PHYSICAL REVIEW B 102, 041115(R) (2020)

Rapid Communications

Finite-size corrections of defect energy levels involving ionic polarization

Stefano Falletta®,! Julia Wiktor,? and Alfredo Pasquarello®'
Chaire de Simulation a I’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

® (Received 27 November 2019; revised 20 February 2020; accepted 26 June 2020; published 17 July 2020)

We develop a scheme for finite-size corrections of vertical transition energies and single-particle energy levels
involving defect states with built-in ionic polarization in supercell calculations. The method accounts on an equal
footing for the screening of the electrons and of the ionic polarization charge arising from the lattice distortions.
We demonstrate the accuracy of our corrections for various defects in MgO and in water by comparing with
the dilute limit achieved through the scaling of the system size. The general validity of our formulation is also
confirmed through a sum rule that connects vertical transition energies with the formation energies of structurally

relaxed defects.
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Interest in optical transitions involving defect states has
been growing in recent years for their potential in opto-
electronic and photovoltaic applications [1-4]. In this con-
text, density functional theory calculations subject to periodic
boundary conditions represent the method of choice for study-
ing defect properties [5]. However, in a supercell, the long-
range nature of the electric field associated with a localized
charge leads to spurious finite-size effects on defect formation
energies [6,7]. This limitation can be overcome by addressing
various supercells of increasing size and extrapolating to the
limit of an infinitely large supercell [7-11]. Since this method
becomes prohibitive for large systems, it is preferable to
apply a posteriori model correction schemes [6,7,10,12—14].
Such corrections depend quadratically on the extra electronic
charge and scale inversely with the dielectric constant of the
material. In this regard, the scheme proposed by Freysoldt,
Neugebauer, and Van de Walle (FNV) [6] is highly accurate
[7], as illustrated in Fig. 1(a) for the hole polaron in MgO.

However, available model corrections [6,12-14] cannot
trivially be applied to vertical transitions, which involve defect
charge states in the presence of a frozen lattice distortion.
For illustration, we consider in Fig. 1(b) the formation energy
corresponding to the neutral state obtained upon vertical elec-
tron injection in the hole polaron state of MgO. While current
schemes do not give any correction for neutral defects [6,12—
14], we observe noticeable scaling. Similarly, in Fig. 1(c),
we show that the vertical extraction energy of the hydrated
electron scales significantly with the system size, an effect
that should be assigned to the neutral state as the negatively
charged state is heavily screened (¢p = 78.3 at ambient con-
ditions [15]). In the absence of a hydrated electron, the water
dipoles remain oriented in a frozen geometry, leading to a
divergence of the ionic polarization [cf. Fig. 1(d)], which
needs to be properly accounted for in correction schemes.

Since vertical transitions only involve electronic relax-
ations, the spurious interactions in the supercell are expected
to be dominated by the high-frequency dielectric constant €.
This generally leads to significantly larger corrections than for
relaxed defects. For instance, in a recent study of transition
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energies in Ga, 03, the choice of the dielectric constant leads
to differences up to 1 eV and the issue could not be solved by
system size scaling because of the prohibitive computational
cost [3].

After the submission of the present work, Gake er al.
elaborated a formulation for correcting vertical transition
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FIG. 1. Scalings with inverse supercell size L' for (a) the for-
mation energy of the hole polaron in MgO (for €g = 0), (b) the
formation energy of the neutral defect in the geometry of the hole
polaron in MgO, and (c) the vertical transition energy for the
hydrated electron in water (uncorrected values from Ref. [4]). The
number of atoms or water molecules in the supercell is given at
the top. The formation energies in the dilute limit are found by
linear extrapolation of the two largest supercells and are indicated
by horizontal red lines. (d) Schematics pointing to the presence
of a divergence in the ionic polarization, V - P # 0, due to lattice
distortions, which cause finite-size effects even in the absence of an
external charge (g = 0).
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FIG. 2. Schematics for deriving the formula in Eq. (4). The external charge is shown in green, the ionic polarization charge in blue, and
the electronic polarization charge in red. The system (0, Ry) does not show any localized polarization charge and can be used as the starting
point for the application of model corrections involving &. Similarly, (—¢,,,, Ry) does not have any electronic polarization charge and can be

used as the starting point for model corrections involving €.

energies [16], which appears to give reasonable numerical
results. However, the relation with limiting cases pertaining to
existing formulations for structurally relaxed defects has not
been established and the correction of single-particle energies
appears unsatisfactory [16]. Hence, the validity of this scheme
beyond the investigated cases remains to be ascertained.

