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Abstract

A physics-informed machine learning framework is developed for the reduced-order modeling of
parametrized steady-state partial differential equations (PDEs). During the offline stage, a reduced
basis is extracted from a collection of high-fidelity solutions and a reduced-order model is then
constructed by a Galerkin projection of the full-order model onto the reduced space. A feedforward
neural network is used to approximate the mapping from the physical/geometrical parameters to
the reduced coefficients. The network can be trained by minimizing the mean squared residual error
of the reduced-order equation on a set of points in parameter space. Such a network is referred to
as physics-informed neural network (PINN). As the number of residual points is unlimited, a large
data set can be generated to train a PINN to approximate the reduced-order model. However, the
accuracy of such a network is often limited. This is improved by using the high-fidelity solutions
that are generated to extract the reduced basis. The network is then trained by minimizing the
sum of the mean squared residual error of the reduced-order equation and the mean squared error
between the network output and the projection coefficients of the high-fidelity solutions. For complex
nonlinear problems, the projection of high-fidelity solution onto the reduced space is more accurate
than the solution of the reduced-order equation. Therefore, higher accuracy than the PINN for this
network - referred to as physics-reinforced neural network (PRNN) - can be expected for complex
nonlinear problems. Numerical results demonstrate that the PRNN is more accurate than the PINN
and both are more accurate than a purely data-driven neural network for complex problems. During
the reduced basis refinement, before reaching its accuracy limit, the PRNN obtains higher accuracy
than the direct reduced-order model based on a Galerkin projection.

Keywords: Physics-informed machine learning, Feedforward neural network, Reduced-order
modeling, Nonlinear PDE

1. Introduction

High-fidelity numerical simulation has been widely used in applications modeled by parametrized
partial differential equations (PDEs) [I} 2], in which the parameters characterize geometric features,
boundary conditions, source terms and physical properties, etc. However, for applications like
design, control, optimization and uncertainty quantification, all of which require repeated model
evaluations over a potentially large range of parameter values [3], high-fidelity simulation remains
prohibitively expensive. The need of cost reduction in such applications has led to the development
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of reduced-order modeling (ROM) [4] that seeks to build low-dimensional models that are fast to
evaluate while providing accurate predictions.

Reduced basis (RB) methods are a class of well-known and widely-used ROM techniques. RB
methods are generally implemented in an offline-online paradigm [5]. During the offline stage, a
reduced basis, which represents the main dynamics of the underlying problem, is extracted from
a collection of high-fidelity solutions (snapshots). The reduced basis functions can be obtained
by a variety of algorithms, such as proper orthogonal decomposition (POD) [1l 2} 6], the proper
generalized decomposition [7], the piece-wise tangential interpolation [§], the matrix interpolation
[9] and greedy algorithms[I0HIZ]. Once the reduced basis functions are computed, a reduced-order
model can be constructed in either an intrusive or a non-intrusive manner. During the online stage,
for a new parameter location, the corresponding reduced-basis solution is recovered as a linear
combination of the RB functions, with the expansion coefficients (also called the reduced coefficients)
computed by solving the reduced-order model.

Intrusive reduced-order model is generally obtained by the projection of the full-order model
onto the reduced space spanned by the RB functions. A Galerkin projection [I3HI5], in which the
RB basis is used as the test functions, is the simplest and most popular choice. The popular method
that uses POD to generate reduced basis and a Galerkin procedure to build reduced-order model is
referred to as POD-G in this paper. During the online stage, the reduced coefficients are determined
by solving the reduced-order equations. Projection-based methods have been successfully applied to
a variety of problems. However, projection-based reduced-order methods lack a priori guarantees of
stability, accuracy and convergence for complex nonlinear problems [13] [16] [17].

Non-intrusive reduced-order model generally predicts reduced coefficients for a new parameter
value by interpolation or regression, based on a data base of reduced-order information [I8]. Standard
interpolation techniques may fail if only a small number of samples are available [19] 20]. Regression-
based non-intrusive RB methods [2I] 22] have recently been developed. Regression models, such as
the artificial neural network (ANN) and Gaussian process (GP), are approximate maps between
the parameter value and the projection coefficients of the high-fidelity solution onto the reduced
space, and are trained by high-fidelity data in a supervised learning paradigm [23] during the offline
stage. During the online stage, the reduced coeflicients are determined by rapid evaluation of the
regression map.

The advantages of the non-intrusive over the intrusive methods are robustness and efficiency.
The robustness is due to the decoupling of the online stage and the high-fidelity scheme in the
non-intrusive method. The efficiency is due to the fact that in the online stage, the reduced
coefficients of the non-intrusive method are determined by evaluating the regression model, while
reduced coefficients of the intrusive method are determined by solving a nonlinear equation system
[21]. The major disadvantage of the non-intrusive over intrusive methods is the offline cost. Since a
big data set, obtained by projecting a large amount of expensive high-fidelity snapshots onto the
reduced space, is necessary to train an accurate regression model.

A reduced-order modeling framework based on physics-informed machine learning is proposed in
this work to combine the advantages of intrusive and non-intrusive methods. In this framework,
the reduced coefficients are predicted by a physics-informed neural network (PINN) [24H26]. The
input of the PINN is the parameter value, the output is the set of the reduced coefficients. The
PINN is optimized by minimizing the residual of the POD-G equation on sampled training points
in parameter space. By taking the mean squared residual error of the reduced-order equation as
the loss function, no labeled data is needed for the training. As the number of residual points is
practically unlimited, a large data set can be generated to train an accurate PINN to approximate
the reduced-order model at limited cost.

