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1. Introduction 
Surface normal vectors attributes are crucial for a number of use-cases in point cloud imaging including 
rendering, surface reconstruction, segmentation, and feature extraction, among others. In essence, the 
normal vectors indicate the shape of the underlying 3D model, which is represented through point 
primitives. Normal vectors are not natively exported during point cloud acquisition in most cases, and 
when this happens, it is not necessary that they accurately reflect the underlying surfaces. Thus, it is 
rather common to (re-)estimate them from a point cloud model in an offline, post-processing stage, 
where various normal estimation algorithms and configurations might be tested. 

In principle, the problem of normal estimation on point clouds has been extensively studied from 
different communities, such as computer graphics, signal processing and mathematics, while lately, 
deep-learning solutions have also been proposed. In this context, a point cloud is seen as a collection of 
unorganized points that are sampled from continuous surfaces, and the objective is to infer the 
underlying shape from the discrete samples. Normal estimation can be considered as an ill-posed 
problem, in the sense that there is no unique solution for a given point cloud. Moreover, the performance 
of normal estimation algorithms is highly affected by the density of samples and surface curvature 
irregularities across a model, as well as the presence of noise that can be injected during acquisition, or 
other processing stages (e.g., compression) [1]. The accuracy, robustness and efficiency of widely-used 
normal estimation algorithms has been evaluated and reported by a series of studies in the literature [2, 
3].  

In this report, the objective is to benchmark the plane-to-plane metric1 described in [4]; this is an 
objective quality metric that is based on the angular similarity of tangent planes between two point 
cloud models. The computation of this metric relies on normal vectors that are carried with associated 
pairs of points, and quantifies the difference in orientation of their corresponding tangent planes. Thus, 
the performance of the metric depends by default on the normal vectors and the way they approximate 
the underlying surfaces. Thus, the selection of the normal estimation algorithm as well as its 
configuration is crucial in order to achieve high prediction power. In this framework, we choose three 
widely-used normal estimation algorithms, and we test several neighborhood sizes over which the 
normal vector of a point is estimated: 

• Plane fitting using k-nearest neighbors 
• Plane fitting using range search 
• Quadric fitting using range search 

In a first step, we evaluate the normal estimation error of the selected algorithms and configurations 
against ground truth normal vectors on point clouds that are produced after sub-sampling a set of 
reference mesh models. This stage is referred to as verification. In a second step, we benchmark the 
plane-to-plane metric, as a function of the selected normal estimation algorithms and configurations, 
against ground truth subjective scores from two datasets, namely, JPEG-ES2-PCCD [5] and M-PCCD 
[6]. This stage is referred to as benchmarking. 

 
1 https://github.com/mmspg/point-cloud-angular-similarity-metric 
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2. Verification  
2.1 Models 
We pick 4 mesh models with different shapes and curvature distributions from the references of the 
PointXR dataset [7]. The models can be seen in Figure 1, namely, guanyin, roy, rhetorician, and vase, 
from left to right. 

 
Figure 1: Test mesh models used at verification. 

2.2 Methodology  
For every mesh model, we repeat the following procedure to obtain the ground truth normal vectors: 

1. Load a mesh model in CloudCompare [8] and use a build-in functionality to estimate the normal 
vectors per vertex i.e., the normal at a vertex is obtained as the mean normal vector across all 
the triangles connected to this vertex2.  

2. Generate a point cloud by sampling the mesh model at different sparsity levels, using a target 
number of output points3. In this report, we set 250K, 500K, 1M and 2M as targets, to simulate 
realistic use cases of point clouds that are employed in point cloud compression activities. The 
point cloud is generated after obtaining a constant number of samples at random positions from 
each triangle of the mesh. The normal vector of a point is obtained after applying spatial 
interpolation on the normal vectors of the vertices that surround it in the original mesh. 

3. Remove neighboring points of the output point cloud with identical normal vectors. 
4. Scale geometry of the point cloud in the range [0, 1]3. 
5. Apply normal estimation algorithm on the point cloud geometry. 

At this point, we have the testing point clouds associated with the ground truth normal vectors. The 
normal estimation algorithms under evaluation are applied on the coordinates of the testing point clouds 
(step 5), and evaluated against the ground truth normal vectors using the average error per point in 
degrees. Note that the angular error measurements are obtained considering unoriented normal vectors. 
Note that it is common to obtain flipped normal vectors even at cases of neighboring points; to address 
this issue, several algorithms have been proposed (e.g., Minimum Spanning Tree), however, their 
performance and impact is outside of the scope of this report. 

