand we have

〈m, ~p1|Pµ|m, ~p2〉 = 〈m, ~p1|T 0µ(0)|m, ~p2〉 ×
∫ +∞

−∞
dd−1x ei(p2−p1)·x

= 〈m, ~p1|T 0µ(0)|m, ~p2〉 × (2π)d−1δ(d−1)(~p1 − ~p2), (2.120)

where we have used (2.47). Combining together (2.119) and (2.120) we get

(
〈m, ~p1|T 0µ(0)|m, ~p2〉 − 2p0

1p
µ
1

)
× (2π)d−1δ(d−1)(~p1 − ~p2) = 0. (2.121)
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We can now compare the matrix elements in (2.121) and (2.115) taking into account

the crossing relation (2.77) which effectively makes a replacement pµ2 → −pµ2 . This leads to

F (1)
2 (s = 0) = +2 (2.122)

and F (2)
2 (s = 0) is left undetermined. Equivalently taking into account

FΘ
2 (s = 0) = −2m2. (2.123)

The Lorentz generators in (2.118) do not provide any further conditions.

Special case of 2d. Let us focus now on the specific case of 2d [25]. It is conventional

to use complex coordinates defined as

z ≡ x1 + ix2, z̄ ≡ x1 − ix2. (2.124)

In these coordinates we can write the components of the stress-tensor as

T (z, z̄) ≡ (2π)× Tzz(z, z̄) = (2π)× 1

4
(T11(x)− T22(x)− 2i T12(x)) ,

Θ(z, z̄) ≡ 4Tzz̄(z, z̄) = T11(x) + T22(x), (2.125)

T (z, z̄) ≡ (2π)× Tz̄z̄(z, z̄) = (2π)× 1

4
(T11(x)− T22(x) + 2i T12(x)) .

Notice the presence of 2π factors in the definitions (2.125). Conservation implies

∂z̄T (z, z̄) +
π

2
∂zΘ(z, z̄) = ∂zT (z, z̄) +

π

2
∂z̄Θ(z, z̄) = 0. (2.126)

At the critical point we have

Θ(z, z̄) = 0, 〈0|T (z)T (0)|0〉 =
c/2

z4
, 〈0|T (z̄)T (0)|0〉 =

c̄/2

z̄4
, (2.127)

where c = c̄ is the standard central charge in parity preserving 2d CFTs. Using (2.125) we

can compare this form with (2.109). We conclude that

c = (2π)2 × CT /2. (2.128)

In this convention the central charge of a free boson is c = 1, see (C.12).

We can rewrite the integral expression (2.112) using (2.101), (2.125) and (2.128) in the

following form

cUV − cIR = (2π)2 × 3

4π

∫
d2xE x

2
E 〈0|Θ(xE)Θ(0)|0〉T , cIR = 0. (2.129)

Due to reflection positivity of the two-point function of the stress-tensor, we can conclude

that cUV > cIR. This is Zamolodchikov’s c-theorem [26, 27]. No such statement can be

made about CT in higher dimensions.
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The Euclidean two-point function in (2.129) is time-ordered. We can then use the

Euclidean Källén-Lehmann spectral representation (B.5) to relate the central charge cUV

with the spectral density ρ of the trace of the stress-tensor. We have

cUV = (2π)2 × 3

4π

∫ ∞

0
dµ2ρΘ(µ2)

∫
d2qE
(2π)2

1

q2
E + µ2

(
−∂2

qE
(2π)2δ(2)(qE)

)
. (2.130)

Using the integration by parts we arrive at the final expression

cUV = (2π)2 × 3

π

∫ ∞

0
ds
ρΘ(s)

s2
= (2π)2 × 3

π

(
m−4 |FΘ

1 |2 +

∫ ∞

4m2

ds
ρΘ(s)

s2

)
, (2.131)

where in the second equality we have used (2.75) and (2.76).

In d = 2 the two structures in (2.115) are linearly dependent and there is thus only

a single form factor of the stress-tensor, say F (1)
2 (s) or equivalently FΘ

2 (s). The latter is

normalized according to (2.123).

3 Unitarity as positive semidefiniteness

We are now ready to present the main idea of this paper. We will construct a hermitian

matrix which must be semipositive definite in a unitary theory. This requirement inter-

twines the partial amplitudes, the form factors and the spectral density and puts constraints

on them.

3.1 General spacetime dimension

We will work with the simplest case of identical particles with mass m. Let us define the

following three states

|ψ1〉 ≡ Πj |2〉in = Ω(−∞)Πj |m, ~p1;m, ~p2〉, (3.1)

|ψ2〉 ≡ Πj |2〉out = Ω(+∞)Πj |m, ~p1;m, ~p2〉, (3.2)

|ψ3〉 ≡ m−δ ×
∫
ddxe+ip·xO(x)|0〉, (3.3)

where pµ is the total d momentum

pµ = pµ1 + pµ2 , p0
i =

√
m2 + ~pi. (3.4)

The first two states |ψ1〉 and |ψ2〉 are the in and out two particle states projected to the

irreducible spin representation according to (2.14) with the total d-momentum pµ. The

third state is the Fourier transform of the state generated by the local operator O(x)

acting on the vacuum. It also has pµ total d-momentum. The extra factor m−δ is injected

in order to make all three states to be of the same mass dimension

[
|ψa〉

]
= −d

2
⇒ δ = ∆O − d/2. (3.5)
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This follows from (2.5) and (2.9). Notice, that the parameter δ has already appeared

in (2.63). Let us now construct a 3 by 3 matrix out of all possible inner products of the

states (3.1)–(3.3), we have

Bab
j × (2π)dδ(d)(p− p′) ≡ 〈ψa|ψb〉, (3.6)

where a, b = 1, 2, 3 and the total d-momentum of the states |ψa〉 and 〈ψb| are pµ and p′µ

respectively.

Entries of the B-matrix. Let us now inspect the entries of the matrix (3.6). The

entries 11 and 22 on the diagonal are simply fixed by the normalization condition (2.4)

since the Møller operators are unitary, see (2.28), and thus read as

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = (2π)dδ(d)(p′ − p). (3.7)

Using (2.51) we can write the entry 33 as

〈ψ3|ψ3〉 = m−2δ

∫
ddxddy e+ip·xe−ip

′·y〈0|O†(y)O(x)|0〉

= m−2δ × (2π)dδ(d)(p− p′)× 2πθ(p0)ρ(s). (3.8)

Let us address now the off-diagonal elements. Since the matrix (3.6) is hermitian we will

only need to discuss the elements 12, 13 and 23. The element 12 reads as

〈ψ1|ψ2〉 =
(
〈m, ~p′1;m, ~p′2|Πj

)
Ω†(−∞)Ω(+∞) (Πj |m, ~p1;m, ~p2〉) (3.9)

= (2π)dδ(d)(p− p′)× S∗j (s), (3.10)

where we have used the definition of the S operator (2.31) and partial amplitude (2.36).

The element 13 reads as

〈ψ1|ψ3〉 = m−δ ×
∫
ddxe+ip·x (〈m, ~p′1;m, ~p′2|Πj

)
Ω†(−∞)O(x) |0〉 (3.11)

= (2π)dδ(d)(p− p′)×m−δ ω δj0 G∗2(s), (3.12)

where in the second line we have used (2.14), (2.47) and the results of section 2.4. The

coefficient ω is defined as

ω δj0 ≡ γj Ωd−2 ×
∫ +1

−1
dx (1− x2)(d−4)/2C

(d−3)/2
j (x) = γ0 Ωd−2 ×

√
π Γ
(
d−2

2

)

Γ
(
d−1

2

) δj0. (3.13)

Simplifying we get the following compact result

ω2 =
Ωd−1

2Nd(2π)d−2
. (3.14)

Analogously, the element 23 can be written as

〈ψ2|ψ3〉 = m−δ ×
∫
ddxe+ip·x (〈m, ~p′1;m, ~p′2|Πj

)
Ω†(+∞)O(x) |0〉 (3.15)

= (2π)dδ(d)(p− p′)×m−δ ω δj0F2(s). (3.16)
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Positivity constraint. Plugging all these expression into (3.6) and using (2.73) we re-

cover the final form of the B-matrix

Bj(s) ≡




1 S∗j (s) m−δωF∗2 (s)δj0
Sj(s) 1 m−δωF2(s)δj0

m−δωF2(s)δj0 m
−δωF∗2 (s)δj0 m−2δ 2πρ(s)


 . (3.17)

The matrix B is hermitian by construction and must be positive semidefinite in unitary

theories. This can be easily seen as follows. The matrix B is positive semi-definite if and

only if its eigenvalues are non-negative. One can show that the latter is the case by taking

a linear combination of states (3.1)–(3.3) for which the B-matrix is diagonal. The elements

of this matrix are simply the norms of the news states. Unitarity of the theory requires

these norms to be non-negative. Thus,

Bj(s) � 0, ∀s ≥ 4m2 and ∀j. (3.18)

The necessary and sufficient condition for the matrix to be positive semidefinite is the

Sylvester’s criterion. It states that B � 0 if and only if all its principal minors are non-

negative (including the determinant of the B matrix itself).

Consequences of the positivity constraint. Let us start with the minor associated

to removing the third row and column. The Sylvester’s criterion leads to

|Sj(s)|2 ≤ 1. (3.19)

This is the standard unitarity constraint for the partial amplitude already obtained

in (2.93). Now consider instead the minor associated to removing the first row and column.

The Sylvester’s criterion leads then to

2πρ(s) ≥ ω2 |F2(s)|2. (3.20)

This inequality also follows straightforwardly from (2.75) for s ≥ 4m2. The minor associ-

ated to removing the first two rows and columns leads to the following requirement

ρ(s) ≥ 0, (3.21)

which was already obvious from the definition (2.49). Finally, the determinant of the B

matrix must be non-negative,

2πρ(s)
(
1− |S0(s)|2

)
− 2w2|F2(s)|2 + F∗2 (s)S0(s) + F2(s)S∗0 (s) ≥ 0. (3.22)

This provides a non-trivial positivity condition which mixes together the amplitudes, the

form factors and the spectral density.

Degenerate situation. Let us now investigate a very particular situation when only one

state out of the three (3.1)–(3.3) is linearly independent. This for instance happens in the

energy range

4m2 ≤ s ≤ 9m2. (3.23)

– 22 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

We refer to this situation as the absence of “particle production” in the range of ener-

gies (3.23). One can imagine even a more extreme case when there is no “particle pro-

duction” for the whole range of energies s ∈ [4m2,+∞). In d ≥ 3 according to the Aks

theorem [28] this situation leads to a trivial theory. Theories in d = 2 escape this constraint

however and we enter the realm of integrable models.

