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Abstract
Preterm birth is a major risk factor for neurodevelopment impairments often only appearing

later in life. The brain is still at a high rate of development during adolescence, making this

a promising window for intervention. It is thus crucial to understand the mechanisms of

altered brain function in this population. The aim of this thesis is to investigate how the brain

dynamically reconfigures its own organisation over time in preterm-born young adolescents.

Research to date has mainly focused on structural disturbances or in static features of brain

function in this population. However, recent studies have shown that brain activity is highly

dynamic, both spontaneously and during performance of a task, and that small disruptions in

its complex architecture may interfere with normal behaviour and cognitive abilities.

This thesis explores the dynamic nature of brain function in preterm-born adolescents

in three steps: First, we investigate changes in spontaneous brain activity over time using

a resting-state paradigm. Here, we study how the variability of the blood oxygenation level

dependent signal (BOLD), a measure previously linked to cognitive performance, develops

in a preterm- and a term-born groups. We find that preterm participants show an altered

trajectory of BOLD variability development during early adolescence. We also show that the

dynamic patterns of co-activation with the dorsal anterior cingulate cortex (ACC), a key node

of the salience network, also develop differently between the preterm and control groups.

Secondly, we examine task-driven changes in brain activation. To this end, we select a reality

filtering task known to engage the orbitofrontal cortex (OFC), a region that is particularly

vulnerable in the preterm. We find that, although the preterm group is able to perform the task

successfully, OFC activation is significantly higher in the control participants. Finally, inspired

by the successful field of dynamic functional connectivity which has mainly flourished in

resting-state paradigms, we develop a novel method to look into task-driven modulations of

brain connectivity in a time-resolved way. We then apply this new approach to a third data set

involving a movie watching and emotion regulation task. We find several subtle but significant

seed; task; and group effects that characterise each of the dynamic co-activation patterns.

In short, we introduce a method for time-resolved evaluation of task-driven changes in

brain connectivity and provide evidence of altered brain dynamics in preterm-born young

adolescents. Our results thus highlight the importance of considering the dynamic aspects of

brain function when studying clinical populations.

Keywords: non-invasive neuroimaging, functional MRI, dynamic analysis, preterm, BOLD

signal variability, co-activation patterns, PPI-CAPs
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Résumé
La naissance prématurée est un facteur de risque majeur de troubles du développement

neurologique, qui souvent n’apparaissent que plus tard dans la vie. À l’adolescence, le cerveau

est encore en plein développement, ce qui en fait une fenêtre d’intervention prometteuse. Il

est donc crucial de comprendre les mécanismes de la fonction cérébrale altérée dans cette

population. Le but de cette thèse est d’étudier comment le cerveau reconfigure dynamique-

ment sa propre organisation au fil du temps chez les jeunes adolescents nés avant terme. À

ce jour, les recherches ont principalement porté sur les perturbations structurelles ou sur

les caractéristiques statiques de la fonction cérébrale dans cette population. Cependant, des

études récentes ont montré que l’activité cérébrale est très dynamique, à la fois spontané-

ment et pendant l’exécution d’une tâche, et que de petites perturbations de cette architecture

complexe peuvent interférer avec le comportement normal et les capacités cognitives.

Cette thèse explore la nature dynamique de la fonction cérébrale chez les adolescents

prématurés en trois étapes : premièrement, nous analysons les changements dans l’activité

cérébrale spontanée au fil du temps, à l’état de repos. Ici, nous étudions comment la variabilité

du signal dépendant du niveau d’oxygénation sanguin (BOLD), une mesure auparavant liée

aux performances cognitives, se développe dans un groupe prématuré et un groupe né à terme.

Nous constatons que la trajectoire de développement de la variabilité BOLD est modifiée chez

les participants prématurés au début de l’adolescence. Nous montrons aussi que les modèles

dynamiques de co-activation avec le cortex cingulaire antérieur dorsal (ACC), un nœud clé

du réseau de saillance, se développent également différemment entre le groupe prématuré

et le groupe nà à terme. Deuxièmement, nous examinons les changements provoqués par

les tâches dans l’activation cérébrale. À cette fin, nous sélectionnons une tâche de filtrage

de la réalité connue pour engager le cortex orbitofrontal (OFC), une région particulièrement

vulnérable chez le prématuré. Nous constatons que, bien que le groupe prématuré soit en

mesure d’effectuer la tâche avec succès, l’activation de l’OFC est significativement plus élevée

chez les participants nés à terme. Enfin, inspirés par le domaine prometteur de la connectivité

fonctionnelle dynamique qui a principalement prospéré dans des expériences faites à l’état de

repos, nous développons une nouvelle méthode pour étudier les modulations de connectivité

cérébrale induites par une tâche d’une manière résolue dans le temps. Nous appliquons

ensuite cette nouvelle approche à un troisième ensemble de données impliquant une tâche

de visionnage de films et de régulation des émotions. Nous trouvons plusieurs effets subtiles

mais significatifs de seed, de tâche, et de groupe qui caractérisent chacun des modèles de

co-activation dynamique.
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Résumé

En bref, nous introduisons une méthode d’évaluation résoluee dans le temps des chan-

gements de connectivité cérébrale liés à une tâche, et nous fournissons des preuves d’un

développement altéré de la dynamique cérébrale chez les jeunes adolescents prématurés. Nos

résultats mettent ainsi en évidence l’importance de considérer les aspects dynamiques de la

fonction cérébrale lors de l’étude des populations cliniques.

Mots-clés : neuroimagerie non invasive, IRM fonctionnelle, analyse dynamique, prématuré,

variabilité du signal BOLD, schémas de co-activation
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1 Introduction

1.1 Motivation

Preterm birth (PTB) — characterised as birth before 37 full weeks of gestation — affects an es-

timated 7% of births in Switzerland, and 11.1% of all live births worldwide, which corresponds

to nearly 15 million babies per year (Blencowe et al., 2013). This comes with a heavy societal

burden as it is one of the predominant risk factors behind neurodevelopmental disorders

(Pierrat et al., 2017; Twilhaar et al., 2018), besides increasing the neonatal and post-discharge

costs up to 33 times (Tommiska et al., 2003) as compared to term birth. PTB has been associ-

ated with a wide range of impairments in cognitive functions spanning attention (Rommel

et al., 2017), working memory (Allotey et al., 2018), affective behaviour (Hornman et al., 2016),

executive functions (Costa et al., 2017; Burnett et al., 2018), among others (Moreira et al.,

2014; Allotey et al., 2018). Often unveiled only when children reach school age, some of these

difficulties may persist throughout life (Anderson, 2014; Kajantie et al., 2019). In Switzerland,

while the majority of the patients have positive outcomes, 21% show some form of cognitive

impairment, particularly in short term memory (Pittet-Metrailler et al., 2019). Understand-

ing the neurological underpinnings of these difficulties is thus crucial to identify potential

interventions and establish critical periods to restore typical development (Wolke et al., 2019).

Functional magnetic resonance imaging (fMRI) is a powerful tool to characterise brain func-

tion in a non-invasive fashion and is, therefore, ideal to investigate the neurological basis of

clinical outcomes in the young population. Typically relying on the blood oxygenation level

dependent signal, it indirectly measures brain activity with exceptional spatial specificity due

to its signal reliability, high spatial resolution for a non-invasive method, and reproducibility.

Thanks to this technique, it is now known that brain activity intrinsically oscillates in a highly

organised way in rest (Damoiseaux et al., 2006), and during performance of tasks (Elliott et al.,

2019). This has promoted discoveries linking brain function and the performance of cognitive

demanding tasks in several domains of cognitive neuroscience (Raichle, 2001; Poldrack, 2012;

D’Esposito and Kayser, 2016).

FMRI is, in many ways, well-suited to investigate paediatric populations, especially since

robust measures of functional activation and connectivity can be obtained from short scanning

sessions. It has been successfully employed in studies involving young cohorts tapping
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Introduction

into language (Centeno et al., 2014; Pigdon et al., 2020), somatomotor (Zwicker et al., 2011;

Sgandurra et al., 2018), attention (Somandepalli et al., 2015; Jiang et al., 2019; Harrewijn et al.,

2020), memory (Mankinen et al., 2015; de Bie et al., 2015), affective processing (Loveland et al.,

2008; McRae et al., 2012), working memory (Siffredi et al., 2017; Yaple and Arsalidou, 2018),

and executive functions (Wang et al., 2013; Staphorsius et al., 2015). All of these abilities are

more likely to be impaired in preterm- than in term-born individuals, highlighting fMRI’s

fitness to study this population. Indeed, this technique has uncovered altered brain responses

in regions underlying executive functions in preterm-born children in frontal (Réveillon et al.,

2013; Mürner-Lavanchy et al., 2014) and temporal areas (Kwon et al., 2014; Wilke et al., 2014)

which were linked to impaired language performance at age 14–15 (Wilke et al., 2014).

Recently, fMRI studies have shown that the brain activity is highly dynamic, fluctuating be-

tween large-scale brain states formed by simultaneous activation of different subsets of brain

regions during rest (Chang and Glover, 2010; Preti et al., 2017; Liu et al., 2018) and task perfor-

mance (Di et al., 2015; Cheng et al., 2018). Crucially, features of these moment-to-moment

fluctuations of brain configuration have very recently been discovered to be linked to cognitive

ability in humans, both during rest (Chén et al., 2019) and while performing attentional tasks

(Fong et al., 2019). These findings indicate the high potential of brain dynamics as an avenue

to further characterise the effects of prematurity in the brain, additionally shedding light on

how they relate to cognitive outcomes in those who were born too soon.

1.2 Organisation and main contributions

The goal of this thesis is to advance the knowledge on the neural effects of preterm birth, in

the resting state as well as during performance of cognitive tasks, through the development

of state-of-the-art imaging analyses. This manuscript is thus organised as a compilation of

two published articles and three preprints in preparation for submission. Chapter 2 provides

an overview of the state of the art in functional MRI analysis and preterm birth research, and

serves as a background for the studies presented in subsequent chapters. It starts by introduc-

ing fMRI as a powerful tool to investigate human brain function, followed by a description

of currently available methodologies for human brain mapping using this technique. It then

characterises the clinical aspects of preterm birth and presents the current knowledge on how

its outcomes relate to brain function. Chapters 3, 4 and 5, reproduce published manuscripts

and articles in preparation which contribute both through novel research, as well as com-

plementary analyses to existing knowledge. Chapter 6 then summarises and integrates the

results, and proposes avenues for future research.

Below, I summarise the main research questions and contributions of each article. In all of

them I contributed to the planning, performed all data processing; methods’ development; and

statistical analysis where applicable, and wrote — or contributed equally to — the manuscript

and revisions. Since these studies were achieved thanks to a collaboration involving large

groups of people, I will often use the personal pronoun "we" when discussing the work done.

2



1.2. Organisation and main contributions

Motivation
Preterm-birth

• 11% of annual births worldwide  
• Major risk of neurodevelopment problems  
• Clinical consequences may last through lifetime 
• Developing brain in early adolescence → potential window for intervention 

Brain dynamics 
• Non-invasive brain imaging using magnetic resonance imaging (MRI) 
• Most studies to date rely on static analyses of brain imaging data 
• Brain function is a dynamic process → dynamic analyses are crucial

Contributions
Chapter 3: Resting-state dynamics in preterm early adolescents

Freitas et al., preprint, 2020 
• Partial least squares correlation (PLSC) multivariate pattern analysis 
• BOLD variability and co-activation pattern (CAP) analysis 
• Altered development of BOLD variability and of activation patterns in the preterm

Chapter 5: Task-related dynamics and application in preterm early adolescents

Freitas et al., NeuroImage, 2020 
• Psychophysiological interaction of co-activation patterns (PPI-CAPs) 
• Time-resolved analysis of task-related effective connectivity (EC) 
• Decomposed EC maps to reveal a more accurate picture of brain function

Freitas et al., preprint, 2020 
• Early adolescents perform task alternating movie watching and emotion regulation 
• PPI-CAPs uncover task-modulated patterns of activation with task, seed or group effects

Chapter 4: Reality filtering in early adolescence

Liverani*, Freitas* et al., Brain and Behaviour, 2020 
• Reality filtering (RF) task-based functional MRI analysis 
• Orbitofrontal cortex (OFC) mediates RF in term-born early adolescents 

Freitas et al., preprint, 2020 
• Reality filtering task-based fMRI in preterm-born early adolescents 
• Altered OFC activation in preterm as compared to term-born group

     |  3 of 9LIVERANI Et AL.

mouse	for	images	seen	for	the	first	time	(distractors	run	2,	D2),	and	
the	right	button	for	images	presented	for	the	second	time	(targets	
run	2,	T2).	In	this	run,	all	images	have	already	been	seen.	Therefore,	
familiarity	alone	is	not	enough	to	correctly	perform	the	task,	and	
the	ORFi	mechanism	is	needed	to	process	distractors	(D2).

Pictures were a set of 30 cartoon drawings of animals and were 
presented	for	5	s	on	the	screen.	In	each	run,	30	images	were	pre-
sented	 for	 the	 first	 time	 (distractors,	D)	and	then	repeated	once	
(targets,	T)	after	6–9	intervening	pictures,	as	already	done	in	a	pre-
vious	study	with	children	(Liverani	et	al.,	2017).	After	each	image,	
a	 fixation	cross	was	presented	during	between	1,440	and	2,400	
milliseconds.	Each	run	lasted	approximately	7.5	min.	Stimuli	were	
displayed on a white screen at the head of the scanner via a 45° 
angled	mirror	fixed	to	the	MRI	head	coil.	Responses	were	given	by	
pressing	two	buttons	with	the	right	index	and	middle	finger,	on	an	
MRI-compatible	mouse.	Task	programming,	stimuli	display,	and	re-
sponses	logging	were	done	using	E-Prime	2	(Psychology	Software	
Tools,	 Pittsburg,	USA).	 All	 participants	 successfully	 completed	 a	
short training with a different set of images in the mock MRI scan-
ner before the MRI.

2.3 | Behavioral data analysis

Reaction	times	and	accuracy	were	recorded	for	each	condition	(D1,	
T1,	D2,	T2).	A	2	×	2	repeated	measures	analysis	of	variance	(ANOVA)	
was performed on accuracy and reaction time with the within-sub-
ject	factors	run	(1,	2)	and	stimulus	(distractor	D,	target	T).

2.4 | Image acquisition

MRI	data	were	acquired	on	a	Siemens	3T	Magnetom	Prisma	scan-
ner	 at	 Campus	 Biotech,	 Geneva,	 Switzerland.	 Structural	 T1-
weighted	MP-RAGE	 (magnetization-prepared	 rapid	 gradient-echo)	
sequences	 were	 acquired	 using	 the	 following	 parameters:	 voxel	
size	=	0.9	×	0.9	×	0.9	mm;	repetition	time	(TR)	=	2,300	ms;	echo	time	
(TE)	=	2.32	ms;	inversion	time	(TI)	=	900	ms;	flip	angle	(FA)	=	8°;	and	
field	of	view	(Fov)	=	240	mm.	Functional	images	were	T2*-weighted	
with	a	multislice	gradient-echo-planar	imaging	(EPI)	sequence	of	64	
slices;	 voxel	 size	=	2	×	2	×	2	mm;	TR	=	720	ms;	 TE	=	33	ms;	 and	
Fov	 =	 208	mm.	 Finally,	 a	 fieldmap	was	 acquired	 each	 time	 a	 par-
ticipant	 entered	 the	 scanner,	 with	 TR	 =	 627	 ms;	 TE1	 =	 5.19	 ms;	
TE2	=	7.65	ms;	and	FA	=	60°.

2.5 | MRI data preprocessing

Our	data	were	preprocessed	using	SPM12	(Wellcome	Department	of	
Imaging	Neuroscience,	UCL,	UK)	in	Matlab	R2016a	(The	MathWorks,	
Inc.,	Natick,	Massachusetts,	United	States).	One	particular	challenge	
in studying frontal brain areas using fMRI is the considerable vulner-
ability of these regions to signal distortions caused by field inhomo-
geneities	around	the	air-filled	sinuses	(Gorno-Tempini	et	al.,	2002).	
To	correct	for	the	resulting	geometrical	distortions,	a	field	map	was	
calculated from an additional stock double-echo field map sequence 
included	in	our	MRI	protocol	(Hutton	et	al.,	2002).	The	fMRI	images	
from	each	participant	were	then	spatially	realigned	and	unwarped,	

F I G U R E  1  Task	design.	The	task	was	composed	of	2	runs,	separated	by	a	break	of	3	min.	Distractors	(D1	and	D2)	are	images	presented	
for	the	first	time	within	a	run;	targets	(T1	and	T2),	are	images	repeated	within	the	same	run
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Figure 1.1 – Thesis overview. Main contributions on brain dynamics in preterm-birth.
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Introduction

Chapter 3: BOLD signal variability and dynamic spontaneous brain function in the
preterm-born

Although brain analysis methods often rely on measuring and comparing the average activity

in certain areas of interest, blood oxygenation level dependent (BOLD) signal variability has

been shown to yield additional information on brain function that is linked to cognitive

abilities. To the best of my knowledge, no one has investigated BOLD signal variability in

preterm-born populations. In this chapter, I look into functional brain dynamics in two ways:

first, in terms of voxelwise BOLD signal variability and its relationship with gestational age and

age at assessment. Secondly, I perform a seed-based co-activation pattern analysis focusing

on the dorsal anterior cingulate cortex, an area previously described to be affected by preterm-

birth (White et al., 2014b; Daamen et al., 2015; Lordier et al., 2019) that was also highlighted in

the analysis of BOLD variability.

Section 3.1: (Journal Article) Altered BOLD variability development and brain dynamics in

preterm-born young adolescents

Is the development of BOLD signal variability affected by preterm birth?

Does preterm birth affect finer temporal scale brain dynamics?

BOLD signal variability, calculated as the standard deviation of BOLD signal time series, is a

measure of how dynamic brain activity is throughout the duration of an fMRI experiment. It

has been shown to change with age and cognitive ability (Garrett et al., 2013a) and to be altered

in clinical populations (Zöller et al., 2017; Nomi et al., 2018; Easson and McIntosh, 2019). These

studies support its role in reflecting the brain’s dynamic range and complexity and, when

present at the optimal levels, in allowing greater flexibility for brain function (McIntosh et al.,

2010; Deco et al., 2011). It is thus a promising avenue to investigate brain "dynamism" in

preterm populations.

In this article, I investigate the link between dynamic brain function and gestational age, as

well as with age at assessment, using a multivariate partial least squares (PLS) approach in a

resting-state fMRI paradigm. I have addressed this in two steps: First, I compare how those

relationships evolve during early adolescence in a preterm-born and a fullterm control group

of children. Then, because BOLD variability is closely linked to functional connectivity, I

delve deeper into how the relationship between a region of interest identified in this analysis

— namely, the anterior cingulate cortex — and other parts of the brain evolve over time in

these two groups by using co-activation patterns as brain measures for the PLS. We identify

interesting interactions between age at assessment and gestational age in both analyses,

suggesting that preterm birth alters the development of dynamism in the brain at later stages

in life.
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1.2. Organisation and main contributions

Chapter 4: Studying cognition with task-based fMRI: Reality Filtering in young
populations

While resting-state analyses provide profound insight into brain function, task-based fMRI

paradigms are crucial to understand how the brain works under specific cognitive demands.

In the case of preterm populations, there is particular interest in cognitive functions involving

frontal brain areas, as neuroimaging studies have highlighted widespread alterations in the

prefrontal cortex’s structure and function in preterm individuals across lifetime. In this chapter,

we thus employ a Reality Filtering (RF) task, known to recruit the orbitofrontal cortex (OFC) in

adults, to study brain function in this area in young adolescents. To the best of our knowledge,

no one has looked into brain function related to RF in children so far. Therefore, this chapter

is divided in two steps: First, we confirm the OFC’s involvement in RF in typically developing,

fullterm-born children. Then, we look into whole-brain, as well as OFC-seed differences,

between a preterm-born and a control group while performing an RF task.

Section 4.1: (Journal Article) "Get real: orbitofrontal cortex mediates the ability to
sense reality in early adolescents"

What are the neural processes underlying reality filtering in early adolescents?

The typical approach to understand the neural underpinnings of cognition is to investigate

how brain function changes as a direct effect from task performance. Here, we focus our study

on the orbitofrontal cortex (OFC), known to be crucial for the ability to sense reality in adults

but to be still under development in young adolescents, to understand how activation in this

area changes in the latter population depending on stimuli presentation. Using a previously

validated task paradigm adapted to children we confirmed, for the first time using fMRI and in

young adolescents, that the OFC mediates reality filtering already at this age.

Section 4.2: (Journal Article) Altered orbitofrontal activation in preterm-born young
adolescents during performance of a reality filtering task

Are preterm-born young adolescents able to perform a reality filtering task?

What are the neural processes underlying reality filtering in preterm-born young adolescents?

Because the prefrontal cortex ––– of which the OFC is a constituting part — is known to be

affected by preterm birth in several ways, we wanted to investigate both whether preterm-

born young adolescents are capable of reality filtering and, if this is the case, whether the

OFC is involved. Using the same task as in the previous section, we found that although

children in the preterm group were able to perform the task with comparable accuracy to the

fullterm group, the levels of OFC activation in the former group are lower and no other regions

were more activated than in controls. This suggests that preterm-born individuals may have

developed mechanisms to optimise OFC activity such that they are still able to perform the

task without depending on the same level of activation as the control group.
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Introduction

Chapter 5: Time-resolved brain dynamics during task performance

While typical task-based studies compare and contrast how brain activity changes between

different task contexts, they still mostly assume stationary within task blocks. This provides

a limited, incomplete snapshot of how the brain works under these circumstances. Resting-

state fMRI has benefited from methods that uncover dynamic features of large-scale neuronal

function for over a decade (Chang and Glover, 2010), but task-based paradigms have only

recently started to explore this important avenue (Gonzalez-Castillo and Bandettini, 2018).

Section 5.1: (Journal Article) "Time-Resolved Effective Connectivity in Task fMRI:
Psychophysiological Interactions of Co-Activation Patterns"

Can we capture relevant task-related functional dynamics in a frame-wise way?

Previous studies have shown that relevant information on brain function is condensed in

specific moments of high amplitude peaks in the BOLD signal (Tagliazucchi et al., 2011),

meaning that large parts of the fMRI time series contain information that does not nec-

essarily add information for certain analyses. This means the fMRI data can reduce to a

point-process (Tagliazucchi et al., 2012) characterised by a sequence of time points when a

seed signal traverses a given threshold. If these points are then averaged, one obtains patterns

of co-activation with a seed that are recurring throughout the experiment, at a single-frame

resolution (Liu and Duyn, 2013).

In this article I develop a seed-based method called Psychophysiological Interactions of Co-

Activation Patterns (PPI-CAPs) to investigate such dynamic modulations of functional brain

connectivity in a task-based context. In a naturalistic setting in which participants watched a

short TV program, several patterns of co-activation were yielded using a posterior cingulate

cortex seed — chosen due to its well documented connectivity arrangements (Liu and Duyn,

2013; Karahanoglu and Van De Ville, 2015; Lin et al., 2017) and its description as a hub region

(Andrews-Hanna et al., 2010). These patterns’ occurrence rates and polarity varied according

the context; the seed activity; or an interaction between the two. Moreover, this method

unveiled the consistency in effective connectivity patterns over time and across subjects,

which allowed us to uncover links between PPI-CAPs and specific stimuli contained in the

video. The main contribution of this study was revealing that explicitly tracking connectivity

pattern transients is paramount to advance our understanding of how different brain areas

dynamically communicate when presented with a set of cues. Given its ability to concentrate

the analysis on very limited amounts of data, this represents a promising avenue for further

study of dynamic features of task-modulated brain function in clinical or young populations,

such as the preterm-born young adolescents most of this thesis concentrates on.

The code developed to perform the analysis described in this work has been made available

on https://github.com/lorenafreitas/PPI_CAPs
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1.2. Organisation and main contributions

Section 5.2: (Journal Article) "Tracking moment-to-moment functional connectiv-
ity in preterm-born young adolescents during movie watching and emotion regu-
lation"

Do preterm-born young adolescents present altered configurations of task-related functional

dynamics as compared to fullterm-born controls?

Having shown that PPI-CAPs is a compelling avenue for the study of dynamic features of

context-driven brain function in clinical populations (Freitas et al., 2020) in Section 5.1, I

then proceed to employ this approach to study dynamic connectivity in preterm-born young

adolescents as compared to age-matched controls. To this end, our participants undergo a

block-type task which alternates between moments of movie watching — where the films have

an emotional valence (i.e., amusing or repulsive) to them — followed by moments of emotion

regulation and concentration on their own breathing. We recover six robust and reoccurring

patterns of co-activation with a dorsal anterior cingulate cortex seed. Moreover, we show

that several of the data-driven patterns have a seed, task, or group main effects, as well as

interactions between those. This study further highlights the importance of investigating

task-driven brain dynamics in the context of clinical populations to obtain a more accurate

picture of healthy and altered brain function.
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2 Background

Magnetic resonance imaging (MRI) is a powerful tool to characterise brain function non-

invasively, and has proven a successful way to investigate the neurological substrate of clinical

outcomes in young populations. In order to understand its capabilities as well as its limitations,

it is important to understand the biophysical underpinnings of the technology. Thus, in this

chapter, I initially introduce this technique and provide an overview of the related state-of-

the-art analytical methods in Section 2.1.1, followed by an introduction on the clinical aspects

of preterm birth in Section 2.2. I then summarise currently available knowledge provided by

brain imaging in the preterm population in Section 2.3.

2.1 Magnetic resonance imaging (MRI) as a tool to investigate brain

function

Magnetic resonance imaging (Lauterbur, 1973) of bodily tissues is a relatively young technique

(Damadian et al., 1977) which depends on a basic set of physics principles concerning the

interaction of protons, radio frequencies and magnetic fields. The following is a summary of

how it produces images of living tissues, such as the ones used in the studies presented in the

next chapters — for a detailed review see Grover et al., 2015. The main element that enables

the use of MRI technology for this purpose is hydrogen, due to its high concentration in all

tissues. Each atom of this substance can be seen as a sphere carrying a positive charge and

is always spinning along random orientations, which causes it to "wobble" (Figure 2.1A/B).

Since moving charges produce a magnetic field, we can think of these protons as tiny bar

magnets.

In the presence of a strong magnetic field, such at the static magnetic field generated by the

MRI machine (B0), the protons’ axes align with the field lines created by the magnet, creating

a net magnetization (M0; Figure 2.1B). M0 can be considered as a vector containing two

components: A longitudinal component ML, parallel to B0; and a transverse component MT,

perpendicular to it. The hydrogen nuclei’s spinning motion combined with an external force

causes them to precess about B0 with an angular frequency according to the Larmor frequency
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Background

(Larmor, 1897), but at random phases. The time it takes for a proton to sweep out a ’cone’

once is called its resonance frequency. Different protons precess with different frequencies,

and this property has an important role in informing their physical location. This is because

gradient coils (X, Y and Z) create a secondary magnetic field which distorts B0 in a predictable

pattern, causing the proton’s resonance frequency to vary according to position. This is what

allows the MR signal to be spatially encoded, currently to a resolution of 1–3 mm.

