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ABSTRACT4

This paper focuses on an inverse problem involving a commonly used material model in5

structural steel applications - the Voce-Chaboche model. In particular, this paper proposes6

an approach focused on obtaining a consistent set of material parameters that accurately7

represents a wide range of mechanical uniaxial cyclic load histories. The main focus of the8

methodology presented in this manuscript is its application to structural steels in the field9

of earthquake engineering. A set of load protocols representative of seismic loading are10

proposed for this purpose. It is shown that the calibration procedure optimally leverages11

Voce-Chaboche’s ability to describe the material response to an arbitrary load history. Pa-12

rameters for prevailing American, European and Japanese structural steels are also proposed.13

Keywords: Inverse problem, Structural steel, Chaboche, Material modeling, Earthquake14

loading15

INTRODUCTION16

Representative modeling of the behavior of structural systems at large deformations asso-17

ciated with collapse depends crucially on two features: material and geometric nonlinearities.18

Behavior is often governed by a composition of these two phenomena and, as such, greater19
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accuracy in modeling each of these traits will improve simulating the dynamics of their in-20

teraction. In structural steel applications this is of particular consequence in estimating21

member and local buckling and their performance in the post-buckling regime, which are22

essential in assessing behavior to collapse. This paper focuses on the material nonlinearity23

side of the issue.24

Experimental observations of cyclically loaded structural steels show a combination of dis-25

tinctive features. Chiefly among them are strain hardening, the Bauschinger effect (Bauschinger26

1874), and ratcheting (Hassan and Kyriakides 1992). Strain hardening encapsulates the find-27

ing that the stress carried after some amount of irreversible deformation has a tendency to28

increase due to the built up resistance to the movement of dislocations caused by phenomena29

such as interactions with dislocations forests and dislocation pile-ups - c.f. Nabarro et al.30

(1964) for a classic review of the fundamental mechanisms. The Bauschinger effect captures31

the observation that an increase in the flow stress in a particular direction lowers the yield32

stress when loading is exacted in the opposite direction. This is mainly attributed to dislo-33

cation pile-ups and stress accumulation in the original load direction that when it’s reversed34

assist the movement of the dislocations in the inverse path. Lastly, under constant stress35

amplitude and nonzero mean stress cyclic tests an accumulation of plastic strain with each36

cycle in the direction of the average stress is typically observed. This phenomenon is termed37

ratcheting or cyclic creep - c.f. Hassan and Kyriakides (1992) for an overview of relevant38

experimental results.39

Modeling the aforementioned material behaviors is typically done within the J2 plasticity40

framework (von Mises 1928) and literature on the subject is vast. Some focus is demanded41

and therefore this paper concerns itself solely with time-independent uniaxial material re-42

sponses - c.f. Chaboche (2008) for a thorougher review. Time-independent material models43

are usually employed unless the application at hand strictly mandates a material-transient44

analysis. To date, structural analyses of steel buildings specific to seismic seldom consider45

material transient effects. Simulation strategies frequently address the aforementioned issues46
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by assigning evolution laws to the yield function and the plastic potential (associative plas-47

ticity). The surfaces either change in size (isotropic hardening - Hill 1950) and/or translate48

in stress space (kinematic hardening - Prager 1956) in order to capture work hardening.49

The kinematic approach has the added feature of capturing the Bauschinger effect and as a50

consequence is used ubiquitously in cyclic loading. The introduction of material nonlinearity51

in the models can be achieved in a variety of ways: analytically, by specifying the evolu-52

tion of a surface as power laws or saturating exponentials (e.g. the Ludwik 1909 or Voce53

(1948) expressions for isotropic hardening, respectively); a combination of linear-hardening54

surfaces (Hodge 1956 for isotropic and Mróz 1967 for kinematic hardening); or by stipulating55

growth rates as a function of the distance of the current surface to a limit surface (Dafalias56

and Popov 1975 and Dafalias 1986 for kinematic hardening). A significant contribution in57

modeling nonlinear kinematic hardening was made by Armstrong and Fredrick (1966). The58

simplicity in their approach in combination with its ability to simulate ratcheting has made59

its use widespread. Later, Chaboche et al. (1979) suggested using an additive decomposition60

of that rule to improve its performance. After, Dafalias et al. (2008) introduced the concept61

of multiplicative Armstrong-Fredrick (AF) hardening to further enhance Chaboche’s model.62

Although AF-type laws perform well in uniaxial loading one of its main criticisms is the63

overestimation of ratcheting strains in multiaxial settings as shown, e.g., in Ohno and Wang64

(1993).65

Caution should, nonetheless, be exercised when considering those criticisms as analyses66

are arguably only as good as the input model parameters used in performing them. As67

pointed out by Rezaiee-Pajand and Sinaie (2009), too often are trial-and-error approaches68

used to approximate a response to subjective levels of accuracy, whereas using a systematic69

methodology to calibrate the Chaboche model parameters can be shown to improve their70

behavior when compared to values previously reported in literature. Nonunique solutions is71

the issue at hand. Distinct parameter sets can have very similar error levels in one situation,72

but very disparate ones in other circumstances - c.f., e.g., Cooke and Kanvinde (2015). An73
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essential part in facing this problem is, therefore, finding sufficiently differentiating conditions74

and minimizing the lack-of-fit of the models to the experiments. Using a diverse collection75

of load protocols is a valuable tool in this regard.76

Past experimental studies (e.g., Krawinkler et al. 1983; Lignos et al. 2011; Suzuki and77

Lignos 2015) have underscored the sensitivity of structural component deterioration to the78

imposed loading history. Systematic load protocols have been developed for structural testing79

to depict the strength and stiffness deterioration of a component under seismic loading80

depending on the performance level of interest (e.g., Krawinkler 1996; Suzuki and Lignos81

2019 ). However, there seems to be a lack of systematic protocols at a macroscopic material82

scale to manifest reliable material parameters (e.g., cyclic hardening) that could be used83

for constitutive material model input parameter calibrations to reliably prognosticate the84

behavior of steel structural components under seismic loading. Past experimental studies and85

standards (ASTM 2012; ASTM 2013; ISO 2016) have mainly focused on the identification86

of typical mechanical properties of structural steels under tensile loading as well as various87

types of fatigue applications involving constant, step-wise increasing or variable amplitude88

material testing (Miller and Amin 1975; Krawinkler et al. 1983; Kaufmann et al. 2001;89

Braconi et al. 2013; Dehghani et al. 2017) .90

Methods to solve inverse problems are not straightforward and a number of suggestions91

to address them can be found in literature. There exist analytical procedures that are model-92

specific, like the ones suggested by Rezaiee-Pajand and Sinaie (2009) or, more recently, Koo93

et al. (2019) which are relevant for the material model in question. Their application is94

however focused more on ratcheting behavior and less so on more comprehensive hysteretic95

responses under different load conditions. More general methodologies can be found in the96

context of mathematical optimization. There, one tries to minimize a well-defined objective97

function that describes how a material model approximates the experimental data. There98

are established and powerful tools under this framework for least square fitting of nonlinear99

functions - see e.g. Bierlaire (2015). Unconstrained gradient-based minimization methods100
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like the Gauss-Newton method and its damped version, the Levenberg-Marquardt algorithm101

(Levenberg 1944, Marquadt 1963), are among the state of the art in inverse problems with102

applications in hyperelastic (Gendy and Saleeb 2000,Holzapfel et al. 2000), nonlinear het-103

erogeneous with a prescribed stress-strain curve (Bickel et al. 2009), plastic, viscoplastic104

and damaged materials (Bruhns and Anding 1999, Andrade-Campos et al. 2007, Lemaitre105

and Desmorat 2005). A different class of methods known as randomized search algorithms106

can also be found in literature for the calibration of material properties, such as simulated107

annealing (Kirkpatrick et al. 1983), genetic and evolutionary algorithms (Pal et al. 1996,108

Furukawa and Yagawa 1997), and swarm algorithms (Smith et al. 2017). Although an anal-109

ysis between the two approaches is beyond the scope of this paper, the reader is nonetheless110

referred to Andrade-Campos et al. (2007) for an interesting discussion of the topic. The111

scheme used in this paper is gradient-based, comparable to the Levenberg-Marquadt algo-112

rithm but formulated within a Newton Trust-Region (NTR) framework (Conn et al. 2000).113

Essential details on its implementation are given in the methodology section.114

This paper proposes a methodology comprising (a) experimental and (b) optimization115

procedures in order to solve, implement, and obtain calibrated input model parameters.116