In what follows we investigate the consequence of having only a single linearly inde-

pendent state among (3.1)–(3.3) or equivalently the situation when

rankBj(s) = 1. (3.24)

The characteristic polynomial in λ is then required to have the following form

det(Bj(s)− λ I3x3) = −λ2(λ− λ0), (3.25)

where λ0 is the only non-zero eigenvalue of the matrix B. Let us now compute the char-

acteristic polynomial for the B matrix (3.17), it gets the required form (3.25) with

λ0 = 2 +m−2δ 2πρ(s), (3.26)

if the following conditions are fulfilled

|Sj(s)|2 = 1, (3.27)

|F2(s)|2 = 2πω−2ρ(s), (3.28)

2|F2(s)|2 = S∗0 (s)F2
2 (s) + S0(s)F∗22 (s).

The latter equation is solved by

F2(s) = S0(s)F∗2 (s), (3.29)

which is the already familiar Watson’s equation (2.97). We see that these conditions simply

saturate the bounds (3.19), (3.20) and (3.22).

3.2 Special case of 2d

Let us summarize here the unitarity constraints for the special case of 2d. We will then

generalize them to include the O(N) global symmetry.

Let us start with partial amplitudes. Since the Little group is the discrete Z2 group,

effectively we have a single partial wave with spin j = 0. From now on we denote it as

Ŝ(s) ≡ S0(s). (3.30)

Moreover, in 2d there is not much difference between the partial and the scattering ampli-

tude. In our conventions they simply differ by a normalization

Ŝ(s) = N −1
2 S(s) = 1 + iN−1

2 T (s), (3.31)

where T (s) as before is the interacting part of the scattering amplitude and the normal-

ization factor is given by (A.18) and reads in 2d as

N2 = 2
√
s
√
s− 4m2. (3.32)
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From now on we will measure every dimensional quantity in units of mass m. This is

equivalent to setting

m = 1. (3.33)

The unitarity constraint (3.17) and (3.18) read in 2d as

B(s) ≡




1 Ŝ∗(s) ωF∗2 (s)

Ŝ(s) 1 ωF2(s)

ωF2(s) ωF∗2 (s) 2πρ(s)


 � 0, ω = N−1/2

2 . (3.34)

For the future purposes it is also convenient to rewrite this expression in the following way

B(s) =




1 1 0

1 1 0

0 0 0


+N−1

2 ×




0 −i T ∗(s) 0

+i T (s) 0 0

0 0 0




+N−1/2
2 ×




0 0 F∗2 (s)

0 0 F2(s)

F2(s) F∗2 (s) 0


+ 2πρ(s)×




0 0 0

0 0 0

0 0 1


 � 0. (3.35)

O(N) global symmetry. Let us consider the case when the system has a global O(N)

symmetry. We will require our asymptotic states to transform in the vector representation

of O(N). They will thus carry an extra label a = 1 . . . N . The one particle states are

normalized as before with an addition of a Kronecker delta due to presence of O(N) vector

indicies

b〈m, ~p2|m, ~p1〉a = 2p0δab × 2πδ(~p2 − ~p1). (3.36)

The full scattering amplitude can be decomposed into three independent scattering ampli-

tudes σi(s), i = 1, 2, 3. In the notation of [29] we have

cd〈m, ~p3;m, ~p4|S|m, ~p1;m, ~p2〉ab =(2π)2δ(2)(p1 + p2 − p3 − p4)×
(
σ1(s)δabδcd + σ2(s)δacδbd + σ3(s)δadδbc

)
. (3.37)

The two-particle state is in the reducible O(N) representation and can be further

decomposed into three irreducible representations as

|m, ~p1;m, ~p2〉ab =
δab√
N
|m, ~p1;m, ~p2〉• + |m, ~p1;m, ~p2〉S(ab) + |m, ~p1;m, ~p2〉A[ab], (3.38)

where we have defined

|m, ~p1;m, ~p2〉• ≡
1√
N

N∑

a=1

|m, ~p1;m, ~p2〉aa, (3.39)

|m, ~p1;m, ~p2〉S(ab) ≡
1

2

(
|m, ~p1;m, ~p2〉ab + |m, ~p1;m, ~p2〉ba

)
− δab√

N
|m, ~p1;m, ~p2〉•, (3.40)

|m, ~p1;m, ~p2〉A[ab] ≡
1

2

(
|m, ~p1;m, ~p2〉ab − |m, ~p1;m, ~p2〉ba

)
. (3.41)
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The labels •, S and A stand for trivial, symmetric traceless and antisymmetric representa-

tions. Taking into account (3.38) alternatively to (3.37) we can rewrite the full scattering

amplitude in terms of independent scattering amplitudes S•(s), SS(s) and SA(s), as

cd〈m, ~p3;m, ~p4|S|m, ~p1;m, ~p2〉ab = (2π)2δ(2)(p1 + p2 − p3 − p4)

×
(
S•(s)T ab,cd• + SS(s)T ab,cdS + SA(s)T ab,cdA

)
, (3.42)

where the tensor structures associated to the three irreducible representations are defined as

T ab,cd• ≡ 1

N
δabδcd, T ab,cdS ≡ δacδbd + δadδbc

2
− 1

N
δabδcd, T ab,cdA ≡ δacδbd − δadδbc

2
. (3.43)

The relation between two sets of amplitudes σ1, σ2, σ3 and S•, SS, SA simply reads as

Ŝ•(θ) = σ2(θ) + σ3(θ) +Nσ1(θ),

ŜS(θ) = σ2(θ) + σ3(θ), (3.44)

ŜA(θ) = σ2(θ)− σ3(θ),

The normalization of two particle states in the irreducible representation of the O(N) group

follows from (3.36). We have

•〈m, ~p3;m, ~p4|m, ~p1;m, ~p2〉• = N2 × (2π)2δ(2)(p1 + p2 − p3 − p4), (3.45)

S
(cd)〈m, ~p3;m, ~p4|m, ~p1;m, ~p2〉S(ab) = N2 T

ab,cd
S × (2π)2δ(2)(p1 + p2 − p3 − p4), (3.46)

A
[cd]〈m, ~p3;m, ~p4|m, ~p1;m, ~p2〉A[ab] = N2 T

ab,cd
A × (2π)2δ(2)(p1 + p2 − p3 − p4). (3.47)

Let us now consider the unitarity constraints. We have three states transforming in

irreducible representations of O(N). They cannot mix with each other, in other words

non-zero inner products can be formed only between the states in the same representation.

Let us start with the trivial representation

Ω(−∞)|m, ~p1;m, ~p1〉•, Ω(+∞)|m, ~p1, i;m, ~p1, j〉•,
∫
d2xeip·xO(x)|0〉, (3.48)

where the local operator O(x) does not transform under the O(N) group. Analogously to

the discussion of section 3.1 we conclude



1 Ŝ∗• (s) ωF∗•2(s)

Ŝ•(s) 1 ωF•2(s)

ωF•2(s) ωF∗•2(s) 2πρ(s)


 � 0, (3.49)

where the form factor is defined as

F•2(s) ≡ 〈0|O(0)|m, ~p1;m, ~p2〉•. (3.50)

For the symmetric and antisymmetric representations we consider only the in and out

states because they do not overlap with the state created by the O(N) invariant local
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operator.24 The unitarity conditions then simply read as
(

1 Ŝ∗S(s)

ŜS(s) 1

)
� 0,

(
1 Ŝ∗A(s)

ŜA(s) 1

)
� 0. (3.51)

4 Analytic examples in 2d

In this section we provide a uniform summary of the exact analytic expressions of the partial

amplitudes and form factors in several 2d integrable models, namely the sine-Gordon, the

E8 model (also known as the 2d Ising model with magnetic deformation) and the O(N)

σ-model with N ≥ 3.

θ variable. In 2d instead of the Mandelstam variable s it is convenient to use the rapidity

variable θ. Given a particle with the 2-momentum pµi and the mass mi we can define

p0
i ≡ mi cosh θi, p1

i ≡ mi sinh θi. (4.1)

For scattering of two particles with masses mi and mj the Mandelstam s variable reads as

s = m2
i +m2

j + 2mimj cosh θ, θ ≡ θi − θj . (4.2)

In case of identical particles m1 = m2 = m the above relation reduces to

s = 4m2 cosh2(θ/2). (4.3)

When s and θ are complex variables, the map (4.3) can be depicted as on figure 6 in [4].

Partial amplitudes. The 2d integrable models possess an infinite number of conserved

charges which allow for factorization of any scattering amplitude into a product of 2 → 2

scattering amplitudes S(s). The consistency of this factorization leads to the Yang-Baxter

factorization equations on 2→ 2 scattering amplitudes S(s). Instead of S(s) it is convenient

to work with partial amplitudes Ŝ(s) which differ by a simple normalization, see section 3.2.

The unitarity and crossing conditions then read

Ŝ(θ)Ŝ(−θ) = 1, Ŝ(θ) = Ŝ(iπ − θ). (4.4)

The Yang-Baxter equations together with unitarity and crossing (4.4) allow to obtain

exact analytic expressions for partial amplitudes up to a CDD ambiguity [30]. The latter

states that given the solution to all the above constraints, one can obtain another solution

by multiplying it with any number of CDD factors (and their inverses)25 defined as

tα(θ) ≡ tanh θ+iπα
2

tanh θ−iπα
2

=
sinh θ + i sin(πα)

sinh θ − i sin(πα)
. (4.5)

24Another natural local operator to consider is the conserved current of the O(N) global group which

we can denote by Jµ[ab](x). It transform in the adjoint representation of the O(N) or equivalently in the

antisymmetric representation. Its form factor and the spectral density can thus mix with SA(s) partial

amplitudes.
25An inverse of the CDD factor (4.5) introduces zeros in the amplitude.
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Here α ∈ (0, 1) is a real parameter.26 Notice the factors of π in (4.5) compared to the

standard definition. The CDD factor (4.5) satisfies automatically both constraints (4.4).

It contains a pole at θ = iπα and thus encodes the contribution of a given asymptotic state

to the amplitude. The correct choice of the CDD factors is usually postulated and then

gets checked in perturbation theory for some range of parameters in the model when it is

applicable.

Form factors. In 2d the form factors satisfy the following equations

F2(θ) = F2(−θ)Ŝ(θ), F2(iπ − θ) = F2(iπ + θ). (4.6)

The former is the familiar Watson’s equation and the latter encodes crossing symmetry.

Given the analytic expression for the partial amplitude, the equations (4.6) can be solved

analytically [31]. The solution reads as

F (θ) = R(θ)Fmin(θ), (4.7)

where R(θ) is an arbitrary rational function of cosh(θ) since cosh(θ) automatically satisfies

the second condition in (4.6). More precisely it can be written as

R(θ) =
Kα1(θ)Kα2(θ) . . .