The accuracy of the network can be improved by using the high-fidelity solutions that are
generated to extract the reduced basis. The loss function is defined as the sum of the mean squared
residual error of the reduced-order equation and the mean squared error between the network output



and the projection coefficients of the high-fidelity solutions onto the reduced space. The trained
network is referred to as physics-reinforced neural network (PRNN). For complex nonlinear problems,
the projection of the high-fidelity solution onto the reduced space is more accurate than the solution
of the reduced-order equation, since the reduced-order equation does not take into account the
impact of the unresolved scales (truncated modes) on the resolved scales (reduced basis modes)
[14]. Therefore, the PRNN is expected to be more accurate than the PINN for complex nonlinear
problems. By using the physics-informed machine learning technique, we can train neural networks
to accurately and efficiently predict the reduced-order solution, without requiring extra high-fidelity
simulation.

The one-dimensional Burgers’ equation, the two-dimensional lid-driven flow and the two-
dimensional natural convection problem are used to test the proposed reduced-order methods.
Numerical results demonstrate that the PINN and PRNN can predict reliable reduced-order solu-
tions and are much more accurate than a purely data-driven neural network. During the reduced
basis refinement, before reaching its accuracy limit, the PRNN can obtain higher accuracy than the
direct reduced-order model based on the Galerkin projection.

The remainder of the paper is organized as follows. Section [2] presents the model order reduction
framework of parametrized PDEs. Section [3| discusses the physics-informed machine learning of the
reduced-order model, while Section [] presents the numerical results. Section [ gathers the relevant
conclusions.

2. Projection-based reduced basis method

Consider a nonlinear dynamical system governed by the parametrized partial differential equations
(PDEs):
N(p(x);p) =0, xeQ(p),
B(¢(x);m) =0,  x€Q(n),

where N is a general nonlinear differential operator, ¢ (x) are field variables to be determined on
Cartesian coordinate x. B is a boundary operator defined on the boundary 92 of the physical
domain 2. p € P are the physical/geometrical parameters and P C R™» is the parameter space. n,
is the number of parameters, i.e., the dimension of P.

Snapshots used for generation of the reduced basis functions are obtained from high-fidelity
(HF) simulations using the same amount of degree of freedoms (DOFs) on a set of parameter
values. Physical coordinates of DOFs are variable when the shape or size of the physical domain
2 is controlled by geometrical parameters. Therefore, to ensure compatibility of the high-fidelity
snapshots, we perform the simulations on a computational domain €. The invertible problem-
dependent mapping from physical to computational coordinates is X : x € Q(u) — € € Q, as

(1)

E=X(xip), (2)
and is recast as

N(@E:p) =0, €E€Q,

B(p(€);p)=0, &€,

N (o (X&) sp)
B(op (X (&p)im):

where A and B are the corresponding operators in the computational space.

2.1. Full-order model

A full-order model is obtained by the discretization of using a high-fidelity scheme on a fine
mesh. The number of interior DOFs is denoted as N, the number of boundary DOFs is denoted as



Np. We denote the discrete solutions of as ¢, € RY and ¢hB € RV5. The full-order model is
expressed as

Lo+ 95(on.¢8) + Cg =0, (4)
Lgén + LE¢) + Cz =0, (5)

where L € RVXN, Lz e RY5*N and Lg € RNBXNB represent matrices derived from the linear

parts of the operators N and B. Cy € RY and Cz € RM" are constant vectors. g : RV xRV5 —
RY is a nonlinear function derived from the nonlinear part of operator N. Discretization of the
boundary conditions result in a linear equation system , as commonly used boundary conditions,
e.g., Dirictlet, Neumann and Robin, are linear and thus B is a linear operator.

In this work, the high-order accurate Chebyshev pseudospectral method [27, 28], is used as the
high-fidelity scheme.

2.1.1. Chebyshev pseudospectral method
In the Chebyshev pseudospectral method, a d-dimensional physical domain is mapped to the
computational domain Q = [—1,1]¢, with each dimension discretized by N, 4+ 1 Chebyshev-Gauss-

Lobatto points,
i)

fi:cos<Np), 0<i<N,. (6)

The solution is approximated by ¢(§) = Zﬁipo @:li(§), where £;(£) is the Lagrange polynomial.
Spatial derivatives are discretized as
ol
ogs

= D%¢, (7)
i

where ¢ = {@}fﬁo, s is the order of the derivative and D? is the s-th-order difference matrix of size
(Np + 1) x (N, + 1) with elements defined by

DY, = bij, 0<i,j<N,, (8)
Bi -1 i+n
D ==* .(. ) — 0<4,j <Np,i#j
7 By g (G ) sin (G
2N, 2N,
NP
Dl = - Z D}, 1<i<N,-1
J=0,j#i ; 9)
2N,% + 1
Dy = Djlvp,N,, p6
_J 2 1=0,N,
Tl 1<i<N, -1

Di,=DLDiSY 0<ijk<N, (10)

In the flow simulations in this paper, the Py — I Py_o method [29] is adopted to prevent
spurious pressure mode [30]. In the I Py — I Py_5 method, the pressure derivative is approximated
without pressure values on boundary points, thus pressure is approximated with a polynomial of
two order lower than other flow variables. The first-order difference matrix for the pressure is D!



defined as

D}, =0 i=0,N,orj=0,N,

R 3§

Dl = _ 5 1<i<N,—1

YT (1 &) ==l (11)

- (=) (1 - &)
Dl = J 1<i#j<N,—-1
21 =€) (& - &) 8
For more details of the Chebyshev pseudospectral method, we refer the reader to the reference
[27, 28, 30].