The material model herein consists of a nonlinear isotropic and kinematic hardening model,117

following the Voce and Chaboche rules, respectively. Subsequently, the results of the appli-118

cation of these techniques to a set European, American and Japanese structural steels will119

be presented, followed by a section discussing those results. The paper will finish with a120

brief conclusion section summarizing the main observations of this research study.121

METHODOLOGY122

This section presents the proposed methodology used in the inverse problem approach.123

It is organized into five subsections, starting with the definition materials and testing pro-124

cedures, followed by selection of load protocols, a presentation on the material model, the125

inverse problem definition, and, finally, the recommended optimization scheme. The method-126

ology focuses on model behavior under uniaxial load and uses this fact to simplify the evalu-127
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ation procedure. The approach is based on the integration of the analytic uniaxial version of128

the Voce-Chaboche (VC) hardening model. The integration of the response along the strain129

path is conducted numerically by using discrete true-strain steps following the load protocols.130

It is recommended that responses be obtained from engineering metrics of uniaxial coupon131

tests. This approach is in contrast to procedures that explicitly model coupons in Finite132

Element analyses and obtain their responses by imposing displacement boundary conditions133

at their ends. Furthermore, this approach distinguishes itself from calibration methods that134

are based in far-field measurements, such as member moment-rotation responses (c.f., e.g.135

Araújo et al. 2017). It is believed that characterizing the response of coupon-scale specimens136

is a more apt descriptor of material behavior since the problem is more bounded. Member137

responses often carry confounding factors that are geometry-specific, such as the assumed138

imperfections for the member, or plastic hinge length effects that are influenced by both the139

cross-section geometry and material hardening (Elkady and Lignos 2018). On the contrary,140

tests conducted on round coupons with local strain measurements allow these problems to141

be significantly mitigated.142

Materials and testing procedures143

A number of structural steels of different grades and producers are studied in this paper144

- c.f. Table 1 for a summary of their tensile properties. The data analyzed herein were145

sourced from Grigoriou and Lignos (2017) and in-house experiments, for European steels146

(S355J2+N, S355J2, S460NL and S690QL) and Suzuki (2018) for typical American (A992147

Gr. 50 and A500 Gr. B) and Japanese steels (BCP325, BCR295 and HYP400). Specimens148

were obtained from different structural elements such as plates, web and flange of I-shape149

sections, and the walls of square hollow sections. All specimens are uniaxially loaded. Alas,150

not all load protocols are available for each material type. A summary table with the material151

parameters is provided in the results section (cf. Table 5) and the load protocols to which152

they were calibrated are noted explicitly. For the sake of simplicity, the analysis presented153

in the result section on the optimization algorithm is conducted with a standard material,154
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an S355J2+N steel (nominal yield stress of 355MPa, minimum Charpy V-notch test of 27155

Joules at -20◦C and with a normalized heat treatment) whose round coupons are extracted156

from 50mm thick plates. The main observations, however, can be taken to hold for the whole157

dataset.158

Testing procedures for metallic materials subject to uniaxial tensile loading at ambient159

temperatures have long been the subject of standardization.- c.f. e.g. ASTM (2013) and160

ISO (2016). Useful guiding standards for cyclic strain-controlled tests can also be - c.f.,161

e.g., ASTM (2012). Two fundamental variables used extensively throughout this paper162

have to be defined: uniaxial true stress (σ) and uniaxial true strain (ε). Starting with the163

measured variables force (F ) and displacement in extensometer (∆L, with L being the gauge164

length ∆L is the change in the initial gauge length), one defines the stress in the reference165

configuration as the engineering stress (σeng = F/A0, with A0 the initial cross-sectional166

area of the specimen) and the strain in the reference configuration as the engineering strain167

(εeng = (L − L0)/L0). True stress and true strain are stresses and strains in the deformed168

configuration, which in uniaxial loading can be shown to be equal to Eq. 1 and 2, respectively169

- c.f., e.g. (Lubliner 2008).170

σ = σeng (1 + εeng) =
F

A0

(
1 +

L− L0

L0

)
(1)171

ε = ln (1 + εeng) = ln

(
1 +

L− L0

L0

)
(2)172

Challenges pertinent to the uniaxial cyclic coupon testing relate to (a) the type of test-173

setup grip (ASTM 2012), (b) specimen buckling, and (c)the stiffness of the test apparatus174

not to compound on those nonlinear geometric effects - cf. e.g. Dehghani et al. (2017).175

Selection of load protocols176

The uniaxial strain-based protocols are developed based on nonlinear response history177

analyses of more than 80 capacity-designed steel moment-resisting frames (MRFs) ranging178
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from two to 12 stories. The steel MRFs comprise columns with hollow square sections (HSS)179

and I-shape steel beams with fully restrained beam-to-column connections. The steel MRFs180

are modeled in 2-dimensions (2D) in the open system for earthquake engineering simulation181

platform (OpenSees) (McKenna 1997). Local demand parameters (e.g., stress-strain field)182

is of particular interest for the load protocol development. Therefore, the use of distributed183

plasticity frame elements is imperative. Particularly, steel beams and columns are modeled184

with a force-based formulation (Spacone et al. 1996) with five integration points along their185

length. A fiber-based approach is employed to represent the HSS cross-section, which is dis-186

cretized based on recommendations by Kostic and Filippou (2012) . A uniaxial stress-strain187

formulation is assigned to each one of the fiber elements based on the Menegotto-Pinto uni-188

axial formulation (Menegotto and Pinto 1973). The input model parameters are calibrated189

to available test data (Lignos and Krawinkler 2013). The component modeling does not con-190

sider the effects of strength and stiffness deterioration on the structural response. Arguably,191

component deterioration is likely to dominate the steel MRF response at large inelastic drift192

demands (Zareian et al. 2010). However, this is not expected to be the case at modest drift193

demands associated with design-basis seismic events with a probability of exceedance of 10%194

in 50 years or in cases that P-Delta effects dominate the structural response prior to collapse195

(Adam and Jäger 2012). Therefore, the modeling approach is justified. Second order effects196

are considered with the P-Delta transformation in OpenSees. Damping is simulated with197

the Rayleigh model according to the recommendations of Zareian and Medina (2010). A198

two percent (2%) viscous damping ratio is considered for the fundamental period, T1 of each199

frame and for that corresponding to 20%T1 as suggested in PEER (2010). The steel MRFs200

are subjected to suites of 40 ground motions. Each of which representing near-fault, long201

duration (from subduction interfaces) and ordinary seismic records based on the conditional202

mean spectrum (Baker 2011). Specifics to the ground motion selection are discussed in203

Suzuki and Lignos (2019). While seismic response at design-basis earthquakes is of interest,204

the ordinary ground motion set is scaled incrementally till collapse occurs only steel MRFs205
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vulnerable to P-Delta (i.e., above 8-stories) in an attempt to get a sense of column strain206

demands through collapse, acknowledging the limitations of the employed numerical models.207

The simulation results of interest feature uniaxial strain histories extracted from the208

outer extremity of the flat part of the first-story end (exterior) column of a steel MRF in209

the principal direction of earthquake loading. Results indicate that for ordinary and long-210

duration records, mean effects are negligible. Therefore, representative strain-based load211

protocols are developed based on standard rainflow-counting with zero mean effects (ASTM212

2011). In near fault records, two distinct types of strain responses are dominant. Those213

that a member exhibits a full-cycle of a certain strain amplitude followed by monotonic214

drifting in one loading direction prior to collapse due to P-Delta effects (i.e., typical in steel215

MRFs above 8-stories) as well as cases that while collapse does not occur mean effects are216

appreciable. These two types are treated separately. In the former, the absolute peak strain217

demand prior to collapse is identified for steel MRFs with 8 or more stories. In the latter,218

rainflow-counting is conducted two times. The first one is up to the absolute peak strain219

demand, whereas the second one is conducted in the post-peak strain response up to rest.220

Conservatively, the 90th percentile of the cumulative frequency distribution of the acquired221

strain demands is utilized in all cases to establish the strain-based load protocols. This is222

consistent with the methodology presented in Krawinkler et al. (1983).223

Material model224

This subsection presents a nonlinear isotropic and kinematic hardening model within the225

framework of J2 plasticity. The essential features of its integration procedure can be readily226

consulted in its open-access implementation RESSPyLab (de Castro e Sousa et al. 2019). For227

a thorougher discussion on the implementation of inelastic materials the reader is referred228

to Simo and Hughes (1998).229

From the π-plane perspective the threshold for plasticity, as defined by the Von Mises230

yield criterion, can be seen as a circle and isotropic hardening can be interpreted as an231

increase of the radius of the circle, and kinematic hardening a translation movement of the232