 
2 https://www.cloudcompare.org/doc/wiki/index.php?title=Normals%5CCompute 
3 https://www.cloudcompare.org/doc/wiki/index.php?title=Mesh%5CSample_points 
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2.3 Normal estimation algorithms  

2.3.1 Plane fitting using k-nearest neighbors  

For this algorithm, the classic approach described in [9] is employed. In particular, the k-nearest 
neighborhood  (k-nn) is used to identify a local region over which a planar surface is fitted. For every 
model and each target number of points, neighborhoods of 8 up to 512 points are set, by doubling the 
previous number. 

The Meshlab [10] build-in function is used to implement this algorithm. It is noteworthy that throughout 
our experimentation, we have confirmed that we get identical results with the Matlab implementation, 
and a custom script running the Principal Component Analysis followed by the selection of the 
eigenvector with the smallest eigenvalue, for these models. Moreover, it should be mentioned that 
different results are obtained when using the same algorithm as implemented in PCL [11]. 

2.3.2 Plane fitting using range search 

This algorithm is identical to the one described above (section 2.3.1), with the only difference that a 
range search with a fixed radius is employed to identify the neighborhood, instead of the k-nearest 
points. For every model and each target number of points, neighborhoods are defined using a radius 
equal to 0.001 up to 0.01, with a step of 0.001 (each model’s geometry is limited to a bounding box of 
size 1). 

The CloudCompare build-in function is used to implement this algorithm. Benefiting from the octree 
structure that is used to identify the nearest points, the implementation is fast. Another important 
advantage, which is a typical bottleneck in the range search algorithm, is the fact that in case of zero 
neighboring points at a specific radius, the search range is progressively increasing up until a minimum 
number of points are reached. Thus, normal vectors are estimated for all points.  

In the plane fitting algorithm described in section 2.3.1, for every point, its normal vector is estimated 
across a fixed number of points with arbitrary range, while in this case, an arbitrary number of points 
is used which span at a fixed range. There are no indications in the literature which algorithm provides 
more accurate results. In previous studies, usually, one is selected over the other, and different 
configurations of the chosen algorithm are evaluated [2, 3]. 

2.3.3 Quadric fitting using range search 

This algorithm is based on fitting a quadratic polynomial in a neighborhood that is identified by using 
the range search algorithm. For every model and each target number of points, neighborhoods are 
defined using a radius equal to 0.001 up to 0.01, with a step of 0.001 (each model’s geometry is limited 
to a bounding box of size 1). 

The CloudCompare build-in function is used to implement this algorithm. As mentioned in section 
2.3.2, there are several advantages that are offered. 

2.4 Results 
In Figure 2, we present the normal estimation error in terms of angles expressed in degrees between the 
unoriented estimated and ground truth normal vectors. Note that in each row a different model is 
depicted, while in each column a different normal estimation algorithm is provided. In every figure, 
each curve reports the angular error at different neighborhood sizes, and corresponds to a certain 
variation of a model (i.e., target number of points, or sparsity level).  
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Figure 2: Normal estimation error for normal estimation algorithms and configurations per model. 

As we can see, for all algorithms, the accuracy of the estimated normal vectors strongly depends on the 
testing model (geometric characteristics and sparsity levels) and the configuration of the algorithm [2, 
3]. It is evident that plane and quadric fitting using range search are comparable, while the error trend 
for the plane fitting using k-nn behaves differently. Based on our results, when using k-nn, the minimum 
error is achieved at larger k’s for denser models, whereas for sparser models, the minimum is achieved 
for smaller neighborhoods. In principle, the normal estimation error is constantly lower at denser 
models, for all k’s. When using range search, similar performance is observed between plane and 
quadric fitting, with the latter showing minor accuracy improvements. In both cases, for sparse models, 
the error is stable or even decreasing as the radius is increasing up to a threshold. In principle, the 
normal estimation error is lower at denser models at low- up to mid-radii, and then the same error is 
observed independently of the sparsity level. Considering that larger radii might lead to accounting 
points that don’t belong to the same local region (e.g., “occluded” surfaces), the error will increase in a 
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similar way independently of the sparsity level of a model, given that all of them are scaled identically. 
The same applies across different fitting surfaces, where we observe very similar error trends after the 
points where the minimum error is achieved. 