No external  
magnetic field

Applied external  
magnetic field

No RF

RF pulse

Transversal relaxation timeLongitudinal relaxation time

Short Long
TE

Sh
or
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T2

Proton  
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B)     
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Figure 2.1 – Magnetic resonance Imaging. A) A proton’s spin. B) Alignment of protons
in the present of a magnetic field B0, creating a net magnetisation M0 which contains two
components: a longitudinal ML which is parallel to B0; and a transverse component MT which
is perpendicular to it. C) When an electromagnectic radio frequency (RF) pulse transmitted
by the RF coil present in the MR machine is applied, the hydrogen nuclei’s phases align and
they tip over, decreasing the longitudinal magnetisation and establishing a new transverse
magnetisation. D) when the RF pulse is stopped, the system slowly returns to equilibrium:
the transversal magnetisation begins to disappear (transversal relaxation, described by time
constant T2), while the longitudinal magnetisation returns to its original size (i.e., longitudinal
relaxation, described by time constant T1). E) By altering the repetition (TR) and the echo
time (TE), we can select the characteristic that we want to emphasise in the tissues.

When an electromagnectic radio frequency (RF) pulse transmitted by the RF coil present in

the MR machine is applied, the hydrogen nuclei’s phases align and they tip over (Figure 2.1C),

decreasing the longitudinal magnetisation and establishing a new transverse magnetisation.

Then, when the RF pulse is stopped, the system slowly returns to equilibrium: the transversal

magnetisation begins to disappear (a phenomenon called transversal relaxation, described by

time constant T2), introduction of tissue in B0 will lead to small variations in magnetic field
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2.1. Magnetic resonance imaging (MRI) as a tool to investigate brain function

as a function of local magnetic susceptibility, while the longitudinal magnetisation returns

to its original size (i.e., longitudinal relaxation, described by time constant T1) — see Figure

(2.1D/E). This process creates a signal that can be measured by a receiver coil contained in the

MR machine. A third property, T2
*, describes the combined effect of local inhomogeneities

(for example caused by field distortions near blood vessels which contain deoxyhemoglobin)

and T2 in the magnetic field. The MRI scanner can be programmed to emphasise the effects of

those inhomogeneities, and this forms the foundation of blood oxygenation level dependent

(BOLD) functional MRI, as discussed in the next section.

By altering how often an RF pulse is applied and the echo time (TE; that is, the time between

the onset of the RF excitation pulse and the highest signal induced in the coil), we can select

the characteristic that we want to emphasise in the tissues (Figure 2.1F). The measured signal

is then given by M0(1−e−T R/T1 )e−T E/T (∗)
2 , where T1 and T2 are tissue properties, which allows

representing boundaries between different brain tissues (namely gray and white matter, and

cerebrospinal fluid, in the case of brain imaging).

In addition to tissue localisation, information on spatial field inhomogeneities can be acquired

using an MR machine, which may be an important asset when combining anatomical data

with the functional images that we describe in the next section. This is because areas of

boundaries between tissues are particularly susceptible to causing local field inhomogeneities

which can hamper the signal acquisition. As described earlier in this section, the spatial

localisation of the acquired signal is encoded by magnetic field gradients positioned in three

dimensions. Local field inhomogeneities which interfere with the deliberate imaging gradients

may thus cause the local field of view to be miscalculated, which leads to spatial distortion

and causes changes in signal intensity. Luckily, if a field-map scan is acquired, it can be used

in image post-processing steps to correct the occasional signal distortion. This can be done

by acquiring two regular T2
*-weighted images acquired with different TE times, such that

they produce different weightings. The phase-difference of the resulting signal from each

voxel is linked to the 3 dimensional field variation in this voxel, which means post-processing

algorithms are able to work out by how much each voxel needs to be "un-distorted" based

on its field variation. While other methods exist for the acquisition of a field-map, this is the

approach used for the all studies presented in this thesis.

2.1.1 Functional magnetic resonance imaging (fMRI)

The previous section provides an overview of the physical principles that enable the acquisition

of a full image representing a brain volume, and is how the anatomical images used in this

work are obtained — the main goal now is to obtain images that reflect brain function across

time. To this end, the steps described in Section 2.1 are repeated every time a new image needs

to be obtained, and the time between the acquisition of two volumes is called Repetition Time

(TR). Typical fMRI studies use a TR of 2s but, especially more recently, this number has fallen

to a bellow-second scale. By adjusting some of the parameters mentioned in the previous
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section, a sequence of images can be acquired that reflect brain function.

After a number of preprocessing steps, which typically consist of motion correction; brain

segmentation; co-registration; and spatial smoothing, fMRI images can be used to study

intrinsic brain activity (resting-state fMRI) or brain responses to different stimuli (task-based

fMRI). The results of brain activity investigations are usually shown in the form of maps that

illustrate regions that activate or deactivate in a certain context. Since its beginning almost 30

years ago, fMRI has enabled a myriad of studies that greatly improved our understanding of

the brain, as discussed in the next sections.

Interaction with physiology: Functional brain imaging is possible thanks to the balance

between energy needs from busy brain tissues and the blood flow that supplies those re-

gions, which was discovered in the late 80’s when Ogawa et al. (1990) found that the blood’s

oxygenation level can be informative of cerebral activity.

Active neurons require more oxygen and glucose to fuel its ion pumps than inactive cells.

Those are supplied thanks to a link between neuronal activity and the heamodynamic re-

sponse, called neurovascular coupling. Most of the brain tissues are diamagnetic — that is,

they are repelled by the magnetic field. Haemoglobin, however, has two states: it is diamag-

netic when oxygenated, but strongly paramagnetic (attracted by the magnetic field) when

deoxygenated, as the release of oxygen from the molecule exposes the iron atoms’ unpaired

electrons. The latter creates inhomogeneities in (B0) and affects T2
* relaxation. Thanks to

this phenomenon, the measured blood oxygenation level dependent (BOLD) signals reflect

the magnetic field’s inhomogeneities caused by these changes in oxygen levels in the blood.

fMRI signals are, therefore, an indirect measure of neuronal activity via its haemodynamic

correlate. Several hypotheses have been proposed to explain the underlying mechanisms

of neurovascular coupling (Attwell et al., 2011), but the exact nature of this complex link

remains largely unknown (Logothetis and Wandell, 2004; Logothetis, 2008). However, the

BOLD response has been shown to be proportional to neuronal firing rates or population-level

activity both using electrode implants (Heeger et al., 2000), optogenetics (Lee et al., 2010;

Kahn et al., 2011) and a combination of calcium imaging and two-photon microscopy (Ma

et al., 2016; O’Herron et al., 2016), among others. Figures 2.2 A and B illustrate the relationship

between the haemodynamic response and neuronal activity after direct stimulation or under

spontaneous conditions, respectively.

It is important to note that the haemodynamic response (HRF) which enables BOLD signals to

be measured is not instantaneous. Instead, it can be seen as a temporally blurred version of

neural activity, due to the time course of neurovascular coupling, and peak response typically

appears after a 5—6 s lag (Menon, 2001; Logothetis et al., 2001). The HRF is usually described

by a combination of two gamma functions, peaking 6 s after stimulus delivery, followed

by a negative overshoot peaking at 16 s, until it returns to baseline 20–25 s post-stimulus,

with a peak–undershoot amplitude-ratio of 6 (see Figure Figures 2.2C). These numbers were

12



2.1. Magnetic resonance imaging (MRI) as a tool to investigate brain function

G
Ca

M
P6

f
Δ

F/
F(

%
)

Δ
[H

bT
] 

(μ
M

)

500μ

2s0s 4s 8s6s 10s 12s
Stimulus

    -0.25%         0          0.25%

HbO

Hb

HbT

A)

B)

C)

0 5 10 15 20 25 30 35
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

BO
LD

 re
sp

on
se

Time (s)

Peak amplitude

FWHM

Undershoot Peak time

Haemodynamic Response FunctionStimulus-driven temporal evolution of HbO, Hb, HbT

Spontaneous temporal evolution of GCaMP fluorescence and haemodynamic activity

Figure 2.2 – The haemodynamic response and its link to neuronal activity. A)
Stimulus-driven spontaneous temporal evolution of oxygenated haemoglobin (HbO), de-
oxyhaemoglobin (Hb) and total haemoglobin (HbT, calculated as the sum of Hb and HbO) in
the rat somatosensory cortex. Each image represents the average individual frame of 990 trials.
The Hb and HbO signals are expressed in percent change relative to baseline concentration (40
and 60 M, respectively). Image adapted with permission from Devor et al. (2003). In this study,
electrophysiological recordings of local field potential (LFP) and multiple unit activity (MUA)
were performed simultaneously to the haemoglobin measurements, revealing a strong non-
linear relationship between the hemodynamic response and electrophysiological measures.
B) Simultaneous imaging of (top) wide-field imaging of GCaMP fluorescence (600 ms window
average) and (bottom) hemodynamic activity in the awake mouse brain without stimulation,
showing comparable spatial patterns (a—c) with a time delay. Image taken with permission
from Ma et al. (2016). C) The so-called canonical haemodynamic response function based on
parameters reported by Friston et al. (1998).

obtained from a principal component analysis (PCA) of the data from Friston et al. (1998), and

are still widely used today. In general, it can be seen as a delayed and smoothed version of

the underpinning neuronal activity. This is key for the steps that follow data acquisition, as

accurately modeling the evoked haemodynamic response to neural events plays a crucial role

fMRI data analysis (Lindquist et al., 2009).
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2.1.2 Task-based fMRI in the study of brain function

A popular experimental design in functional studies is task-based fMRI (tb-fMRI). In this

paradigm, participants are asked to repeatedly perform a specific task for a certain time (often

referred to as a "block"), followed by a contrasting block (e.g., a "resting" period). By probing

into BOLD signal differences between these conditions, it becomes then possible to identify

parts of the brain which selectively activate or de-activate according to the task (Friston et al.,

1995).

2.1.2.1 Static analysis of task-Based fMRI

Task-based paradigms (as opposed to resting-state ones, see Section 2.1.3) rely on prior

knowledge about external stimuli that may be driving brain activity. The most traditionally

used approach to tb-fMRI analysis is the General Linear Model (GLM). This method examines

the temporal synchrony between predicted responses and a voxel’s time series by modeling

the latter as a linear combination of several factors that contribute to the signal (Friston et al.,

1995). In that way, the GLM is more flexible than, for example, a simple correlation analysis, in

that it allows the inclusion as model factors of several experimental conditions, as well as of

other known (e.g., motion parameters) or possible (e.g., behavioural information, subjects’

age, etc.) sources of variability. Typically, a comparison between task response is then done

by subtracting conditions (e.g., task A - task B), or a factorial analysis is performed when the

experimental design includes more than one factor (e.g., cognitive process). The statistical

significance of the GLM’s results then reflects how well an experimental observation is fit by

the model (Worsley and Friston, 1995). One of the drawbacks of this approach is that, although

it reveals the magnitude of an effect, it does not provide information about its duration, nor is

it possible to capture inter-subject differences in timing (Robinson et al., 2009). Nonetheless,

this has been one of the most widely used methods in fMRI analysis with several applications

and extensions being proposed (Dale, 1999; Glover, 1999; Goldman et al., 2000; Laufs et al.,

2003).

From all GLM extensions, Psychophysiological Interaction (PPI) analysis is of particular inter-

est here, as it concerns modulation of functional connectivity. Originally proposed by Friston

et al. in 1997, PPI determines which voxels enhance their relationship with a user-defined seed

in a particular context (i.e., during a specific behavioural task). This is achieved by including at

least three regressors in the model: 1) the time course of the seed; 2) the task time course; and

3) the interaction regressor, calculated as an element-by-element multiplication of the seed’s

activity and the task time courses. Including the first two guarantees that the variance ex-

plained by the PPI is over and above that explained by the task or by physiological correlations’

main effects (O’Reilly et al., 2012). In that sense, voxels whose activity is well described by the

interaction regressor (also called the PPI regressor) are those that have a stronger relationship

with the seed during the task of interest.

An alternative to these confirmatory analyses is to employ exploratory methods, which do
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not rely on prior knowledge. Principal component analysis, for example, can be used for

dimensionality reduction by mapping the data into a reduced space that maximises the

variance, and is often used as a first step in the fMRI analysis pipeline (Zhong et al., 2009).

Of note, partial least squares (PLS) analysis (Randal and Lobaugh, 2004) maximises the co-

variance between two modalities, making it possible to find links between multi-modal data

(i.e., fMRI and behavioural data). By analysing task-related brain metrics in conjunction with

behavioural or clinical outcomes, for example, this method makes it possible to characterise

the neurological substrate of cognitive functions (Roberts et al., 2017).

2.1.3 Resting-state fMRI in the study of brain function

In the mid 90’s, (Biswal et al., 1995) showed in an original study that even at rest, activity in

the motor cortex is remarkably structured and bilaterally coherent, despite the absence of an

explicit motor task. Since then, resting-state functional magnetic resonance imaging (rs-fMRI)

has become a widely used tool to investigate temporal fluctuations in neuronal activity by

looking into BOLD signals across the brain (Damoiseaux et al., 2006; Fox et al., 2007). Thanks

to the absence of goal-directed stimulation or activity, this paradigm is particularly well suited

for studying and comparing brain function between populations who might respond to task

instructions with different levels of cognitive ability or attention such as clinical; ageing; or

very young cohorts, because it has minimal compliance requirements. Additionally, provided

that the same image acquisition parameters are used, this allows data recorded across multiple

research centers to be pooled or compared, given that there is no variability task demands.

These results are comparable even when the conditions slightly differ across studies (e.g., eyes

closed; open; with or without fixation; etc.), so those can be appropriately chosen according

to the comfort of the targeted population (Soares et al., 2016). Furthermore, this data can be

acquired in a relatively short time, with sessions of 5–7 min yielding a reasonable trade-off

between acquisition time and the robustness of results in adults (Van Dijk et al., 2010; Whitlow

et al., 2011). In young children, 5.5 min has been shown to be an acceptable duration, to avoid

head motion due to their becoming too restless (White et al., 2014a).

In the preterm population, rs-fMRI has often been used in the context of functional connectiv-

ity (FC) analyses (see Section 2.1.3.1), measuring temporal correlations between the activity

of different brain regions or networks (Lordier et al., 2019). Thanks to these studies, it is now

known that alterations in FC may begin even before birth (Thomason et al., 2017) and often

last through adolescence (Wehrle et al., 2018) into adult life (Papini et al., 2016).

2.1.3.1 Static analysis of Resting-State fMRI

Resting-state paradigms rely on intrinsic changes in brain activity for which no prior informa-

tion is available, and so the most widely adopted approach to analyse these data has been to

investigate temporal relationships between the spontaneous activity in different brain regions.

Typically, this is achieved by looking into correlations between these time series over the entire
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duration of the scanning session. This method generally known in the literature as static

functional connectivity (sFC), as it assumes those relationships are stable across time. It has

been used to uncover correlations between all pairs of regions of interest (ROIs), unveiling the

so-called functional connectome, or in seed-based analyses, to find correlation maps which

illustrate all regions whose activity correlates with a chosen ROI (Lee et al., 2013; Smitha et al.,

2017).

These initial approaches led to the discovery that some of these relationships are recurrent

and robust, such that several resting-state networks (RSNs) can be observed across subjects

and experiments. A popular way to look into the static connectivity between these networks is

independent component analysis (Mckeown et al., 1998; Calhoun et al., 2001), a data-driven

approach based on blind-source separation. It assumes that the signal from whole-brain

voxels can be decomposed into groups of spatially and/or temporally independent signals,

and these components can then be used to study within– or between–network correlations.

Figure 2.3 illustrates some of the networks that have been widely reproduced in different

studies.

In an alternative method for brain network analysis, rs-fMRI can be seen in terms of graphs,

where brain regions represent nodes and high correlation values represent edges (Rubinov

and Sporns, 2010; Farahani et al., 2019). The application of graph theory concepts in FC

analysis reveals complex aspects of connectivity using graph parameters (e.g., nodal degrees,

average path length, clustering coefficient, etc.) which complement traditional analysis

methods. These metrics may then be used to shed light on the brain’s ability to rapidly

combine information from distributed regions, its resilience to external perturbations, among

others.

2.1.4 A dynamic approach to fMRI analysis

2.1.4.1 Dynamic analysis of Resting-State fMRI

Although static methods are still the most widely-adopted approach for resting-state fMRI

analysis, over the past decade a growing body of research has shown that FC is actually

dynamic over time (Chang and Glover, 2010). Importantly, these time-varying properties of

brain activity contain invaluable information to understand brain function (Hutchison et al.,

2013; Christoff et al., 2016).

An initial parameter of brain dynamics is BOLD signal variability, usually calculated as the

standard deviation of the BOLD time series at each voxel (McIntosh et al., 2010). Often

overlooked as noise in traditional analyses, over the past decade it has been increasingly

thought of as a potentially vital feature of brain function (Garrett et al., 2010), with higher

variability seeming relevant to guarantee systems’ stability and dynamic range (Deco et al.,

2011) as well as development and cognition in healthy (Garrett et al., 2013a) and clinical (Zöller

et al., 2017; Nomi et al., 2018; Easson and McIntosh, 2019) populations.
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Figure 2.3 – The resting-state networks. Some networks have been repeatedly reproduced in
resting-state experiments. The ones illustrated above were obtained from an independent
component analysis using data from 35 subjects. Figure adapted from Akbar et al. (2016)

Besides the dynamics of brain activity, changes in the relationships between different brain

regions over time have also been increasingly found to be relevant, spawning the field now

known as dynamic functional connectivity (Hutchison et al., 2013; Preti et al., 2017). The most

popular approach quickly became using a sliding window, where the FC is typically computed

over subsequent, temporally shifted windows to capture connectivity fluctuations (Chang and

Glover, 2010; Sakoğlu et al., 2010; Kucyi and Davis, 2014). This yields a series of FC matrices

which contain the time courses of the fluctuation of pairwise correlations, and further analysis

can then follow to detect dynamic brain states using a variety of additional methods such as
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principal component analysis (Leonardi et al., 2013), hidden Markov models (Vidaurre et al.,

2017), etc. Despite its prominence, this framework remains limited by its dependence on

window parameters, its inherently lowered temporal resolution Leonardi and Van De Ville

(2015), and its sensitivity to outliers since all time points within a window are given equal

importance Lindquist et al. (2014).

An alternative approach to sliding windows focuses on performing a point process analysis

(PPA) by looking into subsets of single fMRI frames instead of focusing on entire time courses.

This is possible because, when averaged, frames where a selected seed region is highly active

reveal a pattern containing all regions that co-activate with that ROI (Tagliazucchi et al., 2012).

This can be seen as a computationally efficient proxy of a seed-based static FC described in

section 2.1.3.1. As described above, however, FC patterns are known to be variable over time,

and so a natural development of the PPA approach is to temporally cluster these selected

frames into co-activation patterns (CAPs; Liu et al., 2018). Each CAP is then a dynamic building

block of the overall connectivity map, each varying in duration, number of appearances, etc.

Going a step further, innovation-driven CAPs (iCAPs) cluster frames based not on similarity

between patterns of activation, but between patterns of activation changes (Karahanoglu and

Van De Ville, 2015). The interest here lies in finding groups of regions whose activation change

(activate or deactivate) simultaneously, allowing for temporal and spatial overlaps.

2.1.4.2 Dynamic analysis of task-Based fMRI

Similar to the resting state, activation time courses upon the execution of a task are also known

to show exquisite complexity that cannot be captured by standard stationary approaches

(Gonzalez-Castillo and Bandettini, 2018). Although dynamic FC has increasingly become a

natural avenue for resting-state research (Preti et al., 2017), task-based experiments have not

yet fully benefited from this approach: only a few studies so far have explicitly investigated

task-related dFC using fMRI Braun et al. (2015); Di et al. (2015); Simony et al. (2016). Di et al.

(2015), for example, used sliding windows to calculate the Time-Varying Correlation Coefficient

(TVCC) between different regions’ activities and found substantial fluctuations in FC patterns

during stimulation periods. The method allowed them to observe a decrease in FC between

visual areas shortly after stimulation onset, followed by a return to baseline. The disadvantages

of this approach are twofold: firstly, the TVCC estimation is, as expected, dependent on the

choice of window size; and secondly, to account for the low signal-to-noise ratio of the BOLD

signal, the technique involves averaging each subject’s experimental blocks, which may be at

the expense of relevant variability in FC dynamics. However, this study provides additional

evidence that explicitly tracking connectivity pattern transients is paramount to advance

our understanding of how different brain areas dynamically communicate in a task context.

As expected from their importance in resting state, time-varying properties of brain activity

during task performance have been recently shown to also contain relevant information to

understand cognition (Fong et al., 2019). Taken together, the above corroborate the idea that

moment-to-moment FC dynamics contain relevant information about behaviour, and thus
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promise to hold considerable translational value (Gonzalez-Castillo and Bandettini, 2018).

2.2 Preterm birth

A birth is defined as preterm (PT) when delivery occurs after less than 37 completed gestational

weeks, in contrast to the expected duration of 40 weeks, on average, in a healthy pregnancy.

This can be further characterised as a moderate to late PT (32—36 weeks), very PT (28—31

weeks), or extremely PT (≤ 27 weeks). These conditions have been associated with a wide

range of behavioural, cognitive and neuropsychological difficulties that have been identified

at various stages in life. In the sections below, I provide an overview of the challenges brought

by preterm birth to the child, their family, and society as a whole. I then explain the problems

preterm-born individuals are at higher risk of facing later in life, the body of knowledge that

has been build to date around the neural mechanisms for their clinical problems, and identify

a gap in the literature regarding investigations of dynamic brain function in this population,

which this thesis aims to fill.

2.2.1 The global challenge of prematurity

Every year, an estimated 15 million babies are born too soon around the world, representing

5–18% of all births depending on the country. Especially in the more extreme cases, complica-

tions related to an early birth are the leading cause of death among children up to 5 years old,

and these complications are responsible for the loss of approximately 1 million infants each

year (Liu et al., 2016). Although PT birth may be caused by various reasons and several well

known biological pathways leading to it exist (Behrman and Butler, 2007), the majority of the

cases are "idiopathic", meaning that it happens spontaneously and without an obvious cause.

Importantly, the number of PT births has been on the rise over the past 20 years (Costeloe

et al., 2012), possibly as a consequence of an increase in maternal age and changes in obstetric

practices. Additionally, with the continuous improvements in medical treatment, the rates of

survival have also increased across the world, meaning that more and more children will live

with the effects of prematurity each year. Besides the consequences to the children’s health

and behaviour, this increase is expected to escalate the economic impact of PT birth not only

in the short term (i.e., immediate medical care), but also in the longer term. In fact, according

to the Institute of Medicine of the National Academy of Sciences, special education services

related with a higher prevalence of disabling conditions in PT-born children cost U$1.1 billion

yearly in the United States alone, while the lost household and labour market productivity had

an impact of approximately U$5.7 billion (Behrman and Butler, 2007).

2.2.2 Behavioural consequences of preterm birth

Preterm birth puts children at a considerably higher risk of developing a broad range of

cognitive deficits (Brydges et al., 2018; Twilhaar et al., 2018). By school age, up to 50% of these
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children develop cognitive, language, or socio-emotional disabilities that are likely linked to

neurological abnormalities starting before birth, lasting through life and into adulthood (Gozzo

et al., 2009; Chaminade et al., 2013; Moiseev et al., 2015; Hornman et al., 2016; Thomason et al.,

2017; Burnett et al., 2018).

A meta-analysis of cognitive outcomes in more than 7000 children and teenagers born very

preterm and aged 5–20 years old found that this population showed significant deficits in

intelligence Twilhaar et al. (2018). A similar study by Brydges et al. (2018), involving more than

6000 individuals, showed that they scored significantly lower on intelligence tests; measures

of executive functioning; and processing speed, as compared to their term born peers across

a wide range of ages (4–17). This study found no association between the children’s age at

assessment and cognitive impairment, indicating that very preterm born children fail to catch

up with term born ones throughout childhood and adolescence. In that sense, it seems that

the differences between the two groups are due to a deficit in PT children, rather than a delay

(Brydges et al., 2018). This is in line with (Linsell et al., 2018)’s study, which found that cognitive

function did not recover or deteriorate between infancy and adulthood in extremely preterm

individuals, and explain why Doyle and Anderson (2010) find long-lasting effects of extremely

preterm birth in an adult cohort. Importantly, socio-economic status at birth has been shown

to affect IQ scores in adults born very preterm (Breeman et al., 2017), and to modify the

relationship between early-life events and neurodevelopmental outcomes in preterm born

children. Further understanding these complex relationships may shed light into potential

avenues for promoting improved outcomes for infants at higher risk of neurodevelopmental

issues (Benavente-Fernández et al., 2020).

Besides difficulties in executive functions, children who were born prematurely are also at

a higher risk for socio-emotional disabilities (Zmyj et al., 2017), with impaired interactions

being present in relationships with family, teachers and friends (Twilhaar et al., 2019). In

particular, PTB children are less likely to initiate and respond to peers’ efforts to participate in

joint attention (Zmyj et al., 2017), which may aggravate later social cognition impairments

and thus hinder social interaction skills. Whether these differences in social competences

are a product of faulty or delayed maturation remains a topic for debate: some studies point

towards the former hypothesis, since these effects have also been found in individuals through

adolescence (Healy et al., 2013; Saigal et al., 2016); while others put it down to a maturational

lag, with findings that PTB children catch up with their full term peers by the age of 5 (Witt

et al., 2018). These inconsistencies emphasise the complexity of the effects of preterm birth

and the importance of further characterising the link between brain and behaviour.

The most recent research indicates cognitive control impairment as a central basis for social

problems in PTB adolescents (Twilhaar et al., 2019). This finding further highlights the impor-

tance of understanding the neural substrate of cognitive disabilities in this population, with a

view to detecting potential targets for early intervention.
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2.2.3 Consequences of preterm birth on brain structure

To identify potential interventions that would be able to recover some of the behavioural

difficulties mentioned above it is important to, first, understand how the brain is affected by

preterm birth. The brain undergoes significant growth and development in the last months of

gestation, which naturally puts preterm-born infants at a considerably greater risk for abnor-

mal neurodevelopment. A great body of research has thus been dedicated to understanding

the consequences of prematurity on brain structure.

The most common pathology affecting babies born very preterm is the encephalopathy of

prematurity, which is characterised by a subtle brain injury followed by disrupted brain growth

and the development of internal (such as basal ganglia and thalamus) and external (cerebral

cortex) structures (Kunz et al., 2014). In addition, prematurity has been associated with

reduced white matter volume and myelination, decreased cortical grey matter as well as

lower hippocampal, basal ganglia and cerebellar volume that lasts through childhood and

adolescence. Moreover, these alterations have been linked to poorer neurodevelopmental

(Inder et al., 2005; Ment et al., 2009; Nosarti, 2013; Padilla et al., 2015) and educational (Cheong

et al., 2013) performance across childhood.

Recently, studies have investigated regional volume changes and how they relate to specific

neuropsychological consequences of preterm birth. Reduced dorsal prefrontal cortex (dPFC)

volume was found to be linked to children’s attention and hyperactivity problems (Bora et al.,

2014). In adolescents, volume changes in the fusiform and orbitofrontal cortices have been

associated with socialisation problems (Healy et al., 2013), and autism (Johnson and Marlow,

2014). A reduction in hippocampal volume has also been shown to correlate with memory

deficits in preterm children. Taken together, these studies emphasise the vulnerability of the

brain after preterm birth.

Most neuroimaging studies involving preterm young adolescents rely on structural features,

relating brain volumes or microstructure to clinical and cognitive outcomes (Hüning et al.,

2018; Groeschel et al., 2019; Boardman et al., 2020). While these structural studies provide

relevant insights into brain injuries that are associated with prematurity and potentially

underlie neurocognitive dysfunction, they cannot provide information on brain activation

driven by specific demands. Studies that investigate brain function are thus necessary to

provide complementary information on the consequences of preterm birth, as discussed in

the next section.

