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Abstract
Image super-resolution reconstructs a higher-resolution image from the observed low-resolution

image. In recent years, machine learning models have been widely employed and deep learn-

ing networks have achieved state-of-the-art super-resolution performance. Most of these

methods, however, are trained and evaluated on simulated datasets that assume a simple and

uniform degradation model. The deep learning models trained on such simulated datasets

fail to generalize to practical applications because the actual or real degradation in real-world

low-resolution images is much more complex.

In this thesis, we propose several approaches to improve the robustness and generalization of

deep super-resolution models. The first technique reduces the accumulation of errors in the

camera pipeline. We build a deep residual network for learning an end-to-end mapping be-

tween raw images and high-resolution images. Our proposed network, trained on high-quality

samples, is able to reconstruct in a single step high-quality super-resolved images from low-

resolution Bayer mosaics . Extensive experiments show that the proposed method achieves

better results than the state-of-the-art techniques, both qualitatively and quantitatively.

To resolve the problem of the mismatch between the applied blur kernel in the synthetic

dataset and the real-world camera blur, we propose to incorporate blur kernel modeling in

the training. We generate the super-resolution training dataset by employing a set of realistic

blur kernels estimated from real low-resolution photographs. We build a pool of realistic blur

kernels with a generative adversarial network; then, we train a super-resolution network using

the low-resolution images constructed with the generated kernels. Our method reconstructs

more visually plausible high-resolution images compared to other state-of-the-art methods

that rely on a simple degradation model.

In order to study the effect of noise on super-resolution, we collect a dataset that contains pairs

of noisy low-resolution images and the corresponding high-resolution images by using mi-

croscopy. We then benchmark the combinations of denoising methods and super-resolution

networks on the collected dataset. Our experimental results show that the super-resolution

networks are sensitive to noise, and that the consecutive application of two applications

suffers from the accumulation of errors. The benchmark results also suggest that the networks

can benefit from joint optimization, hence we use a single network for joint denoising and

super-resolution. Our network, trained with a novel texture loss, outperforms any combination

of state-of-the-art deep denoising and super-resolution networks.

Finally, to take advantage of multi-modal data available in certain applications, we propose

a super-resolution system based on the fusion of information from multiple sources. For
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Abstract

the application of spectral image super-resolution, we use two downsampled versions of the

same image to infer a better high-resolution image for training. We refer to these inputs as a

multi-scale modality. As color images are usually taken at a resolution higher than spectral

images, we make use of color images as another modality to improve the super-resolution

network. We build a pipeline that learns to super-resolve by using multi-scale spectral inputs

guided by a color image by combining both modalities. Our proposed method is economical

in time and memory consumption, yet achieves competitive results.

Keywords: super-resolution, signal processing, image restoration, dataset, neural network,

deep learning, generative adversarial network, multi-modal, signal processing
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Résumé
La super-résolution (SR) vise à créer, à partir d’une image de définition donnée, une image de

plus haute définition. Les techniques récentes d’apprentissage profond ont permis d’atteindre

de nouveau sommets en SR. Toutefois la plupart des méthodes sont entrainées et testées avec

des bases de données simulées, qui utilisent des modèles de dégradation uniformes simples.

Ces méthodes échouent lorsqu’elles sont appliquées à de vraies images de faible définition,

qui ne coïncident pas à ces modèles de dégradation simples.

Nous proposons plusieurs approches afin d’améliorer la robustesse et la polyvalence des

modèles SR. La première vise à réduire l’accumulation d’erreur dans la chaine de traitement

de la caméra. Nous avons construit un réseau profond résiduel pour la mise en rapport direct

entre les images brutes du capteur et leurs équivalents haute définition. Le réseau, entrainé

sur des échantillons de haute qualité, est capable de créer en une seule étape une image SR de

haute qualité à partir d’une mosaïque de Bayer. Des testes montrent que cette approche donne

de meilleurs résultats que les autres méthodes de pointes, aussi bien au niveau quantitatif

qu’à celui de la qualité perçue.

Pour résoudre le problème de la non-concordance entre le masque de flou utilisé pour la

base de donnée simulée et celui des vrais appareils photos, nous proposons d’ajouter un

modèle de ce masque dans la phase d’entrainement. Nous avons généré la base de données

d’entrainement grâce à un ensemble de masque de flou réaliste, obtenu à partir de vraies

photographies en basse définition. Nous avons construit une collection de masques réaliste

grâce à un réseau adverse génératif. Nous avons entrainé un réseau à la SR en utilisant les

images de faible définition obtenues avec ces masques. La méthode permet de reconstruire

des images de haute définition plus réalistes par rapport aux méthodes conventionnelles.

Afin d’étudier l’impact du bruit, inévitable en SR, nous avons collecté un ensemble d’images

faites par microscopie. Cet ensemble comprend des photos bruitées de faible définition, ainsi

que leur équivalant en haute définition. Nous avons ensuite évalué la combinaison de dé-

bruitage et de réseau de SR sur cet ensemble de données. Cela nous a permis de montrer que

les réseaux de SR sont sensibles au bruit, et l’application consécutive de ces deux approches

souffrait de l’accumulation d’erreur de chaque étape. Par contre les résultats suggèrent que

les réseaux peuvent bénéficier d’une optimisation conjointe. Nous avons donc utilisé un seul

réseau effectuant simultanément le dé-bruitage et la SR. Notre réseau, entrainé avec une

nouvelle fonction objectif sur la perte de texture, a surpassé toutes les combinaisons des

meilleurs réseaux de dé-bruitage et de SR.

Pour les applications disposant de données multimodales, nous proposons une SR basée
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Résumé

sur la fusion de sources multiples. Pour l’application à l’imagerie spectrale, nous utilisons

deux versions sous-échantillonnées de la même image afin de mieux entrainer notre réseau.

Puisque l’imagerie spectrale donne souvent des photos de plus basse définition que les

photos conventionnelles, nous utilisons ces dernières comme moyen pour améliorer notre

réseau. Nous construisons une chaine de traitement qui apprend la SR en utilisant des images

spectrales à différentes échelles et guidé par une image conventionnelle. Cette méthode est

peu gourmande en temps et en mémoire et donne des résultats compétitifs.
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1 Introduction

Resolution is one of the most important attributes that affect the visual quality of an image.

An image at a higher resolution contains more detailed information, which is beneficial

for further image processing tasks, such as image recognition, segmentation, and analysis

by either humans or machines. With the development of high-definition display devices,

such as 4K and 8K TVs, it is more desirable to acquire high-resolution (HR) images than

low-resolution (LR) ones because the images are more pleasant to view on high-definition

monitors. Figure 1.1 illustrates an image of the same scene displayed at varying resolutions.

The resolution decreases from (a) to (d), successively by a factor of two. Figure 1.1a is the

original image that provides details such as the texture of the flowers and the curtain behind

the window. These details gradually disappear with the reduction of the resolution. When the

image resolution is decreased to 25×18 in (d), it becomes difficult to identify the content of

the image. In daily life, the LR images are more often collected due to deficiencies in imaging

equipment or a limitation in storage. Therefore, methods that enhance the resolution of

images are in great demand.

There are two common approaches to acquiring HR images. The first approach is based

on hardware improvement. The more pixels a complementary metal-oxide-semiconductor

(CMOS) camera has, the higher the resolution will be. Therefore, one method to increase the

spatial resolution is to enlarge the chip size so that more CMOS sensors can be included on

the chip [100]. An alternative is to reduce the pixel size per unit area so that more pixels are

implemented on a fixed size chip [95]. However, smaller pixel sizes might not result in higher

resolution as the maximum sampling frequency is determined by the diffraction limit (Airy

disc) of the optics. Both solutions suffer from the limitation of higher cost and development of

sophisticated manufacturing technology.

The second approach is based on software improvement; it requires designing more accurate

and faster algorithms to enhance the resolution from low to high. This solution is feasible, as

highly developed computing units, such as graphic processing unit (GPU) and image signal

processor (ISP), can handle computationally intensive tasks. Algorithms that reconstruct

HR images from the LR ones are named super-resolution (SR) techniques. These techniques

1



Chapter 1. Introduction

(a) Image size: 200×150 (b) Image size: 100×75

(c) Image size: 50×37 (d) Image size: 25×18

Figure 1.1 – The original image (a) with its downsampled LR versions (c)-(d) displayed with
same width and height.

enhance images by providing a visual quality better than its LR counterpart.

Deep learning (DL) is part of a broader family of machine learning methods based on artificial

neural networks with representation learning. Deep learning has shown prominent superiority

over other machine learning algorithms in various fields such as computer vision, natural

language processing, audio recognition, machine translation, etc. Benefiting from the high

capacity of extracting effective high-level abstractions that bridge the LR and HR space, recent

DL based SR methods have achieved significant improvements over the conventional signal

processing based methods.

Despite their success, these methods are severely limited by their reliance on the assumed

degradation model between the HR image and the LR image. It is known that they do not

generalize to natural images, as the authentic degradation in real-world LR images are much

more complicated. Figure 1.2 shows such an example, where the state-of-the-art SR network

fails on the noisy photograph. Hence, it becomes increasingly important to develop SR

techniques that are more practical under real scenarios.

In this thesis, we develop several such approaches. These algorithms can be summarized into

two categories:

2



1.1. Super-Resolution on Natural Images

(a) a noisy LR image (b) SR result from RCAN [141]

Figure 1.2 – Example of a failure case of the state-of-the-art SR network [141] where the SR
network amplify the noise and introduces unpleasant artifacts.

• To build robust single image SR approaches that take natural image characteristics

into account. SR on natural images is challenging as many natural images suffer from

various corruptions such as sensor noise, artifacts, aperture blur, etc. In this thesis,

we address these problems by modeling different parameters in SR methods. Our

SR methods are able to produce visually pleasing results and generalize on unknown

corruptions.

• To develop a technique that can take advantage of multi-modal data for better re-

construction results. In some applications of SR, the signal is available in multiple

modalities. We show an example in spectral image SR where we are able to fuse the

information from different modalities to obtain better reconstruction results.

1.1 Super-Resolution on Natural Images

SR in practical applications, e.g. SR on natural images, is usually a problem mix of noise, blur,

and resolution limitations such as color mosaic and insufficient resolution. Although the

problems can be partially resolved by applying different image restoration tasks (denoising,

deblur, demosaicing, etc.) sequentially, this might bring on new problems such as unexpected

artifacts and blur. Applying SR on top of demosaiced images will amplify the error and lead to

unpleasant results. Therefore, it is important to consider these aspects in the SR process.

Among all possible aspects, we concentrate on three applications of SR: (1) SR with raw images,

(2) blind SR where the blur kernel is unknown, and (3) SR on noisy images.

3
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1.1.1 Super-Resolution on Raw Images

Most SR algorithms take only the color image as input, whereas modern cameras provide both

the raw data and the pre-processed color image produced by the image signal processing

system (ISP). Hence, these SR systems do not make full use of the radiance information

existing in raw data. A typical ISP pipeline is shown in Figure 1.3: it includes several nonlinear

operations such as demoisaicing, tone adjustment, and compression. The linear degradations

in the imaging process, including blur and noise, are nonlinear in the processed RGB space,

which makes image restoration more difficult. Furthermore, the demosaicing step in the ISP

is highly related to SR, as these two problems refer to the resolution limitations of cameras.

Therefore, solving the SR problem with pre-processed images is sub-optimal and could be

inferior to a single unified model that simultaneously solves both problems.

Figure 1.3 – A typical ISP pipeline [10].

We propose a deep residual network for learning an end-to-end mapping between raw images

and HR images. By training on high-quality samples, our deep residual demosaicing and SR

network is able to recover high-quality super-resolved images from LR Bayer mosaics in a single

step without producing the artifacts commonly produced when the two operations are done

separately. We perform extensive experiments to show that our deep residual network achieves

demosaiced and super-resolved images that are superior, both qualitatively and quantitatively,

to the state-of-the-art. Figure 1.4 shows example results of our joint demoisaicing and SR

network.

1.1.2 Blind Super-Resolution

Most of the existing advanced SR methods assume that the downsampling blur kernel is

known and pre-defined. However, the blur kernels involved in real applications are typically

unknown and can vary. As previous works [28, 94, 45] show, learning-based SR methods

suffer severe performance drop when the pre-defined blur kernel is different from the real one.

This phenomenon of kernel mismatch will cause the network to produce undesired artifacts.

Hence, the problem with unknown blur kernels, also known as blind SR, fails in most of the

deep learning based SR methods and largely limits their usage in real-world applications.

To improve generalization and robustness of deep SR CNNs in real applications, we propose

to incorporate blur-kernel modeling in the training of the SR networks. The proposed method

4



1.1. Super-Resolution on Natural Images

(a) Reference image

(b) ADMM[74]+SRCNN[24] (c) FlexISP[60]+SRCNN[24]

(d) DemosaicNet[42]+SRCNN[24] (e) Our output

Figure 1.4 – Comparison of our joint demosaicing and SR output to the results from state-of-
the-art methods. Our method exhibits none of the unpleasant artifacts and is able to faithfully
reconstruct the original.

consists of two stages: (1) We first build a pool of realistic blur-kernels with a generative adver-

sarial network (GAN) and (2) then train a SR network with HR and corresponding LR images

constructed with the generated kernels. Our extensive experimental validations demonstrate

5



Chapter 1. Introduction

(a) LR image (b) result from RCAN [141] (c) result from our method

Figure 1.5 – Super-resolving (×4) natural image (left) with RCAN [141], and our approach. Our
approach learns to handle the unknown blur kernel in natural images, while RCAN fails to
generalize.

the effectiveness of our single-image SR approach on photographs with unknown blur-kernels,

as shown in Figure 1.5.

1.1.3 Super-Resolution on Noisy Images

Due to the sensing technologies, image processing, and transmission, images are inevitably

contaminated with noise during acquisition, transmission, and compression, thus leading to

distortion and loss of image information [36]. With the presence of noise, most SR algorithms

fail as they magnify the noise as much as the image details and texture, causing unexpected

artifacts in the reconstruction results. Such an example is shown in Figure 1.2.

In order to study the effect of noise on SR algorithms, we collect a dataset by using microscopy

equipment and techniques [49, 127]. Our dataset is comprised of noisy LR images with

various noise levels, a noise-free LR image, and a corresponding high-quality HR image. Visual

examples of the images in the dataset are shown in Figure 1.6. This dataset enables us to

benchmark denoising and SR methods. Our experimental results show that state-of-the-art

SR networks perform very poorly on noisy inputs. However, applying the best denoiser, in

terms of reconstruction error, followed by the best SR method does not yield the best result.

Therefore, we propose a joint optimization for denoising and SR through a single network.

To enable the network to reproduce a faithful texture, we use a texture loss that exploits the

second-order statistics of feature maps. Our SR network, trained with the proposed texture

loss, outperforms any combination of state-of-the-art deep denoising and SR networks, even

though it contains far fewer parameters than the other methods,

1.2 Multi-modal Super-Resolution

In many practical application scenarios, different sensors can yield different image modalities

of a certain scene. For example, it is typical in remote sensing to have various image modalities

6
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high noise level LR low noise level LR Noise-free LR Ground-truth HR

Figure 1.6 – Example of image sets in the proposed joint denoising and SR dataset.

of each observation, such as a multi-spectral band image, an infrared (IR) band image, and a

panchromatic image. In order to balance bandwith, complexity, and cost, these multi-modal

images are usually acquired with different resolutions [117]. In these applications, we need

algorithms that are able to super-resolve the LR images with the help of the HR images of a

different modality .

In this thesis, we address the problem of multi-modal spectral image SR yet constrain ourselves

to a small dataset. We propose the use of different modalities for improving the performance of

neural networks on the spectral SR problem. First, we use multiple downsampled versions of

the same image to infer a better HR image for training, we refer to these inputs as a multi-scale

modality. As color images are usually taken at a resolution higher than spectral images, we

make use of color images as another modality for improving the SR network. By combining

both modalities, we build a pipeline that learns to super-resolve using multi-scale spectral

inputs guided by a color image. Finally, we validate our method and show that it is economic

in terms of parameters and computation time yet still produces state-of-the-art results.

1.3 Thesis Outline

This thesis consists of seven chapters, the current chapter being the introduction. The general

outline and structure of the remainder of the thesis are summarized below.

• Chapter 2: Related Work

We discuss the work relevant to this thesis, summarized into two sub-fields: (1) neural

networks, and (2) image restoration

• Chapter 3: Super-Resolution with Raw Images

In this chapter, we introduce a neural network for joint demoisaicing and SR on raw

7
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images. We compare this design with other methods and show the advantage of our

approach.

• Chapter 4: Blind Image Super-Resolution

In this chapter, we introduce the kernel-modeling SR for unknown kernel in blind SR.

We discuss the importance of modeling kernel in SR and validate performance through

qualitative and quantitative experiments.

• Chapter 5: Joint Denoising and Super-Resolution

We present a dataset on joint denoising and SR. We benchmark the state-of-the-art

methods on the dataset and discuss the importance of joint optimization.

• Chapter 6: Multi-modal Super-Resolution

We present a fusion system that combines the information from multiple modalities for

spectral image SR. The experimental results show that our method is economic in terms

of parameters and computation time.

• Chapter 7: Conclusion

In this chapter, we present a summary of the thesis and highlights the major contribu-

tions. We also suggest several future research directions.

1.4 Publications
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saicing and super-resolution. Color and Imaging Conference (CIC).

2. Zhou, R. and Süsstrunk, S. (2019). Kernel modeling super-resolution on real lo-resolution

images. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

3. Zhou, R., El Helou, M. and Süsstrunk, S. (2020). W2S: A Joint Denoising and Super-

Resolution Dataset. Submitted to European Conference on Computer Vision Workshops

(ECCVW)

4. Zhou, R., Lahoud, F. and Süsstrunk, S. (2018). Multi-modal spectral image super-

resolution. In Proceedings of the European Conference on Computer Vision Workshops

(ECCVW).
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2 Related Work

The super-resolution algorithms developed in this thesis are related to several research fields.

As all the algorithms involve neural networks (NNs) to some extent, and specifically convolu-

tional neural networks, we start with an introduction of NNs in Section 2.1. A great number

of techniques have been proposed in this field. In this chapter, we review mainly three types

of networks that are most related to this thesis: (1) Convolutional Neural Networks (CNNs),

(2) Fully-Convolutional Neural Networks (FCNs), and (3) Generative Adversarial Networks

(GANs).

In Section 2.2, we introduce the inverse problem of image restoration. Then we review the state-

of-the-art super-resolution (SR) algorithms in Section 2.2.2. From Section 2.2.3, we briefly

explain the other image restoration tasks that are involved in the real-world SR applications

and discuss the recent algorithms.

2.1 Neural Networks

The history of neural networks began in the 1940s, when the functionality of neurons was

discovered by neurophysiologists [92]. Since then, researchers developed various models with

multiple layers of neurons. For many years, the performance of neural networks lagged far be-

hind the requirements of real-world applications, mainly because of the limitation of datasets

and the computing resources, However, due to recent progress in computing hardware and

dataset collection, training very deep neural networks is now feasible. In 2012, Krizhevsky et

al. [76] proposed a deep neural network for an image classification task that achieved break-

through performance. Thereafter, deep neural networks have been widely adopted for many

fields, such as computer vision, natural language processing, and robotics. Various network

architectures with increasing complexity and performance have been published.

In Section 2.1.1, we inspect the CNNs developed for classification and regression tasks. We

then discuss, in Section 2.1.2, the FCNs that are designed for image segmentation and that are

widely used for image restoration. We present the details about GANs in Section 2.1.3.
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2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a subtype of discriminative deep architecture

and have shown satisfactory performance in processing two-dimensional data with grid-

like topology, such as images and videos. The concept of CNNs is inspired by time-delay

neural networks (TDNNs). In a TDNN, the weights are shared in a temporal dimension,

which leads to reduction in computation. In CNNs, the convolution has replaced the general

matrix multiplication in standard NNs. In this way, the number of weights is decreased,

thereby reducing the complexity of the network. Furthermore, the images, as raw inputs,

can be directly imported to the network, thus avoiding the feature extraction procedure in

the standard learning algorithms. It should be noted that CNNs are the first truly successful

deep learning architecture due to the successful training of the hierarchical layers. The

CNN topology uses spatial relationships to reduce the number of parameters in the network,

and the performance is improved using the standard backpropagation algorithms. Another

advantage of the CNN model is that it requires minimal pre-processing. With the rapid

development of computation techniques, the GPU-accelerated computing techniques have

been exploited to train CNNs more efficiently. Today, CNNs are successfully applied to hand

writing recognition, face detection, behavior recognition, speech recognition, recommender

systems, image classification, and natural language processing.

Figure 2.1 – Schematic structure of CNNs1.