Figure 3 indicates the mean and the standard deviation of the number of points for different radii, for 
all variations of the guanyin model. As expected, the number of points deviates depending on the 
model’s sparsity. In principle, we can say that there is a sweet spot for the identification of a region that 
would lead to more accurate results, per sparsity level.  

  

  
Figure 3: Mean and standard deviation of the number of points that consist of local neighborhoods when 

using range search, for different variations of the guanyin model. 

3. Benchmarking  
3.1 Data sets 
We evaluate the performance of the plane-to-plane metric as a function of the normal estimation 
algorithms that were analysed in section 2. For this purpose, we use two subjectively annotated datasets, 
namely, JPEG-ES2-PCCD [5] and M-PCCD [6]. 

• The JPEG-ES2-PCCD contains 6 colored static point clouds that represent human figures of 
different characteristics (e.g., resolution, acquisition noise) that are degraded using V-PCC and 
two G-PCC variants after combining the Octree and TriSoup geometry codecs with the Lifting 
color encoder, following the MPEG Common Test Conditions (CTC) document [12]. The exact 
degradation levels per model can be found in [5]. The compressed point clouds were 
subjectively evaluated using point-based rendering in four independent laboratories in a passive 
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evaluation protocol. This dataset is obtained from the recent JPEG activities in the context of 
the Exploratory Study 2.  

• The M-PCCD contains 8 colored static point clouds that represent both human figures and 
inanimate objects that are degraded using V-PCC and the four G-PCC variants (i.e., 
Octree+Lifting, Octree+RHAT, TriSoup+Lifting and TriSoup+RAHT), following the MPEG 
CTC document [12]. The compressed point clouds were subjectively evaluated using point-
based rendering in two independent laboratories in an interactive evaluation protocol without 
imposing any time limitation.  

3.2 Normal estimation algorithms  

3.2.1 Plane fitting using k-nearest neighbors  

For this algorithm, a k-nn is used to identify a local region to fit a planar surface. For every model, 
neighborhoods of 8 up to 1024 points are set, by doubling the previous number. 

The Meshlab build-in function is used to implement this algorithm.  

3.2.2 Plane fitting using range search 

For this algorithm, a range search is performed setting a radius to identify a local region to fit a planar 
surface. For every model, neighborhoods are formed using a radius of 5, 10, 20, 30, 40 and 50.  

The CloudCompare build-in function is used to implement this algorithm.  

3.2.3 Quadric fitting using range search 

For this algorithm, a range search is performed setting a radius to identify a local region to fit a quadric 
surface. For every model, neighborhoods are formed using a radius of 5, 10, 20, 30, 40 and 50.  

The CloudCompare build-in function is used to implement this algorithm.  

3.3 Plane-to-plane metric 
The plane-to-plane metric [4] is based on the angular similarity of tangent planes that correspond to 
associated points between a stimulus under evaluation, B, and a reference point cloud, A. In particular, 
for every point of the stimulus under evaluation, 𝑏", a point that belongs to the reference point cloud, 
𝑎$, is identified, using the nearest neighbor algorithm. Then, the angular similarity of tangent planes is 
computed using the corresponding normal vectors and based on the angle 𝜃 , which denotes the 
minimum out of the two angles that are formed by the intersecting tangent planes (or, equivalently, the 
unoriented normal vectors). 

This error value is associated to every 𝑏" and provides an approximation of the dissimilarity between 
the underlying local surfaces. A total distortion measurement for the stimulus under evaluation is 
obtained as the mean squared error across all individual error values.  

The plane-to-plane angular similarity is defined as the symmetric value, obtained after setting both point 
clouds A and B as the reference, and keeping the maximum error (i.e., minimum similarity). 

3.4 Benchmarking 
The Pearson Linear Correlation Coefficient (PLCC), the Spearman Rank Order Correlation Coefficient 
(SROCC), the Root-Mean Square Error (RMSE) and the Outlier Ratio (OR) performance indexes are 
computed between pairs of MOS and predicted MOS, to measure the performance of the plane-to-plane 
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metric against the subjective ground truth. The predicted MOS is obtained after applying the logistic 
fitting function on the objective quality scores, essentially, repeating the analysis reported in [5, 6], in 
order to be able to compare the results.  