2.2.4 Consequences of preterm birth on brain function

With the wide range of behavioural alterations related to PT birth, it is no surprise that the

brain may be deemed more vulnerable to dysfunction in children who are born too early. A

recent meta-analysis involving more than sixty-four thousand children found that prematurity

of any degree affects neurodevelopment, and that these adverse effects persist at various
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follow up stages (Allotey et al., 2018).

Several studies have investigated structural differences in preterm-born children (Huppi et al.,

1998; Brown et al., 2014; Kersbergen et al., 2014; Kostović Srzentić et al., 2019), but functional

activation and connectivity has only been popularised in this population over the last decade,

with studies primarily relying on resting-state static analysis. Fransson et al. (2007) were

the first to show the presence of resting-state networks (RSNs) in the preterm, which were

later found to be similar to those found in adults (Doria et al., 2010). Notably, different RSNs

formed at different rates during gestation. Many studies identified an incomplete set of RSNs

in preterm subjects at term-equivalent age, although not all compared them to term-born

controls (Lin et al., 2008; Fransson et al., 2007, 2011; Gao et al., 2015; Lordier et al., 2019).

Additionally, alterations in the functional connectivity between and within RSNs were found in

infants (Gozdas et al., 2018) and adolescents (Wehrle et al., 2018) born very preterm , providing

evidence for the long-lasting impact that very PT birth has on the organisation of the brain

(Damaraju et al., 2010; White et al., 2014b; Johns et al., 2019).

Common to all of the studies mentioned above, was the stationary aspect of the analysis and

the use of a resting-state approach. Given the high incidence of cognitive abnormalities in

preterm born children at a later stage, the study of brain function under specific cognitive

tasks in this cohort is highly desirable, albeit largely lacking at present.

2.2.5 Interventions for preterm newborns and children

Early interventions are usually implemented shortly after birth, often relying on improving the

care-giving environment and with the goal of subsequently improving clinical outcomes. They

typically involve the family, including following integrative programs such as the Newborn

Individualized Developmental Care and Assessment Program (NIDCAP; Peters et al., 2009);

the Infant Behavioral Assessment and Intervention Program (IBAIP; Van Hus et al., 2016); the

Victorian Infant Brain Studies (VIBeS PLus; Spittle et al., 2018); or using Kangaroo Mother Care

position and method (Peters et al., 2009). A meta-analysis of these family-centred interven-

tions has shown that they have a positive effect on cognition in children born very preterm,

accompanied by a positive but weaker impact on motor abilities, and inconclusive results on

language (Ferreira et al., 2020). Importantly, although these interventions have been beneficial,

the exact environmental factors responsible for enhancing brain development remain largely

unknown.

Socio-emotional and executive function skills are still in plain development during childhood

and adolescence, suggesting that this age may still be within the intervention window. There

has been growing evidence that children’s capacity to understand emotions affects their

social adjustment. Those who are more sensitive to emotional cues tend to have better

relationships with friends and adults, are less likely to present behavioural problems, are more

inclined to solve conflicts, and tend to perform better at school (Denham, 2006; Domitrovich

et al., 2007; Harrington et al., 2020). Socio-emotional training has been shown to reduce
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aggressive behaviour and to improve both emotion recognition and executive functions in

typically developing children and children from disadvantaged families, providing further

evidence for the link between different cognitive abilities (Pons et al., 2002; Sprung et al.,

2015; Grazzani et al., 2018; de Mooij et al., 2020). In recent years, mindfulness meditation

training has emerged as a potential tool to help young populations manage a wide variety

of symptoms including disruptive behaviour (Perry-Parrish et al., 2016). A study involving

typically developing children at 11 years old showed that 8 weeks of mindfulness training

already has the potential to improve attentional self-regulation (Felver et al., 2017). Another,

found that meditation programs can enhance cognitive and social-emotional development in

young populations (Schonert-Reichl et al., 2015). Taken together, these results further suggest

a link between these cognitive domains and that mindfulness meditation may be an avenue

for intervention in clinical populations. In fact, several studies have investigated the benefits

of a meditation-based intervention for children with attention deficit hyperactivity disorder,

but their varying methodological quality means that so far no clinical recommendation can

be made and further, well-designed analyses, must be performed (Evans et al., 2018).

Crucially, a recent neuroimaging study involving typically developing, fullterm-born, early

adolescents found that mindfulness meditation related to dynamic features of brain function

and network connectivity over time, as opposed to static characteristics of neural activa-

tion(Marusak et al., 2018). This brain function trait remains largely unexplored in preterm-

born early adolescents, which highlights the importance of this thesis to fill this gap.

2.3 FMRI in the study of prematurity

Thanks to recent advances in the field, fMRI has been increasingly used to characterise healthy

brain function at different stages in life (Power et al., 2010). One important extension of these

investigations is to understand alterations related to atypical neurodevelopment. This may

lead to interventions aimed at preventing, reverting or minimising the effects of altered brain

function.

FMRI is particularly well-suited to investigate paediatric populations, especially since robust

measures of functional activation and connectivity can be obtained from short scanning

sessions. It has been employed to uncover atypical connectivity patterns and their links to

a wide range of neurodevelopmental disabilities. For instance, this technique has exposed

altered brain responses in regions underlying executive functions in preterm-born children in

frontal (Réveillon et al., 2013; Mürner-Lavanchy et al., 2014) and temporal areas (Kwon et al.,

2014; Wilke et al., 2014) which were linked to impaired language performance at age 14–15

(Wilke et al., 2014).

Most of the studies to date, however, employ analytical methods that assume brain function to

be static — that is, they investigate averaged brain activity across the entire experiment. Given

that the brain is known to be highly dynamic, there is an urgent need to know how prematurity

affects the dynamic features of neural function. The aim of this thesis is thus to fill this gap.
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2.3.1 Challenges and considerations for paediatric MRI studies

MRI studies often require that participants lay completely still for lengthy periods of time, espe-

cially when the experimental protocol includes several imaging modalities or task paradigms.

Head movement is one of the most intractable and potentially harming confounds in this type

of data, causing misalignment of subsequent frames and, as a consequence, BOLD signal or

structural estimates that do not correspond to true effects (Friston et al., 1996; Siegel et al.,

2017). Compared to adults, children have decreased inhibitory control (Bedard et al., 2002),

and may thus find it harder to remain still during experiments, particularly given the distract-

ing environment of scanning sessions (Greene et al., 2016). Unsurprisingly, then, children

and adolescents tend to present much higher total head motion than adult participants (Sat-

terthwaite et al., 2013), making the data potentially more susceptible to results that do not

reflect reality (Power et al., 2012). Motion scrubbing has become and increasingly accepted —

and stringent — way of dealing with this type of artefact over recent years (Power et al., 2014;

Laumann et al., 2016), but when the data is highly affected by motion it leads to significant

data loss. The best approach is, therefore, to avoid movement as much as possible.

Unsurprisingly, head motion in fMRI experiments involving children tends to increase with the

duration of experiments both in terms of run and session time (Engelhardt et al., 2017). While

taking breaks between sessions has been suggested as a way to reduce run length-related

artefacts, a trade-off must be found between implementing these and keeping the total record-

ing time as short as possible (Meissner et al., 2019). Another design-related consideration

that influences head motion in child studies is the experimental paradigm (Yuan et al., 2009).

Children are less likely to move when they have something to pay attention to, such as in

task-based experiments, as compared to resting-state ones (Engelhardt et al., 2017). Given the

above, a potentially reasonable trade-off for protocols that include both types of experimental

paradigms would be to perform the resting-state session as early as possible, and task-based

sessions in sequence, all while trying to keep the total scanning time as short as possible.

An approach that has been increasingly agreed as a measure to reduce head motion or drop-

outs due to scanner-anxiety is to familiarise children with the scan environment as much

as possible before the scan itself takes place (Greene et al., 2016), to help them feel safe and

relaxed. A simple strategy is to manage the participants’ expectations by showing a child-

friendly information video describing the MRI procedure (Thomason, 2009). In addition,

requests for the child to remain still may be done in a fun way, such as suggesting they are

playing "Statue". Mock scanners can also be used as a way to reduce scanning time, giving the

child the chance to live through the experiment in advance, either through commercial mock

scanners or improvised versions (de Bie et al., 2010; Barnea-Goraly et al., 2014). Furthermore,

implementing training sessions to teach participants what levels of movement are acceptable

or not may also improve data quality. Many children simply do not understand to what degree

they are moving or just forget having been asked to stay still during the scan, so receiving some

form of feedback — be it verbal or otherwise — helps them understand what it really means

to remain immobile (de Bie et al., 2010). Finally, decorating the scanner with child-friendly,
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colourful stickers to make it look less like a medical device has been shown to be a simple yet

efficient measure (Nordahl et al., 2016). Figure 2.4 shows the scanner used at Campus Biotech,

in Geneva, Switzerland, where the data for the studies presented in this thesis were collected.

Figure 2.4 – The MRI machine at Campus Biotech, decorated with stickers to make the
environment more child-friendly. Approaches to familiarise children with the scanning
environment have been shown to benefit data acquisition, resulting in better quality data that
is less affected by motion-related artefacts.

Despite the increasing application of fMRI studies in infants, for example, the deployment and

interpretation of such investigations in neonatal populations also remain a challenge. This is

partly due to our still relatively limited understanding of the effects of brain development on

the BOLD signal. It has been shown that the haemodynamic response changes during develop-

ment, a phenomenon probably related to differences in neurovascular coupling at each stage

(Arichi et al., 2012). Furthermore, the accuracy of task-based fMRI studies highly depends

on the choice of HRF models: it has been shown that even small amounts of inaccuracy in

HRF modeling may cause significant loss in validity and power (Lindquist and Wager, 2007;

Loh et al., 2008). While Arichi et al. (2012) have shown differences in the response elicited in

the somatosensory cortex of adults, termborn, and preterm children, age-appropriate HRF

parameters (as well as its inter-region variability) are still to be firmly established.
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Existing brain templates and atlases are typically based on adult brains and thus not optimised

for spatial normalization and parcellation of infant data and small children. Using them

might thus reduce the accuracy of any quantitative analysis and generate mislocalisations

in some cases. While several volumetric atlases have been proposed (Habas et al., 2010;

Kazemi et al., 2007; Shi et al., 2014), no approach has been widely agreed upon since most

obscure important spatial relationships among nearby locations in the cortex by blurring key

structures, potentially leading to less accurate results (Li et al., 2016). Until spatial locations

are well defined in the infant brain, analytical methods that do not rely on atlasing are more

suitable for this population. For the young adolescents whose data were analysed in this thesis,

we used a Montreal Neuroimaging Institute (MNI) template based on adult brains, as this has

been consistently and successfully used in children above 7 years old (Ashburber and Friston,

1998; Burgund et al., 2002).

Finally, a recent review by Smid et al. (2016) has highlighted that, although most of the global

preterm birth disease burden is on the shoulders of low and middle income countries (LMICs),

only a very limited amount of research evidence for its prevention or treatment comes from

studies in these settings. Instead, most of the research available on this population comes from

high income countries and may thus offer an incomplete view of the global issue of preterm

birth. Primary research involving LMICs thus also remains urgently needed. Nonetheless,

research carried out in developed countries such as this one may still bring us closer to the

development of interventions for which the need for expensive equipment will prove less

essential, and LMIC populations will also benefit from them.

26



3 BOLD signal variability and dynamic
spontaneous brain function in the
preterm-born

Methods for brain imaging analyses often rely on measuring and comparing the activity in

certain areas of interest after averaging across the duration of the experiment. This means

that any information about variations in the signal is completely ignored. Recently, however,

the blood oxygenation level dependent (BOLD) signal’s variability has been shown to yield

important information on brain function that is linked to cognitive abilities (Garrett et al.,

2013b). It is thought to reflect the brain’s flexibility and ability to rearrange itself in different

ways to allow increased complexity and cognitive range (Deco et al., 2011; McIntosh et al.,

2010). It is thus a simple, but potentially valuable measure to investigate brain dynamics in

clinical populations.

To the best of my knowledge, at the time of this publication no one has investigated BOLD

signal variability in preterm-born populations. In this chapter, I look into the dynamic aspects

of brain function in two ways: first, in terms of voxelwise BOLD signal variability and its

relationship with gestational age, age at assessment, and an interaction between the two.

Secondly,I perform a seed-based co-activation pattern (CAP) analysis focusing on the dorsal

anterior cingulate cortex, an area previously found to be affected in studies involving preterm-

born individuals (White et al., 2014b; Daamen et al., 2015; Lordier et al., 2019) and which

was also highlighted in the analysis of BOLD variability. Through these two analyses I thus

start from a global measure of brain dynamics, namely BOLD variability, and follow up with a

dynamic analysis of functional brain states. This provides a broad overview of the dynamic

aspects of spontaneous brain function in preterm-born young adolescents.
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Abstract

Preterm birth is one of the leading causes for neurodevelopmental complications in surviving

infants, and has been associated with a wide range of behavioural and cognitive problems

later in life. Functional magnetic resonance imaging (fMRI) studies have helped to uncover the

underlying neural mechanisms of these difficulties, which is paramount to identify potential

avenues for interventions that will improve the preterm population’s clinical outcome. A

growing body of research has shown links between dynamic aspects of brain function and

cognition. In particular, the variability of the blood oxygenation level dependent (BOLD)

signal from fMRI has been found to relate to cognitive abilities throughout life. During

adolescence the brain, as well as cognitive and socio-emotional skills, are still in full blown

development, making this age a potential window for intervention. Here, we investigate BOLD

variability in preterm-born young adolescents as compared to a control group of age-matched

fullterm-born individuals. Furthermore, we delve into dynamic functional connectivity in this

population by deriving several co-activation patterns and looking into their relationship with

age, gestational age, and their interaction using a partial least squares correlation approach.

We find that the development of BOLD variability and whole-brain dynamics in preterm-born

individuals follows a different trajectory compared to the fullterm-born.

Keywords: fMRI, Resting-state, BOLD variability, Co-activation Patterns (CAPs), Partial least

squares correlation (PLSC), Preterm, Adolescence

3.1.1 Introduction

Preterm birth — birth before 37 full weeks of gestational age (GA) — affects an estimated

11.1% of all live births yearly (Blencowe et al., 2013), and is one of the predominant risk factors

for neurodevelopmental disorders (Twilhaar et al., 2018). It has been associated with a wide

range of impairments in cognitive functions spanning attention (Rommel et al., 2017), working
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memory (Allotey et al., 2018), affective behaviour (Hornman et al., 2016), executive functions

(Costa et al., 2017; Burnett et al., 2018), among others (Moreira et al., 2014; Allotey et al.,

2018). Often unveiled only when children reach school age, some of these difficulties may

persist throughout life (Anderson, 2014; Kajantie et al., 2019). Understanding the neurological

underpinnings of these difficulties is thus crucial to identify potential interventions and

establish critical periods to restore typical development (Wolke et al., 2019).

Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool to investigate

temporal fluctuations in neuronal activity by looking into blood oxygenation level-dependent

(BOLD) signals across the brain (Fox et al., 2007). Thanks to the absence of goal-directed

stimulation or activity, this paradigm is particularly well suited for studying and comparing

brain function between populations who might respond to task instructions with different

levels of attention or understanding, because it has minimal compliance requirements. In

the preterm population, resting-state fMRI has often been used in the context of functional

connectivity (FC) analyses, measuring temporal correlations between the activity of different

brain regions or networks (Lordier et al., 2019). Thanks to these studies, it is now known

that alterations in FC may begin even before birth (Thomason et al., 2017) and last through

adolescence (Wehrle et al., 2018) into adult life (Papini et al., 2016).

The limitation of typical FC analyses is that they assume that the inter-regional relationships

are stationary, that is, they do not change over time. It has been shown, however, that FC

fluctuates temporally in resting-state fMRI recordings (Chang and Glover, 2010), suggest-

ing that methods based on averaging over long runs provide an incomplete picture of brain

function. As a consequence, techniques that offer insight into the dynamic aspects of func-

tional connectivity (dFC) have gained increasing interest in recent years (Preti et al., 2016). Of

note, co-activation patterns (CAP) analysis (Liu et al., 2018) breaks correlation maps down

into building blocks that repeatedly appear over time, providing a more accurate view into

resting-state dynamics than the commonly used sliding-window methods. This approach has

been recently used to reveal the nuances of dFC in health and disease (Kaiser et al., 2019). In

preterm birth, however, dFC remains largely unexplored.

A related aspect of brain signals that has gained popularity in recent years is its variability.

Commonly ignored in conventional rs-fMRI analysis, this feature is now thought to be a key

component of healthy brain functioning, taking part in the formation of functional networks

(Fuchs et al., 2007) and the exploration of different functional states (Ghosh et al., 2008;

McIntosh et al., 2010). Moment-to-moment variations of BOLD signals have been found to be

related to age and cognitive performance (Garrett et al., 2013a), and to be altered in several

neuropsychiatric disorders, such as Autism Spectrum Disorder (ASD; Di Martino et al., 2014;

Easson and McIntosh,2019), and Attention-Deficit/Hyperactivity Disorder (ADHD; Zang et al.,

2007; Nomi et al., 2018), some of which with symptoms that overlap with the behavioural

consequences of preterm birth. The above makes BOLD signal variability a promising avenue

to delve into the neurological effects of preterm birth. To the best of our knowledge, this

approach has not yet been explored in this population.
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Partial least squares correlation (PLSC; McIntosh et al., 2004; Krishnan et al., 2011) is an ef-

fective approach to identify relationships between different sources of data, and has become

increasingly popular as a method to reveal links between brain and clinical measures. For

instance, it has been used to predict clinical outcomes of depression from resting-state FC

(Yoshida et al., 2017); to investigate risk factors for psychosis in 21q11DS patients from dFC

features (Zöller et al., 2019); to identify the neurocorrelates of impulsivity in ADHD patients

(Barker et al., 2019); among others. Easson and McIntosh (2019) recently showed, using PLSC,

that BOLD signal variability in certain brain regions correlated negatively with symptom sever-

ity in children and adolescents with ASD. In a similar study, (Nomi et al., 2018) revealed that

brain signal variability in medial prefrontal areas comprising the default mode network was

positively correlated with inattention and symptoms of ADHD. These studies have demon-

strated the relevance of PLSC to expose relationships between brain function and clinical

measures. Importantly, PLSC has a critical advantage over typical voxelwise brain analyses

that use mass-univariate methods in that it it does not assume independence between the

voxels, making it more aligned with brain function and with the data itself, since neighbouring

voxels are smoothed as a preprocessing step. Also as a consequence of being a multivariate

approach, PLSC is less affected by the problem of multiple comparisons.

The teenage years are a critical period for brain development. During adolescence, functional

connections across the brain become more robust (Power et al., 2010), and the coordination

between networks becomes more dynamic during task performance (Hutchison and Morton,

2015) and at rest (Marusak et al., 2017; Faghiri et al., 2018). Thus, diving into the subtleties

of the dynamic features of brain function at this age has great potential to improve our

understanding of the effects of preterm birth in neurodevelopment. In this work, we employ

PLSC analysis to characterise links between brain function and age in preterm-born young

adolescents compared to full-term controls. First, we investigate the relationship between

BOLD signal variability and life course measures, namely gestational age at birth; age at

assessment; and an interaction between the two. Since it has been found to be linked to

cognition and development, and given that preterm-born children miss the third trimester in

utero when cortical folding develops more rapidly, we hypothesise that BOLD variability is

widely altered in this population. Finally, we explore how dynamic functional connectivity,

measured by co-activation patterns, relates to the same life course measures.

3.1.2 Methods

3.1.2.1 Participants

Forty-two very preterm-born (VPT) and twenty-seven term-born children (TB) aged between

10 and 13 years old were recruited for this study. One TB subject, who wore dental braces,

was excluded after data collection due to the strong signal distortions in the BOLD signals

caused by the metallic device. Additionally, one participant from the TB group, as well as

six subjects from the VPT group were excluded from data analyses due to high head-motion
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artefacts as detailed in Section 3.1.2.4. The results discussed in this paper thus relate to the

analysis of thirty-six VPT subjects (20 female; mean age = 12.13 ±1.2 years; mean gestational

age = 28.95± 1.95 weeks) and twenty-five TB children (10 female; mean age = 12.05±1.01

years, mean gestational age = 39.68±1.65 weeks). None of the children included in either of

the groups had any major disabilities, neurological or psychiatric disorders.

This study was approved by the Ethics Committee of the Canton of Geneva. Both the partici-

pants and their caregivers provided informed written consent. Each subject received a gift

voucher of 100 Swiss francs upon concluding their participation in the study.

3.1.2.2 MRI acquisition

MRI data were acquired at Campus Biotech in Geneva, Switzerland, using a Siemens 3T Magne-

tom Prisma scanner. Structural T1-weighted MP-RAGE (Magnetization Prepared Rapid Gradi-

ent Echo) sequences were acquired using the following parameters: voxel size = 0.9 x 0.9 x 0.9 mm;

repetition time (TR) = 2300 ms; echo time (TE) = 2.32 ms; inversion time (TI) = 900 ms; flip

angle (FA) = 8◦; field of view (Fov) = 240 mm. Functional images were T2*-weighted with a

multislice gradient-echo-planar imaging (EPI) sequence of 64 slices; voxel size = 2 x 2 x 2 mm;

TR = 720 ms; TE = 33 ms; Fov = 208 mm. Finally, a field map was acquired with TR = 627 ms;

TE1 = 5.19 ms; TE2 = 7.65 ms; and FA = 60◦.

3.1.2.3 MRI data preprocessing

Our data were preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience,

UCL, UK) in Matlab R2016a (The MathWorks, Inc., Natick, Massachusetts, United States).

First, a field map was calculated for each participant from the additional stock double-echo

field map sequence included in our MRI protocol (Jezzard and Balaban, 1995; Hutton et al.,

2002) in order to correct signal distortions caused by field inhomogeneities around the air-

filled sinuses (Gorno-Tempini et al., 2002). The fMRI images from each subject were then

spatially realigned and unwarped to correct, respectively, for motion artefacts and potential

geometric distortions. Thanks to the distortion correction of vulnerable brain regions for each

participant, this unwarping step not only improves the co-registration between structural and

functional images, but it also reduces the distortion variability across subjects during spatial

normalization to a common space (Hutton et al., 2002; Togo et al., 2017). This solution has

been successfully used in several adult (Togo et al., 2017) and children (Wozniak et al., 2011)

studies. Functional images were then co-registered to structural images in subject space and

smoothed with a Gaussian filter of full width at half maximum (FWHM) = 6 mm. In addition to

these initial preprocessing steps, we controlled for nuisance confounding by regressing out the

average white matter and cerebrospinal fluid signals, as well as the 24-Volterra expansion of the

motion parameters obtained from the realignment step. The voxelwise time series were then

filtered with a bandwidth of 0.01—0.15 Hz. To be able to perform a group level comparison,

BOLD variability maps (see Section 3.1.2.5), as well as the smoothed fMRI images, were warped
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into MNI (Montreal Neurologic Institute) space via a study-specific Diffeomorphic Anatomical

Registration Through Exponentiated Lie algebra (DARTEL) template. Normalisation methods

such as these have been demonstrated to be robust to age differences in participants of 7 years

and above (Ashburber and Friston, 1998; Burgund et al., 2002). Additionally, the inclusion of

the DARTEL template as an intermediate step is among the top ranked currently available

deformation algorithms (Klein et al., 2009).

3.1.2.4 Dealing with motion

In addition to regressing out motion parameters, we measured total head motion on our

subjects by framewise displacement (FD), which calculates the total amount of movement in

all directions between any two subsequent frames (Power et al., 2014). To guarantee that our

analyses only includes high quality data and as recommended by Power et al., all frames with

FD > 0.5 mm, as well as one frame before and two after, were excluded – an approach known

as scrubbing. Finally, we excluded subjects from whom more than 30% of the frames were

flagged as high motion ones. In total, one TB and six VPT subjects were excluded based on

these criteria. Out of the remaining participants, for the term-born group the mean FD per

frame was 0.15 mm with a standard deviation (SD) of ±0.04 mm; for the preterm-born group

the mean FD was 0.16 mm ±0.04 mm. There were no significant differences in the amount of

movement between the two groups.

3.1.2.5 BOLD variability

BOLD variability was calculated on a voxelwise basis as the standard deviation of the time

courses in subject space, excluding scrubbed frames. Each participant’s variability map was

then spatially z-scored and warped to MNI space via the study-specific DARTEL template.

Applying spatial normalisation on these maps as opposed to on the fMRI data used to calculate

them is preferred, as voxelwise measures (e.g., the amplitude of low-frequency fluctuations)

are more affected by the latter (Wu et al., 2011).

3.1.2.6 Co-activation patterns (CAPs)

To reveal how patterns of co-activation in the brain were rearranged over time we performed a

co-activation patterns analysis, which was calculated using the tbCAPs toolbox (Bolton et al.,

2020b), openly available online on https://c4science.ch/source/CAP_Toolbox/. For this part

of the study, we used fMRI images in MNI space so that frames from different participants

would be comparable in the clustering step. Prior to the analysis, all subjects’ voxelwise time

courses were initially z-scored over time (Liu and Duyn, 2013). Then, for each subject, a seed

was placed on the dorsal anterior cingulate cortex (ACC) centred at MNI coordinates [0, 32,

42] (Kolling et al., 2016) with a 10 mm radius, and the time courses of voxels within this mask

were averaged. The group-wise z-scored seed activity was then thresholded such that only
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15% of the frames (Liu and Duyn, 2013) were kept, which corresponded to threshold at the

BOLD signal value of 0.85. These suprathreshold frames were then grouped using k-means

clustering based on their euclidean similarity to obtain ACC-CAPs.

To determine the most appropriate number of clusters into which to categorize the data we

employed Consensus Clustering (Monti et al., 2003). This approach applies K-means clustering

on several subsamples of the data (for this study we used 100 subsamples) and calculates the

consensus matrix M . Each element M (a,b) indicates the fraction of subsamples in which two

frames a and b were both retained and clustered together. The optimal number of clusters can

then be inferred using the proportion of ambiguously clustered (PAC) measure (Senbabaoglu

et al., 2014).

Finally, we calculated occurrence metrics for each CAP such as number of entries; average

duration; number of transitions to and from baseline; and total number of occurrences. The

latter were used as brain measures for the CAP-PLSC analysis, as it summarises the other

metrics.

3.1.2.7 Partial least squares correlation (PLSC) analysis

To reveal and quantify the strength of the relationship between brain measures and life

course measures, we applied partial least squares correlation analysis (McIntosh et al., 2004;

Krishnan et al., 2011). We thus included either BOLD variability maps or CAP metrics as brain

measures in separate analyses and, in both cases, we included Gestational Age (GA), age at

assessment and an interaction between then two as life course measures. Before applying

PLSC, all life course variables and voxelwise BOLD variability maps were z-scored across

subjects (Krishnan et al., 2011). The toolbox used for the PLSC analyses is openly available at

https://github.com/danizoeller/myPLS.

PLSC analysis starts by computing the group-wise correlation R between the matrix of brain

measures per subject, X, and the matrix of life course variables per subject, Y. Since these

data are z-scored (centred and normalised), this corresponds to the cross-product R = XT Y.

The group-wise cross-correlation matrices are subsequently stacked. R is then factorised via

singular value decomposition into three matrices USVT to produce latent components (LCs)

that capture relationships between brain and life course measures. Each LC is thus associated

with a vector of life course saliences (or “weights") in U, a vector of brain saliences in V, and a

corresponding singular value in S, which indicates the amount of correlation that is explained

by that pair of salience vectors. The aim of PLSC is thus to yield pairs of latent vectors in U

and V with maximal covariance. Each value in a salience vector indicates how strongly the

corresponding measure contributes to the correlation between brain and life course measures

that this LC explains. By projecting each subject’s original (brain or life course) data onto

the corresponding salience pattern, we obtained brain (LX = XV) and life course (LY = YU)

scores, respectively. In other words, each subject’s brain score is a weighted sum of their brain

measures (e.g., BOLD variability within a voxel), where the weights are given by the brain
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saliences calculated from the PLSC. Note that YU is computed separately for each group and

stacked in LY .