A CNN is a multi-layer neural network that consists of several different types of layers, i.e., con-

volution layers, activation functions, pooling layers, normalization layers, and fully connected

layers. The schematic structure of CNN for a classification task is shown in Figure 2.1. In this

example, the input image is convolved with trainable filters in order to produce feature maps

in the first convolution layer. A layer of connection weights are included in each filter. Passed

through a nonlinear activation function, these pixels produce additional feature maps in the

first pooling layer. This procedure carries on, and we can thus obtain the feature maps in the

following convolution layers and pooling layers. Finally, the values of these pixels are raster-

ized and displayed in a single vector as the output of the network. In this section, we briefly

introduce two network architectures that we use in our work: VGG [115] and ResNet [59].

1Illustration taken from: https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-
Convolutional-Neural-Networks/
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The successful use of CNNs in image recognition tasks has accelerated the research in ar-

chitectural design. In this regard, Simonyan [115] proposed a simple and effective design

principle for CNN architectures. Their architecture, named as VGG, is shown in Figure 2.2. The

architecture of VGG is inspired by experimental results that suggest that small size filters can

improve the performance of the CNNs. Based on these findings, VGG replaced the 11×11 and

5×5 filters that were commonly used in the previous CNNs with a stack of 3×3 filter layers

and experimentally demonstrated that concurrent placement of small size filters could induce

the effect of large size filters. The use of small size filters provides an additional benefit of low

computational complexity by reducing the number of parameters. These findings set a new

trend in research to work with smaller size filters in CNN; and these settings are commonly

used in the later network architectures. VGG regulates the complexity of a network by placing

1×1 convolutions in between the convolutional layers that learn a linear combination of

the resultant feature maps. For the tuning of the network, max-pooling is placed after the

convolutional layer, and padding is performed to maintain the spatial resolution. VGG showed

good results both for image classification and localization problems. The features extracted

from different layers of the VGG network are also used in many image restoration and image

generation works for evaluating perceptual difference [67].

Figure 2.2 – The structure of VGG16. Figure taken from [38]

ResNet is proposed by He [59]; it is considered as a continuation of deep networks. ResNet

revolutionized the CNN architecture by introducing the concept of residual learning and by

devising an efficient methodology for the training of deep networks. ResNet is a network

comprised of 35 residual blocks. The architecture of the residual block of ResNet is shown in

Figure 2.3. Although ResNet contains 152 layers, which is eight times deeper than VGG, it has a

computational complexity lower than previously proposed networks. The good performance
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of ResNet on image recognition and localization tasks shows that representational depth is of

central importance for many visual recognition tasks. The residual block architecture and the

concept of residual learning is also successfully employed in other vision tasks, such as image

restoration.

Figure 2.3 – Residual block in ResNet [59].

2.1.2 Fully Convolutional Networks

Many current CNNs are designed for image classification tasks. They transform the input

image into a 1D feature vector, thus rendering it difficult to maintain the spatial information

(the local information at each position) from the input image in the feature vector. For some

applications, however, spatial information is critical. For instance, image restoration assigns a

new pixel value to each pixel in the input image. The new pixel value is determined mainly

by the local information at that specific position. In such a scenario, traditional CNNs are

therefore not suitable.

Figure 2.4 – Architecture of FCN-VGG [87].

Long [87] modified the VGG network into a fully convolutional architecture, which can handle

inputs of various sizes and generate outputs of the same size as the inputs. Each fully con-

nected layer is transformed into a convolution layer with a kernel that covers the entire input

region. Transforming all the fully connected layers in a CNN leads to a fully convolutional
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network (FCN), shown in Figure 2.4. FCN effectively performs image classification on every

patch of the input image by using a sliding window, thus generating a probability value for

each patch. The output from FCN is a 3D heatmap containing probabilities of each class.

Bilinear interpolation is then applied to the heat map to generate a segmentation mask that is

of the same size as the input image.

Figure 2.5 – Architecture of VDSR [71] for SR.

FCN-based networks are utilized for image restoration tasks. However, due to the pooling

layers in CNNs, spatial information is gradually removed as the deeper one goes in the network

architecture. Hence, for the image restoration tasks, pooling layers are usually abandoned. An

example of a SR network that contains only convolution layers and activation layers is shown

in Figure 2.5. More details are given in Section 2.2.

2.1.3 Generative Adversarial Networks

Generative models are a class of models that describes how a dataset is generated in terms of

a probabilistic model. Among different generative models, Generative Adversarial Networks

(GANs) [43] introduce a very clever internal adversarial training mechanism and has achieved

success in various situations.

GANs were inspired by game theory, where the generator and discriminator compete with

each other to achieve the Nash equilibrium in the training process. The architecture of GANs is

illustrated in Figure 2.6. The purpose of generator G is to fit as much as possible the potential

distribution of real data, whereas the purpose of discriminator D is to correctly distinguish real

data from fake data. The input of the generator is a random noise vector z (usually a uniform

or normal distribution). The noise is mapped to a new data space via generator G to obtain a

fake sample, G(z), a multi-dimensional vector. The discriminator D is a binary classifier, it

takes both the real sample from the dataset and the fake sample generated by generator G

as the input. The output of discriminator D represents the probability that the sample is a

real rather than a fake. When the discriminator D cannot determine whether the data comes
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from the real dataset or the generator, the optimal state is reached. At this point, we obtain a

generator model G that has learned the distribution of the real data.

Figure 2.6 – The structure of GANs consisting of a generator and a discriminator. Figure taken
from [55].

As two players in game theory, both the generator and the discriminator have their own loss

functions. In this case, we call them L G and L D , respectively. In [43], the discriminator D is

defined as a binary classifier, and the loss function is represented by the cross entropy,

L D =−1

2
Ex∼pd at a (x)logD(x)− 1

2
Ez log(1−D(G(z))) (2.1)

where x represents the real sample, z represents the random noise vector, G(z) is the data

generated by the generator, and E represents the expectation. D(x) indicates the probability

that D discriminates x as real data, and D(G(z)) indicates the probability that D determines

the data generated by G to be real. The purpose of D is to correctly determine the source of the

data, hence it wants D(G(z)) to approach 0, whereas the purpose of G is to bring it closer to 1.

As a result, there exists a conflict between these two models (i.e., zero-sum game). Therefore,

the loss of the generator can be derived by the discriminator:

L G =−L D (2.2)

Consequently, the optimization problem of GANs is transformed into the minmax problem as

shown below,

min
G

max
D

Ee∼pd at a (x)[logD(x)]+Ez∼p(z)[log(1−D(G(z)))] (2.3)

In the training process, the parameters in G are updated, along with the parameters’ updat-

ing process in D. When D(G(z)) = 0.5, the discriminator cannot determine the differences

between these two distributions and, in this state, the model will achieve the global optimal

solution.

To enhance the GANs stability, it has been proposed to optimize the objective function. Che et
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Figure 2.7 – Example of the progression in the capabilities of GANs from 2014 to 2018. From
left to right: GAN [43], DCGAN [105], CoupledGAN [85], PGGAN [68], StyleGAN [69].

al. [15] propose two regularizers to make the learning more stable. If there is no overlap

between the distribution of generated data and real data, or if the overlap is negligible, the

divergence will be set to a constant. At this time, the gradient is zero, which will cause the

vanishing gradient problem. In order to address this problem, Arjovsky et al. [5] propose

Wasserstein Generative Adversarial Networks (WGAN). They theoretically show that the Earth

mover’s distance produces better gradient behaviors in distribution learning, compared to

other distance metrics. This approach provides a weight-clipping method to enforce the

Lipschitz constraint and finds a novel loss metric to address the problem of unstable training

processes. Due to the use of weight clipping in the discriminator, Gulrajani et al. [46] find

that the WGAN might still have unsatisfactory results or could not converge. Hence, they

propose a gradient penalty named WGAN-GP to enforce the Lipschitz constraint. Their

method also has a better performance than the original WGAN, and it enables training of

various GAN architectures, more stably than before with almost no hyper-parameter tuning.

Finally, Petzka et al. [101] propose a new penalty term, known as WGAN-LP, to enforce the

Lipschitz constraint. This method further improves the stability of network training.

Generating new plausible samples was the application described in the original GAN pa-

per [43], where GANs were used to generate new plausible examples for the MNIST hand-

written digit dataset, the CIFAR-10 small object photograph dataset, and the Toronto Face

Database. Although the plain GANs show some difficulties in generating high-resolution

images, Radford et al. [105] first decompose an image into a Laplacian pyramid, then they

use multiple GANs to generate the details at different levels of the pyramid. The algorithm,

known as DCGAN, uses the concatenation of multiple convolutions to generate, in one shot,

high-resolution images. DCGAN also demonstrates the ability to perform vector arithmetic

with the input to the GANs (in the latent space)with both generated bedrooms and generated

faces. Later, different algorithms were proposed to improve the quality of the generated images.

Figure 2.7 shows an example of the rapid progress of GANs.

As GANs are able to produce realistic textures [66, 79, 106, 137, 152], they are also used in
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image restoration tasks to push the network to reconstruct high-quality details [79, 109, 128].

We will discuss in more details in Section 2.2.

For deep learning applications, the massive data development (e.g., collecting, labeling),

which is an essential process in building practical applications, still incurs seriously high

costs. One of the most common techniques for alleviating the costs of labeled data is data

augmentation. Based on the fact that GANs are able to generate various and realistic data-

samples by learning data distributions and that they can generate unseen samples from the

learned distributions, several methods have been presented to augment data by applying

GANs. These methods [7, 18] employ the ability of GANs and use the generated samples for

additional input for the target task. Calimeri et al. [12] propose to simply apply generated

samples as additional data in medical imaging tasks. Zhu et al. [153] have shown an application

by using conditional GANs to augment plant images. For re-identification tasks in computer

vision, the study of [147] presents a training method with unconditional generated samples.

Tran et al. [124] proposes a way to train classification models with GANs in semi-supervised

fashion. These works show the power of GANs in generating high-quality samples; and they

show that the networks trained on the extended dataset obtain higher accuracy. We also use

this technique,in Chapter 4, to resolve the problem of a limited training dataset.

2.2 Image Restoration

Image restoration techniques are used to improve the appearance of an image by applying

a restoration process that uses an underlying mathematical model describing image degra-

dation. The types of degradation include blur, noise, and low-resolution(LR) Generally, it

is assumed that the degradation model is known or can be estimated. Techniques used for

image restoration are oriented toward modeling the degradations, and toward applying in-

verse procedures to obtain an approximation of the original scene. A general block diagram of

image restoration is shown in Figure 2.8. The information about the acquisition process is fed

as inputs for the improvement of the degradation model. To obtain the restored image, which

presents an estimate of the original image, the inverse degradation process is then performed

to the degraded image. The information obtained by analyzing the difference between the

restored image and the original image is used to further refine the degradation model.

The typical image restoration tasks in this thesis include SR, denoising, deblurring, and

demoisaicing, with examples shown in Figure 2.9. In this section, we first introduce the inverse

problem that underlies image restoration. We then present the SR methods and the other

image restoration tasks that are involved in real-world SR. Lastly, we review the datasets that

are used to evaluate image restoration tasks.
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Figure 2.8 – Block diagram for image restoration.

2.2.1 Inverse Problems

Solving an inverse problem is a process that reconstructs unobserved variables from a set

of observed data. Inverse problem methods are widely used in signal processing, medical

imaging, computer vision, and especially in image restoration. For example, HR images

provide rich textures that are pleasant to view on high-definition monitors, but HR images are

hard to acquire due to the hardware limitations. Image SR is an inverse problem that generates

a HR image from an observed LR image. Another example of an inverse problem is image

denoising that generates a clean image from a noisy image.

Mathematically, in an inverse problem, an unknown variable y ∈ Y →Rdi m1 is reconstructed

from an observed variable x ∈ X →Rdi m2 , where di m1 and di m2 are dimensions of space Y

and X, respectively. It is usually modeled as a linear system:

x = Ay +ε (2.4)

where A : Y → X is a linear projection model and ε is a random noise variable. A is a human-

designed projection matrix, or a learned function from a training data set.

Inverse problems have two difficulty categories: well-posed and ill-posed. A well-posed

inverse problem has two features: (1) the number of unknowns y is smaller than the number

of observations x; (2) the condition number of A is small. A well-posed problem has a unique

and stable solution. A simple method, such as the ordinary least squares (OLS), can generate

a good result. Whereas, in an ill-posed inverse problem, the number of unknowns is larger

than that of observations, or the condition number of A is large, which causes numerical

instabilities or overfitting problems. In practice, many important inverse problems are ill-

posed. For example, single image SR, addressed in this thesis, is an ill-posed inverse problem.

Regarding model complexity, there are different kinds of inverse problem methods. In this

thesis, we focus on the deep learning methods. In particular, to use deep learning methods

to resolve the inverse problem of estimating y ∈ Y from an observation x ∈ X, where the pair
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Figure 2.9 – Image restoration tasks included in this thesis.

s = (x, y) is drawn from the sample space D = X×Y according to some unknown distribution

µ. With the access to a set of training samples S = (xi , yi ), a regressor can be learned

R(·) : Y → X (2.5)

that can be used to deliver an estimate of x ∈ X given y ∈ Y. Here, the regressor is a CNN that

will be learned from the given dataset. Different architectures have been designed for different

tasks, and they are reviewed in the following sections.

2.2.2 Image Super-Resolution

Single image super-resolution (SISR) refers to the task of restoring HR images from the LR ob-

servation of the same scene (an example is shown in Figure 2.9). It is a notoriously challenging

ill-posed problem because a specific LR input can correspond to a number of possible HR

images, and because the HR space (in most instances, it refers to the natural image space)

that we intend to map the LR input to is usually intractable. Previous non-deep learning SR

methods have two main drawbacks: One is the unclear definition of the mapping that develop

between the LR space and the HR space, and the other is the inefficiency of establishing

a complex high-dimensional mapping, given the massive data. Benefiting from the strong
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capacity of extracting effective high-level abstractions that bridge the LR and HR space, recent

CNN-based SR methods have achieved significant improvements, both quantitatively and

qualitatively.

In this section, we give an overview of recent CNN-based SR algorithms. We focus on the

efficient neural network architectures designed for SR and effective optimization objectives

for CNN-based SR learning. From the perspective of deep learning, although many other

techniques such as data preprocessing and model training techniques are also quite important,

the combination of deep learning and domain knowledge in SR is usually the key to success

and is often reflected in the innovations of neural network architectures and optimization

objectives for SR.

Figure 2.10 – Sketch of the overall framework of SR. Figure taken from [134].

In the typical SR framework, as depicted in Figure 2.10, the LR image ILR is modeled as follows:

ILR = (IHR ⊗k) ↓s +n (2.6)

where IHR ⊗k is the convolution between the blur kernel k and the unknown HR image IHR ,

↓s is the downsampling operator with scale factor s, and n is the independent noise term. In

image SR, the goal is to minimize the data fidelity term associated with the model presented

in Equation 2.6.

Network Architectures for Super-Resolution

The early SR networks proposed an early upscaling design, where the LR inputs are first

upscaled to match the desired HR output size before feeding them into the network. A super-

resolution convolutional neural network, abbreviated as SRCNN [24] is the first successful

attempt towards using only convolutional layers for SR. This effort can rightfully be considered

as the pioneering work in deep learning based SR that inspired several later attempts in this

direction. The SRCNN structure is straightforward, it consists of only convolutional layers

where each layer (except the last one) is followed by a rectified linear unit (ReLU) [97] non-

linearity. There are a total of three convolutional and two ReLU layers, all stacked together

linearly. Although the layers are the same (i.e., convolution layers), the authors named the

layers according to their functionality. The first convolutional layer is termed patch extraction
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or feature extraction: it creates the feature maps from the input images. The second convolu-

tional layer is called non-linear mapping: it converts the feature maps onto high-dimensional

feature vectors. The last convolutional layer aggregates the feature maps to output the final

high-resolution image. The structure of SRCNN is shown in Figure 2.11.

Figure 2.11 – Architecture for the first SR network: SRCNN [24].

Following SRCNN, many SR networks were proposed to improve SR. VDSR [71] is a 20-layer

VGG-based [115] SR network. In addition to the architecture, VDSR is the first SR network

that uses it for multiple scales. VDSR also proposes a residual learning strategy; it uses deep

CNN to learn the mapping from the input to the residual between the input LR and HR. The

authors argue that residual learning can improve performance and accelerate convergence.

EDSR [84], proposed by Lim et al., utilize a modified residual block from ResNet [59], and

achieve the first place in NTIRE2017 SR challenge [122]. Except for the increase of regular

depth, to achieve better performance EDSR also increases the number of output features of

each layer on a large scale. Some SR networks also incorporate with frequency domain [150, 34]

to improve the performance. Recently, Zhang et al. [142] proposed RDN, it uses a structure

similar to DenseNet [62] and achieves the state-of-the-art performance. In an RDN block,

basic convolution units are densely connected similar to DenseNet. At the end of an RDN

block, a bottleneck layer is used, followed by residual learning across the whole block. Before

entering the reconstruction part, features from all previous blocks are fused by the dense

connection and residual learning.

The input to early SR networks is the bicubic-upscaled LR that serves as the approximation

of HR. However, these interpolated inputs have several drawbacks: (1) detail-smoothing

effects introduced by these inputs could lead to further wrong estimations of the image

structure, (2) employing interpolated versions as input is very memory-consuming, and

(3) when the downsampling kernel is unknown, one specific interpolated input as a raw

estimation is unreasonable. To solve these problems, Shi et al. [112] proposed an efficient

subpixel convolution layer, namely Pixelshuffle layer, in ESPCN [112]. The structure of ESPCN

is shown in Figure 2.12. Rather than increasing the resolution by explicitly enlarging feature

maps as the deconvolution layer does, ESPCN expands the channels of the output features for

storing the extra points to increase resolution then rearranges these points to obtain the HR
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Figure 2.12 – Detailed sketch of ESPCN [112]. Figure taken from [134].

output through a specific mapping criterion. As the expansion is carried out in the channel

dimension, a smaller kernel size is sufficient.

Loss Functions for Super-Resolution Networks

As peak signal-to-noise ratio (PSNR) is a widely used metric for quantitatively evaluating image

restoration quality, existing SR approaches predominantly use pixel-level error measures, e.g.,

l1 and l2 distances or a combinations of both. As these measures encapsulate only local pixel-

level information, the resulting images do not always provide perceptually sound results. For

example, it has been shown that images with high PSNR and SSIM values give overly smooth

images with low perceptual quality. To counter this issue, several perceptual loss measures

are proposed in the literature. Johnson et al. [67] use the feature maps extracted from VGG

net [115] to enhance the visual quality by minimizing the error in a feature space instead of

pixel space. Contextual loss [93] is developed to generate images with natural image statistics

by using an objective that focuses on the feature distribution rather than merely comparing

the appearance. Ledig et al. [79] propose the SRGAN model that uses perceptual loss and

adversarial loss to favor outputs that reside on the manifold of natural images. Sajjadi et

al. [109] develop a similar approach and further explore the local texture matching loss. Using

these works, Wang et al. [128] propose ESRGAN; it won first place in PIRM2018 SR competition.
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Figure 2.13 – Alghouth the SR result from SRGAN [79] obtains lower PSNR and SSIM than the
same network trained without adversarial loss, the image quality is much higher. Figure taken
from [79].

2.2.3 Raw Image Processing

To apply SR on real photographs, it is important to understand how images are produced

from the camera sensor. Most camera sensors capture only red, green, or blue information at

each pixel. This is achieved by placing a color-filter array (CFA) in front of the CMOS, which

is illustrated in Figure 2.14a. The Bayer pattern, as shown in Figure 2.14b is a very common

example of such a CFA. The resulting image, without any post-processing, is called a raw

image. The process for recovering the full-color image from the incomplete raw image is called

demosaicing and is the crucial first step of most digital camera pipelines. An example of a

Bayer pattern raw image and demoisaicing is shown in Figure 2.9.

(a) Illustration of CFA. (b) Bayer pattern

Figure 2.14 – Illustration of CFA and Bayer pattern.

Many demosaicing algorithms have been proposed. To fill the missing pixels, early approaches

use different interpolations for luminance and chrominance in spatial domain or the frequency

domain. Advanced works tend to build on the underlying image statistics. They rely on
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techniques ranging from SVM regression to shallow neural network architectures. They

outperform the traditional methods and give state-of-the-art results. Heide et al. [60] formulate

demosaicing as an image reconstruction problem and, to achieve natural results, they embed

a non-local natural image prior to an optimization approach, called FlexISP . To efficiently

learn a suitable regularization term from training data, Klatzer et al. [74] build a variational

energy minimization framework SEM, thus yielding high-quality results in the presence of

noise. More recently, to improve the quality of demosaicing by training on a large dataset,

Gharbi et al. [42] proposed a deep learning-based demosaicing method.