9



center of that circle.233

Dictating how this circle enlarges and moves as function of the loading is commensurate234

to defining material hardening laws. Finding appropriate parameters for those rules is the235

subject of this paper. Henceforth the uniaxial version of the problem will be presented since236

the analysis of test-data will be solely unidirectional. Consider the isotropic and kinematic237

hardening laws in Eq. 3, 4 and 5.238

Isotropic hardening (Voce 1948)239

σy = σy,0 +Q∞

(
1− e−bεpeq

)
(3)240

Kinematic hardening (Chaboche et al. 1979)241

α̇k = sign (σ − α)Ckε̇
p
eq − γkαkε̇peq (4)242

α =
nBack∑
k=1

αk (5)243

where εpeq is the equivalent plastic strain whose definition for uniaxial loading can be244

expressed as in Eq. 6.245

ε̇peq = |ε̇p| (6)246

Equation 3 is an exponentially saturating isotropic hardening law, i.e. as plastic strain247

is accumulated the increase in stress will tend to the maximum saturated value Q∞ above248

yield. It will do so governed by the exponential term at a rate defined by the term b.249

Equation 4 is a kinematic hardening rule defined in rate form. There are two notable250

terms: (1) the term with the parameter Ck if it existed by itself would lead to a simple251

linear kinematic hardening model and (2) the term with γk is negatively proportional to252

the backstress itself and, thus, leads to a nonlinear exponentially saturating behavior. The253
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introduction of the γk term was suggested by Armstrong and Fredrick (1966) and so this254

rule bears their name. For monotonic loading Eq. 4 has essentially the same form of Eq. 3255

where the saturation term is Ck/γk and the rate term is γk. After Armstrong and Fredrick256

(1966), Chaboche et al. (1979) suggested the use of multiple backstresses (c.f. Eq. 5) to the257

define a more robust rule.258

With the material parameters discussed above, one can give the formal definition of the259

uniaxial Von Mises yield criteria used to solve the inverse problem in Eq. 7, in which θ is a260

vector containing all the model parameters.261

φVM(σ, α, σy;θ) = φVM(σ, α, σy;E, σy,0, Q∞, b, C1, γ1, ..., Ck, γk) = (σ − α)2 − σ2
y ≤ 0 (7)262

Inverse problem definition263

All optimization procedures operate on an objective function to be minimized. In the264

particular case of inverse problems, a measure of fitness between a model and an experimental265

result is sought after. For classic plasticity problems a number of different objective functions266

have been used for this purpose - c.f. Pal et al. (1996) and Smith et al. (2017). What follows267

presents and discusses what is believed to be a robust alternative to those sources.268

Consider the definition of the accumulated true strain in Eq. 8, which expresses the sum269

of the absolute values of the strain increments for a given load protocol. The purpose of this270

variable is to be able, for each protocol, to define a loading function in a strict sense where271

one input (ε∗) has a unique corresponding output (σ). Referring to Fig. 1, or cyclic loading,272

this is equivalent to ”unpacking” the hysteretic true-stress-true-strain curve.273

ε∗ =

∫ t

0

| ε̇ | dτ (8)274

Equation 9 presents the error function to be minimized in the inverse problems. The275

i-th load protocol is expressed by the variable ε∗i of a load protocol set of nTests number of276
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tests. The numerator consists of the sum over all experimental results (e.g. whose main277

variable is ) of the integral of the square difference between the model and experimental true278

stress over the accumulated true strain. This is tantamount to the square of the grey shaded279

area in Fig. 1b. The denominator is an averaging term to provide an error per unit strain280

increment. Nonlinear least squares is akin to this approach in that it is a discrete sum of281

square differences. Here, however, a continuous representation is used with an integral along282

the loading path, albeit in practice it is numerically integrated with the trapezoidal rule.283

Another possibility would be to use the Least Absolute Deviation (LAD). This approach is284

sometimes used because it is both computationally efficient and is known to be less sensitive285

to outliers (Wilson 1978). However, since differentiability near the solution is a desirable286

feature in methodologies that rely on gradient computations and since a procedure of this287

class is used herein, the squared difference is used.288

ϕ(ε∗i ;θ) =
∑
i

∫ ε∗i
0

(σmodel(ε
∗
i ;θ)− σTest)2 dε∗∫ ε∗i
0
dε∗

, iε {1, ..., nTest} (9)289

To avoid negative solutions an additional reciprocal barrier equal to 1/θ2i is added to ϕ,290

with θ the model parameters and steps are restricted to within ∀i, θi ≥ 1e− 4.291

The error function in Eq. 9 can be challenging to interpret (units of MPa2) and so a292

normalized error function in Eq. 10 will be used to facilitate the discussion of the results.293

It represents the square root of the ratio between the integral of squared difference and just294

the squared area underneath the test.295

ϕ̄ =

√√√√ϕ/

{∑
i

∫ ε∗i
0

(σTest)
2 dε∗∫ ε∗i

0
dε∗

}
(10)296

Optimization procedure297

The algorithm is implemented in the Python package RESSPyLab (de Castro e Sousa298

et al. 2019) for solving the inverse problem in present paper.299

To illustrate the methodology, consider the second-order Taylor approximation m of some300
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function f (f : <2 → <, whose level curves are represented in Fig. 2a) about a point at the301

k-th iteration (xk) in Eq. 11, with d the difference between the point at the next step and302

the current one (d = xk+1 − xk), 5xf the gradient of f , and 5xxf the Hessian of f .303

f(xk+1) ≈ m(xk+1) = m(xk + d) = f(xk) + 5xf(xk)
Td +

1

2
dT 5xx f(xk)d (11)304

If one were to simply apply Newton’s method into finding the minimum of m, one would305

look for the step d that would yield 5dm = 0. From Eq. 11, this results in Eq. 12, which306

finds the minimum of m for positive-definite Hessians in a single step.307

5dm = 5xf(xk) + 5xxf(xk)d = 0⇒ d = −5xx f(xk)
−1 5x f(xk) (12)308

The problem with taking this step is that far from xi the quadratic approximation might309

not at all be representative of f . To illustrate this point consider the search direction310

delineated in dashed stroke in Fig. 2a and 2b, which is depicted in Fig. 3a. To prevent311

this, the size of step d is restricted to a certain magnitude (∆) of a specified l-norm (‖x‖l =312

l

√∑
j |xj|l; cf. Fig. 3b ) where one is confident that f ≈ m - the Trust-Region.313

The next step in the methodology is how to find the step d that minimizes m such that314

‖d‖l ≤ ∆ - the trust-region sub-problem. This is formalized by the optimization problem 13,315

with constraints 14.316

minimize m(xk + d) (13)317

subject to ‖d‖l ≤ ∆ (14)318

The analyses conducted in this article will use the 2-norm with the Steihaug-Toint trun-319

cated conjugate gradient method (Bierlaire 2015).320
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To assess how much the path should be restricted, a metric on the quality of the second-321

order approximation is usually employed. The ratio between the change in the value of the322

function and the approximation due to the step d is often used for this purpose - c.f. Eq.323

15.324

ρ =
f(xk)− f(xk + d)

m(xk)−m(xk + d)
(15)325

Ideally this assessment should be revised as the search space is traversed. A two parameter326

criterion (η1 and η2) is usually employed to judge the update of the step size ∆. If ρ ≥ η1327

then ∆ is increased, whereas if ρ ≤ η2 then ∆ is decreased. Between these two values ∆328

remains unchanged. Take, for instance, η1 = 0.9 and η2 = 0.01, this means that if the329

approximation fits upwards of 90% the function value, then it is deemed to be sufficiently330

good so that the restriction on the step size is relaxed. The converse happens when it fits331

to less than 1% of the function value (Conn et al. 2000, Bierlaire 2015).332

One important detail about the Steihaug-Toint truncated conjugate gradient procedure333

is that in the event of an indefinite Hessian, it leverages valuable properties of the method334

by conducting Hessian-orthogonal steps in descent directions. Since they are bounded by335

the trust region one does not risk an unbounded search and, by always checking the quality336

of solution with Eq. 15, it provides a reliable criterion for effectively canvasing the objective337

function’s landscape. Additionally, it is worth noting that the presence of indefinite Hessians338

usually points to the existence of multiple local minima. One possible strategy to further339

explore the variable space in the search for a global minimum is to keep track of the points340

where negative eigenvalues occur and generate search paths on opposite senses of the negative341

eigenvector - c.f. Wales (2003).342

A potential problem in the convergence rate of the algorithm happens when the condition343

number of the Hessian 5xxf(xk) is large. A solution to mitigate this issue is to solve a344

preconditioned sub-problem. The idea is not to restrict step d to some magnitude, but345

apply that constraint on a distorted version of d (defined as w), which is carefully chosen346
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to follow the local curvature of the quadratic model. This is more formally expressed in Eq.347