To test whether the correlation explained by each LC was significant, we performed 1000

permutations of the life course measures (while keeping grouping intact), and factorised the

resulting cross-correlation matrix in each case, to determine the null distribution of singular

values. If an LC’s singular value was higher than 95% (α = 0.05) of the null distribution, it was

considered significant. For each significant LC, we then performed cross-validation on the

brain and life course saliences to find the elements that contributed significantly to the rela-

tionship expressed by that LC. To do this, we created 500 random bootstrap samples obtained

by random sampling with replacement on the brain and life course saliences. By dividing the

mean of the bootstrap distribution by its standard deviation we obtain the bootstrap ratio

(BSR), which is roughly equivalent to a z-score (McIntosh et al., 2004; Krishnan et al., 2011).

For instance in the BOLD variability - life course measures PLSC, this ratio represents how

robustly each voxel contributes to the LC.

In the results presented here, we threshold the brain patterns of bootstrap scores at abs(BSR)> 3

(when abs represents the absolute value), which corresponds approximately to p < 0.001 (Gar-

rett et al., 2013a).

3.1.3 Results

3.1.3.1 BOLD variability

Figure 3.1 shows the mean variability map across all subjects from both groups. There was

no significant difference between groups when comparing the subject-wise mean variability

maps that were subtracted during the PLSC’s z-scoring step, as measured by a Student’s t-test.

The PLSC analysis of voxelwise BOLD variability yielded one significant LC (p = 0.006), which

captured an effect of GA; age; and an interaction between the two. These effects were expressed

differently between groups as detailed in the following sections.

BOLD variability evolves differently in preterm-born children

Figure 3.2 shows the brain and life course saliences for the significant latent component

(p = 0.006) yielded by the PLSC analysis. For fullterm-born children, there was a positive effect

of GA and age, as well as an interaction between the two, on BOLD variability. This indicates

that, as young adolescents grow older, and the longer they have spent in the womb, the more

variability they will present in the regions shown in Figure 3.2B. As for preterm-born children,

contrary to their peers, age had a negative effect on BOLD variability, suggesting an altered

trajectory for the development of this feature in this group. Moreover, although GA alone

had no significant effect on BOLD variability, an interaction between GA and age did have

a positive effect, suggesting that in older children, a longer gestation is linked to increased
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Figure 3.1 – Mean variability map across the population. Calculated as the average of the
standard deviation of the BOLD signals from each subject from both groups. Numbers on the
top left indicate MNI coordinates in the Z axis. There was no significant difference between
the mean variability maps of each group separately, as measured by Student’s T-tests.

BOLD variability, bringing them closer to fullterm controls. The brain regions most implicated

in the relationship uncovered by the significant latent component are shown in Figure 3.2B

with a bootstrap ratio threshold of BSR = 3, which is equivalent to p-values less than 0.001. In

particular, the bilateral hippocampi (Hipp), insulae (Ins), ventral and dorsal anterior cingular

cortex (ACC) all have a BSR < 6, which corresponds to a p-value less than 0.00001.

3.1.3.2 Co-activation patterns

Out of the brain areas highlighted in our BOLD variability analysis’ results, the dorsal anterior

cingulate cortex (ACC) has been previously reported to showcase alterations in both function

and static connectivity in preterm-born individuals at various stages in life (White et al., 2014b;

Daamen et al., 2015; Lordier et al., 2019). We thus selected this region as a seed for further

investigation using CAP analysis.
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Figure 3.2 – BOLD variability and its link to life course measures. Partial least squares corre-
lation (PLSC) results for BOLD variability and life course measures for preterm-born young
adolescents and fullterm-born controls. A) Life course measures’ weights for latent component
(LC) 1. GA = Gestational Age. Error bars correspond to bootstrapping 5th–95th percentiles.
B) Brain weights for LC 1. Numbers on the top left of each slice correspond to planes in Mon-
treal Neurological Institute coordinates. C) Correlations between brain scores (subject-wise
weighted average of BOLD variability maps, with the Brain Saliences as weights) and age at
assessment in the two groups (rtb = 0.3, p = 0.01; rvpt = -0.4, p = 0.006). For this plot, brain
scores (Lx) were calculated using brain data normalised across all participants (as opposed to
within-group), to allow group baselines to be compared. Each bubble’s size is proportional to
the corresponding subject’s GA.

.

ACC co-activates with typical resting-state networks in young adolescents

Consensus clustering was performed on K = 2–20, and the lowest proportion of ambiguously

clustered frames indicated K = 6 as the ideal number of centroids for the clustering step. The

co-activation patterns obtained correspond to well known resting-state networks and can

be seen in Figure 3.3. CAP 1 corresponds to the default mode network (DMN), including the

anterior medial prefrontal cortex, posterior cingulate cortex and angular gyri. CAP 2 includes

the anterior cingulate cortex and the dorsolateral prefrontal cortex. CAP 3 corresponds to the

dorsal attention network (DAN). CAP 4 includes nodes typically associated with the language
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network. CAP 5 includes the insula and dorsal ACC, nodes associated with the salience network

(SN). Finally, CAP 6 corresponds to the visual network.

CAP 1 CAP 2 CAP 3 CAP 4 CAP 5 CAP 6
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Figure 3.3 – Spatial patterns of co-activation with the anterior cingulate cortex in young
adolescents. Co-activation Patterns (CAPs) were obtained from all subjects, including preterm-
born young adolescents and fullterm controls. Numbers on the top left corner of slices
correspond to Montreal Neurological Institute coordinates. Voxels were thresholded at 0.85,
the same threshold used on the seed time course to keep 15% of frames for clustering in
the CAP analysis. CAP 1 = default mode network ; CAP 2 = anterior cingulate cortex and
dorsolateral prefrontal cortex; CAP 3 = dorsal attention network; CAP 4 = language network;
CAP 5 = salience network; CAP 6 = visual network.

No group differences in individual CAP metrics between preterm- and fullterm-born par-

ticipants

None of the individual CAP metrics we analysed (i.e., number of entries; average duration;

number of transitions to and from baseline; and total number of occurrences) were signifi-

cantly different between groups, as compared using two-sample t-tests (p > 0.05, n.s.).

Altered trajectories of ACC-CAPs over time in preterm-born young adolescents

We then tested whether there were significant interplays between the six CAPs that were

expressed differently between the two groups over time. To this end, we employed a PLSC

analysis including the total number of occurrences per CAP and the life course measures.

We found one significant latent component (LC1, p = 0.001) as shown in Figure 3.2. Life

course weights for LC1 indicate robust weights of gestational age (GA), age at assessment

and an interaction of the two for preterm young adolescents, whereas age at assessment and

its interaction with GA contributed robustly to LC1 in the control group (Figure 3.4A). CAP

occurrence saliences show that internally oriented networks such as the DMN have a positive

weight in the relationship uncovered by LC1, while externally oriented networks (e.g., language,
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visual) are negatively weighted (Figure 3.4B). The correlation plot between brain scores and

age shows that this relationship is altered in preterm-born young adolescents as compared to

their fullterm peers (Figure 3.4C). Specifically, brain scores start lower for the VPT group at the

age of 10, but increase at a higher pace than for the control group, eventually surpassing it.

Figure 3.4 – Altered trajectory of ACC-CAPs development over time in preterm-born young
adolescents. Partial least squares correlation between CAP occurrence and age-related mea-
sures lead to one significant latent component (p = 0.001). A) Life course measures’ weights
for LC1 indicate robust weights of gestational age (GA), age at assessment and an interaction
of the two for preterm young adolescents (red bars), whereas age at assessment and its interac-
tion with GA contributed robustly to LC1 in the control group (blue bars); blue bars represent
fullterm controls. B) CAP occurrence saliences show that internally oriented networks have
a positive weight in the relationship uncovered by LC1, while externally oriented networks
(e.g., language, visual) have a negative weight. C) The correlation plot between brain scores
(subject-wise weighted average of CAP occurrences, based on brain saliences as weights) and
age shows the different trajectories of CAP occurrence across age in the two groups (rtb = 0.4,
p = 0.05; rvpt = -0.6, p = 0.0001).

3.1.4 Discussion

This study investigated dynamic features of brain activity and connectivity in preterm-born

young adolescents, with the particular goal of tracking their evolution during this phase of

development. To the best of our knowledge, we were the first to investigate BOLD variability in

this population. We additionally employed co-activation pattern (CAP) analysis using a brain

area previously shown to be vulnerable in this population — the dorsal anterior cingulate

cortex — as a seed to reveal several different spatial patterns, representing well-known resting-

state networks, that dynamically co-activate with this ROI over time. Finally, we revealed that

the development of both BOLD variability and the balance between CAPs is altered in VPT

young adolescents as compared to fullterm controls.

Altered BOLD variability evolution in the Very Preterm BOLD variability is broadly altered

in the preterm group, for which we found a negative effect of age as compared to a positive

effect within the control group (Figure 3.2A). Of note, the pattern of alterations includes large

parts of the DMN such as the medial prefrontal cortex and the posterior prefrontal cortex.
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Garrett et al. (2011) found differences in a similar set of regions when studying BOLD variability

in healthy adults during the performance of a task, with the elderly, low performing group

showing decreased variability. Importantly, the posterior cingulate cortex and precuneus have

been singled-out as functional and structural network hubs, linked to theory-of-mind and

self-referential processes (Spreng et al., 2009; van den Heuvel and Sporns, 2013), both of which

are affected in the preterm-born (Papini et al., 2016; Witt et al., 2018). In pre-adolescents,

a recent study in normative functional connectivity development found that FC within the

DMN was anti-correlated with age and cognitive performance (Jiang et al., 2018). The increase

in BOLD variability with age in the same regions in our fullterm group aligns with the idea

that variability at the right level is necessary to yield a greater dynamic range and complex-

ity, allowing flexibility in brain function and connectivity (McIntosh et al., 2010; Deco et al.,

2011; Garrett et al., 2013b). Along these lines, the development of variability found in the

preterm participants may be linked to other functional and behavioural alterations seen in

this group. For instance, exacerbated variability in the medial prefrontal cortex in ADHD

patients aged 9.91±1.24 (as compared to typically developing children) is strongly correlated

with the severity of ADHD symptoms and inattention (Nomi et al., 2018). The positive effect of

the interaction between gestational age and age at assessment in our preterm group shows

a similar relationship between BOLD variability and prematurity in our younger preterms

(Figure 3.2A, B). In particular, the fact that variability is higher in the preterm group at an early

age and gradually decreases past the fullterm point may indicate a compensation mechanism

that overshoots, and thus does not reach ideal levels (e.g., comparable to typically developing

controls) within this period of life. Note that although there was a coincidental weak corre-

lation between gestational age and age at assessment in the preterm group (Supplementary

Figure A.4), we do not expect this to have had a large effect in the results due to the weakness

of this relationship. It would be interesting to follow up this study with a BOLD variability

analysis in preterm-born adults to check if, like with other brain measures and behavioural

traits, the alterations last throughout life.

The pattern of BOLD variability alterations includes other brain regions such as the bilateral

hippocampus/amygdala and the insula – areas involved in a variety of functions ranging

from affective processing to higher level cognition (Uddin et al., 2018). These regions have

been previously found to be affected in the young preterm population, with accounts of

altered developmental trajectories (Thompson et al., 2014), volumetry (Chau et al., 2019),

and function (Nosarti et al., 2006). In general, our results agree with research showing that

insular BOLD variability increases linearly with age in the resting state (Nomi et al., 2018) in

typically developing individuals, and show that this trajectory is altered in the preterm group.

In our group comparison, there was no evidence of the previously found cortical-subcortical

dichotomy in which BOLD variability increases with age in subcortical areas as opposed to

cortical areas (Garrett et al., 2013b). This may be partly due to the fact that Garrett’s study

was performed using a task-based design. More importantly, PLSC extracts the multivariate

pattern that most differentiates the two groups, suggesting a complex pattern of development

alterations in the preterm group.
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Altered ACC connectivity pattern in the Very Preterm To further understand the effects of

BOLD variability and relate it to conventional functional connectivity, we investigate how

the patterns of activation of the dorsal ACC — a region that has been previously shown to be

compromised in the preterm-born (White et al., 2014b; Daamen et al., 2015; Lordier et al., 2019)

— relate to other areas in the brain. In keeping with our interest in the dynamic aspects of brain

function, we chose to perform a co-activation pattern (CAP) analysis to achieve this, retrieving

6 CAPs that included well known resting-state networks. There was no difference between the

two groups when we compared the number of occurrences of each CAP individually. However,

a multivariate analysis showed that the occurrence of certain combinations of CAPs developed

differently in the two groups. Of note, the difference was mainly driven by the number of

entries in each state, as opposed to the duration of each brain state. Sherman et al. (2014)

found that DMN integration increased from ages 10 to 13 in typically developing children,

and segregation between the DMN and dorsal attention networks increased (i.e., the between-

network correlations weakened). This is in line with what we found in our control group.

Interestingly, the preterm group follows the same trend, but in a much more accentuated way.

Similarly to our results on BOLD variability, this suggests that there is a mechanism in place

that fails to identify the optimal point of balance and thus overshoots. Nosarti et al. (2006)

found that, in preterm adults, a weaker connectivity in the salience network (which includes

the dorsal ACC and the insula) is related to worse outcomes, which is in line with our result

that, in the preterm group, co-occurrence of the ACC and the insula decreases more rapidly

than in the control group. These findings, combined, further highlight early adolescence as

a significant time for maturation of the brain’s functional architecture, and corroborate the

idea that this development fails to find the optimal compensatory balance in preterm-born

individuals.

Interestingly, the combination of patterns that co-occur with the ACC found in our CAPs

PLSC analysis reveals a dichotomy between the occurrences of internally- (i.e., DMN, mPFC)

versus externally-oriented (i.e., DAN, visual) networks (Zabelina and Andrews-Hanna, 2016).

Internally-oriented cognition comprises creative thinking; making social inferences; prospec-

tion; and mind-wandering (Zabelina and Andrews-Hanna, 2016; Buckner and DiNicola, 2019).

Networks which support externally-oriented cognition, in turn, are typically involved in

language; visual; and somatosensory tasks, attention regulation, and are usually positively

correlated at rest (Lee et al., 2012), in line with our results. A study on resting-state functional

connectivity including young adolescents aged 10–16 found that very preterm participants

showed weaker connectivity in externally-oriented networks such as the visual and DAN

(Wehrle et al., 2018). The results considered the groups in a categorical way, but includes a

slightly older population than ours. This could explain the finding of a weaker task-oriented

network connectivity in preterm as compared to controls, which is in line with what is seen in

our older participants. This weakened connectivity has also been found in adult preterm-born

individuals aged 28 and above (White et al., 2014b). Our study thus provides complementary

insight into the trajectory of the differences seen between the two groups, and suggests that

the disconnectivity seen in later life stages may be related to faulty compensation mechanisms
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that start during the highly dynamic age range of early adolescence.

Study considerations

While we discuss the development of dynamic features during young adolescence, the mea-

sures at different ages were acquired by different individuals. Given that this is a stage in life in

which the brain is in full blown development and that there is high heterogeneity in the clinical

outcomes of preterm infants, it would have been ideal to perform repeated measures in the

same participants in a longitudinal study. Moreover, it has been shown that extremely preterm-

born individuals (<28 weeks of gestational age) tend to be less resilient and therefore more

likely to present brain abnormalities. Here, we grouped extremely and very (28—31 weeks)

preterm-born individuals together. Subsequent analyses should take this into consideration

by looking for effects that are specific to each of these groups separately.

Conclusions

Our study shows for the first time that the trajectory of BOLD signal variability development

is altered in young adolescents born prematurely, and that these alterations follow a broad

spatial pattern in the brain comprising regions previously found to be affected by preterm

birth. The previous implication of the brain areas observed in our study in preterm birth and

cognitive performance suggests exploring the relationship between the development of BOLD

signal variability and behavioural outcomes as a promising avenue for further research. In

addition, we explored the development of dynamic functional connectivity in this population

by examining how the interplay between different multivariate co-activation patterns changes

with age. We found that the change in the balance between internally- and externally-oriented

networks across age is more accentuated in the preterm group. Taken together, our observa-

tions suggest that the preterm-born brain triggers neurological compensation mechanisms

that start during the highly dynamic age range of early adolescence and fail to find an optimal

balance.
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4 Studying cognition with task-based
fMRI: reality filtering in young popu-
lations

While resting-state studies provide insightful information on spontaneous brain function,

task-based functional magnetic resonance imaging (fMRI) paradigms are essential to probe

into brain activation driven by specific demands. As described in more detail in this chapter,

the prefrontal cortex — specifically the orbitofrontal cortex (OFC) — has been shown to be

essential for the ability to process reality filtering tasks in adults (Schnider, 2018). This region

is, however, known to be underdeveloped in preterm-born individuals (Thompson et al., 2007).

The goal of this chapter is thus twofold: to investigate whether, as in adults, the OFC mediates

reality filtering in young adolescents; and whether preterm-born young adolescents use the

same brain resources as fullterm-born controls to perform a reality filtering task.

The first article included in this section has been published in the peer-reviewed Brain and

Behaviour journal. Its goal was to test the hypothesis that the OFC mediates reality filtering

processing in young adolescents. Maria Chiara Liverani and Lorena Freitas are considered

joint first-authors for the paper, having performed the behavioural and neuroimaging analyses,

respectively. In addition, Liverani and Freitas both participated in data collection for this study.

The remaining authors participated in different stages of ideation for the overarching project

(Building the Path to Resilience in Preterm Infants) and/or provided funding.

The second article is a preprint of the followup study looking into reality filtering in preterm-

born children as compared to the control group from the first study.

43



Chapter 4. Studying cognition with task-based fMRI: reality filtering in young
populations

4.1 Journal Article: Get real: orbitofrontal cortex mediates the abil-

ity to sense reality in early adolescents

(Postprint version of the article published in: Brain and Behaviour, 2020,

DOI: https://doi.org/10.1002/brb3.1552)

Maria Chiara Liverani*1, Lorena G. A. Freitas*1,2, Vanessa Siffredi1,2, Greta Mikneviciute1,

Roberto Martuzzi3, Djalel-Eddine Meskaldij1,4, Cristina Borradori Tolsa1, Russia Ha-Vinh

Leuchter1, Armin Schnider5, Dimitri Van De Ville2, Petra S. Hüppi1

* M.C.L. and L.G.A.F. have contributed equally and are considered joint-first authors.

1 Department of Paediatrics, Gynecology and Obstetrics, Division of Development and Growth,

Geneva University Hospitals, 6 rue Willy – Donzé, 1205 Geneva, Switzerland
2 Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Rue Cantonale, 1015

Lausanne, Switzerland
3 Foundation Campus Biotech Geneva, Chemin des Mines 9, 1202 Geneva, Switzerland
4 Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Rue Cantonale, 1015

Lausanne, Switzerland
5 Department of Clinical Neurosciences, Division of Neurorehabilitation, Geneva University

Hospitals, 26 Avenue de Beau-Séjour, 1211 Geneva, Switzerland

Abstract

Introduction: Orbitofrontal reality filtering (ORFi) is a memory mechanism that distinguishes

if a thought is relevant to present reality or not. In adults, it is mediated by the orbitofrontal

cortex (OFC). This region is still not fully developed in pre-teenagers, but ORFi is already active

from age 7. Here we probe the neural correlates of ORFi in early adolescents, hypothesizing

that OFC mediates the sense of reality in this population.

Methods: Functional magnetic resonance images (fMRI) were acquired in 22 early adolescents

during a task composed of two runs: Run 1 measuring recognition capacity; Run 2 measuring

ORFi; each containing two types of images (conditions): distractors (D: images seen for the

first time in the current run) and targets (T: images seen for the second time in the current

run). Group region of interest (ROI) analysis was performed in a flexible factorial design with

two factors (run and condition) using SPM12.

Results: We found significant main effects for the experimental run and condition. The

bilateral OFC activation was higher during ORFi than during the first run. Additionally, the

OFC was more active while processing distractors than targets.

Conclusion: These results confirm, for the first time, the role of OFC in reality filtering in early
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adolescents.

Keywords: Orbitofrontal reality filtering, fMRI, orbitofrontal cortex, early adolescents, memory.

4.1.1 Introduction

Orbitofrontal reality filtering (ORFi) is a memory control mechanism that allows to filter up-

coming memories and thoughts according to their relation with ongoing reality (Schnider,

2013, 2018). The first description of ORFi was based on the observation of patients with

orbitofrontal lesions, suffering from behaviourally spontaneous confabulations and disorien-

tation. These patients typically turn to currently inappropriate memories to guide their present

actions or to shape their future plans, failing to verify the connection of these memories with

the “now”. In addition, they are disoriented in time and space (Schnider, 2018). For example, a

retired psychiatrist hospitalised after rupture of an aneurysm of the anterior communicating

artery, repeatedly tried to leave the hospital in the conviction that she had to meet her own

patients (Schnider et al., 2005). Schnider and colleagues (Schnider et al., 1996) developed an

experimental paradigm to test ORFi and to reliably discriminate reality-confusing patients

from healthy participants. It consists of two runs of a continuous recognition task in which

the same images are shown twice. Participants are asked to indicate picture recurrences only

within the ongoing run. The first run assesses the ability to encode and recognize items, and

familiarity alone is sufficient to correctly perform the task. In the second run all images are

familiar, and thus familiarity alone is not enough to perform the task. In this second run ORFi

is needed, representing the ability to sense whether the memory of an item relates to the

present (the currently ongoing run), or not (Schnider and Ptak, 1999).

Behaviourally, confabulating patients markedly and specifically increased their false positives

in the second run (Nahum et al., 2012; Schnider and Ptak, 1999). Lesion analysis on these

patients revealed that the ORFi mechanism depends on the orbitofrontal cortex (OFC) or

structures directly connected with it (Schnider et al., 1996; Schnider, 2018). Functional neu-

roimaging studies using Positron Emission Tomography further corroborated the dependence

of ORFi on the intact OFC (Schnider et al., 2000; Treyer et al., 2003, 2006). Electrophysiological

studies revealed that ORFi is expressed by a frontal positivity at about 200-300 ms, before the

content of a thought is recognised (Schnider, 2002).

Children are more vulnerable to memory distortions and more prone to errors than adults

(Ceci and Bruck, 1993). Using a child-adapted version of the continuous recognition task,

we recently found that ORFi is present in 7-year-old children, improves from 7 to 11 years in

parallel with memory capacity, but does not attain adult efficacy at that age (Liverani et al.,

2017).

The neural correlates of this mechanism in children and adolescents has never been investi-

gated. While the implication of the OFC in ORFi has clearly been shown in adults (Treyer et al.,

2003, 2006), no such evidence exists in a younger population.
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The aim of this study was to examine, with advanced functional neuroimaging techniques, to

which extent the ability of early adolescents to sense whether a memory or a thought refers to

the present reality or not depends on the OFC, similar to what has been found in adults.

4.1.2 Methods

4.1.2.1 Participants

Twenty-three healthy early adolescents from 10 to 13 years of age (10 females, mean age 12

± 1.01 years) were recruited through advertisements. One participant was excluded due to

strong signal distortions on fMRI images caused by the subject’s dental braces. Twenty-two

participants were finally included in the analysis.

Cognitive assessment at the time of the scan was performed using the French version of

the Wechsler Intelligence Scale for Children – Fifth Edition (WISC - V; Wechsler, 2014). For

one participant IQ score was evaluated using the Kaufman Assessment Battery for Children,

second edition (KABC-II; Kaufman and Kaufman, 2004). All participants scored within the

normal range of intellectual functioning (mean = 117.04 ± 11.35). Parents were asked to fill

a questionnaire assessing the presence of serious physical illness or neurological problems.

None of the participant had major disabilities, psychiatric or neurological diseases.

The Ethics Committee of the Canton of Geneva approved the study, which was carried out in

accordance with the Declaration of Helsinki. Caregivers and participants provided informed

written consent. Participants received a gift voucher of 100 Swiss francs for their participation

in the study.

4.1.2.2 fMRI Paradigm

Participants performed a child-adapted version of the continuous recognition task assessing

recognition memory and orbitofrontal reality filtering (Figure 4.1; Liverani et al., 2017; Schnider

et al., 1996; Schnider, 2003, 2013), associated with an event-related fMRI paradigm.

The task was composed of two runs in which the same set of images was presented and

repeated twice, with a break of around 3 minutes between the two runs. In the first part,

assessing recognition memory (item recognition, IR) participants were asked to indicate

picture recurrence ("Have you already seen this picture in this task?”) by pressing the left

button of an MRI-compatible mouse if the image was seen for the first time (distractors run 1,

D1), and the right button if it was seen for the second time (targets run 1, T1). This run can

be solved on the basis of familiarity alone. In the second run, the same set of pictures was

presented in a different order and repeated twice. Participants were instructed to indicate if

each item was presented for the first or the second time in this ongoing run ("Is this the first

or the second time that you see that image in this ongoing run?"), pressing the left button of

the mouse for images seen for the first time (distractors run 2, D2), and the right button for
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mouse	for	images	seen	for	the	first	time	(distractors	run	2,	D2),	and	
the	right	button	for	images	presented	for	the	second	time	(targets	
run	2,	T2).	In	this	run,	all	images	have	already	been	seen.	Therefore,	
familiarity	alone	is	not	enough	to	correctly	perform	the	task,	and	
the	ORFi	mechanism	is	needed	to	process	distractors	(D2).

Pictures were a set of 30 cartoon drawings of animals and were 
presented	for	5	s	on	the	screen.	In	each	run,	30	images	were	pre-
sented	 for	 the	 first	 time	 (distractors,	D)	and	 then	repeated	once	
(targets,	T)	after	6–9	intervening	pictures,	as	already	done	in	a	pre-
vious	study	with	children	(Liverani	et	al.,	2017).	After	each	image,	
a	 fixation	cross	was	presented	during	between	1,440	and	2,400	
milliseconds.	Each	run	lasted	approximately	7.5	min.	Stimuli	were	
displayed on a white screen at the head of the scanner via a 45° 
angled	mirror	fixed	to	the	MRI	head	coil.	Responses	were	given	by	
pressing	two	buttons	with	the	right	index	and	middle	finger,	on	an	
MRI-compatible	mouse.	Task	programming,	stimuli	display,	and	re-
sponses	logging	were	done	using	E-Prime	2	(Psychology	Software	
Tools,	 Pittsburg,	USA).	 All	 participants	 successfully	 completed	 a	
short training with a different set of images in the mock MRI scan-
ner before the MRI.

2.3 | Behavioral data analysis

Reaction	times	and	accuracy	were	recorded	for	each	condition	(D1,	
T1,	D2,	T2).	A	2	×	2	repeated	measures	analysis	of	variance	(ANOVA)	
was performed on accuracy and reaction time with the within-sub-
ject	factors	run	(1,	2)	and	stimulus	(distractor	D,	target	T).