Although demoisaicing is usually applied before other image restoration tasks, prior works

have shown that using raw sensor data is able to enhance other image processing tasks. Far-

siua et al. [37] propose a maximum a posteriori technique for joint multi-frame demosaicing

and SR estimation with raw sensor data. Gharbi et al. [42] train a deep neural network for

joint demosaicing and denoising. These methods use synthetic Bayer mosaics. Similarly,

Mildenhall et al. [96] synthesize raw burst sequences for denoising. Chen [16] present a

learning-based image processing pipeline for extreme low-light photography by using raw

sensor data. DeepISP is an end-to-end deep learning model that enhances the traditional

camera image signal processing pipeline [111]. Similarly, we operate on raw sensor data and

propose a method to super-resolve raw images in Chapter 3.

2.2.4 Image Deblurring

As presented in the imaging model in Equation 2.6, the blur kernel k is an important parameter

in SR. In recent years, we have witnessed significant advances in single-image deblurring,

as well as blur kernel estimation. Efficient methods based on Maximum A Posteriori (MAP)

formulations were developed with different likelihood functions and image priors [11]. In

particular, heuristic edge-selection methods for kernel estimation [19] were proposed for

the MAP estimation framework. Multi-spectral information can also be used to improve the

deblurring results [32, 31]. To better recover the blur kernel and better reconstruct sharp edges

for image deblurring, some exemplar-based methods [52] exploit the information contained

in both the blurred input and example images from an external dataset. More recently, the

dark-channel prior [57] was used by Pan et al. [99] to simply and efficiently estimate the blur

kernel of natural images. As they achieve significant performance on deblurring tasks [78],

in Chapter 4, we adopt their kernel estimation algorithm for collecting blur kernels of real

images.

2.2.5 Image Denoisnig

For various reasons, such as photon absorption statistics, sensor architecture, and light levels,

images are inevitably contaminated with noise during acquisition. This leads to distortions

and loss of image information. SR algorithms are adversely affected by the presence of noise.

Therefore, image denoising plays an important role in image restoration.
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Image denoising removes noise from a noisy image, in order to restore the clean image. An

example is in Figure 2.9. Mathematically, the problem of image denoising can be modeled as

follows:

Inoi s y = Iclean +n (2.7)

where Inoi s y is the observed noisy image, Iclean is the unknown clean image, and n represents

the noise, which is usually an additive white Gaussian noise (AWGN) with standard deviation

σn .

Image denoising is also an ill-posed problem and has been studied extensively in the past

decades. In recent years, CNN-based denoising methods have been proposed [138, 120,

4]. Compared to conventional methods, such as BM3D [21], the denoising performance

of these methods has greatly improved. Zhang et al. [138] propose DnCNN that uses batch

normalization and ResNet [59] architecture to perform image denoising. This network not only

deals with blind image denoising, but also addresses image SR and JPEG image deblocking.

Its architecture is shown in Figure 2.15. Specifically, it obtains the residual image from the

model instead of the denoised image. FFDNet [139] uses a noise level map and a noisy image

as input to deal with different noise levels. This method exploits a single model to deal with

multiple noise levels. Anwar et al. [4] proposes a single-stage, blind real image denoising

network (RIDNet) by employing a modular architecture. A residual in the residual structure is

used to ease the flow of low-frequency information and, to exploit the channel dependencies,

it applies feature attention . The architecture of RIDNet is shown in Figure 2.16. To address the

unseen noise levels, El Helou et al. [33] propose an optimal denoising modal that learns the

SNR function for an optimal fusion of the noisy image with the learned prior to improving the

generalization of the denoising modals.

Figure 2.15 – Architecture of DnCNN [138].

2.2.6 Multi-modal Image Processing

Multi-modal image processing has been attracting increasing interest from the computer

vision community and is used in a variety of of intriguing applications, e.g., image denoising,

image fusion, image style transfer, and guided depth SR, as shown in Figure 2.17. Given an

image Ix and another image Iy , multi-modal image processing recovers a better version of

Ix , with the guidance of Iy , or fuses Ix and Iy to a new image Iz , which has the advantage

of both Ix and Iy . Different from uni-modal image processing tasks, e.g., single image SR,

multi-modal image processing usually requires proper modeling of the dependencies, across
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Figure 2.16 – Architecture of RIDNet [4].

different modalities.

Figure 2.17 – Examples of different multi-modal image processing tasks.

An example of multi-modal image processing is spectral image SR. Due to hardware limitations,

high spectral resolution images come at the cost of lower spatial resolution. To mitigate this

problem, they are often combined with higher spatial-resolution yet lower spectral-resolution

images. Previous works [129, 130, 135] used statistical methods to mix spatial information

from the high spatial-resolution low spectral-resolution image with the color information from

the multi-spectral bands. However, it is expensive and time-consuming to generate a large set

of registered spectral and color images. To cope with the limited training data, a model can be

trained on a large but related dataset then adapted to perform on the smaller given dataset.

Prior work on domain adaptation [22, 41, 48] show the merit of these techniques in handling

small or difficult-to-label datasets. Similarly, in Chapter 6, we use our original framework for

super-resolving the multi-spectral images, then we use a small residual network to refine the

result through a color image guide.
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2.2.7 Image Quality

Full Reference Image Quality Assessment

There is a large interest in the automatic assessment of the image quality, and numerous

measures have been proposed. When a ground-truth image IG with N pixels is available, the

quality of a corresponding (degraded or restored) image I can be defined as the pixel-level

fidelity to the ground-truth. Representatives are

– Mean Square Error (MSE) defined by MSE = 1
N

∑N
i=1(IG

i − Ii )2, where IG
i (or Ii ) is the i -th

pixel of IG (or I).

– Peak Signal-to-Noise Ratio (PSNR) defined by PSNR = 10log10
MAX2

IG

MSE where MAX2
IG is

the maximum possible pixel value of the image, which is usually 255.

Small shifts in the content of I, however, leads to poor MSE and PSNR scores – even when

the contents are identical. Therefore, another group of measures counts for such structural

similarity. The Structural Similarity Index (SSIM) is a perception-based model that considers

image degradation as a perceived change in structural information. PSNR and SSIM are the

common full-reference image quality metrics that are used for evaluating the quality of image

reconstruction results; thea are also used to evaluate different methods in this thesis. Note,

however, that their usability in evaluating perceived quality is modest.

2.3 Image Datasets

Large datasets are the basis for the deep learning methods. We introduce the datasets that we

use in the thesis in the following.

RAISE Dataset

Dang-Nguyen et al. [23] build up the RAISE dataset that contains 8,156 HR images with their

raw version that is uncompressed and guaranteed to be camera-native (i.e., never touched

or processed). The images are collected, from 2011 to 2014, by four photographers who used

three different camera models. The dataset contains different scenes and moments in over

80 places in Europe. All images are provided with tags: "outdoor", "indoor", "landscape",

"nature", "people", "objects" and "buildings”. Metadata is also provided, together with the

embedded annotations. Figure 2.18 shows some sample images from the RAISE dataset. As the

RAISE dataset provides untouched raw images, we use it in Chapter 4 for joint demoisaicing

and SR.
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Figure 2.18 – Examples of images in RAISE dataset [23].

DIV2K Dataset

To provide a large dataset for example-based single image SR and to study the state-of-the-art,

as emerged from the NTIRE 2017 challenge [122], Timofte et al. [122] collected the DIVerse 2K-

resolution image dataset, namely DIV2K. The dataset contains 1,000 color RGB images from

the Internet; they have a large diversity of sources (sites and cameras). All 1,000 images are

2K resolution, i.e., they have 2K pixels on at least one of the axes (vertical or horizontal). The

images are of high quality, both aesthetically and in terms of only containing small amounts

of noise and other corruptions such as blur and color shifts. DIV2K has a large diversity

of content, ranging from people, handmade objects, and environments (cities, villages), to

flora and fauna, and natural sceneries, including underwater and dim lighting conditions.

Examples of images in DIV2K are shown in Figure 2.19. As DIV2K serves as the state-of-the-art

benchmark for SR, in Chapter 4, we use DIV2K to evaluate our SR network.

DPED Dataset

The DPED dataset (DSLR Photo Enhancement Dataset) is collected by Ignatov et al. [64] to

solve the problem of image translation from poor quality images captured by smartphone

cameras to superior quality images achieved via a professional DSLR camera. DPED consists

of photos taken in the wild, synchronously by three smartphones (iPhone 3GS, Blackberry

Passport, Sony XperiaZ) and one DSLR camera (Canon 70D DSLR). Example quadruplets

can be seen in Figure 2.20. In total, DPED consists of 4549 photos from a Sony smartphone,

5727 from an iPhone, and 6015 photos in total from a Canon and a BlackBerry camera. The

photos were taken during the daytime in a wide variety of places and in various illumination

and weather conditions. To address the problem of misalignment, an overlapping region is
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Figure 2.19 – Examples of images in DIV2K dataset [122].

determined by SIFT descriptor matching, followed by a non-linear transform and a crop, thus

resulting in two images of the same resolution representing the same scene. As DPED dataset

provides real photographs taken from low-end cameras, in Chapter 4, we use it for references

of real-world LR images.

StereoMSI Dataset

The StereoMSI dataset [114] was first published and promoted during the PIRM2018 Spectral

Image SR Challenge [113]. This dataset contains 350 registered color-spectral image pairs

and benchmarks example-based spectral image SR. The color images are captured with an

RGB XiQ camera model MQ022CG-CM and the spectral images are captured with a XiQ multi-

spectral camera model MQ022HG-IM-SM4x4 covering wavelength from 470nm to 620nm.

The RGB camera contains a 2×2 Bayer RGGB pattern ; this is half of the size of the IMEC

spectral sensor’s pattern that has a 4×4 pattern that delivers 16 wavelength bands. As a result,

the resolution of the RGB images in each axis is twice that of the spectral images. We show an

example image set in Figure 2.21. In Chapter 6, we use StereoMSI dataset for evaluating our

spectral image SR.
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Figure 2.20 – Example quadruplets of images taken synchronously with DPED’s [64] four
cameras.

Figure 2.21 – A sample image from the StereoMSI dataset [114]. The dataset contains RGB
images with 14 wavelengths channels multi-spectral images.
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3 Super-Resolution with Raw Images

3.1 Introduction

There is an ever growing interest in capturing HR images that is in step with the increasing

quality of camera sensors and display devices. Ironically, the most prevalent image capture

devices are mobile phones, which are equipped with small lenses and compact sensors.

Despite the large advancements made in improving the dynamic range and resolution of

images captured by mobile devices, the inherent design choices still limit the ability to capture

very high-quality images.

The limitations come from two design issues. Firstly, the single CMOS sensor in most cameras,

including mobile cameras, measures at each spatial location only a limited range of wave-

lengths (red, green or blue) of the electromagnetic radiation instead of the full visible spectrum.

This is achieved by placing a color filter array (CFA) in front of the sensor, as introduced in

Section 2.2.3. The most common type of CFA is the Bayer pattern, which captures an image

mosaic with twice green for each red and blue waveband. Raw images are direct readings from

image sensors with these CFAs. These digital signals are further post-processed to obtain RGB

images through demosaicing that contain color information at each spatial location.

Secondly, as the sensor needs to be compact to fit into the device, resolution is limited by the

size of the photon wells. Small photon wells have a low well capacity, which limits the dynamic

range of the image capture. Large photon wells limit the number of pixels and thus resolution.

To reconstruct full color from the CFA mosaiced image, demosaicing algorithms are applied,

while LR can only be dealt with using SR algorithms in a post-processing step.

In the last few decades, demosaicing and SR have been independently studied and applied in

sequential steps. However, the separate application of demosaicing and SR is sub-optimal and

usually leads to error accumulation, as shown in Figure 3.1. This is because artifacts such as

color zippering introduced by demosaicing algorithms is treated as a valid signal of the input

image by the SR algorithms. As a result, the application of SR algorithms after demosaicing

algorithms may lead to visually disturbing artifacts in the final output.
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(a) SEM [74]+SRCNN [24] (b) FlexISP [60]+SRCNN [24]

(c) Our SR on raw image (d) Reference image

Figure 3.1 – Comparison of our SR result on raw image to the combinitions of state-of-the-
art demosaicing and SR methods. Note how the sequential application of demoisacing and
SR carries forward color artifacts or blurring (first row). Our method exhibits none of these
artifacts and is able to faithfully reconstruct the original.

The algorithms for demosaicing and SR are meant to overcome the sampling limitations of

digital cameras. It is reasonable to address them in a unified context. With the advent of deep

learning, there are several methods for SR [24, 25, 71, 72, 84, 112] that successfully outperform

traditional SR methods [29, 35, 40, 116, 118, 123, 133]. Only recently, deep learning has also

been used successfully for image demosaicing [42]. When using deep learning, it is possible to

address demosaicing and SR simultaneously, as we show in this chapter.

We train a CNN for SR on raw images. Our model is trained to learn an end-to-end map-

ping between raw images and HR color images to perform joint demoisaicing and SR. The

model is trained on the RAISE dataset [23] that contains more than 8,000 HR raw images with
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their post-processed version, as introduced in Chapter 2. The proposed model has several

appealing properties. First, its structure is intentionally designed with simplicity in mind,

and yet provides superior accuracy compared to the sequential application of state-of-the-art

demoisaicing and SR methods. Figure 3.1 shows a comparison on an example. Second, with

moderate numbers of filters and layers, our method achieves fast speed for practical online

usage. Our method is faster than a series of optimization-based methods, because it is fully

feed-forward and does not need to solve any iterative optimization. Third, the restoration

quality of the network argues well for the use of our approach in camera image processing

pipelines. For mobile devices this can encourage the use of sensors with large pixels that

capture a better dynamic range, rather than sacrificing dynamic range for higher resolution as

is done at the moment.

To summarize, our contributions in this chapter are1:

• We propose to use a deep residual network for end-to-end joint demosaicing and SR.

More specifically, our network can learn an end-to-end mapping between raw images

and HR color images.

• We present that this network generalizes to other color filter arrays (CFA) with a simple

modification of two layers of the network.

• We demonstrate both quantitatively and qualitatively that our approach generates

higher quality results than state-of-the-art methods. In addition, our method is compu-

tationally more efficient because of the joint operation. Our approach can be extended

to videos, and can potentially be integrated into the imaging pipeline.

• We demonstrate that deep learning is useful in the inverse problem of real scene SR,

and can achieve good quality and speed and be applied in camera image processing

pipelines.

Figure 3.2 – Block diagram presenting the assumed image formation in our model. Where IHR

is the intensity distribution of the real scene, B, D, F present the blurring, downsampling and
mosaicing process, Ir aw is the observed Bayer image.

1This work was published in [148].
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3.2 Method

3.2.1 Imaging Model for Joint Demoisaicing and Super-Resolution

Figure 3.2 shows a typical observation model relating the HR real scene with LR raw image as

introduced in the literature. In this formation model, the real world scene IHR is smoothed by a

blur kernel which represents the point spread function of the camera, then it is downsampled

by a factor of s and mosaiced by the CFA of the CMOS to get the observed raw image Ir aw .

These downsampled images might be further affected by sensor noise and color filtering noise,

however, we ignore the noise factor in this chapter and will discuss it in Chapter 5. Thus,

the raw images captured by the LR imaging system is the blurred, decimated, and mosaiced

version of the underlying true scene.

Let IHR denote the HR color image desired, and Ir aw be its LR raw observation from the

camera. The LR raw observation is related with the HR scene IHR by

Ir aw = F(D(B(IHR ))), (3.1)

where B models the blurring effects, D is the downsampling operator, and F is the mosaicing

procedure. The objective of joint demoisaicing and SR is to provide an approximate inverse

operation estimating an HR image ISR ≈ IHR given an LR raw image Ir aw . In general, Ir aw is

a real-valued tensor of size h ×w ×1, while IHR is a tensor of s ·h × s ·w ×3. This problem is

ill-posed as the downsampling and mosaicing are non-invertible.

3.2.2 Deep Residual Network for Joint Demoisaicing and Super-Resolution

To solve the problem described in the previous section, traditional methods usually design

nonlinear filters that incorporate prior heuristics about inter- and intra-channel correlation. A

deep CNN is a better substitute for such methods, as convolutional layers can automatically

learn to exploit inter- and intra-channel correlation through a large dataset of training images.

Moreover, the exclusive use of a set of convolutional layers enables joint optimization of all

the parameters to minimize a single objective as is the case in joint demosaicing and SR.

We thus build our framework in a data-driven fashion: we create the training set from a

large set of high-quality images IHR , and produce the input measurements Ir aw using the

same process as the image formation model illustrated in Figure 3.2, then we train our deep

convolutional network on this dataset.

The objective of the network is to learn a mapping from Ir aw to IHR which conceptually

consists of three operations:

• Color extraction: this operation separates the color pixels into different channels from

the mono-channel raw image. With this operation, no hand-crafted rearrangement of

the raw input is needed unlike in other demosaicing algorithms. This operation gives a
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Figure 3.3 – Illustration of our proposed network architecture. The network is a feed-forward
fully-convolutional network that maps an LR raw image to an HR color image. Conceptually
the network has three components: color extraction of raw image, non-linear mapping from
raw image representation to color image representation with feature extraction, and HR color
image reconstruction.

set of color features from the raw input.

• Feature extraction and non-linear mapping: following the intuition of building the

first deep neural network for SR [24], this operation extracts overlapping patches from

the color features to use high-dimensional vectors to represent the raw image in an LR

manifold, which is then mapped to the HR manifold.

• Reconstruction: this operation aggregates HR representations to generate the final

high-resolution color image ISR .

Color Extraction

The raw image is a matrix with the three color channel samples arranged in a regular pattern in

a single channel as introduced in Chapter 2. To make the spatial pattern translation-invariant

and reduce the computational cost in latter steps, it is essential to separate the colors in the

raw image into different channels at the beginning. The Bayer pattern is regular and has a

spatial size of 2×2 with RGGB (red-green-green-blue) pattern. Since the neighboring colors

may also affect the result, we build our first convolutional layer C1 with a spatial size of 2 · s

and a stride of s:

I1 =C1(Ir aw )(i , j ) = (W1 ⊗ Ir aw +b1)(2·i ,2· j ), (3.2)

where I1 represents the output from the first layer, W1 and b1 represent the filters and biases of

the first convolutional layer, and ⊗ denotes the convolution operation. Here, W1 corresponds

to 256 filters of support 2 · s ×2 · s. (i , j ) present the pixel location.

We build an efficient Pixelshuffle layer [112] C2 which has been introduced in Chapter 2 to
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upsample the color features back to the original resolution:

C2(I1)(i , j ,k) = I1

(
⌊

i
s

⌋
,
⌊

j
s

⌋
, c·mod( j ,s)

s + c·mod(i ,s)
s2 +k)

, (3.3)

here, the Pixelshuffle layer is equivalent to a shuffling operation which reshapes a tensor of

size h ×w × c into a tensor of size s ·h × s ·h × c
s2 . c is the number of channels of the input

tensor. We find that applying this sub-pixel convolutional layer helps reduce checkerboard

artifacts in the output.

Due to the linearity of the separation operation, no activation function is utilized in either

layer. Note that the color extraction operation can be generalized to other CFAs by modifying

s with respect to the spatial size and arrangement of the specific CFA. Thus we have s = 2 for

all kinds of Bayer CFAs, CYGM CFAs or RGBE CFAs, and s = 6 for the X-trans pattern [3].

Feature Extraction and Non-linear Mapping

Inspired by Dong et al. [24], to explore relationships within each color channel and between

channels, as well as to represent the raw image in a high-resolution manifold, we exploit a

group of convolutional layers in this step.

Figure 3.4 – Illustration of the architecture of our residual blocks. We remove the batch
normalization layer in the original residual blocks and replace the ReLU with Parametric ReLU.
This structure enables faster convergence and better performance.

Previous works [59] have demonstrated that residual networks exhibit excellent performance

both in accuracy and training speed in computer vision problems ranging from low-level to

high-level tasks. We build a set of 24 residual blocks, each having a similar architecture to

Lim et al. [84], which is demonstrated in Figure 3.4. We remove the batch normalization layers

in the original residual blocks [59] since these layers get rid of range flexibility from networks

by normalizing the features [84], because the scale of the features may be useful for image

restoration. We also replace the activation functions ReLU with Parametric ReLU [58](PReLU)

for preventing dead neurons and vanishing gradients caused by ReLU. These modifications

help stabilize the training and reduce color shift artifacts in the output. For convenience, we

set all residual network blocks to have the same number of filters of 256.

Reconstruction

In the reconstruction stage, we apply another Pixelshuffle layer to upsample the extracted

features to the desired resolution. This is followed by a final convolutional layer to reconstruct
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the HR color image.

The summary of our network architecture is shown in Table 3.1.