16, where S, to follow the curvature, should precondition as much as possible the Hessian of348

the model. An illuminating discussion of this topic can be found in Conn et al. (2000) under349

the rubric of Trust-Region Scaling.350

Skw = d (16)351

From Eq. 16, one can thus define a preconditioned model of f around xk as mP as shown352

in Eq. 17353

f(xk + d) = f(xk + Sw) ≈ m(xk + d) = mP (xk + w) (17)354

Which from Eq. 11 and 16 yields Eq. 18.355

mP (xk + w) = f(xk) +
(
gPk
)T

w +
1

2
wTHP

k w (18)356

with,357

gPk = STk 5x f(xk) (19)358

HP
k = STk 5xx f(xk)Sk (20)359

Thus, given a certain preconditioner Sk, one can now solve the equivalent sub-problem360

in Eq. 21 for w .361

minimize mP (xk + w)362

subject to ‖w‖l ≤ ∆ (21)363
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To guide the choice of a proper preconditioner, it is often helpful to think of performing364

the change of variables geometrically, where it would be natural to state that one would wish365

to work on a model where its eigenvalues have equal magnitude. The clearest way to achieve366

this would be to impose the Hessian of the scaled model to be equal to the identity matrix367

- Eq. 22.368

I = HP
k = STk 5xx f(xk)Sk ⇔5xxf(xk) =

(
SkS

T
k

)−1
(22)369

If the Hessian of f is locally symmetric positive-definite, a natural method for computing370

Sk would be to use the Cholesky decomposition as it is commonly done in the preconditioned371

conjugate gradient method - c.f. Bierlaire (2015). A more general approach would be to372

impose that Sk is itself symmetric, which would yield Eq. 23.373

5xxf(xk) =
(
SkS

T
k

)−1
=
(
S2
k

)−1 ⇔ Sk = (5xxf(xk))
− 1

2 (23)374

Computing Sk in Eq. 23 can then be done, similarly to the calculation of Moore-Penrose375

pseudoinverses, with the Singular Value Decomposition (SVD) of the Hessian of f - c.f. Eq.376

24.377

SSV Dk = (5xxf(xk))
− 1

2 =
(
UkΣkV

T
k

)− 1
2 = VkΣ

− 1
2

k UT
k (24)378

where Uk and Vk are matrices that store the left and right singular vectors, respectively,379

and the matrix Σk stores the singular values along its diagonal.380

The disadvantage of using this approach is the additional computational cost involved381

in computing the SVD of the Hessian, which may or may not be make up for itself in an382

increased rate of convergence of the overall algorithm.383

Performing an SVD is an ideal situation, an upper bound, so to speak, for the precondi-384

tioner Sk. The converse would be a transformation that leaves everything unchanged with385

Sk = I so that mp = m. In between there could be any number of preconditioners, which386

16



will approximate the Hessian to greater or lesser degrees in the sense of Eq. 22.387

One commonly used, and computationally cheap, way of the approximating the Hessian388

is the so called Jacobi preconditioner (cf. Eq. 25). This method considers that the diagonal389

elements of the Hessian provides a sufficiently accurate approximation of this matrix, while390

being easily invertable.391

SJacobik = diag (5xxf(xk))
− 1

2 (25)392

By taking only the diagonal elements of the Hessian it is assumed they are representative393

of most of the magnitude of the eigenvalues, as such this preconditioner could be more aptly394

described as a scaling transformation.395

As can be seen in Eq. 11, the NTR method relies heavily on the ability to compute the396

gradient and the Hessian of the objective function. When it comes to the class of inverse397

problems, which is the focus of this report, derivatives have to be computed on the integration398

scheme over the parameters of the model. This can be quite challenging and one will perform399

analyses using two methodologies on the objective function: (1) numerical differentiation400

(ND) with central differences and (2) algorithmic (or automated) differentiation (AD). The401

former approach is quite standard, but is known to be handicapped by truncation and402

rounding errors depending on the step size. The ND analyses presented herein were made403

using the central difference method with a fixed step size of 1e− 6. The AD approach is the404

result of the systematic application of chain rule over the graph of a user-defined computer405

function, which returns derivatives with a high level of accuracy - c.f. Griewank and Walther406

(2008). A Python package called numdifftools (Brodtkorb 2017) was used that implements407

both approaches. This package is based on the Matlab program written by D’Errico (2006)408

and also wraps around the package AlgoPy (Walter and Lehmann 2013) for algorithmic409

differentiation.410

The results shown in the following section are a direct application of this methodology411

to the minimization procedure of the inverse problem expressed in Eq. 9 with respect to412
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parameter vector θ. The choice of the initial starting point for the NTR algorithm can have a413

significant influence on the solution. In this report, the criterion for the starting point (S.P.)414

in most NTR optimizations was chosen so as to have an elastic-perfectly-plastic model with415

the yield stress equal to the nominal yield value of the steel σ̂y,0 and with the nominal elastic416

modulus Ê. All other parameters were set to a residual value of 1e− 1, which has minimal417

impact both on the perfectly-plastic assumption and on the barrier added to ϕ. The results418

for other starting points is presented in sub-section 3. One of these solution points is the419

extreme case where very little except the nominal value of modulus of elasticity is known,420

i.e. σy,0 ≈ 0. In addition, results for an intermediate starting point at σy,0 = 0.5σ̂y,0 are also421

presented.422

Load protocol sampling423

Since the model should ideally capture material response irrespective of the imposed424

history, the question naturally follows of how sensitive is the calibration when using a different425

load protocol set. To address this question, one needs to define a metric that distinguishes426

two solutions with respect to each other. It is also useful to define a base case to which427

all comparisons are made. The base case chosen for all analyses is the maximum number428

of available load protocols since it contains the maximum amount of information on the429

problem. Other cases will be samples of that set. Due to the inordinate number of possible430

sample sets for only 10 total load protocols, a small number of sets (50) were selected with431

the guiding principle of (1) having a low number of load protocols and (2) having distinct432

groups of load protocols of small and large amplitude histories. The first focuses on the desire433

to know what is the minimum number of load protocols necessary to achieve an acceptable434

accuracy, and the second on the influence of the amplitude magnitude on the error function.435

Equations 26 and 27 represent in a sense two different metrics to evaluate a distance436

between two points. ξ1 is the most intuitive choice as it is merely the root of the sum of437

the relative errors squared of each of the model parameters. ξ2 is less obvious and is best438

understood in conjunction with Eqs.10 and 12. From Eq. 12, the numerator within the439
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root of Eq. 27 represents the increase in the quadratic approximation of the error function440

from the base point. The denominator in Eq. 27 is used for the same reason as in Eq.441

10, i.e. to provide a normalizing term. Now since at the base point we have a positive-442

definite Hessian, any deviation from θbase will increase monotonically and, therefore, the443

distance to any minima obtained with a different protocol set is a positive metric weighed444

by the objective function itself. The usefulness of ξ2 will become apparent in the discussion445

section, particularly while analyzing solutions with a large number of backstresses where the446

positive-definite condition is technically satisfied albeit with very small eigenvalues. In such447

situations there are solutions which maybe far from each other in the ξ1 sense but which do448

not have a significant impact in evaluating the error function with respect to the base case.449

When this happens the two solution points are said to be consistent with each other.450

ξ1 =

√√√√∑
i

(
θi − θi,base
θi,base

)2

(26)451

ξ2 =

√√√√(θ − θbase)T ∇θθϕbase (θ − θbase) /
∑
i

(∫ ε∗i σTest

0
dε∗∫ ε∗i

0
dε∗

)2

(27)452

RESULTS453

Load protocols454

Figure 4 shows the derived strain protocols for macroscopic material evaluation of struc-455

tural steels for cyclic loading representative of seismic applications. The reference protocols456

are complemented by monotonic one (see Figure 4a) conducted according to ASTM spec-457

ifications. The test should be carried out to fracture of the specimen. Figure 4b depicts458

representative strain protocols with monotonic tension after a full cycle of cyclic inelastic459

straining. Low-rise steel MRFs subjected to near-fault records are likely to experience a large460

pulse prior to drifting in one loading direction. The strain range in HSS columns in this case461

is ∆ε=10% whereas the equivalent one in high-rise steel HSS columns is ∆ε=2% prior to462

the monotonic tensile push to fracture. Figure 4e shows a second protocol corresponding463
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to strain demands representative of near-fault records when collapse does not occur. The464

rupture directivity, characteristic of near-fault records, is depicted by the impulsive double-465

sided strain cycle with 3% amplitude. In long duration records, it is found that constant466

strain amplitude tests of at least 20 full cycles represent fairly well the seismic demands in467