3.5 Results 
It should be noted that as a first step, and before applying any normal estimation algorithm, duplicated 
coordinates were discarded for all models from all datasets that are employed in the sections below. For 
most configurations, the number of points that form a local neighborhood is large, thus, the impact of 
this processing step should not be critical; however, it is stated for the shake of completeness. 

3.5.1 JPEG-ES2-PCCD 

 
Figure 4: Pearson and Spearman correlation coefficients from benchmarking of the plane-to-plane metric 

using JPEG-ES2-PCCD, as a function of the region size defined to estimate the normal vectors. 

In Figure 4, the Pearson and the Spearman correlation coefficients are depicted as a function of the 
neighborhood size per normal estimation algorithm, against the JPEG-ES2-PCCD subjective scores. It 
can be observed that when using plane fitting with k-nn, the performance is improving as the number 
of neighbors is increasing of up to k = 256, remains almost stable until k = 512, where it starts to decay 
until k = 1024. When using plane fitting with range search, the performance is almost stable and high 
for radii up to 20, while it progressively decreases for larger values. A similar performance is observed 
when using quadric fitting, with slightly better performance and less deviations across the tested radii.   

In Table 1 we report the performance indexes for the best performing configurations of all normal estimation 
algorithms that were tested, along with the D1 PSNR and D2 PSNR metrics [13] for comparison purposes. 

Normal estimation algorithm PLCC SROCC RMSE OR 

Plane-fitting, k-nn, k = 256 0.936 0.925 0.403 0.589 

Plane-fitting, range, R = 5 0.924 0.912 0.436 0.644 

Quadric-fitting, range, R = 20 0.934 0.920 0.410 0.611 

D1 PSNR [5] 0.868 0.855 0.540 0.752 

D2 PSNR [5] 0.913 0.910 0.443 0.588 

Table 1: Performance evaluation of the plane-to-plane metric in JPEG-ES2-PCCD, using the best 
performing configurations for all normal estimation algorithms that were selected. 

In Figure 5, scatterplots indicating the prediction performance of the metric are illustrated for plane 
fitting using k-nn, and plane and quadric fitting using range search. It is easy to conclude that using 
plane and quadric fitting with range search, we obtain very similar results. Using the k-nn algorithm to 
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form neighborhoods, though, might lead to poor generalization capabilities (i.e., across different 
contents), especially when a small k is used. As the neighborhood size is increasing, such deviations 
are reduced. Moreover, with larger radii, the similarity scores spanning-range is decreasing, which is 
reasonable if we consider that the estimated surfaces are getting smoother as the regions over which 
they are estimated is increasing. Thus, less differences and higher similarity scores are obtained. 

 

 

 
Figure 5: Subjective against objective quality scores from the plane-to-plane metric. In the first row, plane 

fitting with k-nn is used to estimate normal vectors, with k = 8, 64 and 512. In the second row and third 
rows, plane and quadric fitting are used with radius equal to 5, 20 and 50 from left to right, respectively. 

3.5.2 M-PCCD 

 
Figure 6: Pearson and Spearman correlation coefficients from benchmarking of the plane-to-plane metric 

using M-PCCD, as a function of the region size defined to estimate the normal vectors. 

In Figure 6, the Pearson and the Spearman correlation coefficients are depicted as a function of the 
neighborhood size per normal estimation algorithm, against the M-PCCD subjective scores. Similar 
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performance trends are observed when compared to the results obtained using the JPEG-ES2-PCCD. 
The prediction power of the metric is lower in this case, however, this is a general observation for all 
metrics, since the types of contents, as well as the number of models and codecs that are evaluated in 
this dataset is larger, constituting a more challenging benchmarking setup.  

In Table 2 we report the performance indexes for the best performing configurations of all normal estimation 
algorithms that were tested, along with the D1 PSNR and D2 PSNR metrics for comparison purposes. 

Normal estimation algorithm PLCC SROCC RMSE OR 

Plane-fitting, k-nn, k = 512 0.775 0.791 0.862 0.802 

Plane-fitting, range, R = 30 0.813 0.813 0.794 0.832 

Quadric-fitting, range, R = 30 0.827 0.831 0.766 0.819 

D1 PSNR [6] 0.720 0.759 0.885 0.819 

D2 PSNR [6] 0.756 0.807 0.834 0.852 

Table 2: Performance evaluation of the plane-to-plane metric in M-PCCD, using the best performing 
configurations for all normal estimation algorithms that were selected. 