Stage Layer Output Shape
Input (raw image) h ×w ×1

1 Conv with a stride of 2 h
2 × w

2 ×256
Pixelshuffle h ×w × 256

4
Conv, PReLU h ×w ×256

2 Residual Block h ×w ×256
... h ×w ×256

Residual Block h ×w ×256
3 Pixelshuffle 2 ·h ×2 ·w × 256

4
Conv, PReLU 2 ·h ×2 ·w ×256

Conv 2 ·h ×2 ·w ×3
Output (color image) 2 ·h ×2 ·w ×3

Table 3.1 – The summary of our network architecture. The stages 1,2,3 of the first column
correspond to the three stages of color extraction, feature extraction and non-linear mapping,
and reconstruction, respectively illustrated in Figure 3.3. We set the number of filters as 256
and use 24 residual blocks in stage 2.

3.3 Experiments

For training and evaluation of the network, we use the publicly available dataset RAISE [23],

which provides 8,162 uncompressed raw images as well as their demosaiced counterparts

in TIFF format. RAISE contains a variety of content including landscape, people, building,

animal, plant, etc. Some example images from RAISE are shown in Figure 3.5.

It is to be noted that if we use images that are already demosaiced by a given algorithm to

our network, the network will learn to generate any artifacts introduced by the demosaicing

algorithm. Moreover, we only deal with demosaicing and SR. We make the assumption that

other image restoration tasks, such as denoising, would be resolved in other steps in the image

processing pipeline, thus noise should not be modeled in our image sampling pipeline. To

circumvent this problem, we use the demosaiced images of RAISE that are larger than 16

megapixels in size. We then perform a progressive downsizing of the image in steps by a factor

of 1.25 each time until we obtain one-fourth of the original image size (i.e., down to about 4

megapixels). This is done to eliminate artifacts that have potentially been introduced by the

demosaicing algorithm as well as by other factors in the camera processing pipeline. This way

we obtain high-quality ground-truth IHR , to serve as the super-resolved images.

To create input raw images Ir aw from these ground-truth images, we further downsample the

previously downsampled images to one-fourth of the size (to about 1 megapixels) also using

the progressive downsizing. We follow the assumed image formation demonstrated in Figure

37



Chapter 3. Super-Resolution with Raw Images

Figure 3.5 – Example images in RAISE [23].

3.2. As required for the Bayer pattern, we set the downsample factor s = 2, and sample pixels

from the three channels in the Bayer CFA pattern to obtain a single-channel mosaiced image

as low-resolution input image for training. Thus, for a h ×w ×1 raw image input, the desired

color image output is of size 2 ·h ×2 ·w ×3. These steps are illustrated in Figure 3.6.

To train our network, we use a subset of RAISE of 6,000 images. In particular, we randomly

selected 4,000 photos from the landscape category and randomly selected 2,000 photos from

other categories, as the landscape images usually contain more challenging details than other

images. We also randomly select 50 images from the rest of the RAISE dataset to build the

testing set. We made sure that there were no duplicate images in the training and testing sets.f

3.3.1 Training Details

For training, we use 64×64×1 sized patches from the Bayer mosaic images as input. As output

images we use color image patches of size 128×128×3 from the high-resolution (4 megapixel)

images. We train our network with ADAM optimizer [73] by setting the learning rate = 0.0001,

β1 = 0.9, β2 = 0.999, and ε= 10−8. We set the batch size to 16. For better convergence of the

network, we halve the learning rate after every 10000 mini-batch updates.
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Figure 3.6 – Illustration of the steps we take to create the input and output images of our train-
ing and testing dataset. The original 16 megapixel images are downsampled to 4 megapixel
eliminate demosaicing errors. The 4 megapixel images serve as reference SR images, whose
downsampled 1 megapixel version provide the the single-channel raw images used as input to
our network. Note that all the downsampling operation in the procedure is using a progressive
downsizing to avoid the aliasing artifacts.

3.3.2 Results

Since we are not aware of any other joint demosaicing and SR algorithms for single raw

image in the existing literature, there is no existing method for us to compare with. To

illustrate the performance of our proposed end-to-end network, we designed experiments

to simulate the conventional image processing pipeline for comparison. We compare our

method with the sequential application of different state-of-the-art demosaicing algorithms

(ADMM [121], FlexISP [60], SEM [74] and DemosaicNet [42]) and the state-of-the-art SR

algorithm (SRCNN [24] and MDSR+ [84]). We use the published code from these works.

As in the conventional image processing pipeline, demosaicing and SR are two different

components which are supposed to be resolved independently, we do not fine-tune the SR

algorithms on the demosaicing algorithms.

Note that ADMM [121], SEM [74], and DemosaicNet [42] perform joint demosaicing and

denoising, for fair comparison, we set the noise-level σ= 0 for these methods. As SRCNN only

provides upsampling in the luminance channel, we upsample the chroma channels using

bicubic interpolation. The process is shown in Figure 3.7. We use the best model with most

features of SRCNN (the 9-5-5 model).

Quantitative Results

In Table 3.2 we report the PSNR values of our approach in comparison to other methods on

the testing dataset. In terms of PSNR, Our approach outperforms the next best combination

of state-of-the-art techniques of demosaicing and SR by a significant PSNR difference of

1.3dB on average computed over the 50 images of the test-set. Note that the deep models

for demoisaicing algorithms outperform the conventional methods on our test set (when

comparing the last three rows with the other rows in the table), which demonstrate the power

39



Chapter 3. Super-Resolution with Raw Images

(a)

(b)

Figure 3.7 – (a) is our framework for joint demosaicing and SR, our network can perform the
whole process in an end-to-end manner. (b) shows a typical pipeline to combine the demosaic
algorithms and SR algorithms, which we use for comparing with other algorithms. Unlike
most SR algorithms that output only the luminance channel, we directly generate full color
output.

of CNNs. We also notice that although MDSR+ is a better SR network than SRCNN according

to some SR benchmark [122], the SR results of MDSR+ on the demoisaiced images achieve

worse PSNR and SSIM results than SRCNN. It is due to the fact that the SR network followed

by the demoisaicing algorithm will also accumulate the artifacts created by the demoisaicing

algorithm and the better SR modal amplify more the noise. Our proposed network, benefiting

from the joint optimization, is able to reduce these kinds of artifacts.

Method PSNR SSIM
ADMM* [121]+SRCNN [24] 28.18 0.895
ADMM* [121]+MDSR+ [84] 26.93 0.883

FlexISP [60]+SRCNN [24] 29.61 0.918
FlexISP* [60]+MDSR+ [84] 29.12 0.919

SEM* [74]+SRCNN [24] 29.50 0.935
SEM* [74]+MDSR+ [84] 29.37 0.938

DemosaicNet* [42]+SRCNN [24] 30.13 0.937
DemosaicNet* [42]+MDSR+[84] 30.12 0.929

Ours 31.41 0.948

Table 3.2 – The mean PSNR and SSIM of different methods evaluated on our testing dataset.
For the methods that perform joint demosaicing and denoising, we set their noise-level to 0
for fair comparison. There is a significant difference between the PSNRs and SSIMs of our
proposed network and existing state-of-the-art methods.
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Reference image:

FlexISP [60] + SRCNN [24]:

(22.23dB , 0.886) (33.00dB , 0.981) (26.28dB , 0.913) (27.59dB , 0.923)
SEM [74] + SRCNN [24]:

(19.98dB , 0.790) (32.58dB , 0.979) (26.20dB , 0.915) (27.59dB , 0.933)
DemosaicNet [42] + SRCNN [24]:

(23.21dB , 0.900) (32.30dB , 0.980) (26.77dB , 0.926) (28.54dB , 0.933)
Ours:

(23.15dB , 0.905) (34.30dB , 0.986) (27.55dB , 0.938) (29.68dB , 0.956)

Figure 3.8 – Joint demosaicing and SR results on images from the RAISE [23] dataset. The two
numbers in the brackets are the PSNR and SSIM scores, respectively.
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Reference image:

FlexISP [60] + SRCNN [24]:

(25.38dB , 0.913) (24.74dB , 0.885) (32.37dB , 0.993) (36.24dB , 0.981)
SEM [74] + SRCNN [24]:

(25.10dB , 0.913) (27.20dB , 0.935) (30.88dB , 0.990) (34.60dB , 0.981)
DemosaicNet [42] + SRCNN [24]:

(25.75dB , 0.921) (27.43dB , 0.934) (32.40dB , 0.99) (36.012dB , 0.983)
Ours:

(25.87dB , 0.926) (28.14dB , 0.947) (34.06dB , 0.995) (38.071dB , 0.989)

Figure 3.9 – Joint demosacing and SR results on images from the RAISE [23] dataset. The two
numbers in the brackets are the PSNR and SSIM scores, respectively.
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3.4. Conclusion and Discussion

Qualitative Results

To further validate the quality of our results, we show qualitative comparisons in Figure 3.8. We

have omitted the comparisons with ADMM [121] and MDSR+ [84] because the combination

with these two algorithms performs worse than the presented results of the other combinations.

Note that although MDSR+ [84] is a superior SR algorithm to SRCNN [24], sometimes it

performs worse than SRCNN as it accumulates more the artifacts produced by the demosaicing

algorithms.

The combination of FlexISP [60] and SEM [74] produces some disturbing artifacts such as

zippering around the edge and false color artifacts. These are particularly visible in the man’s

clothes (in the first column of Figure 3.8) and the text (in the last column of Figure 3.8).

Both DemosaicNet [42] and our network can produce demosaiced images without these

artifacts, but our network is able to recover more realistic details. This is demonstrated in the

second and the fourth column of Figure 3.8. Our network is able to produce higher quality

color images without the visually disturbing artifacts introduced by the other methods.

Runtime

We test the runtime of our method and the algorithms we compared to on 100 input images of

size 256×256 using a Nvidia TITAN X. The results are shown in Table 3.3. As FlexISP and SEM

rely on iterative optimization, they take more than 100,000 ms on average. While DemosaicNet

takes on average 650 ms for demosaicing alone, our method has an average of 619 ms for the

joint operation of demosaicing and SR.

Method CPU (ms) GPU (ms)

SR

SRCNN 297
MDSR+ 5,283

D
em

o
is

ai
ci

n
g ADMM 235,785

FlexISP 185,240
SEM 711,039

DemosaicNet 650
Ours 619

Table 3.3 – Runtime of the tested demosaicing and SR algorithms. Our network is faster than
other methods.

3.4 Conclusion and Discussion

The ill-posed problems of demosaicing and SR have always been dealt with as separate

problems and then applied sequentially to obtain HR images. This has continued to remain

the trend even after the advent of CNN’s. In this chapter, we propose the first CNN-based
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joint demosaicing and SR framework for single image, which is capable of directly recovering

high-quality color HR images from raw images. Our proposed method outperforms all the

tested combinations of the state-of-the-art demosaicing algorithms and the state-of-the-art

SR algorithms in quantitative measurements of PSNR and SSIM as well as visually.

As our network performs demosaicing and SR in one shot. Our approach does not produce

disturbing color artifacts akin to algorithms in the literature for the input images produced by

our imaging pipeline. Although these demosaicing artifacts may not appear in the real-world

cases as these noise and aberrations are eliminated by the lens blur, our approach provides

the sharpest and the most realistic result compared with other methods even when ignoring

the artifacts.

Note that as demosaicing is a spectral SR that is executed using different scales on different

color channels to get a full color image, it can be viewed as a multi-scale SR on the Bayer

CFA patterns. Thus it is reasonable to address demosaicing and SR in a unified context. This

argues well for the use of our approach of jointly performing both tasks in camera image

processing pipelines. Recent work published by Xu et al. [132] also have shown the superiority

of learning SR with raw data. For mobile devices this can encourage the use of sensors with

large pixels that capture a better dynamic range, rather than sacrificing dynamic range for

higher resolution as is done at the moment.
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4 Blind Image Super-Resolution

4.1 Introduction

As shown in the previous chapter, CNN-based SR models [24, 71, 128] for learning the mapping

from LR images to HR images require large sets of paired LR and HR images for training.

However, it is non-trivial to obtain such paired LR and HR ground-truth images of real scenes.

Current SR networks, including our method in the previous chapter, rely on synthetically

generated LR images [122]. The most common technique to generate an LR image is to

apply bicubic interpolation [70] to the HR image. However, the bicubic convolution kernel is

different from real camera blur [94]. The loss of high-frequency details in camera-captured

images is due to several factors, such as optical blur, atmospheric blur, camera shake, and

lens aberrations [98]. As a result, even though these CNN-based SR networks perform well

on bicubic-downsampled LR images, their performance is limited on real photographs as

they operate under a wrong kernel assumption [28, 94]. SR networks are sensitive to kernel

mismatch [28] and SR results will contain obvious artifacts if an inaccurate kernel is used

for SR training. As shown in Figure 4.1, when the kernel used for training SR networks are

"sharper" than the real one, the SR results are overly smoothed, while when the kernel used for

training SR networks are smoother than the real one, the SR results contain unnatural ringing

artifacts [45]. Here, a sharper kernel means the value of the kernel is more concentrated in

the middle and the pixels that are far away from the center has less coefficient on the filtering

effect. Some GAN-based methods [8, 79, 109, 128] can be extended to train SR networks on

unpaired datasets, they still rely on unrealistic blur kernels. SR on real LR photographs with

unknown camera blur thus remains a challenging problem.

To resolve the SR problem of unknown blur kernels, namely blind image SR, we need to gener-

ate synthetic LR images with real camera blur for training the SR network. We can use kernel

estimation algorithms [75, 78, 99] to extract realistic blur kernels from real LR photographs.

However, as each camera, lens, aperture, and atmospheric condition combination may re-

sult in a different blur kernel, it is challenging to generate a sufficiently large and diverse

dataset [75, 78] needed to train an SR network.
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Chapter 4. Blind Image Super-Resolution

Figure 4.1 – SR sensitivity to kernel mismatch. σLR denotes the kernel used for generating
the testing LR image and σSR denotes the kernel used for training SR network. Image taken
from [45].

One approach is to generate synthetic LR images using many blur kernels [102], which will

improve the generalization ability of the SR network. Using a kernel estimator, we first ex-

tract blur kernels from real photographs and use them for training a GAN. First proposed

in [43], GANs are a class of neural networks that learn to generate synthetic samples with the

same distribution as the given training data [7]. We thus augment the limited kernel set we

obtained using kernel estimation by leveraging the GAN’s ability to approximate complex

distributions [66, 79, 106, 137] to learn and generate additional blur kernels.

Our Kernel Modeling SR (KMSR) thus consists of two stages, as shown in Figure 4.2. We first

generate a GAN augmented realistic blur kernel pool by extracting real blur kernels from

photographs with a kernel estimation algorithm and by training a GAN to augment the kernel

pool. We then construct a paired LR-HR training dataset with kernels sampled from the kernel

pool, and train a deep CNN for SR.

Our major contributions in this chapter are as follows1:

1This work was published in [151]
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4.2. Blind Image Super-Resolution

Figure 4.2 – Illustration of our proposed kernel modeling SR (KMSR) framework. The first stage
consists of blur kernel estimation from real photographs, which are used in training a GAN to
generate a large pool of realistic blur kernels. These generated blur kernels are then utilized to
create a paired dataset of corresponding HR and LR images for the training of a deep CNN.

• We introduce Kernel Modeling SR, namely KMSR, to improve blind SR on real pho-

tographs by incorporating realistic blur kernels in the framework, which improves the

generalization capability of the network to unseen blur kernels.

• We show that a GAN can reliably generate realistic blur kernels.

• We test the blind SR performance on both selected blur kernels and real images. Ex-

tensive experiments show that the proposed KMSR achieves state-of-the-art results in

terms of both visual quality and objective metrics.

4.2 Blind Image Super-Resolution

4.2.1 Kernel Modeling Blind Super-Resolution

Let IHR be an HR image of size h ×w pixels, and let ILR be an LR observation of IHR of size

bh/sc×bw/sc, where s > 1 is the downsampling factor. The relation between IHR and ILR is

expressed as in Chapter 2:

ILR = (IHR ⊗k) ↓s + n, (4.1)

where k denotes an unknown blur kernel, ↓s denotes a decimation operator by a factor s, ⊗
is the convolution operation and n is the noise. We assume here that there is no noise in the

LR image acquisition model or the denoising is performed perfectly in the other process, i.e.,

n = 0.

We upscale the LR image to a coarse HR image ILR ′
with the desired size h ×w with traditional

bicubic interpolation by the same factor s:

ILR ′ = (ILR ⊗bs), (4.2)
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where bs is the bicubic upscaling kernel with scale s. Thus we have

ILR ′ = ((IHR ⊗k) ↓s)⊗bs , (4.3)

Simplified,

ILR ′ = IHR ⊗k ′ (4.4)

where k ′ = (k ⊗bs) ↓s .

To train a blind CNN SR network, we need paired training data IHR and ILR ′
, obtained according

to Equation 4.4 with different kernels k ′. We adopt a GAN to help solve this problem. It is

difficult to train a generative network to consistently recover HR images without artifacts.

Thus, alternatively, our GAN is trained to produce blur kernels rather than images.

4.2.2 Blur Kernel Pool

As mentioned in the previous section, SR networks are sensitive to kernel mismatch, thus it is

important to collect realistic blur kernels for building the synthetic LR-HR training pairs. In

this thesis, we estimate realistic blur kernels from real photographs. However, each camera

has multiple Point Spread Functions (PSFs) resulting from optical blur (aberrations, aperture,

focal length, etc.) and motion blur. It is not realistic to collect all possible PSFs. Thus, to make

the SR network more generic to unseen kernels, we extend the collected kernels by using GAN

for kernel modeling and kernel generation. The combination of the estimated kernels and the

GAN generated kernels forms the large kernel-pool used in building paired LR-HR training

data. We explain the blur kernel estimation and extension with GAN in this section.

Blur Kernel Estimation

To generate a set of realistic blur kernelsK′ = {k ′
1,k ′

2, . . . ,k ′
e }, we first randomly extract a patch

P of size d×d from the bicubic-upscaled LR image (or coarse HR image) ILR ′
. We then estimate

the blur kernel k ′ of size 25×25 from P using the blur kernel estimation algorithm of [99].

Their standard formulation for image deblurring, based on the dark channel prior [57], is as

follows:

min
P̂,k ′

∥∥P̂⊗k ′−P
∥∥+θ∥∥k ′∥∥2

2 +µ
∥∥∇P̂

∥∥
0 +

∥∥∥∇P̂
d ar k

∥∥∥
0

. (4.5)

P is the extracted patch from ILR ′
, P̂ is the estimated deblurred patch, and P̂

d ar k
is the dark

channel [57] of the patch. Coordinate descent is used to alternatively solve [99] for the latent

patch P:

min
P̂

∥∥P̂⊗k ′−P
∥∥+µ∥∥∇P̂

∥∥
0 +

∥∥∥∇P̂
d ar k

∥∥∥
0

, (4.6)

and the blur kernel k ′

min
k ′

∥∥P̂⊗k ′−P
∥∥+θ∥∥k ′∥∥2

2 . (4.7)
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To minimize Equation 4.6, half-quadratic splitting is utilized. The kernel estimation in Equa-

tion 4.7 is a least squares problem and can be solved using its closed form solution. Note that

the optimization algorithm for solving Equation 4.5 is proposed by Pan et al.and is not the

contribution of this thesis. More details about the algorithms can be found in [99].

To eliminate patches that are lacking high frequency details (such as patches extracted from

the sky, ground, and walls without much texture, etc.) in which the blur kernel estimation

algorithm might fail, we define constraints for P as follows:

|Mean(P)−Var(P)| ≥α ·Mean(P) (4.8)

where Mean(P) and Var(P) calculate the mean intensity and the variance, respectively, and

α ∈ (0,1). If the constraint is satisfied, P will be regarded as a valid patch and the estimated

blur kernel k ′ from P is added to the set K ′.

We extract 5 patches from each bicubic-upscaled LR image ILR ′
. We empirically set the patch

size d = 512 and α= 0.03.

Kernel Modeling with GAN

In practice, input LR images may be hard to obtain and limited to few camera models. In

addition, the kernel-estimation algorithm [99] is computationally expensive. As such, the

quantity and diversity of kernels collected in the last subsection is limited, and the results of

training a deep CNN only with these kernels will not suffice. We thus propose to model the

blur kernel distribution over the estimated kernel setK′, and to generate a larger blur kernel

poolK+ that contains more examples of realistic blur kernels with more diversity. We use a

GAN to generate these realistic blur kernels.