2.4 | Image acquisition

MRI	data	were	acquired	on	a	Siemens	3T	Magnetom	Prisma	scan-
ner	 at	 Campus	 Biotech,	 Geneva,	 Switzerland.	 Structural	 T1-
weighted	MP-RAGE	 (magnetization-prepared	 rapid	 gradient-echo)	
sequences	 were	 acquired	 using	 the	 following	 parameters:	 voxel	
size	=	0.9	×	0.9	×	0.9	mm;	repetition	time	(TR)	=	2,300	ms;	echo	time	
(TE)	=	2.32	ms;	inversion	time	(TI)	=	900	ms;	flip	angle	(FA)	=	8°;	and	
field	of	view	(Fov)	=	240	mm.	Functional	images	were	T2*-weighted	
with	a	multislice	gradient-echo-planar	imaging	(EPI)	sequence	of	64	
slices;	 voxel	 size	=	2	×	2	×	2	mm;	TR	=	720	ms;	 TE	=	33	ms;	 and	
Fov	 =	 208	mm.	 Finally,	 a	 fieldmap	was	 acquired	 each	 time	 a	 par-
ticipant	 entered	 the	 scanner,	 with	 TR	 =	 627	 ms;	 TE1	 =	 5.19	 ms;	
TE2	=	7.65	ms;	and	FA	=	60°.

2.5 | MRI data preprocessing

Our	data	were	preprocessed	using	SPM12	(Wellcome	Department	of	
Imaging	Neuroscience,	UCL,	UK)	in	Matlab	R2016a	(The	MathWorks,	
Inc.,	Natick,	Massachusetts,	United	States).	One	particular	challenge	
in studying frontal brain areas using fMRI is the considerable vulner-
ability of these regions to signal distortions caused by field inhomo-
geneities	around	the	air-filled	sinuses	(Gorno-Tempini	et	al.,	2002).	
To	correct	for	the	resulting	geometrical	distortions,	a	field	map	was	
calculated from an additional stock double-echo field map sequence 
included	in	our	MRI	protocol	(Hutton	et	al.,	2002).	The	fMRI	images	
from	each	participant	were	then	spatially	realigned	and	unwarped,	

F I G U R E  1  Task	design.	The	task	was	composed	of	2	runs,	separated	by	a	break	of	3	min.	Distractors	(D1	and	D2)	are	images	presented	
for	the	first	time	within	a	run;	targets	(T1	and	T2),	are	images	repeated	within	the	same	runFigure 4.1 – Task design. The task was composed of 2 runs, separated by a break of 3 minutes.
Distractors (D1, D2) are images presented for the first time within a run; targets (T1, T2), are
images repeated within the same run.

images presented for the second time (targets run 2, T2). In this run all images have already

been seen. Therefore, familiarity alone is not enough to correctly perform the task, and the

ORFi mechanism is needed to process distractors (D2).

Pictures were a set of 30 cartoon drawings of animals and were presented for 5 seconds on

the screen. In each run, 30 images were presented for the first time (distractors, D) and then

repeated once (targets, T) after 6 to 9 intervening pictures, has already done in a previous

study with children (Liverani et al., 2017). After each image, a fixation cross was presented

during between 1440 and 2400 milliseconds. Each run lasted approximately 7.5 min. Stimuli

were displayed on a white screen at the head of the scanner via a 45° angled mirror fixed

to the MRI head coil. Responses were given by pressing two buttons with the right index

and middle finger, on an MRI-compatible mouse. Task programming, stimuli display and

responses logging were done using E-Prime 2 (Psychology Software Tools, Pittsburg, USA). All

participants successfully completed a short training with a different set of images in the mock

MRI scanner before the MRI.

4.1.2.3 Behavioural data analysis

Reaction times and accuracy were recorded for each condition (D1, T1, D2, T2). A 2 X 2

repeated measures analysis of variance (ANOVA) was performed on accuracy and reaction

time with the within-subject factors Run (1, 2) and Stimulus (distractor D, target T).
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4.1.2.4 Image acquisition

MRI data were acquired on a Siemens 3T Magnetom Prisma scanner at Campus Biotech,

Geneva, Switzerland. Structural T1-weighted MP-RAGE (Magnetization Prepared Rapid Gradi-

ent Echo) sequences were acquired using the following parameters: voxel size = 0.9 x 0.9 x 0.9

mm; repetition time (TR) = 2300 ms; echo time (TE) = 2.32 ms; inversion time (TI) = 900 ms;

flip angle (FA) = 8°; field of view (Fov) = 240 mm. Functional images were T2*-weighted with

a multislice gradient-echo-planar imaging (EPI) sequence of 64 slices; voxel size = 2 x 2 x 2

mm; TR = 720 ms; TE = 33 ms; Fov = 208 mm. Finally, a fieldmap was acquired each time a

participant entered the scanner, with TR = 627 ms; TE1 = 5.19 ms; TE2 = 7.65 ms; and FA = 60°.

4.1.2.5 MRI data preprocessing

Our data were preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience,

UCL, UK) in Matlab R2016a (The MathWorks, Inc., Natick, Massachusetts, United States). One

particular challenge in studying frontal brain areas using fMRI is the considerable vulnerability

of these regions to signal distortions caused by field inhomogeneities around the air-filled

sinuses (Gorno-Tempini et al., 2002). To correct for the resulting geometrical distortions, a

field map was calculated from an additional stock double-echo field map sequence included

in our MRI protocol (Hutton et al., 2002). The fMRI images from each participant were then

spatially realigned and unwarped, respectively, to correct for motion artefacts and potential

geometric distortions. Thanks to the distortion correction of vulnerable brain regions on

the single-subject level, this additional unwarping step not only improves the co-registration

between structural and functional images, but it also reduces the distortion variability across

subjects during spatial normalization to a common space (Hutton et al., 2002). This solution

has been successfully used in several recent studies in adults including task (Daw et al., 2011)

and resting-state (Togo et al., 2017) experimental paradigms, as well as in presurgical planning

(Lima Cardoso et al., 2018) and in children (Wozniak et al., 2011).

In general, total head motion was very low on our participants as measured by framewise

displacement (FD; Power et al., 2014): for the first fMRI run the mean FD per frame was 0.16

mm with a standard deviation (SD) of ± 0.04 mm; for the second run the mean FD was 0.15

mm ± 0.05 mm. Therefore, no participant was excluded due to high motion. Functional

images were then coregistered to structural images in subject space and smoothed with a

Gaussian filter of full width at half maximum (FWHM) = 6 mm. To be able to perform a

group level comparison, data were warped into MNI (Montreal Neurologic Institute) space

via a study-specific DARTEL (Diffeomorphic Anatomical Registration using Exponentiated

Lie algebra) template. Normalisation methods such as these have been demonstrated to be

robust to age differences in participants of 7 years and above (Ashburber and Friston, 1998;

Burgund et al., 2002). Additionally, the inclusion of the DARTEL template as an intermediate

step is among the top ranked currently available deformation algorithms (Klein et al., 2009).

48



4.1. Journal Article: Get real: orbitofrontal cortex mediates the ability to sense reality in
early adolescents

4.1.2.6 Region of Interest (ROI analysis)

Statistical analyses were performed using SPM12 scripts implemented in Matlab R2016a in a

two-step process, so that both intra and inter-subject variance were taken into account (Fris-

ton et al., 1995). First-level (subject level) analyses were assessed on a voxel-wise basis using

a General Linear Model (GLM). Within each condition, the corresponding regressors were

generated from all trials regardless of a correct or incorrect response. This was motivated by

two main reasons: 1) this would ensure a similar number of trials per condition, and 2) our par-

ticipants had consistently high rates of correct responses, which characterises a ceiling effect

as discussed later. The condition regressors were produced by convolving SPM12’s canonical

hemodynamic response function (HRF) with the onsets of each trial in an event-related design

and included as regressors-of-interest in the individual design matrix. To further account for

potential individual movement effects, we included in our model covariates-of-no-interest cal-

culated in the following fashion: first, we computed the 24-parameter Volterra Expansion (VE)

of the 6 motion parameters stored during the realignment step of the preprocessing pipeline.

Secondly, we extracted the top 6 components (or those that explained 95% of the variance

in the VE) via singular value decomposition (SVD). Then, we included these components as

nuisance regressors in the subject-level design matrix. This approach has been successfully

used on our previous analyses of child data (see Adam-Darque et al., 2018 for an example).

Finally, we employed the scan-nulling strategy (Lemieux et al., 2007) to ignore information

contained in fMRI images in which FD > 0.5mm, by adding extra regressors-of-no-interest for

each of these time points.

The first-level results from all participants were then used in a second-level (group level)

analysis in a factorial design with two factors (run and condition) with two levels each (2 runs

and 2 types of stimuli, namely distractor and target). This design provides the flexibility to

analyse main effects as well as a possible interaction effects between the factors. Given the

a priori hypothesis of the involvement of the OFC in the reality filtering task based on neu-

ropsychological data, lesion studies and PET imaging studies (Schnider et al., 1996; Schnider

and Ptak, 1999; Treyer et al., 2003) , we performed an ROI analysis based on this brain region.

Our ROI mask was defined as follows: first, we downloaded a z-scored mask from NeuroSynth

(Wager, 2011), which was calculated as a meta-analysis of 665 independent studies for the

term “orbitofrontal cortex”. This initial mask (nMask) was thresholded at z-value > 3, which is

equivalent to a p-value < 0.001, and the largest continuous cluster was maintained. The nMask

covered the entire bilateral OFC and can be seen highlighted in yellow in Figure 4.2. Last, to

ensure an equal contribution of all subjects to the analysis, we created a final mask (iMask)

calculated as the intersection of all voxels within nMask that were present in the grey matter of

every subject in our dataset. This can be seen as the blue highlight in Figure 4.2. The contrast

values for voxels within the ROI iMask from each subject were then averaged, and the resulting

value entered in a 2-way analysis of variance (ANOVA). This strategy has two main advantages:

it increases the signal to noise ratio, which improves the power of detecting true signals, and

avoids the problem of multiple testing inherent in massive univariate approaches (Benjamini

and Heller, 2007; Meskaldji et al., 2015). Although the ANOVA allows us to identify main, as
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well as interaction effects, it does not describe the effect’s direction – for example, it may tell

us that the means between conditions are different, but not which one is greater. Thus, we

performed additional t-tests within factors to clarify the direction of the effects found with the

ANOVA and report the corresponding p-values, Bonferroni corrected for the number of effects

that we find. Furthermore, in order to provide an estimate of each voxel’s contribution to the

effects detected by these tests, we calculated the voxelwise t-values within the ROI.
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respectively,	to	correct	for	motion	artifacts	and	potential	geometric	
distortions. Thanks to the distortion correction of vulnerable brain 
regions	 on	 the	 single-subject	 level,	 this	 additional	 unwarping	 step	
not only improves the coregistration between structural and func-
tional	 images,	 but	 it	 also	 reduces	 the	 distortion	 variability	 across	
subjects	during	spatial	normalization	to	a	common	space	(Hutton	et	
al.,	2002).	This	solution	has	been	successfully	used	in	several	recent	
studies	in	adults	including	task	(Daw,	Gershman,	Seymour,	Dayan,	&	
Dolan,	2011)	and	resting-state	(Togo	et	al.,	2017)	experimental	para-
digms,	as	well	as	in	presurgical	planning	(Cardoso	et	al.,	2018)	and	in	
children	(Wozniak	et	al.,	2011).

In	general,	total	head	motion	was	very	low	on	our	participants	as	
measured	by	framewise	displacement	(FD;	Power	et	al.,	2014):	for	the	
first	fMRI	run	the	mean	FD	per	frame	was	0.16	mm	with	a	standard	
deviation	 (SD)	 of	 ±0.04	mm;	 for	 the	 second	 run	 the	mean	 FD	was	
0.15	mm	±	0.05	mm.	Therefore,	no	participant	was	excluded	due	to	
high	motion.	Functional	 images	were	then	coregistered	to	structural	
images	 in	 subject	 space	 and	 smoothed	with	 a	Gaussian	 filter	 of	 full	
width	at	half	maximum	(FWHM)	=	6	mm.	To	be	able	to	perform	a	group	
level	comparison,	data	were	warped	 into	MNI	 (Montreal	Neurologic	
Institute)	space	via	a	study-specific	DARTEL	(Diffeomorphic	Anatomical	
Registration	using	Exponentiated	Lie	algebra)	template.	Normalization	
methods such as these have been demonstrated to be robust to age 
differences	in	participants	of	7	years	and	above	(Ashburner	&	Friston,	
1998;	Burgund	et	al.,	2002).	Additionally,	the	inclusion	of	the	DARTEL	
template as an intermediate step is among the top ranked currently 
available	deformation	algorithms	(Klein	et	al.,	2009).

2.6 | Region of Interest (ROI) analysis

Statistical	analyses	were	performed	using	SPM12	scripts	implemented	
in	Matlab	R2016a	in	a	two-step	process,	so	that	both	intra-	and	inter-
subject	variances	were	taken	into	account	(Friston,	Frith,	Frackowiak,	
&	Turner,	1995).	First-level	(subject	level)	analyses	were	assessed	on	a	
voxelwise	basis	using	a	General	Linear	Model	(GLM).	Within	each	con-
dition,	trials	responded	correctly	and	incorrectly	were	pooled	together	
to generate the corresponding regressors. This was motivated by two 
main	reasons:	(a)	This	would	ensure	a	similar	number	of	trials	per	con-
dition,	and	(b)	our	participants	had	consistently	high	rates	of	correct	
responses,	which	characterizes	a	ceiling	effect	as	discussed	later.	The	
condition	regressors	were	produced	by	convolving	SPM12's	canonical	
hemodynamic	response	function	(HRF)	with	the	onsets	of	each	trial	in	
an event-related design and included as regressors of interest in the 
individual	 design	matrix.	 To	 further	 account	 for	 potential	 individual	
movement	effects,	we	 included	 in	our	model	covariates	of	no	 inter-
est	calculated	in	the	following	fashion:	First,	we	computed	the	24-pa-
rameter	Volterra	expansion	 (VE)	of	 the	6	motion	parameters	 stored	
during	the	realignment	step	of	 the	preprocessing	pipeline.	Secondly,	
we	extracted	the	top	6	components	(or	those	that	explained	95%	of	
the	variance	in	the	VE)	via	singular	value	decomposition	(SVD).	Then,	
we included these components as nuisance regressors in the subject-
level	design	matrix.	This	approach	has	been	successfully	used	on	our	

previous	analyses	of	child	data	(see	Adam-Darque	et	al.,	2018	for	an	
example).	 Finally,	 we	 employed	 the	 scan-nulling	 strategy	 (Lemieux,	
Salek-Haddadi,	 Lund,	 Laufs,	&	Carmichael,	2007)	 to	 ignore	 informa-
tion	contained	in	fMRI	images	in	which	FD	>	0.5	mm,	by	adding	extra	
regressors of no interest for each of these time points.

The first-level results from all participants were then used in a sec-
ond-level	 (group	level)	analysis	 in	a	factorial	design	with	two	factors	
(run	and	condition)	with	two	levels	each	(2	runs	and	2	types	of	stimuli,	
namely	distractor	and	target).	This	design	provides	the	flexibility	to	an-
alyze	main	effects	as	well	as	a	possible	interaction	effects	between	the	
factors.	Given	the	a	priori	hypothesis	of	the	involvement	of	the	OFC	in	
the	reality	filtering	task	based	on	neuropsychological	data,	lesion	stud-
ies,	and	PET	imaging	studies	(Schnider	et	al.,	1996;	Schnider	&	Ptak,	
1999;	Treyer,	Buck,	&	Schnider,	2003),	we	performed	an	ROI	analysis	
based	on	this	brain	region.	Our	ROI	mask	was	defined	as	follows:	First,	
we	 downloaded	 a	 z-scored	 mask	 from	 NeuroSynth	 (Wager,	 2011),	
which	 was	 calculated	 as	 a	 meta-analysis	 of	 665	 independent	 stud-
ies	 for	 the	 term	“orbitofrontal	cortex.”	This	 initial	mask	 (nMask)	was	
thresholded at z-value	>	3,	which	is	equivalent	to	a	p-value	<	.001,	and	
the largest continuous cluster was maintained. The nMask covered the 
entire	bilateral	OFC	and	can	be	seen	highlighted	in	yellow	in	Figure	2.	
Last,	to	ensure	an	equal	contribution	of	all	subjects	to	the	analysis,	we	
created	a	final	mask	(iMask)	calculated	as	the	intersection	of	all	voxels	
within nMask that were present in the gray matter of every subject 
in	our	dataset.	This	can	be	seen	as	the	blue	highlight	in	Figure	2.	The	

F I G U R E  2  The	shaded	areas	show	the	Orbitofrontal	Cortex	
ROI. The region highlighted in yellow indicates the initial mask 
calculated	from	665	independent	studies	using	NeuroSynth.	The	
area highlighted in blue corresponds to the intersection of gray 
matter	voxels	available	for	all	participants	within	the	initial	mask.	
The latter was the final ROI used for this study. Brain images follow 
the	neurological	convention	(left	side	shown	on	the	left;	right	side	
shown	on	the	right)

Figure 4.2 – The shaded areas show the orbitofrontal cortex ROI. The region highlighted in
yellow indicates the initial mask calculated from 665 independent studies using NeuroSynth.
The area highlighted in blue corresponds to the intersection of grey matter voxels available for
all participants within the initial mask. The latter was the final ROI used for this study. Brain
images follow the neurological convention (left side shown on the left; right side shown on the
right).

4.1.3 Results

4.1.3.1 Behavioural results

Behavioural descriptive results on accuracy and reaction times are summarised in Table 4.1.

Overall, a ceiling effect was found for the task accuracy, since participants had a very high

rate of correct responses. The 2 X 2 repeated measures ANOVA on reaction times revealed

a significant main effect of the factor Run (F(1, 21) = 12.14, p < 0.005, ηp
2 = 0.366), with faster
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Stimulus type Correct responses, % (SD) Reaction times, ms (SD)

Distractor, Run 1 96.06 (4.78) 1454 (406)
Target, Run 1 90.30 (16.93) 1454 (369)
Distractor, Run 2 93.63 (6.24) 1579 (339)
Target, Run 2 89.39 (13.97) 1577 (413)

Table 4.1 – Descriptive statistics of behavioural results on the reality filtering task. Distractor,
Run 1 and Distractor, Run 2 are images seen for the first time in the first and in the second run,
respectively. Target, Run 1 and Target, Run 2 are images seen for the second time in the first
and in the second run, respectively.

responses for the first compared to the second run. No significant difference was found

between Distractors and Targets reaction time (F(1, 21) = 0.001, p = 0.977, ηp
2 = 0.000). The

interaction between the factor Run and the factor Condition was not significant.

Accuracy analysis revealed no difference between the two runs (F (1, 21) = 1.36, p = 0.257,

ηp
2 = 0.061), as well as no difference between Distractors and Targets (F(1, 21) = 3.14, p = 0.91,

ηp
2 = 0.13). The interaction between the factor Run and the factor Condition was not signifi-

cant. Violin plots in Figures 4.3 and 4.4 show the distribution of correct responses and reaction

times for each condition, respectively.
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contrast	values	for	voxels	within	the	ROI	iMask	from	each	subject	were	
then	averaged,	and	the	resulting	value	entered	in	a	2-way	analysis	of	
variance	(ANOVA).	This	strategy	has	two	main	advantages:	It	increases	
the	signal	to	noise	ratio,	which	improves	the	power	of	detecting	true	
signals,	 and	 avoids	 the	problem	of	multiple	 testing	 inherent	 in	mas-
sive	univariate	approaches	(Benjamini	&	Heller,	2007;	Meskaldji	et	al.,	
2015).	Although	the	ANOVA	allows	us	to	identify	main,	as	well	as	in-
teraction	effects,	it	does	not	describe	the	effect's	direction—for	exam-
ple,	it	may	tell	us	that	the	means	between	conditions	are	different,	but	
not	which	one	is	greater.	Thus,	we	performed	additional	t tests within 
factors	to	clarify	the	direction	of	the	effects	found	with	the	ANOVA	
and report the corresponding p-values,	Bonferroni	corrected	for	the	
number	of	effects	that	we	find.	Furthermore,	 in	order	to	provide	an	
estimate	of	each	voxel's	contribution	to	the	effects	detected	by	these	
tests,	we	calculated	the	voxelwise	t-values within the ROI.

3  | RESULTS

3.1 | Behavioral results

Behavioral descriptive results on accuracy and reaction times are sum-
marized	in	Table	1.	Overall,	a	ceiling	effect	was	found	for	the	task	accu-
racy,	since	participants	had	a	very	high	rate	of	correct	responses.	The	
2	×	2	repeated	measures	ANOVA	on	reaction	times	revealed	a	signifi-
cant	main	effect	of	the	factor	run	(F(1,21)	=	12.14,	p	<	.005,	!

2p	=	0.366),	
with faster responses for the first compared to the second run. No sig-
nificant difference was found between Distractors and Targets reac-
tion	time	(F(1,21)	=	0.001,	p	=	.977,	!

2p	=	0.000).	The	interaction	between	
the factor run and the factor Condition was not significant.

Accuracy	 analysis	 revealed	 no	 difference	 between	 the	 two	
runs	 (F(1,21)	=	1.36,	p	=	 .257,	!

2p	=	0.061),	as	well	as	no	difference	
between	Distractors	and	Targets	(F(1,21)	=	3.14,	p	=	.91,	!

2p	=	0.13).	
The interaction between the factor run and the factor Condition 
was	not	significant.	Violin	plots	in	Figures	3	and	4	show	the	distri-
bution	of	correct	responses	and	reaction	times	for	each	condition,	
respectively.

3.2 | ROI task-related activity

To	 investigate	whether	 there	were	main	effects	of	 run	or	condition,	
or	an	 interaction	between	the	two	 in	the	OFC,	we	first	ran	a	2-way	
ANOVA	test	(see	Table	2).	We	found	a	significant	main	effect	for	the	ex-
perimental	“run”	(F(1,21)	=	556.65,	p	=	.027).	Additionally,	we	found	a	sig-
nificant	main	effect	of	the	factor	“condition”	(F(1,21)	=	1,014.64,	p	=	.02).	
The interaction effect between run and condition was nonsignificant.

We	next	sought	to	clarify	the	direction	of	the	effects	found	from	
the	ANOVA	test.	To	this	end,	we	first	carried	out	a	t test comparing 
run	2	and	run	1	(see	Table	3).	As	we	hypothesized	that	the	mean	ac-
tivation	of	the	OFC	during	run	2	would	be	higher	than	during	run	1,	
we	first	performed	a	one-tailed	test.	Indeed,	we	found	that	the	overall	
bilateral	OFC	activation	was	higher	during	the	run	2,	which	specifically	
assess	the	reality	filtering	mechanism,	than	during	run	1	(T(21)	=	2.12,	
p(bonf)	=	 .04).	Secondly,	we	performed	a	one-tailed	t test to compare 
the	condition	levels,	with	the	hypothesis	that	the	OFC	would	present	a	
higher	activity	while	processing	distractors	(D)	than	targets	(T)	all	run	1	
and	run	2	together.	This	effect	was	also	highly	significant	(T(21)	=	3.70,	
p(bonf)	=	.0006).	The	comparison	between	D2	and	T2	(distractors	and	
targets	 from	 the	 second	 run,	 respectively)	 showed	 that	 their	means	

TA B L E  1   Descriptive statistics of behavioral results on the 
Reality	Filtering	task

Stimulus type
Correct responses, % 
(SD)

Reaction 
times, ms (SD)

Distractor,	run	1 96.06	(4.78) 1,454	(406)

Target,	run	1 90.30	(16.93) 1,454	(369)

Distractor,	run	2 93.63	(6.24) 1,579	(339)

Target,	run	2 89.39	(13.97) 1,577	(413)

Note: Distractor,	run	1	and	Distractors,	run	2	are	images	seen	for	the	
first	time	in	the	first	and	in	the	second	run,	respectively.	Target,	run	1	
and	Target,	run	2	are	images	seen	for	the	second	time	in	the	first	and	in	
the	second	run,	respectively.

F I G U R E  3  Violin	plot	showing	accuracy	distribution	per	
stimulus in the population

F I G U R E  4  Violin	plot	showing	reaction	time	distribution	per	
stimulus in the population

Figure 4.3 – Accuracy distributions by stimulus type. The violin plots show the accuracy
distribution per stimulus in the population. D1 = Distractor images in Run 1; T1 = Target
images in Run 1.
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contrast	values	for	voxels	within	the	ROI	iMask	from	each	subject	were	
then	averaged,	and	the	resulting	value	entered	in	a	2-way	analysis	of	
variance	(ANOVA).	This	strategy	has	two	main	advantages:	It	increases	
the	signal	to	noise	ratio,	which	improves	the	power	of	detecting	true	
signals,	 and	 avoids	 the	problem	of	multiple	 testing	 inherent	 in	mas-
sive	univariate	approaches	(Benjamini	&	Heller,	2007;	Meskaldji	et	al.,	
2015).	Although	the	ANOVA	allows	us	to	identify	main,	as	well	as	in-
teraction	effects,	it	does	not	describe	the	effect's	direction—for	exam-
ple,	it	may	tell	us	that	the	means	between	conditions	are	different,	but	
not	which	one	is	greater.	Thus,	we	performed	additional	t tests within 
factors	to	clarify	the	direction	of	the	effects	found	with	the	ANOVA	
and report the corresponding p-values,	Bonferroni	corrected	for	the	
number	of	effects	that	we	find.	Furthermore,	 in	order	to	provide	an	
estimate	of	each	voxel's	contribution	to	the	effects	detected	by	these	
tests,	we	calculated	the	voxelwise	t-values within the ROI.

3  | RESULTS

3.1 | Behavioral results

Behavioral descriptive results on accuracy and reaction times are sum-
marized	in	Table	1.	Overall,	a	ceiling	effect	was	found	for	the	task	accu-
racy,	since	participants	had	a	very	high	rate	of	correct	responses.	The	
2	×	2	repeated	measures	ANOVA	on	reaction	times	revealed	a	signifi-
cant	main	effect	of	the	factor	run	(F(1,21)	=	12.14,	p	<	.005,	!

2p	=	0.366),	
with faster responses for the first compared to the second run. No sig-
nificant difference was found between Distractors and Targets reac-
tion	time	(F(1,21)	=	0.001,	p	=	.977,	!

2p	=	0.000).	The	interaction	between	
the factor run and the factor Condition was not significant.

Accuracy	 analysis	 revealed	 no	 difference	 between	 the	 two	
runs	 (F(1,21)	=	1.36,	p	=	 .257,	!

2p	=	0.061),	as	well	as	no	difference	
between	Distractors	and	Targets	(F(1,21)	=	3.14,	p	=	.91,	!

2p	=	0.13).	
The interaction between the factor run and the factor Condition 
was	not	significant.	Violin	plots	in	Figures	3	and	4	show	the	distri-
bution	of	correct	responses	and	reaction	times	for	each	condition,	
respectively.

3.2 | ROI task-related activity

To	 investigate	whether	 there	were	main	effects	of	 run	or	condition,	
or	an	 interaction	between	the	two	 in	the	OFC,	we	first	ran	a	2-way	
ANOVA	test	(see	Table	2).	We	found	a	significant	main	effect	for	the	ex-
perimental	“run”	(F(1,21)	=	556.65,	p	=	.027).	Additionally,	we	found	a	sig-
nificant	main	effect	of	the	factor	“condition”	(F(1,21)	=	1,014.64,	p	=	.02).	
The interaction effect between run and condition was nonsignificant.