Kβ1(θ)Kβ2(θ) . . .
= (A+B cosh θ + C cosh2 θ . . .)Kα1(θ)Kα2(θ) . . . , (4.8)

where we have defined

Kα(θ) ≡ − cos2(πα/2)

sinh θ−iπα
2 sinh θ+iπα

2

=
2 cos2(πα/2)

cos(πα)− cosh θ
. (4.9)

In (4.8) the parameters αi define the positions of poles and parameters βi (or equivalently

A, B, C, etc) define the positions of zeros. The constant factors in the numerator of (4.9)

are introduced for convenience, they allow for the following normalization Kα(iπ) = 1.

The “minimal” form factor Fmin(θ) in (4.7), also known as the Omnès solution in higher

dimensions [32], is defined as a function without poles or zeros. According to [31] in 2d

due to (4.6) it can be expressed in terms of the partial amplitude as follows

lnFmin(θ) =
1

4πi

∫ +∞

−∞
dz

(
coth

(
z − θ

2

)
− coth

(z
2

))
ln Ŝ. (4.10)

The functions (4.9) can be thought of as analogues of the CDD factors (4.5) for the form

factors. The choice (4.8) is usually postulated first and then gets checked with perturbation

theory when applicable. Finally the form factor (4.7) for a given operator must obey the

bound (2.78) which reads in 2d as27

F2(θ) . (exp θ)∆/2 . (4.11)

26One can consider the CDD factors with negative or even complex values of the parameter α. For a

discussion see page 12 of [4].
27In 2d this bound was first derived in [33], see formulas (3.33) and (3.34).
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4.1 sine-Gordon model

The quantum sine-Gordon model is defined as the renormalization group (RG) flow trig-

gered by the deformation of the free scalar UV CFT by the vertex operator

Vβ(x) ≡ : eiβφ : , ∆Vβ =
β2

4π
, (4.12)

in the following way

LSG =
1

2
(∂µφ)2 +

m2
0

2β2

(
Vβ(x) + V ∗β (x)

)
. (4.13)

Here φ(x) is the real scalar field, ∆Vβ is the UV scaling dimension of the vertex operator,28

m0 is a mass-like parameter and β is a real coupling constant. The sine-Gordon model pos-

sesses several remarkable properties. First, the model is dual to the Thirring model [34].29

Second, it possesses the O(2) topological symmetry [29] and thus can also be regarded as

the O(2) σ-model.

The mass spectrum of the sine-Gordon model was first found with semi-classical meth-

ods [36, 37] and later argued to be exact [38, 39]. It consists of a soliton and an antisoliton

with mass m and a number of breathers (soliton - antisoliton pairs) denoted by bn with

the masses

mn = 2m sin
nγ

16
, γ ≡ β2

1− β2

8π

, n = 1, 2, . . . ,

⌊
8π

γ

⌋
. (4.14)

Here bxc denotes the greatest integer not larger than x. The breathers exist only in the

following range of parameters

γ ∈ [0, 8π] ⇔ β2 ∈ [0, 4π]. (4.15)

It is interesting to study the sine-Gordon model in the regime when at least two breathers

exist. Then one can define a ratio of masses for the first two lightest breathers

R ≡ m2

m1
= 2 cos

γ

16
. (4.16)

The range of parameters which allow for this is

γ ∈ [0, 4π] ⇔ β2 ∈ [0, 8π/3] ⇔ R ∈ [
√

2, 2]. (4.17)

Let us now discuss partial amplitudes for the scattering of asymptotic states in

the sine-Gordon model. The soliton-(anti)soliton scattering was computed in [29]. The

28The scaling dimension of the vertex operator can be straightforwardly deduced from the Euclidean two

point function computed in the free massless theory (which posses conformal invariance for m = 0)

〈0|Vβ(xE)V ∗β (0)|0〉 ∼ exp
(
β2 〈0|φ(xE)φ(0)|0〉

)
∼
(
x2
E

)− β2

4π .

In the second step we have used the propagator 〈0|φ(xE)φ(0)|0〉 = − 1
4π

log x2
E .

29See also chapter 6 of [35].

– 28 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

(anti)soliton-breather and breather-breather scattering was computed in [40]. The uni-

formed treatment for all these cases was done in [41]. In this work we are concerned only

with the lightest breather-breather scattering in the parameter range (4.17) which reads as

Ŝb1b1→b1b1(θ) =
sinh θ + i sin(γ/8)

sinh θ − i sin(γ/8)
= t γ

8π
(θ). (4.18)

It is given by the single CDD factor (4.5) and thus contains a single pole at θ = iγ/8 or

equivalently at
√
s = 2m1 cos(γ/16). From (4.16) we see that this pole is simply at the

mass of the second breather
√
s = m2.

Let us now address the form factors of a scalar operator. The scalar soliton-

(anti)soliton form factors were computed in [42]. The scalar breather-breather form factors

were found in [17].30 The latter form factor corresponds to the partial amplitude (4.18)

and reads as

Fb1b1(θ) = AK γ
8π

(θ)FSGmin(θ), FSGmin(θ) ≡ cosh

(
iπ − θ

2

)
T γ

8π
(θ), (4.19)

where A is a normalization constant, K is given by (4.9) and FSGmin is the minimal form

factor of the sine-Gordon model where we have defined

Tα(θ) ≡ exp

(
2

∫ ∞

0

dx

x

cosh ((α− 1/2)x)

cosh(x/2) sinh(x)
sin2

(
(iπ − θ)x

2π

))
. (4.20)

At large energies the object (4.20) behaves as31

lim
θ→+∞

Tα(θ) ∼ exp(θ/2). (4.21)

The form factor (4.19) for the vertex operator (4.12) is the most general solution (with

a single pole due to b2) which satisfies the bound (4.11) for the whole range of parame-

ters (4.17) since

lim
θ→+∞

Fb1b1(θ) ∼ const. (4.22)

and ∆V ∈ [0, 2/3].

The form factor of the trace of the stress-tensor is proportional to the UV deforming

operator (vertex operator in our case). It is thus also given by (4.19). The value of the

constant A follows from the normalization convention (2.123) and reads as

A = −2m2
1. (4.23)

Let us discuss now the interacting part of the scattering amplitude in s variable which

according to (3.31) can be written as

T (s) = −iN2

(
Ŝ(s)− 1

)
. (4.24)

30For some more recent work see [43].
31In order to show this, one can make a variable redefinition x→ x′ ≡ xθ. Keeping x′ fixed, we can then

consider only the leading behavior of the integrand at large θ and perform the integration.
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Figure 1. Contribution of the one particle states of the second breather into the UV central charge

as a function of m2
2. On the horizontal axis the mass m2 is given in the units of m1. The range of

parameters which allow for the existence of the second breather is provided in (4.17). For m2
2 = 3

we have c1 ≈ 0.72126.

Given the exact expression of the partial amplitude (4.18) we have

T (s) = − g2

s−m2
2

+ . . . , g2 =
4m3

2

m2
2 − 2

×
(
4−m2

2

)3/2
. (4.25)

Here we wrote explicitly only the pole and denoted by . . . the finite part at s = m2
2.

Similarly for the form factor we have

Fb1b1(s) = − gFb2
s−m2

2

+ . . . , Fb2 = −2m2
2

g
FSGmin(s = m2

2). (4.26)

In case of the trace of the stress-tensor we can use (2.76), (2.131) and the explicit expressions

for the form factor (4.19) to estimate the contribution to the total central charge of the one

particle state of the second breather cb2 and of the two particle state of the first breather

cb1b1 . The total central charge then reads as

c = cb2 + cb1b1 + . . . . (4.27)

For concreteness, on figure 1 we provide the numerical value of cb2 as a function of m2
2. All

the contributions in (4.27) should sum up to c = 1 which is the central charge of a free

boson, see (C.12). For more detailed investigation of the sine-Gorden model see [44], in

particular figures 6 and 7.

4.2 E8 model

The 2d Ising model is a 2d conformal field theory with a Z2 symmetry. It contains only

two relevant operators σ and ε with the scaling dimensions ∆σ = 1/8 and ∆ε = 1 re-

spectively. The former is Z2 odd and the latter is Z2 even. In the lattice formulation

of the 2d Ising model the operator σ couples to the magnetic field. We consider here a

QFT obtained by deforming the 2d Ising model with the operator σ. This QFT defines
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an integrable model [45] which we refer to as the E8 model. It contains eight asymptotic

states m1, . . . ,m8. Given the value of m1, the spectrum in the E8 model reads as

m2 = 2m1 cos(π/5), m3 = 2m1 cos(π/30), (4.28)

where we have ignored particles with masses m4, . . . ,m8 since their masses lie above the

two particle threshold 2m1 and are thus invisible to the techniques of section 5.

The partial amplitude for the scattering of the lightest asymptotic state reads as

Ŝ11→11(θ) = t2/3(θ)t2/5(θ)t1/15(θ), (4.29)

where t are the CDD factors (4.5). The form factor for a scalar relevant operator with the

lightest asymptotic states was computed in [33], it reads as

F11(θ) = (A+B cosh θ)K2/3(θ)K2/5(θ)K1/15(θ)FE8
min(θ), (4.30)

where A and B are independent parameters and the minimal form factor for the E8 model

reads as

FE8
min(θ) ≡ cosh

(
iπ − θ

2

)
T2/3(θ)T2/5(θ)T1/15(θ). (4.31)

At large energies due to (4.21) the form factor (4.30) behaves as

lim
θ→+∞

F11(θ) ∼ const. (4.32)

It has thus the most general form which obeys the bound (4.11) for both σ and ε operators.

According to [33] the expression (4.30) provides the two particle form factor for the σ and

ε operators, given the following ratios of parameters

Aσ/Bσ = 4.86984066 . . . , Aε/Bε = 1.25558515 . . . . (4.33)

The overall normalization of the form factor depends as usually on the chosen normalization

of the operators σ and ε and is not important in our work. We set for convenience

Bσ = Bε = 1. (4.34)

Consider now the form factor of the trace of the stress-tensor Θ. It is proportional to

the form factor of the deforming operator which is σ in our case. Thus, the coefficients AΘ

and BΘ for the trace of the stress-tensor Θ are completely fixed by the following conditions

AΘ/BΘ = Aσ/Bσ, AΘ −BΘ = −2m2
1, (4.35)

where the second equation follows from the normalization condition (2.123).