We use WGAN-GP [46], which is an improved version of WGAN [5], for the objective function

of our GAN:

LG AN = E
f̃ ∼Pg

[D( f̃ )]− E
f ∼Pr

[D( f )]+λ E
f̂ ∼P f̂

[(
∥∥∇D( f̂ )

∥∥
2 −1)2], (4.9)

where D is the discriminative network, Pr is the distribution overK′, and Pg is the generator

distribution. P f̂ is defined as a distribution sampling uniformly along straight lines between

pairs of points sampled from Pr and Pg . f , f̃ , f̂ are the random samples following the

distribution Pr , Pg and P f̂ , respectively.

We adopt a similar network architecture to DCGAN [46]. The generative network G takes

z ∼ N (0,1), a vector of length 100 and generates a blur kernel sample. It contains 4 fractionally-

strided convolutions [27] of filter size 4×4, with batch normalization [65], ReLU [97], and a final

convolution layer of filter size 8×8. The filter number of G from the second to the last unit is

1025, 512, 256, 1, respectively. The discriminative network D takes a kernel sample as input and

identifies if it is fake, it contains 3 convolution layers with instance batch-normalization [125]
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and leaky ReLU [131]. The filter number of D from the first to the third unit is 256, 512, 1024,

respectively. The overall architecture of GAN is shown in Figure 4.3.

Figure 4.3 – The network architecture of the Generative Adversarial Network for estimating the
distribution of the blur kernels. The generative network takes a z ∼ N (0,1), a vector of length
of 100 and generates a kernel sample, the discriminative network takes a kernel sample as
input and identifies if it is fake. The filter number of the generative network from the second
to the last unit is 256, 128, 64, and 1, respectively. The filter number of the discriminative
network from the first to the fourth unit is 64, 128, 256, and 512, respectively.

The trained GAN model G is used to generate blur kernel samples for augmenting K′ until

the final kernel poolK+ =K′∪ {G(z1),G(z2),G(z3), . . .} is obtained. Like the normalization of

kernels in [99], we apply sum-to-one and non-negative constraints on the generated kernels.

4.2.3 Super-Resolution with CNN

Deep neural networks implicitly learn the latent model from the paired training dataset, and

thus do not require explicit knowledge of image priors. Hence, we utilize a CNN in our SR

framework.

Figure 4.4 – The Convolutional Neural Network architecture of KMSR. We convolve the HR
image IHR with a blur kernel k ′ randomly chosen from the blur kernel poolK+ to generate
the coarse HR image ILR ′

. The other units each have 64 filters except for the last unit, where
the filter number is equal to the number of output channels.

We create the training dataset in the following manner: the HR images are divided into

small patches of size m ×m, which form the set IHR = {IHR
1 , IHR

2 , . . .}. Blur kernels in K +

obtained in Section 4.2.2 are randomly chosen to convolve with patches in IHR to obtain

50



4.3. Experiments

ILR ′ = {ILR ′
1 , ILR ′

2 , . . .}, where ILR ′
i = IHR

j ⊗k ′
l . The sets ILR ′ and IHR form a paired training dataset

{ILR ′ ,IHR }.

The network structure of the CNN, which consists of 16 residual blocks [59], is illustrated

in Figure 4.4. The batch normalization is removed similary to in the model in Chapter 3 to

improve the performance of the network. Zero padding is adopted to ensure consistent input

and output dimensions. The objective function of our network is

L1 =
∑ |IHR − ISR | (4.10)

and enables the network to obtain better performance than using a Euclidean norm [145].

4.3 Experiments

4.3.1 Implementation Details

We utilize the DPED [64] images to build the realistic blur kernel set K′. DPED [64], as

introduced in Chapter 2, is a large-scale dataset that consists of over 22,000 real photos

captured with 3 different low-end phone models. Different phone models have different

camera characteristics and result in different camera blur effect in the photos taken of the

same scene, which is shown in Figure 4.5 and Figure 4.6.

(a) Blackberry Passport (b) Sony Xperia Z (c) iPhone 3GS

Figure 4.5 – Patches from photos of the same scene using different cameras in the DEPD [64]
dataset. We can clearly see that different cameras have result in different blur in the photos.

51



Chapter 4. Blind Image Super-Resolution

Figure 4.6 – Plot of blur kernels estimated from DPED dataset. The shadow area illustrates
the variance. The figure shows that different phone models have slightly different camera
characteristics.

We separate the dataset into two parts, DPED-training and DPED-testing, according to the

camera models. DPED-training consists of photos taken with the Blackberry Passport and

Sony Xperia Z, and serves as the reference real-photography LR set for extracting the realistic

blur kernels k ′
e described in Section 4.2.2. DPED-testing consists of photos captured with

the iPhone 3GS, and is used as a validation dataset. We collect 1000 realistic blur kernels

K
′ = {k ′

1,k ′
2, . . . ,k ′

1000} from DPED-training by using the kernel estimation codes from [99]. We

use these kernels in the training of the kernel modeling GAN G . We set the batch size as 32 and

λ= 10 for the loss function (see Equation 4.9). G is trained for 20,000 epochs. The extended

blur kernel poolK+ is obtained by generating 1,000 kernels using the trained G and adding

them toK′.

We use the training set of DIV2K [122] as HR images, from which we extract patches of size

128×128. We build the paired dataset {ILR ′ ,IHR } during training of the SR network: in each

epoch, each HR patch is convolved with a kernel k ′ randomly chosen from K
+ to obtain a

coarse HR patch. We train our SR network with ADAM optimizer [73]. We set the batch size to

32. The learning rate is initialized as 10−4 and is halved at every 10 epochs.

4.3.2 Estimated Kernels

We study the distributions of blur kernels. We show examples of kernels k ′
e generated with

KMSR in Figure 4.7 and Figure 4.8. Since all images in DPED were captured using a tripod,

there is no motion blur exists in the dataset, thus none of the kernels shows any motion blur.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7 – Visualization of different blur kernels for scale s = 2 (×2 SR). To better visualize
the kernels, we only show a 15×15 patch cropped from the center. (a) the bicubic kernel [70]
with anti-aliasing implemented in Matlab [44]; (b), (c) and (d) three isotropic Gaussian kernels
g1.25, g1.6 and g1.7, respectively, which are widely used in ×2 SR. (e), (f) two kernel samples k ′

e

estimated from real photos, (g) and (h) two blur kernels G(zi ) generated with the GAN.

We also visualize the Matlab bicubic kernel and three isotropic Gaussian kernels gσ with σ

1.25, 1.6 and 1.7 that are commonly used to synthesize LR images in ×2 SR [26, 56, 146]. Note

that the bicubic kernel is band-pass compared to the low-pass shape of the other kernels.

The bicubic kernel is designed to keep the sharpness of the image and to avoid aliasing

during the downsampling operation [70]. As stated in [28], the bicubic kernel is not a proper

approximation of the real blur kernel in image acquisition, as camera blur is low-pass and

often attenuates the high-frequency information of the scene more. In Figure 4.8, the kernels

generated by by KMSR encompass a wide range of distributions, including the Gaussian

kernels that are a better approximation of the real camera blur [98] than the bicubic kernel.

KMSR is thus able to generate very diverse coarse HR images.

4.3.3 Experiments on Bicubic and Gaussian Blur Kernels

In this section, we evaluate KMSR and other CNN-based SR networks on synthetic LR images

by applying different blur kernels to the validation set of the DIV2K [122] dataset.

We test on two upscaling factors, s = 2 (×2 SR) and s = 4 (×4 SR) and on four synthetic LR

datasets that are generated using four different kernels on the DIV2K [122] validation set.

We include the anti-aliasing bicubic kernel, as it is used by many algorithms even though

it is not a physically feasible camera blur for real images [28]. We also test on 3 isotropic

Gaussian kernels, g1.25 [146], g1.6 [26] and g1.7 [56]; they are commonly used as blur kernels in

the generation of synthetic LR images [98]. The four kernels are visualized in the first row of
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Figure 4.8 – Plot of different blur kernels. The solid line shows the mean kernel shape from
the blur kernel poolK+ generated with KMSR. The shadow area illustrates the variance. The
dashed lines show the shape of the bicubic kernel [70] and three Gaussian kernels that are
commonly used in synthesizing LR images [26, 56, 146].

Figure 4.7.

We compare our proposed KMSR to the state-of-the-art CNN-based SR methods: SRCNN [24]

(we use the 9-5-5 model), VDSR [71], EDSR [84] and DBPN [54]. We use the published codes

and models from the respective authors. Note that these four networks are trained using only

the bicubic kernel in the generation of corresponding LR images from HR images.

The quantitative results of the different SR networks on the different LR datasets are provided

in Table 4.1. Although KMSR produces worse results on LR images generated with the bicubic

kernel, it outperforms all other networks on all other experimental settings on both upscaling

factors s = 2 and s = 4. We can also observe that the performance of SR networks that are

trained using only bicubic LR images is limited when the bicubic kernel deviates from the

true blur kernel. These networks gain less than 0.4dB improvement in PSNR compared to

simple bicubic interpolation (column 3 in Table 4.1). Even with deeper layers, EDSR [84] and

DBPN [54] do not outperform shallow networks SRCNN [24] and VDSR [71]. By modeling

realistic kernels, our KMSR outperforms them all by up to 1.91dB . A visual comparison using

g1.6 as blur kernel and s = 2 as upscaling factor is given in Figure 4.9. Note that KMSR produces

results that visually appear sharper than other methods, as it is trained using more realistic

blur kernels.
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Blur Kernel Scale Bicubic SRCNN [24] VDSR [71] EDSR [84] DBPN [54] KMSR
bicubic

×2

29.94 31.89 32.63 33.58 33.84 33.52
g1.25 26.14 26.56 26.54 26.58 26.60 27.94
g1.6 25.49 25.72 25.72 25.69 25.70 27.63
g1.7 25.11 25.30 25.34 25.28 25.28 27.15

bicubic

×4

26.28 27.89 28.04 28.95 29.03 27.99
g2.3 24.71 24.83 24.91 25.10 25.18 26.14
g2.5 24.34 24.30 24.34 24.39 24.42 25.64
g2.7 24.11 24.14 24.05 24.27 24.23 25.33

Table 4.1 – [122] in terms of PSNR in the evaluation of bicubic and Gaussian blur kernels. We
highlight the best results in red color and the second best in blue color. Note that our proposed
KMSR outperforms other state-of-the-art SR networks by up to 1.91dB on Gaussian kernels.

(a) SRCNN [24] (b) VDSR [71] (c) EDSR [84]

(d) DBPN [54] (e) KMSR

Figure 4.9 – Qualitative comparison of ×2 SR on image “0805” from DIV2K [122], using a
Gaussian blur kernel g1.6 as the blur kernel and s = 2 as upscaling factor.

4.3.4 Experiments on Realistic Kernels

To validate the capability of the proposed KMSR on images with real unknown kernels, we

conduct experiments on synthesizing LR images with unseen realistic blur kernels on ×2 and

×4 SR. We collect 100 blur kernels from the LR images in the DEPD-testing dataset (i.e., the

iPhone3GS images), which are not seen in the training of KMSR. We then apply these blur

kernels to generate coarse HR images using the DIV2K [122] validation set. Table 4.2 shows
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(a) SRCNN [24] (b) VDSR [71] (c) EDSR [84]

(d) DBPN [54] (e) KMSR

Figure 4.10 – Qualitative comparison on ×4 SR on image “0816” from DIV2K [122], using a
Gaussian blur kernel g2.5 as the blur kernel and s = 4 as upscaling factor.

the resulting PSNR and SSIM of the different SR networks. As before, the performance of the

SR networks trained using only the bicubic kernel is limited on these images.

This highlights the sensitivity of CNN-based SR networks to wrong kernels in the creation of

the training dataset. Blur kernel modeling is a promising venue for improving SR networks if

the algorithm is to be applied to real camera data.

We present qualitative results in Figure 4.12. KMSR successfully reconstructs the detailed

textures and edges in the HR images and produces visually more pleasing images.

4.3.5 Experiments on Real Photographs

We also conduct ×2 SR experiments on real photographs. Figure 4.13 illustrates the KMSR

output on one photograph captured by the iPhone3GS in the DEPD-testing dataset. Perceptual-

driven SR methods usually recover more detailed textures and achieve better visual quality

than previous SR networks. In addition to the four SR methods we compare to, we thus also

show the output from the perceptually-optimized SR network ESRGAN [128]. It is noticeable

that the networks trained using only the bicubic-downsampled LR images tend to produce

overly smooth images, whereas KMSR can recover a sharp image with better details.
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Method Scale PSNR SSIM
bicubic interpolation

×2

25.06 0.72
SRCNN [24] 25.30 0.74
VDSR [71] 25.29 0.74
EDSR [84] 25.28 0.74
DBPN [54] 25.30 0.75

KMSR 27.52 0.79
bicubic interpolation

×4

23.32 0.69
SRCNN [24] 23.42 0.69
VDSR [71] 23.39 0.69
EDSR [84] 23.49 0.69
DBPN [54] 23.51 0.70

KMSR 25.13 0.74

Table 4.2 – Comparison on DIV2K [122] in the evaluation of realistic blur kernels estimated
from DEPD-testing. We highlight the best results in red color and the second best in blue color.

(a) SRCNN [24] (b) VDSR [71] (c) EDSR [84]

(d) DBPN [54] (e) KMSR

Figure 4.11 – Qualitative comparison on ×4 SR on image “0834” from DIV2K [122], using a
realistic blur kernel estimated from DPED-testing.

Psychovisual Experiment

As no ground-truth or reference image is available for these super-resolved images, we conduct

a psychovisual experiment on 50 images on a crowd-sourcing website2 to quantitatively

2www.clickworker.com
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(a) SRCNN [24] (b) VDSR [71] (c) EDSR [84]

(d) DBPN [54] (e) KMSR

Figure 4.12 – Qualitative comparison on ×2 SR on image “0847” from DIV2K [122], using a
realistic blur kernel estimated from DPED-testing.

prove the effectiveness of the proposed approach. We only compare KMSR to EDSR [84] and

DBPN [54] as they are the state-of-the-art CNN-based SR networks. Note that because of

the resolution limitations of display devices, we could not show full-resolution images. We

randomly select 50 images from DEPD-testing and crop patches of size 500×500 from each

image. We perform the experiment as a three Alternative-Forced-Choice test (3-AFC). For each

image, the observer was shown three SR results from our proposed KMSR, EDSR [84], and

DBPN [54]. The screenshot of the interface is shown in Figure 4.14. A zoom window allowed

the observers to enlarge details of the images. The methods’ names were hidden and the order

is randomly shuffled. The observers were asked to select "the clearest and sharpest" image. To

make sure the observers check the details of each SR result, they can only proceed to the next

images once they have clicked the all three buttons that will show the three SR results.
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(a) VDSR [71] (b) EDSR [84] (c) DBPN [54]

(d) ESRGAN [128] (e) KMSR

Figure 4.13 – ×2 SR qualitative comparison of different SR networks on image “83” from
DPED-testing.

We collected 35 votes for each of the 50 image triplets. Table 4.3 shows the raw number of

votes for each method. We also summarize the number of preferences in the table. Because

guessing will lead to a percentage of preference equal to the reciprocal of the number of

alternatives, the level at which the threshold is defined is adjusted for chance. Thus, for a

3-AFC experiment, the threshold is defined as 67%. For 44 out of 50 images, the SR results

from our proposed KMSR are preferred, which shows that KMSR also qualitatively outperform

the other SR methods.

EDSR [84] DBPN [54] KMSR
Number of preferences 2/50 0/50 44/50

Raw Votes 119/1750 26/1750 1650/1750

Table 4.3 – Results of the psychovisual experiment. Number of preferences show the number
of SR results from the specific method that are chosen as "the clearest and the sharpest image"
by more than 67% of the participants. For 44 out of 50 images, results from our KMSR are
favored over the other two methods.
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Chapter 4. Blind Image Super-Resolution

Figure 4.14 – Interface for the psychophysical experiment to validate the proposed KMSR.

4.3.6 Experiments on Zoom-in Super-Resolution

To further verify the performance of the proposed KMSR, we conduct experiments on images

captured with the same camera, but at different focal lengths. We use a Nikon AF-S 24-70mm

zoom lens to collect three pairs of images. The 35mm focal length photo serves as LR image,

and the photo taken at the same position with the 70mm focal length serves as the reference

HR image for a ×2 SR of the LR image. We capture all the photos with a small aperture (f/22) to

minimize the depth-of-field differences. We crop patches of size 250×250 from the LR image
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Chapter 4. Blind Image Super-Resolution

and patches of size 500×500 from the reference HR image.

A slight misalignment is unavoidable because of focal length variations in the center of pro-

jection when the lens zooms in and out. We align the bicubic-upscaled 35mm "LR" image

with the "zoomed-in" ground-truth 70mm image by applying a grid search in horizontal and

vertical shifts (within 100 pixels) as well as a stretching (range between 0.9 to 1.1).

Table 4.4 shows the results of different SR networks on this zoom-in task. KMSR outperforms

all other SR networks by a large margin both in PSNR and SSIM. A visual result is shown in

Figure 4.15. KMSR is capable of generating a sharper image than the other SR networks.

Method PSNR SSIM
bicubic interpolation 26.93 0.79

SRCNN [24] 27.07 0.80
VDSR [71] 27.11 0.80
EDSR [84] 27.45 0.81
DBPN [54] 27.42 0.81

KMSR 29.13 0.84

Table 4.4 – Average PSNR and SSIM of different SR networks on the ×2 zoom-in dataset. The
evaluation is performed only on the luminance channel to alleviate the effect of bias caused
by the color variations of the two images. We highlight the best results in red color and the
second best in blue color.

4.3.7 Ablation studies

To demonstrate the effectiveness of using realistic kernels and also to show the precision of the

kernel estimation algorithm [99] that we use, we train and test another version of the proposed

network, KMSRA1, without collecting the realistic kernels. In building the kernel pool K′
A1

for KMSRA1, we use the bicubic-downsampled HR images as LR images, i.e. we estimate

the blur kernels k ′
A1 on the bicubic-downsampled, and bicubic-upscaled coarse HR images

ILR ′
A1 . We then follow the same procedure as KMSR. We train a GAN onK′

A1 and generate the

larger kernel pool K+
A1 used to train KMSRA1. We test KMSRA1 on different experimental

settings, the quantitative results are shown in Table 4.5. For the Gaussian and realistic kernels,

KMSRA1 achieves comparative results with the state-of-the-art SR networks (see Table 4.1),

which implies that KMSRA1 is capable of learning the mapping from bicubic-downsampled

LR images to HR images. The results also shows that we achieve significant performance gains

with KMSR that is trained with the realistic kernels ofK+ (last column in Table 4.1).

To test the contribution of the GAN in improving generalization, we trained KMSRA2, which

is KMSR trained only on the 1,000 estimated kernels, KMSRA2∗ trained on 2,000 estimated

kernels and KMSRA3, which is KMSR without using the GAN but with simple data augmen-

tation to expand the kernel pool. In this case, KMSRA2 and KMSRA2∗ are only trained on

K
′
A2 and K′

A2∗ which contains only the original estimated kernels, and KMSRA3 is trained
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onK′
A3 which contains the k ′ inK′

A2 and their rotated and flipped versions. We also trained

KMSRA4, where we use 2,000 generated kernels. Results are shown in Table 4.5. Marginal

gains are obtained by using more kernels or applying simple augmentation. For example, on

the realistic kernel testing set, KMSRA3 that is trained with simple augmentation results in a

PSNR value of 27.10dB instead of 26.98dB , and KMSR trained with GAN augmentation results

in a PSNR value of 27.52dB . On average, KMSR obtains 0.5dB improvements on KMSRA3.

The results on realistic kernels other than bicubic kernel are further improved by using more

generated kernels in the training of KMSRA4, leading us to believe that using a GAN to augment

the kernel pool results in a more diverse representation than simple data augmentation. This

further validates the effectiveness of incorporating a GAN in order to augment the realistic

kernel-pool.

Methods KMSRA1 KMSRA2 KMSRA2∗ KMSRA3 KMSR KMSRA4

#kernels used 1000+1000 1000 2000 1000×8 1000+1000 1000+2000
Blur kernel

bicubic 33.66 33.26 33.30 33.28 33.52 33.46
g1.25 26.47 27.31 27.48 27.42 27.94 27.98
g1.6 25.62 26.87 26.99 27.02 27.63 27.75
g1.7 25.28 26.79 26.94 26.90 27.15 27.14

realistic 25.29 26.98 27.15 27.10 27.52 27.69

Table 4.5 – Evaluation of KMSR in terms of PSNR scores on ×2 SR in different training setting.
We highlight the best results in red color and the second best in blue color.

4.4 Conclusion and Discussion

In this chapter, to handle to problem of mismatch kernels in generating training pairs for

SR, we propose to improve the performance of CNN-based SR networks on real LR images

by modeling realistic blur kernels. In contrast to existing methods that use a bicubic kernel

in the imaging model to obtain LR training images, we generate the SR training dataset by

employing a set of realistic blur kernels estimated from real photographs. We further augment

the blur kernel pool by training a GAN to output additional realistic kernels. Our KMSR is

able to produce visually plausible HR images, demonstrated by both quantitative metrics,

qualitative comparisons, and a psychovisual experiment. Our KMSR offers a feasible solution

toward practical CNN-based SR on real photographs.