We	next	sought	to	clarify	the	direction	of	the	effects	found	from	
the	ANOVA	test.	To	this	end,	we	first	carried	out	a	t test comparing 
run	2	and	run	1	(see	Table	3).	As	we	hypothesized	that	the	mean	ac-
tivation	of	the	OFC	during	run	2	would	be	higher	than	during	run	1,	
we	first	performed	a	one-tailed	test.	Indeed,	we	found	that	the	overall	
bilateral	OFC	activation	was	higher	during	the	run	2,	which	specifically	
assess	the	reality	filtering	mechanism,	than	during	run	1	(T(21)	=	2.12,	
p(bonf)	=	 .04).	Secondly,	we	performed	a	one-tailed	t test to compare 
the	condition	levels,	with	the	hypothesis	that	the	OFC	would	present	a	
higher	activity	while	processing	distractors	(D)	than	targets	(T)	all	run	1	
and	run	2	together.	This	effect	was	also	highly	significant	(T(21)	=	3.70,	
p(bonf)	=	.0006).	The	comparison	between	D2	and	T2	(distractors	and	
targets	 from	 the	 second	 run,	 respectively)	 showed	 that	 their	means	

TA B L E  1   Descriptive statistics of behavioral results on the 
Reality	Filtering	task

Stimulus type
Correct responses, % 
(SD)

Reaction 
times, ms (SD)

Distractor,	run	1 96.06	(4.78) 1,454	(406)

Target,	run	1 90.30	(16.93) 1,454	(369)

Distractor,	run	2 93.63	(6.24) 1,579	(339)

Target,	run	2 89.39	(13.97) 1,577	(413)

Note: Distractor,	run	1	and	Distractors,	run	2	are	images	seen	for	the	
first	time	in	the	first	and	in	the	second	run,	respectively.	Target,	run	1	
and	Target,	run	2	are	images	seen	for	the	second	time	in	the	first	and	in	
the	second	run,	respectively.

F I G U R E  3  Violin	plot	showing	accuracy	distribution	per	
stimulus in the population

F I G U R E  4  Violin	plot	showing	reaction	time	distribution	per	
stimulus in the population

Figure 4.4 – Reaction Times by stimulus type. The violin plots show the distribution of
participant-averaged reaction times per stimulus in the population. D1 = Distractor images in
Run 1; T1 = Target images in Run 1.

Factors Mean Squared F-statistic p-value

Run 1.3219 556.65 0.027
Condition 2.4095 1014.64 0.02
Run * condition 0.0024 0 0.9455

Table 4.2 – 2-way ANOVA with factors "run" and "condition" for brain activations in the
orbitofrontal cortex. Run = Run 1 and Run 2; Condition = Distractors and Targets.

4.1.3.2 ROI task-related activity

To investigate whether there were main effects of run or condition, or an interaction between

the two in the OFC, we first ran a 2-way ANOVA test (see Table 4.2). We found a significant

main effect for the experimental “run” (F (1, 21) = 556.65, p = 0.027). Additionally, we found a

significant main effect of the factor “condition” (F (1, 21) = 1014.64, p = 0.02). The interaction

effect between run and condition was non-significant.

We next sought to clarify the direction of the effects found from the ANOVA test. To this end,

we first carried out a t-test comparing Run 2 and Run 1 (see Table 4.3). As we hypothesised

that the mean activation of the OFC during Run 2 would be higher than during Run 1, we

first performed a one-tailed test. Indeed, we found that the overall bilateral OFC activation

was higher during Run 2, which specifically assessed the reality filtering mechanism, than

during Run 1 (T (21) = 2.12, p(bonf) = 0.04). Secondly, we performed a one-tailed t-test to

compare the condition levels, with the hypothesis that the OFC would present a higher activity
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Comparison t-statistic p-value

Run 2 > Run 1 2.1172 0.04
D > T 3.7002 0.0006
D2 > T2 2.41 0.01

Table 4.3 – Post-hoc T-tests on activation in the OFC. D = Distractors; T = Targets; D2 =
Distractors during Run 2; T2 = Targets during Run 2.

while processing distractors (D) than targets (T) all Run 1 and Run 2 together. This effect

was also highly significant (T (21) = 3.70, p(bonf) = 0.0006). The comparison between D2 and

T2 (distractors and targets from the second run, respectively) showed that their means were

also significantly different in the same direction (T (21) = 2.41, p = 0.01). Figure 4.5 shows the

voxelwise contribution to these results.

4.1.4 Discussion

With this study we assessed for the first time in a young population and using fMRI, the neural

correlates of ORFi, a memory control mechanism crucial to maintain thoughts and behaviour

in phase with reality.

Behaviourally, participants performed the test without difficulties, no differences in the ac-

curacy were found, neither between the two types of stimuli (Distractors and Targets) nor

between the two runs (1, 2). Moreover, the majority of participants performed well, making

very few errors. This is similar to healthy adults, who had no difficulties to correctly perform

the task even when runs were separated by only 1 minute (Schnider and Ptak, 1999; Wahlen

et al., 2011). Our results corroborate the idea that at this age ORFi is already an intuitive and

efficacious cognitive process, corresponding to the storage capacity at that age (Liverani et al.,

2017).

Regarding reaction times, responses were slower in the second run of the task compared to the

first run, reflecting the main challenge of the task, which is consistent with previous studies

(Bouzerda-Wahlen et al., 2015; Liverani et al., 2016, 2017). It appears that distinguishing

between memories that are pertinent with the ongoing reality or not is more time consuming

and takes more cognitive effort than simply recognising previously seen images. Our previous

study assessing orbitofrontal reality filtering in children highlighted a significant difference

between Distractors and Targets both for accuracy and reaction times (Liverani et al., 2017). In

the current study participants were older, and they managed to distinguish almost perfectly

between images seen in the current or previous run, performing at ceiling effect. Therefore,

this could explain why no differences in accuracy and reaction time have been found between

the two conditions.
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were	 also	 significantly	 different	 in	 the	 same	 direction	 (T(21)	 =	 2.41,	
p	=	.01).	Figure	5	shows	the	voxelwise	contribution	to	these	results.

4  | DISCUSSION

With	this	study,	we	assessed	for	the	first	time	in	a	young	population	
and	using	fMRI,	the	neural	correlates	of	ORFi,	a	memory	control	mech-
anism crucial to maintain thoughts and behavior in phase with reality.

Behaviorally,	participants	performed	the	test	without	difficulties	
and	no	differences	in	the	accuracy	were	found,	neither	between	the	
two	types	of	stimuli	(Distractors	and	Targets)	nor	between	the	two	
runs	 (1,	2).	Moreover,	 the	majority	of	participants	performed	well,	
making	very	 few	errors.	This	 is	 similar	 to	healthy	 adults,	who	had	
no difficulties to correctly perform the task even when runs were 
separated	by	only	1	min	 (Schnider	&	Ptak,	1999;	Wahlen,	Nahum,	
Gabriel,	&	Schnider,	2011).	Our	results	corroborate	the	idea	that	at	
this	age	ORFi	 is	already	an	 intuitive	and	efficacious	cognitive	pro-
cess,	corresponding	to	the	storage	capacity	at	that	age	(Liverani	et	
al.,	2017).	Regarding	 reaction	 times,	 responses	were	slower	 in	 the	
second	run	of	the	task	compared	to	the	first	run,	reflecting	the	main	
challenge	 of	 the	 task,	 which	 is	 consistent	 with	 previous	 studies	
(Bouzerda-Wahlen,	Nahum,	Liverani,	Guggisberg,	&	Schnider,	2015;	
Liverani,	Manuel,	Guggisberg,	Nahum,	&	Schnider,	2016;	Liverani	et	
al.,	2017).	It	appears	that	distinguishing	between	memories	that	are	
pertinent with the ongoing reality or not is more time consuming and 
takes	more	cognitive	effort	than	simply	recognizing	previously	seen	
images. Our previous study assessing orbitofrontal reality filtering in 
children highlighted a significant difference between distracters and 
targets	both	for	accuracy	and	reaction	times	(Liverani	et	al.,	2017).	In	
the	current,	study	participants	were	older,	and	they	managed	to	dis-
tinguish almost perfectly between images seen in the current or in 
the	previous	run,	performing	at	ceiling	effect.	Therefore,	this	could	
explain	why	no	differences	in	accuracy	and	reaction	time	have	been	
found between the two conditions.

Orbitofrontal	cortex	activation	was	significantly	stronger	during	the	
second	run,	which	tests	ORFi.	Thus,	our	neuroimaging	data	in	early	ad-
olescents	were	in	line	with	lesion	and	imaging	studies	in	adults,	indicat-
ing	that	in	this	younger	population,	like	in	adults,	the	ORFi	mechanism	
is	needed	to	accomplish	the	second	run	of	the	task,	and	it	is	associated	
with	specific	OFC	activation.	Moreover,	compared	to	Targets,	OFC	ac-
tivation	significantly	increases	in	response	to	Distractors,	stimuli	that	
specifically	require	ORFi.	Thus,	using	fMRI	to	explore	ORFi	for	the	first	
time,	we	confirmed	previous	findings	showing	that	the	ability	to	select	
information pertaining to the ongoing reality and to suppress irrelevant 
memory	traces	is	associated	with	the	activation	of	the	OFC.

Another	added	value	of	our	study	is	that	it	extends	these	find-
ings to a younger population: early adolescents aged between 10 
and	13.	Adolescence	is	a	critical	period	in	the	development	of	the	
prefrontal	 cortex.	 There	 is	 a	 general	 consensus	 that	 the	 OFC—
and	the	whole	PFC—reaches	complete	maturity	only	at	20	years	
of	 age	 or	more	 (Diamond,	 2002;	Galvan	 et	 al.,	 2006;	Gogtay	 et	
al.,	 2004).	 Gray	 matter	 volume	 in	 the	 prefrontal	 cortex	 attains	
its	maximal	volume	between	11	and	12	years	old	and	then	starts	
to	 decrease	 (Giedd	 et	 al.,	 1999),	 with	 a	 parallel	 improvement	 in	
cognitive	functions	such	as	source	memory	 (Sowell,	Delis,	Stiles,	
&	 Jernigan,	 2001).	 Given	 the	 late	 development	 of	 these	 pre-
frontal	 regions,	 one	 might	 speculate	 that	 the	 neural	 substrates	
of certain cognitive functions differ from early adolescence to 
adulthood.	 Nevertheless,	 our	 findings	 showing	 OFC	 activation	

TA B L E  2  2-way	ANOVA	with	factors	"run"	and	"condition"	for	
brain	activations	in	the	OFC

Factors Mean squared F p-value

run 1.3219 556.65 .027

condition 2.4095 1,014.64 .02

run	*	condition 0.0024 0 .9455

Note: run	=	run	1	and	run	2;	condition	=	Distractors	and	Targets.

TA B L E  3   Post hoc t	tests	on	activation	in	the	OFC

Comparison t-value p-value

run	2	>	run	1 2.1172 .04

D	>	T 3.7002 .0006

D2	>	T2 2.41 .01

Note: D	=	Distractors,	T	=	Targets,	D2	=	Distractors	of	run	2,	
T2	=	Targets	of	run	2.

F I G U R E  5  Contribution	of	OFC	voxels	to	each	effect.	Brighter	
colors indicate a stronger contribution

Figure 4.5 – Voxelwise contribution to each effect. Brighter colours indicate a stronger
contribution. D = Distractors; T = Target; D2 = Distractor stimuli during the second run; T2 =
Target stimuli during the second run.

OFC activation was significantly stronger during the second run, which tests ORFi. Thus,

our neuroimaging data in early adolescents were in line with lesion and imaging studies

in adults, indicating that in this younger population, like in adults, the ORFi mechanism

is needed to accomplish the second run of the task, and it is associated with specific OFC

activation. Moreover, compared to Targets, OFC activation significantly increases in response

to Distractors, stimuli that specifically require ORFi. Thus, using fMRI to explore ORFi for

the first time, we confirmed previous findings showing that the ability to select information

pertaining to the ongoing reality and to suppress irrelevant memory traces is associated with

the activation of the OFC.

Another added value of our study is that it extends these findings to a younger population:

early adolescents aged between 10 and 13. Adolescence is a critical period in the development
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of the prefrontal cortex. There is a general consensus that the OFC – and the whole PFC –

reaches complete maturity only at 20 years of age or more (Diamond, 2002; Gogtay et al., 2004;

Galvan et al., 2006). Grey matter volume in the prefrontal cortex attains its maximal volume

between 11 and 12 years old and then starts to decrease (Giedd et al., 1999), with a parallel

improvement in cognitive functions such as source memory (SOWELL et al., 2001). Given the

late development of these prefrontal regions, one might speculate that the neural substrates

of certain cognitive functions differ from early adolescence to adulthood. Nevertheless, our

findings showing OFC activation while performing the reality filtering task in early adolescents

of 10 to 13 years old indicate that this brain structure has matured enough to assume this

function.

The filtering of current irrelevant memories – that is, ORFi – bears conceptual resemblance

with inhibitory control, defined as the ability to deliberately inhibit dominant, automatic

or prepotent responses that are currently irrelevant (Harnishfeger, 1995; St Clair-Thompson

and Gathercole, 2006). According to Schnider (2018), ORFi does not effectively “inhibit”

memories that are not pertinent with the ongoing reality, but it adapts their format, labelling

and differentiating them as “fantasy” or “reality”. This process allows healthy individuals to

then act differently and adequately according to fantasies or daydreams (Nahum et al., 2009;

Schnider, 2018). Behavioural and neuroimaging data support this dissociation between ORFi

and inhibitory control. Firstly, the ability to reject memories that are irrelevant to the present

moment is already effective at the age of 7 (Liverani et al., 2017) and does not correlate with

behavioural inhibition measures, which is one of the last high-order functions to develop,

continuing to consistently improve during adolescence Luna et al. (2010). Secondly, the

present study confirms that the neural basis of ORFi already resides in the OFC by the age of

10. This finding corroborates the anatomical dissociation between the two mechanisms, since

inhibition of unwanted memories has been associated with the activation of other prefrontal

regions, such as dorsolateral prefrontal cortex, inferior frontal gyrus, and medio-temporal

lobe (Anderson, 2004; Luna et al., 2010).

In addition to being separate from inhibition processes, ORFi also needs to be differentiated

from another memory monitoring ability, called source monitoring. Source monitoring is

defined as the ability to accurately verify under which circumstances a memory has been

acquired, and if it was self-generated or not (Mitchell and Johnson, 2009). Previous studies

demonstrated a behavioural and electrophysiological dissociation between the two mecha-

nisms (Bouzerda-Wahlen et al., 2015). Behaviourally, the retrieval of the source of a memory

is a more demanding process compared to ORFi, as indicated by slower reaction times and

higher error rates. Electrophysiologically, ORFi is characterised by a frontal positivity at

200-300 ms, while source monitoring is associated with a prolonged positivity from 400 ms

onwards (Bouzerda-Wahlen et al., 2015). Unlike ORFi, the developmental trajectory of source

monitoring is unclear: young children may be more prone than adults to confuse memo-

ries from different sources (Lindsay et al., 1991), but the debate is still open. Anatomically,

different brain areas participate in source monitoring, including the precuneus (Lundstrom

et al., 2005), the medial-temporal lobe (Ross and Slotnick, 2008), and the prefrontal cortex
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(Mitchell et al., 2004; Mitchell and Johnson, 2009) but not the OFC, specifically. Even if more

whole-brain exploratory analyses would be needed, our results indicate a distinct activation

pattern between ORFi and source monitoring. This corroborates the idea of the existence of

two separate memory-monitoring mechanisms that dissociate at the behavioural, anatomical

and electrophysiological level.

Given the crucial importance of ORFi for the correct adaptation of behavioural demands in

everyday life, it is of major interest to better investigate what is the impact of a deficit in this

mechanism in other clinical populations characterised by lesions or atypical development

in the OFC region. One promising field of research concerns schizophrenia, a psychiatric

condition associated with loss of grey matter in this region. Indeed, recent studies showed that

an abnormal ORFi activation can be an early biomarker of schizophrenia spectrum disorder

(Thézé et al., 2019). Another population characterised by specific alteration in the OFC region

is preterm-born children (Gimenez et al., 2006). Up to now, no studies assessing the function

of the OFC in the context of preterm birth have been done. Future research should address

this point, using the paradigm assessing ORFi as a reliable task to explore OFC functions in

premature children and adolescents.

Conclusion

This research investigated for the first time using fMRI technique the neural correlates of

orbitofrontal reality filtering in early adolescents. Results showed that, as in adults, the

orbitofrontal cortex is involved in filtering memories and thoughts according to their relevance

to the present in this young population.
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Abstract

Preterm birth — that is, before 37 full weeks of gestational age — is one of the predominant

risk factors for neurodevelopmental problems, and has been associated with a wide range of

impairments in cognitive functions spanning attention, working memory, executive functions,

among others. Understanding the neurological underpinnings of these difficulties is crucial to

identify potential interventions and establish critical periods to restore typical development.

Indeed, neuroimaging studies have highlighted widespread alterations in regions such as the

prefrontal cortex’s structure and function in preterm individuals across lifetime.

Reality filtering (RF) — the ability to distinguish if a thought is relevant to present reality or

not — has been found to be mediated by the orbitofrontal cortex (OFC) in adults and typically

developing early adolescents. Since this region is particularly vulnerable in individuals born

prematurely, our aim was to investigate whether they rely on the OFC to complete an RF task.

Here, we compare the neural correlates of reality filtering in early adolescents born preterm

with fullterm-born controls. Our findings indicate that the preterm group show lower ac-

tivation of the OFC during performance of an RF task than controls, despite being able to

successfully perform the task, with no significant increase in activation in other brain regions.

This suggests that our preterm cohort have developed optimal mechanisms for reality filtering

processing that do not require full activation of the OFC.

Keywords: Preterm, Orbitofrontal Cortex, Reality Filtering; fMRI

4.2.1 Introduction

Preterm birth, defined as when delivery happens before 37 full weeks of gestational age (GA),

affects an estimated 11.1% of all live births every year (Blencowe et al., 2013). It has been

associated with a wide range of impairments in cognitive functions and is one of the predomi-
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nant risk factors for neurodevelopmental problems (Twilhaar et al., 2018), affecting attention

(Rommel et al., 2017), working memory (Allotey et al., 2018), affective behaviour (Hornman

et al., 2016), executive functions (Costa et al., 2017; Burnett et al., 2018), among others (Moreira

et al., 2014; Allotey et al., 2018). Crucially, although some of these difficulties are often unveiled

only when children reach school age, it has been shown that they may persist throughout

life (Anderson, 2014; Kajantie et al., 2019). Therefore, understanding the neurological under-

pinnings of these difficulties is paramount to identify potential interventions and establish

critical periods to restore typical development (Wolke et al., 2019).

One of the regions that deserve special attention in the context of the premature brain is the

orbitofrontal cortex (OFC). It is crucial for a variety of complex and adaptive behaviors, such

as affect recognition and emotional reappraisal (Blair, 2000; Adolphs, 2001; Wager et al., 2008;

Dixon et al., 2017), assignment of value to a specific stimulus (Montague and Berns, 2002),

prediction of specific outcomes (Rudebeck and Murray, 2014), reward processing (Kahnt,

2018) and hedonic experiences (Kringelbach, 2004). Additionally, it is implicated in decision

making (Bechara, 2000; McClure et al., 2004), social cognition and appropriate social behavior

(Rolls, 2004; Jonker et al., 2015). As part of the prefrontal cortex, the OFC has a critical period

of development in the last trimester of pregnancy (Huttenlocher and Dabholkar, 1997; Ruoss

et al., 2001). Consequently, OFC maturation is impacted by pretern birth, which usually takes

place during this delicate period. The preterm brain can be characterized by brain volume

reduction specifically in the OFC (Thompson et al., 2007). Gimenez et al. (2006) showed

a reduction in the secondary sulci depth of the OFC, together with a reduced gray matter

volume in the same region in very preterm children. Fischi-Gómez et al. (2015) found altered

connectivity in the orbitofrontal and the medial network in extreme preterm children, and this

weakness correlated with impaired social skills, simultaneous processing and hyperactivity.

Cortical thickness in the frontal area, including OFC, has been correlated with internalizing

and externalizing behavioral problems, common in premature children (Zubiaurre-Elorza

et al., 2012). Finally, Ganella et al. (2015) found an altered distribution of the orbitofrontal

sulcogyral folding pattern in adolescents born preterm, which correlated with deficits in

executive functions. Taken together, all these data highlight the particular vulnerability of the

OFC structure in the brain of individuals who were born prematurely.

While preterm birth has been shown by several neuroimaging studies to be linked to structural,

functional and connectivity alterations in the prefrontal cortex (Gimenez et al., 2006; Bjuland

et al., 2013; Nosarti et al., 2014; Sripada et al., 2018), to the best of our knowledge studies

investigating OFC function are still missing in this context. The aim of our study was thus to

fill this gap, using a task that specifically taps into this region while recording the functional

activation of the brain in preterm-born young adolescents.

In this study, we look into reality filtering (RF) — a memory-related mechanism that distin-

guishes if a thought is relevant to current reality or not. In adults (Schnider, 2018) and in

typically developing young adolescents aged 10-14 years old (Liverani, Freitas et al., 2020), it

is mediated by the OFC. Given this region’s vulnerability in the preterm, we examined both
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whether this population is able to perform well in an RF task and, if this is the case, whether

the OFC is also involved in this population, or a compensation mechanism has been put in

place. Finally, we compare the neural correlates of reality filtering (RF) in early adolescents

born preterm with fullterm-born controls.

4.2.2 Methods

4.2.2.1 Participants

For this study, twenty-seven healthy term-born (TB) early adolescents from 10 to 14 years of

age (12 females, mean age 12 ± 1.01 years) and thirty-seven age-matched preterm-born (PTB)

individuals (20 females, mean age 12.1 ± 1.2 years) were recruited through advertisements.

One TB participant was excluded due to strong signal distortions on fMRI images caused

by the subject’s dental braces. One TB and two PTB participants were excluded due to high

head-motion. Twenty-five TB and thirty-five PTB participants were finally included in the

analysis.

Cognitive assessment at the time of the scan was performed in the same way as described

in Liverani, Freitas et al. (2020)’s work (see Section 4.1.2.1). Participants scored within the

normal range of intellectual functioning (TB mean = 116.22 ± 11.33; PTB mean = 106.66 ±
11.98). Parents were asked to fill a questionnaire assessing the presence of serious physical

illness or neurological problems. None of the participant had major disabilities, psychiatric or

neurological diseases.

The Ethics Committee of the Canton of Geneva approved the study, which was carried out

in accordance with the Declaration of Helsinki. Caregivers and participants provided in-

formed written consent. All participants received a gift voucher of 100 Swiss francs for their

participation in the study upon completion of the protocol.

4.2.2.2 fMRI Paradigm

All participants performed the reality filtering task described in section 4.1.2.2 and illustrated

in Figure 4.1 (Liverani, Freitas et al., 2020). In short, subjects performed two runs of an

experiment in which a sequence of animal images were shown, and were asked to identify

animals that had already been seen within the current run. Images shown for the first time

within a run were called "Distractors (D)", while images seen for the second time within that

same run were called "Target (T)". The set of images used in both runs were the same, meaning

that the second run has the added difficulty of inhibiting the recognition of images seen in the

previous run – the ability to perform the second run correctly is key for reality filtering.
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4.2.2.3 Image acquisition

MRI data were recorded on a Siemens 3T Magnetom Prisma scanner at Campus Biotech,

Geneva, Switzerland. Structural T1-weighted MP-RAGE (Magnetization Prepared Rapid Gradi-

ent Echo) sequences were acquired using the following parameters: voxel size = 0.9 x 0.9 x 0.9

mm; repetition time (TR) = 2300 ms; echo time (TE) = 2.32 ms; inversion time (TI) = 900 ms;

flip angle (FA) = 8°; field of view (Fov) = 240 mm. Functional images were T2*-weighted with

a multislice gradient-echo-planar imaging (EPI) sequence of 64 slices; voxel size = 2 x 2 x 2

mm; TR = 720 ms; TE = 33 ms; Fov = 208 mm. Finally, a fieldmap was acquired each time a

participant entered the scanner, with TR = 627 ms; TE1 = 5.19 ms; TE2 = 7.65 ms; and FA = 60°.

4.2.2.4 MRI data preprocessing

Our data were preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience,

UCL, UK) in MATLAB R2016a (The MathWorks, Inc., Natick, Massachusetts, United States) as

in Liverani, Freitas et al. (2020). The fMRI images from each participant were spatially realigned

and unwarped, respectively, to correct for motion artefacts and potential geometric distortions.

The unwarping step brings two main advantages: it improves the co-registration between

structural and functional images, and reduces the distortion variability across subjects during

spatial normalization to a common space (Hutton et al., 2002). Functional images were then

coregistered to structural images in subject space and smoothed with a Gaussian filter of full

width at half maximum (FWHM) = 6 mm. To be able to perform a group level comparison,

data were warped into MNI (Montreal Neurologic Institute) space via a study-specific DARTEL

(Diffeomorphic Anatomical Registration using Exponentiated Lie algebra) template. Such

normalisation methods have been shown to be robust to age differences in participants

from the age of 7 (Ashburber and Friston, 1998; Burgund et al., 2002). In addition, including

the DARTEL template as an intermediate step is among the top ranked currently available

deformation algorithms (Klein et al., 2009).

4.2.2.5 Head motion

Head motion was assessed in terms of Framewise Displacement (FD; Power et al., 2014). One

TB and two PTB subjects for whom more than 20% of frames would be affected by motion

(that is, frames with FD > 0.5 mm, one frame before, and two after those) were excluded. For

the remaining subjects, total head motion was quite low in both groups: In the control group,

for the first fMRI run the mean FD per frame was 0.159 mm with a standard deviation (SD) of

± 0.05 mm; for the second run the mean FD was 0.154 mm ± 0.05 mm; In the Preterm group,

for the first fMRI run the mean FD per frame was 0.163 mm with a standard deviation (SD) of

± 0.05 mm; for the second run the mean FD was 0.165 mm ± 0.06 mm. The two groups did

not significantly differ in mean FD neither for Run 1 (unpaired t-test, p = 0.74) nor for Run 2 (p

= 0.54).
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4.2.2.6 fMRI analysis

Whole brain analysis: The fMRI data were analysed using SPM12 (Wellcome Department

of Imaging Neuroscience, UCL, UK) in MATLAB R2016a (The MathWorks, Inc., Natick, Mas-

sachusetts, United States). For each subject, we built a first-level General Linear Model (GLM)

including the condition (Distractor or Target images) regressors, as well as regressors of no

interest that might affect the signal. Specifically, to account for effects potentially caused by

head motion, we included in our model covariates-of-no-interest calculated in the following

fashion: first, we computed the 24-parameter Volterra Expansion (VE) of the 6 motion param-

eters stored during the realignment step of the preprocessing pipeline. Secondly, we extracted

the top 6 components (or those that explained 95% of the variance in the VE) via singular

value decomposition (SVD). Then, we included these components as nuisance regressors in

the subject-level design matrix. This approach has been successfully used on our previous

analyses of child data (Adam-Darque et al., 2018; Liverani, Freitas et al., 2020). Finally, we

employed the scan-nulling strategy (Lemieux et al., 2007) to ignore information contained in

fMRI images in which FD > 0.5mm, by adding extra regressors-of-no-interest for each of these

time points. Finally, the results from this first-level analysis were included in a second-level

factorial model including run and condition as factors. Statistical analysis was performed on a

voxelwise basis searching for run, group, or interaction effects.

Region of interest (ROI) analysis: Given the known involvement of the orbitofrontal cortex in

the Reality filtering task studied here (Schnider, 2018; Liverani, Freitas et al., 2020), we have

delved deeper into the analysis of this area as a region of interest (ROI). To avoid confounding

the results, the ROI we selected was based on a mask obtained from Neurosynth.org using a

combination of 666 independent studies that included the OFC (for details of how the seed was

created, see section 4.1.2.6). Group, run and condition effects were analysed using Student’s

t-tests. Interactions involving any combination of the three were analysed using a factorial

analysis of variance (ANOVA).

4.2.3 Results

4.2.3.1 Comparison of whole-brain activation during the two task runs

In order to investigate general differences in activation between the two runs, we performed

a second-level analysis where all the participants from both groups were pooled together.