HSS columns in steel MRFs. Particularly, strain amplitudes of 1% and 2% are found to rep-468

resent, on average, strain demands in mid-to-high-rise and low-rise steel MRFs, respectively,469

subjected to subduction zone seismic events as depicted in Figure 4c. During these tests, the470

material is expected to reach a steady state response, thereby exhibiting stress saturation.471

Incremental load protocols up to a 2% uniaxial strain demand (i.e., strain range ∆ε=4%) are472

deemed reasonable to represent, on average, seismic demands in steel HSS columns during473

design-basis earthquakes. To consider the influence of a steel MRF’s height (i.e., predomi-474

nant period) on the developed protocols, rain-flow counting is benchmarked to the results of475

the 2- 6- and 12-story steel MRFs. Figure 4d shows the derived protocols. Strain demands476

above 2% until failure (i.e., buckling or fracture) is an arbitrary decision in case the material477

may reach stress saturation. Referring to Fig. 4f, a protocol representative of column strain478

demands prior to steel MRF collapse is shown. While non-symmetric strain demands are479

evident, which is a characteristic of response histories prior to earthquake-induced collapse480

(Lignos et al. 2011) , the small strain reversals are not expected to shift a material’s behavior481

that much from a conventional monotonic tensile test.482

Optimization algorithm performance483

All analyses in this subsection are demonstrated using an S355J2+N steel sampled from484

50 mm thick plates. The full collection of load protocols (LP) introduced in the previous485

section are used in solving the inverse problem (1 to 10).486

Numerical and Algorithmic Differentiation in NTR487

Figure 5 shows a comparison between ND and AD for a Jacobian-preconditioned algo-488

rithm (J) with one backstress. Both analyses use as a starting point an elastic-perfectly489

plastic model, plateauing at the steel’s nominal yield stress. Here, the imprecision associ-490
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ated with ND in combination with scaling that happens during preconditioning, can lead the491

algorithm to get locked in to searching for solutions in directions where ϕ decreases at a very492

slow rate. This underlines the importance in securing an accurate derivative estimation, for493

which AD is a useful tool.494

Hence, all results in subsequent analyses will use algorithmic differentiation.495

Preconditioning in NTR496

Figure 6 shows a comparison between no preconditioning, Jacobi (J) and singular value497

decomposition (SVD) preconditioning of the NTR Steihaug-Toint sub-problem for a 2 back-498

stress model. Here, again, the analyses use as a starting point an approximately elastic-499

perfectly plastic model, plateauing at the steel’s nominal yield stress. As can be seen, the500

cost of not using a preconditioner can be prohibitively high. This is more noticeable the more501

backstresses are used in the calibration. Also, the Jacobi and SVD preconditioning yield sim-502

ilar convergence rates although, from experience, the SVD is more stable numerically near503

the solution.504

Different starting points and number of backstresses505

All previous analyses were conducted with the starting point of an approximately elastic-506

perfectly plastic material with nominal yield stress and elastic modulus. In this sub-section507

two other starting points are investigated, for a total of three starting values:508

• Starting point 1 (S.P. 1): σy,0 = σ̂y,0 = 355MPa509

• Starting point 2 (S.P. 2): σy,0 = 0.5σ̂y,0 ≈ 178MPa510

• Starting point 3 (S.P. 3): σy,0 = 1e− 1 ≈ 0MPa511

The algorithm used for the optimization procedure in all cases was the NTR with AD, Ja-512

cobi and SVD preconditioning. Results for 2 backstresses are presented terms of the solution513

path and final true stress-true strain curves for all load protocols in Figs. 7 and 8, respec-514

tively. Tables 2 and 3 present a summary of the algorithm’s performance and its solution515

point at convergence. Since the results for both J and SVD preconditioning are the same,516
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the table is condensed to include solely the SVD results. Furthermore, a comparison between517

experimental and model true-stress-true-strain responses with the parameter solution for 2518

backstresses is given in Fig. 8.519

Referring to Fig. 7 and Table 3, it can be readily observed that for one, two, and three520

backstresses that same solution(model parameters) is reached regardless of the starting point.521

For four backstresses, for virtually the same accuracy in the error function, two different522

solution points were retrieved, confirming the nonuniqueness issue often debated in inverse523

problems (Cooke and Kanvinde 2015).524

It was also found that the relative decrease in error using more backstresses, even for525

the wide variety of load protocols involved, is negligeable after a certain point. The er-526

ror associated with two backstresses was found to be virtually the same as three and four527

backstresses.528

Load protocol sampling529

Table 4 shows results for the calibration S355J2+N steel Voce-Chaboche material param-530

eters for different samples from the full set of 10 load protocols (Set 1) with two backstresses.531

The parameters obtained are compared to the normalized error(ϕ̄) computed with the full532

set of protocols to judge their relative impact. The results are ordered in ascending order of533

this metric. Also shown in Table 4 are the distances ξ1 and ξ2 defined in Eqs. 26 and 27,534

respectively, with respect to the base parameters of Set 1.535

Summary of results for different structural steel materials536

The results presented previously were obtained for an S355J2+N steel. Notwithstanding,537

the same methodology was applied to a a broad range of European, American and Japanese538

steels with the objective of obtaining material parameters for reference and comparison539

purposes. For context, a summary of the tensile properties for those materials is given in540

Table 1, and Table 5 catalogs the acquired results for the Voce-Chaboche model with 2541

backstresses. The implications of the obtained parameters are expounded in the Discussion542

section.543
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DISCUSSION544

Algorithm performance545

In order to achieve acceptable convergence rates there are two important factors that546

should be fulfilled in order to use NTR with the Steihaug-Toint method: (1) accurate deriva-547

tive estimates and (2) hessian preconditioning. The first point can be clearly inferred from548

Fig. 5 where algorithmic differentiation is compared with the more imprecise approach of a549

fixed step central difference numerical differentiation. Although the convergence rate could550

be improved by using an adaptive step size, the computational cost associated with this551

option is high and, therefore, does not justify itself over the use of algorithmic differentia-552

tion. In addition, algorithmic differentiation has the benefit of being generally applicable to553

different hardening laws. Consequently, instead of painstakingly calculating derivatives that554

result from the integration algorithm of a specific material law, algorithmic differentiation555

achieves high accuracy levels with minimal implementation effort at a reasonable computa-556

tional cost and is, thus, a valuable tool to employ. With respect to the second point, greater557

rates of convergence are achieved using a preconditioned hessian (c.f. Fig. 6) in large part558

due to the use of the conjugate gradient method in the Steihaug-Toint procedure (Conn559

et al. 2000). This effect is evermore present the greater the condition number of the hessian560

of the problem - i.e. the ratio of its highest to lowest eigenvalues. In this particular inverse561

problem, this observation is more noticeable the higher the number of backstresses used.562

As for the preconditioner itself, the two options presented in this study (Jacobi and SVD)563

have similar convergence rates. Both are presented because while the SVD is more stable564

numerically, its computational cost can be prohibitive for models with a higher number of565

parameters. In these cases the Jacobi preconditioner can be a useful alternative.566

Nonuniqueness and consistency567

The suitability of working with the NTR method in solving the VC inverse problem568

should also be evaluated with respect to the possibility of retrieving multiple solutions in the569

parameter space, as observed in the results presented in Table 2. This possibility depends570
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both on the nonlinearity of the underlying material model and on the error function ’s571

definition. Due to the multi-dimensional nature of the problem, it is challenging to provide572

a geometric depiction of the error function’s landscape. One can, nonetheless, have an idea573

of the nonlinear nature of the problem by tracking the evolution of its eigenvalues. More574

concretely, if one inquires into the sign of the minimum eigenvalue of the Hessian, one can575

immediately get the sense if locally along the path to the minimum one encounters what576

resembles hyperbolic paraboloids (saddle points). Figure 9 shows that evolution for one and577

four backstresses at two different starting points. It can be seen that hyperbolic paraboloids578

are indeed encountered in the NTR path. This type of nonlinearity is particularly salient579

in the four backstress model where the Hessian switches from positive-definite to indefinite580

multiple times. Naturally, all models finish with a positive-definite Hessian thus ensuring,581

along with a strict tolerance on the gradient (e.g. ‖ 5 ϕ‖ < 1e − 10), a proper minimum.582