In our SR system, we always assume that the images are noise-free or a denoising step is

preformed beforehand. However it is not the case in some real world applications. In our

experiments, we notice that applying SR on noisy LR images can cause some unpleasant

ringing artifacts as the SR algorithms also magnify the noise. Thus it is important to address

noise in the SR system, which will be discussed in the next chapter.
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5 Joint Denoising and Super-Resolution

5.1 Introduction

For modularity and simplicity, in the literature and the previous chapters of this thesis, im-

ages are always assumed to be noise-free, or a denoising step is applied before SR. However,

noise is unvoidable in the image acquisition pipeline, and most of the denoising algorithms

cannot reconstruct a perfect noise-free image. This unfortunately might lead to error ac-

cumulation. Most denoising algorithms not only eliminate noise, but also smooth out the

high-frequency detail and texture in the image, causing downstream tasks such as SR to

magnify over-smoothing, eventually affecting the image quality [104]. Alternatively, the SR

networks trained with only noise-free images are proven to be highly vulnerable to small

noise [20]. Both noise and limited resolution are inherent in real-world photographs, and

the results of applying SR on top of the denoised image will be affected by the error from the

denoising algorithm. Thus it is valid to jointly study both problems.

Both denoising and SR are very important in fluorescence microscopy. The microscopy images

are often taken under extremely low-light conditions and thus suffer from very high noise.

Due to the diffraction on the capture device, the images also have limited resolution. Although

there are microscopy techniques, such as structured-illumination microscopy (SIM) [49] that

can improve the resolution and the quality of the images, they require multiple captures with

several tuned parameters to achieve good-quality images. Multiple or high-light capture of

these techniques may cause photo-bleach and damage the samples, the cells will be affected

and possibly killed. Moreover, for live cells, it is impossible to increase the exposure time or

take multiple capture as the sample is not static. Therefore, joint denoising and SR is of great

importance in microscopy.

In this chapter, we address these problems by collecting a joint denoising and SR dataset

for benchmarking the denoising and SR algorithms by means of real microscopy images.

This dataset, to the best of our knowledge, is the first JDSR dataset. We leverage microscopy

equipment and techniques to acquire data satisfying the described requirements above. Our

noisy LR images are captured using widefield imaging of human cells. We capture a total of 400
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Example 1

Full frame Raw crop 2× Average 4× Average

8× Average 16× Average Noise-free LR Groud-truth HR
Example 2

Full frame Raw crop 2× Average 4× Average

8× Average 16× Average Noise-free LR Groud-truth HR

Figure 5.1 – Example of image sets in the proposed W2S. We obtain 5 LR images with different
noise levels by either taking a single raw image or averaging different numbers of raw images.
The more images we average, the lower the noise level as shown. The noise-free LR images
are the average of 400 raw images, and the HR images are obtained using SIM [49]. Gamma
correction is applied for better visualization.

replica raw images per field of view, 8 times more than a recent denoising-only dataset using

similar technology [143]. We average several of the LR images to obtain images with different

noise levels, and all of the 400 replicas to obtain the noise-free LR image. We leverage the

SIM technique [49] to obtain high-quality HR images. Using this acquisition setup, we create

Widefield2SIM (W2S), which consists of 360 sets of LR and HR image pairs, with different

fields of view, and acquisition wavelengths. Visual examples of the images in W2S are shown

66



5.2. Joint Denoising and Super-Resolution Dataset

in Figure 5.1.

Using W2S, we benchmark different approaches for solving denoising and SR restoration. We

compare the sequential use of different denoisers and SR methods, the direct use of an SR

method on a noisy LR image, and the use of SR methods on the noise-free LR images of our

dataset for reference. We additionally evaluate the performance of retraining SR networks on

our JDSR dataset. Results show a significant drop of 8dB to 14dB in the performance of SR

networks when the low-resolution (LR) input is noisy compared to it being noise-free. We also

find that the costly consecutive application of denoising and SR is better. It is, however, not as

performing in terms of PSNR and perceptual texture reconstruction as training a single model

on the joint denoising and SR task, due to the accumulation of error. The best results are

obtained with a light-weight model, trained with a texture loss that exploits the second-order

statistics of feature maps.

In summary, the contribution of this chapter includes1:

• We create the first real joint denoising and SR dataset, W2S, containing noisy images

with 5 noise levels, noise-free LR images, and the corresponding high-quality HR images.

• We analyze our dataset by comparing the noise magnitude, the blur kernel, and the

power spectral density (PSD) of our images, to those of existing denoising and SR

datasets.

• We benchmark state-of-the-art denoising and SR algorithms on W2S, by evaluating

different settings and on different noise levels.

• We train a single model for joint denoising and SR with a texture loss and show it achieves

the best reconstruction error and perceptual results.

5.2 Joint Denoising and Super-Resolution Dataset

Several datasets have been commonly used for benchmarking SR and denoising, including

Set5 [6], Set14 [136], BSD300 [90], Urban100 [63], Manga109 [91], DIV2K [122], etc. Although

these datasets contain various content ranging from nature photographs to comics images,

their evaluation is based on a synthetic setup. i.e., the noisy inputs are generated by adding

Gaussian noise for the denoising algorithms, and the LR images are generated by downsam-

pling the blurred HR images for SR methods. These assumed degradation models deviate

from the degradation in real-world scenario [17]. To better capture the real-world character-

istics and to evaluate denoising and SR methods under real scenarios, recent attempts have

been made on capturing real-world denoising and SR datasets, such as DND [103], SSID [1],

SR-RAW [140], and RealSR [10]. However, these datasets are designed only for denoising or

SR. In addition, some of them also suffer from misalignment and color mismatch due to the

inevitable perspective changes or lens distortion.

1This work was published in [149]
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To build a joint denoising and SR dataset and to overcome the acquisition difficulties, we turn

to microscopy as it allows us to capture LR-HR pairs without alignment or color mismatch

problems. In this section, we describe the experimental setup that we use to acquire the sets

of LR and HR images and present an analysis of our dataset covering noise levels, blur kernels,

and power spectral density comparisons.

5.2.1 Structured-Illumination Microscopy

Structured-illumination microscopy (SIM) is a technique used in microscopy imaging that

allows samples to be captured with a higher resolution than the one imposed by the physical

limits of the imaging system [49]. Its operation is based on the interference principle of the

Moiré effect. We use SIM to extend the resolution of standard widefield microscopy images.

This allows us to obtain aligned LR and HR image pairs to create our dataset. Here, we provide

an introduction to the principle of structured interference acquisition with 1D signals. The

extension to higher dimensions follows the same principle [49].

We define si g (t ) to be the signal we want to acquire, where t represents a certain spatial dimen-

sion. In the Fourier domain, the corresponding signal S(ω) is not necessarily band-limited and

can be non-zero for arbitrary frequencies ω. The impulse response of the capturing system

is called its point spread function, and its Fourier transform is its optical transfer function

(OTF) that we call O(ω). The resulting visible signal through that imaging system is given by

V (ω) =O(ω)¯S(ω), where ¯ is the element-wise multiplication. The OTF limits the captured

content to a certain range of frequency components as O(ω) = 0 ∀ω > ωc , where ωc is the

cut-off frequency of the OTF. Therefore, only frequency components ω<ωc can be captured.

By using a structured-illumination pattern, the frequency content can be manipulated. For

instance, if we multiply the signal s(t) with a cosine function of frequency ω0, the captured

signal becomes s(t )¯cos(ω0t ) and the corresponding frequency-domain equivalent is given

by 1
2 [S(ω−ω0)+S(ω+ω0)]. Using the same imaging system, the visible signal becomes

V (ω) =O(ω)¯ 1

2
[S(ω−ω0)+S(ω+ω0)], (5.1)

with O(ω) still equal to zero above its cut-off frequency ωc . However, frequency components

such that ω−ω0 <ωc can now be acquired, effectively pushing the cut-off to ωc +ω0, where

ω0 can be controlled by modifying the periodicity of the illumination pattern. In other words,

higher frequencies that could not be visible to the imaging system can be shifted down to

lower ones that lie within the observable range of that system. The shifted components can

overlap in the frequency domain, and multiple shifted captures are needed to resolve the

ambiguity and recover the true signals. SIM acquires 9 different structured-illumination

images to perform an upscaling by a factor of two. In practice, the OTF is also not necessarily

an ideal low-pass filter and a deconvolution post-processing step can be required.

Note that theoretically, applying nonlinear SIM can produce images of arbitrary resolution [50],

illustrating SIM’s potential of producing a higher upscaling-factor SR dataset.
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5.2.2 Data Acquisition

We capture the W2S dataset using widefield microscopy [127]. Images were acquired with a

high-quality commercial fluorescence microscope and with real biological samples.

Widefield Images A time-lapse widefield of 400 images is acquired using a Nikon SIM setup

(Eclipse T1) microscope. The microscope is fitted with a Plan Apochromat TIRF 100X, 1.49NA

objective and an electron-multiplying charge-coupled device camera (IXON3; Andor Technol-

ogy). The acquisition is taken with a 5ms exposure time using a 488nm Coherent sapphire laser

at 0.37mW, a 5ms exposure time using a 561nm Cobolt Laser at 0.28mW, and a 5ms exposure

using a Coherent 640nm Cobolt Laser at 0.26mW. All images have a resolution of 512×512. In

total, we capture 120 different fields-of-view (FOVs), each FOV with 400 captures in 3 different

wavelengths. All images are raw, i.e., are linear with respect to focal plane illuminance. We

generate different noise-level images by averaging 2, 4, 8, and 16 raw images of the same FOV.

The larger the number of averaged raw images is, the lower the noise level. The noise-free LR

image is estimated as the average of all 400 captures of a single FOV. Examples of images with

different noise levels and the noise-free LR image are presented in Figure 5.1.

SIM Imaging The HR images are captured using SIM. The SIM images are captured using

the same device (a microscope fitted with a Plan Apochromat TIRF 100X). We use the 3D

SIM acquisition mode [51] (15 images per plane; five phases of three rotations) with a 70ms

exposure time, using a 488nm Coherent sapphire laser at 0.20mW ; 30ms exposure time using

a 561nm Cobolt Laser at 0.27mW , and a 100ms exposure using a Coherent 640nm Cobolt

Laser at 0.14mW . Image reconstruction and processing are performed using the NIS-Elements

software. The example of the acquired images and the reconstructed HR results are shown

in Figure 5.2. The HR images’ resolution is higher by a factor of 2, resulting in a resolution of

1024×1024.

Alignment As the acquisition process of LR and HR images is controlled through software

that runs the microscope, and the device is well-stabilised throughout the capturing process,

all images captured for a single FOV are very well aligned. However, we in addition verified

the alignment of the images in post-processing. We use brute force matching based on the

Hamming distance, with ORB [108] (FAST keypoint detector [107] and BRIEF descriptor [13]).

The matching is carried out between our LR and HR pairs, after a bicubic downsampling of

the HR images. We show two keypoint alignment examples in Figure 5.3. After discarding

incorrectly-matched keypoints, we find that the estimated keypoint translation between

image pairs is zero and the homography is equal to the identity matrix. We use this registration

approach to validate that all image pairs are indeed well-aligned, and no human error occurred

during the acquisition steps.
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(a) SIM input captures

(b) SIM reconstruction

Figure 5.2 – Example FOV showing the different captured images in (a) that are given as input
to the SIM method, and the reconstructed result of SIM in (b). Gamma correction is applied
for better visualization.

5.2.3 Data Analysis

W2S includes 120 different FOVs, each FOV is captured in 3 channels (corresponding to

the wavelengths of 488nm, 561nm and 640nm). As the texture of the cells are different and

independent in different channels [110], the different channels can be counted as different

images, thus resulting in 360 views. For each view, 1 HR image and 400 LR images are captured.

We obtain LR images with different noise levels by averaging different numbers of images of

the same FOV and the same channel. In summary, W2S provides 360 different sets of images,

each image set includes LR images with 5 different noise levels (corresponding to 1, 2, 4, 8,

and 16 averaged LR images), the corresponding noise-free LR image (averaged over 400 LR

images) and the corresponding HR image acquired with SIM.

70



5.2. Joint Denoising and Super-Resolution Dataset

(a) Image 001, wavelength 640nm

(b) Image 007, wavelength 561nm

Figure 5.3 – Keypoint matching with a brute-force approach using Hamming distance, on
the ORB detector and descriptor. In both figures, the left half is our ground-truth noise-free
widefield image, and the right half is our SIM capture with a bicubic downsampling.

To quantitatively evaluate the difficulty of recovering the HR image from the noisy LR observa-

tion in W2S, we analyse the degradation model of how the LR observations are obtained from

the HR image. We use the same degradation model as in Chapter 4, with an additional noise

component that is assumed to be larger than 0,

Inoi s yLR = (IHR ⊗k) ↓s +n, (5.2)

where Inoi s yLR and IHR correspond, respectively, to the noisy LR observation and the HR

image, ~ is the convolution operation, k is a blur kernel, ↓s is a downsampling operation with

a factor of s, and n is the additive noise. Note that n is usually assumed to be 0 or follow a

Gaussian distribution in most of the SR networks’ imaging models, while it is not the case for

our dataset. As the downsampling factor s is equal to the targeted SR factor, it is well defined

for each dataset. We thus analyse the two unknown variables of the degradation model for

W2S; the noise n and the blur kernel k.
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Noise Estimation We use the noise modeling method in [39] to estimate the noise magnitude

in raw images from W2S, from the denoising dataset FMD [143], and from the SR datasets

RealSR [10] and City100 [17]. The approach of [39] models the noise as Poisson-Gaussian,

where the measured noisy pixel intensity is given by y = x +nPoi sson(x)+nGaussi an . x is

the noise-free pixel intensity, nG is zero-mean Gaussian noise, and x +nPoi ssi on(x) follows

a Poisson distribution. This approach yields an estimate for the parameter of the Poisson

distribution.

Figure 5.4 – Noise and kernel of different datasets. A higher noise indicate the the HR images
of W2S are challenging to recover from the noisy LR.

We evaluate the Poisson parameter of the noisy images from the three noise levels (obtained by

averaging 1, 4 and 16 images) of W2S, the raw noisy images of a microscopy denoising dataset

FMD [143], and the LR images of the SR datasets for comparison. We show the mean of the

estimated noise magnitude for the different datasets in Figure 5.4. We see that the raw noisy

images of W2S have a high noise level, comparable to that of FMD. On the other hand, the

estimated noise parameters of the SR datasets are almost zero, up to small imprecision, and are

thus significantly lower than even the estimated noise magnitude of the LR images from the

lowest noise level in W2S. Our evaluations demonstrates that additive noise, such as Poisson

noise, is not taken into consideration in current state-of-the-art SR datasets. The learning-

based SR methods using these datasets are consequently not tailored to deal with noisy inputs

that are common in many practical applications, leading to potentially poor performance. In

contrast, W2S contains images with high (and low) noise magnitude comparable to the noise

magnitude of a state-of-the-art denoising dataset [143].

We compare W2S with other denoising datasets, DND [20], SSID [1], FMD [143] and other SR

datasets, SR-RAW [140], City100 [17], RealSR [10]. The summary of the characteristics of the

datasets is in Table 5.1. W2S contains 400 noisy images for each view, DND contains only 1,
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SSID contains 150, and FMD, which also uses widefield imaging contains 50. W2S can thus

provide a wide range of noise levels by averaging a varying number of images out of the 400.

In addition, W2S provides LR and HR images that do not suffer from alignment problems and

color mismatch.

Dataset
RAW

Alignment
Color # Noisy Main type # Ground-truth

LR HR matching LR images of noise images

D
en

o
is

in
g DND [103] 3 7 Yes Yes 1 Gaussian 50

SSID [1] 3 7 Yes Yes 150 Gaussian 200
FMD [143] 3 7 Yes Yes 50 Poisson 240

SR

SR-RAW [140] 3 7 No No 0 None 500
City100 [17] 7 7 Yes Yes 0 None 100
RealSR [10] 7 7 Yes No 0 None 598
W2S 3 3 Yes Yes 400 Poisson 360

Table 5.1 – Characteristics of different state-of-the-art denoising and SR datasets. Our W2S
contains raw noisy LR images, a noise-free raw LR image, and the corresponding HR image,
thus enabling joint denoising and super-resolution evaluations.

Blur Kernel Estimation We estimate the blur kernel k shown in Eq. (5.2) as

k = argmin
k

||Inoi se− f r eeLR ↑bi c −k ⊗ IHR ||22, (5.3)

where I noi se− f r ee
LR ↑bi c is the noise-free LR image upscaled using bicubic interpolation. We

solve for k directly in the frequency domain using the Fast Fourier Transform [30].

Figure 5.5 – Kernel estimation of different datasets. A wide kernel indicate that the HR images
of W2S are challenging to recover from the noisy LR.

We use the aforementioned method to estimate the blur kernel k of W2S on the HR image
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and the noise-free LR image. The estimated blur kernel is visualized in Figure 5.5. For the

purpose of comparison, we show the estimated blur kernel from two SR datasets: RealSR [10]

and City100 [17]. We also visualize the two other blur kernels: the MATLAB bicubic kernel

that is commonly used in the synthetic SR datasets, and the Gaussian blur kernel with a sigma

of 2.0 which is the largest kernel used by the state-of-the-art blind SR network [45] for the

upscaling factor of 2. From the visualization we clearly see the bicubic kernel and Gaussian

blur kernel that are commonly used in synthetic datasets are much different from the blur

kernels of real captures. The blur kernel of W2S has a long tail compared to the blur kernels

estimated from the other SR datasets, illustrating that more high-frequency information is

removed for the LR images in W2S, and thus making the recovery of HR images from these LR

images much more challenging.

Compared to the SR datasets, the LR and HR pairs in W2S are well-aligned during the capture

process, and no further registration is needed. On the other hand, to obtain high-quality im-

ages, the SR datasets are captured under low ISO and contain almost zero noise. W2S contains

LR images with different noise levels, which makes it a more comprehensive benchmark for

testing under different imaging conditions. Moreover, as shown in Section 5.2.3, the estimated

blur kernel of W2S is wider than that of other datasets, and hence averages pixels over a larger

window, making W2S a more challenging dataset for SR.

Figure 5.6 – Average PSDs

Figure 5.7 – Average PSDs of different datasets. The PSD plots show that although W2S is
comprised of microscopy images, these images have a similar spatial frequency distribution
as the natural image datasets RealSR [10] and City100[17].

Power Spectral Density To illustrate that the images of W2S share similar spatial frequency

characteristics as other datasets, we plot the average power spectral density (PSD) for W2S and
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two other SR datasets City100 [17] and RealSR [10], which contain natural images, in Figure 5.6.

The PSD curve of W2S lies between the PSD curves of City100 [17] and RealSR [10], and shares

a similar distribution that follows the well-known 1/ f natural image power-law as a function

of spatial frequency [9].

5.3 Benchmark

We benchmark on the sequential application of state-of-the-art denoising and SR algorithms

on W2S. Note that we do not consider the inverse order, i.e., applying SR on noisy images,

as this will amplify the noise and cause a large decrease in PSNR as shown in the last row of

Table 5.3. With current methods, it would be impossible for a subsequent denoiser to recover

the real signals.

5.3.1 Setup

We split W2S into two disjoint training and test sets. The training set consists of 240 sets of LR

and HR images, and the test set consists of 120 sets of images. There is no overlap between the

training set and the test set. We retrain the learning-based methods on the training set. The

evaluation of all methods is on the test set.

For denoising, we evaluate different approaches from both classical methods and deep-

learning methods. We use a method tailored to address Poisson denoising, PURE-LET [88], and

the classical Gaussian denoising methods EPLL [154] and BM3D [21]. The Gaussian denoisers

are combined with the Anscombe variance-stabilization transform (VST) [89] to first modify

the distribution of the image noise into a Gaussian distribution, denoise, and then invert the

result back with the inverse VST. We estimate the noise magnitude using the method in [39],

to be used as input for both the denoiser and for the VST when the latter is needed. We also

use the state-of-the-art deep-learning methods DnCNN [138], MemNet [120], and RIDNet [4].

For a fair comparison with the traditional non-blind methods that are given a noise estimate,

we train each of these denoising methods for every noise level separately, and test with the

appropriate model per noise level. DnCNN and MemNet use a batch size of 128 and a starting

learning rate of 10−3, while RIDNet uses batches of 64 patches and a starting learning rate of

5×10−4, all trained with the Adam optimizer [73] for 50 epochs, and with a ten-fold decrease

in the learning rate after the milestone of 30 epochs. The same settings are used when training

for the noise levels corresponding to an average of 1, 2, 4, 8, and 16 raw images.