 

 

 

Figure 7: Subjective against objective quality scores from the plane-to-plane metric. In the first row, plane 
fitting with k-nn is used to estimate normal vectors, with k = 8, 64 and 512. In the second row and third 
rows, plane and quadric fitting are used with radius equal to 5, 20 and 50 from left to right, respectively. 
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In Figure 7, scatterplots indicating the prediction performance of the metric are illustrated for plane 
fitting using k-nn, and plane and quadric fitting using range search. Similar results are observed with 
respect to the analysis conducted for the JPEG-ES2-PCCD. Regarding the head and especially the biplane 
models, it is noteworthy that their geometry is highly irregular and noisy. Thus, these contents behave as 
outliers in our results, and have a negative impact in the overall performance. 

3.6 Discussions 
To have a better understanding about the differences in neighborhood formulation between the two 
approaches (i.e., k-nn and range search), in Figure 8 we indicatively present the average and the standard 
deviation of the number of points of local neighborhoods for the longdress model, and its encoded 
version with Octree at R02, following the MPEG CTC [12]. It can be seen that the number of points 
using range search exceeds the number of points employed with the k-nn for a radius higher than 10 for 
the reference model, while an order of magnitude deviations are observed when the neighborhood 
populations are compared to the encoded model. Note that this encoded stimulus is the second sparsest 
in the dataset. 

 
Figure 8: Mean and standard deviation of the point number of local neighborhoods when using range 
search, for different variations of the longdress model: reference and encoded using Octree at R02. 

A natural question is, how the performance is improving as the local neighborhoods are increasing, 
when in the verification section 2 we showed that by enlarging the local regions, the normal estimation 
error is rapidly increasing. In fact, by increasing the neighbourhood size, the local surface 
approximations are smoother, which can be interpreted as applying a low pass filter; note, that this 
doesn’t necessarily mean more accurate. However, it is evident that by estimating the local surfaces 
from small neighborhoods of 10 or 20 points, high frequency geometric components are reflected on 
the estimated normal vectors, which do not represent the shape, or how we perceive the shape of the 
models.  

A visualization example is provided in Figure 9. The model is rendered using point shading assisted by 
the estimated normal vectors under ambient light. In this illustration, a plane fitting with the k-nn 
approach is used, and results from all the selected k values are presented. As we can see, by increasing 
the size of the local neighborhoods over which the normal vectors are estimated, the underlying surfaces 
are getting smoother. 

In Figure 10, different versions of the longdress model along with corresponding quality scores are also 
provided as examples. 

   



   

 ISO/IEC JTC 1/SC 29/WG1 M 88038 
 88th Meeting, Online, 07-10 July 2020 

 - 12 - 

   
Figure 9: Visualization of the reference longdress with point shading. The normal vectors are estimated 

with plane fitting and k = 8, 32, 128 and 512 from left to right. 

 

   
Figure 10: Three versions of the longdress model: reference, stimulus after encoding with Octree at R02, 
and stimulus after encoding with TriSoup at R01 following the MPEG CTC [12], from left to right. The 
normal vectors are estimated using plane fitting with range search and radius 10. The obtained plane-to-

plane similarity scores are 0.8830 and 0.7958, for the second and third stimulus, respectively.  
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4. Conclusion 
Based on our results, the performance of the plane-to-plane metric is crucially affected by the region 
size over which the normal vectors are estimated. In fact, we found that by enlarging the neighborhoods 
(up to a certain size), the performance is improving for the employed datasets. This result is 
counterintuitive, considering that larger neighborhoods typically lead to larger normal estimation errors, 
as shown in section 2. However, larger neighborhoods lead to reconstruction of smoother surfaces and 
act as low-pass filters, which eliminate high-frequency geometric components in local scales that do 
not reflect how we perceive the shape of a model. Notably, optimizations to achieve lower normal 
estimation errors do not necessarily lead to better performance for the plane-to-plane metric. 

Following our results, the use of the quadric fitting model with range search and a radius equal to 20 is 
found to be the best option, under the employed datasets. In particular, the performance of this fitting 
model is quite robust for different radii, and it shows consistency in quality predictions across different. 
Despite the fact that the range search doesn’t guarantee the same neighborhood population, it grands 
that the samples falling in “the same” spatial sub-space will be used to estimate the normal vectors for 
both the reference and the distorted models. In our context, it is reasonable to favor the approximation 
of underlying surfaces under comparison in local regions that best-match. 
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