2.2. Reduced-order model

The solution of the full-order model is often expensive due to the large amount of DOFs.
Therefore, we are interested in replacing the full-order model with a low-dimensional reduced-order
model to efficiently resolve the main dynamics of the underlying problem. The full-order model is
said to be reducible if the high-fidelity solution ¢; can be well approximated in an m-dimensional
subspace V. The subspace is spanned by a suitable set of basis vectors {v; € RV}™ . The size of
the problem is significantly reduced if m < N. The full-order solution of the interior DOFs ¢, can
be approximated by its projection onto the subspace V as

¢n=Va+e =~Va, (12)

where V € RVX™ is a matrix with the basis vectors as columns, a are the projection coefficients
and € is the projection error. As shown in , the boundary DOFs are linearly related to the interior
DOFs. Therefore, the boundary vector ¢ can be treated as a function of the interior DOFs vector
on as

¢, = —(Lg) " (Lgén +Cp) - (13)
Substituting and into , we obtain the following over-determined system for the reduced
coefficients o

-1
LyVa+gy (Va—i—e, - (Lg) (LzVa + Cg+Ll§e)) +Lgye+Cgy=0. (14)

can be expressed in a compact form
LVa+g(Va) + C =g, (15)

where L € RV*N C € RY and ¢ : RN — R are the matrix, vector and nonlinear function derived
from , respectively. The residual error € results from the projection error e.

By performing the procedure of —, we obtain a reduced-order model for the interior
DOFs with enforcement of the boundary conditions.

In the framework of Petrov-Galerkin, by projecting the over-determined system onto a
subspace W € RV*™ and requiring that the residual is orthogonal to the test space, we recover a
system of m equations

WT (LVa + g (Va) + C) = 0. (16)
In this work, we restrict ourselves to the Galerkin framework, namely W=V reducing to
VT (LVa + g (Va) + C) = 0. (17)

Once the reduced coefficients o are obtained by solving the reduced-order equation system ,
the interior solution ¢ and boundary solution ¢E can be recovered by and , respectively.

A key point of the reduced-order model is to get a suitable set of reduced basis functions. There
exists several methods for reduced basis generation, such as the proper orthogonal decomposition
[1 2, [6], the proper generalized decomposition [7], the piece-wise tangential interpolation [8], the
matrix interpolation [9] and greedy algorithms[I0HI2]. The most widely-used reduced basis generation
method, the proper orthogonal decomposition, is described and used in the rest of this paper.



2.2.1. Proper orthogonal decomposition
The proper orthogonal decomposition (POD) is one of the most widely-used techniques to
compress data and extract an optimal set of orthonormal basis in the least-squares sense. Let
Pn. = {p1,p2, ..., 4N, } C P be a discrete and finite set of Ny parameter values generated with
a suitable sampling, and ®p, = {¢n(p1), dn(p2), ... én(pn,)} € RV*N: be the corresponding
snapshot matrix. The POD basis of size m is the solution to the minimization problem
: T
e [@p, —VVTer |, "
st.  VIv=I

where ||-|| - is the Frobenius norm and I € R™*™ is the identity matrix. According to the Eckart-
Young theorem [31], the solution of is exactly the first m left singular vectors of the matrix
®p, , which can be obtained from the singular value decomposition (SVD)

QPNS = Usz,sVS, 25 = diag (Uz) , (19)

where the singular values o;, 1 <4 < min(N, Ny) are sorted in descending order. Choosing the first
m columns of Ug, we have an error estimation for as

) min(N,N;)
yhuin |@p, —VVTep, |, = iz;ﬂ ol (20)

For , it is clear that the error in the POD basis is equal to the sum of the squares of the
neglected singular values, i.e., by controlling the size m, we can approximate the snapshot matrix
®p, with arbitrary accuracy. Many problems exhibit an exponentially decay of the singular values
[2], allowing the use of a low-dimensional reduced space to approximate the high-fidelity solution
with satisfactory accuracy.

2.2.2. Treatment of nonlinear term
The cost of the reduced-order model depends on the computational complexities of the
three terms. The cost of the two linear terms scales with m, since they can be simplified as

VTLVa = La, 01
v'c =2, 2D
where the matrix L € R™*™ and the vector C € R need to be computed only once.
The computational bottleneck is the computation of the nonlinear term VZg (Va) that scales
with the full-order size N, even though the dimension of the equation system has been reduced to
m < N. A further cost reduction of the nonlinear term is necessary to obtain an efficient reduced-
order model. Several such hyper-reduction methods have been developed to enable significant
speedups for the nonlinear term computation, e.g., the empirical interpolation method (EIM) [32],
its discrete variant (DEIM) [33], gappy-POD [34] and missing point estimation (MPE) [35]. These
methods seek a trade-off between accuracy and efficiency. In the present work, we restrict ourselves
to the case of quadratic nonlinearity, for which hyper-reduction is not needed since the nonlinear
term can be transformed exactly into a quadratic form [36]. Consider a quadratic nonlinearity

9(Va) = (Vo) © (Va) (22)

where ® denotes the element-wise multiplication operator. Substituting into , the nonlinear
term becomes

Vig(Va)=VT ((Va)® (Va)) = f: (a"A*a)I,,  0<k<m, (23)
k=0

(=}



where I, € R™ is k-th column of the identity matrix I. A*¥ € R™*™ is defined as
Al =vl(viev;), 0<i,jk<m, (24)

where v; is the [-th column of V.
Once the matrices A* are computed and saved during the offline stage, the online evaluation of
the nonlinear term has a computational complexity of O(m?).