We use five state-of-the-art SR networks for the benchmark: three pixel-wise distortion-

based SR networks, RCAN [141], RDN [142], SRFBN [83], and two perceptually-optimized SR

networks, EPSR [126] and ESRGAN [128]. The networks are trained for SR and the inputs are

assumed to be noise-free, i.e., they are trained to map from the noise-free LR images to the

high-quality HR images. All these networks are trained using the same settings. The initial

learning rate and loss function are set as the default value as presented in their papers. For
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fair comparison, we use the same training setup for all models. For each training batch, 16

LR patches of size 64×64 are extracted. All models are trained using the Adam optimizer [73]

for 50 epochs. The learning rate decreases by half every 10 epochs. Data augmentation is

performed on the training images with a probability of 0.5, which are randomly rotated by 90

degrees, flipped horizontally, flipped vertically.

5.3.2 Results and Discussion

We apply the denoising algorithms on the noisy LR images, and calculate the PSNR and SSIM

values between the denoised image and the corresponding noise-free LR image in the test

set of W2S. The results of the 6 benchmarked denoising algorithms are shown in Table 5.2.

Comparing to the previous results on DND and SSID image datasets, the algorithms achieve

lower PSNR values on W2S [1, 4, 103], illustrating that W2S contains more challenging noisy

images. Denoisers based on deep learning outperform the classical denoising methods for

the highest noise level (e.g., 1), however, BM3D achieves higher PSNR and SSIM when the

noise level decreases (e.g., 2, 4, 8, 16). The molecular structure of the cells contain sufficient

texture repetition for the block matching of BM3D to perform well, and when the noise level is

not very high, the generative power of deep-learning methods is not as solicited. However,

one very interesting observation is that a higher PSNR results, in some cases, in unwanted

smoothing in the form of a local filtering or averaging that incurs a loss of detail. Although the

PSNR results of RIDNet are not the best (Table 5.2), when they are used downstream by the SR

networks in Table 5.3, the RIDNet images achieve the best performance.

Number of raw images averaged before denoising
Method 1 2 4 8 16

1-7

D
en

o
is

er
s

PURE-LET [88] 37.29/0.939 38.93/0.952 40.83/0.964 42.44/0.972 44.05/0.977
VST+EPLL [154] 37.51/0.951 39.56/0.965 41.59/0.973 43.36/0.980 45.16/0.984
VST+BM3D [21] 37.80/0.955 39.78/0.967 41.78/0.975 43.52/0.980 45.30/0.985
DnCNN† [138] 38.20/0.952 39.40/0.963 41.54/0.972 43.16/0.977 44.13/0.978
MemNet† [120] 38.25/0.952 39.69/0.962 41.04/0.970 42.84/0.976 44.45/0.980

RIDNet† [4] 37.82/0.949 38.99/0.958 41.47/0.970 42.07/0.975 44.95/0.982

Table 5.2 – PSNR (dB)/SSIM results on denoising the W2S test images. We benchmark a variety
of standard methods, three classical ones (of which PURE-LET is designed for Poisson noise
removal), and three deep learning based methods. The larger the number of averaged raw
images is, the lower the noise level. †These learning-based methods are trained for each noise
level separately, on our training set. A very interesting observation is that the best PSNR results
(in red) do not necessarily give the best result after the downstream SR method, as we see in
Table 5.3. We highlight the results under highest noise level with gray background for easier
comparison with Table 5.3.

The SR networks are applied on the denoised results of the denoising algorithms mentioned

above. We show the PSNR and SSIM results in Table 5.3 for the highest noise level (grey

background column in 5.2). We also include the results of applying the SR networks on the
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Super-resolution networks
RCAN RDN SRFBN EPSR ESRGAN

D
en

o
is

er
s

PURE-LET 22.01/0.65 22.85/0.66 22.64/0.67 22.57/0.60 23.12/0.67
VST+EPLL 24.16/0.71 24.71/0.71 24.21/0.71 23.76/0.64 24.13/0.70

VST+BM3D 24.44/0.71 24.72/0.72 24.35/0.71 23.81/0.63 24.28/0.71
DnCNN† 24.34/0.71 24.66/0.71 24.29/0.70 23.82/0.62 24.66/0.71
MemNet† 24.45/0.71 24.71/0.71 24.51/0.70 23.83/0.63 24.66/0.70
RIDNet† 24.52/0.71 24.76/0.71 24.62/0.71 23.86/0.62 24.41/0.70

Noise-free LR 26.83/0.78 26.81/0.78 26.81/0.78 24.63/0.65 26.02/0.76
Noisy LR 12.56/0.27 17.39/0.41 19.38/0.43 16.37/0.36 16.64/0.38

Table 5.3 – PSNR (dB)/SSIM results on the sequential application of denoising and SR methods
on the W2S test images with the highest noise level, which correspond to the first column of
Table 5.2. For each SR method, we highlight the best PSNR value in red. †The learning-based
denoising methods are retrained for each noise level; the SR networks are trained to map the
noise-free LR images to the high-quality HR images.

noise-free LR images. We see that although the three distortion-based SR networks (RCAN,

RDN, SRFBN) have very similar performance when applied on the noise-free LR images (the

largest difference in PSNR is 0.02dB , between RCAN and SRFBN), we see larger difference

when these networks are applied to the denoised images of the previous step. We notice that

there is a significant drop in PSNR and SSIM when the SR networks receive the denoised LR

images instead of the noise-free LR images, even though the difference between the denoised

LR images and the noise-free LR images are small. For example, applying RDN on noise-free LR

images results in a PSNR value of 26.81dB, while the PSNR value of the same network applied

to the denoised results of RIDNet on the lowest noise level is 25.85dB (shown in the first row,

last column in Table 5.5). This illustrates the SR networks are strongly affected by noise in the

inputs. Among all the distortion-based SR networks, RDN shows the most robustness as it

outperforms all other networks in terms of PSNR when applied on denoised LR images. As

mentioned above, another interesting observation is that although RIDNet results in lower

PSNR than other networks for denoising at the highest noise level, RIDNet still provides a

better input for the SR networks.

We present additional results of the sequential application of state-of-the-art denoisers and

SR methods on low-resolution (LR) images with different noise levels on W2S. The results are

shown in Table 5.4 The different noise levels correspond to a different number of averaged

raw images. We note that there is no consistent and significantly-better denoiser across all SR

methods and noise levels. Between SR models, the best is RDN but not with a large margin.

Qualitative results are given in Figure 5.8, where for each SR network we show the results for

the denoising algorithm that achieves the highest PSNR value for the joint task. Notice that

none of networks is able to produce results with detailed texture. As the denoising algorithms

have removed some high-frequency signals as noise, the SR results from the distortion-based

networks are blurry and many texture details are missing. Although the perception-based
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Super-resolution networks
RCAN RDN SRFBN EPSR ESRGAN

D
en

o
is

er
s

o
n

2×
av

er
ag

e PURE-LET 22.04/0.66 22.97/0.67 22.70/0.66 22.54/0.60 23.01/0.67
VST+EPLL 24.56/0.72 25.04/0.73 24.57/0.71 23.92/0.64 24.46/0.71

VST+BM3D 24.82/0.72 25.09/0.73 24.78/0.72 24.01/0.63 24.58/0.71
DnCNN† 24.77/0.72 25.04/0.72 24.86/0.71 24.13/0.64 24.95/0.72
MemNet† 24.78/0.72 25.03/0.72 24.87/0.71 24.11/0.64 24.96/0.71
RIDNet† 25.01/0.73 25.08/0.73 25.06/0.73 24.11/0.64 24.72/0.71

D
en

o
is

er
s

o
n

4×
av

er
ag

e

PURE-LET 23.21/0.70 24.07/0.71 23.62/0.70 23.28/0.63 23.60/0.69
VST+EPLL 25.01/0.73 25.41/0.74 25.00/0.73 24.15/0.65 24.81/0.72

VST+BM3D 25.21/0.74 25.46/0.74 25.19/0.73 24.23/0.64 24.91/0.73
DnCNN† 25.18/0.73 25.39/0.74 25.29/0.73 24.31/0.64 25.23/0.73
MemNet† 25.19/0.73 25.38/0.74 25.25/0.73 24.36/0.64 25.22/0.72
RIDNet† 25.06/0.73 25.29/0.73 25.20/0.72 24.24/0.63 25.13/0.72

D
en

o
is

er
s

o
n

8×
av

er
ag

e PURE-LET 24.06/0.72 24.88/0.73 24.75/0.73 23.91/0.65 23.99/0.72
VST+EPLL 25.40/0.74 25.74/0.75 25.40/0.74 24.35/0.65 25.14/0.73

VST+BM3D 25.56/0.75 25.77/0.75 25.54/0.74 24.42/0.65 25.22/0.73
DnCNN† 25.29/0.74 25.56/0.74 25.42/0.73 24.47/0.64 25.46/0.73
MemNet† 25.46/0.74 25.65/0.74 25.57/0.73 24.52/0.65 25.42/0.73
RIDNet† 25.45/0.74 25.63/0.74 25.58/0.74 24.59/0.65 25.34/0.73

D
en

o
is

er
s

o
n

16
×

av
er

ag
e PURE-LET 24.90/0.74 25.52/0.75 25.49/0.75 24.34/0.67 24.63/0.74

VST+EPLL 25.64/0.75 25.96/0.75 25.76/0.75 24.50/0.66 25.32/0.74
VST+BM3D 25.72/0.75 25.96/0.75 25.83/0.75 24.56/0.65 25.36/0.74

DnCNN† 25.64/0.75 25.87/0.75 25.85/0.75 24.72/0.66 25.60/0.74
MemNet† 25.77/0.75 25.90/0.75 25.87/0.75 24.75/0.66 25.60/0.74
RIDNet† 25.67/0.75 25.85/0.75 25.84/0.74 24.63/0.65 25.54/0.74

Table 5.4 – PSNR (dB)/SSIM results on the sequential application of denoising and SR methods
on the W2S test images for different noise levels. †The learning-based denoising methods
are retrained for each noise level, and the SR networks are trained to map the noise-free LR
images to the high-quality HR images. For each SR method, we highlight the best PSNR and
SSIM value in red. For each denoising method, we underline the best PSNR and SSIM value.

methods (EPSR and ESRGAN) are able to produce sharp results, they fail to reproduce faithful

texture.
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Single Channel

(a) RIDNet+RCAN (b) RIDNet+RDN (c) RIDNe+SRFBN

(d) RIDNet+EPSR (e) DnCNN+ESRGAN Ground-truth
Multi Channel

(a) RIDNet+RCAN (b) RIDNet+RDN (c) RIDNet+SRFBN

(d) RIDNet+EPSR (e) DnCNN+ESRGAN Ground-truth

Figure 5.8 – Qualitative results on the sequential application of denoising and SR algorithms
on the W2S test images with the highest noise level. The multi-channel images are formed by
mapping the three single-channel images of different wavelengths to RGB. Gamma correction
is applied for better visualization.
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5.4 Joint Denoising and Super-Resolution

Our benchmark results in Section 5.3 show that the successive application of denoising and SR

algorithms does not produce the highest-quality HR outputs. In this section, we demonstrate

that it is more effective to train a joint denoising and SR model that directly transforms the

noisy LR image into an HR image.

5.4.1 Texture Loss

To enable the network to better recover texture, we replace the GAN loss in the training with a

texture loss that is similar to what Sajjadi et al.has proposed [109]. GAN loss usually results in

SR networks producing realistic but fake textures that are different from the ground-truth and

may result in a significant drop in PSNR [128]. Instead, we utilize a texture loss that exploits the

features’ second-order statistics to help the network to produce high-quality and real textures.

This choice is motivated by the fact that traditional second-order descriptors have proven

particularly effective for tasks such as texture recognition [53]. We leverage the second-order

statistics of VGG features of the images to match the similarity of the texture. The texture loss

is defined as

Ltextur e = ||Cov(φ(Iest ))−Cov(φ(IHR ))||22, (5.4)

where Iest is the estimated result from the network for joint denoising and SR, IHR is the

ground-truth HR image, φ(·) is a neural feature space, and Cov(·) computes the covariance.

We follow the implementation of MPN-CONV [81] for the forward and backward feature

covariance calculation.

5.4.2 Training Setup

For joint denoising and SR, we adopt a 16-layer Residual in Residual Dense Block (RRDB)

architecture. RRDB architecture is proposed by Wang et al. [128], it combines multi-level

residual network and dense connections and has shown its efficiency in SR training. We use

one Pixelshuffle up-convolution layer [112] in the network for mapping the features to the HR

image.

Figure 5.9 – Architecrue of RRDB [128].

In order to improve the visual quality of the resulting image, we also incorporate perceptual
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loss into the training objective

Lper ceptual = ||φ(Iest )−φ(IHR )||22. (5.5)

Our final loss function is

L =L1 +α ·Lper ceptual +β ·Ltextur e , (5.6)

where L1 represents the `1 loss between the estimated image and the ground-truth. We

empirically set α = 0.05 and β = 0.05. For the neural feature space, we use a pre-trained

19-layer VGG [115]. For the perceptual loss, we take the features from ‘conv1_2’, ‘conv2_2’

,‘conv3_4’, ‘conv4_4’ and ‘conv5_4’. For the texture loss, we take the features from ‘conv4_4’.

We follow the same training setup as the experiments in Section 5.3. For comparison, we also

train RDN [142] and ESRGAN [128] on joint denoising and SR.

5.4.3 Results and Discussion

Number of raw images averaged
#Parameters

Method 1 2 4 8
RIDNet†+RDN‡ 24.76/0.712 24.98/0.714 25.29/0.736 25.63/0.741 1.5M+22M

DnCNN†+ESRGAN‡ 24.66/0.705 24.95/0.716 25.23/0.726 25.46/0.733 0.5M+16M
JDSR-ESRGAN∗ 24.69/0.707 24.96/0.715 25.27/0.724 25.51/0.735 16M

JDSR-RDN∗ 25.07/0.707 25.16/0.717 25.57/0.732 25.95/0.752 22M
Ours∗ 25.17/0.713 25.28/0.721 25.61/0.737 25.89/0.759 11M

Table 5.5 – Joint denoising and SR PSNR (dB)/SSIM results on the W2S test set. †The denoising
networks are separately retrained per noise level. ‡The SR networks are trained to map noise-
free LR images to HR images. ∗The networks trained for joint denoising and SR are also
retrained per noise level. For each noise level, we show the best PSNR and SSIM value in red.

The quantitative results of different methods on different noise levels are reported in Table 5.5.

The results indicate that compared to the sequential application of denoising and SR, a single

network trained on joint denoising and SR is more effective even though it contains less

parameters. GAN-based methods generate fake textures and lead to low PSNR and SSIM

scores. Our model, trained with texture loss, is able to outperform RDN and effectively recover

high-fidelity texture information even when high noise levels are present in the LR inputs.

We show the qualitative results of joint denoising and SR on the highest noise level (which

corresponds to the first column of Table 5.2) in Figure 5.10. We see that other networks have

difficulties to recover the shape of the cells in the presence of noise, and that our method

trained with texture loss is able to generate a higher-quality HR image with faithful texture.
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Single Channel

(a) RIDNet+RDN (b) RDN (c) DnCNN+ESRGAN

(d) ESRGAN (e) ours Ground-truth
Multi Channel

(a) RIDNet+RDN (b) RDN (c) DnCNN+ESRGAN

(d) ESRGAN (e) ours Ground-truth

Figure 5.10 – Qualitative results of denoising and SR on the W2S test images with the highest
noise level. The multi-channel images are formed by mapping the three single-channel images
of different wavelengths to RGB. Gamma correction is applied for better visualization.

82



5.5. Conclusion

5.5 Conclusion

We propose the first joint denoising and SR dataset: Widefield2SIM. We use image averaging to

obtain LR images with different noise levels and the noise-free LR. The HR images are obtained

through the SIM technique. With W2S, we benchmark the combination of various denoising

and SR methods. Our results show that SR networks are very sensitive to noise, and that the

consecutive application of two approaches is sub-optimal and suffers from the accumulation

of errors from both stages. Our results also show the networks benefit from joint optimization

for denoising and SR. We train a single network for joint denoising and SR, with a texture loss

to enable the network to reproduce faithful texture.

Although W2S contains microscopy images, we have shown that it shares similar spatial

frequency characteristics as datasets capture in natural environments. We hypothesize that

the observations and conclusions we gain from the experiments on W2S also apply to natural

images.
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6 Spectral Image Super-Resolution

6.1 Introduction

The methods presented in the previous chapters focus on SR for images captured by con-

ventional RGB color cameras. Spectral cameras that acquire images with a CMOS array have

more spatial resolution constraints. This is due to the fact that spectral image sensors need

to cover a larger number of spectral bands than the three bands that the RGB image sensors

capture. Spectral image processing has become an important field in many computer vision

tasks, such as medical diagnosis, remote sensing, material detection, food inspection, etc.

However, as mentioned beforehand, capturing spectral data is difficult due to the limitations

of the imaging technology. One way to obtain spectral data is to apply scanning in the spectral

domain to acquire the full spectrum. This acquisition process is time consuming and the

equipment is expensive. An alternative way is to fill in the missing band information with the

guidance of existing information. This problem is referred to as spectral reconstruction or

spectral SR.

In this thesis, we address two real-world situations in spectral image SR: (a) multi-scale spectral

image SR: several LR spectral images with different scale factors are available for spectral image

SR; (b) multi-modal spectral image SR: a guided HR color image is provided in addition to

the LR spectral data. Both situations are challenging as only a small number of images are

provided due to the difficulties in capturing the dataset.

For the first situation, we use residual learning to reconstruct the residuals between the LR and

HR images, rather than learning how to rebuild the HR image from LR. Our assumption is that

learning the residual mapping is much easier than learning the original HR image. Further-

more, several image restoration methods such as VDSR [71], DnCNN [138], and DWSR [47]

use residual connections from the input to the output and reduce their training time through

faster convergence. By combining the image completion upscaling method with residual

learning, we build a model suited for multi-scale image SR.

One often can obtain a high spatial resolution panchromatic image accompanying the multi-
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Figure 6.1 – Our proposed framework for spectral image SR, which is able to reconstrcut high-
quality HR spectral images by taking advantage of multi-modal data consisting of multi-scale
spectral images and color images.

spectral low resolution image. The fusion of both images allows obtaining both high spatial

and spectral resolution images. This is helpful for many remote-sensing applications like

agriculture, earth exploration, and astronomy. We make use of a 3-color RGB high spatial

resolution image to guide the SR of the 14-band LR spectral images in the second part of our

experiments. Thus, we design our pipeline to incorporate the guiding images to achieve higher

performance on top of our previous residual network results.

In summary, we propose an efficient framework for multi-modal spectral image SR shown in

Figure 6.1. Our contributions in this chapter are1:

• We build a residual learning network that is suitable for spectral SR due to the sparse

nature of the problem.

• We design a data pre-processing approach that can fuse multi-scale images in order to

create an upscaled input image to the network. This approach combines the information

from multi-scale modalities with an image completion algorithm to provide a candidate

image to the network that performs better than the typical bicubic interpolation.

• We build a two-stage pipeline for guided SR under consideration that very few data sam-

ples containing guiding information are available. The framework resembles transfer

learning, as it allows to transfer information learned using one modality to another to

compensate the lack of data.

6.2 Method

6.2.1 Imaging Model for Spectral Image Super-Resolution

The goal of spectral image SR is to recover an HR spectral image I HR
spectr al of resolution h ×w

from one or a set of LR spectral image I LRs
spectr al of resolution h

s × w
s . For some real-world

1This work was published in [77]
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applications, an HR color image I HR
color that has the same resolution as the HR spectral image

is available. The HR spectral image and its LR version share a similar relationship with HR and

LR of RGB images:

ILRs
spectr al = (IHR

spectr al ⊗k) ↓s , (6.1)

where ILRs
spectr al denotes the LR spectral image with a scale factor of s. IHR

spectr al is the HR spectral

image, k is the blur kernel, and ↓s is the downsampling operation with a factor of s.

The imaging model for the HR color image IHR
color is:

IHR
color (c) = ∑

λ∈V
Sc (λ)I HR

spectr al (λ), (6.2)

where Sc (λ) defines the spectral sensitivity of the color channel c ∈ R,G ,B , and IHR
spectr al (λ) are

the channels of wavelength λ of the HR spectral image.

Following the PIRM 2018 Spectral Image SR Challenge [114], we assume two settings for

spectral image SR:

Task-I: Spectral Image Super-Resolution focuses on the problem of super-resolving the spa-

tial resolution of spectral images. The goal is to recover an HR spectral image IHR
spectr al given a

twice-downsampled version (ILR2
spectr al ) and a thrice-downsampled version (ILR3

spectr al ). Here,

the blur kernel k in Equation 6.1 is omitted for simplicity.