In this Rapid Communication, we present a method pro-
viding finite-size corrections of vertical transition energies
and single-particle defect levels in the presence of ionic
polarization charges induced by lattice distortions. To address
this issue, we focus on the formation energies of defect
states electronically relaxed in the presence of a built-in
ionic polarization. We show that our scheme gives accurate
corrections through extrapolation to the limit of an infinitely
large supercell for various defects in MgO and water. As a
further validation, we demonstrate that our corrections for
vertical transition energies satisfy a sum rule connecting them
to state-of-the-art corrections for structurally relaxed defects.

We generalize the notion of formation energy [5,7] to
account for a defect in the charge state g within a frozen
geometry R, as induced by a charge ¢,

Ei(q, Ry) = E(q, Ry) — E(0, Rp) + q(er + €,)
— Y mitti + Ecor(q, Ry), e)

where E(q,R,) and E(0,Rp) are total energies, €, is the
valence band maximum, €r the Fermi level, n; the number of
atoms of species i involved in the defect, and w; the respective
chemical potential. E..(q, Ry) corrects the finite-size effects
and constitutes a crucial auxiliary quantity in our formulation.

The correction E,(gq, Ry) for a defect in charge state g
within a geometry relaxed in the presence of the same charge
q can be expressed as

Ecor(Qv Rq) = Em(q’ £0), )

where E,(q, &9) corresponds to a regular model correction
[6,12—14] for an external charge ¢ screened by the dielectric
constant g9. Similarly, we define E,(q, e) as the model
correction due to the sole electronic screening of the charge
q through the high-frequency dielectric constant &.,. For
instance, the latter correction applies to the case of a charge ¢
in a neutral pristine lattice in which only electronic relaxation
is allowed.

Here, we describe the effect of lattice distortions in the
configuration R, by considering the ionic polarization charge
‘1;01- This charge can be defined by setting the long-range

screened potential ¢'/(gor) equal to (¢’ + ql’ml)/ (¢007). This

leads to
/ / €00
=—q(1-—). 3
Tpol q ( % ) (3)

When an external free charge amounting to —ql’ml is inserted
at the defect site in the configuration R, the electronic
polarization vanishes. Hence, the system (—q{ml, R, ) defined
in this way can be used as a starting point for model finite-
size corrections involving electronic screening, i.e., governed
by €.

To find an expression for E..(q, Ry), we construct the
final state through a three-step procedure, as illustrated in
Fig. 2. The first step (0, Ry) = (¢', Ry) corresponds to the
formation of a regularly relaxed defect of charge state ¢’ and
is hence described by a correction Ey(q', &) [cf. Eq. (2)].
The second step (¢', Ry) — (—q;ml, R, ) needs a correction
corresponding to —FE,(¢' + q;,ol, £c0), Where the minus sign
results from the application of the model correction to the
inverted step from (=g, Ry) to (¢, Ry) and ¢’ + gy, repre-
sents the net localized charge to which the electrons respond.
The use of e, is warranted by the purely electronic nature of
the screening as the lattice structure R, is kept fixed. The last
step (_‘1;)01’ R,) — (¢, Ry) leads to the final configuration
(¢, Ry) and needs a correction Ep, (g + q;m], £x), Which can
be justified analogously to the previous step.

Summing up the corrections pertaining to the three steps,
we obtain the correction for a defect of charge ¢ in the frozen
equilibrium geometry pertaining to the charge state ¢/,

Ec.or(q, Rq’) = Em(q/, £) — Em(q/ + q;ol, £00)
+Em(61+61;01, Ec0)- )

Equation (4) has a well-defined physical meaning. Indeed, the
difference between the first two terms accounts for the finite-
size effects due to the establishment of the ionic polarization
charge ¢, while the last term results from the electronic
response to the localized charge g + ql/m]. Furthermore, our
formula in Eq. (4) properly recovers the model corrections for
regularly screened defects. When a charge ¢ is in its relaxed
structure Ry, i.e., q = g, the last two terms on the right-hand
side of Eq. (4) cancel and the correction reduces to En,(q, €o),
as in Eq. (2). Similarly, when the charge ¢ is added to a
pristine lattice Ry without allowing for ionic relaxation, i.e.,
taking ¢’ = 0 and hence ¢/ | = 0, the first two terms on the
right-hand side of Eq. (4) vanish and E\,(g, £ ) is correctly
retrieved.
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We now consider the vertical transition energy between the
charge states ¢’ and ¢ in the geometry R,

w(qg — q,Ry) = Ex(q, Ry) — Ex(q', Ry). (%)

Using Eq. (4), we obtain the finite-size correction for this
vertical transition,

//Lcor(q/ — 4, Rq’) = Em(q + q;)OIv 800) - Em(q/ + ql/)olv 800)1
(6)

where the terms due to the establishment of the ionic polar-
ization charge ‘1;01 cancel and only the terms related with the
electronic response to the net localized charge remain. When
the charge ¢’ in the initial configuration is neutral, our correc-
tion for the vertical transition in Eq. (6) becomes E, (¢, £x),
which results from purely electronic screening. However, for
the general case ¢’ # 0, the expression in Eq. (6) shows that
a complex interplay of ionic and electronic screening occurs.
We analytically proved that the formulation for p¢o derived in
Ref. [16] coincides with our result in Eq. (6) [cf. Supplemental
Material (SM) [17]].