Although the presence of negative eigenvalues is suggestive of multiple minima, it does583

not necessarily imply nonunique solutions since a number of nonconvex examples can be584

produced that posses solely one global and local minimum. General statements regarding585

solution uniqueness of the VC inverse problem, therefore, cannot be made.586

From the discussion in the previous paragraph, one hopes that the nonlinear nature of587

the problem is clear to the reader. In light of this fact it is quite astonishing to find that the588

solutions retrieved with NTR are generally close to each other, although the path they take589

to reach their values are significantly different. The results presented in Fig. 7 illustrates this590

fact, as shown in the evolution of the parameters with respect to the algorithms’ iterations.591

Though anecdotal in context, it underscores the robustness of the proposed methodology.592

The impossibility to make general statements regarding nonuniqueness notwithstanding,593

one can deploy other metrics to evaluate the consistency of the solutions. Specifically, one594

can compare the cases relative to each other using the metrics ξ1 and ξ2 described in the595

Methodology section. Take, for example, the four backstresses cases where three different596

starting points yielded three different solutions amid keeping the normalized error function597
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values essentially the same - c.f. Table 2. The solutions are appreciably different particularly598

in terms of the magnitude of their Ck parameters. In this case one can, in fact, use the error599

metrics introduced in Eqs. 26 and 27 to quantify objectively the differences between the600

solutions. For this purpose let starting point 1 serve as the base case. ξ1 for starting points601

2 and 3 is ≈ 22.71% and ≈ 5.75% respectively, while ξ2 is ≈ 1e− 6 % for both cases. These602

results have important implications in interpreting different calibrations. Whereas, ξ1 shows603

a noticeable difference between parameters, ξ2 suggests that those differences are small when604

assessing the error function with respect to the base case. It is crucial here to recall that the605

ξ2 metric increases monotonically from the minimum if the Hessian is positive-definite. Such606

small values as 1e−6 for ξ2 essentially implies that, although numerically the Hessian might607

be positive-definite, the relative direction between the two solutions lies close to what can608

practically be described as the null-space of the Hessian. Now, choosing solutions that locally609

around the base case (in the ξ2 sense) do not significantly increase the error function implies610

that those points predict behavior similarly and, for this reason, are said to be consistent611

with each other. A more debatable issue is defining an acceptable threshold value for the612

local increase in the error function. More on this topic is discussed in the load protocol613

sampling section.614

Load protocol sampling615

Table 4 shows results for analyses conducted with samples from a set 10 load protocols616

ordered by the relative error ϕ̄ that the parameters of the subset have when considering617

all the load protocols. In conjunction with ξ1 and ξ2, one can also evaluate their level of618

nonuniqueness and consistency.619

With respect to ϕ̄, most of the solutions of the sampling sets have errors that are close620

to full set. Notable among them are sets 45 and 18, whose solutions provide essentially the621

same ϕ̄ but with three load protocols as opposed to 10. Equally interesting is that the load622

protocols in these sets do not include constant amplitude or incrementally increasing tests623

which are considered standard in evaluating material model parameters in cyclic loading.624
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Other noteworthy observations are that sets with smaller amplitudes generally lead to worst625

calibrations (c.f., e.g. set 19 vs. 28) and that the inclusion of a monotonic test is not626

necessarily essential to obtaining good parameter estimates as the results from set 45 imply.627

Furthermore, one can observe that testing using a random load protocol with non-zero mean628

strain (LP9) is important for the calibration procedure because it is present in almost all629

sets with a low number of protocols.630

As to the nonuniqueness of the parameters, ξ1 shows that the solutions are at least 40%631

different from each other. However, when one looks at what is the impact of that distance632

on the error function as evaluated by ξ2, the effects are much more limited. Deciding on an633

acceptable level of ξ2 is inherently linked to the acceptable difference in our error estimate634

from the base case. Although debatable, a value of ξ2 ≤ 5% seems small enough to be635

a suitable definition for consistency. Nevertheless, ξ2 seems to indicate that most of the636

solutions obtained by the NTR algorithm are consistent with the base load protocol case,637

except for a few cases. Consider, for example, set 51 that has a relatively low ϕ̄ value638

compared with set 2 which has the highest ϕ̄. Here, set 51 is twice as far as set 2 in terms of639

ξ2. This implies that set 51, which is conducted with four load protocols, is farther from the640

base case than a solution arrived at with only a simple monotonic test. Set 51, therefore, is641

a truly inconsistent result.642

Solution consistency can be further analyzed by a thorough sensitivity assessment of the643

parameters. However, this would have to be performed at the solution point of each load644

protocol set, since they can have different sensitivities. This is recommended for further645

investigation, but preliminary findings show that the initial yield stress in the VC model has646

the most weight in the error of the model.647

Proposed material parameters for structural steels648

There are a few noteworthy comments to be made with respect to the material param-649

eters. First and most conspicuous is the Young’s modulus, which in Tables 2 and 5 is650

persistently lower than habitual values of ≈ 200 − 210GPa for mild steels. Interestingly,651
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if only the monotonic test is used for the calibration the modulus is indeed close to the652

expected value. It is only with the addition of more load protocols, with higher accumulated653

plastic strains and the inclusion of load reversals, that on average the Young’s modulus tends654

to drop.655

Another puzzling result is that the estimation of initial yield stresses (σy,0) is also re-656

liably lower than the yield plateau of the monotonic tests. This observation is associated657

with the fact that after the accumulated plastic strain passes the Lüders strain, the plateau658

phenomenon ceases to be present (Hall 1970). Upon load reversals, a smooth yielding phe-659

nomenon takes its place and starts at a lower yield level. Since most of the duration of the660

load protocols are spent in the smooth yielding range, what results from the optimization661

procedure is the incursion of a larger error at first yield in order to have smaller errors when662

reversals are made. It should be underscored that this is a limitation of the material model663

itself. Its impact could be felt in cases where the initial stress is paramount in determining664

structural behavior. Foremost among these are situations where geometric and material non-665

linearities strongly interact (Hartloper et al. 2019). The discontinuous yielding phenomenon666

in mild steels makes it one of the most sensitive type of structural steels to this issue.667

From Table 2, an important conclusion can be made as to the number of backstresses668

necessary to accurately capture material response. The gains in terms of ϕ̄ are negligible669

after 2 backstresses are used. After this number, solution points can be consistent in the ξ2670

sense but do not bring any added value to the response. These results, therefore, suggest that671

2 backstresses suffice in the description of the material response for earthquake situations.672

Consistency in the solution points allows one to make meaningful qualitatively asser-673

tions about the parameter sets, and several examples can be produced from Table 5. For674

instance, one can readily identify materials of similar grades as illustrated by the similari-675

ties between the parameters of two different thickness plates of the same material grade, an676

S355J2+N. Their parameters are also close to those obtained for a nominally identical steel677

grade (S355J2) from wide-flange hot-rolled structural profiles (an HEB500 in the present678
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case). Furthermore, it can also be stated that the higher the steel grade the lower the level679

of isotropic hardening, as shown by the decreasing values of Q∞. In fact, if one takes to680

evaluate the contribution of isotropic hardening in the total hardening behavior of the VC681

model at saturation, it can be seen that mild steels frequently present on the order of 25%682

of isotropic hardening whereas high strength steel (e.g. S690QL) is mostly kinematic. This683

observation is valid even between mild steels of different origin, such as the European S355684

and the American A992 Gr. 50 steels. When viewed in the light of the classic Hall-Petch685

relationship that correlates increasing yield strength with decreasing grain size (Hall 1951,686

Petch 1953), the parameters obtained by this methodology seem to suggest that the amount687

of isotropic versus kinematic hardening in a material can also be linked to microstructural688

grounds. In this respect, however, it should also be pointed out that the manufacturing689

process (and, therefore, the material’s grain size) need not be the only microstructural vari-690

able responsible for isotropic/kinematic ratio. Indeed, if one focuses on the Japanese steel691

BCR295, a lower grade steel (nominal yield stress of 295MPa) with presumably larger av-692

erage grain size, a low level of isotropic hardening can be observed on the derived material693

parameters. Yet, the test specimens for this steel were sampled from the corner of a hollow694

square section (HSS), which implies that the material around this area had been cold-worked.695