These results are depicted in Figure 4.6. During performance of Run 2, three clusters were

significantly more active than during Run 1. These are: right superior parietal lobule [MNI

coordinates x = -54 y = -18 z = 49; pFWE-corr = 0.001], right amygdala [x = 21 y = -9 z = -18;

pFWE-corr = 0.01], and left amygdala [x = -21 y = -9 z = -18; pFWE-corr = 0.02] – see Figure 4.6A.

During performance of Run 1, the posterior parietal cortex was more activated [x = 0 y = -51 z

= 20; punc = 0.001]. This contrast can be seen in Figure 4.6B.
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Figure 4.6 – Comparison between the whole brain activation of the two runs. The brain
maps show regions that were most activated (at p < 0.001), with subjects from both groups
pooled together A) During Run 2 (relevant for reality filtering), regions typically involved
in external attention (e.g., superior parietal lobule) were more more activated than during
Run 1. Green circles highlight regions that survived FWE correction at α = 0.05. Post hoc
analysis of activation during the two individual runs indicates that this difference is due to
increased activation of these regions during Run 2, as opposed to decreased activity during
Run 2. B) During Run 1, regions that typically form networks involved in internally-oriented
processes (e.g., default mode network) are more highly activated. Post hoc analysis of activation
during the two individual runs indicates that this difference is due to increased activation of
these regions during Run 1. Note that no regions were significantly more active during Run 1
than during Run 2 after FWE correction.

4.2.3.2 Group comparison of whole-brain activation during the two task runs

We next sought to identify whether there was a group difference in activation during perfor-

mance of the task runs. These results are illustrated in Figure 4.7. Term-born controls had

higher activation of the medial temporal gyrus (MNI coordinates x = -39 y = -39 z = 9; p = 0.001,

unc) and the right orbitofrontal cortex (x = 21 y = 42 z = -9; pFWE-corr = 0.02). Post hoc analysis

of activation during the two individual runs indicates that this difference is due to increased

activation of these regions in the term-born group, as opposed to decreased activity in the

preterm group (not shown). Preterm participants showed higher activation in visual attention

areas (x = 40 y = -74 z = 20; pFWE-corr = 0.04) and motor areas related to finger movement (x

= -42 y = -39 z = 66; pFWE-corr = 0.04) as compared to controls. Post hoc analysis of activation

during the two individual runs indicates that this difference is due to increased activation

of motor regions in the preterm group, and decreased activation in attention areas in the
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term-born group.

Figure 4.7 – Group differences in activation across the two runs. The brain maps show
regions that were most activated at height threshold p = 0.001, with maps from both runs
pooled together. Green circles highlight regions that survived FWE correction at α = 0.05.
A) Term-born controls had higher activation of the medial temporal gyrus (MNI coordinates
x = -39 y = -39 z = 9; p = 0.001, unc) and the right orbitofrontal cortex (x = 21 y = 42 z = -9;
pFWE-corr = 0.02). B) Preterm participants showed higher activation in visual attention areas (x
= 40 y = -74 z = 20; pFWE-corr = 0.04) and motor areas related to finger movement (x = -42 y =
-39 z = 66; pFWE-corr = 0.04).

4.2.3.3 Interactions between group and run effects

A group versus run interaction contrast identified several clusters as depicted in Figure 4.8.

They include the orbitofrontal cortex (x = 15 y = 39 z = -6; p = 0.001), nodes of the frontoparietal

network such as dorsolateral prefrontal cortex and posterior parietal cortex (x = -24 y = 30 z =

48; p = 0.001), insula (x = -43 y = -3 z = -15; p = 0.001) and visual attention areas (x = -27 y = -63

z = 21; p = 0.001). A post hoc comparison between the two runs in the two groups separately

revealed that these differences are mainly due to increased activation of these regions during

the second run in the control group (Figure 4.8, right).
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Figure 4.8 – Group versus Run interaction effects. (Left) The brain maps show regions whose
activation showed an interaction of Group and Run effects at height threshold p = 0.001.
(Right, orange inset) Contrast between the two runs in the Control group. Red areas indicate
higher activation during Run 2 (RF 2), while blue regions indicate higher activation during
Run 1 (RF 1). (Right, blue inset) Contrast between the two runs in the preterm group. Red
areas indicate higher activation during Run 2, while blue regions indicate higher activation
during Run 1.

4.2.3.4 Orbitofrontal cortex as an ROI

An ROI analysis focused on the orbitofrontal cortex (OFC) revealed a Run effect (t = 2.47,

p = 0.007), where the activation during Run 2 was higher than during Run 1 and a tendency

for a Group effect (t = 1.4, p = 0.05). Finally, OFC activation during presentation of Distractor

images in the reality filtering run (RF2) was higher in controls than in preterm-born individuals

(t = 2.38, p = 0.01 ). The ANOVA analysis revealed the interactions shown in Figure 4.9. OFC

activation was higher in both groups during performance of the second run (RF 2), and higher

in the fullterm-born (Control) group than in the preterm-born group during both runs, but

the difference in activation between the two runs was larger in the Control group, as indicated

by the steeper slope of the yellow line in the Run vs. Group interaction plot from Figure 4.9.

Blood oxygenation level dependent (BOLD) signal was stronger during the presentation of

both types of stimuli (Distractor, D; and Target, T) during the second run, and the difference
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in activation between runs was larger for stimuli of the Target type, as shown by the red dotted

line in the Stimulus vs. Run interaction plot from Figure 4.9. Finally, the control group has a

much steeper increase in activation during presentation of Distractor stimuli from moments

when Target stimuli where presented, as compared to their preterm peers (orange dotted

line in the Group vs. Stimulus interaction plot from Figure 4.9). The difference in activation

between groups was higher for Distractor images than for Target images (green full line in the

Stimulus vs. Group plot from Figure 4.9). None of the interactions were statistically significant,

but the trends identified here are discussed in the next session.
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Figure 4.9 – Group, Run and Stimulus interaction effects in activation of the orbitofrontal
cortex as a region of interest. (Left) The orbitofrontal cortex (sagittal plane with MNI coordi-
nate x = 40). (Right) Interaction plots involving runs, groups and stimulus types. The y-axis of
all plots represent the average BOLD signal for the corresponding factor (e.g., run, group or
stimulus).

4.2.4 Discussion

4.2.4.1 Comparison of whole-brain activation during the two task runs

During performance of the first run of the experiment, the activation of regions typically

involved in internally-oriented attention (i.e., nodes of the default mode network such as

the posterior parietal cortex) tended to be higher in comparison to during the second run

of the experiment. Given that the same set of images is used for both runs, Run 2 (RF 2) is

significantly harder than Run 1. This is because, in Run 2, subjects must not only recognise

images that were already seen during the current run, but also suppress memories from the
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previous one. The fact that the activation of these areas is higher during the first run is thus

in line with previous studies which found that default mode network activation is inversely

proportional to task demand (Čeko et al., 2015). This finding may be interpreted as a greater

occurrence of moments of introspection or mind-wandering during Run 1 given the ease of

the task.

Run 2, in turn, requires more effort since participants must not only recognise images that

have already been seen during the current run, but also filter the memory of those images that

have only been already seen during the first run. It is thus not surprising that brain regions

related to attentional control and information manipulation during working memory-related

tasks (Koenigs et al., 2009; Wu et al., 2016) are more highly activated during this run.

Finally, the areas more highly activated during either of the runs are not specific to the task we

are studying: in fact, they have been widely found to be part of well-known networks which

are involved in other cognitive tasks and / or present during the resting state (van den Heuvel

and Hulshoff Pol, 2010). This is probably due to the participants from both groups being

pooled together for this part of the analysis ––– if they evoke different brain regions to perform

the task, these results could be expected to be averaged out when all subjects are grouped

together. Our results so far may thus suggest that either participants from the two groups

use different underlying mechanisms to perform the reality filtering task, or at least that the

level of activation in these two groups differs, decreasing the power to find these task-specific

regions.

4.2.4.2 Group comparison of whole-brain activation during the two task runs

We found significant differences in activation during the performance of the reality filtering

task when comparing the two groups. We identified increased activation of the orbitofrontal

cortex in Term-Born young adolescents as compared to their Preterm-Born peers. By itself,

this result could have been achieved under three scenarios: 1) high activation of the OFC in the

control group during task performance; 2) de-activation of the OFC in the preterm group; 3)

or a combination of the two. The post hoc analysis of the individual groups indicated that the

first hypothesis is true: this difference is due to high activation of the OFC in the Term-Born

participants. The high activation of OFC in the control group is inline with previous work

that identify the OFC as a mediator of Reality Filtering in healthy populations (Schnider et al.,

2000; Treyer et al., 2003; Bouzerda-Wahlen et al., 2015; Schnider, 2018; Thézé et al., 2019),

including our own previous work on healthy young adolescents (Liverani, Freitas et al., 2020).

Failure to process reality filtering functions has been a consistent marker of reality confusion

in clinical patients with damage in the OFC or in structures directly connected to it (Schnider

and Ptak, 1999; Nahum et al., 2012). The fact that the preterm individuals did not activate the

OFC as highly may be linked to previous findings of delayed development of frontal areas in

this population (Nosarti et al., 2014; Sripada et al., 2018). However, that they are still able to

perform the task despite lower activation in the OFC can mean one of two things: either they

have developed a more efficient way of performing the same task that requires less use of this
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region, or the lack of development of this area has been compensated by other processes. This

is further discussed in the next subsection.

Preterm young adolescents had significantly higher activation in motor areas related to finger

movement than their Term-Born counterparts. This difference was due to an increase in

activation in these areas in the preterm, rather than de-activation in the control group. While

this may seem unexpected, given that all participants performed both runs of the task by

clicking mouse buttons with the right hand fingers, it is in line with previous research (Heep

et al., 2009a; Arichi et al., 2010; Allievi et al., 2016). Heep et al. (2009a) and Arichi et al. (2010)

found in separate studies that unilateral motor stimulation led to bilateral activation of the

sensorimotor cortex in preterm infants. In our results, regions related to visual attention were

also more active in the Preterm than in the control group. This was surprising, since nodes of

the attention network have been consistently found to be less active in the preterm population

(Olsen et al., 2018). Our inspection of the contrast values for individual groups revealed that

this was due to decreased activation of attention-related areas in the control group. This is

probably due to the fact that the task was too easy, which is in line with the ceiling effect we

observed in the participants’ answers.

4.2.4.3 Interactions between whole-brain group and run effects

Although the two runs of our experiment have the same instruction (i.e., to identify images

that were repeated during the current run), it is during the second run that reality filtering

processing is required. This is because during Run 2, while recognising images as already seen,

participants must also decide whether those have been already seen during the current run or

only the previous one. Thus, investigating interactions between group and run effects was

important for us to further understand what aspects of reality filtering were really different

between groups. Although the results from this analysis did not survive multiple comparison

correction, they point towards a few interesting trends. For instance, the dorsolateral prefrontal

cortex and posterior parietal cortices were more highly activated in the control group during

Run 2. These regions are key nodes of the frontoparietal network, which is crucial for the ability

to coordinate behaviour in a flexible, accurate and timely manner (Marek and Dosenbach,

2018). In addition, the control group showed higher increase in orbitofrontal cortex activation

during the second run than the preterm-born individuals. This is in line with previous research

showing that preterm birth is linked to altered development of frontal structure, function and

connectivity (Sripada et al., 2018). Interestingly, however, young adolescents born preterm

were able to perform the task successfully with a low rate of errors. This may be due to different

hypotheses. Firstly, there may be a compensatory mechanism involving other parts of the

brain that allow the preterm group to perform the task through different routes. However, no

brain areas were significantly more active in this population than in the control group during

the second run. An alternative possibility is that the preterm group does indeed rely on the

orbitofrontal cortex to perform the task and that, given the alterations in frontal cortices, have

developed a more efficient way to perform the task that optimises OFC activation. Finally,
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since there was a ceiling effect in the accuracy of the responses from both groups, this could

be due to the task having been too easy for this age. Our results indicate the second or third

options as potential explanations. However, as discussed in Section 4.2.4.4 (Challenges and

Limitations), further studies involving a more difficult version of the task would help clarify

this issue.

4.2.4.4 Group, Run and Stimulus interaction effects on OFC activation

Given the known role of the OFC in mediating reality filtering processing, we performed

additional analyses using this area as a region of interest. Although the results were not

statistically significant (and we discuss the possible reasons in Section 4.2.4.4), the trends we

found were extremely interesting, and we chose to report them to serve as a base for future

studies. For instance, while the fact that OFC activation was higher in both groups during

performance of Run 2, and higher in the fullterm-born (Control) group than in the preterm-

born group during both runs agrees with our whole-brain results, this analysis illustrates that

the difference in activation between the two runs was larger in the Control group.

BOLD signal in the OFC was stronger in general during the second run independently of the

type of stimulus, and the increase in activation was higher for stimuli of the Distractor type

rather than of the Target type. This is in line with previous research indicating that the role of

the OFC in reality filtering relates to suppressing memories that are not currently relevant (thus

while processing images of the Distractor type during Run 2) (Schnider, 2018). Further, the

control group shows a larger increase in activation during presentation of Distractor stimuli

from moments when Target stimuli where presented, as compared to their preterm peers.

Since the young adolescents that were born preterm were able to perform the task with high

accuracy, this suggests that this group have found an optimal way to process this function that

does not require activation of the OFC to the same levels as typically developing children.

Challenges and future directions

As described before, there is a ceiling effect in the participants from both groups’ responses,

such that nearly no mistakes were ever made, preventing us from being able to investigate

potential correlations between brain activation and accuracy levels. This effect may have been

due to the fact that we used the same task that had been described as used for children from 7

years of age. It is thus possible that we have missed higher activation of regions involved in

the processing of this task. Future studies involving young adolescents should thus increase

the difficulty of the task by methods such as increasing the number of trials, shortening the

time for individual trials, and / or adding different types of distractor elements (e.g., images

never repeated during Run 1 that reappear during Run 2, and images that appear for the first

time in Run 2). By increasing the difficulty of the task in these ways, regions that activate

specifically for the reality filtering task may become more evident due to an increased effect.

In addition, this will allow us to investigate differences in functional processing of accurately
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(versus incorrectly) recognised trials.

Crucially, although there is room for improvement, this study already sheds important light

into differences between reality filtering processing in individuals born preterm or at term,

and presents compelling avenues for future research.

Conclusion

In this study, we investigated the neurological underpinnings of a reality filtering task perfor-

mance in young adolescents born prematurely as compared to their term-born peers. We

identified differences in activation in the two groups while performing the two steps of the task

and framed them within previous knowledge on preterm birth and reality filtering processing.

Our results corroborate the idea that compensatory mechanisms are in place to make up

for preterm birth-related difficulties, allowing individuals to perform functional tasks. Such

results may be used as biomarkers for future studies on potential interventions to help this

population.
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5 Time-resolved brain dynamics during
task performance

Dynamic approaches to analyse resting-state data have blossomed in recent years (Chang

and Glover, 2010; Preti et al., 2017), but task-related paradigms to study cognition are yet

to fully benefit from these methods. Most analyses available to date are based on sliding-

window procedures (Kucyi and Davis, 2014; Di et al., 2015; Gonzalez-Castillo and Bandettini,

2018), thus relying on averaging over relatively long intervals of data. As a consequence, these

methods do not fully explore the dynamic range that fMRI is able to unveil, which is down

to sub-second scale. Point process analysis (Tagliazucchi et al., 2012; Liu and Duyn, 2013)

select subsets of single fMRI frames when a seed is highly active and, when those are clustered,

reoccurring patterns are unveiled containing all regions that co-activate with that region of

interest. This allows brain function to be linked to specific moments of the experiment at

frame resolution.

With the above in mind, in this chapter I introduce a method to examine moment-to-moment

changes in brain connectivity during performance of a task, which has been published in

the peer-reviewed journal NeuroImage (Freitas et al., 2020). I illustrate that this analysis

captures information on brain function which is impossible to obtain using conventional

static approaches. Given its ability to concentrate the analysis on limited amounts of data, this

represents a promising avenue for the study of the dynamic features of task-modulated brain

function in clinical or young populations. Therefore, on a second study, I apply this method

to a data set in which preterm-born young adolescents and age-matched controls perform

a task which involves movie watching and emotion regulation. We thus argue that explicitly

examining changes in connectivity patterns is paramount to advance our understanding of

how different brain areas dynamically communicate when presented with a set of cues, and of

what abnormalities may arise in this interplay as a consequence of clinical conditions such as

preterm birth.
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Abstract

Investigating context-dependent modulations of functional connectivity (FC) with functional

magnetic resonance imaging is crucial to reveal the neurological underpinnings of cognitive

processing. Most current analysis methods hypothesise sustained FC within the duration of

a task, but this assumption has been shown too limiting by recent imaging studies. While

several methods have been proposed to study functional dynamics during rest, task-based

studies are yet to fully disentangle network modulations.

Here, we propose a seed-based method to probe task-dependent modulations of brain activity

by revealing psychophysiological interactions of co-activation patterns (PPI-CAPs). This point

process-based approach temporally decomposes task-modulated connectivity into dynamic

building blocks which cannot be captured by current methods, such as PPI or Dynamic Causal

Modelling. Additionally, it identifies the occurrence of co-activation patterns at single frame

resolution as opposed to window-based methods.

In a naturalistic setting where participants watched a TV program, we retrieved several pat-

terns of co-activation with a posterior cingulate cortex seed whose occurrence rates and

polarity varied depending on the context; on the seed activity; or on an interaction between

the two. Moreover, our method exposed the consistency in effective connectivity patterns

across subjects and time, allowing us to uncover links between PPI-CAPs and specific stimuli

contained in the video.

Our study reveals that explicitly tracking connectivity pattern transients is paramount to

advance our understanding of how different brain areas dynamically communicate when

presented with a set of cues.
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5.1.1 Introduction

Since its introduction in the early 1990s (Ogawa et al., 1990), functional magnetic resonance

imaging (fMRI) has played a growing role in advancing our knowledge of brain activity. Its

technical developments have allowed the study of brain function at increasingly high spatial

and, moreover, temporal resolution (Van Essen et al., 2013). Simultaneously, the progress in

analysis techniques has exposed the joint importance of, on the one hand, how brain regions

activate and, on the other hand, how their activity interacts to support complex cognitive

processes. This view of the brain as a network of functionally linked regions has spawned

the field of Functional Connectivity (FC) which, traditionally, uses Pearson’s correlation to

study temporal dependencies between separate brain regions over the duration of an entire

resting-state fMRI run—typically in the order of several minutes (van den Heuvel and Hulshoff

Pol, 2010).

The discovery that FC significantly fluctuates over time in resting-state fMRI recordings (Chang

and Glover, 2010) first suggested that methods driven by averaging over long runs offer an

incomplete picture of brain function, which led to a widespread effort to investigate dynamic

Functional Connectivity (dFC; Hutchison et al., 2013; Calhoun et al., 2014; Preti et al., 2016;

Karahanoğlu and Van De Ville, 2017). Since then, several methodological developments have

been proposed to capture this feature. The most common technique involves computing a

metric characterising FC over gradually shifted temporal windows of data (sliding window

approach; Leonardi et al., 2013; Allen et al., 2014). While this increases the temporal refinement

of the analysis from minutes to several seconds, it cannot fully benefit from the current sub-

second resolution of fMRI recordings because a minimal window size of at least 30 seconds is

required to obtain reliable correlation estimates (Kucyi and Davis, 2014; Shen et al., 2016; Preti

et al., 2016). Furthermore, shorter windows demand more stringent high-pass filtering of the

original time courses to avoid spurious correlations due to aliasing, thus limiting the available

information (Leonardi and Van De Ville, 2015; Zalesky and Breakspear, 2015).

Essentially, the sliding window approach keeps the idea of computing second-order statistics,

but within each window. Dynamic Conditional Correlation (DCC; Lindquist et al., 2014),

a method based on multivariate generalized autoregressive conditional heteroskedasticity

models, overcomes some of the methodological issues inherent to traditional sliding window

correlation by gradually refining the FC estimate with each new sample, thus requiring no ad

hoc parameter settings. However, the associated gain of performance in capturing meaningful

neuronal fluctuations has been inconsistent across studies (Choe et al., 2017; Damaraju et al.,

2018). Other extensions include a more systematic use of the wavelet coherence transform

(Rack-Gomer and Liu, 2012; Yaesoubi et al., 2015) as originally proposed in the exploratory

results of Chang and Glover (2010).
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Another category of analyses follows a framewise approach. Good examples of these are point

process analysis (PPA)-based methods (Tagliazucchi et al., 2012), which select a subset of

frames where a chosen seed is highly active and proceed from there. Liu et al. (2013) benefited

from this to identify co-activation patterns (CAPs) by clustering the retained frames into

groups of similar activation arrangements. Another way of performing an implicit selection of

relevant information is through sparsity-driven detection of neuronal activation time points

(through Sparse Paradigm Free Mapping; Caballero Gaudes et al., 2011; Petridou et al., 2013) or

moments of transient activity (innovation-driven CAPs; Karahanoglu and Van De Ville, 2015).

All of these approaches have been mainly used to study resting-state data.

Unsurprisingly, the dynamic nature of connectivity in the brain is also expressed in the pres-

ence of external stimulation or during task performance (Gonzalez-Castillo and Bandettini,

2018). The natural assumption is thus that certain brain areas interact differently during

the course of a task experiment. Beta Series Correlations (BSC, Rissman et al.,2004) analysis,

for example, reveals the absolute FC between brain regions under different stages of task

performance. Another reasonable expectation is that different regions may change the way

they interact with each other when performing different tasks. These can be studied using

methods such as Effective Connectivity (EC) analyses to look into the influence one neural

system has on another and how this relationship changes between task settings (which we

will refer to as contexts or conditions in what follows). This can be done using methods as

varied as regression models such as Psychophysiological Interaction (PPI) analysis (Friston

et al., 1997) and its generalizations (McLaren et al., 2012); differential equation models such

as dynamic causal modelling (Friston et al., 2003) and causal dynamic network modelling

(Cao et al., 2019); structural equation modelling (Zhuang et al., 2008); and Granger causality

(Wen et al., 2013). These approaches, however, do not explicitly reveal moment-to-moment

interactions between experimental conditions and brain activity, but rather average over the

duration of the task/rest epochs, which is probably too limiting as has been shown from high

temporal resolution neuroimaging techniques (Ploner et al., 2009; Zhang et al., 2012). As a nat-

ural development from these, window-based approaches to compute time-varying networks

have been used to capture changes in task-related functional connectivity (Di et al., 2015;

Baczkowski et al., 2017; Ge et al., 2019), although this also comes with known disadvantages as

discussed above. Recent studies (e.g., Fransson et al., 2018) have steered away from windowed

correlations, but there is still a great need for novel techniques to study how tasks modulate

moment-to-moment connectivity at high temporal resolution.

Here, we introduce psychophysiological interaction of co-activation patterns (PPI-CAPs) as

a novel seed-based approach to investigate time-resolved effective connectivity. Our aim

was to create a method that reveals the modulation of moment-to-moment connectivity

between brain regions under a specific context or during performance of a task. To illustrate

our framework, we applied PPI-CAPs to an fMRI dataset where subjects were exposed to a

naturalistic paradigm by watching a short episode of a TV program containing two types

of scenes (conditions). Our method dissected the connectivity patterns elicited by subjects

across time, and found several PPI-CAPs with at least one of three possible effects: 1) a seed
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effect, indicating that the pattern was highly correlated with the seed activity in general; 2) a

condition effect, meaning that the pattern in question was significantly more elicited during

one of the types of scenes than during the other one; and 3) an interaction effect, representing

an interaction between condition and the relationship of that co-activation pattern with

the seed. Additionally, we shed light on the consistency in effective connectivity patterns

across subjects and time, allowing to uncover links between PPI-CAPs and specific movie cues.

Overall, our approach contributes to the state-of-the-art by unraveling time-resolved, relevant

information on brain dynamics during task performance that cannot be captured by other

methods.

5.1.2 Methods

We first provide a global overview of the PPI-CAPs analysis pipeline (see Figure 5.1). We start

from fMRI data where an experimental modulation has been applied and the timing is known

(Figure 5.1A). Similar to the framework of conventional PPA and CAPs, we start by selecting

frames at time points when a predefined seed is most highly (de-)activated (Figure 5.1B/C).

A static analysis illustrates the relevance of the frames that have been selected (Figure 5.1D).

Then, we proceed to the dynamic (PPI-CAPs) analysis (Figure 5.1E/F).

For the static analysis, we first multiply the selected frames by the sign of the seed and the cen-

tred modulating term (i.e., the contrast variable, as it encodes knowledge of the task paradigm)

at the corresponding time points. Note that this sequence is equivalent to multiplying the

original selected frames by the PPI variable, which corresponds to the multiplication of the

sign of the seed and the task time courses. The average of these selected frames leads to a proxy

of the conventional PPI results (Figure 5.1D, bottom), which we refer to as the static interaction

map (siMap). For a mathematical motivation as well as a toy example that intuitively illustrates

this relationship between conventional PPI and static PPI-CAP analyses, we refer to Appendix

B and Supplementary Figure B.1, respectively.

For the dynamic analysis, all the originally retained frames are subjected to K-means++ cluster-

ing (Arthur and Vassilvitskii, 2007) as described in Section 5.1.2.3 (Figure 5.1E). This step yields

PPI-CAPs, their occurrence in time and the polarity of their constituting frames, which allows

us to eventually identify meaningful statistics (i.e., effects of task, seed, or their interaction).

The next sections further detail the different steps of the pipeline.

5.1.2.1 Seed-based frame selection

The first step of the PPI-CAPs framework is to select a seed region according to prior knowledge

about the task being studied or on an exploratory basis—a good discussion on how to choose

a seed can be found in O’Reilly et al. (2012). The fMRI frames in which the seed reaches high

magnitude values are then selected for further analysis. We refer to frames in which absolute

seed activity is above the stipulated threshold as suprathreshold frames.
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Figure 5.1 – The PPI-CAPs analysis pipeline. A) We begin with an experimental design con-
taining different task blocks or contexts. Here, we used data acquired in a naturalistic paradigm
in which subjects watched a film containing two main types of scenes: fun and science. B) For
each subject, the z-scored signal from a selected seed is thresholded so that frames in which
it is highly active or deactive (darkened in the subject time course) can be considered for
further analysis. Orange and blue frames occur during fun and science scenes, respectively.
C) Suprathreshold frames from all subjects are concatenated. From here on, we can proceed to
a static or a dynamic analysis. D) Static analysis: suprathreshold frames from each condition
are multiplied by the sign of the seed and task time courses (which corresponds to the PPI time
course) and then averaged, yielding a proxy of the PPI analysis results: the static interaction
map, or siMap, at either subject or group level. E) Dynamic analysis: suprathreshold frames
from all subjects are clustered into a set of PPI-CAPs. Frame labels allow us to count how
often a PPI-CAP occurs in each condition in its positive or negative polarity and compare
these to the signs of each effect of interest. F) The frames’ polarity after clustering tends to
correlate with the sign of the effects it represents. By examining the confusion matrix for each
effect (seed, task or PPI), we can determine if a PPI-CAP is strongly related to it (i.e., when the
confusion matrix is highly diagonal) or when there is no such effect (i.e., when the confusion
matrix has no obvious pattern).
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5.1.2.2 Static analysis

In the context of point process analyses (Tagliazucchi et al., 2012; Liu and Duyn, 2013), simple

averaging of selected frames provides a good proxy for seed-based functional connectivity (see

Appendix B), showing that the chosen subset of data contains relevant information. For large

datasets, this observation holds for a wide range of thresholds retaining 15–90% of frames (Liu

and Duyn, 2013, Figure 1B), while for smaller datasets the threshold must aim at a trade-off

between dramatically decreasing the amount of data used for analysis while keeping enough

frames to reduce the effects of noise. Note that, besides improving the signal-to-noise ratio,

including more frames in the analysis of smaller datasets improves the chance that enough

frames will be available for the dynamic analysis.