We first demonstrate the accuracy of our scheme for the
hole polaron and the oxygen vacancy in MgO. The calcu-
lations are performed at the hybrid-functional level [18], as
implemented in the CP2K code [19-23]. Computational details
and other checks of consistency [24-26] can be found in the
SM [17]. By applying a finite electric field [27] to the largest
supercell under consideration (1000 atoms), we determine
&y = 8.6 and &, = 2.5, in agreement with the experimental
values &5 = 9.8 [28] and ex” = 3.0 [29]. As the model
correction Ey, for regularly screened defects, we adopt the
FNV method [6]. In Fig. 1(b), we illustrate the quality of our
correction scheme for the formation energy E¢(0, R, ) of the
neutral charge state in the geometry of the hole polaron. In the
case of the oxygen vacancy, we consider E(q, Ry) for g, ¢’ =
0, +1, 42, resulting in eight cases excluding E¢(0, Ry), which
we take as the reference. Figure 3 shows the scaling towards
the dilute limit in the cases in which standard correction
schemes cannot be applied. Excluding the case of the rela-
tively small 64-atom supercells, the errors of the corrected
formation energies with respect to the extrapolated value in
the dilute limit are smaller than 0.16 eV in all cases. Similar
errors are found for the FNV scheme applied to the formation
energies of regularly screened oxygen vacancies, as can be
seen in the SM [17] and in agreement with the literature [7].

To highlight the role of the ionic polarization charge qéol,
we focus on the (0, Ry ) state of the oxygen vacancy in
MgO, in which the localized charge is solely provided by the
ionic polarization. In Fig. 4(a), we display the potential Vppr
obtained from the hybrid-functional calculation. We compare
the latter with the long-range model potential associated with
a charge ‘11/)01 screened by e,

Vin(E g £00) = —— / ar ) )
€00 |I' —-r |

where o, (1r'; q;’ol) represents a Gaussian distribution of charge
‘1;)01- Figure 4(a) shows that Vppr is well described by Vi,
in the long range, supporting the description of the ionic
polarization in terms of the charge g;,,. The role of g, can
be further emphasized by displaying the finite-size errors with
respect to the dilute limit for E¢(g, Ry), where the charge
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FIG. 3. Formation energies of various states (¢, R,/) of the oxy-
gen vacancy in MgO as a function of the inverse supercell size L~!.
The number of atoms in the supercell is given at the top. The forma-
tion energies in the dilute limit are found by linear extrapolation of
the two largest supercells and are indicated by horizontal red lines.
In charged systems, we take e = 0.

states ¢ = 0, +1, 42 are considered in the presence of the
same frozen configuration R ;. In Fig. 4(b), we display these
errors for every considered supercell size and interpolate them
with parabola. When the supercells are sufficiently large, the
minima of these parabola occur at charge —qéol pertaining
to Ry ;. This is consistent with our finite-size expression in
Eq. (4), since the third term E,(q + q;m], £00) 18 quadratic in
the localized charge [6,12—14] and is thus minimized for ¢ =
—q}/)O]. At the minimum the electronic polarization is absent,
but the correction does not vanish because of the first two
terms in Eq. (4), which correspond to the establishment of the
ionic polarization in the geometry R ;.
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FIG. 4. (a) Comparison between the potential Vpgr obtained from
the hybrid-functional calculation for the (0, R,;) state of the O
vacancy in MgO and the model potential Vm(r;qéol, £o0) Tesulting
from a Gaussian distribution of charge ‘1;01 = —(1 — ex/&) Wwith
a width of 1 bohr. (b) Absolute finite-size error with respect to
the dilute limit for E¢(g, Ry;) with ¢ =0, 4+1, 42 (solid circles).
Supercells based on various numbers of atoms are considered.
The data are interpolated with parabola and the obtained minima
are indicated with open circles. The vertical line indicates the
charge —q;ml and corresponds to the theoretical minimum of the
finite-size correction for R ;.
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FIG. 5. Illustration of the sum rule defined in Eq. (9) for a
transition between the defect charge states of ¢ =0 and g = +1
in a 1000-atom supercell of MgO. For each value of the Kirkwood
parameter 7, the correction pco:(0 — +1, R,)) is evaluated through
Eq. (6). The mean value of e (0 — +1,R,) (red line) equals
En(+1, ).