Consequently, it can also be stated that previous work-hardening of the material can also696

have a significant impact on the proportion of isotropic to kinematic hardening.697

On a separate note, comparisons between parameters found in literature and those pro-698

posed herein should be made with some care. There are two main sources of uncertainties699

in the determination of model parameters: (1) the inverse problem methodology and (2)700

inherent variations in the material properties from the manufacturing process. This paper701

addresses solely the first point. A lengthy comparison of the parameters proposed herein to702

those reported in literature would, therefore, be hard to parse out and is not attempted. It703

can be stated, nonetheless, that significant differences in terms of model performance can be704

found using literature parameters for the same material, but the source of that discrepancy705
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still needs further investigation with larger datasets.706

CONCLUSION707

This paper presented an approach to solve an inverse problem on a classic metal plas-708

ticity, rate-independent, material model using a combined nonlinear isotropic and kinematic709

hardening according to the Voce and Chaboche rules (VC). The approach is based on the710

Newton Trust-Region methodology which was introduced and its implementation was dis-711

cussed. An implementation of the procedure in the Python programming language is made712

freely available in de Castro e Sousa et al. (2019).713

The methodology was applied to a wide variety of European, American and Japanese714

structural steels that are commonly used in steel construction worldwide and the resulting715

parameters are provided for reference.716

The following overarching conclusions can be drawn for this work:717

• Accurate derivative estimates and hessian preconditioning play a significant role in718

the convergence rate of the NTR method. Both Jacobi and SVD preconditioning719

work well in the present study;720

• Solution points obtained with the NTR method for different starting points are close721

even in cases where the starting point is far away from the solution, e.g. ϕ̄ ≈ 100%722

where there is virtually no information on where the solution might lay, illustrating723

the robustness of the algorithm;724

• Two backstresses in the Chaboche kinematic hardening rule seem sufficient to char-725

acterize material response for earthquake loading;726

• Accuracy in cyclic loading is usually achieved at the noticeable expense of underesti-727

mating the initial yield stress with the Voce-Chaboche model;728

• Nonuniqueness and consistency were analyzed and discussed. Their importance moti-729

vates the introduction of two metrics to quantify them. Load protocol sampling leads730

in large to consistent solutions using this approach;731
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• The use of only three load protocols (LP2, LP3, and LP9) yield acceptable parameter732

estimates. These load protocols are different from the standard ones routinely used733

in material characterization in cyclic loading for seismic applications;734
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NOTATION924

The following symbols are used in this paper:925

σ = uniaxial true stress (Pa);

ε = uniaxial true strain;

σeng = uniaxial engineering stress (Pa);

εeng = uniaxial engineering strain;

F = actuator force through uniaxial specimen (N);

L = gage length (m);

A = uniaxial specimen’s cross section area (m2);

J2 = second invariant of the deviatoric stress tensor;

φVM = Von Mises yield criterion;

E = Young’s modulus;

σy = current yield stress (Pa);

σy,0 = initial yield stress (Pa);

∆σy = difference between current and initial yield stress (Pa);

Q∞ = isotropic differential stress at saturation (Pa);

b = isotropic saturation rate parameter;

Ck = kinematic stress parameter for the k-th backstress (Pa);

γk = kinematic saturation rate parameter for the k-th backstress;

θ = vector of all material parameters;

ε̇peq = equivalent plastic strain;

ε∗ = error-metric strain;

ϕ = error function;

ϕ̄ = normalized error function;

m = local quadratic approximation model of a function;

5xf = gradient of function f with respect to vector variable x;

5xxf = hessian of function f with respect to vector variable x;

38



‖x‖l = l-norm of vector x;

d = step vector;

∆ = step magnitude limit;

ρ = model fitness metric;

η1 = lower bound on model fitness quality;

η2 = upper bound on model fitness quality;

w = scaled step vector;

S = hessian preconditioner;

H = preconditioned hessian;

ξ1 = uniqueness distance metric;

ξ2 = consistency distance metric;
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TABLE 1: Summary of tensile properties for materials under study.

Material
E
(GPa)

σy/σ
nominal
y

(MPa)
σ0.2p
(MPa)

σu
b

(MPa)
εu

c

S355J2+N (Plt.a - 50mm) 204 350/355 - 537 0.171

S355J2+N (Plt.a - 25mm) 214 350/355 - 543 0.176

S355J2 (Flangee) 219 325/355 - NAd NAd

S355J2 (Webe) 206 320/355 - NAd NAd

S460NL (Plt.a - 25mm) 203 460/460 - 643 0.166

S690QL (Plt.a - 25mm) 210 -/690 712 797 0.078

A992 Gr.50 (Webf) 200 375/345 - 504 0.183

A992 Gr.50 (Flangef) 204 360/345 - 515 0.174

A500 Gr. B (HSS305x16) 185 -/315 373 439 0.184

BCP325 (Plt.a - 22mm) 212 380/325 - 522 0.218

BCR295 (HSS350x22) 187 -/295 437 455 0.107

HYP400 (Plt.a - 27mm) 227 355/400 - 535 0.209

a Plate; b ultimate engineering stress;
c the engineering strain at σu;

d not available;
e specimens sampled from a HEB500 section;
f specimens sampled from a W14x82 section
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TABLE 2: Summary of NTR with SVD’s performance and solution for different starting
points and number of backstresses (S355J2+N - t=50mm) - 1/2

S.P.a N.B.b ϕ(MPa2) ϕ̄ (%) ‖ϕ‖2 It.c E(GPa) σy,0(MPa) Q∞(MPa) b

1 1 14925.68 8.21 3.1e-12 34 177.54 296.62 123.26 7.17
2 1 14925.68 8.21 2.5e-12 39 177.54 296.62 123.26 7.17
3 1 14925.68 8.21 3.3e-12 41 177.54 296.62 123.26 7.17
1 2 8980.48 6.37 5.8e-12 48 184.98 270.96 107.22 5.97
2 2 8980.48 6.37 4.6e-12 48 184.98 270.96 107.22 5.97
3 2 8980.48 6.37 2.3e-12 53 184.98 270.96 107.22 5.97
1 3 8931.03 6.35 5.5e-12 81 185.32 269.22 107.01 6.00
2 3 8931.03 6.35 4.6e-12 71 185.32 269.22 107.01 6.00
3 3 8931.03 6.35 5.0e-12 68 185.32 269.22 107.01 6.00
1 4 8931.03 6.35 6.7e-12 84 185.32 269.22 107.01 6.00
2 4 8931.03 6.35 3.4e-12 87 185.32 269.22 107.01 6.00
3 4 8931.03 6.35 9.5e-12 92 185.32 269.22 107.01 6.00

a starting point ;
b number of backstresses ;

c iterations ;
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TABLE 3: Summary of NTR with SVD’s performance and solution for different starting
points and number of backstresses (S355J2+N - t=50mm)- 2/2

S.P.a N.B.b C1(MPa) γ1 C2(MPa) γ2 C3(MPa) γ3 C4(MPa) γ4

1 1 6501.83 27.90 - - - - - -
2 1 6501.83 27.90 - - - - - -
3 1 6501.83 27.90 - - - - - -
1 2 14327.30 115.12 1771.06 7.56 - - - -
2 2 14327.30 115.12 1771.06 7.56 - - - -
3 2 14327.30 115.12 1771.06 7.56 - - - -
1 3 12659.43 150.94 3226.07 51.55 1345.22 5.54 - -
2 3 12659.43 150.94 3226.07 51.55 1345.22 5.54 - -
3 3 12659.43 150.94 3226.07 51.55 1345.22 5.54 - -
1 4 7290.78 150.94 5368.66 150.94 3226.07 51.55 1345.22 5.54
2 4 6595.56 150.94 6063.88 150.94 3226.07 51.55 1345.22 5.54
3 4 6359.00 150.94 6300.42 150.94 3226.07 51.55 1345.22 5.54

a starting point ;
b number of backstresses ;

43



TABLE 4: Summary of normalized error metric for subset sampling. The analyses were
conducted with 2 backstresses and the SVD preconditioning with starting point 1.