Let us discuss now the interacting part of the scattering amplitude in s variable which is

related to the partial amplitude via (4.24). Given (4.29), we can write its pole structure as

T (s) = − g2
1

s−m2
1

− g2
2

s−m2
2

− g2
3

s−m2
3

+ . . . . (4.36)
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The values of the trilinear couplings read as

g1 ≈ 26.922055, g2 ≈ 38.527928, g3 ≈ 0.611666. (4.37)

Similarly for the form factor of the trace of the stress-tensor we can write

FΘ
11(s) = − g1FΘ

1

s−m2
1

− g2FΘ
2

s−m2
2

− g3FΘ
3

s−m2
3

+ . . . , (4.38)

where the one particle form factors read as

FΘ
1 ≈ −0.111898, FΘ

2 ≈ 0.059131, FΘ
3 ≈ −0.032590. (4.39)

In case of the trace of the stress-tensor, using (2.76), (2.131) and the explicit expressions

for the form factor (4.30), (4.35) we can estimate the central charge contribution of the

one particle states of the first three lightest asymptotic states ci and the two particle

contribution of the very first asymptotic state c11. The total central charge reads

c = c1 + c2 + c3 + c11 . . . , (4.40)

where we provide for completeness the numerical values

c1 ≈ 0.472038, c2 ≈ 0.0192313, c3 ≈ 0.0025581. (4.41)

All the contributions in (4.40) should sum up to c = 1/2 which is the central charge of the

2d Ising model.

4.3 Non-linear sigma model

The O(N) non-linear sigma model (NLSM) with N ≥ 3 is defined in the UV via the

Lagrangian density

LNLSM =
1

2g0

N∑

i=1

(∂µni)
2,

N∑

i=1

n2
i = 1, (4.42)

where ni(x) is a O(N) vector of real scalar fields and g0 is a dimensionless coupling. This

model can be seen as a marginally relevant deformation of a theory of N − 1 free massless

scalar fields.32 The NLSM is asymptotically free in the UV and is gapped in the IR. Away

from the UV fixed point, its spectrum consists of a single asymptotic state of mass m

transforming in the vector representation of the O(N) group.

The scattering of asymptotic states is described according to (3.37) by three amplitudes

σ1, σ2 and σ3 or equivalently by Ŝ•, ŜS and ŜA according to (3.42). The relation between

32One way to see this is to solve the constraint on the scalar fields in (4.42), and write

LO(N) =
1

2g0

(
N−1∑
i=1

(∂µni)
2 +O(x)

)
, O(x) ≡

∑N−1
i,j=1 ninj(∂µni)(∂

µnj)

1−
∑N−1
k=1 n2

k

. (4.43)

The operator O(x) is marginal since its UV scaling dimension is ∆O = 2.
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two sets of amplitudes is given in (3.44). The analytic expressions for σ1, σ2 and σ3 in the

NLSM were found in [29], they read as

σ1(θ) = − iλ

iπ − θσ2(θ), σ3(θ) = − iλ
θ
σ2(θ), λ ≡ 2π

N − 2
, (4.44)

where σ2(θ) is given by the “plus” part of (3.17) and (3.18) in [29]. The results of [29] can

be rewritten in a compact integral form [17] as

ŜA(θ) = exp

(
2

∫ +∞

0

dx

x

exp(−xλ/π)− 1

1 + exp(x)
sinh

xθ

iπ

)
(4.45)

together with

Ŝ•(θ) = −π − iθ
π + iθ

× ŜA(θ), ŜS(θ) =
θ − iλ
θ + iλ

× ŜA(θ). (4.46)

To characterize the strength of the interaction in the NLSM one can evaluate the

partial amplitudes at the crossing symmetric point s = 2 (which corresponds to θ = iπ/2).

We have the following values of the partial amplitudes then

Ŝ•(iπ/2) = −3 ŜA(iπ/2), ŜS(iπ/2) =
N − 6

N + 2
ŜA(iπ/2), (4.47)

together with

ŜA(iπ/2) =
N + 2

N − 2
×




Γ
(

3
4

)
Γ
(

1
4 + 1

N−2

)

Γ
(

1
4

)
Γ
(

3
4 + 1

N−2

)




2

. (4.48)

We notice that crossing equations have the simplest form for σi(θ) partial amplitudes. At

the crossing symmetric point they lead to the equality σ1(iπ/2) = σ3(iπ/2).

The form factor associated to the antisymmetric partial amplitude was computed

in [17]. It reads as

FA(θ) = exp

(
2

∫ +∞

0

dx

x sinhx

exp(−xλ/π)− 1

1 + exp(x)
sin2 x (iπ − θ)

2π

)
. (4.49)

The form factor associated to the scalar operator was reported in [46] and reads as33

F•(θ) = A× sinh θ

iπ − θ ×FA(θ), (4.50)

where A is the normalization constant. One can estimate the asymptotic behavior of

expressions (4.49) and (4.50) at large energies.34 One has

lim
θ→+∞

FA(θ) ∼ θ− λ
2π , lim

θ→+∞
F•(θ) ∼ exp(θ) θ−

λ
2π
−1. (4.51)

33This paper is extremely hard to read. The formula of interest contains multiple typos. We checked

however that the result we present here satisfies the system of equations (4.6) and is thus correct.
34At large θ the integrand in (4.49) has a highly oscillating piece. In order to study the asymptotics of

such integrals one needs to rewrite them as a (generalized) Fourier integral. In our case we have

d

dθ
lnFA(θ) = − 1

π
Im

(∫ ∞
0

dx g(x) exp

(
− ixθ

π

))
, g(x) ≡ exp(−x)

sinh(x)

exp(−λx/π)− 1

1 + exp(x)
.

Riemann-Lebesgue lemma states then that such integral vanishes at large θ. Its leading behavior can be

estimated by using integration by parts, where the leading behavior comes from the boundary term. One

has then d
dθ

lnFA(θ) ∼ − λ
2π

1
θ
.
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From these asymptotics one sees for instance that the form factor (4.50) is the most general

expression which satisfies the bound (4.11) for a relevant scalar operator since −( λ2π+1) < 0

for N ≥ 3.

The form factor for the trace of the stress-tensor takes the same form (one can say that

it is proportional to the operator O in (4.43)). It is thus given by the expression (4.50)

with the following value of normalization constant

A = −2m2
√
N, (4.52)

which follows from the normalization condition (2.123) and the definition of • states given

in (3.39). Notice that there are no poles in the scattering amplitudes (3.44) or in the

form factor (4.50). Also the one particle form factor is zero, FΘ
1 = 0. These follow from

the O(N) symmetry (some matrix elements simply cannot be constructed). One can use

the form factor (4.50) to compute the two particle contribution to the central charge c2

via (2.76) and (2.131). The numerical values of c2 are presented on figure 2. For large

values of N we get the following approximate expression

c = c2 + . . . , c2 ≈ 0.98N − 1.92, (4.53)

where the dots represent four and higher particle contributions (notice that the odd number

of particles in the majority of cases does not contribute due to O(N) symmetry). In order

to obtain (4.53) we have evaluated (4.50) numerically for multiple values of θ, we have

interpolated the results to obtain a continuous function and integrated it numerically to

get the value of the central charge for different values of N .35 The contribution coming

from two particles and all the multi particle states should some up to the central charge of

N − 1 free bosons which is c = N − 1.

5 Numerical bootstrap in 2d

We are now in position to formulate the numerical bootstrap problem which allows to

obtain the partial amplitude, the form factor and the spectral density of a UV complete

massive unitary QFT. We will focus on two dimensions in this section for two reasons: to

avoid technical complications due to spin in higher dimensions and to be able to compare

our results with analytic results for 2d integrable models discussed in section 4.

Given a QFT which has at least one asymptotic state with a non-zero mass, we can

consider the following three functions

Ŝ(s), FΘ
2 (s), ρΘ(s), (5.1)

which are the partial amplitude for 2 to 2 scattering of the lightest particle, the form factor

and the spectral density of the trace of the stress-tensor respectively. The form factor of

the trace of the stress-tensor is normalized according to (2.123). The spectral density of

the trace of the stress-tensor is related to the UV central charge according to (2.131).

35It is important to change the integration variable to θ in (2.131) in order to perform the numerical

integration. The reason for that is the very slow convergence of the integral for large values of s.
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Figure 2. Contribution of the two particle states to the total central charge as a function of N .

Dots represent the numerical values and the solid line represents the best linear fit applied for points

with N ≥ 20 only. The values of c2 for small values of N differ notably from the linear asymptotics.

For examples for N = 3, 4, 5 we have c2 ≈ 1.6, 2.39, 3.26.

We can write the most general ansatz for the functions (5.1) with real coefficients

entering linearly. In case of the Ŝ(s) function, these coefficients are further restricted to

satisfy crossing. We can then solve the following problem: determine the parameters of the

ansatze leading to the minimal possible UV central charge such that the functions (5.1)

obey the unitarity condition (3.34).

In section 5.1 we will provide the details of the numerical setup. In section 5.2 we

will present the numerical results. We will consider three different cases: partial amplitude

with a single pole, partial amplitude with three poles and a partial amplitude with no poles

but with a global O(N) symmetry. We will see that these cases will reproduce numerically

the known results in the sine-Gordon, E8 and O(N) integrable models respectively.

5.1 Setting up the optimization problem

It is convenient to introduce the r variable defined as

r(s; s0) ≡
√

4− s0 −
√

4− s√
4− s0 +

√
4− s. (5.2)

It maps an s complex plane with one branch cut s ∈ [4,∞) into the unit disc (with the cut

mapped to the boundary). The point s0 < 4 is a free parameter which is mapped to the

center of the disc.36 Another useful variable is φ(s0) defined as

eiφ(s0) ≡ r(s; s0) ⇒ s = s0 +
8− 2s0

1 + cosφ(s0)
. (5.3)

In what follows we will often use the φ variable defined as

φ ≡ φ(0) ⇒ s =
8

1 + cosφ
, (5.4)

36The physical domain is defined via s+ iε with ε > 0. We can thus rotate the cuts using the identity
√

4− s = −i
√
s− 4.
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which maps a ray into an interval, more precisely

s ∈ [4,∞) ⇔ φ ∈ [0, π]. (5.5)

Let us discuss now the situation when our QFT has k asymptotic states below the

two-particle threshold

m1 = 1, m2, . . . , mk. (5.6)

According to the discussion of section 2.5.1 these asymptotic states will appear as simple

poles in the interacting part of the amplitude and the form factor. We can then write the

following ansatze [5],

T (s) = −
k∑

i=1

g2
i

s−m2
i

+

Nmax∑

n=0

an × r(s; 2)n + (s↔ 4− s), (5.7)

FΘ
2 (s) = −

k∑

i=1

λi
s−m2

i

+

Nmax∑

n=0

bn × r(s; 0)n, (5.8)

ρΘ(s) = 2
1∑

n=0

cn × cos(nφ)− 2

Nmax∑

n=1

dn × sin(nφ), (5.9)

where we have defined for convenience

λi ≡ giF1,i. (5.10)

These ansatze depend on the set of real parameters an, bn, cn and dn which enter linearly.