As a second case study, we focus on the vertical extraction
energy of the hydrated electron. In the final state, the system
is neutral but the structure of liquid water presents a strong
dipolar polarization giving rise to significant finite-size effects
(cf. Fig. 1) [4]. We take uncorrected data for the vertical
transition w(—1 — 0, R_;) calculated in Ref. [4] and apply
our scheme based on FNV model corrections for E,, [6,30,31]
(see SM [17]). We use static and high-frequency dielectric
constants inferred from experimental data (g9 = 78.3 [15]
and g5 = 1.78 [32]). Compared to the extrapolated limit,
our corrected transition energies show errors of 0.11 and
0.04 eV for supercells containing 64 and 128 water molecules,
respectively, thereby further supporting the accuracy of our
scheme [cf. Fig. 1(c)].

To corroborate the general validity of our formulation,
we show that the finite-size corrections for vertical transition
energies in Eq. (6) satisfy a sum rule that connects them to
standard corrections of structurally relaxed defects [Eq. (2)].
To derive the sum rule, we adopt a procedure commonly
utilized in the framework of the thermodynamic integration
method [33-35]. To describe the transition from the charge
state ¢’ to that of ¢, we introduce a fictitious Hamiltonian
H, =nH, + (1 — n)H,, where 7 is the Kirkwood parameter
[36], and H, and H, are the Hamiltonians associated with the
initial and final states, respectively. This leads to

1
E(.R,)—E(q.R,) = / dnuld = ¢.R,)). )
0

where the terms on the left-hand side correspond to equilib-
rium energies of relaxed defects, whereas the integrand on
the right-hand side is the vertical transition energy defined in
Eq. (5). This leads to the following relationship between the
corresponding finite-size corrections,

1
Em(q,eo)—Em(q’,80)=/ dn peor(q’ = ¢, Ry).  (9)
0

It can be proven that this relationship is generally satisfied
by our finite-size corrections for vertical charge transition
energies [17]. The proof uses the quadratic dependence of the
model correction Ey, (g, €) on g and the linearity of the model
potential Vi, (r; ¢q, €) in g. An explicit derivation is given for
the case of the FNV model correction [6] in the SM [17]. In

Fig. 5, we illustrate the relationship between the finite-size
corrections in Eq. (9) for a transition from ¢’ = 0 to ¢ = +1
in MgO.

The present formulation also opens the way to the correc-
tions for single-particle defect levels. Such corrections find
immediate application when calculating quasiparticle shifts in
many-body GW formulations [37,38] and when enforcing the
generalized Koopmans’ condition to defect states [3,39-43].
The Kohn-Sham level € of a defect of charge g in the geometry
R, can be related to its total energy E (g, R, ) through Janak’s
theorem [44],

. O0E(Q,Ry)
JR)) = — lim ——17,
€(q,Ry) ngb 20

Using Eq. (4) and the quadratic dependence of Ey, (g, &) on
g, we find that the corresponding finite-size correction €., is
expressed as

(10)

En(q + qp)» €c0)

- (11
q +qpol

Ecor(q’ Rq’) =-2

For structurally relaxed defects, i.e., when ¢’ = ¢, the formula
in Eq. (11) falls back to the expression found by Chen and
Pasquarello [31] in view of the relation in Eq. (3). In the
SM [17] we prove Eq. (11) and illustrate the scaling of the
energy levels for the hole polaron in MgO. We remark that our
scheme for single-particle energies performs as accurately as
for vertical transitions, in contrast with the findings of Gake
et al., who used inadequate corrections for single-particle
levels [16].

In conclusion, we derived finite-size corrections for ver-
tical transition energies and single-particle energy levels in-
volving defect states with built-in ionic polarization. The
present formulation is fully general and applies to defect
states in condensed systems ranging from the solid to the
liquid state. Its physical motivation is transparent and the
limiting cases are trivially recovered. Our method allows for
the combination with existing schemes for regularly relaxed
defects, making its implementation and use widely accessible
[45]. Our corrections are validated through numerical case
studies in MgO and water and through the analytical condition
set by a sum rule. This scheme allows one to achieve accurate
optical transition energies for identifying defect signatures in
measured optical spectra without requiring computationally
prohibitive system-size scalings.

The code for calculating finite-size corrections is provided
on GitHub [45]. Additional material associated to this work
can be found on Materials Cloud [46].

We acknowledge useful interactions with Francesco Am-
brosio, Wei Chen, and Patrick Gono. This work has been
realized in relation to the National Center of Competence
in Research (NCCR) “Materials’ Revolution: Computational
Design and Discovery of Novel Materials (MARVEL)” of
the Swiss National Science Foundation. The calculations have
been performed at the Swiss National Supercomputing Centre
(CSCS) (grant under Projects ID s879 and mr25) and at
SCITAS-EPFL.
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