3. Physics-informed machine learning of reduced-order model

This section presents the physics-informed machine learning for reduced-order modeling. A
POD-Galerkin reduced-order model can be built following the procedures in Section 2} However,
the intrusive POD-G model suffers from stability, accuracy and convergence issues for complex
nonlinear problems [I3] 16, [I7]. An alternative approach is to perform the non-intrusive reduced-
order modeling based on regression [21]. The regression model approximates the mapping from the
parameters to the projection coefficients of the underlying high-fidelity solution onto the reduced
space. The neural network used as the regression model is referred to as projection driven neural
network (PDNN) in this paper. The drawback of the non-intrusive reduced-order modeling is the
high cost of the offline stage, since a large number of high-fidelity simulations are needed to generate
a sufficiently large data set to train an accurate regression model.

A reduced-order modeling framework based on physics-informed machine learning is proposed
in this section to combine the advantages of both intrusive and non-intrusive methods. In this
framework, the reduced coefficients are predicted by a physics-informed neural network (PINN)
[24H26]. The PINN seeks to minimize the mean squared residual error of the POD-G equation on
sampled training points in parameter space. By taking the residual of the reduced-order equation
as the loss function, no labeled data is needed for the training. However, the accuracy of PINN
for complex nonlinear problem is often limited. To address this, the labeled data obtained by the
projection of the high-fidelity snapshots that are used for basis generation, can be used to improve
the accuracy. The usage of this data set does not require extra high-fidelity simulations. By using
the labeled data, the loss function of the network becomes the sum of the mean squared residual
error of the POD-G equation and the mean squared error between the network output and the label.
The network trained by this strategy is referred to as physics-reinforced neural network (PRNN).
The framework of the physics-informed machine learning for reduced-order modeling is sketched in
Fig.

In the remainder of this section, the physics-informed machine learning framework, including the
network construction, data preparation and training procedure will be presented in detail.

8.1. Feedforward neural network

One of the most important issues for the design of an artificial neural network (ANN) is the
architecture of the network. Several network architectures have been proposed, among which the
feedforward neural network (FNN) is often preferred for function regression tasks.

A FNN maps the input x to the output y. Generally, a FNN consists of an input layer, L hidden
layers and an output layer. The [-th layer has n; neurons, where [ = 0,1,..L, L + 1 denotes the
input layer, first hidden layer,..., L-th hidden layer and the output layer, respectively. The forward
propagation, i.e., the function y = f,,,,(x) is

v = x
MO (W(z)y(zfn i b(l)) L l=1,---.,L, (25)

y =yt = WEtDy (L) 4 p(L+1)
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Figure 1: Framework of physics-informed machine learning for reduced-order modeling.

where y() € R™ is the output of I-th layer, ng is the input dimension and n;, is the output
dimension, W) € R™*"™-1 are the weight matrices, b() € R™ are the biases and fuc; is the
nonlinear element-wise activation function.

In this work, the network is used to predict the reduced coefficients a, given the parameter value
p. Therefore, the input dimension is ng = n, and output dimension is ny41 = m. We put the same
number of neurons in each hidden layer, namely ny = no = --- = ny, = ny. The nonlinear activation
function is the Swish function f,c:(z) = x - sigmoid(z) [37] .

The network is trained, i.e., the weights and biases are optimized by minimizing a loss function.
In the next two subsections, we will define several machine learning strategies by using different loss
functions.

The training of the FNN is implemented in PyTorch [38]. The optimal weights and biases of
the network are obtained using the Adam stochastic optimizer [39], which uses mini-batches of the
training data within a single epoch. The training is performed for a sufficient number of epochs to
obtain a converged network. The convergence speed of the training is controlled by the learning
rate 7.

3.2. Data preparation

In this subsection, we will present the procedure to generate the projection data set for the training
process. The projection data is collected from the high-fidelity snapshots used to generate the reduced



basis. As mentioned in Section the snapshots ®p, = {@n(p1), Pn(p2), ..., o (1w, )} € RV*Ns are
obtained on the sampled parameter set Py, = {p1, b2, ..., un, } C P.
The projection coefficients of a snapshot ¢, (1) onto the reduced space V are

ay(p) = Vg (p). (26)

The projection is the best approximation of the high-fidelity solution in the reduced space. There-
fore, for a parameter value p, the "best" output of the network is ay(u). A data set Dp, =
{(s, @y (l”l))}i\; can be collected from the high-fidelity solutions.

The training speed of neural networks is affected by the range of the input/output [40], thus
feature scaling needs to be performed before feeding the training data into the network. For the
input p € P, as the boundary of the parameter space is predefined, the minimum and maximum of
the parameters can be utilized to scale the input to [—1,1]"» as follows

_ - )/2
P = (B + Pimin) /2. (27)

l‘]‘ =
(ll'max - ll’min)/2

For the output a, there is not a predefined range. We turn to a statistical method to do the
normalization with an assumption that the outputs satisfy a Gaussian distribution. To this end, the
mean & and standard derivation o4, computed from the data set Dp,., are used to normalize the

output as
. a—«
a =

28
- (28)
Feature scaling of the input/output can be viewed as a pre-processing, thus a corresponding
post-processing is necessary to compute the final prediction

Qnp (1) = fon (B) ® 00 +@. (29)

3.8. Physics-informed machine learning

Once the data preparation is finished, we can train a network to predict reduced coefficients
using the data set Dp,, following the method proposed in [2I]. As the network is trained on the
data set collected by the projection of high-fidelity snapshots onto the reduced space, we refer to
the network as projection driven neural network (PDNN). In the training procedure, Dp, is shuffled
and split into a training data set D% and validation data set D%.. The ratio between the size of
DL and Dp, is set as 0.7. The loss function is defined as the mean square error (MSE)

tosseon = 3= | fun ()~ v (a3 (30)

p,acD

where D is the chosen data set of size Np, which can be the train set D% or the validation set DY%Z.

In real applications, we do not expect to generate too many snapshots, since the high-fidelity
simulation is expensive. Thus the data set Dp, is typically small. To prevent over-fitting, Lo weight
regularization is employed as

lossppxn = lossppny + AW, (31)

where A is the parameter used to control the amount of regularization. Furthermore, we adopt the
early stopping technique: training will be immediately stopped if the validation loss keeps increasing
over Kearly epoches. In this work, we set A = 10~ and Keary = 6.



3.8.1. Physics-informed neural network (PINN)

Due to the limited amount of snapshots, it is difficult to train an accurate PDNN. A physics-
informed machine learning for reduced-order modeling is considered for more accurate network
prediction of the reduced-order solution without performing extra high-fidelity simulations.

Recently, physics-informed neural network (PINN) has been developed and applied to PDEs
[24H26]. The idea is to use the residual of the PDE as part of the loss function, to make the network
solution fulfill the physics. As there is no labeled data involved in the residual loss, unlimited training
data points can be sampled in the space-time domain, which significantly reduces the amount of
labeled data points needed for the training. It is also possible to train a network to predict the
solution of a PDE without any labeled data [4I]. Inspired by these observations, we propose to
train a PINN to predict a, which is the solution of the reduced-order equation 7 without any
high-fidelity snapshot data.

In the training of the PINN for the reduced-order model, the output of the network is not
compared with the projection of high-fidelity snapshots. Instead, the network output satisfies the
reduced-order equation. We can sample a large number of training points in parameter space.
Using Latin hypercube sampling in parameter space, we generate the data set Dges; = {p,l}f\r: Rest
containing Nges; residual points in parameter space. The loss function is defined as

(32)

1
losspINN = Np Z HVT (LVann () + g (Vana(p)) + C)‘
peD

which is the mean squared residual error of . As we have an unlimited amount of training data,
there is no problem of over-fitting and thus no need of validation data set. The training procedure
of the PINN is summarized in Algorithm [I}

As the PINN is trained to approximate the reduced-order model, the accuracy limit of the PINN
is the POD-G.

Algorithm 1 Training process of the PINN.

1: function [Wy,, by, ]=PINN TRAINING(Dgesi;s Nepo» Noateh, M0)

2 W,b « INIT(W,b) > initialize weights and biases
3 Ny NResi/Nbatch > Mini-batch size
4 for epoch < 1, N¢p, do > training epoch loop
5: 1 < LEARNING RATE DECAY (1o, epoch) > learning rate decay
6 Dresi + SHUFFLE(DRes;) > shuffle the training data set
7 for s <+ 1, Nygien do > mini-batch loop
8 DResi,s < Dresil(s —1) % Ny + 1 : s % Ny > the s-th mini-batch
9 loss &= 3 ||V (LVauu(p) + g (Vaa () + C)|; > compute loss

KEDResi,s

10: AW —nGADAM(‘g%\S]s), Ab « —nGADAM(alaolfs) > Adam optimizer step
11: W W+ AW, b <+ b+ Ab > update weights and biases
12: end for

13: end for

14: Wi < W,by. < b > save optimized weights and biases

15: end function

3.3.2. Physics-reinforced neural network (PRNN)

For complex nonlinear problems, the projection of the high-fidelity solution onto the reduced
space is more accurate than the solution of the reduced-order equation, since the reduced-order
equation does not take into account of the impact of the unresolved scales (truncated modes) on

10



the resolved scales (reduced basis modes). Therefore, the projection coefficients can be used to
provide more physical information during the network training and thus improve the accuracy. For
this reason, we refer to the trained network as physics-reinforced neural network (PRNN). The loss
function is defined as the sum of the mean squared residual error of the reduced-order equation
and the mean squared error between the network output and the projection coefficients of the
high-fidelity solutions. The detailed form of the loss function is

l0SSpPRNN = ZOSSPDNN|’D:Dpr + lOSSPINN‘D:DRMi . (33)

The training procedure of the PRNN is summarized in Algorithm[2] We note that since the projection
data set is small, we just use one mini-batch for the projection data set.

Algorithm 2 Training process of the PRNN.

1: function [Wy,, by, ]=PRNN _TRAINING(Dgesi; Dprs Nepo, Noatchs M0)
2 W,b «+ INIT(W,b) > initialize weights and biases
3 Ny NResi/Nbatch > Mini-batch size for Dgey;
4 for epoch <1, N¢p, do > training epoch loop
5: 1 < LEARNING RATE DECAY (1o, epoch) > learning rate decay
6 Dresi + SHUFFLE(DRes;) > shuffle the data set Dpes;
7 for s <+ 1, Nygien do > mini-batch loop
8 DResi,s < Dresil(s —1) * Ny + 1 : s % Ny > the s-th mini-batch
loss = S0 [IVF (Ve (1) + 9 (Ve () + O3 +
KEDResi,s
9: 1 , > compute loss
N > fan () — av(w)ll3
S p,a€Dp,
10: AW « —nGADAM(aal%f,S), Ab « —nGADAM(%) > Adam optimizer step
11: W+ W+ AW b+~ b+ Ab > update weights and biases
12: end for
13: end for
14: W, . +— W,b;. + b > save optimized weights and biases

15: end function

The PRNN is trained using the information of physics and projection data, and an ideal PRNN
is supposed to achieve accuracy that is higher than the POD-G and lower than the projection.
However, in the numerical results in Section [d] we observe that for the PDNN, PINN and PRNN,
the accuracy reaches a certain limit during the reduced basis refinement. This is caused by the
prediction error of the networks, and is impossible to avoid since the generalization accuracy of an
artificial neural network is limited.

4. Numerical results

This section presents the numerical results of the reduced basis methods based on PDNN, PINN
and PRNN for the one-dimensional Burgers’ equation, the two-dimensional lid-driven cavity flow
and the two-dimensional natural convection. The results of the following two methods are also
presented for comparison:

(1) Projection: Projection of high-fidelity solution onto the reduced basis space;

(2) POD-G: Intrusive POD-Galerkin reduced-order model.

The following two metrics are used to measure the accuracy of the methods:
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(1) mean relative projection error

-vvT
U e AN

; (34)
Die P,9rEDye ||¢h||2
(2) mean relative error of the reduced-order solution
1 - Va,

[pnll

Np
' p,¢n €Dy

where Dy = {pi, dn (ul)}fvfl“ is the test data set of size Np,,, the subscript "e" is used to take the

place of "POD-G","PDNN","PINN" and "PRNN", respectively.
The sampling methods in the parameter space in the numerical experiments are:

(1) high-fidelity snapshots: Sobol sequence;
(2) residual points: Latin hypercube sampling;
(3) test data points: Uniform sampling;
We refer the reader to the repository E| for details of the code and data.

4.1. Burgers’ equation

To validate the proposed methods, we first consider the one-dimensional parameterized Burgers’
equation

a . 8 2 .
o(z; ) (b(aa;“) — ¢8(;327#) = s(z;p) —1<z<1

; (36)
¢(z==xLp)=0
where p = (u1, p2) € [1,10] x [1,10] are the parameters in the manufactured solution
Bl ) = (1+ ) sin(—piz/3) (% — 1). (37)

The source term s(x;u) can be derived analytically by substituting the solution into .
High-fidelity snapshots are obtained using the Chebyshev pseudospectral method with 129 Chebyshev
Gauss-Lobatto points.

A baseline reduced-order model is constructed to validate the proposed methods. The reduced
basis functions are extracted using N; = 80 high-fidelity snapshots. The singular value decay is
shown in Fig. The singular values decay quickly, implying that a small number of reduced
basis functions is enough to recover the main dynamics of the solution. Meanwhile, the number of
high-fidelity snapshots can be also reduced. The PDNN, PINN and PRNN have the same network
architecture with L = 3 hidden layers and ny = 20 neurons in each hidden layer. The number of
residual points for the PINN and PRNN is Ngs; = 5000. The hyper-parameters for the training of
the networks are listed in Table [I The accuracy of the physics-informed machine learning based
reduced-order model depends on the sizes of the projection data set, the residual data set and
the feedforward network. The impacts of these three factors on the accuracy will be investigated
separately, e.g., we train networks of different sizes on the same projection and residual data sets, to
study the effect of the network size. A data set with 101 x 101 = 10201 uniformly sampled points in
parameter space is used to test the accuracy of the models.

Lavailable at https://github.com/cwq2016/POD-PINN
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Figure 2: Singular values of the Burgers’ equation with 80 snapshots.

Table 1: Network training hyper-parameters for Burgers’ equation.

Number of mini-batches

Network  Dpges; Dp, Epochs Learning rate for epoch 14 A Kearly
PDNN 1 20,000 0.01 x 096 (55 107 6
PINN 10 20,000 0.01 x 0.96't(z55)

PRNN 10 1 20,000 0.01 x 0.961(z50)

Reduced-order models built with Ny = 10, 80 and 320 snapshots are tested to investigate the
impact of the size of the projection data on the accuracy of the methods. The prediction error is
shown in Fig. The POD-G is accurate as its error is only slightly larger than the projection,
which indicating that the impact of the unresolved scales on the resolved scales can be neglected.
The PINN is as accurate as PRNN, and both follow the POD-G closely until they reach the accuracy
limit of O(10~%) at m = 6. The results show that adding the projection data to the physics-informed
learning is not beneficial in this case, since the POD-G model is already very accurate so that an
accurate PINN can be obtained by learning the POD-G model on the residual data set. The PINN
and PRNN are much more accurate than the PDNN. With N; = 10 and m > 6, the error of the
PINN/PRNN is up to three orders of magnitude smaller than that of the PDNN. As the dynamics
of the problem can be recovered accurately on a small set of reduced basis, significant accuracy
improvement due to the refinement of the high-fidelity snapshots is not observed in Fig. [3] except
for the purely data-driven PDNN.

A important observation in Fig. [3]is that for the network-based reduced-order methods, the
accuracy reaches a limit during the reduced basis refinement. This is caused by the reduced
coefficients prediction error, and is impossible to avoid since the generalization accuracy of an
artificial neural network is limited. As lower-order modes play more important roles than higher-
order modes, prediction error of the reduced coefficients becomes dominant when the set of reduced
basis is sufficiently large and the accuracy of the reduced-order solution saturates.

Reduced-order models built with Ng.s; = 1250, 2500 and 10000 are tested to investigate the
impact of the size of the residual data set on the accuracy of PINN and PRNN. In Fig. [ it is

13
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Figure 3: Prediction error for the Burgers’ equation with different number of snapshots.

shown that the accuracy improves with the residual data set refinement, which indicates that the
PINN and PRNN can learn the reduced-order equation more accurately with more residual points.

Reduced-order models based on networks with different hidden layer widths are tested to
investigate the impact of the network size on the accuracy. The number of hidden layers is fixed as
L = 3. The hidden layer widths are set as ny = 10, 20 and 30. The errors of the PDNN, PINN and
PRNN are shown in Fig. [f] The results show that the larger PINN and PRNN are more accurate
since larger networks have stronger ability to learn the physics of the reduced-order model. It is also
observed that larger PDNN results in larger error, which is reasonable since a larger data-driven
network on a small data suffers from the over-fitting and can not achieve higher accuracy.

4.2. Lid-driven cavity flow

In this subsection, the lid-driven cavity flow problem is used to test the proposed reduced-
order methods. The viscous flow in a parallelogram-shaped cavity is described by the following
non-dimensionalized incompressible Navier-Stokes equations

Vx-u=0
1 ) 38
u-Vyu=—-Vyp+ —Viu (38)
Re

where u = (u,v) is the velocity in the Cartesian coordinate system x = (z,y), p is the pressure
and Re is the Reynolds number. The geometry of the problem is depicted in Fig. [6] (a), and is
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Figure 4: Prediction error for the Burgers’ equation with different number of residual points.

affected by the angle 6 between the oblique sides and the positive z-semiaxis. p = (Re, ) are the
parameters for this problem.

The high-fidelity simulations are performed in the computational domain [—1,1]2. The mapping
from the physical coordinate x = (z,y) to the computational coordinate € = (&1,&2) € [—1,1]2 is
defined as

: {x =212 cosO) {& = 2w~y cot(8)) (39)
y = 1/2&>sin(0) €2 = 2y/sin(0)
The Jacobian matrix of the mapping is

J= %z = fZC?)t(G) 2/sion(0)] : (40)

The governing equations in computational space are

(J7'Ve) -u=0
(0 @Ve) u= - (Ve pt (1T .
The flow is driven by the top wall moving with a velocity

up = (1+&)*(1 - &)* (42)
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Figure 5: Prediction error for the Burgers’ equation with different network sizes.

(a) (b)

Figure 6: The geometry and boundary conditions for (a) Lid-driven cavity flow and (b) Natural convection.

The other three boundaries are static non-slip walls. The governing equations are discretized by
the Chebyshev pseudospectral method on a tensor-product mesh of 49 x 49 points. The I Py — I Py _o
method [29] B0] is adopted to remove the spurious modes of pressure. The artificial compressibility
method [42] is used to address the velocity-pressure coupling issue by adding pseudo time derivatives
to the steady-state equation . The discretized equations are advanced in pseudo time using the
explicit four-stage fourth-order Runge-Kutta scheme.

The parameter space of interest is p = (Re, 0) € [100,500] x [7/3,27/3]. The singular values for
N, =100 snapshots are shown in Fig. [7] It shows that the singular values decay slowly, implying
that a large number of basis functions are required to recover the main dynamics of the problem
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Figure 7: Singular values of the lid -driven cavity flow problem with 100 snapshots.

The POD-G solver diverges for many parameter values if a proper initial reduced-order solution
can not be provided. To avoid the divergence issue, for a parameter u, we use the projection of the
corresponding high-fidelity solution onto the reduced space as the initial solution for the POD-G
solver. This of course comes at high cost.

The PDNN, PINN and PRNN have the same network architecture with L = 5 hidden layers and
ng = 30 neurons in each hidden layer. The number of residual points for the PINN and PRNN is
Ngesi = 20,000. The hyper-parameters for the training of the networks are listed in Table [2]

Table 2: Network training hyper-parameters for the lid-driven cavity flow.

Number of mini-batches

Network Drgesi Dp, Epochs Learning rate for epoch 14 A Kearly
PDNN 1 40,000 0.01 x 096 (553 107 6
PINN 20 40,000 0.01 x 0.96“("’2%3)

PRNN 20 1 40,000 0.01 x 0.961(553)

Reduced-order models are built with Ny, = 30, 60 and 100 snapshots. A data set with 11x11 = 121
uniformly sampled points in parameter space is used to test the accuracy of the reduced-order
models. The prediction errors of the reduced-order models are shown in Fig. [§ It shows that
the POD-G error is larger than the projection error, due to the difficulty of recovering the main
dynamics of the problem accurately using a small set of basis functions. As the projection of the
high-fidelity solution onto the reduced space is more accurate than the POD-G solution, the use of
the projection data in the training makes the PRNN more accurate than the PINN. It is shown
in Fig. [§ that the error curve of the PRNN lies in between that of the POD-G and projection
when m < 20, which demonstrates that the PRNN can reach higher accuracy than the POD-G in a
low-dimensional reduced space. Both PINN and PRNN are more accurate than the pure data-driven
PDNN, which suffers from the low-accuracy and over-fitting issues on small data sets. The error of
the PRNN is around one order of magnitude smaller than that of the PINN for m > 20.
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Predictions by the PRNN for several parameter values are compared with the corresponding
high-fidelity solutions in Fig. [J to intuitively show the accuracy of the proposed reduced-order
method. The PRNN reduced-order solutions agree well with the high-fidelity solutions.