Task-II: Color-Guided Spectral Image Super-Resolution aims at leveraging the link between

spectral and color images of the scene to facilitate the use of on-sensor filter arrays. Thus, the

computational objective of this task is to obtain spatially super-resolved spectral images from

the twice- and thrice-downsampled LR spectral image with the guidance of a perfectly-aligned

color image IHR
color that has the same resolution as the targeted HR spectral image.

6.2.2 Residual Learning Framework

We propose a residual learning framework for spectral image SR as shown in Figure 6.2.

Similar to bicubic interpolation adopted in many SR algorithms [71, 24], we first upscale the LR

spectral inputs ILR2
spectr al and ILR3

spectr al , which are subsampled from the full resolution spectral

image by a factor of 2 and 3. We use an image completion algorithm [2] on the multi-scale

inputs to generate an HR spectral image candidate with the desired size. Then we train residual

learning networks for spectral image SR.

For Task-I, Stage-I uses one 12-layer residual learning network to reconstruct HR results from

the image candidate. These reconstructions are used to generate the solution for Task-I. In

Task-II, we have less training data. So we design our solution to take advantage of Stage-I.

Stage-II takes the concatenation of Stage-I’s proposed output and the higher-resolution color

image as inputs. It is trained on the small dataset of image pairs and refines Stage-I results
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Chapter 6. Spectral Image Super-Resolution

Figure 6.2 – Illustration of our proposed stacked residual learning framework for spectral
image SR. It contains three steps: pre-processing, Stage-I, and Stage-II. Image completion is
done in pre-processing to generate an HR candidate. Then Stage-I reconstruct the HR using a
12-layer residual learning network. Stage-II refines Stage-I results using guiding color image G
through a 9-layer residual learning network.

through guiding color images.

6.2.3 Image Completion

ILR2
spectr al and ILR3

spectr al were both obtained by downsampling the original HR version using

nearest-neighbor downsampling. Therefore, a large amount of pixel information is preserved,

which means we can already recover part of the ground-truth immediately from the LR

samples. In fact, we can recover 1
4 of the data from ILR2

spectr al and 1
9 from ILR3

spectr al by simply

upscaling the image and setting the new pixels to black (unfilled). Together, ILR2
spectr al and

ILR3
spectr al give us 1

3 of the original image pixels. Figure. 6.3 shows how we recover the partial HR

image, named IHRpar ti al
spectr al , from both LR examples.

Image completion is the task of completing an image with a percentage of pixels missing.

This has a wide range of applications such as noise-removal, demosaicing, inpainting, artifact

removal as well as image editing. One particular usage is image-scaling and SR. There have

been multiple approaches to fill the missing parts of an image. One main category of methods

relies on matrix completion [61, 82, 86]. While these methods are well suited for large number

of retained pixels, they do not work when the input matrix has fully missing columns and rows

such as ours. We also do not have many connected pixels to form patches, so patch-based

methods [80, 119] are not suited.

The extreme image completion [2] method FAN is able to complete a 1% pixel image with
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Downscaled x2

Downscaled x3

High Resolution Reconstruction

Figure 6.3 – Illustration of downscaling and upscaling.

(a) LR ILR2
spectr al (c) Upscaled ILR2

spectr al (e) Fusion IHRpar ti al
spectr al

(b) LR ILR3
spectr al (d) Upscaled ILR3

spectr al (f) FAN restul IHRcoar se
spectr al

Figure 6.4 – Illustration of Image Completion on channel 1 of one example from the validation
set: (a-b) are the LR images, (c-d) their upscaled version, (e) the fusion of both upscaled
versions and (f) the image completion result.

low computation time, and returns visually interpretable images. FAN relies on an efficient

implementation of a modified truncated Gaussian filter. The sparse image is filtered with a

Gaussian to interpolate missing entries with Gaussian weights assigned to available pixels

in a window surrounding the missing entry, on which the Gaussian filter is centered. The

modification is that the Gaussian weights are adjusted to account for the number of locally

available pixels.

We use FAN to obtain our input IHRcoar se
spectr al . Note, that we keep the ground truth pixels in

IHRcoar se
spectr al even though FAN outputs different values for them. Figure 6.4 shows the steps to

obtain the completed image from both inputs.

6.2.4 Stage-I: Residual Learning

The input of our Stage-I network IHRcoar se
spectr al is a low-frequency estimation with partially correct

high-frequencies IHRr esi dual
spectr al . Thus we can formulate it as IHRcoar se

spectr al = IHR
spectr al − IHRr esi dual

spectr al ,

where IHRr esi dual
spectr al contains information of the HR spectral image, such as textures and edges.
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We adopt a residual learning formulation to train a residual mapping f (IHRcoar se
spectr al ) = IHRr esi dual

spectr al .

The architecture of the residual learning network is shown in the Stage-I part of Figure 6.2.

By adopting residual learning, the network only learns to predict the high-frequency details

without preserving all low-frequency details. This allows us to use a smaller model and train

faster than conventional CNN methods. In our residual learning network (Stage-I) for spectral

image SR, we use 12 convolutional layers of the same setting except for the last layer: 64 filters

of size 3×3 and followed by a ReLU activation. The last layer for generating residual images,

consists of 14 filters of size 3×3.

As discussed previously, loss functions in image restoration task is very important when the

resulting image is going to be shown to a human observer, typical losses include the L1 and

L2 distance measures. However, these methods are not well suited to deal with multi-spectral

data. The spectral information divergence [14] (SID) compares the similarity of two pixels by

measuring the discrepancy between their spectral signatures. This measure has been widely

used in hyper-spectral data processing. By defining the relative entropy of the prediction P

with respect to the ground-truth G containing M pixels as:

D(P||G) =
M∑

i=0
Pi log(

Pi

Gi
) (6.3)

The SID can then be defined as the symmetric sum of both relative entropy measures:

SID =D(P||G)+D(G||P) (6.4)

Additionally, the pixel values are in the range [0,65536), so a relative error measure is well

suited to reduce the large error that an absolute measure could have at the higher end of the

range. The mean relative absolute error (MRAE) does exactly that by punishing errors relative

to the value of the ground-truth. The MRAE is calculated as:

MRAE =
∣∣∣∣P−G

G

∣∣∣∣ (6.5)

To better optimize along both metrics, we use a loss function of a sum of MRAE and SID to

train our network:

L = SID+MRAE (6.6)

6.2.5 Stage-II: Color Guided Super-Resolution

We propose a further improvement by using registered pairs of spectral and color images. In

fact, mixing information from both modalities allows obtaining both high spatial and spectral
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resolution images. However, due to the difficulty of obtaining a large set of registered image

pairs, we introduced a transfer learning method built on top of the previous residual network.

We build a new residual learning network that takes as input the previous super-resolved

image (obtained from Stage-I) concatenated with a 3-channel color image. The new network

acts as a fine-tuner for the SR based on the new color data accompanying its input. The

network architecture is shown in Stage-II part of Figure 6.2. Here we use 8 convolutional layers

with 64 filters of size 3×3 each followed by a ReLU activation, and we use a final convolutional

layer with 14 filters of size 3×3 to produce the residual image. We use the same loss function

to train this network as discussed above.

6.3 Experiments

6.3.1 Dataset

Both Task-I and Task-II are based on the StereoMSI (Stereo Multi-spectral Image) dataset,

which has been introduced in Chapter 2. The dataset consists of hundreds of stereo RGB-

spectral image pairs. The images in the dataset depict a wide variety of scenes under natural

and artificial illuminants. The nature of the images ranges from natural settings to industrial

and office environments. For Task-I, 240 spectral images have been split into 200 for training,

20 for validation, and 20 for testing. For Task-II, 120 stereo image pairs are used, with 100

of these employed for training, 10 for validation and 10 for testing. As only the training and

validation data is available to the public, we train the networks on the training data and report

the evaluation results on the validation sets, namely Validation-I for Task-I and Validation-II

for Task-II.

6.3.2 Comparative Results

We separately train the two stages. For Stage-I, we use spectral patches of size 96×96 with

a stride of 24 cropped from the fused ILR2
spectr al and ILR3

spectr al images following the described

image completion scheme. We use spectral images from both tracks to obtain a larger training

set for Stage-I. We use Adam [73] for optimizing the network with weight decay = 10−5 and a

learning rate of 0.001. We decay the learning rate by 10 every 30 epochs. We set the batch size

to 64. After Stage-I converges, we use the Task-II dataset for training Stage-II. We crop 48×48

overlapping patches with a stride of 16 from the dataset. We use the same training strategy as

in Stage-I for Stage-II. We use a sum of SID and MRAE for the loss function in the training of

both stages.

Table 6.1 shows the results on Validation-I, we compare our image completion method by

training the same architecture on inputs from bicubic upscaled images taken from ILR2
spectr al .

Our image completion input outperforms this commonly used upscaling method on all

metrics. This also applies to the Validation-II dataset.
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Figure 6.5 – Example of results from different stages. Error images show the absolute difference
from our reconstruction to the ground truth spectral image. The histograms of residuals show
the histogram of relative absolute errors on the error images.
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Metric Bicubic Stage-I Results EDSR
MRAE 0.11 0.08 0.10

SID 57.39 43.48 43.57
PSNR 36.07 37.44 37.27

Table 6.1 – Test results on Validation-I. The bold values indicate the best performance.

Metric Bicubic Stage-I Results Stage-II Results Residual Net EDSR
MRAE 0.13 0.10 0.09 0.23 0.16

SID 43.32 38.04 24.51 36.29 30.67
PSNR 36.48 37.02 39.17 36.62 37.13

Table 6.2 – Test results on Validation-II. The bold values indicate the best performance.

We show an example of results from different stages of our pipeline on Validation-II in Fig-

ure 6.5. The error images in Figure 6.5 clearly show that with the help of guiding color image,

Stage-II is able to improve the results from Stage-I.

We display the comparison with other methods on Validation-II in Table 6.2. To show the

merit of our transfer learning model, we train a residual learning network [71] and the state-

of-the-art SR network EDSR [84] using both spectral images (after applying image completion

on ILR2
spectr al and ILR3

spectr al ) and guiding color images as inputs. For the residual network, we

use 21 convolutional layers to obtain the equivalent size of our stacked stages. We set all

convolutional layers of the residual network with a configuration of 64 filters of size 3×3

and ReLU activation except the last layer which has 14 filters of size 3×3 with no activation

function.

For EDSR, we use the same configuration as the original paper except we ignore the Pixel

Shuffle (since we already use an upscaled input) layer [112] and modify the last layers to have

14 filters to reconstruct the 14-band spectral image. EDSR has 32 residual blocks with 256

filters for each convolutional layers. We train both networks using only the Stage-II dataset,

and we also do image completion before feeding ILR2
spectr al and ILR3

spectr al inputs to the networks.

All networks are trained for 300 epochs. Although trained without guiding color images, our

Stage-I gives slightly better results than the residual network and EDSR trained on pairs. With

guiding color images, Stage-II gains significant improvements on all three metrics.

We also show in Fig 6.6 the visual comparison of EDSR [84] and our method trained on bicubic

interpolated input and the completed HR candidates. The error images show that our method

outperforms the other two methods.

In addition to performance, we also evaluate the memory and time consumption of the

proposed model. For a 240×480 spectral image (with ILR2
spectr al size of 120×240), our method

only takes 0.5 seconds (0.3 seconds on Stage-I and 0.2 seconds on Stage-II) and 800MB memory

on Titan X GPU. For EDSR, it takes 1.1 seconds and 8000MB memory on the same device.
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Figure 6.6 – Visual comparsion of results from different methods: EDSR [84] and our method
trained on bicubic interpolated inputs and the completed HR candidates. Error images show
the absolute difference from our reconstruction to the ground truth spectral image.

6.3.3 Ablation Studies

We run ablation studies on our Stage-I network to study how different factors affect the

architecture’s performance. First, we study the effect of using different upscaling factors

together and alone. Second, we study the effect of the depth on the network on its ability to

generalize. Finally, we experiment with changing the loss metrics between MRAE, SID and

their sum.
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In all the experiments, we train the same residual network with the previously stated configu-

rations, while varying only the one factor in question. We use Adam [73] for optimizing the

network with weight decay = 1e −5 and a learning rate of 0.001. We decay the learning rate by

10 every 20 epochs, and we train all the networks for 100 epochs. We report our results on the

Task-I validation set.

Upscaling Factors

In this section, we change the input of the network to understand how different scales affect

its performance. We separate the ILR2
spectr al and ILR3

spectr al images, and create image completions

from each one of these and train two networks separately using those inputs. Both networks

are using the sum of MRAE and SID as loss function. We compare both of them against the

original network trained on the completed ILR2
spectr al and ILR3

spectr al images together. Table 6.3

shows the performance of each network given different inputs. All networks achieve the best

performance on the type of input they were trained on, we use those values to compare across

models. The completed ILR2
spectr al includes more original pixels than the completed ILR3

spectr al ,

the network trained on ILR2
spectr al outperforms the network trained on ILR3

spectr al . Naturally, the

network trained on image completion on both ILR2
spectr al and ILR3

spectr al obtains better results

than the network trained on ILR2
spectr al only. This also demonstrates that although ILR3

spectr al has

a lower resolution than ILR2
spectr al , it contains extra original pixels that help to reconstruct a

higher-quality HR spectral image.

ILR2
spectr al ILR3

spectr al ILR2
spectr al + ILR3

spectr al

MRAE SID MRAE SID MRAE SID
ILR2

spectr al 0.12 55.50 0.25 192.0 0.12 62.97

ILR3
spectr al 0.16 106.24 0.18 117.17 0.14 123.63

ILR2
spectr al +ILR3

spectr al 0.13 58.10 0.24 178.04 0.10 47.20

Table 6.3 – Test results on Validation-I. The rows represent the type of input the networks were
trained on, the columns show the results on inputs taken with different downsampling factors.
The bold values indicate the best performance.

Depth Effect

We study the effect of the depth on the network accuracy and generalization. We empirically

determine the best depth for the residual network architecture on the Stage-I problem. We

vary the depth between 8 and 16 by steps of 2 and report the progress of this networks during

training, as well as their best performances on the validation set. Table 6.4 shows the metrics

for these 5 networks. We can see that at depth 12, we obtain the best performance in terms of

MRAE and PSNR.
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Metric
Depth

8 10 12 14 16
MRAE 0.11 0.11 0.10 0.11 0.12

SID 47.27 46.94 47.20 47.26 50.44
PSNR 35.07 35.13 35.15 35.05 31.21

Table 6.4 – Test results on Validation-I based on network depth. Numbers in the header row
indicate the number of convolutional layers.

Loss Metrics

In this section, we train multiple residual networks with the same parameters using different

loss functions. We train with only MRAE, only SID, and a combination of both. We show

that using both provides better super-resolved spectral images than using a single metric.

Table 6.5 shows the results from these three models. While the network trained on MRAE only

outperforms the others on the MRAE metric, its results have a high SID loss. Combining both

MRAE and SID losses during training gives the best of both metric results while also scoring

high on PSNR.

Metric MRAE SID MRAE+SID
MRAE 0.09 0.11 0.10

SID 87.75 47.20 47.20
PSNR 31.14 34.94 35.15

Table 6.5 – Test results on Validation-I based on loss metric. Metrics in the header row indicate
the loss used during the training of the network. All networks have a similar structure.

6.4 Conclusion

Our work presents a spectral SR technique based on the fusion of information from multiple

sources. First, we introduce an upscaling scheme to combine multi-scale downsampled

images based on image completion, and demonstrate it performs better than the commonly

used bicubic method. We feed our upscaled images into a two-stage residual network pipeline.

In the first stage, we infer original high-resolution images from the upscaled input. In the

second stage, we further fine-tune the prediction by appending color images and input it into

a smaller residual network. Both networks are economical in time and memory consumption

while achieving competitive results.

In conclusion, we demonstrated different schemes combining multi-modal inputs for spectral

SR. While this work limited itself to the data provided by the challenge, it can be expanded

into other modalities, namely different scales, near-infrared, or even depth inputs.
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7 Conclusion

7.1 Thesis Summary

In this thesis, we developed several useful techniques for SR in real-world scenarios. All

the proposed algorithms use CNNs. Therefore, in Chapter 2, we first reviewed the network

architecture and deep-learning techniques that we used in our methods, including FCNs and

GANs. Afterwards, we introduced previous works on SR and other related image restoration

tasks. Finally, we have presented the datasets used in this thesis.

As demoisaicing and SR are both related to the resolution limitation of cameras,in Chapter

3, we proposed to jointly perform demoisaicing and SR. We showed that with joint optimiza-

tion, the accumulation of errors is avoided, and better results are achieved compared to the

sequential application of demoisaicing and SR.

To address the problem of unknown blur kernels in real photographs, in Chapter 4, we in-

troduced kernel modeling in SR systems. Instead of using hand-crafted blur kernels, we

estimated realistic blur kernels from real LR images. As the estimated blur kernels are limited

in quantity, we used a GAN to expand and augment the kernel pool that we collected from the

LR images. We validated the performance on synthetic data, realistic data, a collected zoom-in

dataset, and through a psychovisual experiment. The trained SR network on the kernels that

we collected and expanded achieves better results on real photos, both quantitatively and

qualitatively.

As noise is inevitable in image acquisition, in Chapter 5, we studied the problem of joint de-

noising and SR. To be able to quantitatively evaluate the joint problem, we built a microscopy

dataset, namely Widefield2SIM (W2S); it consists of hundreds of image sets that contain,at dif-

ferent noise levels, HR images and their LR versions. We then benchmarked the combinations

of state-of-the-art denoising and SR algorithms on our dataset. The results indicate that the

denoising algorithm that achieves the best result on denoising does not necessarily provide

the best input for the SR algorithms. This motivated us to train a single network for the joint

problem. Experimental results show that the single network benefits from joint optimization
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and achieves much better results than the sequential application of the two algorithms. We

further proposed a novel texture loss that enables the network to produce better results with

more faithful details.

In Chapter 6, we developed a fusion system for spectral image SR that contains multi-modal

data. We proposed to use an image completion algorithm for the multi-scale data, and we

designed a style transfer learning scheme for the multi-modal data. Experimental results show

that our approaches are economical in time and memory consumption yet achieve the best

results in the PIRM 2018 challenge.

7.2 Future Work

In this thesis, we developed several approaches for single image super-resolution for natural

images and other domains. More explorations could be conducted in both directions.

In Chapters 3, 4 and 5, We separately addressed the important factors (i.e., CFA, blur kernel,

and noise) of the imaging model. A direct extension would be to combine all these factors

in one SR system. Attempts have been made in this direction [104], where a network has

been trained to learn the mapping from a LR noisy raw image to a HR clean color image.

However, collecting a realistic dataset for this problem is non-trivial. The network also trained

on synthetic data that is built using the bicubic blur kernel, and additive Gaussian noise

might not perform well on real, natural images. One way to handle this is to develop similar

approaches, as in Chapter 4, for collecting or generating realistic CFA and noise. An alternative

way is to collect a dataset, as W2S proposed in Chapter 5, but in the domain of natural images.

In all our SR approaches, we solve the SR problem of ×2 or ×4. Currently, however, we want

extreme SR that does ×8, ×16 or even ×32. The recently released high-end phone (Samsung

Galaxy S20) features a ×100 zoom. Such extreme SR is much more challenging if we want to

preserve high perceptual-quality local details. Furthermore, the upscaling factors are unknown

in many practical scenarios. Therefore, it is important to develop an SR systems that can

handle any arbitrary SR factors and that can characterize the level of degradation.

Along with the promising performance that CNNs have achieved in SR, there remain several

important challenges in deep learning. One of these challenges is the need to develop lighter

architectures for efficient SR. As our methods and the state-of-the-art SR systems [128, 141,

144] usually contain very deep architectures to achieve high performance, it is very hard to

deploy such models in any real-world scenarios. Another challenge is to better understand

the deep SR models, especially the representation and features extracted by the networks.

Without this knowledge, it is hard to further explore novel network architectures. Lastly,

in many applications, a desired loss function is designed for training or evaluating the SR

networks. However, many works simply employ MSE or MSE related metrics, such as PSNR

and SSIM, as assessment criterion; this has been shown to be a poor criterion for perceptual

quality. Consequently, it is of great importance to study and design more perceptually relevant
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assessment criteria for SR in real applications.

For the SR in domains other than natural images, such as spectral imaging and medical

imaging, it is usually harder to collect large paired datasets for SR training. In practice, it

is usually difficult to obtain ground-truth images for all the samples. This has lead to the

availability of large databases of images without ground truth or with very limited ground-

truth. To address this issue, advances in unsupervised and semi-supervised learning might

help.
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