The form factor of the trace of the stress-tensor obeys the normalization (2.123). This

leads to the linear constraint for the unknown coefficient
k∑

i=1

λim
−2
i + b0 = −2. (5.11)

Taking it into account we can write the final ansatz for the form factor as

FΘ
2 (s) = −2−

k∑

i=1

λi ×
(

1

m2
i

+
1

s−m2
i

)
+

Nmax∑

n=1

bn × r(s; 0)n. (5.12)

Unitarity constraints. The unitarity constraint is given by (3.35). It should be obeyed

for any value of s ∈ [4m2
1,+∞). To implement this requirement in practice we discretize

s and choose a large set of sample values. All the plots are made with 200 sample points

distributed on the Chebyshev grid φ ∈ [0, π]. The entries of the 3 × 3 matrix (3.35) are

complex. we can rewrite however the semipositive definite condition (3.35) in terms of 6×6

matrices with purely real coefficients by defining

R(s) ≡ ReB(s), I(s) ≡ ImB(s), RT = R, IT = −I. (5.13)

The semipositive definite constraint reads as

z†B(s)z ≥ 0, (5.14)

where z are some complex 3 dimensional vectors. Due to (5.13) this is equivalent to
(
R(s) −I(s)

I(s) R(s)

)
� 0. (5.15)
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Central charge bound. Let us consider now the expression of the UV central charge

in terms of the spectral density (2.131). Generalizing it to the case of multiple asymptotic

states we can write

cUV = 12π

(
k∑

i=1

m−4
i |FΘ

1,i|2 +

∫ ∞

4m2
1

ds s−2ρΘ(s)

)
. (5.16)

There is in principle no bound on how big the spectral density ρΘ(s) can be. However there

is certainly at least a trivial lower bound ρΘ(s) ≥ 0 due to (3.21) which implies cUV ≥ 0.

The expression (5.16) has the unknown constants F1,i entering in a quadratic way.

Thus, we cannot directly apply methods of linear programming to minimize (5.16). We

can however use a simple trick to rewrite (5.16) in a linear way. Consider the following

inequality

cUV ≤ cbound
UV , cbound

UV ≡ 12π

(
k∑

i=1

m−4
i ui +

∫ ∞

4m2
1

ds s−2ρΘ(s)

)
, (5.17)

where we have introduced new non-negative real parameters ui which obey the following

constraints

∀i : 0 ≤ |F1,i|2 ≤ ui ⇒ 0 ≤ |λi|2 ≤ g2
i ui. (5.18)

The latter inequality is equivalent to

∀i :

(
g2
i λ
∗
i

λi ui

)
� 0. (5.19)

Now instead of minimizing cUV we can minimize cbound
UV defined in (5.17) given that the con-

dition (5.19) is satisfied. At the minimum we will simply get ui = |F1,i|2 and cUV = cbound
UV .

Central charge minimization. We are finally ready to formulate the numerical boot-

strap problem: given a set of asymptotic states and their masses (5.6), determine the linear

coefficients

g2
i , λi, ui, an, bn, cn, dn,

in the ansazte (5.7)–(5.9) and (5.17) such that the semipositive conditions (3.35), (5.19) are

satisfied and the central charge cbound
UV in (5.17) has the minimal possible value. Sometimes

we will also be fixing the values of g2
i in order to single out known integrable models. To

perform the numerics we use the semipositive program solver SDPB [47, 48].

5.2 Numerical results

We now solve the optimization problem of the central charge minimization defined in

section 5.1 in three different cases. First, in the presence of a single pole. We find a special

point on the central charge bound which corresponds to the sine-Gordon model. We will

recover its partial amplitude and the two particle form factor. We will then investigate

the dependence of the central charge on the parameter of the sine-Gordon model. Second,

in the presence of three poles. Injecting the values of the masses and the residue of the
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lightest asymptotic state in the E8 we recover numerically the partial amplitude of the

E8 model. We also obtain the form factor consistent with the analytic results. Third, we

address the case of no poles in the presence of O(N) global symmetry. We will minimize

the central charge by scanning over different values of the partial amplitudes at the crossing

symmetric point.

5.2.1 One pole

We assume that the system is described at least by two asymptotic states with masses

m1 = 1, m2 ∈ [
√

2, 2]. (5.20)

This parameter range is chosen to mimic the sine-Gordon behavior, see (4.16) and (4.17).

We consider the scattering of the m1 asymptotic state and assume that there is only one

simple pole in the scattering amplitude due to the second asymptotic state.37

We can now look for a minimum of the UV central charge fixing the value of the trilinear

coupling g = g2. We also set the mass of the second asymptotic state to be m2 =
√

3. The

numerical results are presented on figure 3. On the plot there appears a special value of

the trilinear coupling for which the optimization problem becomes unfeasible. This critical

value is

g ≈ 4.55901. (5.21)

The value (5.21) is in a perfect agreement with the results of [4] where it was found that

there is an upper bound on the trilinear coupling, see figure 4. It was also found that this

value corresponds to the b1b1b2 trilinear coupling of the sine-Gordon model (4.25), where

b1 and b2 stand for the first and the second breathers.

At the critical value (5.21) we also recover the partial amplitude of the first breather b1
and the form factor of the trace of the stress-tensor. They are presented in figures 4 and 5

respectively. They match precisely the exact analytic expressions (4.18) and (4.19). The

numerical expression for the spectral density is given on figure 6. It is completely saturated

by the two particle contribution and thus it should be regarded as the two particle part of

the spectral density. This is a general feature of our numerical results.

The numerical procedure allows to determine the UV central charges of the sine-Gordon

model. For m2 =
√

3 we have

c = cb2 + cb1b1+... = 0.80921 + . . . , cb2 = 0.72126, cb1b1 = 0.08795, (5.22)

where cb2 is the single particle contribution of the second breather and cb1b1 is the two

particle contribution of the first breather. The dots stand for other (positive) contributions

which are left undetermined by our procedure. The value of cb2 reported in (5.22) is in a

perfect agreement with the one obtained from analytic expressions, see figure 1.

Finally we vary the mass m2 and fix the trilinear coupling to be precisely the one of

the sine-Gordon model (4.25). We present the result on figure 7. The values of the central

37In other words there is no self coupling of m1 state. This can be justified by requiring for example a

Z2 symmetry.
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c

Figure 3. Lower bound on the UV central charge as a function of the cubic coupling g between

particles of mass m1 = 1, m1 = 1 and m2 =
√

3. The allowed region is depicted in blue. The

bound extends up to g = 4.55901 which is a critical value for which the optimization problem is

feasible. The bound was obtained with Nmax = 50. The red horizontal line at c = 1/2 is added for

convenience.

0.5 1.0 1.5 2.0 2.5 3.0
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0.5

1.0
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Abs

Figure 4. The real part, the imaginary part and the absolute value of the partial amplitude for the

scattering of the lightest asymptotic state with m1 = 1 given the mass of the second asymptotic state

m2 =
√

3 and the value of the trilinear coupling (5.21). The plot is constructed with Nmax = 50.

charge and the corresponding partial amplitude and the form factor are precisely the ones

of the sine-Gordon model. The bound on the central charge around m2
2 = 4 approaches 1,

it becomes however very sensitive to Nmax. For the reference we provide here the values of

central charges at two extremes of figure 7, namely at m2
2 = 2.01 and m2

2 = 3.87. We have

m2
2 = 2.01 : c = cb2 + cb1b1+... = 0.03741 + . . . , cb2 = 0.01456, cb1b1 = 0.02285,

(5.23)

m2
2 = 3.87 : c = cb2 + cb1b1+... = 0.99083 + . . . , cb2 = 0.55777, cb1b1 = 0.43305.

(5.24)
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Figure 5. The real and imaginary parts of the two particle form factor for the masses m1 = 1 and

m2 =
√

3 and the value of the trilinear coupling (5.21). The plot is constructed with Nmax = 50.
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ϕ

0.005

0.010

0.015

ρ

Figure 6. The two particle contribution to the spectral density for the masses m1 = 1 and m2 =
√

3

and the value of the trilinear coupling (5.21). The plot is constructed with Nmax = 50.

These results are in a full agreement with the discussion of section 4.1, see in particular

figure 1. Notice that at m2
2 = 2 the sine-Gordon contains an infinite number of breathers

and thus it is expected that the contributions from the first two breathers account for a

very small portion of the central charge. On the contrary, at m2
2 = 4 the sine-Gordon

model becomes a free theory of a scalar field of mass m1 = 1 (the coupling β → 0 in

section 4.1). Therefore, the two particle contribution of the first breather accounts for the

whole central charge.

5.2.2 Three poles

We would like to study the E8 model also known as the 2d Ising model with magnetic de-

formation. We assume that the system is described by three asymptotic states with masses

m1 = 1, m2 = 2 cos(π/5), m3 = 2 cos(π/30). (5.25)

Notice that the E8 model has actually eight asymptotic states but only three of them are

below the two particle threshold 4m2
1. We consider the scattering of particle m1 and allow

all three poles due to particles m1, m2 and m3.
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Figure 7. Lower bound on the UV central charge obtained with Nmax = 30 as a function of m2
2

with the trilinear coupling g fixed to be the one of the sine-Gordon model. The allowed region is

depicted in blue.

We minimize the central charge in this setup not specifying the values of the trilinear

couplings first. Unfortunately this turns out not to be enough to single out the E8 model.

We further specify the value of the very first trilinear couplings g1 given in (4.37). The

values of g2 and g3 are obtained during the central charge minimization procedure and

match precisely the ones in (4.37).

As a result of our numerical procedure we also obtain the partial amplitude shown on

figure 8 and the two particle form factor of the trace of the stress-tensor shown figure 9.

The partial amplitude perfectly matches the analytic expression (4.29). This was expected

since in [4], it was shown that this is the unique amplitude with maximal trilinear coupling

g1 given in (4.37). The form factor however does not match the analytic expression (4.30)

with the coefficients (4.35). It matches however the following linear combination of the σ

and ε form factors

FΘ
2,fake(s) ≈ −0.79Fσ11(s) + 4.06F ε11(s), (5.26)

given by (4.30) with the coefficients (4.33) and (4.34). We refer to this as the fake trace

of the stress-tensor form factor. The appearance of such an object is due to a peculiar

situation when the form factors of different scalar operators cannot be easily distinguished

(because they have the same large s-behaviour). In order to distinguish them one needs

a more complicated setup which includes scattering of at least two different asymptotic

states. Our results are however consistent with the analytical ones due to (5.26). It is not

a surprise then that the central charge value of the fake form factor c ≈ 0.04945 does not

correspond to the expected values (4.41) which follows from the analytic results.

