Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. SpecROP: Speculative Exploitation of ROP Chains
 
conference paper not in proceedings

SpecROP: Speculative Exploitation of ROP Chains

Bhattacharyya, Atri  
•
Marin, Andres Sanchez
•
Koruyeh, Esmaeil Mohammmadian
Show more
2020
23rd International Symposium on Research in Attacks, Intrusions and Defenses

Speculative execution attacks, such as Spectre, reuse code from the victim’s binary to access and leak secret information during speculative execution. Every variant of the attack requires very particular code sequences, necessitating elaborate gadget-search campaigns. Often, victim programs contain few, or even zero, usable gadgets. Consequently, speculative attacks are sometimes demonstrated by injecting usable code sequences into the victim. So far, attacks search for monolithic gadgets, a single sequence of code which performs all the attack steps. We introduce SpecROP, a novel speculative execution attack technique, inspired by classic code reuse attacks like Return-Oriented Programming to tackle the rarity of code gadgets. The SpecROP attacker uses multiple, small gadgets chained by poisoning multiple control-flow instructions to perform the same computation as a monolithic gadget. A key difference to classic code reuse attacks is that control-flow transfers between gadgets use speculative targets compared to targets in memory or registers. We categorize SpecROP gadgets into generic classes and demonstrate the abundance of such gadgets in victim libraries. Further, we explore the practicality of influencing multiple control-flow instructions on modern processors, and demonstrate an attack which uses gadget chaining to increase the leakage potential of a Spectre variant, SMoTherSpectre.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

specrop_raid_cr.pdf

Access type

openaccess

Size

675.09 KB

Format

Adobe PDF

Checksum (MD5)

44db54de2ef9707f1bcaa9d1d6041ff8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés