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“A pessimist sees the difficulty in every opportunity, 

 an optimist sees the opportunity in every difficulty.” 

Winston Churchill 
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Abstract 
Microalgae are small organisms that live in water and use solar energy or artificial light to grow. They are emerging to be one of the 

most promising long-term, sustainable sources of biomass for fuel, food, feed, and other high valuable co-products. Like any other 

plant, algae, when grown using sunlight consume carbon dioxide (CO2) and release oxygen (O2), but with a 5 to 10 times faster 

growth rate than conventional food crops. Thus, algae-based CO2 conversion is considered as a cost-effective option for CO2 capture 

and the mitigation of greenhouse gas emissions (GHG). Since the last decade, there have been repeated attempts to bring microalgae 

bioenergy and biomaterial production to an industrial level. So far, despite the enthusiastic boost towards commercialisation, the 

production of microalgae has been demonstrated mainly at pilot scale levels, and only a few large-scale facilities exist and produce 

microalgae today.  

There are several issues related to microalgae cultivation from either the energetic, environmental or economical point of view. 

Further developments are needed for algal biomass technologies to improve their cost-competitiveness and their environmental 

sustainability. The major bottlenecks are mainly linked to water and nutrient supply, the high energy consumption of algal processing, 

the high surface area requirements for cultures, and finally, the relatively low solar conversion efficiency of microalgae in highly sunny 

regions. Therefore, to design economically feasible algae production processes, it is necessary to close the nutrient cycle, to reach 

the energy balance, and to opt for a biorefinery concept where products can be valorised.  

This doctoral thesis aims to explore a new concept, PAWaSto, which attempts to overcome the limitations of microalgae production 

processes by combining different technologies to increase the energy and nutrient recoveries within the system. An urban environ-

ment was considered in the PAWaSto vision. This work focuses on four different research approaches which can be summarised as 

follows: (1) As low-cost water and nutrient supply source is critical to the success of microalgae production, a unique on-site sanita-

tion system for nutrient and water recoveries (household effluents) was studied in this thesis. (2) Energy and nutrient recycling: The 

integration of a hydrothermal process (HT) for a fast conversion of household effluents to concentrated nutrient-rich effluents, free 

of pathogens, suitable for algae production was proposed. Besides, the produced energy-rich gas obtained from the HT is considered 

for electricity generation through a solid oxide fuel cell (SOFC). (3) The implementation of semi-transparent dye sensitised solar 

systems (DSCs) on the illuminated surface of an algae photobioreactor, and their effect on the algal biomass productivity was studied 

for the first time in this thesis. (4) Finally, for the economic viability of algal biomass production, the extraction of high-value products 

from wet algal biomass using green solvent was proposed, and the residual biomass generated from the extraction step was further 

treated through a HT process. 

For nutrient supply, a major concern was dedicated to an on-site sanitation system as it provides a more concentrated nutrient 

effluent source than those from wastewater treatment plants (more dilute). Therefore, in this thesis, nutrient rich-effluent (called 

Leachate) has been collected and analysed from on-site sanitation system equipped with a unique dry-toilet and composter 

chamber, then treated through HT non-catalytic gasification for nutrient and energy recoveries. Likewise, the nutrients needed for 

microalgae growth can be recycled, and biogas produced can be transformed into electricity via SOFC. The results obtained proved 

that the hydrothermal gasification of the leachate feedstock could be conducted continuously up to 40 h with high nitrogen and 

phosphorus recoveries. However, the gasification efficiency did not exceed 41% due to the high salt content in the feedstock. The 

utilisation of the aqueous phase side stream from the gasification as a culture medium for microalgae was successfully conducted 

with a specific growth rate μ =0.64 day-1. Furthermore, the syngases produced from the HT process was directly used to feed the 

SOFCs after adding enough steam to the fuel. Nevertheless, operation with such biosyngases in real SOFC systems has to be 

handled with special care due to potential carbon deposition. The SOFC system integrated with gas turbines gives high efficiency 

for syngas to electricity conversion.  
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This work also presents the results of a new concept of a positive energy culturing system for microalgae, where the light source is 

selectively shared between the algal biomass through photosynthesis, and the production of photovoltaic energy through dye sensi-

tised solar cells (DSCs). The coloured DSC panels were applied at the top of the photobioreactor (PBR) for maximum light exposure. 

The results showed, at higher irradiance, a net improvement of growth rate and productivity (g/L) using both coloured DSC filters 

compared to control cultures. The highest growth rate and doubling time were obtained in the case of DSC-Red and DSC-Green 

culture with μ = 0.86 ± 0.01 day−1; td=0.80 day and with μ = 0.85 ± 0.03 day−1; td=0.81 day respectively compared to normal glass 

control μ = 0.51 ± 0.03 day−1; td=1.35 day. These results suggested that coloured DSC acted as a protective filter for microalgae 

culture. In addition, even with a low conversion efficiency of sunlight of 3%, the impact of the construction and integration of the DSC 

panel on the overall greenhouse gas balance remains negligible compared to photobioreactor without DSC. 

Finally, once the algal biomass was produced, a combined process for high value compounds extraction and efficient bioenergy re-

covery from the wet microalgae biomass was proposed. High added-value products carotenoids could thus be extracted before the 

hydrothermal gasification of the residual biomass into biosyngases. Two green solvents, ethanol and 2-methyl-tetrahydrofuran (2-

MTHF), were used to achieve the maximum extractability of selected carotenoids. Pure 2-MTHF was tested for the first time as an 

alternative renewable solvent for carotenoid extraction from wet biomass, and promising results were obtained (30 min at 110 °C), 

with 45% of total carotenoids being extracted. The energy content of the residual biomass corresponds to a high heating value 

(HHV) of 18.1 MJ kg-1. With a 1:1 mixture of both 2-MTHF and ethanol, more carotenoids were extracted from wet biomass (66%), 

and the remaining HHV of the residual biomass was 15.7 MJ kg-1. The perspectives of combined carotenoid extraction and energy 

recovery for a better microalgae valorisation were discussed.  

Overall this doctoral research project studied key aspects for the integration of a biorefinery concept in urban areas contributing to 

the big vision of closing the materials cycles on the level of districts. A focus was put on an integrated system for efficient microalgae 

production, power generation, and closing the nutrient cycle. 

Keywords 

Microalgae, bioenergy, nutrients, biomass, high-value compounds, recycling, photosynthesis, dye sensitised solar cells, carotenoids 

extraction, 2-methyl-tetrahydrafuran, green solvent, hydrothermal gasification, solid oxide fuel cells, optimisation, biorefinery.
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Résumé 
Les microalgues sont de petits microorganismes qui vivent dans l'eau et utilisent l'énergie solaire ou la lumière artificielle pour 

se développer. Ils sont en train de devenir l'une des sources de biomasse la plus prometteuse à long terme pour les carburants, 

les denrées alimentaires, les aliments pour animaux et d'autres produits à haute valeur ajoutés. Comme toute autre plante, 

les algues, lorsqu'elles sont cultivées en présence de la lumière, consomment du dioxyde de carbone (CO2) et libèrent de 

l'oxygène (O2) comme sous-produit. Ceci rend la production de microalgue une option très intéressante pour la séquestration 

du CO2 et la réduction des émissions de gaz à effet de serre (GES).  

Depuis la dernière décennie, il y a eu plusieurs tentatives pour amener la production de bioénergie à partir des microalgues à 

un niveau industriel. Jusqu'à présent, malgré la poussée enthousiaste vers la commercialisation enregistrée au début de cette 

décennie, la production de microalgues a été principalement démontrée à l'échelle pilote et seules quelques installations à 

grande échelle existent et produisent des microalgues aujourd'hui. En fait, il existe plusieurs problèmes liés à la culture des 

microalgues du point de vue énergétique, environnemental ou économique. Le développement des technologies de produc-

tion de microalgues est nécessaire afin d'améliorer leur compétitivité au niveau des coûts et leur durabilité environnementale. 

Les principaux problèmes sont liés à l'apport de nutriments, à la forte consommation d'énergie lors de transformation des 

algues en produits finis, aux besoins élevés en surface des cultures, et enfin, à la faible efficacité de conversion solaire des 

microalgues dans les régions très ensoleillées. Afin de concevoir des processus de production d'algues économiquement réa-

lisables, il est nécessaire donc de fermer le cycle des matériaux, d'atteindre un bilan énergétique positive et d'opter pour un 

concept de bioraffinerie où des produits de haute valeur ajouté peuvent être valorisés. 

Pour surmonter les limites actuelles des systèmes de production de microalgues, cette thèse de doctorat vise à explorer un 

nouveau concept, PAWaSto, qui rassemble différentes technologies afin d'augmenter la récupération d'énergie et de nutri-

ments dans le système globale. Un environnement urbain a été pris en compte dans la vision PAWaSto. Ce travail se concentre 

donc sur quatre différents axes de recherche qui peuvent être résumés dans les points suivants : (1) étant donné que la source 

d'approvisionnement en eau et en nutriments à faible coût était essentielle au succès de la production de microalgues, un 

système d'assainissement sur site unique pour la récupération des nutriments et de l'eau (effluents des ménages) a été con-

sidéré dans cette thèse. (2) L'intégration d'un procédé hydrothermal (HT) pour une conversion rapide des effluents ménagers 

en effluents concentrés riches en nutriments, exempts de pathogènes, adaptés à la production d'algues a été proposée. De 

plus, le gaz riche en énergie produit à partir du HT a été converti en électricité par une pile à combustible à oxyde solide (SOFC) 

à des fins de production d'énergie. (3) L’installation de systèmes solaires semi-transparents sensibilisés aux colorants (DSC) 

sur la surface éclairée d'un photobioréacteur d'algues a été étudiée pour la première fois dans ce travail de thèse. (4) Enfin, 

pour la viabilité économique de la production de biomasse algale, l'extraction de produits de haute valeur à partir de la bio-

masse algale produite à l'aide de solvant vert a été proposée et la biomasse résiduelle humide générée à partir de l'étape 

d'extraction a ensuite été traitée par le biais d'un processus HT. 

Pour l'approvisionnement en éléments nutritifs, une préoccupation majeure a été consacrée au système d'assainissement sur 

site, car il fournit des sources d'effluents nutritifs plus concentrées que celles des stations de traitement des eaux usées (plus 

diluées). Par conséquent, dans cette thèse, des effluents riches en micro-nutriments (appelés lixiviats) ont été collectés et 

analysés dans 13 appartements équipés d'un système d'assainissement basé sur le principe des toilettes sèches, puis traités 

par gazéification hydrothermale non catalytique pour la récupération des nutriments et de l'énergie.  
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Ainsi, les nutriments nécessaires à la croissance des microalgues peuvent être recyclés et le biogaz produit peut-être 

transformer en électricité. Les résultats obtenus ont prouvé que la gazéification hydrothermale de lixiviat pouvait être 

effectuée en continu jusqu'à 40 h avec une récupération élevée d'azote et de phosphore. Cependant, l'efficacité de la 

gazéification n'a pas dépassé 41% en raison de la forte teneur en sel dans le lixiviat. L'utilisation de la phase aqueuse 

obtenue de la gazéification comme milieu de culture pour les microalgues a été menée avec succès avec un taux de 

croissance spécifique de 0,64 jour-1. De côté énergétique et selon des calculs thermodynamiques, les gaz de synthèse 

produits peuvent être alimentés directement aux SOFC après l’ajout de la vapeur d’eau. Néanmoins, le fonctionnement avec 

de tels biosyngases dans de vrais systèmes SOFC doit être manipulé avec un soin particulier. Le système SOFC intégré aux 

turbines à gaz offre une grande efficacité pour la conversion du biogaz en électricité.  

Les résultats du nouveau concept basé sur le partage d’une manière sélective de la source de lumière entre la biomasse algale 

et les cellules solaire à pigment photosensible (DSC) ont montré, à un rayonnement plus élevé, une nette amélioration du 

taux de croissance et de la productivité quand les panneaux DSC colorés étaient intégrés à la surface des photobioréacteurs. 

Le taux de croissance et le temps de doublement les plus élevés ont été obtenus dans le cas de la culture DSC-Rouge et DSC-

Vert avec μ = 0,86 ± 0,01 jour-1 ; td = 0,80 jour et μ = 0,85 ± 0,03 jour-1 ; td = 0,81 respectivement par rapport au témoin en 

verre normal μ = 0,51 ± 0,03 jour-1 ; td = 1,35 jour. Ces résultats suggèrent que la présence du panneau semi-transparent DSC 

à la surface ensoleillée du photobioréacteur (PBR) permit de protéger les cultures d’algues. De plus, même avec une faible 

effica-cité de conversion de la lumière solaire de l’ordre de 3%, l’impact de l’intégration du panneau DSC sur le bilan global du 

CO2 émit reste négligeable comparer à un photobioréacteur sans panneau DSC. 

Enfin, une fois la biomasse algale produite, un processus combiné d'extraction de composés de haute valeur ajoutées et de 

récupération de bioénergie à partir de la biomasse de microalgues humides a été proposé. Des produits à haute valeur ajoutée 

tels que les caroténoïdes pourraient ainsi être extraits avant une gazéification hydrothermale de la biomasse résiduelle en 

biosyngases. Deux solvants verts, l'éthanol et le 2-méthyltétrahydrofuranne (2-MTHF), ont été utilisés pour atteindre l'extrac-

tibilité maximale de caroténoïdes sélectionnés. Le 2-MTHF pur a été testé pour la première fois comme solvant renouvelable 

alternatif pour l'extraction des caroténoïdes à partir de la biomasse humide et des résultats prometteurs ont été obtenus (30 

minutes à 110 °C), avec 45% du total des caroténoïdes extraits. De plus, le contenu énergétique de la biomasse résiduelle 

correspond à un pouvoir calorifique élevé (HHV) de 18,1 MJ kg-1. Avec un mélange 1:1 de 2-MTHF et d'éthanol, plus de caro-

ténoïdes ont été extraits de la biomasse humide (66%) et le HHV restant de la biomasse résiduelle était de 15,7 MJ kg-1. Les 

perspectives de l'extraction combinée des caroténoïdes et de la récupération d'énergie pour une meilleure valorisation des 

microalgues sont discutées.  

Globalement, ce projet de recherche doctorale a étudié les aspects clés de l'intégration d'un concept de bioraffinerie en milieu 

urbain contribuant à la grande vision de fermeture des cycles des matériaux au niveau des quartiers. L'accent a été mis sur un 

système intégré pour la production efficace de microalgues, la production d'électricité et la fermeture du cycle des nutriments. 

Mots-clés 

Microalgues, bioénergie, nutriments, biomasse, composés de haute valeur ajoutées, recyclage, photosynthèse, cellules so-

laires photosensibles à base de colorants, extraction des caroténoïdes, 2-méthyltétrahydrafurane, solvant vert, gazéification 

hydrothermale, piles à combustible à oxyde solide, optimisation, bioraffinerie. 
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 Introduction 
Matching environmental goals with those of an efficient renewable energy system is one of the top research priorities for sustaina-

bility worldwide. This is mainly due to climate change that comes in parallel with a global resource scarcity, such as that of fertilisers 

[1]. In nowadays, society must deal with the depletion of natural resources and the climate change threat, which promises to have 

severe and irreversible consequences if reduction of greenhouse gas (GHG) emissions is not considered. An increase of energy con-

sumption to almost 50% is expected by 2050 [2]. Fulfilling this demand with fossil fuel energy sources would further contribute to 

the increase of to GHG worldwide. Therefore, to meet the energy demand without compromising future generations, it seems evi-

dent that society will have to find and adopt “clean” and sustainable solutions. To be sustainable in the long term, future energy 

sources will need to fulfil many criteria, including renewability, limited impact on the environment, affordability, scalability as well as 

limited use of freshwater and finite resources.  

Despite clear evidence of the human-caused climate change, support for the Paris Agreement (PA) on climate change, and the prev-

alence of clean, economical and sustainable energy options, energy-related carbon dioxide (CO2) emissions have increased 1.3% 

annually, over the last five years [3][4]. In fact, and since industrialisation began, CO2 concentrations have increased by 45%, from 

280 ppm in 1750 to 415 ppm in 2019 [5]. This increase has occurred despite the uptake of more than half of the emissions by various 

natural "sinks/ moderators of climate change" involved in the carbon cycle [6]. For instance, ocean acidification is one of the direct 

consequences of a CO2 increased level, due to the absorption of 30% of the emitted anthropogenic CO2 [7]. 

 

Figure 1: CO2 levels in the past and the estimated increase scenarios of atmospheric CO2 concentration at year 2100 (left).  Present-day atmos-
pheric levels of CO2, methane (CH4), and nitrous oxide (N2O) are notably higher than their pre-industrial averages (Right). The historical composite 
CO2 record based on measurements from the EPICA (European Project for Ice Coring in Antarctica) Dome C and Dronning Maud Land sites and the 

Vostok station, adapted from [8]. 

By 2100, additional emissions from human activities are projected to increase CO2 levels to 430 ppm under a very low optimistic 

scenario, (which would require immediate and sharp emissions reductions; Representative Concentration Pathway (RCP), more 
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details in Appendix A), and 935 ppm under a higher pessimistic scenario, which assumes continued increases of emissions; RCP,  as 

illustrated in Figure 1 [9]. 

Figure 1 also shows the present-day atmospheric levels of different GHG contributors; CO2, CH4 and N2O, which are notably higher 

than their pre-industrial averages. One should mention that when CH4 is anthropogenically emitted in the atmosphere, it can be 

oxidized and indirectly contribute to increase the CO2  level in the atmosphere [10]. 

As stated in the Strategic Energy Technology (SET) roadmap of the European Commission: “The decarbonisation of electricity produc-

tion is the centrepiece of the Energy Roadmap 2050” [11]. All scenarios studied in the Roadmap show that electricity with low carbon 

footprint will have to play a much greater role than now”. Although nuclear power has the advantage of being a low-carbon technol-

ogy, it is becoming now highly controversial. Its two major drawbacks are related to the radioactive waste management and the 

irreversible consequences if a nuclear accident occurs [12].  

Therefore, the supply of electric energy should be covered primarily by renewable energies such as hydraulic power, wind power, 

geothermal power, solar (organic and inorganic photovoltaic, concentrated solar power) and extended to the various biomass to 

bioenergy sectors (dry and wet biomass). Nonetheless, the transition to renewable energy will require a storage technology for 

smoothing out the electricity supply from these sources as they are intermittent with variable outputs. Present storing devices include 

pumped-storage hydroelectricity and batteries. In the future, compressed air and power to gas technologies coupled with fuel cells 

should also be used [13].   

The urgent need to meet these objectives, and the complexity of these tasks, has boosted European countries to establish contin-

gency plans to reduce their GHG emissions [14]. In this frame, the Swiss government signalled its long-term aim of reducing Switzer-

land's carbon emissions by 70-85% by 2050 [15]. With the commitment to gradually withdraw the nuclear energy supply, alternative 

low-carbon energy sources must be considered. Thereby, the Swiss Competence Centers for Energy Research (SCCERs) were created 

with the aim of developing the knowledge and technologies essential for the transition from the current nuclear and fossil fuel-based 

electric energy to a sustainable one. Among the objectives of this research centre, the SCCER BIOSWEET program (which stands for 

“BIOmass for SWiss Energy fuTure”) aims to increase the contribution of biomass to Switzerland's energy by deploying a high level of 

technological readiness [16].  

Indeed, the energy from biomass is an exciting option for a resource-dependent country like Switzerland. Compared to photovoltaic 

or wind energy, biomass is an extremely versatile renewable energy source that can be extracted and stored independently of the 

variability of natural processes like the weather or seasonal changes. They refer to all organic matter existing in the biosphere, 

whether of plant or animal origin, as well as those materials obtained through their natural or artificial transformation [17].  

Thus, the SCCER BIOSWEET postulates the vision of increasing the contribution of bioenergy from biomass to 100PJ [16]. This vision 

foresees one-third of this bioenergy to be covered by wood biomass, another third contributed by agricultural waste and the last 

third from so-called third generations biomass sources “algal biomass”. Understanding how algae can play an essential role in the 

future of Swiss energy is complex and requires a high degree of multidisciplinary approaches [16]. 

The potential to develop algal biomass to bioenergy is viewed as high thanks to the possibility they offer as the most productive 

photosynthetic organisms on earth with annual productivities of 10 to 150 tons of dry biomass per hectare and per year [16]. More-

over, microalgae production can utilise land and water resources unsuited from any other use which uncouple this bioenergy source 

from food production [18]. Indeed, contrary to bioenergy derived from agricultural biomass such as rapeseed, sunflower, soybean, 

peanut, rice bran, coconut, algal biomass doesn’t affect the food security (arable land is not required) [19].  
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So far, the production of bioenergy from microalgae has been demonstrated at pilot scale levels. Despite the enthusiastic boost 

towards commercialisation registered at the beginning of this decade, there are few large-scale facilities operating to date. In fact, 

there are several issues related to microalgae cultivation from either the energetic, environmental or economical point of view 

[20,21]. Further developments are needed to improve algal biomass technologies in order to increase their cost-competitiveness and 

environmental performance. For instance, microalgae are known to be effective at consuming both nutrients and carbon from 

wastewater effluents [22–24]. The integration of wastewater treatment and algal biofuel production could provide cumulative ben-

efits by offsetting a significant portion of algal production costs while delivering an efficient wastewater treatment service. This ap-

proach will limit the use of finite resources and freshwater and will increase the environmental sustainability of algae production.  

Moreover, the reduction of electrical consumption of algal biomass production is essential also for the economic viability. In general, 

in outdoor microalgae cultivation systems, solar radiation is often too high relative to the photosynthetic solar photoconversion 

capacity of microalgae, this leads to photo-saturation, photoinhibition, overheating and eventually reduction of the productivity [25]. 

Shadowing microalgae with solar panels would, therefore, be a promising solution for both increasing productivity during hotter 

periods and producing local electricity for the process. Coupling algal biomass production with photovoltaic electricity generation 

represents an ideal opportunity to reduce the electrical demands for algae production systems. Although this solution is technologi-

cally appealing, its sustainability can be questionable as there is a clear trade-off between electricity and biomass production.  

Microalgae is also known to be source of high-value compounds such as pigments, antioxidants and proteins, specific approaches 

suggested the use of microalgal biomass for bioenergy applications as well as for the extraction of biochemicals [26,27]. This approach 

could widen the market opportunities of microalgae products and open further possibilities of coupling production of algae biomass 

for biofuels and more valuable compounds. Thus, an innovative microalgae biorefinery structure implemented through the produc-

tion of multiple products in the form of high-value products and biofuels may allow the economic feasibility and mitigate the over-

whelming investments and operation cost of algae production plants [28].  

All these emerging microalgae technologies are providing new horizons for bioenergy from algal biomass with a broader commercial 

opportunity. Thus, the splitting of algal biomass into bioenergy, chemicals, and biomaterials commodities to maximise the value of 

the raw materials and minimise the wastes, will enable the overall process to be economically viable. 

In this thesis, the global vision of prospecting bioenergy from biomass in general, and from algae in particular, are discussed in the 

introduction of this thesis.  The requirements of microalgae cultivation systems and the current approach for reducing the energetic 

and environmental impact as well as innovative integrated systems to promote sustainable processing of algal biomass are debated 

in this dissertation. 

Material from this chapter has been partially published in: 

(I) E. Damergi; J.-P. Schwitzguébel; D. Refardt; S. Sharma; C. Holliger, C. Ludwig.: Extraction of carotenoids from Chlorella vulgaris 

using green solvents and syngas production from residual biomass; Algal Research. 2017. DOI: 10.1016/j.algal.2017.05.003. 

(II) M. Bagnoud-Velásquez; E. Damergi; G. Peng; F. Vogel; C. Ludwig: Fate and reuse of Nitrogen-containing organics from the hydro-

thermal conversion of algal biomass; Algal Research. 2018-04-21. DOI: 10.1016/j.algal.2018.04.005 

(III) E. Damergi; H. Madi; S. Sharma; N. Boukis; F. Marechal; J. V. Herle; C. Ludwig: A combined hydrothermal gasification - solid oxide 

fuel cell system for sustainable production of algal biomass and energy; Algal Research. 2019. DOI: 10.1016/j.algal.2019.101552. 
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(IV) E. Damergi; P. Qin; S. Sharma; M. K. Nazeeruddin; C. Ludwig: Enhancing algae biomass production by using dye-sensitised solar 

cells as filters, (Ready for submission).

Bioenergy from biomass 

Global prospect of bioenergy from biomass 

The worldwide demand and consumption of primary energy increased consistently in the last 50 years [29]. This increase is a direct 

consequence of the demographic pattern where the world’s population is estimated to grow by 0.9% per year on average, from 7.1 

billion in 2013 to 9 billion in 2040.  Today, the global energy system depends mainly on fossil fuels and this trend will continue if no 

radical political decisions are taken. As shown in Figure 2, coal, oil and natural gas constitute 81% of the total primary energy supply 

of the world. Renewables account for 14% with only a slight increase of 1% share since 2000.  

Figure 2: (Left) Total energy supply globally in 2016. (Right) Total Primary Energy Supply (TPES) or energy supply defined as production of energy 
sources including import and export of the source as well as storage in bunkers, adapted from [29].  

Unfortunately, coal demand grows across much of Asia due to its affordability and availability as it is shown in Figure 2. This growth 

will continue until it reaches 36% of Southeast Asia's energy mix for power generation [30]. Or the combustion of coal adds a signifi-

cant amount of CO2 to the atmosphere per unit of heat energy more than does the burning of other fossil fuels. Interestingly, the 

African continent has the highest share of renewable in its energy supply. 

Figure 3: (Left) Total primary energy supply of all renewables in 2016. (Right) Total primary energy supply of all renewables per continent. Adapted 
from [29]. 
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 Almost 50% of the energy supply in Africa comes from renewables predominantly from biomass-based sources. In comparison, 10.5% 

of the energy supply in Europe is renewable [29]. The contributor sectors to the total primary energy supply of all renewable energies 

and what they represent per continent are illustrated above in Figure 3. 

To give an overall view of the current framework, the total global primary energy supply of biomass resources was 56.5 EJ contributing 

to 70% of the share among all renewable energy sources. According to the International Energy Agency (IEA), the supply is expected 

to increase from 56 EJ to 160 EJ in 2050, with 100 EJ for the generation of heat and power [4]. In Africa, more than 90% of the total 

primary energy supply of renewable energy sources is from biomass. In every other continent, biomass is the largest renewable 

energy source in terms of supply and accounting from between 40% (Oceania) to almost 70% in Asia. 

 Biomass in Switzerland 

The primary sources of energy in Switzerland are oil, hydropower and nuclear. Since 2005, Switzerland has seen a surge in the use of 

renewable energies such as biomass, wind, solar power and ambient heat. Currently, biomass is Switzerland’s second most important 

source of domestic renewable energy (the first being hydropower with 638 hydroelectric power plants). 

The Swiss biomass theoretical primary energy potential was estimated at 209 PJ per year, with the significant contributions from 

forest wood and animal manure as shown in Figure 4. Almost half of the theoretical potential can be sustainably used for bioenergy. 

According to B. Steubing et al.[31], there is currently no sustainable energy potential from agricultural biomass, such as energy crops, 

crop residues and grass. The main restrictions are competing material utilisations, environmental factors, supply costs, as well as 

scattered distribution and decentralised small-scale facilities. Depending on the location of the biomass, wood forest, for instance, 

can be procured at a high cost if it is located an inaccessible region (mountain, road and railway embankments). Conservation areas 

also limit the amount of available wood [16]. Moreover, the Swiss policy on biofuels is not favourable now, and it excludes most 

biofuels from a tax exemption due to the environmental impacts that arise during the cultivation of energy crops. In 2010, only 3.6% 

of Switzerland’s energy demand was covered by biomass resources. This value could be increased if the remaining energy potential 

was considered (this could provide an additional 3.3%) [31]. In order to overcome this bottleneck, and as a potential solution to the 

food-fuel dilemma, new fast-growing biomass should be considered.   

 

Figure 4: Schematic illustration of the Swiss technical biomass potential and constraints to the sustainable biomass potentials as well as the cur-
rently used and remaining biomass potentials modified from [31][32]. 
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 Biomass feedstocks  

A typical composition of biomass contains in general, cellulose, hemicelluloses, lignin, lipids, proteins, carbohydrates, water, and 

inorganics (ash). This variability of biomass composition affects significantly its physical and chemical properties. As a result of differ-

ent origins and variety of compositions, the classification of biomass resource assessment constitutes the foundation for integrated 

bioenergy planning to evaluate the sustainable feasibility and to estimate the additional bioenergy potential [33]. Biomass supply 

comes from a variety of feedstocks: wood fuel, forestry residues, charcoal, pellets, agriculture crops and residues, algae, municipal 

and industrial waste. Broadly, the supply can be classified into the following sectors:  

- Dedicated energy crops (e.g., switchgrass, sunflower, soybean, peanut, coconut) 

- Forestry residues (e.g., logging residues and forest thinning) 

- Agricultural residues (e.g., corn stove) 

- Algae (e.g., seaweed, microalgae) 

- Waste streams and reusable carbon sources (e.g., sludge, waste food, and manure slurries). 

Three different products can be obtained from the previously listed feedstocks, mainly electricity, heat and biofuels. In the case of 

biomass to biofuel, the type of biomass feedstock is divided into categories, or “generations”.  First-generation biofuels are derived 

from food and oil crops, such as corn or sugar cane. They have reached a commercial level and are well established in many countries, 

but they are criticised for directly competing with food production and supply. The second-generation biofuels have been developed 

to overcome this relevant issue and are derived from non-food sources such as agricultural residues, switchgrass, etc., or in general 

lignocellulosic materials. In this case, the main problems are related to cellulose extraction and degradation, together with the spread 

and diversity of the feedstock material. Third-generation biofuels, like the previous ones, are derived from non-edible biomass 

sources but present much higher areal production yields compared to the former. Microalgae, belonging to this last category, have 

received wide attention as a promising feedstock to produce liquid biofuels due to their fast growth rate and their ability to grow on 

non-arable land and wastewater effluents [34]. Nevertheless, some drawbacks restrict the large-scale implementation of microalgae-

based technologies and compromising its ability to become a real alternative to fossil fuels.   

 Biomass conversion routes 

Bioenergy derived from biomass can be divided into two main categories: “modern “and traditional”. Traditional category refers to 

the combustion of biomass for instance animal waste and wood. Modern categories refers to bioenergy technologies that allows to 

obtain liquid biofuels from bagasse and other plants, For example, biogas produced through anaerobic digestion of residues, wood 

pellet heating systems, and biorefinery fuel [35]. 

Figure 5 shows the currently known and investigated biomass conversion routes. It shows the three main groups of conversion tech-

nologies: chemical extraction, biochemical and thermochemical conversion. It also shows that many possible pathways mostly lead 

to the three following products: electricity, heat and fuels. The biochemical conversions include alcoholic fermentation (ethanol), 

anaerobic digestion (methane, hydrogen) and photobiological hydrogen production. Thermochemical processes include pyrolysis 

(bio-oil, syngas, charcoal), thermochemical liquefaction (bio-oil), gasification (syngas), transesterification (biodiesel) and direct com-

bustion (electricity).  
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Figure 5: Main biomass conversion routes adapted from [35].  

When considered as a primary energy carrier and depending on the conversion technique and the chemical composition of the feed-

stock, each category will have its specific benefits and problems.  For instance, a high amount of ash in the biomass will lower the 

energy content of the fuel and may cause maintenance problems during and after the conversion process (presence of solid residues). 

In hydrothermal catalytic gasification, the ash content can lead to fouling and poisoning of the catalyst. Hence the salts must be 

separated from the process stream prior gasification, or a catalyst should not be used to avoid this issue [36]. Naturally present in 

raw biomass just like ash, moisture will lower the energy content of the fuel in almost all listed process in Figure 5.  Therefore, the 

application of wet biomass in energy conversion systems is very challenging as in conventional systems, the biomass has to be dried. 

Or drying can be very energy-intensive, especially when the biomass has a moisture content above 50 wt% on a wet basis, e.g. sewage 

sludge, wastewater and algal biomass [37]. One exception where the presence of moisture is desired or even essential is with hydro-

thermal gasification conversion pathways. In fact, “Hydrothermal” designates an aqueous system operating at elevated pressures 

and temperatures and “gasification” refers to the gasification of carbon-containing compounds” [38]. This process operates under 

harsh environment especially, near the critical point of water (374°C, 22.1 MPa) or above it. Supercritical water is more like an organic 

solvent as it undergoes significant changes in its physical properties, e.g. drastic decrease in dielectric constant, density, ionic product, 

viscosity, and thermal conductivity. In one hand, supercritical water has a high ability to break down hydrocarbons and carbohydrates 

present in the biomass, resulting in the production of pressurised gases mainly rich in hydrogen (H2), carbon monoxide (CO), CO2, 

and CH4 [39].  In the other hand, salts are highly insoluble in supercritical water, and they precipitate out, which is a chance to recover 

nutrient from biomass to be reused as fertilizers in biomass production [40]. For energy optimisation, the efficiency of energy-rich 

gas production (GE) and the selectivity of the gas produced H2, CH4, syngas (H2 + CO) can be steered by tuning the process conditions, 

increasing the temperature and/or using catalysts as illustrated in Figure 6.  
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Figure 6: Influence of different catalysts on gas efficiency (GE) of hydrothermal gasification of microalgae biomass obtained at 400 °C, 500 °C and 
600 °C. Different catalysts were tested in hydrothermal processes such as Inconel (austenitic nickel-chromium-based superalloys), Nickel (Ni), plati-

num/palladium (Pt/Pd) and Ruthenium based catalyst (Ru and Ru(E)). Figure taken from [39].  

Basically, the hydrothermal gasification (with or without a catalyst) of biomass consists of three main reactions which are illustrated 

in Table 1. The first reaction includes the endothermic decomposition or reforming of biomass that is represented here by a gener-

alised formula (CHxOy). From this step, a mixture of CO and H2 (This mixture is also referred to as syngas or synthesis gas) is produced. 

Followed, the water-gas shift reaction takes place, where further H2 production, as well as CO2, are formed. Part of the produced 

hydrogen,  CO  and CO2 react to form methane, and this step is called Methanation [41].  

Reaction Formula Enthalpy 

1.Decomposition (syngas) CHxOy + (1-y) H2O CO + (1 - y + (x/2)) H2 ΔH°glucose= +608 KJ/mol 

2.Water-gas shift reaction CO +H2O H2 +CO2           ΔH°= -41 KJ/mol 

3.Methanation of CO and CO2 
CO+3H2CH4 + H2O           ΔH°= -211 KJ/mol 

CO2+4 H2 CH4+ 2H2O           ΔH°= -223 KJ/mol 

Table 1: Basic reactions involved in the hydrothermal gasification of biomass.* (x): H/C molar ratio, (y): O/C molar ratio * ΔH°: Reaction enthalpy at 
reference temperature (25 °C). Adapted from [41]. 

 Microalgae biomass production 

Microalgae are microscopic aquatic unicellular organisms living in fresh or marine waters. They are mainly photosynthetic organisms 

with a similar mechanism as the one of land plants. These can be either eukaryotic microalgae (green algae, red algae and diatoms) 

or prokaryotic microalgae (cyanobacteria).  

 Microalgae metabolism  

Microalgae are photosynthetic microorganisms capable of using light energy sources to fixe atmospheric CO2 and transform it into 

biological matter through a process called photosynthesis. This is the only significant solar energy storage process on Earth and is the 

primary source of biomass for human food and energy resources [42]. Microalgae use only a specific part of the solar radiation. 

Photosynthesis is restricted to wavelengths from 400 to 700 nm, the range of wavelengths which is termed photosynthetically active 

radiation (PAR).  Photosynthesis involves two major types of reactions. The first type, the “light-dependent reactions”, comprises the 

capture of the light energy and its conversion to energy vector as nicotinamide adenine dinucleotide phosphate (NADPH) and aden-

osine triphosphate (ATP) as illustrated in Figure 7 [43]. These reactions are the absorption and transfer of photon energy, the capture 

of this energy by photosynthetic pigments, and the generation of a chemical potential coupled with the release of oxygen. The latter 
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reaction generates NADPH due to the passage of the high energy excited electron along an electron transport system, whereas the 

second one generates ATP through a proton transfer across the thylakoid membrane [44]. Those compounds are formed from aden-

osine diphosphate (ADP) and NADP+ thanks to chlorophyll which can transform light energy into a chemical one. ADP is transformed 

to ATP and NADP+ is reduced to NADPH. The second type of reactions are the “light-independent reactions” of the Calvin-Benson 

cycle, in which this chemical potential is used to fix and reduce inorganic carbon in triose phosphates Figure 8 [43]. 

 

 

Figure 7: The Z‐scheme of electron transfer processes involved in the light‐dependent reactions of photosynthesis. Figure taken from [45]. 

To insert CO2 in the Calvin cycle, microalgae can take the dissolved CO2 or enzymatically convert HCO3- to CO2 with the carbonic 

anhydrase enzyme [46]. The Calvin cycle forms hexose from CO2 and H2O, but in order to work, it needs energy and reducing power 

(electron source). These are respectively supplied by adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate 

(NADPH). In order to capture more light, many microalgae can have antenna pigments of the family of the carotenoids, which absorb 

light energy and transfer it until it reaches a chlorophyll pigment [47]. As the light intensity increases, the photosynthesis accelerates. 

However, light-saturation of photosynthetic pigments occurs when the light intensity is 10 to 25 times lower than in the middle of 

the day on clear days [48]. 

 

Figure 8: Inorganic carbon is fixed in the cells through the Calvin cycle. Figure taken from [49]. 
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 Microalgae growth requirements 

1.2.2.1 Essential nutrients and their availability: 

The average ratio of elements in microalgae in the literature is based on the Redfield ratio at 106 moles of carbon (C):16 moles of 

nitrogen (N):1 mole of phosphorus (P) [50]. However, the stoichiometry of elements within microalgae is variable between biogeo-

graphical provinces and as a function of interacting physical and biological factors. The role of these essential nutrients is discussed 

in the section below.  

Carbon sources: Changes in carbon source affect the microalgal carbon pathways and intracellular organelle activity related to nitro-

gen assimilation. Autotrophic algae require only an inorganic carbon source in the form of HCO3- for photosynthesis while for hetero-

trophic growth they need an external source of organic carbon, e.g. acetate or glucose. Some microalgae are mixotrophic, they can 

perform both photosynthesis as well as using organic carbon sources [43]. 

Nitrogen Microalgae can easily assimilate different sources of nitrogen, and they can be classified in declining order: ammonium > 

nitrate > nitrite > urea. In the case of nitrate, algae cells transport it across the membrane and then reduce it to ammonia, in the 

process, consuming large amounts of energy, carbon, and protons. Other nitrogenous compounds like urea or urine are also assimi-

lable by microalgae. Some microalgae can use urea as the sole source of nitrogen [23][51]. It is usually hydrolysed into ammonia and 

bicarbonate before its nitrogen is incorporated into cells. In microalgae, two enzymes can metabolise urea, urease and urea amidol-

yase.  

Phosphorous is an essential compound of in microalgae metabolism, and it is considered as a fundamental nutrient for algal growth 

since it shares in intra-cell energy transfer, nucleic acid synthesis and specific reactions related to cell division. It phosphorous is, 

therefore, an important element for energy transport and genetic information inside the cells. The supply of Phosphorous salts is 

fundamental to the efficient growth of microalgae cells [52]. 

However, In the past 50 years, total nitrogen, phosphorus (NP) consumption in the world increased by a four-fold factor and reached 

already 170.7 million tonnes [53]. Phosphorus is mainly extracted from mines which makes it a non-renewable resource. A phospho-

rous peak is expected in 2033 with demand exceeding supply which could then endanger the world’s food security [54]. 

1.2.2.2 Light and microalgae pigment absorption 
Light availability and microalgae photoconversion efficiency of light are considered the main factors affecting microalgae biomass 

[55]. Light source in microalgae systems can be provided by solar light, artificial light or combinations of different light sources. On 

the one hand, cells grown under light-limited conditions have a lower capacity for accumulating CO2 [56]. On the other hand, micro-

algae grown under high light intensity can be subject to photo-saturation and photoinhibition.  Microalgae chlorophylls have two 

major absorption bands: a) blue or blue-green and b) red with different absorption peaks, e.g. chlorophyll a (430 and 670-690 nm), 

chlorophyll b (455 and 650-660 nm).  Secondary pigments ‘carotenoids’ are another type of photosynthetic pigment weakly fluores-

cent with an absorption range between 400 and 550 nm, divided into two groups: carotenes and the xanthophylls. These accessory 

pigments are characterised by the C40 isoprenoid structure; they absorb mainly blue wavelength and transmit yellow and red [57].  

Carotenoids play an important role in the protection against excess irradiance, chlorophyll triplets and reactive oxygen species [44]. 

They are overproduced in some algal species, e.g. Haemotococcus pluvialis when grown under unsuitable conditions. Variations in 

the light/dark regime and light intensities can lead to a photo-saturation of the photosystem. Or changes in the cell content of pro-

teins, carbohydrates and lipids. For instance, In the case where algae are light-limited, they will respond by increasing their pigmen-

tation. This process is called photo-acclimation [58].  
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A wide variety of artificial lamps employed for microalgae research exist and the spectral distribution of a number of lamps used in 

microalgae research is shown in Figure 9. Comparing the spectra of all these different lamps with those of the sun, it is evident that 

all are different from the sunlight. Thus, the choice of an artificial light source with a similar spectrum as sunlight is crucial for micro-

algae production as certain spectral effects cannot be excluded. Timing of cell division, for example, has been shown to depend on 

light colour [59]. One thing is certain: both the light spectrum (nature of light) and intensity of light are decisive factors in the growth 

behaviour of microalgae. In view of an efficient and inexpensive large-scale production of photosynthetic biomass, the only option is 

to rely on sunlight, improving the reactor performances to achieve better efficiency, however, to perform laboratory experiments, 

care must be taken when chosen the ideal lighting source as it will affect the growth of microalgae directly. Figure 9 illustrates the 

most common ones.  

Figure 9: Spectral distribution of artificial lamps employed in microalgae research adapted from [60]. 

1.2.2.3  pH value 

The consumption of nitrogen by microalgae can lead to a change in pH. The use of nitrate (NO3-) by microalgae cells leads to the 

release of hydroxide ion (OH-) and an increase in pH. When combined with a CO2 based pH control (air/CO2 mixture injected in the 

culture), the OH- formed will react with CO2 forming extra bicarbonate HCO3-. Consequently, more and more CO2 gas needs to be 

supplemented to the gas steam in order to maintain the pH when the biomass density increases.  

The use of ammonium (NH4+) by microalgae cells leads to the release of protons H+ and a decrease in pH. When combined with a CO2 

based pH control, the H+ formed will react with the bicarbonate HCO3- present in the liquid forming CO2 and H2O. The CO2 is lost via 

the aeration. As soon as all bicarbonate HCO3- has reacted and disappeared, the pH will drop below the setpoint (pH=7), and the CO2 

addition will stop. Consequently, the microalgae will stop growing due to a lack of CO2.  

The use of urea (CO(NH2)2) by microalgae cells has a very small pH effect and will not interfere with a CO2 based pH control. To 

illustrate this, the stoichiometry of the growth reaction at a neutral pH is shown based on the three different nitrogen sources: 

CO2 + 0.717.H2O + 0.165 NO3-+ 0.011 H2PO4-              CH1.63 O0.385 N0.165 P0.011 + 1.44.O2 + 0.176.OH- 

Equation 1: Nitrate as nitrogen source for microalgae. 
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CO2 + 0.552.H2O + 0.165 NH4++ 0.011 H2PO4-  CH1.63 O0.385 N0.165 P0.011 + 1.11.O2 + 0.154.H+ 

Equation 2: Ammonium as nitrogen source for microalgae. 

0.918.CO2 + 0.635.H2O + 0.0825CO2(NH2)2+ 0.011 H2PO4-  CH1.63 O0.385 N0.165 P0.011 + 1.11.O2 + 0.011.H+ 

Equation 3: Urea as nitrogen source for microalgae. 

For the commercial production of microalgae biomass, it is preferable to use urea as a nitrogen source instead of nitrate and ammo-

nium. As it is shown in the previous equations, urea affects slightly the pH when compared to ammonium and nitrate. A stable pH of 

7 is generally favourable for a continuous growth of microalgae.  

At pH values between 7 and 10, CO2 is mainly in the form of HCO3-. This inorganic carbon is fixed in microalgae cells through the Calvin 

cycle whose overall stoichiometry is: 

Equation 4: Chemical equation of the Calvin cycle. 

It is crucial to maintain the pH value of the culture medium in the optimal range so that the cellular process is not arrested. An 

acceptable pH range can be accomplished by aerating the culture. In the case of high-density microalgae, the addition of carbon CO2 

acts as a pH buffer.  

1.2.2.4 Temperature 
Every microalgae species has an optimal temperature, which is generally between 15 °C and 35 °C. This value may vary with the 

composition of the culture medium and the strain [61]. For each 5 °C increase, photosynthesis, cell division and growth should expect 

to double until unfavourable temperatures are reached. For growth temperatures exceeding the optimal temperature, microalgae 

growth rates sharply decrease. 

Microalgae cultivation systems 

1.2.3.1 Culture mode 

A culture can be defined as an artificial environment in which the algae grow. In theory, culture conditions should resemble the 

natural environment of the algae as far as possible. There are three types of microalgae culture systems in terms of the method, i.e. 

batch, continuous, and semi-continuous (fed-batch) cultures. 

- Batch culture: it consists of a single inoculation of cells into a container of growth medium followed by a growing period of several

days. The harvesting step occurs only when the microalgae cells reach their maximum or near-maximum density.

-Semi-continuous: This growth mode prolongs the use of large culture vessels by partial periodic harvesting, followed immediately

by topping up to the original volume and supplying with nutrients to achieve the original level of enrichment.

- Continuous culture: In this case, fresh culture medium is continuously pumped to the homogenously mixed culture close to the

maximum growth rate, and the excess culture is washed out continuously or intermittently.

(H++ 2 e-) 

C6H12O6 + 12 NADP+ + 18 ADP + 18 P + 3 O26 CO2 + 12 NADPH + 18 ATP
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1.2.3.2  Culture technologies 

There are two main cultivation systems for the current production of microalgae: open and closed systems.  Each one of the systems 

has a series of advantages and disadvantages: The main differences between both systems are gathered in Table 2. Open systems 

such as raceway ponds are characterised by their lower investment and maintenance needs, their easy scaling. However, microalgae 

productivity within those systems is quite low and more exposed to contamination (direct contact with the environment). Moreover, 

the high evaporation of water and the losses of injected CO2 make open ponds cultivation resources inefficient [62]. In the case of 

closed systems, also called closed photobioreactors, the reactors can maintain higher cell density values than the open systems, 

reaching higher productivity rates, achieving greater efficiency in the use and fixation of CO2 injected. Moreover, the contamination 

issue encountered in the open system is drastically reduced, allowing better control of cultivation conditions. But, the construction, 

maintenance and operation costs of the closed systems are considerably higher. Moreover, cooling and heating systems are required 

to control the cultivation temperature. Photobioreactors commonly appear in three different configurations: vertical column reactors 

(bubble columns or airlift), tubular reactors, and flat-panel reactors.  

Microalgae production systems were compared in Figure 10 in terms of the net energy ratio (NER) of biomass production.  By defini-

tion, NER is the sum of the energy used for cultivation, harvesting and drying, divided by the energy content of the dry biomass [63]. 

Profitable microalgae systems should have a NER value below 1. A positive energy balance is generally achievable for open systems. 

However, The NER of the PBR systems are more often greater than 1. Therefore, it is important to reduce the energy demand of PBR 

by integrating other sources of energy production within the system.   

Factors Open system 

(Raceway pond) 

Closed systems 

(Photobioreactors) 

Space required High Low 

Area/volume ratio Low (5 to10 m-1) High (20 to 200 m-1) 

Evaporation High No evaporation 

Water loss Very high Low 

CO2-loss High Low 

Temperature Highly variable Require cooling 

Weather dependence High Low 

Process control Difficult Easy 

Shear Low High 

Cleaning None Required 

Algal species Restricted Flexible 

Biomass quality Variable Reproducible 

Population density Low High 

Harvesting efficiency Low High 

Harvesting cost High Lower 

Light utilisation efficiency Poor Good 

Most costly parameters Mixing 
Oxygen removal and 

temperature control 

Contamination control Difficult Easy 

Capital investments Low High 

Productivity Low 3 to 5 times 

Table 2: Comparison between microalgae production in open and closed bioreactors [62]. 
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Figure 10: Net energy ratio (NER) for micro-algae biomass production: comparison of published values with normalised values. (The NER is defined 
as the sum of the energy used for cultivation, harvesting and drying, divided by the energy content of the dry biomass). All mentioned studies in 

the figure are listed in [63]. 

Microalgae potential for bioproducts and bioenergy 

The conversion of algal biomass into several biochemical products, and bioenergy (section 1.1.4) with the aim of maximising the value 

of the raw materials and minimising the wastes is feasible employing a biorefinery concept. By definition, a biorefinery is an inte-

grated facility, which combines various processes and equipment to co-produce bioenergy and high-value chemicals from biomass. 

Microalgae-based industrial exploitability ranges from basic biomass-based food and feeds nutraceuticals to high-value cosmeceuti-

cals, pharmaceuticals, and biomedical applications. Cultivated under certain stress conditions such as nutrient starvation, high salin-

ity, high temperature, etc., microalgae are able to accumulate considerable amounts of lipids or carbohydrates or proteins, as shown 

in Table 3. For instance, Spirulina maxima can reach high protein content, up to 71%, which make it an ideal candidate for alternative 

protein source. Microalgae are also capable of accumulating substantial amount of lipids such in the case of Scenedesmus dimorphus. 

Besides, other high value compounds such as essential fatty acids eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), omega 

3, and γ-linolenic acid can be extracted from the lipid fraction. Depending on the growth condition, algae are capable of switching 

their metabolism, under stress condition, carbohydrates can be accumulated in Scenedesmus dimorphus up to 52%. 

Strains Protein (%) Carbohydrates (%) Lipids (%) 

Scenedesmus obliquus 50–56 10–17 12–14 

Scenedesmus quadricauda 47 – 1.9 

Scenedesmus dimorphus 8–18 21–52 16–40 

Chlorella vulgaris 51–58 12–17 14–22 

Chlorella pyrenoidosa 57 26 2 

Dunaliella bioculata 49 4 8 

Dunaliella salina 57 32 6 

Spirulina platensis 46–63 8–14 4–9 

Spirulina maxima 60–71 13–16 6–7 

Table 3: Chemical composition of algae expressed on a dry matter basis [64]. 
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Other high-value compounds can be found in microalgae biomass such as vitamins and antioxidants and pigments. A vitamin that 

can be found in microalgae is riboflavin, which is essential for some maricultural animals [65]. Carotenoids are lipophilic secondary 

algal pigments used as a natural colourant in food or in cosmetics and offer an exciting perspective thanks to the extensive practical 

applicability and the relatively high market price of natural dyes, e.g. AlgalTechnologies (Israel) as well as Parry Pharmaceuticals 

(India) are two companies producing astaxanthin (carotenoids) from Haemotococcus pluvialis having a market value of 10,000 USD/kg 

[66]. However, such a product with a very high value typically have a low market size, and the production costs could be a major 

barrier. Therefore, establishing business models that look not only at the potential of algae for high-value products but which are 

also considering the possibility of producing energy from the same raw material is of great interest. Carotenoids extraction could 

thus contribute to make microalgal biofuel production economically feasible. However, conventional extraction techniques of these 

compounds are time-consuming and generally require using dry algal biomass. 

 Microalgae hybrid technologies: Splitting the solar spectrum for the copro-

duction of biomass and electricity  

Photosynthesis may be defined as a light-driven redox reaction in which carbon dioxide CO2 and H2O are converted to energy-rich 

organic compounds (CH2O)n and oxygen [67]. Photosynthesis is the driving mechanism behind microalgae biomass production, which 

requires only a small fraction of the incident solar energy, primarily in the blue and red portions of the solar spectrum [68]. The 

primary role of the light photochemical reactions in photosynthesis is to provide the biochemical reductant (NADPH2) and the chem-

ical energy (ATP) for the assimilation of CO2 [69]. In conventional outdoor cultivation system of microalgae, factors that influence 

microalgae growth are generally linked to solar irradiation intensity, quality, and physical orientation of culture systems. For instance, 

light atmospheric scattering leads to attenuation of direct beam and diffuse light of around 17%, an effect which increases with 

latitude by as much as an additional 30% as shown in Figure 11. In addition, adverse weather conditions added a further 65% loss 

based on the difference between the bright sky and measured irradiances at different locations [70]. Regarding culture orientation, 

indirect culture exposure or direct exposure towards the sun can reduce the irradiation intensity by another 50%. At the culture 

surface, 57% of typical sunlight is not useful for photosynthesis and is therefore considered to be lost relative to the sun. At peak sun 

intensity, saturation of photosynthesis occurs within the cells of microalgae and 80% of the absorbed sunlight may be wasted as heat. 

To that, additional losses related to energy transduction through the photosynthetic apparatus (73%) and biomass synthesis and 

metabolic regulations (10%–90%) may be added. Thus, a net photosynthetic efficiency, calculated from incident light on a surface 

culture to its storage as a simple carbohydrate, can range between 0.1% and 10% [70]. Thus, photosynthesis for terrestrial or micro-

algal biomass production suffers from the limited power conversion efficiency (PCE), approximately one order of magnitude lower 

than photovoltaic devices (PVs) [71].  
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Figure 11: From sunlight-to-algal biomass: Solar conversion efficiency and strategies adapted from [70]. 

In microalgae, chlorophyll may be considered as a semiconductor with a band-gap (Eg) of 1.78 eV. Being below chlorophyll band-gap, 

infrared (IR) radiation is not absorbed (53%). Moreover, absorption of the blue photons (2.5–3.1 eV) could be inefficient during pho-

tosynthesis due to the excessive energy loss as heat in photosystem (PS) I or II. According to the literature, the absorption of those 

high-energy photons by the antenna complex may cause photoinhibition [72]. 

Besides the relatively low light conversion efficiency of microalgae, other limitations towards the development of a microalgae-based 

industry are attributed to the high economic costs of algal production platforms [73]. Considering the interest in industrial scaling, 

there has been a remarkable advance in the development of efficient microalgae production systems. New cultivation techniques 

based on sharing the solar energy between photovoltaics and microalgae culturing methods are gaining ground, and two different 

approaches have been already reported. The first approach consists of partially covering a microalgae bioreactor with non-transpar-

ent photovoltaic (PV) cells, allowing part of the light to reach the algae culture.  The most widely used PV are silicon-based photovol-

taic panels (Si-PV) because of their high solar light conversion efficiency. Several research reports demonstrated the feasibility of this 

concept. For instance, Tredici et al., 2015, [74] have shown that covering up to 20% of Tetraselmis suecica culture with a standard 

silicon photovoltaic strip does not increase productivity but can improve the NER by a factor of 1.7. This experiment was conducted 

in outdoor closed photobioreactors. The background theory was that the intermittent shading would increase dark-light cycles, re-

sulting in an improved overall sunlight energy conversion of the algae.  Another study has shown that with a covering of one-third of 

the photobioreactor, the growth rate increased by 49% in 1000 [µmol photons/m2s] for Scenedesmus obliquus [75]. However, under 

lower irradiation, the changes were not significant. In non-sunny regions, the use of non-transparent standard PV can reduce the PAR 

radiation and result in decreased productivity due to the reduction of irradiance required for photosynthesis [76].  

Figure 12 illustrates how the solar spectrum can be divided between the growth of microalgae and the production of electricity by a 

photovoltaic device (solar cell. In comparison, highly efficient crystalline silicon solar cells can absorb light strongly across the solar 

spectrum as shown by the spectral response of solar cell in Figure 12. This indicates that these consumers of solar energy (microalgae 

and solar cells) appear to compete for the same resource. If the irradiance could be split between the two, the full utilisation of the 

solar spectrum would be possible, and this could revolutionise the microalgae industries. Or it is clear from the absorption spectra of 

microalgae that some parts of the spectrum are absorbed more strongly than others and could also be absorbed by the solar cell 

when a combined and overlapped system is considered.  
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Figure 12: Splitting the solar spectrum for the coproduction of biomass and electricity. The shaded regions illustrate the portions of the solar spec-
trum that can be delivered to electrical generation and microalgae cultivation without reducing the productivity of the microalgae. The figure was 

taken from [77]. 

Therefore, new concepts of semi-transparent PV were suggested as a replacement of the standard non-transparent ones in the PV 

assistant microalgae production system. New photovoltaic technologies using either organic or inorganic materials, such as semi-

transparent luminescent solar concentrators (LSC), dye-sensitised solar cells (DSCs), could be a promising alternative due to their 

transparency (space effective) and good solar conversion efficiency. For instance, Detweiler et al., 2015, have used transparent LSC 

to absorb unused photons in the green region and then re-emitted them as red photons. The red photons generated by fluorescence 

are either transmitted to boost algal growth or captured by a waveguide and directed to front-facing photovoltaic cells to be con-

verted into electricity [78]. However, for electricity generation purposes, the LSC filters have to be combined with a PV unit which is 

not an adequate space solution. In a similar manner, Nwoba et al., 2020, showed the successful outdoor cultivation of Nannochlo-

ropsis sp under spectrally selective insulated glazed photobioreactor (IGP). The IGP design enabled transmission of more than 75 % 

of visible light while blocking 90% of ultraviolet and infrared radiation. No significant difference in biomass productivity of IGP and 

standard plate PBR’s were observed, and significantly lower productivity was found in comparison to the raceway pond culture. One 
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should mention that 40% of the surface in the case of IGP-PBR was covered by an opaque cadmium telluride PV which can significantly 

affect the amount of light reaching the culture in the low irradiance region [79]. 

Another study relying on the same principle of using spectrally selective photovoltaic cells demonstrated the possibility of producing 

20.3 g m2/day of algal biomass and 220 Wh m2/day of electricity by utilising multiple bandgaps in a single system under an illumina-

tion of 7.2 kWh m2/day [72]. Recently, the filtering effect of a semi-transparent hydrogenated amorphous silicon-based solar cell was 

also proposed [80]. Optical modifications of thin solar cell layer thicknesses and reactive ion etching of the glass substrate allowed to 

maintain a high PV efficiency while maintaining the growth rate of microalgae growing test of Phaeodactylum tricornutum. The 

growth and performance of photosynthetic microalgae are highly sensitive to the quality and quantity of available light, which gen-

erally induces a change in microalgae composition. The effect of these optical filters on macromolecules composition of algal biomass 

was not investigated. 

Among other optical, semi-transparent dye-sensitised solar cells (DSCs) are a promising alternative due to the inexpensive fabrication 

costs and good performance Figure 13. In nature, light absorption by microalgae antenna complexes is followed by efficient charge 

separation across a membrane via photosynthetic reaction centre proteins (RCs). 

 

Figure 13: Schematic representation of a dye-sensitised solar cell constructed with a photo anode consisting of a dye-sensitised semiconducting 
oxide film, a counter electrode made of Pt coated glass substrate, and an electrolyte filled between the dye adsorbed photo anode and counter 

electrode [81]. 

Dye sensitised solar cells (DSCs) utilise an analogous mechanism to harvest sunlight and convert solar energy to electricity. In DSCs, 

the process begins with the photoexcitation of the dye, which is followed by electron injection into the conduction band of the oxide 

(TiO2 in this case) until it reaches the counter electrode as illustrated in Figure 13. The oxidised dye recovers its original state thanks 

to the redox system (electrolyte) which is itself regenerated at the cathode [82]. To the best of our knowledge, these devices have 

never been used as a surface cover for microalgae production. Therefore, in this thesis, this new option was tested as in a combined 

culturing system for microalgae, where the light source is selectively shared between the algal biomass through photosynthesis, and 

the production of photovoltaic energy through dye sensitised solar cells (DSCs).  
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 PAWaSto project 

 Goal and scope of the thesis 

End of pipe systems: The key for sustainable nutrient supply of algal biomass? 

Urban resources have the potential to fulfil microalgae basic need for nutrient and water supply. Thus, wastewater effluents should 

be of primordial importance for nutrient recovery as It contains valuable fertiliser which can be used for microalgae production if 

recovered properly (e.g. fertiliser) [83]. Urine contains less than 1% of the total volume of household wastewater and up to 80% of 

the nitrogen (N) and 40–50% of the phosphorus (P) [84]. Some studies have successfully used microalgae for the removal of nutrients 

such as phosphorus and nitrogen from concentrated human urine [88][89]. However, the urine content is highly diluted in wastewater 

effluents, which lowers the nutrient recovery potential. Since end-of-pipe systems dilute the nutrients, and therefore, their recuper-

ation is made harder. A new approach in applied research that considers source separation of household effluent for nutrient recov-

ery purposes was studied [85–87]. This separation enables the recovery of nutrients at the source level. Hereby, in this thesis, an on-

site sanitation system (OSS) based on a dry-toilet principal was considered as it provides a more concentrated nutrient effluent than 

those from conventional wastewater treatment plants. 

Besides the nutrients uptake that can be achieved during microalgae growth, the produced microalgal biomass could be further used 

as feedstock for bioenergy and biomaterial production. Nevertheless, microalgae production using domestic effluents faces several 

drawbacks for industrialisation. One of the main issues is related to the chemical and biological variability of these effluents (presence 

of viruses, bacteria, antibiotics, etc.) which affects the algae growth negatively. Furthermore, the produced algal biomass can only 

be used as feedstock for energy production and non-food application due to social acceptance issues.  

To overcome these issues, hydrothermal gasification process (HTG) was proposed as a potential solution for nutrient and energy 

recovery form domestic wastewater effluent (principal details in section 1.1.4). Operating at high temperature and pressure, the HTG 

allows sterilisation of household effluent (elimination of bacteria and viruses). Moreover, it allows the recovery of nutrients as HTG 

by-product through precipitation due to the drastic decrease of water density with a viscosity close to its gas-like value at the critical 

point of water. Finally, an energy rich gas is generally produced during HTG process due to the decomposition of organic matter 

present in the effluent. This energy rich gas can be converted to electricity using a solid oxide fuel cell (SOFC). 

From this perspective, the following points were investigated in this thesis and addressed as research questions: 

RQ1-1: Can we use on-site sanitation effluent as a feedstock for HTG process to recover nutrients and produce energy-rich gas? 

RQ1-2: What is the potential to use this energy-rich gas to generate electricity using a SOFC? 

RQ2: Is it feasible to use the HTG effluent as a microalgae growth medium? 

 

Dye sensitised solar cells and microalgae cells:  Compatibility or overlapping?  

One of the main novelties of this project is the use of dye-sensitised solar cells (DSC, or Grätzel cells) on top of the photobioreactor. 

Contrary to standard photovoltaics or solar concentrator, these cells are translucent photovoltaic and so allow the passage of wave-

lengths that are not used, leaving the rest of the light available for the microalgae. This could then significantly improve the solar 

energy harvesting and eventually protect the microalgae from excessive radiation in some cases. To our knowledge, this technology 

has never been tested before. In this thesis, two different ruthenium-dye were integrated fully at the illuminated structure of pho-

tobioreactor. The variation of growth kinetics, (2) microalgae pigments (chlorophylls and carotenoids) and (3) macromolecules 



Introduction 

34 

content (carbohydrates, proteins, and lipids) were investigated and compared to control cultures under two different solar simulated 

light intensities. The contribution of this new technology in the PBR was environmentally evaluated using life cycle assessment (LCA) 

technique. The results were expressed in terms of CO2 emission equivalents produced for 1kg of algae using standard and combined 

DSC-PBR.  

The main research questions concerning this combined technology were listed below: 

RQ3-1: What is the effect of DSC filter on the growth kinetics and the final microalgae biomass composition? 

RQ3-2: In term of CO2 emissions, what is the impact of adding a DSC panel to the structure of microalgae photobioreactor?  

 

Algal biomass for high-value compound extraction: wet biomass vs dry biomass  

Process integration is an approach where separate industrial processes are combined to create an additional value. Recent studies 

have provided considerable evidence that microalgae-derived bioactive compounds could play a vital role in bioenergy sectors of the 

algal industry. Microalgae offer high biodiversity with an enormous potential to produce bioactive compounds which are difficult to 

produce via synthetic routes such as carotenoids. In this thesis, the aim of this study was to extract carotenoid prior the HTG of algal 

biomass as a strategy to create added value. However, carotenoids extraction generally requires dry algal biomass and the use of 

toxics organics solvents such as hexane. As drying algal feedstock was not an option prior the hydrothermal treatment, the high 

moisture content was challenging for carotenoids extraction. Therefore, to fulfil the requirements of a HTG process, the potential of 

extracting carotenoids from high moisture algal biomass was studied in this thesis. Moreover, the extraction was performed in a 

pressurised vessel to simulate the HTG preheating step. A green solvent, 2-Methyltetrahydrofuran was selected as an ideal solvent 

for carotenoids extraction based on its Hansen solubility parameters and its recyclability (with increasing temperature, 2-MTHF is 

inversely soluble in water). The following research question was addressed in this part of the thesis:  

RQ4: What is the efficiency of carotenoids extraction from wet algal biomass and the potential of energy recovery from 

 residual biomass? 

 Project framework 

This work was performed thanks to the financial support of the former Commission of Technology and Innovation CTI (now Inno-

suisse), Swisselectric Research and Competence Center Energy and Mobility CCEM in the framework of the PAWaSto project. This 

thesis is part of the outcome of the research performed at EPFL, in the GR-LUD laboratory and at the Paul Scherrer Institute (PSI), in 

the research group of the Chemical Processes and Materials laboratory. 

The PAWaSto project stands for Photovoltaic Assisted Algae Production and Wastewater Treatment for Combined Heat and Power 

Generation and Storage (PAWaSto). It has officially started on January 2015 and was supported by the Competence Center Energy 

and Mobility (CCEM).  The different steps of the process, which is suggested as an integrated part of a district (indicated by the house) 

are summarised in Figure 14. The idea is to cultivate photosynthetic biomass (microalgae) in a combined photovoltaic-PBR system in 

order to increase the photo-conversion efficiency of solar energy. The integration of hydrothermal non-catalytic gasification for com-

bined heat and power generation was to fulfil the nutrient and energy demands of the algae system. Likewise, the nutrients and CO2 

needed for growth can be recycled, and biogas produced can be transformed into electricity via solid oxide fuel cells. The integration 

of such a concept in a building or district is envisioned in the frame of another future project. 
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Figure 14: Simplified scheme of the Photovoltaic assisted Algae production, and Wastewater treatment combined heat and power generation and 
Storage project, so-called (PAWaSto). 

Behind the complexity and interdisciplinary of this project, a lot of scientific experience was gained within a previous project carried 

out in our research group, “The SunCHem project”. The global vision in that project was to produce bio-methane via hydrothermal 

catalytic gasification and to capture CO2 using an algae-based process. Envisioned as a closed-loop system, the SunCHem process also 

allowed the recycling of nutrients, water, and CO2 and their reintegration in the algae growth cycle. 

 Nevertheless, limitations linked to the sulphur poisoning of the Ruthenium catalyst used in the gasifier unit were encountered in the 

SunCHem process and this due to the high ash content of the used microalgae [88,89].  This issue affected one of the decisions taken 

during the elaboration of the PAWaSto project. In the case of high sulphur content biomass, hydrothermal gasification without the 

catalyst was seen as the appropriate solution to avoid poisoning of the catalyst. This decision also affected the operation condition 

of the gasifier, as higher temperature was necessary to reach an interesting yield of gas production. 

Structure of the thesis 

The topics addressed by this thesis are organised and subdivided in chapters as follows. 

Chapter 1: Introduction 

The global vision of prospecting bioenergy from biomass in general, and from algae in particular, are discussed in the introduction of 

this thesis.  The requirements of microalgae cultivation systems and the current approach for reducing the energetic and environ-

mental impact as well as innovative integrated systems to promote sustainable processing of algal biomass debated in chapter 1 of 

this dissertation. 
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Chapter 2: Materials and methods 

Describes the methodologies, which are the underlying basis of this thesis and the experimental techniques that form the framework 

for the scientific results presented in the following chapters. This includes the nutrients recovery cycle, the photovoltaic-photobiore-

actor (DSC-PBR), the hydrothermal systems, and all the analytical instruments and methods applied in this thesis. 

Chapter 3: A combined hydrothermal gasification- solid oxide fuel cell system for sustainable production of algal 

biomass and energy 

In this chapter, a new composter sanitary system operating without external connection to sewer pipes was used to test the suitability 

of its effluent as a feedstock for the HTG process. Mainly, H2 rich gas was obtained from the HTG process at 600 °C, 28 MPa. For an 

efficient power-generation system with low emissions, experimental tests combining solid oxide fuel cells (SOFC) with the obtained 

gas from the HTG were performed. 

Chapter 4: Recalcitrant nitrogen-containing organics from the hydrothermal conversion of algal biomass 

This chapter evaluated the possibility to treat the hydrothermal (HT) effluent by growing microalgae while producing renewable algal 

biomass. Upon continuous and multiple recycling of this hydrothermal effluent, in principle suitable for algal growth, the concentra-

tions of some recalcitrant nitrogen organic compounds (NOC’s) are likely to increase and could potentially attain toxic thresholds. 

The formation of recalcitrant organic products is mainly the result of algal biomass decomposition through a complex set of chemical 

reactions that occur during the hydrothermal gasification process. Toxicity assay with some identified NOC’s in the HT effluent were 

performed with three different algae strains. 

Chapter 5: Enhancing algae biomass production by using dye-sensitised solar cells as filters 

Chapter 5 presents the experimental work carried out integrating photovoltaic dye sensitised solar cells (DSC) on the photobioreactor 

surface, to increase the impinging light utilisation efficiency. Two different colours of dye sensitisers were tested, DSC-green and DSC-

red were integrated to the illuminated surface of a PBR. Different constant light intensities were investigated to ascertain the effect 

of DSC on microalgal growth kinetics and macromolecules content (lipids, carbohydrates, proteins). The contribution of this new 

technology in the PBR was environmentally evaluated using life cycle assessment technique (LCA). The results were expressed in 

terms of CO2 emission equivalents produced and electricity generated. 

Chapter 6: Biomass valorisation: Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas 

production from residual biomass 

A combined process for carotenoids extraction and efficient bioenergy recovery from the wet microalgae biomass is proposed. High 

added-value products could thus be extracted prior the hydrothermal gasification step of the algal biomass into synthetic natural 
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gas. The economic sustainability of biofuel production from algal biomass as well as the large energy demands of microalgae cultiva-

tion and harvesting was addressed in this chapter. 

 

Chapter 7: Final remarks 

In this last chapter. The concluding observations and possible perspective are presented for all the different topics discussed in the 

previous chapters. 

 

 

 





 

 

 

 Materials and methods 

 

The following chapter describes the methodologies, which are the underlying basis of this thesis and the experimental techniques 

that form the framework for the scientific results presented in the following chapters. This includes the nutrients recovery cycle, the 

photovoltaic-photobioreactor (DSC-PBR), the hydrothermal systems, and all the analytical instruments applied in this thesis. The 

roman number reported as superscript notation indicates the original publications on which certain sections of this chapter were 

taken. 

 

Figure 15: Production of C. Vulgaris and its valorisation within the scope of PAWaSto project. 

Material from this chapter has been partially published in: 

(I) E. Damergi; J.-P. Schwitzguébel; D. Refardt; S. Sharma; C. Holliger, C. Ludwig.: Extraction of carotenoids from Chlorella vulgaris 

using green solvents and syngas production from residual biomass; Algal Research. 2017. DOI: 10.1016/j.algal.2017.05.003. 

(II) M. Bagnoud-Velásquez; E. Damergi; G. Peng; F. Vogel; C. Ludwig: Fate and reuse of nitrogen-containing organics from the hydro-

thermal conversion of algal biomass; Algal Research. 2018-04-21. DOI: 10.1016/j.algal.2018.04.005 

(III) E. Damergi; H. Madi; S. Sharma; N. Boukis; F. Marechal; J. V. Herle; C. Ludwig: A combined hydrothermal gasification - solid oxide 

fuel cell system for sustainable production of algal biomass and energy; Algal Research. 2019. DOI: 10.1016/j.algal.2019.101552. 

 (IV) E. Damergi; P. Qin; S. Sharma; M. K. Nazeeruddin; C. Ludwig: Enhancing algae biomass production by using dye-sensitised solar 

cells as filters, (ready for submission) 
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 Nutrient recovery system: cooperative equilibre 

Sensitive to environmental concerns such as sustainable water and nutrients management, the cooperative of habitations Equilibre 

in Geneva undergo constructions with on-site sanitation (OSS) systems in 2011. In collaboration with atba architects office, a 50-users 

building were constructed with an objective of treating 100% of effluents and valorise the dejections (black water and urine) via 

composting and phyto-purification for greywater. Figure 16 illustrates the global structure of their concept. 

 

Figure 16: On-site sanitation (OSS) systems developed by atba architects office, cooperative equilibre, Geneva: a 50-users building were constructed 
with an objective of treating 100% of effluents and valorise the dejections (black water and urine) via composting and phyto-purification. 

 Phyto-purification for greywater (GW)   

Greywater was treated separately through a system of phyto-purification. It is first decanted in a pit that collects most of the grease. 

Then it crosses a draining bed (with a waterproof bottom) composed of earth and gravel with Phragmites australis reeds planted on 

the top of it. The reeds have well-developed roots that provide enzymes and carbohydrates used by microorganisms to grow. They 

degrade organic matter and mineralise nitrogen and phosphorous, which will be available for plants. Reeds are well adapted to water-

saturated soils and have a strong purification potential. After having crossed the system, the water is released clean in the rainwater 

sewer. The biggest constraint this system poses for the dwellers is to use biodegradable washing products to avoid harmful sub-

stances to the treating bacteria. An awareness of the habitants is necessary. 

 Composter chamber: Leachate effluent 

Faeces and urine are collected through dry toilets installed on each at of the 3-floors building. Dejections are achieved in a tank in 

the basement by a vertical pipe. A fistful of wood chips is added to absorb urine and limit urease action, balance C/N ratio and 

improve compost quality. The toilet bowl of each apartment (13 apartments in total) is directly connected to the composting cham-

ber/tank by a vertical pipe. The composting tank is divided into three compartments. The first one collects fresh matter where aerobic 
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bacteria start the composting process and decrease the dejection volume decrease by three to six-fold. In the second compartment, 

Eisenia fetida worms are maturing the compost by mixing, airing and maturing it. The compost produced is used in the gardens of 

the building. At the bottom of the composter, a brownish liquid consisting mainly of urine and organic fraction is the only fraction 

that is pumped into the conventional sewer system without any valorisation. In this thesis, the effluent was used as a feedstock for 

the hydrothermal treatment. 

 

Figure 17: Composter chamber, a) fresh compost (2-month-old), b) Leachate effluent recovered at the bottom of the composter. 

For the sampling, the automatic pumping of composters was switched off and done manually on the sampling day. This process 

allowed to accumulate leachate effluent produced between the performed samplings. The samples were transported in polyethene 

high-density jerrycans (PE-HD) of 5 L. Daily sampling was performed in order to evaluate the fluctuation of the chemical composition. 

All samples were then stored in the fridge at 4°C prior to physical and chemical characterisations. 

 Leachate effluents analysis  

2.1.3.1 Physical characterisation 

The pH and conductivity were measured with a pH meter (In lab 735 ISM probe, Mettler Toledo). The salinity was measured with a 

salinity refractometer (Atago, master refractometer).  

2.1.3.2 Chemical characterisation 

Ion chromatography (Dionex ICS-3000): was performed to measure phosphates, nitrates, nitrites, ammonium, and other ions con-

centrations in the samples. Samples were diluted 200 times to fit the calibration range. The obtained results were used to calculate 

loads per person per day for inorganic nitrogen and phosphorus. Calculation is based only on the days when the total volume of 

effluent was collected.  

Gas chromatography, coupled with mass spectrometry (GC-MS): Cyclic amide were quantified using gas chromatography coupled 

with mass spectrometry (Agilent Technologies 7802A) following a known method [90]. The separation was achieved with a Varian 

CP-sil 8 column (30 m×0.25 mm×0.25 μm) with helium at a flow rate of 1 mL/min. A 1μL injection of the extract was performed at 

275°C. 
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Elemental analysis (CNS): The elemental analysis of Carbon, Nitrogen and Sulphur (CNS) was performed at the Chemical process and 

material lab at Paul Scherrer Institute (LECO TruSpec Micro instrument). Samples were previously freeze-dried, and thus, the results 

are presented on a dry matter basis.  

Inductively coupled plasma optical emission spectroscopy (ICP-OES): ICP-OES was performed at the Chemical process and material 

lab at Paul Scherrer Institute to determine concentrations of several elements in the leachate samples. Aqueous samples were neb-

ulised and sprayed into the argon plasma flame (temperature 6000-8000 °C) on a Varian Liberty 110 ICP-OES. The samples were 

acidified with a drop of concentrated HCl to assure that metals do not precipitate during sample storage. Leachate samples were 

digested for ICP-OES measurements with 6 mL HNO3 and 2 mL HF according to the following method: 

- Rotor 8SXF100 (MW3000 Microwave from Anton Paar), each vial (with TFM-Liner and high-pressure ceramic jacket) 200 

mg algae sample, 3 mL HNO3, 1 mL HF. 

- Fan 1 (800 W - 5 min ramp - 40 min hold, 0 W - 0 min ramp - 20 min hold. - Fan 2, (cooling step), p-rate: 0.3 bar/s.  

- Finally, a complexation step takes place with 12 mL H3BO3 (cold saturated): Fan1 (900 W - 0 min ramp - 30 min hold), 

cooling step.  

 Hydrothermal non-catalytic gasification of leachate effluent 

Supercritical water gasification set-up was composed principally of a piston to feed the system at high pressure, an insulated and 

heated gasification tubular reactor, two filters, a gas-aqueous separator, a gas-meter and a bottle to recuperate the aqueous phase 

(AP).  A tubular reactor (ID = 1.8 cm, L = 152 cm) of a total volume of 387 cm3 was used.  
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Figure 18: (top) Simplified schema of non catalytic hydrothermal gasification unit ( Elena setup). (bottom) Photo of the Elena hydrothermal gasifica-

tion unit, KIT Germany. 

After leaving the reactor, the hot gaseous mixture was cooled down, its pressure relieved using a backpressure regulator (TESCOM), 

and the gas separated from aqueous phase AP (Figure 19), which was sampled, weighed and analysed. The volume of produced gas 

was measured using a gas meter (TG 3, Ritter Apparatebau GmbH) and analysed by a gas chromatograph (HP 5890, Hewlett Packard).  

Before experiments, several hours of cleaning by feeding pure water into the reactor were needed to remove any tar of residual 

biomass from previous tests. 
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                                                                            Figure 19: Gas separated from aqueous phase AP. 

 

 

 

Table 4: Parameters used during the non-catalytic hydrothermal gasification of Leachate effluent. 

Experiment performed using continuous non-catalytic hydrothermal gasification and leachate as feedstock are described in Table 4. 

For all experiments, collected data represents steady-state operations as they were run for enough time before sampling and col-

lecting data. Aqueous phases from both tests are referred to as AP1 and AP2. These effluents were recovered from being used later 

as a growth medium in the algae cultivation experiment.  

 

Figure 20: F01 filter cleaning and recovery of precipitated salts. 

The aqueous phase (AP1, AP2) were thoroughly characterised for its organic and inorganic contents. Total organic carbon, total inor-

ganic carbon measurements were performed with a TOC, (Elementar) and ultimate analysis (elemental carbon, nitrogen and sulfur) 

was performed using a CNS analyser (LECO TruSpec Micro instrument). Conductivity, pH, and salinity were analysed.  

HPLC-RI (1260 infinity, Agilent technologies) was used to determine the amount of organic acids, by means of a Biorad Aminex HPX-

87H column at 60 °C coupled with a refractive index detector. The injection volume was 20 μL using 0.005M sulphuric acid as a mobile 

phase, and the flux rate was 0.6 mL/min.  

Experiment Biomass conc Temperature Pressure Flow rate Duration 

 [DW%] [°C] [bar] [g/h] [h] 

M1 2.29 600 280 200 40.8 

M2 2.29 600 280 350 5.1 
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(ICP-OES) was also performed to determine concentrations of several elements in the AP1 and AP2 samples. Cyclic amides were 

quantified using Ion chromatography (Dionex ICS-3000). The method was described previously in section 2.1.3.    

Once an experiment was completed, the system was cleaned, and effluents from filter F01 and reactor were recovered for further 

analysis. The two primary effluents of the reactor are the produced gas that is diverted into a gas-meter (Ritter Apparatebau GmbH, 

TG 3) and the aqueous phase (AP) that is recuperated in a glass bottle which is weighted to monitor the production rate.  

Carbon gasification efficiency and the mass balance of carbon, nitrogen phosphorus and sulfur were then calculated according to the 

formulas below: 

- Total organic carbon conversion (Xc) from the feed to the reactor effluent was calculated according to the 

following equation: 

𝑥𝑥𝑐𝑐(%) =
𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
. 100% 

Equation 5: Total organic carbon conversion (Xc). 

Where m (TOCReactor)and m (TOCFeed) are the mass flow rates of carbon (TOC) in the reactor effluent and in the feed, respectively. 

- Carbon gasification efficiency 𝐺𝐺𝐺𝐺𝐺𝐺(%) is the relation between the total amount of carbon in the gas phase the 
total amount of aqueous phase and the total amount of carbon in the feed, defined as: 

𝐺𝐺𝐺𝐺𝐺𝐺(%) =
𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺𝐺𝐺
𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

× 100 

Equation 6: Carbon gasification efficiency GEc (%). 

Where mCFeed is the mass flow rate of carbon in the feed and mCGas corresponds to the mass flow rate of carbon in the gas and the 

mass flow rate of carbon in the aqueous phase.  

- The nitrogen, phosphorus and sulphur recoveries calculated during the experiments are expressed as: 

𝑁𝑁(%) =
𝑚𝑚𝑚𝑚𝐴𝐴𝑃𝑃
𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 × 100 

Equation 7: Nitrogen recovery N (%). 

𝑃𝑃(%) =
𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴
𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 × 100 

Equation 8: Phosphorus recovery P (%). 

𝑆𝑆(%) =
𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴
𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 × 100 

Equation 9: Sulphur recovery S (%). 

 Hydrothermal catalytic gasification of algal biomass 

As the salt content in algal biomass is less critical than in the case of the leachate effluent, a hydrothermal gasification with the 

presence of a catalyst was preferred as it allows the conversion of organic carbon to methane at lower temperature and with a higher 

carbon conversion efficiency (avoid the deactivation of the catalyst in the presence of sulphur salts). The conversion plant consists of 
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six main sections: feeding section, salt separator, salt removal section, gasification reactor, pressure control, and release phase sep-

arator. The latter was described in detail elsewhere [89].  Briefly, microalgae biomass slurry was pumped at the desired flow rate to 

the salt separation unit (SITEC, stainless steel grade) using a hydraulic system. The salt separator has two outlets, one for delivering 

the liquefied feed to the gasification reactor (located at the top) and another for extracting the concentrated HT effluent (located at 

the bottom). The liquefied feed leaving the top of the salt separator was transferred to the catalytic reactor from the bottom (SITEC, 

stainless steel grade 1.4435; inner length, 1515 mm; inner diameter, 36 mm). The lower part of the reactor was filled with 713 g (on 

a wet basis, 5.2 wt. % H2O) of a commercial ZnO adsorbent (Johnson Matthey Catalysts, KATALCO 32−5) containing 60−100 wt % of 

ZnO, and the upper part was filled with 493 g (on a dry basis) of a commercial 5% Ru/C catalyst (BASF). 

 

Figure 21: Detailed flow-scheme of the catatlyic-hydrothermal unit at Paul scherrer institute, Switzerland [91]. 

Separation of different products at the end of the experiment was carefully performed starting with release of gases into gas bags 

while the liquid HT effluents, namely salt brine (SB, obtained from the salt separation unit, is a very rich effluent containing both 

inorganic and organic compounds) and reactor water (RW, collected from the gasification unit and providing a tiny fraction of inor-

ganics) were vacuum filtered. A detailed flow-chart is displayed in Figure 21. 

The elemental mass balance of HT effluent was calculated based on the element recovery in the aqueous phase. Once we determined 

the element distribution for the aqueous phase, the rest is considered to have entered the oil phase. The element recovery (% w/w) 

calculation is based on the ratio of the weight fraction of a particular element in the HT aqueous phase to the weight fraction of the 

same element in the original feedstock. 

 Microalgae growth experiments 

 Selected algae and growth medium  

Two different growth mediums were used to growth Chlorella vulgaris (SAG 211-11B), Chlorella sorokiniana (SAG 211-32), Haemoto-

coccus pluvialis (SAG 192.80), and Scenedesmus vacuolatus (SAG 211-8k), Phaeodactylum tricornutum (SAG 1090-1a). Chlorella spe-

cies are known to be robust under stress conditions and used for the HT effluent growth tests. All microalgae strains were provided 

axenic from the culture collection of algae and protozoa ((SAG), Gottingen Germany).  
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Medium 1 ‘Doucha medium (DM)’: DM was used for a maximum theoretical microalgae concentration of 2g/L. The nutrient require-

ments for the experiments were 0.3667 g CO(NH2)2, 0.0790g KH2PO4, 0.0680 g MgSO4·7H2O, 0.0133 g EDTA-FeNa, 0.0579 g 

CaCl2·6H2O, as well as trace elements: 0.277 mg/L H3BO3, 0.317 mg/L CuSO4·5H2O, 1.1 mg/L MnCl2·4H2O, 0.2 mg/L CoSO47H2O, 0.9 

mg/L ZnSO4·7H2O, 0.057 mg/L (NH4)6Mo7O24.4H2O, 0.005 mg/L (NH4)VO3. The pH was adjusted using NaOH at 7 (1M) [92]. 

For brackish water species such as Phaeodactylum tricornutum (SAG 1090-1a), an adapted f/2 medium was used. The pH was adjusted 

using NaOH at 7 (1M).  

Medium 2 ’Modified F2 medium’: 75 mg/L NaNO3, 5.65 mg/L NaH2PO4·2H2O. Trace elements: 4.16 mg/L Na2EDTA, 3.15 mg/L 

FeCl3·6H2O, 0.18 mg/L MnCl2·4H2O, 0.022 mg/L ZnSO4·7H2O, 0.01 mg/L CoCl2·6H2O, 0.006 mg/L Na2MoO4·2H2O, 0.01 mg/L 

CuSO4·5H2O. Vitamins: 0.1 mg/L Thiaminhydrochloride (B1), 0.0005 mg/L Cyanocobalamin (B12) [93]. The solution is prepared in 

artificial saltwater (Instant Ocean, Aquarium Systems) with 20g/L of salts. Thus, all the above concentrations are given in mg per litre 

of artificial saltwater. 

For culture system, microalgae growth tests were performed in batch mode using both open and close photobioreactor. 

 Microalgae growth kinetics  

For measuring growth kinetics,  cells daily counting was performed using an acoustic-assisted focusing flow cytometer (Attune NxT, 

Invitrogen), equipped with a 488 nm excitation laser. Forward-scattered light (FSC) and side-scattered light (SSC) are measured, and 

both give information on microalgae cells passing through the beam. FSC is positively correlated to the cell size, and SSC is positively 

correlated to internal cell complexity.  

 

Figure 22: Flow Cytometry Fundamental Principle, adapted from [94]. 

Nonalgal particles were excluded from the analysis by setting an acquisition threshold on BL3 (emission of autofluorescence of 

chlorophyll-a at 670 nm) as a gate. Total cells present in a known volume of culture were counted, and cell density was subsequently 

calculated. 

2.2.2.1 Specific growth rate 

Specific growth rates (µ) expressed as day− 1 were calculated using the following formula: 

μ =
Ln(Nt) − Ln(No)

t − t0
 

Equation 10: Specific growth rates (µ). 
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For each cytometric parameter investigated, measurements were obtained on a logarithmic scale. Data were collected and analysed 

using the Attune software. All samples were carried out in triplicates.  

2.2.2.2 Doubling time  

The doubling time of a microalgae exhibiting exponential growth is the time required for this population to double. Cell doubling time 

can be calculated in the following way using specific growth rate:  

Td =
0.693
μ

 

Equation 11: Doubling time. 

2.2.2.3 Dry weight (DW) 

At the end of each experiment, biomass concentration was measured by filtering 10 mL of fresh sample on previously weighed and 

dried filters (0.22 µm cellulose acetate filter, Whatmann). Filters were dried at 85 °C for 3h. For each experiment, an average of 3 

measurements was performed for the dry weight (DW) determination. 

2.2.2.4 Pulse amplitude modulation Fluorometry (PAM) 
Non-invasive fluorescence measurements were obtained using a PAM 2500 Chlorophyll Fluorometer (Heinz Walz Gmbh, Germany) 

equipped with MKS-2500 chamber containing a micromagnetic stirrer for homogeneous measurements. Dark-adapted samples were 

incubated for 15 min, at 25 °C. Aliquots of 1mL samples were dispensed into Rapid light curves (RLCs) which were generated by 

applying a sequence of increasing actinic irradiance in 15 preset discrete increments ranging from 10 µmol photons m–2 s–1 to 1000 

µmol photons m–2 s–1. Each actinic light incubation lasted for 10 s prior to a saturation pulse of blue light (0.6 s at 8 000 µmol photons 

m–2 s–1). The quantum yield of photochemical energy conversion ɸ(PSII), quantum yield of non-regulated non-photochemical energy 

loss ɸ(NO) and quantum yield of regulated non-photochemical energy loss in PS II ɸ(NPQ) were all measured every 24 h [95][96]. 

For dark acclimated autotrophic organisms, the reaction centres are open, and photosynthesis is at a maximum. Consequently, it 

corresponds to the minimum chlorophyll fluorescence, called F0. If a strong light pulse is applied, it closes the reaction centres, and 

photosynthesis is at its lowest value while the chlorophyll fluorescence is at its highest and the maximum of fluorescence is called 

Fm. For light-adapted samples, the maximum fluorescence is defined as F’m. All the listed below parameters were calculated 

automatically using PamWin-3 software. 

The maximum quantum efficiency related to PS II described as Fv/Fm (variable to maximum fluorescence), gives information about 

the global health status of PS II. Low values are inherent to stress. It is determined as follows:  

(𝐹𝐹𝐹𝐹/𝐹𝐹𝐹𝐹) =  
 (𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹)

𝐹𝐹𝑚𝑚  

Equation 12: The maximum quantum efficiency related to PS II. 

The quantum yield of photochemical energy conversion in PS II indicates the fraction of light energy converted in photochemical 

work. It is described as: 

ɸ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =  
 (𝐹𝐹’𝑚𝑚− 𝐹𝐹)

𝐹𝐹’𝑚𝑚  

Equation 13: ɸ (PSII), the quantum yield of photochemical energy conversion PS II. 

where F is the fluorescence yield measured briefly before application of a saturation pulse. 
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The quantum yield of regulated non-photochemical energy loss in PS II ɸ(NPQ) is calculated as: 

ɸ (NPQ) =
F

F’m −
𝐹𝐹
𝐹𝐹𝐹𝐹 

Equation 14: ɸ(NPQ), quantum yield of regulated non-photochemical energy loss in PS II. 

The quantum yield of the non-regulated non-photochemical energy loss in PS II ɸ(NO) is given by the following equation: 

ɸ (NO)  =
F

Fm
 

Equation 15:  ɸ(NO), the quantum yield of non-regulated non-photochemical energy loss in PS II .                                                         

The sum of the three quantum yields is equal to 1: 

ɸ (PSII) +  ɸ (NPQ) +  ɸ (NO) = 1 

Equation 16: The sum of the three quantum yields. 

 Microalgae growth using aqueous phase from HTG 

C. vulgaris obtained from culture collection of microalgae (SAG, Gottingen), strain 211-11b was grown on Doucha medium with an 

inoculum containing an initial concentration of 105 cells/mL. The culture was incubated in a temperature-controlled incubator (27 ± 

1 °C) at a light intensity of 180 µmol photons m-2 s-1 measured on the surface of the cultures and a dark/light cycle of (8h/16h). 

Experimental conditions were set up for the growth of C. vulgaris in the aqueous phase by adjusting the nitrogen concentration (the 

key nutrient for algae) to be equal to that established for the commercial growth medium with a dilution factor of five. The inoculum 

came from an adapted pre-culture with the same cultivation parameters are described above. For growth kinetics, cells daily counting 

was performed using an acoustic-assisted focusing flow cytometer. 

 Microalgae growth for high-value product extraction 

2.2.4.1 Microalgae cultivation and harvesting 

C. vulgaris was cultivated in an open thin layer photobioreactor situated in a greenhouse on the Grüental campus of the Zurich 

University of Applied Sciences in Wädenswil, Switzerland. The design of the reactor has been developed at the Institute of Microbi-

ology, Academy of Sciences of the Czech Republic, at Trebon [97]. With C. vulgaris, cultivation reaches a photosynthetic efficiency of 

approximately 7% and cell concentrations of up to 50 g/L [97]. In this study concentrations as high as 30 g/L were reached. 
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Figure 23: Open thin layer photobioreactor situated in a greenhouse on the Grüental campus of the Zurich University of Applied Sciences in 
Wädenswil. 

The algal biomass was harvested using a conical plate centrifuge (Type SB7-47-076, Westfalia Separator AG), obtaining slurry with 

20% dry weight content, and then stored at -20 °C. Before extraction, the microalgae biomass was then freeze-dried using a lyophiliser 

(CHRIST, LCG lyo Chamber Guard) at -70°C and low pressure. As the experiment addressed extraction from both wet and dry biomass, 

the lyophilised biomass was either rehydrated to 50% moisture content or used directly without hydration (moisture content less 

than 5%). 

2.2.4.2 Standard solution preparation and pigments quantification  

Analytical and HPLC-grade solvents (acetonitrile, methanol, ethyl acetate and acetone) were obtained from Merck (Darmstadt, Ger-

many). Trans carotenoids used as external and internal standards (astaxanthin, β-carotene, canthaxanthin β-apo-8'-carotenal, vio-

laxanthin) were purchased from Sigma Aldrich, USA, whereas lycopene and lutein were purchased from AppliChem, Germany. 

Before Accelerated Solvent Extraction (ASE), 0.2 g of lyophilised C. vulgaris was ground into powder with pestle and mortar. 5 mL of 

80% acetone was added to the powder and followed by centrifugation at 2000 g for 6 min at 5 °C. The contents of chlorophyll a, 

chlorophyll b, total chlorophyll (a+b) and carotenoids in the supernatant were determined by measuring the absorbance (A) at 663, 

646, and 450 nm, which are the major absorption peaks of these pigments. Concentrations were calculated, according to Jeffrey and 

Humphrey method [98]. The following calculations are relative to 80% of acetone extract and estimated as total extraction yield: 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑎𝑎 µg
𝑚𝑚𝑚𝑚� = 12.25 (A663) − 2.55 (A646) 

Equation 17: Chlorophyll a content (µg/mL). 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑏𝑏 µg
𝑚𝑚𝑚𝑚� = 20.13 (A646)− 4.91 (A663) 

Equation 18: Chlorophyll b content (µg/mL). 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑎𝑎 + 𝑏𝑏 µg
𝑚𝑚𝑚𝑚� = 17.76 (A646) + 7.34 (A663) 

Equation 19: Chlorophyll a+b content (µg/mL). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 µg
𝑚𝑚𝑚𝑚� = 4.69 (A440) − 0.267(Chl(a + b)) 

Equation 20: Carotenoids content (µg/mL). 

For the HPLC quantification, the standard stock solutions of β-carotene, violaxanthin, and lutein were prepared in 100% ethanol, 

while astaxanthin, lycopene and canthaxanthin were prepared in hexane. The internal standard solution was prepared by diluting β-
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apo-8'-carotenal with acetone to a final concentration of 15 µg/mL. All the above solutions were stored at -20°C. Their concentrations 

were evaluated spectrophotometrically according to their specific absorption coefficients [99]. 

The concentrations of carotenoids (μg/g) were calculated using recovery factors relative to the internal standard (Equation 21). The 

recovery factor (RF) equalled the peak area of the internal standard in standard solution divided by the peak area of the internal 

standard after sample extraction.  

W = RF ×  
Amount of carotenoids in sample [µg] ∗ 100 

 sample weight [g]  

Equation 21: Carotenoids content in (µg/g) of dry biomass. 

Where W is the carotenoids content in µg/g dry biomass and RF is the recovery factor. 

2.2.4.3 HPLC for carotenoid identification and quantification 
Once the extraction was done and the solvents were evaporated under continuous nitrogen gas stream, the residues were resus-

pended in 5 mL acetone: hexane (2:3, v/v) and filtered with 0.2 µm hydrophobic PTFE filter prior to injection into the High-Perfor-

mance Liquid Chromatography (HPLC) system. The composition of the carotenoid extract was analysed by HPLC coupled with a pho-

todiode array detector, carried out in a Pelliguard LC18 guard column connected to a Vydac 201TP54 (250x4.6 mm) reverse phase 

C18 column. The injection volume of standards and samples was 15 μL. According to Strati et al. [99], the most appropriate solvent 

system was found to be composed of acetonitrile, 1-butanol and methylene chloride and applying a specific gradient elution as de-

scribed in [99]. The UV-visible spectra were obtained between 450 and 570 nm. The flow rate was maintained at 1.5 mL/min and the 

column temperature at 25 °C. 

2.2.4.4  Accelerated Solvent Extraction (ASE)  

The homogenised samples in duplicates (respectively 1 g for dry and 2 g for 50% DW sample) were weighed on a precision balance 

with acceptation criteria of 0.0002 g.  

Extractions were performed with two different solvents, namely 100% MTHF and a 1:1 mixture of MTHF and ethanol. An accelerated 

solvent extraction system ASE200 from Dionex Corporation (Sunnyvale, CA, USA) was used that was equipped with 11 cm3 stainless 

steel extraction cells, 40 cm3 collection vials, and a solvent controller unit Figure 24. 

Extractions were performed at two temperatures (40 and 110 °C) for fixed times (15 and 30 min) and constant pressure (1500 psi, 

103 bars). An extraction cell heat-up was carried out for a time, which changed depending on extraction temperature; 2 min heat-up 

was used when extraction temperature was set at 40 °C, and 6 min at 110 °C. After the extraction, the solvent was purged from the 

cell with N2 gas and depressurisation did occur. Between extractions, a rinse of the complete system was made to avoid any extract 

carry-over. 

The liquid extracts obtained were protected from light and stored at -20 °C until solvent evaporation with a continuous stream of 

gaseous nitrogen. Extraction yield was calculated as the ratio of the dry weight of extract to the dry weight of microalgae biomass 

used for the extraction. 
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Figure 24: Detailed flow-scheme of the accelerated solvent extractor (ASE). 

2.2.4.5 Elemental composition and High Heating Value (HHV) 

Elemental quantification of carbon, hydrogen and nitrogen contents were done with a LECO TruSpec Micro instruments, and oxygen 

was quantified with LECO RO-478 device and sulphur was quantified with LECO CHNS-932 device. For the estimation of the High 

Heating Value (HHV), computation from Sokhansanj was used [100]: 

𝐻𝐻𝐻𝐻𝐻𝐻(𝑑𝑑𝑑𝑑𝑑𝑑) = 0.35 × 𝑋𝑋𝐶𝐶 + 1.18 × 𝑋𝑋𝐻𝐻 + 0.1 × 𝑋𝑋𝑆𝑆 − 0.02𝑋𝑋𝑁𝑁 − 0.1 × 𝑋𝑋0 − 0.02 × 𝑋𝑋𝑎𝑎𝑎𝑎ℎ 

Equation 22: High Heating Value (HHV) calculation. 

Where Xi is the mass fraction (% mass dry basis) of compound i. In order to have a rough estimation of the ash mass fraction, the 

mass fraction of the elements was taken. 

𝑋𝑋𝑎𝑎𝑎𝑎ℎ = 100 −  [ΣiXi]    

Equation 23: Ash mass fraction calculation. 

 Microalgae growth using DSC-PBR technology 

2.2.5.1  Dye sensitised solar cell module DSCs 

The prototype of the designed DSCs panels used in the structure of the bioreactors were provided by SOLARONIX, Switzerland (Serial 

numbers, DSC-R:120216SX02; DSC-G: 160216SX01). Each DSC panel was made of two 100×100 mm glass substrates spaced by 4 mm 

for electrical contacts. The active part contained in a 65.1 cm2 zone with 11 cells connected in series (each separated by 2 mm). The 

mesoporous TiO2 film and iodide/iodine (I-/I3-) redox couple were used as the semiconductor and the electrolyte, respectively. Among 

several dyes, two ruthenium complexes (N719-red panel and N749-green panel) were chosen as the light harvester to ensure high 

transparency in the wavelength range absorbed by microalgae culture. Additionally, a normal glass (T1) and a DSC panel without the 

dye (T1’) were used as the reference in order to check the effect of the different material on the transmitted spectrum. In order to 

evaluate the contribution of the different materials in the absorbance of DSC panel, the UV–Vis Absorption Spectra were measured 

between 300–700 nm for DSC-R, DSC-G and DSC-T1 and T1’.  

2.2.5.2 Power conversion efficiency (η) of DSCs 

Solar cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by 

the solar cell [101]. The open-circuit voltage, VOC, is the maximum voltage available from a solar cell, and this occurs at zero current. 
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The short-circuit current is the current through the solar cell when the voltage across the solar cell is zero. The maximum power 

output (Pmax) where the solar cell delivers most of its electrical power is determined by the maximisation of V*I. The fill factor (FF) is 

defined as Pmax divided by the product of Isc and Voc, which reflects the quality of a solar cell [101]. The overall solar energy to elec-

tricity conversion efficiency (η) is calculated by the ratio of the maximum output power to the intensity of the incident light (Pin).  

𝐹𝐹𝐹𝐹 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑉𝑉𝑉𝑉𝑉𝑉
 

Equation 24: Fill factor of a solar cell. 

η =
𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑉𝑉𝑉𝑉𝑉𝑉 × 𝐹𝐹𝐹𝐹

𝑃𝑃𝑃𝑃𝑃𝑃
 

Equation 25: Efficiency of a solar cell. 

The nominal power (Peak Power or Pmax) of a photovoltaic module or solar panel is determined by measuring current and voltage 

while varying resistance under defined illumination. The specific testing conditions are specified in standards such as IEC 61215,  

IEC 61646 and UL 1703; specifically, the insolation level is 1000W/m2, with a spectrum similar to sunlight hitting the earth's surface 

at latitude 35°N in the summer. A standard airmass of 1.5 and temperature of the cells at 25°C is assumed. 

𝐸𝐸 = 𝐻𝐻 ×  η × A 

Equation 26: Electrical energy generated in the output of a photovoltaic system (losses not included). 

E in kWh is electrical energy generated, H the annual average solar radiation on tilted panels (shadings not included), η = solar panel 

efficiency (%) and A = Total solar panel Area (m²). Another formula can be used to calculate the energy production of the DSC module. 

This formula includes the performance ratio, which is a very important value used to evaluate the quality of a photovoltaic installation 

as it gives the performance of the installation independently of the orientation, inclination of the panel. It also includes all losses such 

temperature losses (5% to 18%), shadings and losses owing to presence of dust, snow (2%). 

𝐸𝐸 = 𝐻𝐻 ×  η × A × PR 

Equation 27: Electric energy generated in the output of a photovoltaic system (losses are included). 

Where PR = Performance ratio, coefficient for losses (range between 0.5 and 0.9, default value = 0.75). 

2.2.5.3 Microalgae culture and growth kinetics measurements 

Starting culture of C. vulgaris and H. pluvialis tests were conducted at a constant temperature 25°C ±1 with an initial cell density of 

1·105 cell/mL. Starting cultures were subject to a first adaptation period under low simulated solar light intensity. The growth tests 

were performed during two weeks inside the designed PBR-T1 (standard glass, T1). As shown in Figure 25, each PBR is divided into 

two equal compartments of 120 mL capacity each. All compartments of the bioreactors were continuously bubbled with 2% CO2/air 

mixture v/v and operated under feed batch condition. The pH was stabilised near 7 with a NaOH 1M solution.  A 200 mL nutrient-

rich medium ‘Doucha medium’ was used for a maximum theoretical microalgae concentration of 2 g/L.  

For measuring growth kinetics, cells daily counting was performed using the Attune acoustic-assisted focusing flow cytometer (Attune 

NxT, Invitrogen) and total cells present in a known volume of culture and doubling time were subsequently calculated according to 

the formulas given is section 2.2.1. For each cytometric parameter investigated, measurements were obtained on a logarithmic scale. 

Data were collected and analysed using the Attune software. All samples were carried out in triplicates.  

http://solar-facts-and-advice.com/insolation.html
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In addition, the quantum yield of photochemical energy conversion ɸ(PSII), Quantum yield of regulated non-photochemical energy 

loss ɸ(NO) and Quantum yield of regulated non-photochemical energy loss in PS II ɸ (NPQ) were all measured every 24 h. 

2.2.5.4 Experimental set-up 

Figure 25 gives a short description of the experimental setup. The simulated light provided exposure very close to solar radiation 

using a solar simulator (XLS+, ATLAS) equipped with a sun cooling unit for temperature control. Growth experiments were performed 

during eight days in a designed DSC mini photobioreactor DSC-PBR divided on two equal compartments of 120 mL capacity each. 

Experiments with the two different DSC-PBR colours (green, red), the DSC-T1 and DSC-T1’controls were performed at two different 

constant light intensities 200 and 600 w/m2 equivalent to 540 and 1620 µmol photons/m2 s-1 of PAR respectively. The Irradiance 

profile of a typical summer day in Valais, Switzerland was used as a reference for the solar simulator XLS +. A day/night cycle of 12/12 

was applied, and the temperature was fixed at 25 ° C using the Sun cool unit of XLS+.  A fixed gas flow rate with a mixture of 2% CO2 

was provided using a mass flow controller MFCs (red series, Vögtlin). All the sides of the DSC-PBR were covered with an aluminium 

foil to allow only light penetration through the DSC modules. All results were compared to the T1 and T1’ control cultures. All samples 

were carried out in duplicates (biological duplicate) 

 

Figure 25:  A schematic view of the experimental set-up inside the XLS+ solar simulator: DSC-G: Green DSC; DSC-R: Red DSC; DSC-T1’: Blank DSC, 
DSC-T1: normal glass. 

2.2.5.5 Lipids proteins and carbohydrate quantifications 

For total protein determination, 5 mg lyophilised and freeze-fractured biomass (grinding in liquid nitrogen) was suspended in 2 mL 

0.5 M NaOH and directly incubated for two h at 80° C [102]. Total protein was determined using the Bio-Rad DC Protein assay. 

Carbohydrate content was analysed using an adapted version of the phenol-sulphuric acid assay by Masuko et al., (2005) [103]. 2 mg 

of Lyophilised biomass samples were first resuspended in 280 µL aqueous solution and then a mixture containing 600 µL concentrated 

H2SO4 and 120 µL phenol was added. The sample was incubated for 5 min at 90 °C, cooled to room temperature, and the turbidity 

was measured at 490 nm.  

The Bligh and Dyer method was used to extract total microalgae lipids [104]. Briefly, freeze-dried biomass (10 mg) was added to 1 

mL solvent (chloroform and methanol in a 1:2 ratio) after thorough vertexing, the addition of 1 mL chloroform and water (1:1), 
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followed by centrifugation at 13,000 rpm for 15 min. The supernatants were collected and dried at 50 °C. The extraction process was 

repeated three times, and lipid content was measured gravimetrically; all the experiments were performed in triplicates.   

2.2.5.6   Transmission electron in microscopy (TEM) 

When the cells reached the stationary phase, 8 mL samples were taken from the cultures. They were given to the Bioelectron 

Microscopy Core Facility (EPFL) for fixation and embedding. Cultures were firstly centrifuged for 5 minutes at 1500 rpm and the 

supernatant was removed. A two-hour fixation with a solution of 2% paraformaldehyde (PAF) and 2,5% glutaraldehyde in cacodylate 

buffer (0.1M, 7.4 pH) was performed. Cells were washed three times with cacodylate buffer. Then, a mixture of 4% agarose low 

melting point in cocadylate (0.1M, 7.4 pH) was prepared, and the microalgae cells were subsequently suspended in this solution, 

centrifuged and put on ice for at least 15 minutes. Following this step, agarose gel was cut in small pieces and fixed as previously with 

a solution consisting of 2% PAF and 2,5% glutaraldehyde in cacodylate buffer for 30 minutes. The mixture was washed three times 

with cacodylate buffer. The cells were postfix with a solution of 1% osmium tetroxide and 1,5% potassium ferrocyanide in cacodylate 

buffer at room temperature for 40 minutes. Another post-fixation was performed with only 1% osmium tetroxide at room 

temperature for 40 minutes. The sections were washed twice with distilled water and stained in 1% uranyl acetate in water for 40 

minutes. After a wash with distilled water, samples were then dehydrated using a graded ethanol series (50%, 70%, 2x96%, 2x100%) 

for 5 minutes each. Cells were firstly embedded in 1:1 Durcupan:100% ethanol for 1 hour with vials rotating continuously. The 

Durcupan was renewed and kept overnight. Finally, the resin was replaced again with fresh Durcupan for 4 hours. The resulting 

samples were embedded on coated glass slides and placed in an oven at 65°C overnight. The sections were thin-sectioned and ready 

for TEM observation. The instrument used was a Tecnai Spirit BioTWIN. It was equipped with a LaB6 gun, and observation was 

achieved at 100kV. The line resolution was 0,34 nm, and images were captured with a 4k x 4k FEI Eagle CCD camera with high 

sensitivity scintillator. 
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Abstract: 

Hydrothermal gasification treatment (HTG) is a process that allows the recovery of essential nutrients from wet biomass with simul-

taneous energy production. In this work, a new composter sanitary system operating without external connection to sewer pipes 

was used to test the suitability of its effluent as a feedstock for HTG process. Mainly, H2 rich gas was obtained from the HTG process 

at 600 °C, 28 MPa. For an efficient power-generation system with low emissions, experimental results combining solid oxide fuel cells 

(SOFC) with the obtained gas from the HTG were performed. Thermodynamic calculations were performed on the gas compositions 

to evaluate the performance and the risk of solid carbon formation at a typical SOFC operation temperature 750 °C. Furthermore, for 

nutrient recycling purposes, the obtained nutrient-rich effluent from the gasification was used as a growth medium for microalgae 

Chlorella vulgaris. Finally, a complete valorisation chain based on both experimental study and model prediction that combine, energy 

conversion and microalgae valorisation was investigated. 

Figure 26: Simplified chart of the HTG-SOFC and microalgae production systems. 

Material from this chapter has been published in: 

(I) E. Damergi; H. Madi; S. Sharma; N. Boukis; F. Marechal et al.: A combined hydrothermal gasification - solid oxide fuel cell system
for sustainable production of algal biomass and energy; Algal Research. 2019. DOI: 10.1016/j.algal.2019.101552. 
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The author performed the experiments with the hydrothermal gasification unit and the microalgae growth tests as well as the data 

treatment and characterisation of the leachate effluent. The author took the lead in compiling the first draft of the manuscript, 

resulting in the publication listed above. 

The present work presents a complex concept based on combined hydrothermal gasification and SOFC processes with potential algal 

biomass production and biomass valorisation. Source separation of household waste streams was used to provide rich nutrient-

feedstock for the HTG unit. Simulation results on the integration of SOFC and HTG are presented. Thermodynamic calculations were 

performed using the measured gas compositions to predict potential solid carbon formation at SOFC operating temperature of 750 

°C. Finally, this work provides a description of possible sustainable production chains of biofuels and high-value chemicals using 

experimental and prediction data, as shown in Figure 27. 

 

Figure 27: Simplified flow-scheme of the human faeces-composting chamber combined with HTG-SOFC and algae production unit. Biomass with 
low sulfur content was processed in the presence of a Ru/C catalyst, e.g. Residual algal biomass (**) (data reported from Damergi et al. (2017)). 

Biomass with high sulfur content was processed without the presence of a catalyst (this study), e.g. in the case of leachate (*). 

 Leachate effluents 

 Chemical characterisation of leachate effluent 

The results of anion and cation analysis of the leachate effluent obtained from the composter 1 (family composed of 4 persons) are 

shown in Figure 28. A sinusoidal fluctuation trend was observed for almost all cations and anions. This behaviour could be due to the 

variation of composting chamber conditions (oxygenation and moisture content), the number of persons in reality present in the 

apartment and their diet. Moreover, ammonium and ammonia are in equilibrium and losses by volatilisation could occur. Neverthe-

less, ammonium and phosphate were found at high concentrations compared to conventional wastewater effluents. However, stor-

age at low temperature was very important as nitrification or denitrification can change distribution between ammonium, nitrites 

and nitrates concentrations. 

For stabilising the leachate sample composition, mixing the effluents from several families, as it would be the case in a decentralised 

district treatment system, could be a solution to homogenise the leachate by the higher effluent quantity of users. 
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Figure 28: Leachate cation and anion concentration measured during 1-month period. 

 Non-catalytic hydrothermal supercritical gasification HTG   

During M1 and M2 tests, H2-rich gas was produced as shown in Table 5. By contrast to the catalytic supercritical water gasification 

performed in the second part of this study at 400°C with the presence of Ruthenium catalyst, the main product gas was hydrogen H2 

instead of methane CH4. It is known that under supercritical hydrothermal gasification of biomass, Ru catalyst facilitates the C-O bond 

cleavage and therefore, the formation of CH4 at relatively milder conditions [105]. However, with the absence of a catalyst, higher 

temperatures up to 600 °C are required to achieve full biomass conversion. With a high S-containing compound present in the leach-

ate biomass (up to 4 wt %), the use of catalyst was avoided. This is mainly due to the possible formation of a stable Ru-sulphate 

complex, which could deactivate the catalyst rapidly.   
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Gas composition  

(Vol%) 

M1 M2 Gas composition* 

(Vol%) 

M1* M2* 

H2 69.36 ±4.5 67.02 ±3.65 H2 57.2 52.2 

CH4 10.6 ±2.8 14.10 ±4.10 CH4 8.7 11 

CO2 17.5 ±4.7 16.88 ±3.5 CO2 14.4 13.3 

C2H4 0.44 ±0.13 0.29 ±0.01 H2O 17.5 22 

C2H6 1.5 ±0.16 1.22 ±0.17 

C2 and above 2.2 1.5 C3H6 0.32 ±0.18 0.23 ±0.08 

C3H8 0.43  ±0.03 0.25 ±0.01 

Table 5: Gas composition obtained after the hydrothermal gasification; the given results are mean values ± Standard deviation (n = 10), all the re-
sults were measured during the steady-state of the HTG experiment. * Gas composition used in the solid oxide fuel cell experiment; steam was 

added to avoid carbon deposition according to thermodynamic prediction. 

A carbon conversion efficiency GEc (%) of 41% and 43% were obtained for M2 and M1 tests, respectively. The low methane concen-

tration shows that the methanation reaction is not favoured in the absence of the catalyst, as illustrated in Table 5. The losses on the 

carbon conversion efficiency were attributed to carbon deposition in the gasification reactor caused by the high inorganic content. 

Nevertheless, a long-term test of 40 h was achieved without any incident during the M1 test. This suggested that longer residence 

time favoured the carbon conversion into gas instead of carbon deposition inside the reaction as observed during the M2 test (only 

five h of continuous gasification were achieved with clogging issues). Table 6 illustrates the distribution of the salt within the different 

flows during M1 and M2 tests (feedstock and aqueous phase). Major anions and cations were recovered in the aqueous fraction and 

F01 filter, making possible their use as an algal growth media. The obtained aqueous phase showed high nitrogen recovery with 73%–

74.4% for M2 and M1 tests, respectively. Most of the nitrogen was in the form of ammonium with the presence of other N-

compounds, e.g., nitrogenous organics compounds (NOC's) and Maillard products, which explain the alkaline nature of the effluents. 

NOC's were absent in the leachate feedstock and present at low concentration in the AP, mainly: 2-pyrrolidinone, β-phenylethylamine 

as shown in Table 6. This suggested that NOC's were formed during the HTG processing of leachate as a degradation product of 

macromole-cules. Similar results were obtained by Bagnoud et al. [40,90], where 87.5 (wt %) of nitrogen was recovered in the 

aqueous phase during HTG process, and NOC's detected in hydrothermal AP (More details about the NOC’s are found in Chapter 4). 

Almost 92% and 71.3% of phosphorus recovered for M2 and M1 tests respectively. The slightly lower phosphorus recovery in M2 test 

compared to M1 was mainly due to the short residence time (350 g/h vs 200 g/h).

Achieving high phosphorus recovery was one of the objectives of this study. Besides being an essential nutrient for microalgae 

growth, phosphorus is a limited and vital resource. This makes phosphorus-recycling strategies one of the top priorities worldwide 

to slow down phosphorus consumption. Almost half of the sulfur content was recovered in the AP of M1 test. As sulfur gas com-

pounds were not detected in the gas phase, sulfur deposition inside the reactor or/and the filter could explain the missing amount 

of sulfur. Others soluble organics such as carboxylic acids and phenols were detected in the AP. The analysis showed an initial con-

centration of phenols of 28.3 mg/L prior to the gasification, which increased up to 45.9 mg/L in the case of M2 AP and remained 

constant for M1 AP.  

This is probably due to the short residence time during M2 experiment and incomplete degradation of macromolecules. As phenols 

are toxic for microalgae at relatively low concentrations [106], a dilution factor was considered for the algae growth experiment. 

Carboxylic acids compounds were also detected in the AP in both tests with a concentration of 33.46 mg/L. Lyophilised aqueous 
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phases samples obtained from M1 and M2 tests showed the presence of a high amount of salts recovered after the gasification, as 

illustrated in Figure 29. 

Leachate Feed (aq) HTG AP (aq) 

Parameters Unit M1 M2 AP1 (M1) AP2 (M2) 

pH - 7.16 7.20 9 9.2 

Salinity [g/l] 15 ±0.07 15.1 ±0.05 10 ±0.06 8 ±0.06 

TDS 12.74 ±0.23 12.68 ±0.16 1.87 ±0.11 0.67 ±0.03 

N 1.9 ±0.26 0.7 ±0.23 1.29 ±0.19 

S [Wt%] 4.2 ±0.31 2.3 ±0.18 3.73 ±0.04 

C 7.3 ±0.13 2.3 ±0.09 2.65 ±0.1 

Phenols [mg/L] 28.3 ±0.36 28.7 ±0.32 29.4 ±0.24 45.9 ±0.39 

Org. acids 21.2 ±0.27 19.4 ±0.14 33.46 ±0.47 25.4 ±0.5 

TIC 710 ±1.26 689 ±0.94 490.1±0.80 307.4 ±0.57 

P 815.89 ±0.66 776.74±1.35 740.2 ±0.55 535.3 ±1.3 

Mg 53.96 ±0.65 83.55 ±0.94 0.8 ±0.11 <0,5 

Ca 79.6 ±0.3 69.98 ±1.41 2.54 ±0.04 1.24 ±0.16 

Na 3459,2 ±0.31 3196 ±3.87 1302.23 ±2.5 370.93 ±1.3 

Cl 4110 ±3.56 3780 ±3.90 2135 ±3.21 351.2 ±1.85 

K 4132 ±4.56 3830 ±4.6 2777.78 ±3.4 494.38 ±2.5 

Ni 0.67 ±0.04 <0.5 1.09 ±0.22 <0,5 

Fe 1.09 ±0.1 0.98 ±0.12 <0.5 <0.5 

Nitrogen 

Aromatics 

compounds 

NOC’s 

2-pyrrolidinone - - 8.5 ±0.05 16,7 ±0.8 

β-phenylethylamine - - 2.2 ±0.02 3,05 ±0.1 

Table 6: Elemental analysis of Leachate feedstock and the aqueous phase produced via hydrothermal gasification without a catalyst; AP(1) is the 
aqueous phase obtained from test M1 (200g/h feedstock) and AP(2) is the aqueous phase obtained from test M2 ((350 g/h feedstock). M1 and M2 
feedstock were obtained both from the same homogenised leachate collector tank.); all values are given as value ± standard deviation (±SD) except 

wt%, were expressed as value ± relative standard deviation (%RSD). TDS: total dissolved solids, TIC: Total inorganic carbon. 

Figure 29: (Left) Visual aspect of the aqueous phase effluent samples taken during the gasification of leachate from M1 and M2 tests. (Right) Lyophi-
lised feedstock and aqueous phase samples. 

Microalgae growth tests: Cell size and autofluorescence of C. vulgaris 

The analysis by means of flow cytometry of C. vulgaris cells showed a significant difference in autofluorescence and average cell 

size (t-test) among the control culture and aqueous medium experiments M1 and M2, as shown in Figure 30. This observation was 
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confirmed by the presence of a lag phase in both the cases; M1 and M2 medium compared to the control culture, Figure 31. 

 

Figure 30: (Left) Autofluorescence intensity signal comparison between Control culture, M1 and M2 testes using BL3 filter. (Right): Average cell size 
comparison between Control culture, M1 and M2 testes using the forward scatter signal. 

Residual organics detected in the AP effluent could modify the carbon uptake in microalgae, leading to a mixotrophic growth and in 

consequence, the observed slowdown could be associated with this shift in feeding metabolism [40]. Flow cytometry results for 

average cell size, given in Figure 30 showed an increase of relative cell size for both M1 and M2 cells during the lag phase. The mean 

cell-size increased from 4.62 ± 0.98 to 7.53 ± 0.79 and 8.4 ± 0.78 μm, respectively, for control M1 and M2 cultures. The hypothesis 

for this increase in average cell size could be the inability of microalgae cells to undergo cell division. Nevertheless, cells were able to 

acclimate with the aqueous phase since in both cases M1 and M2, microalgae were capable of dividing after a period of adaptation 

with a specific growth rates of 1.12 day−1 for control and 0.64 day−1 and 0.54 day−1 respectively for M1 and M2. Total carotenoids 

content of both AP was slightly lower compared to the control 356.2 μg/g DW, with 290 μg/g DW and 261ug/g DW for M1 and M2 

respectively. 
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Figure 31: a) Growth rate curve of C. vulgaris using dilute aqueous phase from hydrothermal gasification of leachate. Control medium using stand-
ard control medium, M1 medium using aqueous medium obtained from test 1); M2 medium using aqueous medium obtained from test 2. b): Flow 
cytometry analysis of M1, M2 and control culture at day 4. The autofluorescence signal was acquired using BL3 filter (670 nm) where strong auto-
fluorescence signal was detected in the control culture. This signal was used as a reference for M1 and M2 experiments. R1 and R2 gates were ap-

plied to differentiate respectively, normal microalgae cells from damaged ones. 

 SOFC performance  

  Thermodynamics of solid carbon formation  

Thermodynamic calculations have been done to illustrate the chemical equilibrium behaviour of a C-H-O system under SOFC operat-

ing conditions. Figure 32 shows the carbon disposition region at 750 °C for the two different fuel compositions that were used. Ther-

modynamic calculations show that the fuel compositions from M1 and M2 tests are within the carbon deposition region. One way to 

avoid carbon deposition is to add steam to the fuel gas. In this study, for the gas compositions, M1 and M2, and H2O/CH4 ratio of 2 

(O/C ratio of 1.7) were considered [107] which shifts the gas composition to the carbon-free region as shown in Figure 32. In addition, 

when loading the fuel cells with current, steam is produced locally, which increases the oxygen content and helps the solid carbon to 

be removed. Based on these calculations, the gas compositions for the SOFC tests were chosen, as shown in Table 5. 
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Figure 32: Carbon deposition region in a C–H–O phase diagram at 1 atm. It is calculated based on the anode feed balance. 

 Performance of Leachate-feed SOFC 

3.3.2.1 Current-Voltage characterisation (I-V curve) 

Current-voltage characterisation (I-V curves) was performed at the beginning of each experiment, and results are shown in Figure 

33. The experimental open-circuit voltage (OCV) can be read from the I-V curves at zero current (maximum voltage). The theoretical 

OCVs are calculated using eq.28. Results are indicated in Table 7. 

𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑅𝑅𝑅𝑅
4𝐹𝐹

. ln�
𝑃𝑃𝑂𝑂2,𝑐𝑐

𝑃𝑃𝑂𝑂2,𝑎𝑎
� 

Equation 28: The theoretical open-circuit voltage (OCV). 

where F is the Faraday constant 96,485 (C/mole), R the universal gas constant 8.314 (J/K.mole), T the temperature (K), 𝑃𝑃𝑂𝑂2,𝑐𝑐 the 

partial pressure of oxygen at the cathode side (0.21) and 𝑃𝑃𝑂𝑂2,𝑎𝑎 the partial pressure of oxygen at the anode side (𝑃𝑃𝑂𝑂2,𝑎𝑎is calculated 

using HSC Chemistry V7.1 software). 

Gas composition 𝑷𝑷𝑶𝑶𝟐𝟐,𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 Theoretical value Experimental value Error % 

M1 8.96E-22 1.033 1.02 -1.3 

M2 1.60E-21 1.021 1.00 -2 

Table 7: Theoretical vs. experimental value of OCV for the gas compositions. 
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Figure 33: IV curves for the M1, M2 gas composition. b) Polarisation with time under a constant bias (0.3 A/cm2) for the different gas composition 
at 750 °C. 

It is possible to read the total area-specific resistance (ASR) from the I-V curves, which indicates the total cell resistance and losses, 

i.e., activation, ohmic and concentration polarisations. The ASRs are calculated for the gas compositions M1, M2 to 0.32, and 0.26 

Ω.cm2, respectively. According to these results, the M2 gas composition has the lowest ASR and M1 higher ASR.

3.3.2.2 Polarisation with time 

The fuel cells were polarized under a constant load (0.3 A/cm2), and the voltage was recorded with time. The pressure drop at the 

fuel inlet is also monitored over time. Decomposition of heavy hydrocarbons can lead to solid carbon formation at the fuel inlet tube. 

The increase in pressure drop indicates carbon formation. Solid carbon at the inlet blocks the fuel inlet over time, and consequently, 

a fuel shortage can occur. After dismounting these cells, some amount of solid carbon was detected at the fuel inlet, as shown in 

Figure 34. 

For the case of M1, the degradation rate was >11%/kh. At time = 100 h, there was another jump in cell performance. At this time, it 

was decided to interrupt the experiment, to stop the higher hydrocarbons flow and inject more steam to remove the formed solid 

carbon at the inlet, as the pressure was increasing according to Figure 34. This interruption was only short (2−3 h) to guarantee the 

continuation of the test. 

Performance of the cell with the M2 gas composition was very stable. In this case, the degradation rate was only 0.23%/kh. M2 has 

the lowest amount of heavy hydrocarbons in the gas composition, which might explain the low degradation rate. The main reason 

for the higher degradation rates observed with M1 compared to M2 could be related to the difference in heavier hydrocarbons in 

the fuel flow, Table 5. They deposit on the active nickel catalyst area, block pores and reduce the TPBs, where the electrochemical 

reactions take place. 
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Figure 34: (a) Pressure increase with time for the three experiments, indicative of carbon deposits formation during SOFC operation. (b) Solid carbon 
formation at the fuel inlet (right) and on the evaporator tube which was inserted to the fuel inlet tube (left) – Test M1 – Test 1. 

These experiments show that it is possible to operate SOFCs directly on gasified human leachate effluent. According to the results, a 

consistent and stable performance can be achieved if the amount of non-methane hydrocarbon is reduced. A gas cleaning section is 

required to reduce the amount of heavy hydrocarbons. Long-term stability tests are needed to specify the concentrations threshold 

level of these hydrocarbons.  

Valorisation of bio syngas or H2-rich gas 

Initially, the leachate effluent has been collected and characterised as described previously and subject to hydrothermal gasification 

at 600 °C and 28 MPa. Mainly two outputs were valorised from the HTG, the produced biosyngas-1 and the aqueous phase. Based 

on the results obtained from the M1 experiment, 8 kg of feed/leachate produces 33.3 litres of biosyngas-1 and 7.761 kg of the aque-

ous phase. For nutrient recycling purposes, the aqueous phase was diluted five times and adapted as a growth medium for microalgae 

culture by adjusting the nitrogen concentration (the essential nutrient for algae) to be equal to that established for the commercial 

growth medium. With a total volume of 38.81 kg of growth medium and productivity of 1.3 g/L of algal biomass, a total of 50.4 g of 

microalgae biomass was produced. 

After harvesting microalgae from the diluted residual water, the concentrated microalgae (sedimentation followed by centrifuge) are 

sent to the pressurised liquid extraction unit for extracting carotenoids. The pressurised liquid extraction results shown in Figure 35 

are based on the previous experimental study (Damergi et al., 2017) [100]. 1 kg (or 2 kg with 50% moisture) of C. vulgaris is used as 

basis for the valorisation chain of effluents from composted human excreta (M1 experiment). Hence, the feed/leachate, 
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 biosyngas-1 gas and aqueous phase flow rates in Figure 35 are multiplied by a factor of 19.82 to obtain 1 kg of C. vulgaris.   

The SOFC and catalytic HTG models in Belsim Vali have been used to analyze the complete value chain for leachate. The amount of 

electricity, which can be produced by biosyngas-1, is predicted using the SOFC model. 0.305 kg biosyngas-1 (lower heating 

value = 7.5 MJ) produces 1.56 kWh (5.6 MJ) electricity and 0.36 kg CO2. The amount and composition of biosyngas-2, produced by 

the residual biomass after pressurised liquid extraction, was predicted using the catalytic HTG model. 0.861 kg residual biomass after 

4 times dilution (total 4.31 kg) enters the HTG, where 10% residual biomass is lost during the salt separation. HTG produces 1.013 kg 

of biosyngas-2 that has a lower heating value of 17.8 MJ. Biosyngas-2 was also used as feedstock for predicting the electricity pro-

duction using the SOFC model in Belsim Vali. 1.013 kg of biosyngas-2 produces 3.38 kWh (12.18 MJ) electricity and 1.56 kg CO2. The 

fuel utilisation ratio for SOFC model in Belsim Vali is 0.8. CO2 is a byproduct which can be stored and used for microalgae growth 

and/or storage of renewable H2 in the form of CH4. Note that the SOFC system and gas turbines were integrated for achieving high 

electrical efficiency [108][109].   

In this integration, gas turbines are operated in an inverted Brayton cycle mode. Electrical efficiencies for biosyngas-1 and biosyngas-

2 conversions are 74.7% and 68.4%, respectively.  The waste heat available from the gasifier and the fuel cell can be used in a pres-

surised liquid extraction unit. 

Figure 35: Valorisation chain of effluents from composted human excreta; processes and streams with greenish, reddish and yellowish backgrounds 
respectively represent experimental, modelling and Damergi et al. (2017) parts of the valorisation chain. 





 

 

 

 Recalcitrant nitrogen containing 

organics from the hydrothermal conver-

sion of algal biomass 

Abstract: 

This Chapter evaluated the possibility to treat the Hydrothermal (HT) effluent by growing microalgae while producing renewable algal 

biomass. The HT aqueous product besides harbouring N, P and other essential nutrients, presents a small fraction of organic com-

pounds rarely studied. Therefore, the extraction of heteroaromatic compounds in the HT effluent was the target of the present 

research which were profiled using GC-MS and LC-MS-MS. The results indicate the presence of cyclic amides, piperazinediones, 

amines and their derivatives. The most prominent N-containing organic compounds (NOC’s) in the extracts were carefully examined 

by their effect on microalgae, namely 2-pyrrolidinone and β-phenylethylamine (β-PEA). These two substances have been prepared 

at three different concentrations (10, 50 and 150 ppm). This toxicity bioassay used three different microalgae strains: Phaeodactylum 

tricornutum, Chlorella sp and Scenedesmus vacuolatus. The confirmed IC50 was for all cases approximately 75 ppm. Experimental 

conditions were set up for the growth of microalgae in the aqueous phase by adjusting the nitrogen concentration (the key nutrient 

for algae) to fit the one established for a known commercial medium. The values of specific NOC’s have been lowered to concentra-

tions of 8.5 mg/L 2-pyrrolidinone; 1 mg/L δ-valerolactam and 0.5 mg/L β-PEA.  

 

Figure 36:  Simplified flow-scheme of the continuous-flow system, SB: Concentrated salt brine effluent (high salt and organic content), RW: Reactor 
water (low salt and organic content) used to dilute the SB, AL: algal biomass, (1): Direct use of SB in the preparation of algae culture medium, (2) 

Treatment of SB via hydrothermal catalytic gasification when NOC’S reaches toxic concentrations upon continuous recycling. 
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The growth using the diluted HT solution was kept constant, with no evidence of inhibition. An additional test was performed to 

address the possibility to implement an integrated water clean-up step making use of the existing hydrothermal catalytic facility. 

The conversion of NOC’s to ammonium was successfully achieved. 

Materials from this chapter has been published in: 

 (I) M. Bagnoud-Velásquez; E. Damergi; G. Peng; F. Vogel; C. Ludwig: Fate and reuse of nitrogen-containing organics from the hydro-
thermal conversion of algal biomass; Algal Research. 2018-04-21. DOI: 10.1016/j.algal.2018.04.00 

The author performed all experiments as well as the data treatment. The author contributed to the compiling and the reviewing of 

the manuscript, resulting in the publication listed above. 

 Distribution of hydrothermal liquefaction products and carbon elemental 

mass balance 

The microalgal slurry was successfully converted into oil with a yield of 31 %, while the SB aqueous phase represented 64 % of the 

same. The gas yield was not directly measured, but from the HT conditions applied, it was estimated to account for 5 % and consisted 

mainly of CO2 with minor contributions of H2S and NH3 traces. Carbon recovery in the oil phase was as high as 80 %. This proportion 

was also confirmed with CNS analysis in the SB aqueous fraction with a measurement of 15 % carbon recovery. Carbon elemental 

mass balance additionally confirmed the assumption of 5 % CO2 gas product.  

Feed        

Dry 

matter 

 

Slurry feeder 

freq. 

Time On 

stream 
mZnO mcat. 

XC 

 
Gas composition [vol %] 

[wt%]         [kg/h]  [h] [g] [g] [%] CH4 H2 CO2 CO 

P. tricornutum 3 1 7 529 444 75.1 36 57 7 0 

C. vulgaris 3 1 7 529 444 74.5 39 53 8 0 

Table 8: Process parameters of hydrothermal catalytic gasification of P. Tricornutum and C. vulgaris. 

 Organic composition of the salt brine effluent 

The HPLC analysis showed a high diversity of organic acids such as oxalic 0.29 g/L, acetic 0.09 g/L, propionic 0.07 g/L and tartaric 0.02 

g/L being the most important ones. The presence of these compounds is of interest, as they represent a potential carbon source for 

microalgae and could enhance the algae growth. According to literature, oxalic acid is formed by direct oxidation of monosaccharides 

from carbohydrates during the hydrothermal treatment [110]. Depending on the algae species, this organic acid may or may not be 

metabolised by the microalgae. However, acetic acid is a very interesting carbon source owing to its low molecular weight and is 

easily metabolised in the glyoxylate metabolic pathway of microalgae. Propionic acid is another observed organic acid that could 

promote algae growth. Nevertheless, its assimilation by microalgae depends on a series of more complex steps in the conversion 

pathway to acetyl Co-A [111]. Additionally, ethanol and glycerol were present in the SB aqueous phase. Those compounds are pro-

duced from the rapid hydrolysis of unstable fatty acids during hydrothermal treatment [112]. It is important to mention that the 

sample exposed to lower temperatures showed a higher amount of glycerol and a lower amount of ethanol. At temperatures higher 

than 370 °C, glycerol degrades into ethanol, acetaldehyde, methanol, and some other compounds [112,113]. This result is of interest 

when recycling the hydrothermal effluent as glycerol is known to stimulate the growth of some microalgal species, in particular, P. 

Tricornutum [114,115].  
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At the hydrothermal conditions applied, the formation of complex compounds with cyclic structures and N heteroatoms is expected. 

The organic nitrogen content was calculated as proteinaceous nitrogen and was equivalent to 375 mg/L. Therefore, a more detailed 

characterization of these compounds was mandatory in order to determine the complexity of the structure and the possible recalci-

trant nature. These NOC’s may be difficult to degrade due to their stability. By far, the most studied intermediates in toxicity assess-

ments are the phenols. However, the phenol concentration of the HT effluent apparently depends on protein content and tempera-

ture and maybe strongly variable throughout the experiments. The study of N-containing organics such as amides, which, for instance, 

are more biologically recalcitrant than other forms of organic nitrogen is highly relevant [116]. The main organic compounds present 

in SB effluent studied besides carboxylic acids and alcohols were amines, alkylpyrrolidones, cyclic amides and traces of piperazinedi-

ones Figure 37. The presence of these soluble organics is the main source of potential inhibitors even if some of them may be used 

as a carbon nutrient for microalgal growth. Kruse et al. [117] suggested that the products of carbohydrate and protein degradation 

react with each other forming free radical scavengers such as cyclic NOC’s via Maillard reactions, which are highly stable. All organic 

compounds identified in different SB aqueous phases are listed in Table 9. 

Compounds Piperidine 2-Pyrrolidinone β-Phenylethylamine 2-Piperidinone (δ-valerolactam) 

Molecular structure 

Molar mass 85.14 g mol−1 85.11 g mol−1 121.1796 g mol−1 99.13 g mol−1 

Density 0.8606 g·cm−3 1.116 g cm−3 0.965 g cm−3 1.073 g cm−3 

Boiling point 106 °C 245 °C 200 °C 265 °C 

Melting point −7 °C 25 °C −60 °C 38 to 40 °C 

Solubility in water Miscible Miscible Miscible Miscible 

Color Colorless Colorless Colorless Colorless 

Volatility High volatility Low volatility Low volatility High volatility 

Table 9: Main NOC's used in this study: chemical structure and physical properties. 

Figure 37: GC-MS chromatogram showing the different NOC’s detected in the salt brine 
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The most prevalent compounds obtained in the SB effluent after application of the heteroaromatic extraction method were 2-pyr-

rolidinone (193 mg/L); β-phenylethylamine (16 mg/L) and 2-Piperidinone (42 mg/L). Even if pyrrolidones are frequently used to re-

place low volatile and toxic organic solvents, they are very stable compounds and of concern, as they are not degraded via hydrolytic 

pathways. The formation pathways of these compounds were studied. For instance, pyrroles and indoles are the major liquid phase 

heterocyclic NOC’s resulting from the hydrothermal treatment of algae proteins [118]. Indole itself could form pyrroles during its 

conversion at high temperatures [119]. Pyrroles probably originate from proline [120]. β-phenylethylamine (PEA) was established via 

decarboxylation of phenylalanine during HT as phenylalanine is an amino acid present in algae proteins. However, the effect of these 

substances on the growth of microalgae was not thoroughly studied in the literature. 

 Compounds SB (step1) SB (step 2) 

Ultimate analysis (mg/L) 

TN 1828 ±6.4 1627 ±2.1 

COD 14250 ±45.8 1267.3 ±1.5 

TOC 5392 ±2.33 85.9 ±0.5 

NH4+ 889 ±5.14 950 ±2.41 

NO3- 24 ±1.23 28.5 ±1.4 

Organic acids (g/L) 

Oxalic acid 0.29 ±0.03 

 

DL 

Tartaric acid 0.02 ±0.01 

Glycerol 0.14 ±0.02 

Acetic Acid 0.09 ±0.02 

Propionic acid 0.07 ±0.015 

Ethanol 0.19 ±0.012 

 Phenol 45.5 ±0.33 15.2 ±0.07 

Phenols (mg/L) 

 

Nitrogen-containing  

organics  

NOC's  

(mg/L) 

 

Benzilamine NQ NQ 

2-pyrrolidinone 193.04 ±0.5 33.4±0.15 

β-phenylethylamine 16 ±0.21 DL 

2-piperidinone 42.14 ±0.8 DL 

Isopentylamine NQ NQ 

Piperidine 148 ±1.58 DL 

Piperidine 1-ethyl 36.5 ±0.9 DL 

Table 10: Organics compounds in the salt brine of P.tricornutum before the treatment (1) and salt brine after the treatment via hydrothermal cata-
lytic gasification (2); NQ= not quantified, DL= below detection limit; mean values are given ±SD (n=3). 

 Toxicity microalgal assay  

The influence of increasing concentrations of 2-pyrrolidinone and β-phenylethylamine on microalgae cell densities during a timespan 

typical of an experiment (96 h) may be observed from growth curves displayed in Figure 38. The performed tests show that these 

individual NOC’s are negatively affecting the microalgal growth rate when compared to controls. A complete growth inhibition of all 

microalgae strains was evident when treated with the two substances at 150 ppm. At 50 ppm, PEA also caused complete growth 

inhibition of P. tricornutum while the other two strains presented a decrease of about 30 % on the growth rate compared to the 

control. A concentration of 50 ppm 2-pyrrolidinone had the same effect on all strains, reducing their growth rate by approximately 

30 %. Finally, with the 10 ppm treatments, the growth rate of all species tested diminished by 10 % compared to the control. The 

IC50 for all cases is roughly 75 ppm. This value is similar to that obtained for 2-pyrrolidinone in a guideline study where an IC50 of 

about 84 mg/L after 96-hours was found for an algal growth inhibition test. An IC50 of 500 mg/L was also reported in another algal 

growth inhibition test but using 1-methyl-2-pyrrolidinone [121]. The results obtained represent the toxicity threshold for a single 

NOCs. This  limit can be reached easily as these compounds are very recalcitrant. 
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Figure 38: Microalgae toxicity assay with 2-pyrrolidinone (left) and β-phenylethylamine (right) with three microalgae species P. tricornutum, C. soro-
kiniana and S. vacuolatus. All experiments were performed in triplicate; mean values are given ±SD (n=3). 

The next test consisted of growing P. tricornutum in diluted SB effluent and to see whether or not a combined effect of these sub-

stances could enhance/suppress toxicity. Experimental conditions were set up for the growth of microalgae in the aqueous phase by 

adjusting the nitrogen concentration (the key nutrient for algae) to fit the one established for the commercial F2. A dilution of 20 was 

required to adjust the total N to an initial concentration of 233 mg/L. The concentration values of specific NOC’s studied were lowered 

to 8.5 mg/L 2-pyrrolidinone; 1 mg/L δ-valerolactam and 0.5 mg/L PEA Figure 39 shows the growth of P. tricornutum with the diluted 

SB aqueous phase. 

The typical lag phase reported in previous work [120] was not evident here as the inoculum originated from an adapted pre-culture. 

P. tricornutum cultivated in the SB effluent first showed fast and more extensive growth until the third day when compared to the 

control. From the third day on the culture entered a stationary phase, whereas the control still exhibited an exponential growth.  
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Figure 39: P. tricornutum toxicity assay using 20-fold diluted salt brine effluent. All experiments were performed in biological triplicate; mean values 
are given ±SD (n=3), P. tricornutum control cultures were prepared with modified F2 medium. 

The fast growth and subsequent shortening of the exponential growth phase in cultures using SB effluent as growth media was 

certainly related to the presence of organic compounds supporting mixotrophic growth. This has been confirmed from trends of the 

COD and TN curves displayed in Figure 40. 

 

Figure 40: (left) Trend of chemical oxygen demand (right) and total nitrogen during the toxicity assay with P. Tricornutum using untreated salt brine 
effluent. All measurements were performed in biological triplicate (n=3) 

The organic removal has been assessed by daily monitoring of COD and TN in algal cultures. Both curves showed that an important 

fraction remained in the culture and clearly indicated the presence of biologically recalcitrant organic compounds. The residual TN is 

interpreted as heteroatomic organic nitrogen. These results are not surprising when looking at calculated nitrogen contents account-

ing for almost half the quantity of TN on SB effluents.  

The uptake of the specific studied compounds by algae was additionally tested by measuring their concentrations in the culture 

media at the beginning and the end of the cultivation period. Surprisingly, it was observed that algae were able to partially remove 

all three substances tested leaving a residual of 14 % for 2- pyrrolidinone, 53 % for δ-valerolactam and 41 % for PEA where the 

volatility of all tested substances was relatively low. The mixotrophic nutritional mode was partly validated when algae were exposed 

to a high organic nitrogen content when using directly the SB aqueous product. Even if volatility calculations from literature estimated 

relatively low rates, these compounds are of concern when present in the vapour phase as they are extremely alkaline. Neutralisation 

using physicochemical methods could be a way to turn them innocuous. Alternatively, their mitigation is also possible during catalytic 

supercritical water gasification as it would provide a way to recover N as ammonia for fertiliser purposes. 
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 Continuous Hydrothermal catalytic gasification of salt brine and model brine 

effluent  

As shown in Table 11, the model SB was efficiently gasified to CO2 and CH4. The catalyst was able to entirely convert the TOC con-

tained in the feed, thereby showing its high catalytic activity for converting PEA, VAL, and PYR. The nitrogen recovery was close to 

100 %. 652 mg/L nitrogen remaining in the liquid effluent was identified as ammonium. When the SB effluent was processed, the CH4 

concentration increased while the CO2 concentration decreased. Such a shift of the gas composition may be explained by the change 

of the feed composition. In fact, a higher feed concentration, i.e., a higher carbon concentration, increases the CH4 yield [122]. 

Feed Time on stream 

[h] 

Recovery 

[%] 

XC 

[%] 

Gas composition [vol %] 

CH4 H2 CO2 CO 

SB Model 

 

1.0 

3.0 

100 

99 

100 

100 

30 

32 

2 

3 

68 

65 

0 

0 

SB effluent 4.6 

5.5 

89 

96 

100 

87 

46 

N.A. 

2 

N.A. 

52 

N.A. 

0 

N.A. 

Table 11: Results for the hydrothermal catalytic gasification experiments of the salt brine and model brine effluents. 

Interestingly, the TOC conversion was below 100 % at the end of the experiment. The presence of a sulphur-containing compound in 

the feed may be the main reason for the loss of catalytic activity. Indeed, sulphur is known to irreversibly poison Ru/C catalysts. The 

use of a zinc oxide adsorbent for sulphur, upstream of the catalyst bed, was successfully tested in a recent work [123]. The small 

fraction of nitrogen losses (as reflected on the nitrogen recovery being slightly below 100 %) is attributed to volatile ammonia. 





 

 

 

 Enhancing algae biomass pro-

duction by using dye-sensitised solar 

cells as filters 

Abstract: 

One of the most promising options for decreasing the costs of microalgae production is enhancing the production and reducing the 

energy demand of the culturing systems, and the high surface area requirements. Since microalgae growth requires only specific 

wavelengths of the solar spectrum, the remaining part of the solar spectrum may be simultaneously used by a translucent photovol-

taic layer to produce electricity, which leads to a reduction of space and energy requirements.  

 

Figure 41: A schematic view of the DSC-Photobioreactor technology and the different colours used in the study. 

This work presents the results of a new concept of a positive energy culturing system for microalgae, where the light source is selec-

tively shared between the needs of the algal biomass through photosynthesis and the production of photovoltaic energy through 

dye-sensitized solar cells (DSCs). To ascertain the DSC (DSC-Red, DSC-Green) light-filtering effects on microalgal biomass: (1) the 

variation of growth kinetics, (2) microalgae pigments (chlorophylls and carotenoids) and (3) macromolecule content (carbohydrates, 

proteins, and lipids) were investigated and compared to control cultures under two different solar simulated light intensities (200 

and 600 W/m2). The results showed, a net improvement of growth rate and dry weight (DW) at the higher irradiance using both 

coloured DSC filters compared to control cultures. The highest growth rates (μ) and doubling time (td) of C. vulgaris cells were ob-

tained using the DSC-Red (DSC-R) and DSC-Green (DSC-G) solar cells as filters with μ = 0.86 ± 0.01 day−1; td=0.80 day and μ = 0.85 ± 

0.03 day−1; td=0.81 day, respectively compared to normal glass control μ = 0.51 ± 0.03 day−1; td=1.35 day. A significant increase in 

Chlorophyll a content was obtained under low light intensity for both DSC-coloured compared to control culture, and no significant 

variation in macromolecule content measured under the tested light intensities.  Finally, a life cycle assessment (LCA) based on a 
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functional unit of 1 kg of produced algal biomass using the DSC-photobioreactor (DSC-PBR) was performed and compared to a normal 

glass photobioreactor. The results were expressed in terms of CO2 emission equivalents produced and electricity generated. 

Material from this chapter has been taken from: 

(I) E. Damergi; P. Qin; S. Sharma; M. K. Nazeeruddin; C. Ludwig: Enhancing algae biomass production by using dye-sensitised solar 
cells as filters; (Ready for submission) 

The author performed all experiments related to microalgae as well as the data treatment and characterisation and a part of LCA 

calculation. The author took the lead in compiling the first draft of the manuscript, resulting in the publication listed above. 

In this chapter, we propose for the first time a fully integrated and coloured DSC-PBR system (red and green) for microalgae 

production. With respect to the used DSCs, an understanding of the optical properties is essential for the interpretation of the results.  

 DSC solar panels Characterisation 

 DSCs and microalgae absorption spectrum 

The transmitted irradiance in the photosynthetic active radiations (PAR) region that reach the algae culture was measured in all 

different photobioreactors and visualized in Table 12. 

 

Experiments 

Irradiance PAR (µmol photon /m2 s-1) 

Before 
540.0 

Cycle 1 

810.0 

Cycle 2 

1350.0 

Cycle 3 

1620.0 

Cycle 4 

DSC-T1 

After 

519.3 780.0 1326.0 1603.0 

DSC-T1’ 460.8 749.4 1279.0 1543.0 

DSC-G 372.6 556.9 935.5 1150.8 

DSC-R 325.5 509.8 841.7 1015.2 

Table 12: Irradiance PAR (µmol photon m-2 s-1) at the reactor front surface and at the back measured in all photo-bioreactor. DSC-T1 (normal glass); 
DSCT-1’ (DSC without the dye); DSC-G (DSC-Green); DSC-R (DSC-Red). 

According to Table 12, the PAR irradiance reaching the algae culture was reduced by almost 40% and 32% in the case of DSC-R and 

DSC-G, respectively, compared to the initially applied light intensity. One should mention that in the case of DSC-T1’ that contains all 

DSC compounds except the dye, a reduction of 15% was observed. This is mainly due to the absorption of other compounds used in 

the construction of the DSC cell such as titanium dioxide TiO2 and the electrolyte. These results are consistent with the absorbance 

spectra obtained in Figure 42. 
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Figure 42:   Absorbance spectra of DSC-T1 (normal glass); DSC-T1'(all DSC compounds except the dye); DSC-G (green solar panel); DSC-R (red solar 
panel). 

Sensitiser Absorption wavelength max (nm) 

Red dye(N719)              313, 393, 522, 533 

Green dye (N749)               315, 411, 536, 610 

Table 13: Dye absorption wavelength max (nm). 

The TiO2 shows a strong peak in the ultraviolet region that decreases drastically within the PAR range. In fact, it is well known that 

the mesoporous TiO2 film has the potential to block the UV light by absorbing and scattering the higher energy photons in the UV 

region. Knowing that microalgae growth can be negatively affected by the presence of UV radiation in outdoor cultivation, the pres-

ence of TiO2 as a protective layer at the illuminated surface of the photobioreactor could be beneficial for the algae culture. Coloured 

DSCs contributed greatly to the absorption of the UV radiation, as shown in Figure 42. The principal UV/VIS absorption peaks ascribed 

for each dye are mentioned in Table 13.  

Figure 43: C.vulgaris absorbance spectrum and major pigment peaks (inset adapted from [124]). 

The advantage of the red DSC panel over the green one is that the major absorption in the visible region occurs between 500-600 

nm. The absorption of the green panel, however, is further extended to the red region. This is relevant when the DSC panels are 

integrated into the structure of the photobioreactors. As revealed in Figure 43, the majority of C.vulgaris pigments absorb strongly 
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within the red and blue region of the spectrum and weakly between 520-600nm (potential part of the spectrum to be shared with 

DSCs, see Figure 43).  These preliminary results indicated the better compatibility of C. vulgaris culture with the DSC-R comparing 

with that of DSC-G due to the spectral overlap. 

Figure 44: Current-voltage curves for DSC-R and DSC-G panels. 

All parameters that were used to calculate the power conversion efficiency (η) of DSC panels are given in section 2.2.5. The DSC-G 

and DSC-R showed power conversion efficiency of 2.8% and 3.0%, respectively, leading to a maximum output power of 185.3 mW 

and 192.6 mW. The slightly lower power conversion efficiency was attributed to the large dimension of the DSC panels (100×100 

mm). The corresponding solar cell parameters, i.e. ISC, VOC, FF, and η, were obtained from Figure 44 summarised in Table 14. 

Table 14: Photovoltaic performance of the DSC panels: Isc (short circuit current), Voc (open circuit voltage), ff (fill factor), η efficiency, P (output 
power). The measurements were done at a light intensity of 100 mW/cm2.* Energy production per year was calculated using the solar panel effi-
ciency (%)  without including the potential losses that can occur  (Equation 26 )**Energy production per year was calculated in this case using Per-

formance Ratio (Equation 27 ). 

DSC-PBR growth under constant light intensities: C. vulgaris case study 

A first set of experiments with the two different DSC-PBR colours (green, red), the DSC-T1 and DSC-T1'controls were performed at 

two different constant light intensities: low light intensity at 540 µmol photons/m2 s-1 and high light intensity at 1620 µmol pho-

tons/m2 s-1. Figure 45 shows the growth rate curves of C. vulgaris cultivated under coloured DSC-panels and control cultures at the 

two simulated solar light intensities. At low light intensity, no significant difference (𝑃𝑃> 0.05) was observed in terms of cells and dry 

weight (DW) between C. vulgaris cultivated under DSC-G panel and both control cultures.  

Isc 

(mA) 

Voc 

(V) 

Pmax 

(mW) 
ff 

η 

(%) 

Energy production  

per year 

(kWh)* 

Energy production per 

year 

(kWh)** 

DSC-G panel 

8 µm TiO2 
57.9 6.58 185.33 0.49 2.8 0.36 0.27 

DSC-R panel 

8 µm TiO2 
62.6 6.99 192.55 0.44 3.0 0.39 0.29 

Light intensity: 100 mW cm-2 

2.1.1. Power conversion efficiency of DSCs (η) 



Enhancing algae biomass production by using dye-sensitised solar cells as filters 

81 

All three algae cultures reached almost 0.9 g/L at day 9. A long lag phase was observed in the case of DSC-T1 (normal glass) until day 

four suggesting that direct light and/or UV presence slightly slowed down the cell division (All other cultures were able to enter the 

exponential phase within day 2). A slight decrease in DW was obtained in the case of DSC-R compared to controls and DSC-G. 

Growth kinetics 

Figure 45: shows the logarithmic growth and stationary phases of C. vulgaris. Growth curves (Cells/mL) and biomass concentration (g/L): 
(left) growth under low light intensity (Right) and high light intensity using DSC-T1; DSC-T1; DSC-G and DSC-R. 

C. vulgaris

Low light intensity High light intensity 

DSC-T1 DSC-T1‘ DSC-R DSC-G DSC-T1 DSC-T1’ DSC-R DSC-G 

Specific growth 

rate 

(d-1) 

0.62 ±0.02 0.75 ±0.01 0.58 ±0.01 0.69 ±0.05 0.51 ±0.03 0.63 ±0.02 0.86 ±0.01 0.85 ±0.03 

Doubling time 

(d) 
1.11 0.92 1.19 1.08 1.35 1.10 0.80 0.81 

DW 

(g/L) 
0.96 ±0.03 0.94 ±0.05 0.82 ±0.03 0.95 ±0.04 0.88 ±0.02 0.95 ±0.06 1.19 ±0.03 1.12 ±0.03 

Table 15: Only data collected during the exponential growth phase were used for growth kinetic analyses. Growth rate (μ) was determined individu-
ally for each replicate using a linear regression of the log-transformed cell density over time.  Doubling time (td) was determined by dividing log 2 

over the growth rate. 

One hypothesis to explain this decrease, even if statistically the difference was not significant (P > 0.05), is attributed to the reduction 

of red photons due to the reflection properties the presence of DSC-R. In algae culture, red and blue lights are the most efficient in 

deriving photosynthesis [125]. According to G. Anderson et al. (2012) [126], red light produced the highest number of microalgae 

cells with the highest weight. 

At higher light intensity, a significant difference in growth was observed between coloured DSC’s and controls, as shown in Figure 

45. C. vulgaris cultivated under coloured DSC filters exhibited a high growth rate compared to both control cultures. The results

showed that identical growth rate and doubling time were obtained in the case of DSC-R and DSC-G culture with μ = 0.86 ± 0.01 d−1;

td=0.80 d and μ = 0.85 ± 0.01 d−1; td=0.81 d but higher compared to normal glass control μ = 0.51 ± 0.03 d−1; td=1.35 d. By far, the

control culture exposed to direct radiation showed the slowest growth and DW among all tests. Flow cytometry analysis was per-

formed to investigate if the increase in DW and growth rate was accompanied with some deeper metabolic changes. Figure 46 
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illustrate the measured autofluorescence graphs (BL3-A, right side) as well as the cell population distributions (left side) at the end 

of the experiment. When both forward scatter FS and side scatter SS are measured, this allows for some degree to interpret the 

cellular differentiation within a heterogeneous population. Interestingly, a sharp autofluorescence peak was obtained as a signature 

for both coloured DSC-PBR with a very distinct cell population pattern in the dot-plots (FS vs SS). Contrary, both control cultures 

presented less intense autofluorescence compared to coloured DSC-PBR experiments. However, in the case of DSC-T1’, a split in 

autofluorescence peak was observed as an indication of the presence of different cell types with variable chlorophyll intensity. DSC-

T1’ present less scattered cells compared to DSC-T1 but the split in autofluorescence peaks was expressed as almost two different 

cell groups in the dot-plots. The stationary phase observed at the end of DSC-T1’ the experiment could be, in fact, subject to an 

adaptation period where cells are still preparing to undergo cell divisions (presence of mother and daughter cells). This observation 

suggested that under high light intensity and with a net reduction in UV radiation (presence of TiO2 layer), C. vulgaris can favour 

survival pathways on cell division during a period of acclimation. However, the dot-plots of DSC-T1 showed scattered and non-homo-

geneous cell distributions with different degree of internal complexity (increasing SS) and size (increasing FS). The autofluorescence 

peak was very weak compared to all three experiments, suggesting that C. vulgaris are bleached and stressed under 600W/m2 direct 

exposure (UV radiation presence). 
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Figure 46: The analysis by means of flow cytometry of C.vulgaris cells at the end of the experiment under high light intensity using a) DSC-T1 (nor-
mal glass); a) DSC-T1’ ((all DSC compounds except the dye) DSC-G (green solar panel); d) DSC-R (red solar panel). R1 represents the gating for auto-

fluorescent cells due to the presence of Chlorophyll a, SS: Side scatter, FS: Forward scatter. 

 Photochemical, regulated and non-regulated quantum yield variations 

The effect of light intensity on time courses was studied by daily calculating the maximum photochemical yield with dark-adapted 

microalgae (dark cycle). FV/FM ratio is a precise measure of the potential maximal quantum yield of PS II fluorescence, and it repre-

sents an indicator of photoinhibition that may occur at high light exposure radiation. A decrease in this ratio is highly correlated to a 

reduction in PS II and a decrease in the algal biomass. The measured FV/FM ratio for C. vulgaris was compared to another algae, 

Haematococcus pluvialis cultivated under the same conditions. This strain is not a fast-growing microalga, but it has the advantage 

of reacting under high light intensity or UV radiation via the accumulation of secondary pigments. This could be helpful for the com-

parison with C. vulgaris.  
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Figure 47 ) Fv/Fm fluorescence ratio of C. vulgaris and H. pluvialis at low and high light intensity; FV is the difference between the maximum fluores-
cence FM (all QA reduced) and minimum fluorescence F0  ( all QA oxidised ) 

Under low light intensity of 540 µmol photon m2 s-1, the ratio remained stable over time with a slight decrease at the end of the 

experiment, suggesting that light at this intensity didn’t trigger any stress factor such as photo-inhibition. Therefore, the photosyn-

thetic apparatus can efficiently utilize the absorbed photons when the rate of light absorbed does not exceed the rate of photosyn-

thesis. In contrast, C. vulgaris and H. pluvialis cell grown under high light intensity presented an Fv/Fm radio that decreased drastically 

from 0.74 and 0.65 to almost 0.59 within one day of exposure at 1620 µmol photon m2 s-1. At higher irradiance, the relation between 

absorbed light and photosynthesis rate is not linear. Consequently, Fv/Fm decreased. This decrease was followed by an increase and 

stabilisation during the four consecutive days. The variation of the ratio at the beginning of the experiment indicated that the cells 

were stressed at 1620 µmol photon m2 s-1 resulting in a slightly impaired photosynthetic apparatus. The rate of photon absorption 

by the chlorophyll antenna exceeds the rate at which photosynthesis can utilize them, which generally results in dissipation and loss 

of excess photons as heat or fluorescence. Nevertheless, a progressive increase of Fv/Fm especially in the case of H.pluvialis was 

observed and may be explained by a metabolic adaptation to the environment and several protection strategies such as non-photo-

chemical quenching via heat dissipation and repair mechanisms. 

According to Figure 48, DSC-T1 control C. vulgaris grown under high light intensity presented a lower starting value of photosynthetic 

efficiency (also called photochemical conversion) ɸ (PSII) compared to DSC-T1' and coloured DSC. These results are in line with the 

previous results from Table 15, indicating a lower growth rate and DW in the case of direct exposure. The fact that DSC-T’1 led to a 

higher ɸ (PSII) could be explained by the net reduction in UV radiation reaching the algae culture. Furthermore, DSC-T1 and DSC-T1' 

showed a different response reaction for high light intensity with an increase in the starting value of φ (NPQ) for DSC-T1’ compared 

in the case of DSC-T1. This is a strong indication that a part of absorbed light is dissipated via Non-photochemical quenching (NPQ), 

which is a mechanism employed by algae to protect themselves from the adverse effects of high light intensity. Moreover, a signifi-

cant difference was obtained for φ (NO) in the case DSC-T1 compared to all other cultures. The φ (NO) mechanisms predominate the 

φ (NPQ) pathway, which can be seen in Figure 48. When a molecule of chlorophyll absorbs light, it is promoted from its ground state 

to its first singlet excited state. The excited state then has three main fates. Either the energy is i) passed to another chlorophyll 

molecule by Förster resonance energy transfer (in this way excitation is gradually passed to the photochemical reaction centres of 

photosystem I and photosystem II) where energy is used in photosynthesis (called photochemical quenching), ii) the excited state 

can return to the ground state by emitting the energy as heat (called non-photochemical quenching, NPQ), and iii) the excited state 

can return to the ground state by emitting a photon (fluorescence). 
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Figure 48: φ(II), photochemical conversion, φ(NPQ), regulated thermal energy dissipation related to NPQ, φ(NO), "primarily constitutive losses", 
corresponding to the sum of non-regulated heat dissipation and fluorescence emission. 

Pigments and macromolecule compositions 

C.vulgaris

Low light intensity High light intensity 

DSC-  

T1 

DSC-  

T1’ 

DSC- 

R 

DSC- 

G 

DSC- 

 T1 
DSC- T1’ 

DSC- 

R 

DSC- 

G 

Chl a 

(μg/mg) 
8.50 ±0.50 9.55 ±0.32 11.25 ±0.18 11.68 ±0.38 5.98 ±0.23 8.85 ±0.11 9.57 ±0.32 10.03 ±0.57 

Chl b 

(μg/mg) 
1.11 ±0.02 1.60 ±0.04 1.52 ±0.05 1.45 ±0.07 0.75 ±0.02 1.80 ±0.01 1.62 ±0.04 1.57 ±0.04 

Car 

(μg/mg) 
0.49 ±0.01 0.59 ±0.04 0.52 ±0.05 0.58 ±0.03 0.30 ±0.01 0.8 ±0.02 1.11 ±0.03 0.92 ±0.01 

Car/Chl (a+b) 0.05 0.045 0.040 0.04 0.04 0.07 0.09 0.07 

Lipids 

(µg/mgDW) 
142 ±11.22 112 ±5.41 127.3 ±4.13 133 ±6.47 130 ±19.05 185 ±5.40 188 ±6.82 179.20 ±5.14 

Carbohydrates 

(µg/mgDW) 
175.5 ±14.00 201 ±15.13 165 ±10.50 171 ±14.52 102 ±4.80 230 ±9.50 150.2 ±13.40 131 ±1.51 

Proteins 

(µg/mgDW) 
490.4 ±9.80 482 ±12.00 507.2 ±23.24 538 ±49.20 387.1 ±5.25 410 ±9.41 514 ±14.00 528 ±21.32 

Table 16: Total Chlorophyll, carotenoids and macromolecule content. 
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Table 16 displays data of pigment contents obtained from the previous tests and it appeared that under low light intensity the chlo-

rophyll a and b contents were higher for the coloured DSC than for the control cultures. This observation seems to be shared in the 

literature. A common trend when lower light intensity is provided to green algae culture is that chlorophyll a and other light pigments 

tend to increase. This increase in pigment content will decrease the optical cross-section a*(m2mg-1 Chl a) and therefore, the gain in 

light-harvesting. A doubling of cellular chlorophyll does not bring a doubling in the rate of light absorption. These results could be 

relevant when indoor microalgae production with DSC-PBR technology under low intensity is considered.  

At higher light intensity experiments, the total chlorophyll yield decreased, and a net increase on carotenoid content was observed 

for all cultures except for DSC-T1, indicating a more active xanthophyll cycle. The increase was about 26% for the control DSC-T1’, 

52.72% and 35.55%, respectively, for red and green DSC-PBR. These carotenoids are generally involved in energy capture and dissi-

pation, and they are located at the peripheral of PSII antenna in the case of C. vulgaris. Under high light intensities, acidification of 

the chloroplast lumen activates de-epoxidase enzymes that convert violaxanthin into zeaxanthin. Violaxanthin transfers energy to 

Chl facilitating light harvesting at low light intensities while zeaxanthin dissipates excess Chl excited states at high light intensities as 

heat. This photo-acclimation allowed the cells to reach higher productivity via the regulation of light absorbance pathways. 

The concentration of the major macromolecules of C. vulgaris were quantified for all four experiments and results are shown in Table 

16. No significant difference between protein lipids and carbohydrate content was observed in all test cultures under low light inten-

sity. Some variation in concentration occurred but was considered statistically not significant (P>0.05). Under high light intensity, a

net decrease in the case of DSC-T1 was measured in all biomolecule content, confirming the stressed state of this culture. A slight

increase of lipid content was generalised in DSC-T1', and coloured DSC compared to the results obtained at low light intensity. Nev-

ertheless, protein and carbohydrate ratio remained constant, which implies that the shadowing and UV protection effects applied in 

the presence of DSC affected mainly the pigment content and very slightly the biochemical composition of C. vulgaris. 

DSC-PBR growth under constant light intensities: H. pluvialis case study 

A second set of experiments was performed using H. pluvialis with similar conditions previously applied in the case of C. vulgrais. 
However, limited analysis was accomplished due to the limited amount of biomass harvested at the end of each experiment.   

Table 17: Only data collected during the exponential growth phase were used for growth kinetic analyses.  

H. pluvialis

Low light intensity High light intensity 

DSC-T1 DSC-T1 ‘ DSC-R DSC-G DSS-T1 DSC-T1’ DSC-R DSC-G 

Specific 

growth rate 

(d-1) 

0.42 ±0.02 0.68 ±0.03 0.52 ±0.01 0.54 ±0.04 -0.09 0.25 ±0.02 0.55 ±0.05 0.46 ±0.02 

Doubling time 

(d) 
1.47 1.01 1.33 1.28 - 2.772 1.26 1.46 

DW 

(g/L) 
0.4 ±0.05 0.8 ±0.07 0.65 ±0.02 0.66 ±0.05 0.29 ±0.09 0.36 ±0.03 0.59 ±0.03 0.55 ±0.05 

Growth rate (μ) was determined individually for each replicate using a linear regression of the log-transformed cell density over time.  Dou-

bling time (td) was established by dividing log2 over the growth rate. 
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Figure 49: Picture of samples taken from H. pluvialis growth tests under high light intensity DSC-T1 (standard glass); DSC-T1'(all DSC compounds 
except the dye); DSC-G (green solar panel); DSC-R (red solar panel) 

Under low light intensity, according to Table 17, higher growth rates were obtained in DSC-T1’ and coloured DSC compared to H. 

pluvialis control culture DSC-T1, and only DSC-T1 culture was subject to colour changes. This switch to the red stage in H. pluvialis 

cell is an indication of a stressful environment. At this stage, DSC-T1’ cultures preserved its green colour as the two-coloured DSC-

cultures. In fact, H. pluvialis (Chlorophyta) is a unicellular alga with a rather complicated life cycle. Its ovoid vegetative cells are motile 

by way of two flagella, and during growth, non-motile cells (cysts) also occur. The cells are generally green, but under stress conditions 

(in this case, high irradiance) the green vegetative cells produce thicker walls and change to globular cysts with a significant increase 

in cell volume and pigmentation to orange-red, due to an increased carotenoid content. This excess excitation energy leads to an 

increase in the lifetime of singlet excited chlorophyll, increasing the chances of the formation of long-lived chlorophyll triplet states 

by inter-system crossing. Triplet chlorophyll is a potent photo-sensitiser of molecular oxygen forming singlet oxygen which can cause 

oxidative damage to the pigments, lipids and proteins of the photosynthetic thylakoid membrane.  

To counter this problem, the photo-protective mechanism NPQ involves conformational changes within the light-harvesting proteins 

of photosystem (PSII) that bring about a change in pigment interactions causing the formation of energy traps. The conformational 

changes are stimulated by a combination of a transmembrane proton gradient, the PsbS subunit of PS II and the enzymatic conversion 

of a secondary pigment, the carotenoid violaxanthin to zeaxanthin (the xanthophyll cycle). Under higher light intensity, at day 3, both 

control cultures changed colour to orange, and both DSC-cultures preserved their green colour. However, a drastic decrease in growth 

rate was observed with DSC-T1 with μ= -0.09 d-1 compared to μ= 0.42 d-1 under low light intensities due probably to photoinhibition 

and cell bleaching. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vegetative-cells
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/flagellum
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thick-walls
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pigmentation
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Figure 50: Transmissions electron micrographs TEM of h. pluvialis at day 3. 1) DSC-G, 2) DSC-R, 3) DSC T1’4) DSC-T1 Nucleus (N) Chloroplast (C), 
Pyrenoid (P), Oil droplet (O), cell wall (CW).  

Figure 50 exposes transmission electron from H. pluvialis growth tests at high light intensity (day3). Standard components are pre-

sented such as the nucleus and chloroplasts. Several pyrenoids are involved in CO2 uptake in the case of H. pluvialis. Under high light 

intensity accompanied with UV radiation, Figure 50 (3 and 4) also shows the formation of a thick wall in the case of both control 

cultures with the appearance of oil droplets inside the cells. This result suggests that coloured DSC applied at the top of the PBR acted 

as a protection filter and slowed down the activation of the xanthophyll cycle. These results are very encouraging as the applying of 

DSC panel could prolongate the green phase of H. pluvialis for maximum productivity before the stress phase (red cells, lower produc-

tivity). Simple cell walls and flagellates (green stage) were preserved in both cases of red and green DSC-PBR. 

 Algal biomass and energy production under DSC-bioreactor 

Materials (glass and aluminium) required for the construction of a bioreactor are reported in Table 18. Table 18 also presents 

amounts of water, CO2, nutrients and bubbling energy required to operate the PV bioreactor. The bubbling energy is calculated for a 

blower by using the pressure at the bottom of culture (plus 20% extra) in the PV bioreactor [74]. Note that bubbling is required for 

24h hours each day. Parisi et al. [127] calculated cradle-to-gate GHG emissions expressed as 530 g CO2-eq for producing 125 cm2 of 

DSC PV panel. The GHG emissions were characterised by IPCC (Intergovernmental Panel on Climate Change, 2013 GWP 100a).   
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Bioreactor 

Size of the glass chamber* 10 cm × 10 cm × 8 cm 

Glass used in glass chamber 411.6 g 

Aluminum used in glass chamber 8.4 g 

Lifetime of glass chamber*,  + 20 years 

DSC-panel 

Area of DSC panel 100 cm2 

GHG emissions in the manufacturing of 1 DSC panel 424 gCO2-eq 

Lifetime of DSC panel*, + 20 years 

Input to DSC-Bioreactor operation 

C. vulgaris batch time*, + 8 days 

Water (or culture) used in 1 batch 240 mL 

CO2 concentration in airflow* 2 v/v 

Airflow rate* 0.8 L/m 

CO2 used in 1 batch (from nature) 0.09 m3 (0.18 kg) 

Urea used in 1 batch 0.044 g 

Potassium carbonate used in 1 batch 0.019 g 

Phosphoric acid used in 1 batch 0.026 g 

Manganese sulphate used in 1 batch 0.0136 g 

Calcium chloride used in 1 batch 0.007 g 

Sodium hydroxide used in 1 batch 0.020 g 

Iron sulphate used in 1 batch 0.006 g 

EDTA-Na2 used in 1 batch 0.002 g 

Bubbling energy (electricity) in 1 batch 2.11 kJ 

Output of DSC-PBR operation 

Algae production rate* 1.19 g/L 

Algae produced in 1 batch 0.286 g 

CO2 present in microalgae produced* 0.106 g 

Wastewater (25% loss: evaporation, harvesting) in 1 batch 180 mL 

Electricity produced by DSC  panel in 1 batch 41.47 kJ 

*These are not direct input-output for DSC-PBR design/operation.

+These are used to calculate the multiplication factor for bioreactor and DSC panel use.

Table 18: Design and operation parameters of a DSC-PBR. 

Alsema et al. calculated cradle-to-gate GHG emissions (35 g CO2-eq/kWh) for producing electricity by silicon PV panels [128]. The 

GHG emissions for Swiss electricity mix are 128.9 g CO2-eq/kWh (Ecoinvent dataset - v3.3, www.ecoinvent.org). For performing LCA 

of DSC-PBR, SimaPro software (v8.5; simapro.com) along with the Ecoinvent dataset have been used. In order to produce 1 kg of 

microalgae (8 days), 3501 units of DSC-PBR are required which covers a surface of 35.01 m2. On this surface, DSC panels generate 

40.332 kWh in 8 days, i.e. 36803 kWh over 20 years. As a result, the emitted CO2 from the DSC production is equal to 0.040 kg 

CO2/kWh (3501*0.424 kg CO2). Furthermore, higher solar conversion efficiency could decrease the CO2 footprint of DSC and compete 

with standard PV with 0.035 kgCO2/kWh.  

LCA results for the three cases are provided in Table 19 in terms of total GHG emissions to produce 1 kg of microalgae. The operation 

of a DSC-PBR has a large share in GHG emissions, mainly due to nutrients supplied for microalgae growth. The production and end-

of-life of the DSC-PBR (glass is considered being landfilled, whereas aluminum considered being recycled) contributes about 71.6% 

of the overall GHG emissions. However, this contribution can be easily reduced when bigger photobioreactor is considered. For 
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instance, by combining small DSC PBR of 100 cm2 into big DSC-PBR of 1 m2, 68.57% reduction of materials and related CO2-eq emis-

sions can be achieved (see supplementary information: LCA). 

Bubbling of culture using air/CO2 (air/2 % CO2 mix) feed requires a small amount of electrical energy for blowers, and its contribution 

to the overall GHG emission remains below 2%. In Case I, 40.332 kWh electricity is generated by DSC PV panel (solar irradiation to 

electricity conversion efficiency = 3%). A fraction of the generated electricity, 2.05 kWh, is used by the bioreactor in bubbling of 

microalgae, and the difference, 38.281 kWh extra electricity is injected into the Swiss electricity grid, which generates 4.935 kg CO2-

eq credits. The net GHG emissions to produce 1 kg of microalgae is therefore -0.3481 kgCO2-eq. However, even if the net GHG ob-

tained here was negative, microalgae production system generally contains more GHG contributors such as harvesting, dewatering 

steps. This can significantly increase GHG.  

To produce 1 kg of microalgae, Case II and Case III generate 3.033 and 3.225 kgCO2-eq emissions over the entire life cycle, respectively. 

In Case II, electricity for bubbling is supplied by Silicon PV panel, which has 0.072 kg CO2-eq emissions to produce 2.05 kWh electricity. 

In Case III, electricity for bubbling is provided by Swiss electricity mix, which contributes 0.264 kg CO2-eq emissions. 

Table 19: All contributors of GHG emissions (in CO2-eq) of bioreactor producing 1 kg of microalgae (DW). (*) The negative number indicates the 
avoided electricity production. (+) This value indicates the CO2 impact of electricity provided from an existing silicon PV platform (including CO2 

contribution from the construction of Si-panel) 

Table 20 illustrates the surface coverage by DSC-PBR needed to produce 1 kg of C. vulgaris (8 days) using extrapolated data obtained 

from the previous experiments. At low irradiance, 50.8 m2 area is required to produce 1 kg of microalgae with an electricity of 29.27 

kWh. At 600 W/m2, a reduction of 31% in space occupation can be obtained with the same DSC-R compared to the low-intensity 

case, with which only 35 m2 area is needed to produce 1 kg of algae and two-times higher electricity production 60.50 kWh. These 

results are of interest as they show the potential of DSC-PBR technology in highly sunny regions. The benefits of DSC presence in PBR 

is even more relevant when DSC panel efficiency is close to their typical efficiency 8%  [127]. Note that DSC panels do not use any 

extra space, as they are placed on the top of bioreactor.  

Case I (kg) Case II (kg) Case III (kg) 

Bioreactor including end-of-life 1.658 1.658 1.658 

DSC PV panel 1.627 - - 

Silicon PV panel - 0.072+ - 

Operation of PV bioreactor 1.302 1.302 1.567 

Water 0.166 0.166 0.166 

Urea 0.525 0.525 0.525 

Potassium carbonate 0.192 0.192 0.192 

Phosphoric acid 0.144 0.144 0.144 

Manganese sulphate 0.044 0.044 0.044 

Calcium chloride 0.020 0.020 0.020 

Sodium hydroxide 0.096 0.096 0.096 

Iron sulphate 0.006 0.006 0.006 

EDTA-Na2 0.030 0.030 0.030 

Wastewater Treatment 0.080 0.080 0.080 

Electricity for bubbling - - 0.264 

Avoided electricity production* - 4.935 - - 

Total CO2 emissions -0.348 3.033 3.225 
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Parameters Units Low light intensity High light intensity 

Solar irradiation  
W/m2 

 
200 

 
600 

µmol  
photons/m2 s-1 540 1620 

Top surface area of 1 bioreactor  m2 0.01 0.01 
Duration of an algae growth cycle   days 8 8 

Solar energy (per day, 12 h)  kJ 86.4 259.2 
Solar energy (per day, 12 h)  kWh 0.024 0.072 

DSC-R 
 

Algae production per batch (2 compartments) g 0.196 0.285 
Solar energy efficiency of DSC unit % 3 

DSC unit needed for 1 kg algae 
/ surface required DSC-unit or m2 5081 or 50.8 3501 or 35.0 

Electricity produced by all DSC unit in 8 days (1kg biomass) kWh 29.27 60.50 

DSC-G 
 

Algae production per batch (2 compartments)  g 0.228 0.269 
Solar energy efficiency of DSC unit % 2.8 

DSC unit needed for 1 kg algae 
/ surface required DSC-unit or m2 4385 or 44 3720 or 37 

Electricity produced by all DSC unit in 8 days (1kg biomass) kWh 23.57 60.00 
 

Table 20: Electricity production based on 10 cm*10 cm DSC-R and DSC-G for 8 days batch culture of Chlorella vulgaris at variable light intensities 
and DSC efficiency. Two different efficiencies were used for DSC-R and DSC-G: 2.8% and 3% respectively obtained from our study. 





     Biomass valorisation: Extraction 

of carotenoids from Chlorella vulgaris using 

green solvents and syngas production from 

residual biomass 

Abstract: 

A combined process for carotenoids extraction and efficient bioenergy recovery from the wet microalgae biomass is proposed. High 

added-value products could thus be extracted prior hydrothermal gasification of the algal biomass into synthetic natural gas. The 

economic sustainability of biofuel production from algal biomass as well as the large energy demands of microalgae cultivation and 

harvesting is addressed in this chapter. Two green solvents, ethanol and 2-methyl tetrahydrofuran (MTHF) were used to achieve the 

maximum extractability of selected carotenoids. Pure MTHF was tested for the first time as an alternative renewable solvent for 

carotenoid extraction from wet biomass, and promising results were obtained (30 minutes at 110 °C), with 45% of total carotenoids 

being extracted. The energy content of the residual biomass corresponds to a high heating value (HHV) of 18.1 MJ kg-1. With a 1:1 

mixture of both MTHF and ethanol, more carotenoids were extracted from wet biomass (66%), and the remaining HHV of the residual 

biomass was 15.7 MJ kg-1. The perspectives of combined carotenoid extraction and energy recovery for a better microalgae valorisa-

tion are discussed.  

Figure 51: Structures of carotenes and xanthophylls [129]. 
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Materials from this chapter has been published in: 

(I) E. Damergi; J.-P. Schwitzguébel; D. Refardt; S. Sharma; C. Holliger et al.: Extraction of carotenoids from Chlorella vulgaris using 
green solvents and syngas production from residual biomass; Algal Research. 2017. DOI: 10.1016/j.algal.2017.05.003. 

The author performed all experiments related to microalgae carotenoids extraction, as well as data treatment and interpretation. 

The author took the lead in compiling the first draft of the manuscript, resulting in the publication listed above. 

 Hansen solubility parameters 

The present research focused on using wet biomass and opted for more environmentally friendly extraction techniques that employ 

green solvents (MTHF alone or combined with ethanol) instead of petroleum-derived ones. The chemical profile of the extracts was 

determined by High-Performance Liquid Chromatography coupled with Diode Array Detector (HPLC-DAD). The effect of this pre-

processing step on the residual microalgae biomass was evaluated for the potential energy recovery by calculating the high heating 

value. The perspective about integrating the carotenoids extraction step into an existing hydrothermal energy recovery process for 

better microalgae valorisation is also discussed. 

To predict the compatibility of the tested solvent and solutes, Hansen solubility parameters (HSP) were studied (Table 21) to forecast 

miscibility and solvation and were compared with hexane, which is generally used for carotenoid extraction [130]. The Hansen 

method provides a convenient and efficient way to characterize solute/solvent interactions. 

HSP is given by δtotal2 = δd2 + δp2 + δH2 which consists of its three partitioned HSP in terms of dispersion force δd, polar (permanent 

dipole forces) δp, and (hydrogen-bonding force) δH, respectively. In general, the more similar the two δtotal are, the greater the 

affinity between solutes and solvents. MTHF was chosen for carotenoid extraction since it has a δtotal which is very close to the one 

of carotenoids and since it is a green solvent. 

 Solvents Solutes 

Hansen solubility parame-
ters (MPa1/2) 

MTHF Ethanol Water Hexane β-carotene Lutein Zeaxanthin 

δtotal 17.69 26.5 47.8 15 17.5 18.4 18.5 

Dispersion δd  16.4 15.8 15.6 15 17.4 17.8 17.8 

Polar δp 4.8 8.8 16.0 0 0.8 1.3 1.4 

 Hydrogen Bonding δH 4.6 19.4 42.3 0 1.7 4.5 4.8 

Table 21: Hansen solubility parameters: solvent/solute interactions. MPa1/2 (equivalent to joules/cubic centimeter; 2.0455 x (cal/cc)1/2) at 25oC. HSP 
is given by δtotal2 = δd2 + δp2 + δH2 which now consists of its three partitioned HSP in terms of dispersion force δd, polar (permanent dipole forces) 

δp, and hydrogen-bonding δH force, respectively [130]. 

 Elemental composition before and after the extraction 

The elemental composition of non-extracted C. vulgaris dry biomass was measured, and the proportions of the main elements rela-

tive to the weight of the biomass are given in Table 22.  The high heating value (HHV) computed from the elemental composition  
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Carotenoids extraction yields 

Although the proportion of total carotenoids extracted, reaching 311 μg/g DW, was higher for dry biomass with a mixture of solvents 

Table 23, a high yield of carotenoids (277 μg/g DW) was also obtained from wet biomass (50% moisture). In both cases, xanthophylls 

represented more than 75% of carotenoids, with 80-90 μg/g DW lutein, 60-70 μg/g DW astaxanthin, around 40 μg/g DW violaxanthin, 

and 28-35 μg/g DW canthaxanthin (Figure 52). The content of carotenes (22-24 % of total carotenoids) was around 45-50 μg/g DW 

for β-carotene and 18-22 μg/g DW for lycopene.  

Biomass Extraction conditions Carbon 
% 

Nitrogen 
% 

Sulfur 
% 

Hydrogen 
% 

Oxygen 
% 

Before extraction  49.2 ±0.45 6.30 ±0.27 0.89 ±0.04 7.45 ±0.15 33.9 ±0.5 

After extraction 

Dry biomass 
(<5% moisture) 

15 min    40°C   100%MTHF 45.0 ±0.25 5.76 ±0.48 0.82 ±0.03 6.86 ±0.21 31.3 ±1.4 

30 min    40°C   100%MTHF 42.8 ±0.37 5.57 ±0.47 0.81 ±0.04 6.49 ±0.19 31.6 ±0.7 

15 min  110°C   100%MTHF 40.3 ±0.74 5.12 ±0.12 0.74 ±0.04 6.25 ±0.13 29.4 ±1.6 

30 min  110°C   100%MTHF 38.6 ±0.66 5.07 ±0.04 0.71 ±0.01 6.07 ±0.24 28.5 ±1.4 

15 min    40°C   MTHF+ETOH 37.1 ±0.81 4.66 ±0.12 0.70 ±0.04 5.72 ±0.24 27.4 ±2.1 

30 min    40°C   MTHF+ETOH 36.3 ±0.17 4.53 ±0.13 0.69 ±0.09 5.61 ±0.12 25.9 ±2.2 

15 min  110°C   MTHF+ETOH 31.8 ±0.78 4.21 ±0.15 0.61 ±0.02 5.06 ±0.04 22.1 ±0.8 

30 min  110°C   MTHF+ETOH 29.9 ±1.30 4.19 ±0.09 0.65 ±0.04 4.79 ±0.05 23.8 ±1.2 

After extraction 

Wet biomass 
(50% moisture) 

15 min    40°C   100%MTHF 41.9 ±0.09 5.40 ±0.06 0.74 ±0.03 6.36 ±0.16 31.8 ±0.04 

30 min    40°C   100%MTHF 41.4 ±0.35 5.21 ±0.16 0.81 ±0.04 6.27 ±0.09 31.1 ±0.23 

15 min  110°C   100%MTHF 47.5 ±0.46 5.93 ±0.13 0.80 ±0.01 7.47 ±0.22 31.4 ±0.47 

30 min  110°C   100%MTHF 42.0 ±0.11 5.56 ±0.13 0.73 ±0.04 5.86 ±0.17 31.5 ±0.01 

15 min    40°C   MTHF+ETOH 45.9 ±0.57 6.10 ±0.15 0.74 ±0.01 7.04 ±0.08 30.0 ±0.17 

30 min    40°C   MTHF+ETOH 39.4 ±0.39 4.40 ±0.16 0.71 ±0.01 6.00 ±0.12 29.9 ±0.32 

15 min  110°C   MTHF+ETOH 37.7 ±0.38 4.67 ±0.12 0.68 ±0.02 4.79 ±0.04 27.2 ±1.90 

30 min  110°C   MTHF+ETOH 35.0 ±0.33 6.30 ±0.12 0.63 ±0.04 5.60 ±0.08 25.4 ±0.66 

Table 22: Elemental composition of C. vulgaris before and after the extraction. 

was 22.5 MJ/kg, and the total content of carotenoids was 417 μg/g DW (Table 23). Chlorophyll a, chlorophyll b and total chlorophyll 

concentrations were 2016 μg/g DW, 147 μg/g DW and 2173 μg/g DW, respectively.  

As expected, HHV was lower in residual biomass after extraction, corresponding to set-up, which achieved a high extraction yield. 

Moreover, the correlation between remaining HHV and extraction yield was of -0.93, indicating that leftover HHV decreased almost 

linearly with increasing the extraction yield Table 23. Parameter changes in set-up inducing An increase in biomass and carotenoids 

extraction yields were the use of dry biomass (< 5% moisture content), a longer extraction time (30 min), a higher extraction temper-

ature (110 °C), and the use of a mixture of MTHF and ethanol, instead of MTHF only 
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Biomass / Extrac-

tion conditions 

Remaining HHV 

(MJ kg-1) 

Extracted biomass 

(% initial DW) 

Carotenoids extracted 

(µg/g DW) 

Biomass before ex-

traction 
22.54 ±0.24   417 ±1.6 

Dry/Wet Biomass Dry Wet Dry Wet Dry Wet 

15 min    40°C  

100%MTHF 
20.48 ±0.30 18.68 ±0.19 6.9 12.8 94 ±8.1 107 ±2.4 

30 min    40°C   

100% MTHF 
19.19 ±0.38 18.45 ±0.16 9.0 14.8 102 ±5.2 127 ±2.1 

15 min  110°C   

100% MTHF 
18.15 ±0.34 22.12 ±0.31 16.0 14.0 145 ±2.1 154 ±2.5 

30 min  110°C  

100% MTHF 
17.37 ±0.39 18.14 ±0.20 16.4 13.9 159 ±1 .0 186 ±1.2 

15 min  40°C 

MTHF+ETOH 
16.48 ±0.45 20.64 ±0.22 23.0 13.6 162 ±5.2 188 ±6.1 

30 min  40°C 

MTHF+ETOH 
16.17 ±0.27 17.52 ±0.20 21.9 18.7 183 ±6.7 216 ±8.9 

15 min  110°C 

MTHF+ETOH 
14.14 ±0.29 15.60 ±0.24 28.8 11.4 267 ±8.3 252 ±8.9 

30 min  110°C 

MTHF+ETOH 
12.98 ±0.48 15.71 ±0.16 29.3 19.4 311 ±6.1 277 ±3.9 

Table 23: High Heating Value (HHV), extracted biomass (in % of the total dry weight of biomass before extraction) and the sum of carotenoids ex-
tracted.  violaxanthin, astaxanthin, lycopene, β-carotene, lutein and canthaxanthin as a function of extraction conditions (time, temperature, sol-

vents).  Mean values are given with the Standard deviation. 

Even if the total amount of extracted carotenoids was much lower when only 2-MTHF was used as a solvent, more xanthophyll was 

extracted from wet biomass than from dry biomass under such conditions Figure 52, which was not the case for carotenes. This was 

probably due to the polarity of water that improved the extraction of polar carotenoids not extracted with MTHF. After 30 minutes 

at 110 °C, the xanthophylls (more than 80% of extracted carotenoids) recovered in the highest amount from wet biomass were 

astaxanthin and lutein (48-50 µg/g DW), followed by canthaxanthin and violaxanthin (26-27 μg/g DW) Figure 52, whereas carotenes 

represented less than 20% of carotenoids extracted, with β-carotene (23 μg/g DW), and lycopene (11 μg/g DW). The proportion of 

compounds extracted varied between the different conditions used, also depending on the type of carotenoid Figure 52 and Figure 

53.  
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Figure 52: Effect of temperature (40 and 110 °C) and solvents (2-methyltetrahydrofuran, MTHF; ethanol, EtOH) on the extraction of xanthophylls 
from C. vulgaris dry (left) or wet (right) biomass, after 15 min (bottom) or 30 min (top) extraction time. 
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Figure 53: Effect of temperature (40 and 110 °C) and solvents (2-methyl tetrahydrofuran, MTHF; ethanol, EtOH) on the extraction of carotenes from 
C. vulgaris dry (left) or wet (right) biomass, after 15 min (bottom) or 30 min (top) extraction time.

Effect of changes in extraction set-up on mean extraction yield and mean ex-

tracted carotenoids 

The combined use of MTHF and ethanol instead of MTHF only was the parameter, which improved extraction the most (70% increase 

of extraction yield and 73% of total carotenoids being extracted. Drying the biomass favoured the extraction yield but negatively 

affected the extraction of most carotenoids.   
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Parameter changes Mean extraction yield change Mean carotenoids extracted change 

Extraction time +38% +14% 

Drying +57% -6% 

Extraction temperature +23% +49% 

Number of solvents +70% 73% 

Table 24: Effect of changes in extraction set-up on mean extraction yield and mean extracted carotenoids for different parameters. 

The elemental composition of C. vulgaris was converted from dry weight proportions in molar proportions, as shown by Tuantet et 

al. [131]. It was expected to have HHV decreasing with increasing extraction yield because the solvents used have an affinity to other 

biomolecules such as lipids as well. This could explain the significant decrease of the calculated HHV in the remaining residues when 

more matter was removed during the extraction. 

Studying the moisture effect on the extraction yield of pigment was investigated. Even if dry algal biomass is often used for pigment 

extraction [132–135], a slight increase in the carotenoids yield was reported in this study, Table 23. Drying is one of the most energy-

consuming steps during the processing of microalgal biomass into various products. Therefore, if it can be avoided, the energy effi-

ciency of the whole system would be improved, and the use of wet biomass is thus attractive, despite the need to process the biomass 

rapidly after harvesting [136]. The obtained results are in agreement with those of Papaioannou et al. [137] where carotenoids 

extraction yield from wet fungal biomass Blakeslea trispora was significantly higher than the dried ones. 

The use of high temperature combined with the use of ethanol added to MTHF as solvent highly favours carotenoids extraction. For 

lycopene, β-carotene and lutein, the quantity extracted was significantly increased (Figure 52, Figure 53). In this case, the total bio-

mass extraction yield was less pronounced than that of the carotenoids, resulting in a higher proportion of carotenoids in the extract. 

However, rising temperature could increase the energy demand of the system.  Therefore, adding ethanol to MTHF allows decreasing 

the operating costs as ethanol enhance the penetration of solvent through the extracellular membrane of C. vulgaris to the cellular 

matrix, and like this reduce the need of deploying higher temperatures. 

As all species have not the same amount of pigments and cell complexity as C. vulgaris, it is likely that the amount of carotenoids 

extracted will not be similar, if other species are chosen. As cell walls of C. vulgaris consist of a very strong matrix made of polysac-

charide and glycoprotein providing the cells with a formidable defence, this makes it more challenging for carotenoids extraction. 

Other species such as Dunaliella sp and Haemotococcus pluvialis known for their high carotenoids content [138] have a less rigid 

cellular membrane. This could improve solvents penetration and thus improving the carotenoids extraction yield. However, the high-

est increase in quantity extracted was observed at the same extraction conditions for all carotenoids investigated (higher tempera-

ture and ethanol mixed with MTHF).  

The production of biofuels from microalgae appears to be promising [133,139–141], but remains limited because of economic rea-

sons [142]. In addition to the fluctuating price of fossil fuels, the development of low-cost cultivation systems, low-energy harvesting 

techniques and cost-effective downstream processing are still challenging to be addressed successfully [142,143]. In such a context, 

the co-culture of microalgae with other microorganisms such as fungi has been shown to facilitate the harvesting step and has the 

potential to reduce operational costs [143].  

To improve the economic and ecological sustainability of large-scale production of microalgal biofuels, the extraction of high-value 

chemicals should be integrated with the use of residual biomass for energy production in a biorefinery [26,28,136,144]. This is the 
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purpose of the work presented here, which is part of the SunChem project that aims to develop an integrated process for the hydro-

thermal production of methane from microalgae, after extraction of added-value chemicals like carotenoids [38,88,143]. 

This additional extraction step may also serve to prevent deactivation of the Ru/C catalyst caused by the sulphur released from the 

biomass. According to the results obtained here, the sulphur content can be reduced by up to 30.6% (extraction from dry biomass 

for 15 min at 110 °C using a mixture of both solvents). With further optimisation of the extraction parameters, this may improve the 

lifetime of the catalyst prior to the hydrothermal treatment substantially. 

 

Figure 54: Microalgae processing using pressurised liquid extraction and supercritical hydrothermal gasification. 

Figure 54 presents the complete processing of microalgae biomass using pressurised liquid extraction and supercritical hydrothermal 

gasification. It also reports the elemental compositions of microalgae and residual biomass: for illustration purpose, 2 kg of microal-

gae biomass (i.e. 1 kg dry microalgae) are used to extract carotenoids with 100% MTHF for 30 min at 110°C. In this particular case, 

0.139 kg (13.9%) of the extract is obtained based on the total dry weight of biomass (Figure 54, Table 23).  

The residual biomass has 42, 5.86, 31.5, 5.56 and 0.73 wt% of carbon, hydrogen, oxygen, nitrogen and sulphur, respectively, and that 

can be converted to 3.5, 5.86, 1.97, 0.4 and 0.023 atoms of carbon, hydrogen, oxygen, nitrogen and sulphur, respectively. Nitrogen, 

sulphur and ash have to be removed via salt separation before hydrothermal gasification (HTG). The residual biomass, entering the 

HTG, can be represented as CH1.67O0.56 without considering nitrogen, sulphur and ash. The conversion of biomass into CH4 and CO2 is 

based on the conceptual overall net reaction [145], which can be written for residual biomass as follows:  

 CH1.67O0.56 + 0.303 H2O               0.569 CH4 + 0.431 CO2 

Equation 29: The conversion of algal biomass into CH4 and CO2. 

Based on Equation 1, 12 kg of carbon in the residual biomass can produce 9.104 and 18.964 kg of CH4 and CO2, respectively. The 

residual biomass has 0.362 kg (42 wt% of 0.861 kg residual biomass on dry basis) of carbon, which can produce 0.274 and 0.572 kg 
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of CH4 and CO2, respectively. Finally, HHV value for syngas from the HTG is 15.22 MJ/kg, based on the amount of CH4 present in the 

syngas. Note that CH4 has HHV of 55.5 MJ/kg.  

Carotenoids extraction is enhanced by the use of high temperature and with a mixture of MTHF and ethanol compared to low tem-

perature and MTHF only. However, the optimal temperature, which would allow optimising the balance between the processing 

costs, the economic value of the chemicals extracted, and the energy content of the residual biomass remains to be determined. This 

optimisation should, in particular, investigate the effects on the extraction of intermediate temperatures along with different pro-

portions between MTHF and ethanol since the optimal ratio could also depend on the temperature. Furthermore, microalgae can 

produce other added-value chemicals that could be extracted as well. Taking these fine chemicals into account in the process of 

optimization should increase the overall economic and ecological value of the system in a sustainable biorefinery concept. Moreover, 

according to our calculations, not negligible amount of energy is recyclable from the gasification of the residues after the extraction 

of carotenoids, which improve the overall system energy by reducing the energy consumption. 
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 Final remarks 
 

 Sustainable production of algal biomass and energy: OSS-SOFC-HTG 

combined system 

This study illustrates a complex concept based on waste stream OSS and combined HTG and SOFC processes with potential algal 

biomass production. Nutrients, when recovered at source level, are more concentrated than in wastewater treatment plants.  For 

instance, the phosphorus content of effluents from composted human excreta (leachate) was 50-fold higher than a typical 

wastewater effluent. This shows the potential of on-site sanitation over the current existent system, where nutrients present in a 

very diluted form, are difficult to recover. As phosphorus is a limited and vital resource, achieving high phosphorus recovery was one 

of the objectives of this study. The successful tests at KIT-Karlsruhe have shown that: (1) principally the hydrothermal gasification of 

the leachate is technically feasible even if the gasification efficiency was not high. (2) High recovery yields for phosphorus, and nitro-

gen were achieved through the HTG treatment. (3) Microalgae growth tests in AP were successful after an adaptation period. (4) 

Syngas produced during the gasification was successfully used as a fuel for the SOFC. The results of this work showed interesting new 

opportunities for further research towards OOS stream valorisation, contributing to closing the nutrient loop while producing carbon-

neutral biofuels and valuable co-products from microalgae cultivation.  A decentralised hydrothermal treatment of household efflu-

ents could provide a system that valorises nutrients and chemical energy which is very promising if the technological and economical 

challenge could be solved. 

However, how efficient and affordable most of the on-site sanitation systems might be, they often need a certain open-mindedness 

from dwellers to change their "classical" Water-Closet comfort to an alternative system. This is indeed the case in Cressy: the whole 

building conception was discussed during numerous months between the future inhabitants that already were convinced of a chang-

ing paradigm necessity regarding wastewater management. How environmentally justifiable it can be, is it fair to ask people to change 

their daily life regarding their private hygiene? We have seen that even environmentally sensitive people might be disheartened by 

alternative systems. From this perspective, it is no more a matter of engineers but a real psychosocial limitation.   

Answers to the scientific questions addressed earlier in the thesis: 

RQ1-1: Can we use on-site sanitation effluent as a feedstock for HTG process to recover nutrients and produce energy-rich gas?  

Yes, a successful 40h steady-state gasification was achieved using the leachate effluent. Nevertheless, the modest carbon conversion 

efficiency of 40% suggests that carbon content was not fully converted into energy-rich gas. Only part of the missing organic fraction 

was detected in the HTG aqueous effluent, which indicates that tar formation potentially occurred during the gasification. Moreover, 

an increase in nickel concentration was observed in the HTG effluent indicating the corrosion of the HTG reactor wall. The high salt 

content of the leachate can cause clogging issues. To increase the carbon conversion efficiency, a higher temperature can be applied. 

However, a trade-off between higher temperature and energy consumption of the gasification unit must be made. Another option 

will be the use of hydrothermal catalytic gasification. As leachate effluents have a substantial amount of sulphur content, a salt 

separator and sulphur removal units should be added before the hydrothermal gasification reactor.  
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RQ1-2: What is the potential to use this energy-rich gas to generate electricity using a SOFC? 

The major gas obtained from HTG experiment in this work was mainly H2. For SOFC operations, H2 is the ideal gas for high electrical 

conversion efficiency production. CH4 can also be used in SOFC, but a steam reforming step is generally needed to avoid carbon 

deposition within the SOFC cell. The presence of higher amount of non-methane hydrocarbon (C2H4, C2H6 and C3H8) increased the 

degradation rate of the SOCF cell significantly up 11%/kh.  Consistent and stable performance can be achieved if the amount of non-

methane hydrocarbon is reduced. The addition of steam in the fuel gas also allows to shift the reaction form the carbon disposition 

region. Finally, an electrical conversion efficiency (ECE) of 74.7% was predicted using HTG fuel gas operating in a combined SOFC and 

inverted Brayton cycle mode gas turbine system. 

Nitrogen-containing organics from the hydrothermal conversion of algal 

biomass. 

During the gasification of algal biomass and/or leachate effluents, the build-up of some measured recalcitrant nitrogen organic sub-

stances NOC’s in the salt brine effluent cannot be avoided owing to continuous operation. The most important N-containing com-

pounds observed in the salt brine effluent studied were amines, alkyl-pyrrolidones, cyclic amides and traces of piperazinediones. 

These compounds showed high toxicity to microalgae when salt brine effluent was used as a growth medium. The assimilation of 

these compounds as carbon and nitrogen sources by three microalgae strains showed that the tested algae were not able to metab-

olise the NOC’s compounds. Therefore, the salt brine effluent was further gasifier to completely convert the organics to methane 

while releasing nitrogen from the complex NOC’s molecules as a liquid ammonium fertiliser. However, the cost and energy demand 

of an additional gasification step should be studied. The advantages of such a process were presented in a detailed techno-economic 

assessment for the integration of algae production and hydrothermal gasification technology in earlier study [146]. 

Studying the effect of biochemical composition in the formation of these recalcitrant organics should be investigated. Microalgae are 

composed of carbohydrates, proteins, nucleic acids and lipids and contain substantial amounts of heteroatoms such as nitrogen (0.1 

to > 10 wt. %), sulphur (0.1 to > 1 wt. %), chlorides (0.1 to > 16 wt. %) and phosphorus (0.1 to > 2 wt. %). This complex interaction 

between macromolecular structure and heterogeneous nature of algal biomass makes algal biomass decomposition very difficult to 

predict during HT process. Thus, an understanding of decomposition pathways of algal biomass as a function of HT parameters (tem-

perature, residence time and pressure) is essential to predict the formation and decomposition of recalcitrant organics compounds. 

RQ2-1: Is it feasible to use the HTG effluent as a microalgae growth medium (Leachate HTG effluent by-product)? 

Leachate HTG effluent can be used as a growth medium for microalgae production after a few adaptations. Due to high salt content, 

and the presence of some recalcitrant organics, a dilution factor of 5 was applied. Moreover, the pH was adjusted to 7 as the HTG 

effluent was strongly alkaline (pH varied from 9-10). Nevertheless, microalgae were able to grow on the HTG effluents after a re-

markable lag phase compared to control cultures. The presence of some organics such as phenols and recalcitrant organics could be 

the reason behind this lag phase. Less organics compound should be found in the HTG effluent if the carbon conversion efficiency is 

higher. Nevertheless, the removal of trace organics from HTG effluent can also be performed using s filter, such as activated carbon, 

prior the use as a culture medium 

RQ2-2: Is it feasible to use the HTG effluent as a microalgae growth medium? (algal biomass HTG effluent by-product)? 

Three microalgae species ranging from brackish to freshwater species were grown successfully in an algal biomass HTG effluent by-

product. Despite the high carbon conversion efficiency obtained under catalytic conditions (75%), some recalcitrant organic com-

pounds NOC’s were detected in the aqueous phase mainly. High concentrations of NOCs were detected in HTG effluent, for example, 
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2-pyrrolidinone 193mg/L and piperidine 148mg/L.  The HTG effluent by-product was subject to dilution and pH adjustment before

using as a microalgae culture medium. At concentration of 100ppm of the tested NOC’s, the growth rate of all microalgae species

tested diminished significantly compared to the control. The IC50 for all cases is roughly 75 ppm. For a continuous algae production,

a cleaning step or a dilution factor could be applied before the use of HTG effluent as a growth medium.

Dye sensitised solar cells for enhanced algae biomass production 

Even with low solar light conversion efficiency of 3%, the presence of DSC panels allows a reduction of GHG emissions compared to 

the alternative of a PBR without DSC panel. Further potential for improving the environmental performance of the whole system 

relies on improving the efficiency of DSC panels. This can also lead to a reduction in space requirement of microalgae production 

systems. Even if some results are promising, the DSC-PBR system is still far from a real large-scale implementation, the construction 

of the bioreactor should also be optimised in terms of material weight and type and additional factors will need to be considered. 

For example, an important aspect which hasn’t been considered yet is the variation of light intensity during the day and the weather 

change during seasons in real outdoor conditions. Techno-economic analyses of large-scale production in a hybrid cultivation mode 

will reveal whether this system is also economically more viable or not. Combining the positive effects of dye sensitised solar cells to 

scale-up research would be interesting by using a solar greenhouse, for instance, this technology could be applied to several (existing 

or not) installations without much effort and have a positive effect. 

Figure 55: DSC-Greenhouse for microalgae production idea. 

RQ3-1: What is the effect of DSC filter on the growth kinetics and the final microalgae biomass composition? 

The results obtained for high light intensity with DSC-PBR for both tested algae are very promising. A significant increase in growth 

rate and final biomass was observed in the case of the green algae C. vulgaris. This increase was not accompanied by a change in the 

macromolecule composition. Moreover, in the case of H. pluvilias, a slowdown of the stress mechanism was demonstrated in the 

presence of both DSC-panels. 
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These results are very encouraging as applying of a DSC panel could prolongate the green phase of H. pluvialis for maximum 

productivity before the stress phase (red cells, lower productivity). The knowledge acquired from this work gave rise to new 

perspectives concerning the culture of H. pluvialis at large scale. For the future investigation, DSC panel absorbing the infrared 

wavelength should be tested to reduce the heating generated inside microalgae photobioreactor.  

RQ3-2: In term of CO2 emissions, what is the impact of adding a DSC panel to the structure of a microalgae photobioreactor? 

Even with low solar light conversion efficiency of 3%, the amount of CO2 equivalent is almost similar to the one of silicon PV with 40g 

CO2-eq/KWh compared to 35g CO2-eq/KWh. These values were calculated for the same operation period over 20 years and included 

the manufacturing process. Today, a new generation of a semi-transparent panel called perovskite reached up to 20% of solar con-

version efficiency. Constructing new Perovskite-PBR system could be the next revolution in microalgae biotechnology. 

Biomass valorisation: Extraction of carotenoids using green solvents and 

syngas production from residual biomass 

For the economic viability of algae production, high-value products such as carotenoids were extracted from microalgae prior the HT 

step and using sustainable extraction methods. The philosophy behind was to extract carotenoids and to treat the residual biomass 

via HT treatment for energy recovery purposes. To avoid the use of conventional toxic solvents during the extraction step, 2-

methytetrahydrafuran (2-MTHF), a green solvent, was proposed as a replacement.  High compatibility in terms of solvent-solute 

interactions was predicted using the theoretical value of the Hansen solubility parameter (HSP) confirmed by the obtained results. 2-

MTHF has the advantages to be biodegradable and has a promising environmental footprint and can be easily recycled. This allows 

to optimise the balance between the processing costs, the economic value of the chemicals extracted, and the energy content of the 

residual biomass. The effects on the extraction of intermediate temperatures along with different proportions between 2-MTHF and 

ethanol should be investigated. Furthermore, microalgae can produce other added-value chemicals that could be extracted as well. 

Taking these fine chemicals into account in the process of optimisation should increase the overall economic and ecological value of 

the system in a sustainable biorefinery concept.  

RQ4: What is the efficiency of carotenoids extraction from wet algal biomass and the potential of energy recovery from residual 

biomass? 

45% of total carotenoids were extracted from wet algal biomass (50 wt% moisture) in the case of 100% 2-MTHF and a high heating 

value (HHV) of 18.1 MJ kg-1 for residual biomass was calculated. To increase the solubility of some specific polar carotenoids, a 1:1 

mixture of 2-MTHF and ethanol was used and the results showed an increase of carotenoids yields up to 66% of total carotenoids 

with remaining HHV of the residual biomass of about 15.7 MJ kg-1. 

Conclusion 

The PAWaSto approach of an integrated facility in an urban area, to co-produce bioenergy and high-value chemicals from algae 

biomass, seems to be a promising solution to towards the implementation of microalgae production. On the one hand, this project 

has shown that an on-site sanitation system (OSS) could be a solution for nutrient and energy supply in microalgae production in 

combination with a hydrothermal gasification (HT) treatment system. However, further improvements should be considered to in-

crease the gasification yield when using effluent with high inorganic content. Moreover, during the gasification of algal biomass 

and/or leachate effluents, the build-up of some measured recalcitrant nitrogen organic substances (NOC’s) in the HT effluent cannot 
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be avoided owing to continuous operation. These compounds showed high toxicity to microalgae when HT aqueous phase (AP) was 

used as a growth medium. A cleaning step is required for continuous gasification if AP effluents are used as a microalgae growth 

medium. On the other hand, the addition of transparent dye-sensitised solar cells on top of the photobioreactor allowed (1) an 

addition production of electrical energy and (2) the reduction of ultraviolet radiation and light intensity reaching the algae culture. 

The results were different for H. pluvialis and C. vulgaris, but both algae showed that the use of these panels was beneficial for the 

growth of microalgae. This opens a lot of possibilities for combining different algae strains with different DSC-colours. Besides, the 

combination of DSC-PBR decreased the carbon footprint of the overall system, thanks to the CO2 credit for electricity production 

avoiding.   For the economic viability of algae production, high-value products can be extracted from microalgae using sustainable 

extraction methods. Moreover, after the extraction, a substantial amount of biomass residues can be used for energetic purposes. 

The overall combination of the different processes as proposed in the PAWaSto project was proven to have a high potential. However, 

weak points within the system were also identified. Yet, the ability to run all these processes over long times without interruption 

and scale-up effects need to be studied. Works on scale-up and optimisation of such systems are already under study for example at 

Karlsruher Institut für Technologie (KIT), Germany with the VERENA plant. Regardless of the huge potential portrayed by the micro-

algae biorefinery concept, there is an evident lack of experimental data for such complex systems. Many studies report on the im-

portance of the biorefinery concept based on modelling and simulation studies. This thesis provides data which can be used to im-

prove such models, which are needed to plan and implement such a highly complex system.   
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Appendix A : Supplementary information 

1. Supplementary information: introduction

Representative Concentration Pathway (RCP) is a greenhouse gas concentration (not emissions) trajectory adopted by 
the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report (AR5) in 2014. It supersedes the 
Special Report on Emissions Scenarios (SRES) projections published in 2000. 

Figure 56: Four pathways have been selected for climate modelling and research. They describe different climate futures, all of which are consid-
ered possible depending on the volume of greenhouse gases (GHG) emitted in the years to come. The four RCPs, namely RCP2.6, RCP4.5, RCP6, and 

RCP8.5, are labelled after a possible range of radiative forcing values in the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively). 

2. Supplementary information: Material and methods

Figure 57: Dye used in the sensitised solar cells. 
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Global radiation in Switzerland in kWh per m2 and year for 2012, derived from satellite data. The spatial resolution is 25 m. 

http://photovoltaic-software.com/PV-solar-energy-calculation.php.  

3. Supplementary information: Water volume, nutrient content and energy content in on-site sanitation system

Figure 58: Main nutrient in source separated wastewater [147]. 

Table 25: Nominal and proportional nutrient and pollutant loads in greywater and blackwater (urine faeces, toilet paper). g.p-1.d-1: gram per person 

per day [147]. 

http://www.meteoswiss.admin.ch/content/meteoswiss/en/home/klima/vergangenheit/solarenergie/_jcr_content/content/image_0.mchimg.jpg/1418671833840.jpg
http://photovoltaic-software.com/PV-solar-energy-calculation.php
http://www.meteoswiss.admin.ch/content/meteoswiss/en/home/klima/vergangenheit/solarenergie/_jcr_content/content/image_0.mchimg.jpg/1418671833840.jpg
http://www.meteoswiss.admin.ch/content/meteoswiss/en/home/klima/vergangenheit/solarenergie/_jcr_content/content/image_0.mchimg.jpg/1418671833840.jpg
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Figure 59: Water volume and energy content [147]. 

4. Supplementary information: Life cycle assessment 

a. Calculate Weight Reduction Factor by combining 100 small DSC PBR (0.01 m2 each) into 1 big DSC PBR (1 m2): 

Dimension of small DSC PBR = 10 cm*10 cm*8 cm 

Total area (base + walls) of 1 small DSC PBR = 10*10 + 4*(10*8) = 420 cm2 

Total area of 100 small DSC PBR = 420*100 = 42,000 cm2 

Total area of 1 big DSC PBR = 100*1000 + 4*(100*8) = 13200 

Weight Reduction Factor = 13200/42000 = 0.3143  

b. Glass and aluminium weights of 3501 small DSC PBR and 35 big DSC PBR: 

Glass weight in 1 small DSC PBR = 0.4116 kg 

Aluminium weight in 1 small DSC PBR = 0.0084 kg 

Glass weight in 3501 small DSC PBR = 3501*0.4116 = 1441.01 kg aluminium weight in 3501  

Small DSC PBR = 3501*0.0084 = 29.41 kg 

Glass weight in 35 big DSC PBR = 1441.01*0.3143 = 452.91 kg 

Aluminium weight in 35 big DSC PBR = 29.41*0.3143 = 9.23 kg 

c. CO2-eq emissions:

CO2-eq emissions of 3501 small DSC PBR and 35 big DSC-PBR: 3501 small DSC PBR (including end of life) = 1.658 kg CO2-eq 

35 big DSC PBR (including end of life) = 1.658*0.3143 = 0.5211 kg CO2-eq.  
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Appendix B:  Additional contributions 

1. Isolation of new thermophilic microalgae from Tunisian hot spring: CODEV project. 

N. Mrabet; E. Damergi; and C. Ludwig, Leptolyngbya sp. INSTML01 16S ribosomal RNA gene, partial sequence, 04.02.2018

GenBank: MG753795.1 

LOCUS       MG753795                1453 bp    DNA     linear   BCT 04-FEB-2018 

DEFINITION  Leptolyngbya sp. INSTML01 16S ribosomal RNA gene, partial sequence. 

ACCESSION   MG753795 

VERSION     MG753795.1 

ORGANISM  Leptolyngbya sp. INSTML01 

Bacteria; Cyanobacteria; Synechococcales; Leptolyngbyaceae; 

Leptolyngbya. 

REFERENCE   1  (bases 1 to 1453) 

TITLE     Thermophilic cyanobacteria Leptolyngbya sp with high potential of 

Sequencing Technology :: Sanger dideoxy sequencing 

/organism="Leptolyngbya sp. INSTML01" 

/mol_type="genomic DNA" 

/strain="INSTML01" 

/isolation_source="Ain El Atrous geothermal spring" 

/db_xref="taxon:2068665" 

/country="Tunisia: Korbous" 

/lat_lon="36.8342 N 10.5692 E" 

rRNA            <1..>1453 

/product="16S ribosomal RNA" 

ORIGIN 

1 gagtttgatc ttggctcagg atgaacgctg gcggtctgct taacacatgc aagtcgaacg 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2068665
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2068665
https://www.google.com/maps/place/36.8342+10.5692
https://www.ncbi.nlm.nih.gov/nuccore/MG753795.1?from=1&to=1453
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61 gagtgcttcg gcacttagtg gcggacgggt gagtaacgcg tgagaatctg cccttaggag 

121 ggggataacg actggaaacg gtcgctaaga ccccatatgc cgagaggtga aacagttttc 

181 tgcctgagga tgagctcgcg tctgattagc tagttggtgg ggtaagagcc taccaaggcg 

241 acgatcagta gctggtctga gaggatgacc agccacactg ggactgagac acggcccaga 

301 ctcctacggg aggcagcagt ggggaatttt ccgcaatggg cgaaagcctg acggagcaag 

361 accgcgtggg ggaagaaggt ctgtggattg taaacctctt ttgaccggga agaagcctga 

421 cggtaccggt cgaatcagcc tcggctaact ccgtgccagc agccgcggta atacggagga 

481 ggcaagcgtt atccggaatt attgggcgta aagcgtccgc aggtggttta tcaagtcagc 

541 tgttaaaggg tggggcttaa ctccataaag gcagttgaaa ctgataggct agagtgcgat 

601 aggggcaagg ggaattccca gtgtagcggt gaaatgcgta gatattggga agaacaccgg 

661 tggcgaaagc gccttgctgg gtctgcactg acactgaggg acgaaagcta ggggagcgaa 

721 agggattaga tacccctgta gtcctagctg taaacgatgg gtactaggcg ttgtccgtat 

781 cgacccgggc agtgccgtag ctaacgcgtt aagtaccccg cctggggagt acgctcgcaa 

841 gagtgaaact caaaggaatt gacgggggcc cgcacaagcg gtggagtatg tggtttaatt 

901 cgatgcaacg cgaagaacct taccagggtt tgacatgtcc ggaatcttct tgaaagggaa 

961 gagtgcctac gggaaccgga acacaggtgg tgcatggctg tcgtcagctc gtgtcgtgag 

1021 atgttgggtt aagtcccgca acgagcgcaa cccacgtcct tagttgccag cattgagttg 

1081 ggcactctgg ggagactgcc ggtgacaaac cggaggaagg tgtggatgac gtcaagtcag 

1141 catgcccctt acgctctggg ctacacacgt actacaatgc ttcggacaaa gggttgccaa 

1201 ctcgcgagag tgcgctaatc ccataaaccg aggctcagtt cagattgcag gctgcaactc 

1261 gcctgcatga aggcggaatc gctagtaatc gcaggtcagc atactgcggt gaatacgttc 

1321 ccgggccttg tacacaccgc ccgtcacacc atgggagttg gccacgcccg aagtcgttac 

1381 tccaaccgat tctgtcggag gaggatgccg aaggcagggc tgatgactgg ggtgaagtcg 

1441 taaccaggta acc 

// 
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2. Assistance hours during the thesis

Years Topic Type Hours 

2015-2016 Projet SIE/ENAC Projet 56 

2015-2016 Analyse des polluants dans l'environnement Projet 30 

2015-2016 
Projet de master en sciences et ingénierie de l'environne-

ment 
Projet 136 

2015-2016 Autre contribution à l'enseignement Contribution 14 

2016-2017 
Projet de master en sciences et ingénierie de l'environne-

ment 
Projet 136 

2016-2017 Projet SIE 
Pendant le se-

mestre 
56 

2016-2017 Autre contribution à l'enseignement Contribution 14 

2016-2017 Analyse des polluants dans l'environnement Projet 30 

2016-2017 Air pollution and climate change Ecrit 6 

2016-2017 Autre contribution à l'enseignement Contribution 14 

2016-2017 Air pollution and climate change Ecrit 6 

2016-2017 Air pollution and climate change Ecrit 6 

2016-2017 Air pollution and climate change Ecrit 6 

2016-2017 Air pollution and climate change Ecrit 6 

2017-2018 Analyse des polluants dans l'environnement TP 30 

2017-2018 Diagnostic en ENAC, démarche et outils de mesure Projet 14 

2017-2018 
Projet de master en sciences et ingénierie de l'environne-

ment 
Projet 136 

2018-2019 Analyse des polluants dans l'environnement TP 30 

Total heures: 726 

3. Credits obtained during the thesis

Courses Code Credits 

Advanced Microscopy for Life Science BIO-659 3 

Biotechnology lab (for CGC) BIOENG-433 4 (ongoing) 

Innosuisse Business Concept MGT-642 4 

Open Science in Practice (2017) ENG-801 2 

Optimisation and simulation MATH-600 4 

Waterborne Pathogens (2018) ENV-721 3 

http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=965855418&ww_x_anneeAcad=2015-2016&ww_i_section=18351702
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=1770828&ww_x_anneeAcad=2019-2020&ww_i_section=247681
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=2042662706&ww_x_anneeAcad=2017-2018&ww_i_section=2143038
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=2228036212&ww_x_anneeAcad=2017-2018&ww_i_section=2143038
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=352250335&ww_x_anneeAcad=2014-2015&ww_i_section=327379170
http://isa.epfl.ch/imoniteur_ISAP/!itffichecours.htm?ww_i_matiere=974905715&ww_x_anneeAcad=2015-2016&ww_i_section=327379170
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