5.2.3 Zero poles and O(N) global symmetry

We consider here a single asymptotic state with mass m = 1 which transforms in the vector

representation of the O(N) global symmetry group. We further assume that there are no
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Figure 8. The real part, the imaginary part and the absolute value of the partial amplitude of

the scattering of the lightest asymptotic states in the E8 model. The plot is constructed with

Nmax = 50.

poles in the scattering amplitude of such states. (For previous works on 2d QFTs with

O(N) symmetry see [49–52]). In section 3.2 we have shown that this amplitude decomposes

into three amplitudes in the trivial, symmetric traceless and antisymmetric representations.

It is straightforward to show that in terms of these amplitudes crossing implies



Ŝ•(s)
ŜS(s)

ŜA(s)


 =




1
N

1
2 − 1

N + N
2

1
2 − N

2
1
N

1
2 − 1

N
1
2

− 1
N

1
2 + 1

N
1
2






Ŝ•(4− s)
ŜS(4− s)
ŜA(4− s)


 . (5.27)

We now write the following ansatz for the partial amplitudes

Ŝ•(s) = u•0 +

Nmax∑

n=1

(
u•n r(s; 2)n + v•n r(4− s; 2)n

)
,

ŜS(s) = uS0 +

Nmax∑

n=1

(
uSn r(s; 2)n + vSn r(4− s; 2)n

)
, (5.28)

ŜA(s) = uA0 +

Nmax∑

n=1

(
uAn r(s; 2)n + vAn r(4− s; 2)n

)
,

where un and vn are some constants. Notice, that contrary to (5.7) we parametrize here

the entire partial amplitude and not only its interacting part. We plug this ansatz into the

system of crossing equations (5.27). It becomes a system of linear algebraic equation on the

linear coefficients un and vn. It can be used for example to express uA0 and vSn , uAn , vAn for

n ≥ 1 in terms of the unknown linear coefficients u•0, uS0 and u•n, v•n, uSn for n ≥ 1. Plugging

this solution back into (5.28) we obtain an automatically crossing symmetric ansatz. We

demand then that the ansatz obeys the unitarity constraints (3.49) and (3.51). The form

factor of the trace of the stress-tensor is defined in (3.50) provided it obeys the following

normalization

FΘ
•2(0) = −2

√
N, (5.29)

which follows from (3.45) and (2.123).
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Figure 9. The real and imaginary parts of the form factor of the stress-tensor found numerically

in the E8 model. The dots correspond to the trace of the stress-tensor form factor defined in (5.26).

The plot is constructed with Nmax = 50.

Following [50–52] we can minimize the central charge fixing the values of partial am-

plitudes at the crossing symmetric point. Let us define

σ∗1 ≡ σ1(s = 2), σ∗2 ≡ σ2(s = 2), σ∗3 ≡ σ3(s = 2). (5.30)

We remind that the crossing symmetry requires σ∗3 = σ∗1. Fixing the values (5.30) is

equivalent to fixing the values u•0, uS0 and uA0 in (5.28) due to (3.44). We can now scan

for example over σ∗1 and σ∗2 and minimize the central charge to obtain the 3d plot. The

allowed values of σ∗1 and σ∗2 form the bounded domain shown in figure 10.38 To decrease

the amount of numerical computations we will focus here only on two sections of the plane

σ∗1 and σ∗2, namely

section 1 : σ∗1 = − 4

N − 2
σ∗2, (5.31)

section 2 : σ∗2 = 0. (5.32)

Our section 1 connects two (±)NLSM points and our section 2 connects two (±)pYB points

in figure 10. In the case N = 7 and Nmax = 30 we present the results on figure 11.

Let us discuss the numerical results now. For section 1 the optimization problem is

feasible for σ∗2 ∈ [−0.415, 0.415]. The boundary values from left to right correspond to the

“minus” NLSM and NLSM respectively. For instance the right boundary value matches the

analytic results (4.47) and (4.48). At the right boundary we have reconstructed the partial

amplitudes and the form factor. We have observed that they match very well the analytic

results (summarized in section 4.3) for φ ∈ [0, 0.8π] but differ for φ ∈ [0.8π, π]. One

reason for that is the almost linear growth of the form factor with s. According to (4.51)

we have

lim
s→+∞

FΘ
2 (s) ∼ s (ln s)−

N−1
N−2 . (5.33)

The ansatz (5.8) however does not reproduce such behavior well for any finite value of

Nmax. As a result the central charge differs from the one expected in the NLSM. Further

analysis is required in order to tame the NLSM numerically.

38This is figure 7 of [52] which we reproduce here for the reader’s convenience.

– 43 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

Figure 7: Allowed space of S-matrices in the plane �1(s
⇤ = 2) vs �2(s

⇤ = 2). The coloring at its
boundary matches the convention in table 1. We have also marked the points corresponding to
known integrable S-matrices and the constant solution in (7).

It is worth emphasizing that these were by no means imposed and rather come out as a
mysterious outcome. It is amusing to think that had Yang-Baxter not been discovered
before and these nice integrable solutions not unveiled decades ago, we could have
discovered them here in these numerical explorations.

• Another interesting point is the yellow point between free theory and NLSM in figure 7.
The S-matrix there is a simple constant solution to crossing and unitarity

Sconst = ±
✓
1, �1,

N � 2

N + 2

◆
, (7)

but does not obey Yang-Baxter equations. Notice that in the symmetric channel uni-
tarity is not saturated. To our knowledge this is the first analytic solution to the
S-matrix bootstrap problem where unitarity is not saturated. We call it the yellow
point.

If we look for constant solutions to the bootstrap problem it is actually easy to derive (7)
analytically. First, because of crossing, all possible constant solutions lie on the same
plane as the slate (i.e. must be eigenvectors of the crossing matrix). The unitarity
inequalities then define a polygon on this plane which is nothing but the innermost
curve in figure 4. Such polygon is simply given by Sa = CabSb, |Sa|  1 with Sa

constant. The vertices of this polygon are precisely (±) free theory and the yellow
point. These are the only points that touch the boundary of the slate. (No other
points could touch it since the slate is a convex space.)

• As we move along the boundary we observe that all S-matrices saturate the unitarity
condition at all values of energy except for the yellow point discussed above. Unitarity

10

Figure 10. Allowed region in the (σ∗
2 , σ

∗
1) plane for N = 7 (from figure 7 of [52]). The blue

dashed line marks the section (5.31) ending at the integrable O(N) sigma model (NLSM). The

green dashed line marks the section (5.32) ending at the periodic Yang-Baxter solution (pYB). The

red dot marks the value of (σ∗
2 , σ

∗
1) that minimizes the UV central charge.
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Figure 11. Bounds on the central charge in O(N) models. The allowed region is depicted in blue.

Both plots are constructed with N = 7 and Nmax = 30. Left : the bound on the central charge as

a function of σ∗
2 on the section (5.31). The vertical lines correspond to σ∗

2 ≈ ±0.415927. The red

dots represent the two particle contribution to the central charge c2 ≈ 5.11 in the NLSM estimated

in section 4.3. Right : the bound on the central charge as a function of σ∗
1 on the section (5.32).

The vertical lines correspond to σ∗
1 ≈ ±0.329.

For section 2 the optimization problem is feasible for σ∗1 ∈ [−0.328, 0.328]. The bound-

ary values correspond to the periodic Yang-Baxter (pYB) solutions [51, 53]. We observe

numerically that the value of the central charge exhibits a divergence like behavior when

approaching the boundary. This might be a sign that the pYB solutions are unphysical.

One has to however take into consideration poor convergence of the ansatz, thus further

analysis is also required to make a definite statement.
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Figure 12. The plots are constructed with Nmax = 30. Left : bound on the central charge as a

function of N . The allowed region is depicted in blue. Right : the value of σ∗
1 of the scattering

amplitudes with the minimal central charge.

To conclude, let us also minimize the central charge for different values of N without

fixing σ∗1 or σ∗2. The result is presented on figure 12. The bound on the left part of figure 12

is almost linear and can be approximated well by c ≈ 0.644 + 0.334N . The values of σ∗1
and σ∗2 which realize the minimum of the central charge lie on the section 2 (5.32). The

values of the optimal σ∗1 as a function of N are presented on the right part of figure 12.

6 Conclusions

In this paper we have extended the S-matrix bootstrap program to include states created

by local operators. This gives rise to a bootstrap setup that mixes scattering amplitudes,

form factors and spectral densities of local operators. The latter allows to extract direct

information about the UV fixed point which was not possible so far in the pure S-matrix

bootstrap approach.

We have established the groundwork for future explorations and limited ourselves to

testing the approach in two dimensional QFTs. Our main result is the derivation of a lower

bound for the central charge c of the UV CFT that can flow to a massive phase with a

given particle spectrum (and interactions). For example, imposing O(N) global symmetry,

in the presence of a single stable particle transforming in the vector representation, we

found the universal lower bound c ≥ cmin(N) ≈ 0.6 + 0.3N , see figure 12(a).

We should however be careful with the meaning of “lower bound”. As in all the recent

S-matrix bootstrap works [5], the “lower bound” decreases when increasing the number of

parameters in the ansatz, i.e. Nmax in equations (5.7)–(5.9). Strictly speaking our result is

an upper bound for the lower bound. In all the plots presented in this paper we have taken

the value of Nmax sufficiently large. However, we have not performed a careful convergence

analysis. In order to be rigorous, it is important to generalize the functional method of [52]

to our setup and obtain rigorous lower bounds on the central charge.

Another direction worth further exploration, is the inclusion of several states created

by different local operators. It seems natural to consider the full set of relevant operators

– 45 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

of a given CFT. For example, in the 2d Ising model, it would be interesting to consider

both σ and ε. This setup would include form factors for both operators and a 2× 2 matrix

of Wightman two-point functions.

In two spacetime dimensions, it would be interesting to further explore the connection

with integrable models. In our setup, we have observed that the numerical optimization

problem tends to saturate the conditions (3.27)–(3.29), which include Watson’s equation

and absence of particle production. Therefore, similarly to the pure S-matrix bootstrap,

we found that the optimal solutions often correspond to integrable theories. In this work,

we encountered amplitudes and form factors of the sine-Gordon, E8 and O(N) models.