Set # LPa LPb ϕ̄ ξ1 ξ2

1 10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

6.37 0.0 0.00

44 8
1, 2, 4,
5, 6, 7,
9, 10

6.46 42.0 1.62

26 5
1, 5, 6,
8, 9

6.53 58.0 2.62

45 3 2, 3, 9 6.55 83.0 3.43

34 6
1, 3, 5,
7, 9, 10

6.55 70.0 2.72

18 3 1, 3, 9 6.55 92.0 3.25

42 6
1, 5, 6,
8, 9, 10

6.57 57.0 3.14

25 5
1, 5, 6,
7, 9

6.57 64.0 2.79

20 5
1, 3, 5,
7, 9

6.58 79.0 2.83

43 6
1, 4, 6,
8, 9, 10

6.61 69.0 5.22

49 4
2, 3, 6,
9

6.65 57.0 3.97

21 4
1, 3, 6,
9

6.65 57.0 3.69

33 5
1, 3, 5,
7, 10

6.70 94.0 3.88

23 5
1, 4, 6,
7, 9

6.74 105.0 10.89

24 5
1, 4, 6,
8, 9

6.75 112.0 14.78

41 6
1, 2, 6,
8, 9, 10

6.80 73.0 4.22

22 5
1, 3, 6,
7, 9

6.81 48.0 3.99

15 4
1, 5, 6,
8

6.83 82.0 4.38

46 3 2, 6, 9 6.87 99.0 9.78

Set # LPa LPb ϕ̄ ξ1 ξ2

36 6
1, 3, 6,
7, 9, 10

6.87 52.0 4.30

19 4 1, 3, 5, 9 6.88 139.0 5.41

40 5
1, 2, 6,
8, 10

6.90 71.0 4.30

16 4 1, 5, 6, 7 6.90 88.0 4.88
31 3 1, 3, 10 6.95 76.0 4.98

32 4
1, 3, 5,
10

6.95 152.0 7.00

51 4 2, 4, 6, 9 7.02 394.0 79.79

35 5
1, 3, 6,
7, 10

7.04 50.0 4.69

29 5
1, 2, 4,
6, 9

7.06 345.0 68.78

13 4 1, 3, 5, 7 7.09 105.0 5.56
9 2 1, 6 7.16 124.0 11.92
14 4 1, 3, 5, 8 7.23 170.0 8.27
8 3 1, 3, 5 7.28 197.0 9.64
12 4 1, 2, 4, 6 7.33 395.0 79.23
6 2 1, 5 7.33 182.0 7.75
27 3 1, 2, 9 7.38 127.0 5.69
17 2 1, 9 7.54 126.0 5.44
10 2 1, 7 7.71 77.0 5.96
11 2 1, 8 7.74 129.0 7.79
38 3 1, 2, 10 7.80 224.0 9.49
37 2 1, 10 7.90 219.0 9.67
30 2 1, 10 7.90 219.0 9.67

39 4
1, 2, 4,
10

8.31 142.0 7.76

3 2 1, 2 8.45 113.0 9.82
47 3 2, 4, 9 9.04 258.0 14.47
28 4 1, 2, 4, 9 9.12 253.0 13.32
4 2 1, 3 9.32 164.0 14.21
7 3 1, 2, 4 10.65 290.0 15.84
5 2 1, 4 10.99 263.0 13.19
48 3 4, 6, 9 13.62 450.0 72.53
2 1 1 21.15 324.0 38.92

a number of load protocol samples ;
b load protocol ;
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TABLE 5: Results from NTR-SVD for different materials with 2 backstresses

Material ϕ̄ (%) LPa E
(GPa)

σy,0
(MPa)

Q∞
(MPa)

b
C1

(MPa)
γ1

C2

(MPa)
γ2

S355J2+N
(Plt.b -

50mm)

6.37 1 to 10 185 271 107 5.97 14330 115 1771.06 7.56

S355J2+N
(Plt.b -

25mm)

6.70 1 to 10 192 265 104 11.63 13000 100 1560.41 7.35

S355J2
(Flanged)

4.63
1, 2, 5,
6, 9

192 246 120 8.67 14020 205 1247.05 4.45

S355J2
(Webd)

6.16 1-3, 5-9 198 252 118 10.85 17876 236 2582.61 24.01

S460NL
(Plt.b -

25mm)

6.32
1,2,4,5,
6,7,9,10

186 359 68 10.01 14202 104 2259.11 8.01

S690QL
(Plt.b -

25mm)

7.95
1,2,4,5,
6,7,9,10

184 603 0.48 0.54 15938 78.8 988.77 6.57

A992
Gr.50
(Webc)

7.01 1,5,6,8,9 183 339.18 78 9.29 8716 118 1182 5.22

A992
Gr.50
(Flangec)

7.31 1,5,6,8,9 180 318.47 101 8.00 11608 145.22 1026 4.68

A500
Gr. B
(HSS305x16)

6.86 1,5,6,8,9 171 301.26 130 82.2 9752 151.55 1613 8.21

BCP325
(Plt.b -

22mm)

5.05 1,5,6,8,9 178 306.09 94 5.81 11613 122.00 1744 8.29

BCR295
(HSS350x22)

8.38 1,5,6,8,9 173 346.42 0.56 0.60 9746 197.67 1852 12.84

HYP400
(Plt.b -

27mm)

5.31 1,5,6,8,9 189 376.22 29 6.41 13712 139.70 1147 4.59

a load protocols used in calibration;b Plate;
c specimens sampled from a W14x82 section;d specimens sampled from an HEB500 section

45



List of Figures936

1 Graphical representation of the error function ϕ as the square of the shaded937

area in ε∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47938

2 Level curves of function f , Taylor approximation m, and illustration of step939

size according to different l-norms . . . . . . . . . . . . . . . . . . . . . . . . 48940

3 Function and model values along the search direction in Fig. 2a and 2b . . . 49941

4 Loading protocols under investigation; the loading excursion axis is schematic 50942

5 Performance of the NTR algorithm with Jacobian preconditioning with re-943

spect to the use of numerical vs. algorithmic differentiation . . . . . . . . . . 51944

6 Evolution of the gradient for a two backstress model for NTR with: no pre-945

conditioning(NTR), Jacobi (NTR J) and SVD preconditioning(NTR SVD) . 52946

7 Two backstress model parameter evolution for the preconditioned Newton947

Trust-Region algorithm at three different starting points - (J) Jacobi precon-948

ditioning; (SVD) Singular value decomposition preconditioning. . . . . . . . 53949

8 Comparison of test results and the combined Voce and Chaboche model with950

two backstresses with parameters estimated with NTR (J) for S355J2+N951

(t=50mm) steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54952

8 (Cont.) Comparison of test results and the combined Voce and Chaboche953

model with two backstresses estimated with NTR (J) for S355J2+N (t=50mm)954

steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55955

9 Evolution of the minimum eigenvalue sign of the Hessians in the NTR with956

SVD preconditioning method for different starting points and number of back-957

stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56958

46



−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

ε

−800

−600

−400

−200

0

200

400

600

800
σ

(M
P

a
)

Test

Simulation

(a) Stress-strain relation of an example load pro-
tocol and corresponding estimate of an elastic-
perfectly plastic model

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ε

−800

−600

−400

−200

0

200

400

600

800

σ
(M

P
a
)

Test

Simulation

(b) Unpacked load protocol and shaded area as a
metric for the error in the elastic-perfectly plas-
tic model

FIG. 1: Graphical representation of the error function ϕ as the square of the shaded area in
ε∗
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FIG. 4: Loading protocols under investigation; the loading excursion axis is schematic
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tioning(NTR), Jacobi (NTR J) and SVD preconditioning(NTR SVD)
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FIG. 7: Two backstress model parameter evolution for the preconditioned Newton Trust-
Region algorithm at three different starting points - (J) Jacobi preconditioning; (SVD) Sin-
gular value decomposition preconditioning.
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(e) Load protocol # 5
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(f) Load protocol # 6

FIG. 8: Comparison of test results and the combined Voce and Chaboche model with two
backstresses with parameters estimated with NTR (J) for S355J2+N (t=50mm) steel
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(g) Load protocol # 7
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(h) Load protocol # 8
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(i) Load protocol # 9
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(j) Load protocol # 10

FIG. 8: (Cont.) Comparison of test results and the combined Voce and Chaboche model
with two backstresses estimated with NTR (J) for S355J2+N (t=50mm) steel
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(a) 1 backstress at starting point 1

0 5 10 15 20 25 30 35 40 45

Iteration

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

si
g
n

o
f

m
in

im
u

m
ei

g
en

va
lu

e

(b) 1 backstress at starting point 3
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(c) 4 backstresses at starting point
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(d) 4 backstress at starting point 3

FIG. 9: Evolution of the minimum eigenvalue sign of the Hessians in the NTR with SVD
preconditioning method for different starting points and number of backstresses
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