107" 1

10721

-

—
. ——

+ Projection, Ny=30
—/A—- POD-G, N,=30
PDNN, N,=30
-A¢= PINN, N,=30
104 —A— PRNN, N,=30
—@-- Projection, Ny=60 ¢, X N,
—O~+ POD-G, N,=60 §§ \,\ .
PDNN, N,=60 % N\, NS
-€3- PINN, N,=60 R ﬁ\_\\_.: ~O
—&— PRNN, N,=60 \:\\_ -\
—-3-- Projection, N;=100 '@‘\\
—7- POD-G, N,=100 ~
PDNN, N,=100 'NUUS.
-F3- PINN, N,=100 0
30

Error
|
g

10-1] =B PRNN, N,=100

5 10 15 20 25

Figure 8: Prediction error for the lid-driven cavity flow problem with different number of snapshots.

4.3. Natural convection

The natural convection problem is used to further test the proposed reduced-order methods.
The unit square cavity is filled with an incompressible Newtonian fluid. The cavity is heated and
cooled on the left and right walls, while the other two boundaries are adiabatic walls. The geometry
and boundary conditions are shown in Fig. @(b) The flow is driven by the vertical buoyancy force,
which is modeled by the Boussinesq approximation. The orientation of the cavity is controlled by
an angle 6. The physical coordinate system x — y is attached to the cavity, by setting the origin as
the center of the cavity and the y-axis parallel to the heated/cooled walls. The natural convection
can be modeled by the non-dimensionalized incompressible Navier-Stokes equations plus an energy
equation

Vx-u=0
Pr 9
u-Vyu=—-Vyp+ (Ra>qu —Tn, ’ (43)
u-V, T = ! T
(Pr x Ra)
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Figure 9: Pressure contours and streamlines of the lid-driven cavity flow computed by the high-fidelity solver
and the PRNN for three parameter values. The reduced basis is of size m = 25 and extracted from
100 snapshots. The solid streamline indicates an anticlockwise vortex and the dashed streamline
indicates an clockwise vortex.

where u = (u, v) is the velocity in the Cartesian coordinate system x = (x,y), p is the pressure, Ra
is the Rayleigh number, Pr is the Prandtl number and n, = (—siné, — cos6) is the direction of
gravity. The temperatures on the heated and cooled walls are T'= 0.5 and T' = —0.5, respectively.
Similar to the lid-driven cavity problem in Section the high-fidelity simulations are obtained
using the Chebyshev pseudospectral method on a mesh with 49 x 49 points. As the physical domain
is a unit square, the physical coordinate can be linearly scaled to the computational coordinate. The
governing equations in computational space can be easily obtained from and is thus omitted.

The parameter space of interest is p = (Ra, Pr,0) € [10%105] x [0.6,0.8] x [7/4,7/2]. The
singular values for Ny = 200 snapshots are shown in Fig. It shows that the singular values decay
slowly, suggesting that a large number of basis functions are needed to accrately recover the main
dynamics of the problem.

Similar to the lid-driven cavity problem, to avoid the divergence issue, we use the projection of
the corresponding high-fidelity solution onto the reduced space as the initial solution for the POD-G
solver.

The PDNN, PINN and PRNN have the same network architecture with L = 5 hidden layers and
ng = 30 neurons in each hidden layer. The number of residual points for the PINN and PRNN is
Ngesi = 20,000. The hyper-parameters for the training of the networks are listed in Table [2]

Reduced-order models are built with Ny = 30, 100 and 200 snapshots. A data set with
6 X 6 x 6 = 216 uniformly sampled points in parameter space is used to test the accuracy of the
reduced-order models. The prediction errors of the reduced-order models are shown in Fig. It is
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Figure 10: Singular value decay of the natural convection problem with 200 snapshots.

shown that the POD-G error is larger than the projection error, due to the difficulty of recovering
the main dynamics of the problem accurately using a small set of basis functions. The PRNN is more
accurate than the PINN because of the use of the projection data in the training. It is shown in Fig.
[[1] that the error curve of the PRNN lies between that of the POD-G and projection when m < 20,
which demonstrates that the PRNN reaches higher accuracy than the POD-G in low-dimensional
reduced space. Both PINN and PRNN are more accurate than the purely data-driven PDNN.

Predictions by the PRNN for several parameter values are compared with the corresponding
high-fidelity solutions in Fig. [[2] to show the accuracy of the proposed reduced-order method. The
PRNN reduced-order solutions agree well with the high-fidelity solutions.
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Figure 12: Temperature contours and streamlines of the natural convection computed by the high-fidelity
solver and the PRNN for three parameter values. The reduced basis is of size m = 20 and
extracted from 200 snapshots. The solid streamline indicates an anticlockwise vortex and the
dashed streamline indicates an clockwise vortez.
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5. Conclusions

This paper proposes a physics-informed machine learning for reduced-order modeling. The
reduced coefficients are predicted by a feedforward neural network. A physics-informed neural
network (PINN) can be used to learn the POD-G reduced-order equation system, by setting the
mean squared residual error of the reduced-order equation as the loss function in the training
procedure. The PINN is an approximation of the reduced-order model that is obtained without
any labeled data. For a more accurate network, the projection data, collected from the high-fidelity
snapshots that are used in the reduced basis generation, are introduced into the training to provide
more physical information. The physics-reinforced neural network (PRNN) is trained by minimizing
the residual error of the reduced-order model and the matching error on the projection data set.
The physics-informed machine learning technique makes it possible to train an accurate network to
predict reduced-order solution, without the requirement of extra high-fidelity simulations.

Numerical results demonstrate that the PRNN achieves higher accuracy than the POD-G when
the reduced basis set is small. The online stage of the physics-informed learning based reduced-order
method is efficient as it just requires the evaluation of the network. Therefore, the PRNN is an
accurate and efficient reduced-order modeling tool for general nonlinear problems.
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