In the presence of continuous global symmetries, it is natural to study states created

by the conserved currents. Notice that form factors of conserved currents also have a

natural normalization (at s = 0) following from the conserved charges. This should have

interesting applications both in d = 2 and in higher dimensions. In d = 2, it seems clear

that a detailed study of the O(N) model with our approach will benefit from the inclusion

of states created by the non-abelian currents. Moreover, it would be useful to obtain the

3D plot of the central charge lower bound above the allowed region in figure 10.

Let us conclude by discussing our new bootstrap method in higher dimensions. In

d ≥ 3 one has to consider the Wightman two-point function of the full stress-tensor Tµν

and not only its trace Θ = Tµµ . Such two-point function can be decomposed into two

spectral densities

ρΘ(s), ρ2(s), (6.1)

where the first spectral density represents the trace of the stress-tensor exactly as in d = 2

and the second spectral density is the new object special to d ≥ 3. In all dimensions we

have the following asymptotic behavior at large energies39

lim
s→+∞

ρΘ(s) ∝ g2s∆r− d2 , (6.2)

corresponding to the relevant deformation g
∫
ddxO(x) of the UV CFT by an operator

of dimension ∆r < d and g is a dimensionful coupling constant with the mass dimension

[g] = d − ∆r. The value of the central charge in d = 2 is hidden inside ρΘ and can be

extracted using (2.131). We reproduce it here for convenience

cUV = (2π)2 × 3

π

∫ ∞

0
ds
ρΘ(s)

s2
. (6.3)

In d ≥ 3 there is no known analogous integral expression and the value of the central charge

is hidden instead in the asymptotics of the second spectral density in (6.1). More precisely

lim
s→+∞

ρ2(s) = const× CUV
T sd/2. (6.4)

Here const is a numerical factor which depends on the precise definition of ρ2 and is

irrelevant for the present discussion. Reiterating, even though the spectral densities (6.1)

allow to access the values of the central charge in any number of dimensions, the information

39This follows from Θ(x) ∝ gO(x) and (2.63).
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about it is encoded differently in them in d = 2 and in d ≥ 3. Interestingly enough, the

integral formula (2.112) captures both (6.3) and (6.4) in a uniform way. For more details

see [54].

Our numerical bootstrap approach can easily bound integrals like (6.3) but it cannot

bound coefficients in the asymptotic behaviour of spectral densities like in (6.4). For this

reason, we cannot use our bootstrap method to put non-trivial bounds on the central charge

CUV
T in d ≥ 3. What we can do instead in higher dimensions is to put lower bounds on the

following dimensionless quantity
∫ ∞

0

ds

sd/2+1
ρΘ(s), (6.5)

which is a simple generalization of (6.3) to higher dimension. We stress however that

contrary to (6.3) this quantity is not directly related to a property of the UV CFT and is

thus less interesting than (6.3), see [55] for further discussion. Focusing to d = 4 there is

a more interesting quantity we can bound which is the a-anomaly. This requires however

some modifications in the present formalism. We plan to address this question in the

near future.
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A Definitions and auxiliary results

Here we summarize basic definitions and various auxiliary results used throughout

the paper.

Fourier transformation. The Fourier transform f̂(p) of a function f(x) is given by

f̂(p) =

∫
ddx e−ix·pf(x), f(x) =

∫
ddp

(2π)d
eix·pf̂(p). (A.1)
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The Dirac δ-function is

(2π)dδ(d)(p) =

∫
ddx eip·x. (A.2)

Spherical coordinates. We will need to evaluate n-dimensional integrals in Euclidean

signature. It is best done in spherical coordinates which we introduce here. The n-

dimensional spherical coordinates consist of the radius r and a set of n− 1 angles with the

following ranges

θ1, . . . , θn−2 ∈ [0, π], θn−1 ∈ [0, 2π]. (A.3)

They are related to the Cartesian coordinates as

x1 = r cos θ1,

x2 = r cos θ2 sin θ1,

x3 = r cos θ3 sin θ2 sin θ1,

. . .

xn−1 = r cos θn−1 sin θn−2 . . . sin θ1,

xn = r sin θn−1 sin θn−2 . . . sin θ1.

(A.4)

The Jacobian J of the variable change from Cartesian to spherical coordinates reads as

J(r; θ1, . . . , θn−2) = rn−1 sinn−2 θ1 sinn−1 θ2 . . . sin
2 θn−3 sin θn−2. (A.5)

The infinitesimal spherical angle in n-dimensional space is then

dΩn = J(1; θ1, . . . , θn−2)× dθ1 . . . dθn−1. (A.6)

It is then straightforward to evaluate the spherical angle Ωn,40

Ωn =
nπn/2

Γ(n/2 + 1)
. (A.7)

The n = 1 case is special. We do not have angles, however we have two (equivalent)

directions with x ≥ 0 and x < 0. This fact is already contained in (A.7) since Ω1 = 2.

Finally, the spherical δ-function is given by

δ(n−1)(Ω) =
δ(θ1) . . . δ(θn−2)

J(1; θ1, . . . , θn−2)
× δ(θn−1). (A.8)

Spherical harmonics. Any normalizable function on the sphere Sn−1 ⊂ Rn can be

decomposed in the basis of spherical harmonics. If the function is invariant under SO(n−1)

rotations (therefore only depends on θ1) then it can be expanded in Gegenbauer polynomials

C
(n−2)/2
j (x), x ≡ cos θ1, (A.9)

where j = 0, 1, 2, . . . is a non-negative integer which is often referred to as spin. In the

n = 3 case, the Gegenbauer polynomials coincide with the Legendre polynomials

Pj(x) = C
1/2
j (x). (A.10)

40Notice that often the spherical angle is denote by Ωn−1 in n-dimensions.
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The Gegenbauer polynomials satisfy the following orthogonality property

∫ +1

−1
Ckj′(x)Ckj (x)(1− x2)k−1/2dx = νkj × δj′j , νkj ≡

21−2kπΓ(2k + j)

j!(k + j)Γ(k)2
, (A.11)

and completeness relation

∑

j

1

νkj
× Ckj (x)Ckj (y) = (1− x2)1/2−k × δ(x− y). (A.12)

Change of variables. Consider a two particle state with the (d − 1)-momenta ~p1 and

~p2. Let us perform the following change of variables41

dd−1~p1 × dd−1~p2 = dd−1(~p1 + ~p2)× dd−1~p1 = dd−1(~p1 + ~p2)× |~p1|d−2d|~p1| dΩd−1, (A.13)

where p0
1 and p0

2 are given by the mass shell condition (2.6) and thus

d|~p1| =
p0

1p
0
2

|~p1| (p0
1 + p0

2)
d(p0

1 + p0
2). (A.14)

Defining the total d-momentum

pµ ≡ pµ1 + pµ2 , (A.15)

we can write

dd−1~p1 × dd−1~p2 = ddp× |~p1|d−3 p
0
1p

0
2

p0
× dΩd−1. (A.16)

Equivalently we have

dd−1p1

(2π)d−1

1

2p0
1

× dd−1p2

(2π)d−1

1

2p0
2

=
1

Nd
ddp

(2π)d
dΩd−1

(2π)d−2
, (A.17)

where we have defined

Nd ≡ 4p0|~p1|3−d = 2d−1√s
(
s− 2 (m2

1 +m2
2) + s−1(m2

1−m2
2)2
)(3−d)/2

, p0 =
√
s. (A.18)

Phase space. Let us write explicitly the phase space for scalar identical particles

dΦn =
1

n!

ddp1

(2π)d
. . .

ddpn
(2π)d

× 2πθ(p0
1)δ(p2

1 +m2) . . . 2πθ(p0
n)δ(p2

n +m2)

=
1

n!

dd−1p1

(2π)d−1

1

2p0
1

. . .
dd−1pn
(2π)d−1

1

2p0
n

. (A.19)

Here all the energies p0
i satisfy the mass-shell condition (2.6). Notice the presence of the

1/n! factor which removes overcounting of indistinguishable (identical) particles.

41In writing this we have used the center of mass frame ~p1 = −~p2, where ~p1 is aligned with x1 axis.
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Wightman functions. In Euclidean signature only the time-ordered correlation func-

tions make sense. In Lorentzian signature we also have non time-ordered correlators known

as the Wightman functions.42 They are defined as follows

〈0|φ(t̂1, ~x1) . . . φ(t̂n, ~xn)|0〉, t̂j ≡ tj − iεj , ε1 > . . . εn > 0. (A.20)

Roughly speaking, the presence of ε’s is required in order to introduce a damping factor.

For instance consider the 2-point Wightman function. Using (2.47) we can write

〈0|φ(t̂1, ~x1)φ(t̂2, ~x2)|0〉 = 〈0|φ(0, ~x1)eiH(t2−t1)e−H(ε1−ε2)φ(0, ~x2)|0〉. (A.21)

B Källén-Lehmann representation in Euclidean signature

In Euclidean signature there is no notion of Wightman correlation functions, only time-

ordered correlators are well defined. Here we obtain the Källén-Lehmann representation of

a Euclidean two-point function by applying the Wick rotation to (2.56).

Consider the Feynman propagator (2.58). The integrand has poles at

q0 = ±
√
~q 2 + µ2 ∓ iε. (B.1)

The integration goes along the real q0 values and thus the iε’s are needed to avoid the

presence of poles on the line of integration. We can now rotate the line of integration by

+π/2. This is done in such a way that we do not cross the poles. It is represented by the

change of variables

x0
E = ix0, q0

E = iq0, (B.2)

which is known as the Wick rotation.43 The subscript E stands for Euclidean. Applying

the change of coordinates (B.2) to (2.58) we obtain the Euclidean propagator

∆F (x;µ2) = i∆E(xE ;µ2), ∆E(xE ;µ2) ≡
∫

ddqE
(2π)d

eiqE ·xE
1

q2
E + µ2

, (B.3)

where we have

qE · xE = q0
Ex

0
E + ~qE · ~xE , q2

E = (q0
E)2 + ~q 2

E . (B.4)

Notice the absence of iε’s. They can now be set to zero since there are no poles on the

line of integration. Plugging (B.3) into (2.56) we obtain the Euclidean Källén-Lehmann

representation

〈0|O†(xE)O(0)|0〉T =

∫ ∞

0
dµ2ρ(µ2)∆E(xE ;µ2). (B.5)

42See for example appendix B in [56].
43More precisely the rotation of the energy p0 to purely imaginary values is done by p0 → p0eiφ → ip0 ≡

p0
E , where the angle φ changes from 0 to +π/2. The rotation of the time is determined by the condition to

keep the scalar product (p · x) = p0x0 + ~p · ~x real, which is important to require in order not to introduce

any divergences in the Fourier transform. This leads to the following x0 → x0e
−iφ → −ix0 ≡ xE0 = x0

E .
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C Free scalar theory

Let us consider the free field theory with a single real scalar field φ(x). It is defined via

the Lagrangian density

Lfree(x) = −1

2
(∂φ(x))2 − 1

2
m2φ(x)2. (C.1)

From this Lagrangian density the Klein-Gordon equation of motion follows

(
−∂2 +m2

)
φ(x) = 0. (C.2)

It has the following general solution

φ(x) =

∫
ddp

(2π)d
θ(p0)(2π)δ(p2 +m2)

(
a(p) eip·x + b†(p) e−ip·x

)
, (C.3)

where a(p) and b†(p) are some operator valued functions of the d-momenta pµ called the

annihilation and creation operators respectively. The reality condition φ†(x) = φ(x) implies

a(p) = b(p). The operators a and a† are required to satisfy the standard commutation

relations

[a(p), a(p′)] = 0, [a(p), a†(p′)] = 2p0 × (2π)d−1δ(d−1)(~p ′ − ~p). (C.4)

Acting on the vacuum they create n-particles states

|n〉 = a†(k1) . . . a†(kn)|0〉, a(k)|0〉 = 0. (C.5)

Due to (C.4), the n-particles states (C.5) are normalized exactly as required by (2.8)

and (2.15) for n = 1 and n = 2 respectively. Free theory provides an explicit construction

of the Hilbert space discussed in the beginning of section 2.1.

The stress-tensor for the free real scalar field reads as

Tµν(x) = : (∂µφ)(∂νφ)− 1

2
ηµν

(
(∂φ)2 +m2φ2

)
: . (C.6)

The operators are enclosed between two symbols “:” denoting normal-ordering. The ex-

pression for the trace of the stress-tensor follows from (C.6) and reads as

Θ(x) ≡ ηµνTµν(x) = :

(
1− d

2

)
(∂φ)2 − d

2
m2φ2 : . (C.7)

In the remainder of this appendix let us focus on the case of d = 2. The trace of the

stress-tensor then reads

Θ(x) = −m2 : φ(x)2 : . (C.8)

Let us compute the one and two particle form factors for the operator (C.8). In the former

case we have

FΘ
1 = −m2 〈0|ap1 : φ(0)2 : |0〉 = 0. (C.9)
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In the latter case we have

FΘ
2 (p1, p2) = −m2 〈0|ap1ap2 : φ(0)2 : |0〉

= −m2

∫
d~k1

2π

1

2k0
1

∫
d~k2

2π

1

2k0
2

〈0|ap1ap2a
†
k1
a†k2
|0〉

= −m2

∫
d~k1

2π

1

2k0
1

∫
d~k2

2π

1

2k0
2

〈0|[ap1 , a
†
k1

][ap2 , a
†
k2

] + [ap1 , a
†
k2

][ap2 , a
†
k1

]|0〉

= −2m2. (C.10)

Here we have plugged (C.3) and used the properties of the creation and annihilation op-

erators (C.4) and (C.5). The expression above is obviously consistent with the normaliza-

tion (2.123). It is clear that all the other n ≥ 3 particle form factors of the trace of the

stress-tensor vanish in free theory.

We can use (C.10) to compute the spectral density (2.76), we get

2πρ(s) =
4m4

N2
. (C.11)

Plugging it into (2.131) we obtain the standard central charge value of the free boson

in d = 2

c = 1. (C.12)

Notice that the two particle states reproduce the entire value of the central charge.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Birkhäuser, Switzerland (2002).

[24] J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749

[INSPIRE].

[25] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[26] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field

theory, JETP Lett. 43 (1986) 730 [INSPIRE].

[27] J.L. Cardy, The central charge and universal combinations of amplitudes in two-dimensional

theories away from criticality, Phys. Rev. Lett. 60 (1988) 2709 [INSPIRE].

[28] S. Aks, Proof that scattering implies production in quantum field theory, J. Math. Phys. 6

(1965) 516.

– 53 –

https://doi.org/10.1103/PhysRevLett.123.221602
https://arxiv.org/abs/1906.08098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.08098
https://doi.org/10.1006/aphy.1994.1045
https://arxiv.org/abs/hep-th/9307010
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9307010
https://doi.org/10.1103/PhysRevLett.88.031601
https://doi.org/10.1103/PhysRevLett.88.031601
https://arxiv.org/abs/hep-th/0109174
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0109174
https://doi.org/10.1007/JHEP10(2018)125
https://arxiv.org/abs/1807.07003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07003
https://doi.org/10.1007/JHEP01(2020)142
https://doi.org/10.1007/JHEP01(2020)142
https://arxiv.org/abs/1908.04733
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04733
https://doi.org/10.1016/0550-3213(78)90362-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB139%2C455%22
https://doi.org/10.1103/PhysRev.95.228
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C95%2C228%22
https://doi.org/10.1103/PhysRevD.99.015019
https://arxiv.org/abs/1806.07759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07759
https://doi.org/10.1016/0370-2693(88)90054-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB215%2C749%22
https://doi.org/10.1016/0550-3213(84)90052-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB241%2C333%22
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C43%2C730%22
https://doi.org/10.1103/PhysRevLett.60.2709
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C60%2C2709%22
http://dx.doi.org/10.1063/1.1704305
http://dx.doi.org/10.1063/1.1704305


J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

[29] A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s-matrices in two-dimensions as

the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253

[INSPIRE].

[30] L. Castillejo, R.H. Dalitz and F.J. Dyson, Low’s scattering equation for the charged and

neutral scalar theories, Phys. Rev. 101 (1956) 453 [INSPIRE].

[31] M. Karowski, Exact S matrices and form-factors in (1 + 1)-dimensional field theoretic models

with soliton behavior, [INSPIRE].

[32] R. Omnes, On the solution of certain singular integral equations of quantum field theory,

Nuovo Cim. 8 (1958) 316 [INSPIRE].

[33] G. Delfino, Integrable field theory and critical phenomena: the Ising model in a magnetic

field, J. Phys. A 37 (2004) R45 [hep-th/0312119] [INSPIRE].

[34] S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev.

D 11 (1975) 2088 [INSPIRE].

[35] S. Coleman, Aspects of Symmetry Cambridge University Press, Cambridge U.K. (1985).

[36] V.E. Korepin, P.P. Kulish and L.D. Faddeev, Soliton quantization, JETP Lett. 21 (1975) 138

[INSPIRE].

[37] R.F. Dashen, B. Hasslacher and A. Neveu, The particle spectrum in model field theories from

semiclassical functional integral techniques, Phys. Rev. D 11 (1975) 3424 [INSPIRE].

[38] B. Schroer, T.T. Truong and P. Weisz, Towards an explicit construction of the sine-Gordon

field theory, Phys. Lett. B 63 (1976) 422 [INSPIRE].

[39] S. Nussinov, Mass spectra in some two-dimensional models, Phys. Rev. D 14 (1976) 647

[INSPIRE].

[40] M. Karowski and H.J. Thun, Complete S matrix of the massive Thirring model, Nucl. Phys.

B 130 (1977) 295 [INSPIRE].

[41] A.B. Zamolodchikov, Exact two particle s matrix of quantum sine-Gordon solitons, Pisma

Zh. Eksp. Teor. Fiz. 25 (1977) 499.

[42] P.H. Weisz, Exact quantum sine-gordon soliton form-factors, Phys. Lett. B 67 (1977) 179

[INSPIRE].

[43] H.M. Babujian, A. Fring, M. Karowski and A. Zapletal, Exact form-factors in integrable

quantum field theories: the sine-Gordon model, Nucl. Phys. B 538 (1999) 535

[hep-th/9805185] [INSPIRE].

[44] G. Delfino and P. Grinza, Universal ratios along a line of critical points: The Ashkin-Teller

model, Nucl. Phys. B 682 (2004) 521 [hep-th/0309129] [INSPIRE].

[45] A.B. Zamolodchikov, Integrals of motion and S matrix of the (scaled) T = T (c) ising model

with magnetic field, Int. J. Mod. Phys. A 4 (1989) 4235 [INSPIRE].

[46] H.M. Babujian, A. Foerster and M. Karowski, Exact form factors of the O(N) σ-model,

JHEP 11 (2013) 089 [arXiv:1308.1459] [INSPIRE].

[47] D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06

(2015) 174 [arXiv:1502.02033] [INSPIRE].

[48] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program solver SDPB,

arXiv:1909.09745 [INSPIRE].

– 54 –

https://doi.org/10.1016/0003-4916(79)90391-9
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C120%2C253%22
https://doi.org/10.1103/PhysRev.101.453
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C101%2C453%22
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C49%2C229%22
https://doi.org/10.1007/BF02747746
https://inspirehep.net/search?p=find+J%20%22Nuovo%20Cim.%2C8%2C316%22
https://doi.org/10.1088/0305-4470/37/14/R01
https://arxiv.org/abs/hep-th/0312119
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312119
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.11.2088
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD11%2C2088%22
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C21%2C138%22
https://doi.org/10.1103/PhysRevD.11.3424
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD11%2C3424%22
https://doi.org/10.1016/0370-2693(76)90386-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C63B%2C422%22
https://doi.org/10.1103/PhysRevD.14.647
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C647%22
https://doi.org/10.1016/0550-3213(77)90108-0
https://doi.org/10.1016/0550-3213(77)90108-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB130%2C295%22
http://dx.doi.org/10.1007/BF01626520
http://dx.doi.org/10.1007/BF01626520
https://doi.org/10.1016/0370-2693(77)90097-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C67B%2C179%22
https://doi.org/10.1016/S0550-3213(98)00737-8
https://arxiv.org/abs/hep-th/9805185
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805185
https://doi.org/10.1016/j.nuclphysb.2004.01.007
https://arxiv.org/abs/hep-th/0309129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0309129
https://doi.org/10.1142/S0217751X8900176X
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CA4%2C4235%22
https://doi.org/10.1007/JHEP11(2013)089
https://arxiv.org/abs/1308.1459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1459
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1007/JHEP06(2015)174
https://arxiv.org/abs/1502.02033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.02033
https://arxiv.org/abs/1909.09745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09745


J
H
E
P
0
7
(
2
0
2
0
)
0
3
5

[49] M.F. Paulos and Z. Zheng, Bounding scattering of charged particles in 1 + 1 dimensions,

JHEP 05 (2020) 145 [arXiv:1805.11429] [INSPIRE].

[50] Y. He, A. Irrgang and M. Kruczenski, A note on the S-matrix bootstrap for the 2d O(N)

bosonic model, JHEP 11 (2018) 093 [arXiv:1805.02812] [INSPIRE].
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