In a similar validation step, we perform an initial static analysis procedure that can be com-

pared against conventional PPI. Specifically, suprathreshold frames were multiplied by a

centred contrast variable—the sign of the PPI regressor, as explained in Section 5.1.2—and

subsequently averaged (Figure 5.1D, yellow inset). Here, we used the strategy described in

Liu and Duyn (2013) to improve the signal-to-noise ratio of an fMRI frame, where a mask was

created to cover voxels with the highest 10% and lowest 5% values, and all other voxels were

set to zero. The spatial correlation between the resulting static interaction map (siMap) and

the PPI results is measured using spatial Pearson’s correlation coefficient. This correlation was

repeatedly calculated for siMaps including 5–100% of all frames both at subject and group

levels, to test the robustness of the method to the choice of threshold. Since correlation values

are range-constrained, when calculating their averages as described in Section 5.1.3.1 and

shown in Figure 5.2C we first applied Fisher’s z transform (the inverse hyperbolic tangent) to

all Pearson’s r values (Cox, 2008). After calculating the means, we then converted the results

back to Pearson’s r values by calculating the former’s hyperbolic tangent. For the group maps,

z-scored seed activations were calculated for all subjects, whose data were concatenated and

frames selected as per individual subjects. The PPI analysis was performed using the standard

procedure from SPM8 where three regressors are included in a general linear model design,

relating to the time courses of the PPI, the seed, and the task, respectively. Note that the PPI

regressor in SPM is derived by deconvolving the haemodynamic response function (HRF) from

the seed time course, multiplying the latter by the task time course, and then reconvolving the

final series with the HRF. The exact same task time course and seed region were used for both

analyses.

5.1.2.3 Dynamic analysis

For a dynamic analysis of brain function during task, we identify the PPI-CAPs that may

present a seed, task, or interaction effect (Figure 5.1E). To this end, we applied K-means++

clustering on the suprathreshold frames of all subjects, using a modulo-π cosine distance as a

similarity measure, which we have named as such because it consists in the following: frames

among which only the signs of the voxels were reversed were considered to be representations

of the same pattern, with opposite polarity (e.g., if frame a showed an active prefrontal cortex
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and deactive occipital cortex, while frame b displayed a deactive prefrontal cortex and active

occipital cortex, then, assuming Fa and Fb are the frames’ voxel patterns, Fa ≈ -Fb).

Traditionally, the iterative algorithm to implement K-means consists of two steps: 1) assigning

each data point to its closest centroid given the defined similarity metric d; 2) updating the

centroids according to their assigned data points (e.g., by updating each centroid with the

average of the normalized data points most recently assigned to it). At each iteration, the

cluster label assigned to the i th frame, Li , is given by:

Li = argmin
κ

(
d(Cκ,Fi )

)
, (5.1)

where κ runs over the number of clusters, Cκ is the value of the κth cluster’s centroid, Fi is the

voxelwise activation pattern for the i th frame, and d is the selected distance metric.

To add information regarding the frame polarity in PPI-CAPs, in our approach we set d to be

the modulo-π cosine distance (mpcos):

d(x,y) = mpcos(x,y) = 1−
∣∣∣∣ x ·y

‖x‖ ‖y‖
∣∣∣∣ , (5.2)

where x ·y =∑
k xk yk is the standard inner product and the norm is ‖x‖ =p

x ·x. The polarity

Pi of frame Fi is thus equivalent to sign(Cκ ·Fi ). From here on, we will describe frames for

which Pi = 1 as having a “positive polarity", and those for which Pi =−1 as having a “negative

polarity". Note how the metric in equation (5.2) compares to the standard cosine distance,

given by:

cos(x,y) = 1− x ·y

‖x‖ ‖y‖ , (5.3)

meaning that modulo-π cosine implies no additional complexity as compared to the standard

cosine distance metric. The value of each centroid Cκ is then updated as such:

Cκ = 1

Nκ

Nκ∑
i=1

Pi
Fi

‖Fi‖
, (5.4)

where Nκ is the number of frames in the κth cluster and ‖Fi‖ is the magnitude of frame Fi.

The final cluster centroids then form the PPI-CAPs. Each frame is thus annotated according to:

1) the time point it corresponds to; 2) the task or condition label which corresponds to that

time; 3) the subject to whom it belongs; and 4) the polarity in which it occurred (positive or

negative). This information can then be used to investigate differences in PPI-CAP occurrence

across settings.
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5.1.2.4 Significance assessment

If a PPI-CAP has a strong main or interaction effect, the polarity of the frames that constitute

it will tend to correlate with the sign of that effect for the same time points. To visualise if

this is the case, we can thus generate confusion matrices for each effect and PPI-CAP. When

there is a strong correlation, the higher values of a confusion matrix will tend to load on

one of its diagonals, and the relevance of this relationship can be measured by taking the

matrix’s determinant, which we will call the det-index. To test whether this value is significant,

we can thus generate a null distribution by performing random permutations of the effect

of interest’s labels and re-calculate the det-index each time. Finally, we see where the real

det-index stands in the distribution (Figure 5.1F). For the results shown here, we performed

3000 random permutations for each test. We disclose the uncorrected p-values and indicate

the significance level that should be used to correct for multiple corrections, controlling for

the number of PPI-CAPs.

5.1.2.5 Choosing the number of PPI-CAPs

Effective Connectivity methods such as PPI provide a summary spatial map of task-specific

seed relationship modulation. To disentangle which and when instantaneous patterns of

activity support the summarized PPI findings, we must first determine the number of clusters

into which to categorize the data. To this end, we employed Consensus Clustering (Monti

et al., 2003). This approach applies K-means clustering on several subsamples of the data and

calculates the consensus matrix M . Each element M (a,b) indicates the fraction of subsamples

in which two frames a and b were both retained and clustered together. The optimal number

of clusters can then be inferred by visual inspection of the ordered matrix M , as well as of the

cumulative distribution function (CDF) of M for different values of k.

Additionally, for every k = 3,4, ...,8 we calculated the number of frames from each subject

that contributed to each of the k PPI-CAPs. This helped us choose a k value for which the

distribution of PPI-CAPs across subjects was roughly uniform. We applied consensus clus-

tering for k = 3,4, ...,8 using 10 random subsamples for every k. Each subsample included

80 % of the suprathreshold frames of all subjects, and K-means was computed for 50 random

initialisations for each subsample. To obtain the final clustering result, we applied K-means

clustering with the optimum k on 100 % of the suprathreshold frames and kept the best result

from 50 random initialisations, i.e., the one that minimised the total sum of modulo-π cosine

distances between frames and centroids.

5.1.2.6 Experimental data

To validate the method, we used fMRI data from 16 healthy subjects (mean age 22.92±8.14

years) watching a short TV program about the effects of sun exposure. The video alternated

between two contexts: 1) images of several children playing by the beach (from here on
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described as fun); 2) scenes where scientific concepts were explained in a laboratory (we will

call this context science). The movie can be watched online1, and a detailed description of the

dataset can be found in Jochaut et al. (2015). One subject was excluded due to high motion for

having >25% of frames with framewise displacement (Power et al., 2010) higher than 0.5 mm.

Thus, 15 subjects were analysed (mean percentage of scrubbed frames = 2.2%, SD = 5.8%).

179 volumes (Tim-Trio; Siemens, 40 transverse slices, voxel size = 3 mm × 3 mm × 3 mm;

repetition time = 2000 ms; echo time = 50 ms; field of view = 192) were available per subject,

as well as an anatomical T1-weighted rapid acquisition gradient echo sequence (176 slices,

voxel size = 1 mm × 1 mm × 1 mm, field of view = 256), acquired at the end of the scanning.

All participants have given their written informed consent, which was approved by the local

ethics committee (Biomedical Inserm protocol C08–39).

5.1.2.7 fMRI preprocessing

Functional images were preprocessed using SPM8 (Wellcome Department of Imaging Neuro-

science, UK) where they were realigned to correct for head motion; coregistered with structural

images; normalized in the Montreal Neurological Institute (MNI) stereotactic space; and spa-

tially smoothed using a 6 mm full width at half maximum isotropic Gaussian kernel. In order

to remove haemodynamic temporal blurring and better approximate neural activity, blood

oxygenation level-dependent (BOLD) signals were deconvolved with the canonical haemody-

namic response function from SPM8. This was done using an implementation of the Wiener

filter from spm_peb_ppi.m, an SPM8 function that computes BOLD deconvolution in the

context of PPI analyses. Voxels were then z-scored in time (Liu and Duyn, 2013).

5.1.2.8 Considerations for the application of PPI-CAPs

We applied PPI-CAPs on a movie-watching dataset to illustrate its potential to uncover task-

related time-resolved effective connectivity in a realistic setting. To this end, the posterior

cingulate cortex (PCC) was selected as a seed region for this study due to its well documented

connectivity arrangements (Lin et al., 2017) and description as a hub region (Andrews-Hanna

et al., 2010). A previous study by our group on transient brain activity also revealed the PCC

as the node with the most spatial overlap between networks (Karahanoglu and Van De Ville,

2015). We used SPM8’s Check Orthogonality tool to understand how collinear the PCC activity

was with our task paradigm, MATLAB’s Skewness function to check that the activity was not

skewed, and we verified that the magnitude of the seed time course did not correlate with the

sign of the task (Supplementary Material B.2). To keep in line with previous work that inspired

our method (Liu and Duyn, 2013), we report the thresholding step based on the percentage

of data points kept for the dynamic analysis. As discussed later, PPI-CAPs is robust to a very

wide range of seed activity thresholds for selecting frames to retain for analysis. For the results

presented here, we use 60% of the available frames as a trade-off between optimising data

1https://miplab.epfl.ch/index.php/miplife/research/supplement-asd-study
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Figure 5.2 – The static interaction Map (siMap) using a subset of fMRI frames accords with
the PPI contrast obtained from all the available data. A) Frames from time points when the
considered seed is highly active are selected. A fraction of seed time course is shown for one
subject. B) Retained frames are then multiplied by the PPI variable and averaged, yielding the
static interaction map (siMap), as shown for the same subject with a yellow background. For
comparison, the contrast map resulting from a PPI analysis using all frames is also shown with
a red background. C) The siMap and PPI contrast map are reasonably correlated (r > 0.7) even
when the former is computed using only 15% of the frames, and this similarity remains high as
more frames are used, showing that the selection of relevant frames is robust to the choice of
threshold. The dark blue curve represents the average correlation between the siMap and 1st

level PPI contrast map across subjects, and the light blue shading denotes the standard error.
The correlation means were calculated by averaging Fisher’s z transforms of the Pearson’s r
values, and transforming the result back to Pearson’s r.

usage from our dataset and obtaining clear brain patterns in the dynamic analysis, avoiding

noise that is not averaged out due to a lack of frames in some PPI-CAPs.

5.1.3 Results

5.1.3.1 Static analysis

Single subject level: At a single subject level, the spatial pattern from the corresponding

siMap, generated as the average of the 60% suprathreshold fMRI frames (when the PCC seed

was highly active), was reasonably correlated with the resulting map from a 1st level PPI

Analysis (average spatial correlation: r=0.76 0.28). This was the threshold we chose in order

to keep enough frames for the dynamic analysis, but the similarity was robust to the choice of

threshold for frame selection across subjects (Figure 5.2C): correlation was already high even

when only 15% of suprathreshold frames were kept (r=0.71 0.1). To further illustrate that

the correlation strength remains stable for varying cutoff values, we first calculated the mean

subject-level Fisher’s z-transformed correlations (see Section 5.1.2.2) for each threshold that

kept from 15 to 60% of original frames. Then, we computed the average of these means and

transformed it back to Pearson’s r, for which we obtained 0.76 with SD±0.04. The correlation

gradually drops when fewer than 15% of the frames are used, which is expected as not enough

frames are selected to average out the noise.
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Group level: At the group level, the spatial pattern from the siMap obtained using 60%

of frames also correlated (r = 0.85) with the pattern obtained from a 2nd level PPI analysis

(Supplementary Figure B.3), which showed a significant increase in effective connectivity

between the PCC and the right V5 during fun scenes (height threshold T = 3.8, p < 0.001; right

V5 MNI coordinates x = 39, y = -67, z = -2; cluster size = 185 voxels; pfwe-corr < 0.001).

Together, these results demonstrate that even a subset of fMRI frames, selected when the seed

activity is highly active or strongly deactivated, contains relevant information about how its

co-activation with other regions changes based on task context.

5.1.3.2 Dynamic analysis

Choice of number of clusters An analysis of PPI-CAP occurrences for k = 3,4, ...,8 showed

that for k ≥ 6, some patterns never occurred in some subjects, while k = 4 and k = 5 were

the cases with the most homogeneous distribution of pattern occurrence per subject (see

Supplementary Fig. B.4). Visual inspection of the consensus matrices showed that the most

stable values for k (i.e., the values for which any two frames would most consistently be

clustered together or separately) were k = 3 and k = 4. Taking these observations together,

we proceeded with the analysis generating 4 clusters, as this k value combined the beneficial

features of: 1) yielding PPI-CAPs that are homogeneously distributed across subjects; 2) being

highly stable (i.e., running the clustering several times would always produce similar results);

and 3) representing a reasonable balance between variety and redundancy (Liu and Duyn,

2013).

Temporal decomposition of psychophysiological interactions into co-activation patterns

Our dynamic analysis revealed four recurring patterns of co-activation (Fig. 5.3A), all of which

were significantly modulated by the seed, the context or an interaction between the two (PPI

effect) after correcting for multiple comparisons (significance levelα 0.05/4 = 0.0125). PPI-CAP1

includes nodes of the visuospatial (VSN) and attention (AN) networks correlated with the PCC

and nodes of the fronto-parietal network (FPN) and salience networks (SN) anti-correlated

with the PCC (p = 0.008). Additionally, the VSN and AN had a tendency to be more active,

while the FPN and SN were more deactive, during science scenes as compared to fun ones

(p = 0.019). PPI-CAP2 combines the FPN correlated, plus the posterior insula and visual nodes

anti-correlated, with the seed (p = 0.0009). PPI-CAP3 corresponds to the default mode network

(DMN) and was significantly correlated with the seed (p = 0.0009). It also appeared more often

during fun scenes rather than science ones (p = 0.008). PPI-CAP4, in turn, which contains the

V5 and nodes of the VSN, showed not only a significant seed effect (p = 0.0009), but also a

PPI effect (p = 0.0009). Supplementary Figure B.6 shows the exact times where each PPI-CAP

appeared more consistently in their positive—or negative (meaning that the signs of the voxels

should be flipped)—configuration across subjects, and Supplementary Figure B.5 shows their

corresponding permutation histograms.
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Figure 5.3 – PPI-CAPs reveal patterns of co-activation that have a seed; task; or an interac-
tion effect. A) We retrieved four PPI-CAPs from the Movie Watching dataset by clustering
suprathreshold frames: PPI-CAP1 includes activated visuospatial and attention networks and
deactive nodes of the fronto-parietal network (FPN) and salience networks; PPI-CAP2 includes
an activated FPN plus deactive posterior insula and visual nodes; PPI-CAP3 corresponds to
nodes of the default mode network; and PPI-CAP4 contains the V5 and visuospatial network.
B) Confusion matrices depict how closely the polarity of the frames that make up each PPI-CAP
relate to the sign of each effect. A clear diagonal (or anti-diagonal) pattern indicates a strong
effect. All PPI-CAPs show a significant seed effect, PPI-CAP3 shows a significant task effect,
and PPI-CAP4 shows a significant PPI effect, after Bonferroni correction for the number of
PPI-CAPs. Raw p-values reported below the corresponding confusion matrices.

Consistency of PPI-CAPs across subjects and brain activity decoding Our time-resolved

method allowed us to investigate how consistent each PPI-CAP was across subjects and

throughout the experiment. Figure 5.4 illustrates this analysis for PPI-CAP4. By inspecting

moments when the PPI-CAP appeared consistently for several subjects, we were able to

identify specific video frames that elicited the co-activation pattern. For PPI-CAP4, moments

of positive activation, that is, moments when the V5 and visuospatial network were more active,
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corresponded to scenes in which there was high motion (e.g., a group of children playing

football), whereas a negative polarity of this pattern was related to moments of stillness

(Figure 5.4). Supplementary Figure B.6 shows these results for all four PPI-CAPS: for PPI-CAP1,

moments of positive polarity corresponded to scenes in which the main object (or character)

was zoomed into and movements were slow, whereas a negative polarity (meaning a negative

VSN and AN, with activated FPN and SN) was related to moments when some goal-oriented

action was being performed. For example, at 1’38”, while a group of children are sat at the

beach, one of the girls is clearly reaching out for sand to build her castle. PPI-CAP2 seemed

to be more strongly active during moments when there are lots of people on the scene, and

more consistently negative (i.e., deactivated FPN and activated posterior insula) when the

scene changes to only one person on screen, explaining concepts about the danger of sun

exposure. PPI-CAP3 appeared more with a positive polarity during zoomed-out scenes where

many people were present and interacting, or when science concepts had been explained for

a while in the laboratory scenario. These results illustrate PPI-CAPs’ ability to link a pattern’s

occurrence to specific moments of the experimental paradigm.

5.1.4 Discussion

PPI-CAPs: a tool to more accurately reveal task-based brain dynamics For decades, para-

metric statistical methods have been used for the analysis of task fMRI data (Friston et al., 1994;

Eklund et al., 2016). Notably, the information revealed by the family of PPI approaches, where

statistical analysis is performed on fMRI signal time courses to extract brain locations with

context-dependent seed correlation, has greatly expanded our knowledge of brain function in

health and disease in that time. For instance, Decety et al. (2008) investigated how healthy

children experience empathy and moral reasoning when they view someone in pain. The

connectivity observed in areas consistently engaged in moral behaviour and social interaction

depended highly on intention and on whether the pain was self-inflicted or not, providing an

empirical framework for studies of social cognition disorders in children. Steuwe et al. (2015)

showed that subcortical limbic and frontal loci become more connected to the locus coeruleus

in female post-traumatic stress disorder patients when facing direct eye contact rather than

averted gaze, potentially indicating an innate alarm system. More recently, a PPI analysis

revealed that music intervention for preterm-born babies in neonatal intensive care units

induces functional connectivity changes which suggest that music induces a more arousing

and pleasant state (Lordier et al., 2018).

Meanwhile, point process analyses (Tagliazucchi et al., 2012) have proven to be a powerful tool

for the study of resting-state brain data, by showing that large-scale brain activity could be

condensed by solely analysing the time points when seed activity exceeds a given threshold,

while nonetheless closely approximating seed-based correlation findings (Liu et al., 2013).

In this work, we brought the advantages of these two methodologies together to expand the

analysis of task-based recordings. Indeed, we showed that after modulation by the centred
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contrast variable, averaging as few as 15% fMRI frames with the strongest absolute seed activity

yielded a spatial interaction pattern resembling the conventional PPI map calculated from the

whole example dataset (Fig. 5.2C).

Beyond this initial equivalence as a first sanity check of the approach, we showed that func-

tional brain connectivity across task conditions could be disentangled into a set of distinct

building blocks, the PPI-CAPs, in analogy to the resting-state CAP methodology (Liu and

Duyn, 2013; Liu et al., 2018). Whereas a traditional PPI map reflects, on average, the functional

seed interplays that differ across task conditions, PPI-CAPs break this information down into

separate seed co-activation patterns with their own spatiotemporal features. In addition, our

approach also extends the information provided by traditional CAPs by capturing interaction

effects between the task and the relationship of a co-activation pattern with the seed.

Of note is the fact that the retrieved PPI-CAPs that do not show a context or PPI effect highlight

shared functions between task settings, thus displaying common temporal expression features

(i.e., similar occurrence levels across conditions). Statistically probing for a context effect

enables, then, to distinguish these from co-activation patterns that are indeed task-modulated.

This information cannot be obtained from previous PPI approaches. Further, extracting PPI-

CAPs also enables the analyst to overcome the caveats arising from multiple comparisons that

plague PPI analysis. This is because rather than mass univariate testing, K-means++ clustering

(a multivariate, unsupervised technique) is performed to establish characteristic activation

patterns, and only then followed by statistical testing on a much lower dimensional space.

Our methodological pipeline also yields polarity labels for each frame that contributes to

a PPI-CAP, revealing moments among which a certain pattern has opposite signs—that is,

regions that are highly activated in a frame labelled as “positive" will be deactivated in a

“negative" frame of that PPI-CAP, and vice-versa. Since a given pattern may contain activated

and deactivated voxels simultaneously, this also provides subregion-specific information on

their relationship with the seed, task, or both, at any point in time. For instance, for a PPI-CAP

whose frames’ polarities correlate with the polarity of the seed (i.e., the confusion matrix with

the seed is clearly diagonal), both jointly show their strongest signal values at the same time in

all positively labelled frames. Accordingly, areas that appear in blue on that same PPI-CAP

represent areas of seed-to-voxel anti-correlation when frames are labelled as positive, and

vice-versa. Conversely, when a PPI-CAP has, for instance, a seed effect with the corresponding

confusion matrix’s pattern being anti-diagonal, we know that voxels depicted as red are, in

fact, discordant with the seed at time points when a negative frame appears. This is why the

interpretation of a PPI-CAP requires both the visualization of the co-activation map and the

confusion matrix that shows how the polarity labels of its contributing frames relate to each

effect’s time course.

In the current version of our method the appearance of a PPI-CAP is defined only by averaging

constituting frames, whose labels were assigned automatically during the clustering step.

Since the first centroid initialization is made at random by K-means++ clustering, the polarity
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labels and, consequently, the pattern of the PPI-CAP they constitute, may be inverted in

different runs. If preferred, this could be changed as a post-processing step so that, if desired,

the default pattern would be the one with the largest polarity. For example, if a PPI-CAP is

made up mainly of negative frames, its flipped version could become the default (meaning

that the voxels that currently appear in the pattern as deactive would be shown as active). In

this case, the frame polarity labels would therefore be updated for their distribution to be

correctly represented in the plots. Alternatively, polarity labels (as well as the pattern formed

by the corresponding frames) could be arranged to default to the arrangement that favours

a diagonal confusion matrix with the seed, to facilitate the interpretation of voxels in red or

blue in relation to that region when there is a seed effect. Yet another option would be for the

appearance of a PPI-CAP to default to the one that contains the most activated voxels (with

frame labels being updated when necessary). Note, however, that none of these choices affects

the interpretation of the results, as switching the labels will also invert the appearance of the

PPI-CAP when it is updated as per Equation 5.4, so in the end the conclusions are unchanged;

these suggestions are merely for visualization purposes.

Neuroscientific relevance The above touches upon the striking complexity of functional

brain activation during a task (Simony et al., 2016; Bolton et al., 2018b; Gonzalez-Castillo and

Bandettini, 2018): in this, although standard PPI analysis already provides valuable insight

into brain function at the cross-condition level (Kucyi et al., 2016), appropriately capturing

truly occurring activity requires the deployment of better temporal resolution approaches as

introduced here. Along this line of reasoning, none of the PPI-CAPs extracted in the present

study strongly correlated with the results of a second-level PPI analysis (rPPI-CAP1 = 0.33;

rPPI-CAP2 = -0.07; rPPI-CAP3 = 0.06; rPPI-CAP4 = 0.31). The diversity of the patterns revealed by

PPI-CAPs in this work confirms the heterogeneity of PCC connectivity to large scale networks

seen in previous studies (Liu and Duyn, 2013; Karahanoglu and Van De Ville, 2015), and their

occurrence counts reveal how some of these relationships are modulated according to task.

This suggests that the results from a conventional PPI analysis may yield a distorted picture of

modulated activity as it likely never occurs as presented in the resulting map, and highlights

PPI-CAPs’ ability to reveal this effect more accurately.

The ability to characterise functional brain changes at the single frame level also offers the

advantage to tie PPI-CAPs to specific subparts of the analysed task paradigm (see Spiers and

Maguire, 2007 for a more general review on this analytical direction): in the results illustrated

here, PPI-CAP4 (a visuospatial network) occurred upon strong movement during the displayed

movie (Figure 5.4), and all four patterns showed consistent, time-locked expression across

subjects at specific time points (Supplementary Figure B.6). The vivid and homogeneous

recruitment of posterior motion processing areas actually squares well with previous findings

considering the same dataset from another methodological angle (Bolton et al., 2018a).

Recently, the fMRI research community has striven to improve robustness and reproducibility

by creating large-scale data acquisition and sharing initiatives (Van Essen et al., 2013; Poldrack
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et al., 2013; Van Horn and Toga, 2014), which brought along novel issues regarding data

analysis (Smith and Nichols, 2018; Choudhury et al., 2014). This is because alongside the

increase in data size, methods to analyse brain data have become increasingly complex.

This combination may make some analyses simply computationally infeasible. It is thus an

advantage for new analytical methods to obtain robust results even if running only on a portion

of data, thereby circumventing computational cost issues that could make them impractical.

From a researcher’s point of view, even a linear decrease in computation time is significant,

as a reduction of analysis time from weeks to several days can be decisive when trying to

meet deadlines. This further highlights the importance of PPI-CAPs’ efficient use of brain data,

which is achieved by selecting a subset that already contains the relevant information needed

to uncover our method’s novel results.

Potential extensions of the PPI-CAPs approach In the current methodology, PPI-CAPs are

derived through a K-means clustering step, and are thus mutually exclusive in time. Previous

work has already shown the merit of considering separate brain states to accurately describe

task-based data (Leonardi et al., 2014; Gonzalez-Castillo et al., 2015). However, a possible

avenue to be explored would be to disentangle patterns that may overlap in time. An interest-

ing option to achieve this would be to translate a recent total variation framework tailored to

fMRI data (Karahanoglu and Van De Ville, 2015) to the task-based setting. As part of this new

approach, the deconvolution method we currently apply would be replaced by Total Activation

(TA) (Karahanoglu et al., 2013), which deconvolves BOLD signals and the haemodynamic

response function using spatio-temporal regularisation to recover activity-inducing signals.

These signals more closely reflect true neuronal activation than the indirect and noisy BOLD

signals. Still based on Karahanoglu et al.’s work, by differentiating those, innovation signals

are obtained—which reflect changes in activation intensity rather than pure amplitude. The

development of our method would thus be to apply the frame selection and clustering steps

on these signals to yield innovation-driven PPI-CAPs, which would represent spatial patterns

of voxels whose signals transition simultaneously. Backprojecting these would then recover

their time courses, thus revealing moments when different combinations of those patterns

may overlap.

Another attractive avenue would be to consider the introduction of temporal relationships

between successive time points, a feat that can be achieved both when considering sequential

(Eavani et al., 2013; Chen et al., 2016; Vidaurre et al., 2017) or overlapping (Sourty et al., 2016;

Bolton et al., 2018b) brain states. For instance, given that the present results revealed default

mode network (PPI-CAP3), fronto-parietal network (PPI-CAP1 and PPI-CAP2) and salience

network (PPI-CAP2) contributions during movie-watching, causal interplays across these

networks could be assessed in accordance with the so called triple network model (Menon,

2011).

Aside from addressing temporal dynamics, an equally important issue is to optimally tackle

the spatial dimension of the data. One extension could be the injection of a spatial prior in
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deriving PPI-CAPs (Zhuang et al., 2018). Another interesting aspect could be to study more

closely the spatial variability of task-related functional activity patterns (Kiviniemi et al., 2011).

A possible direction for this purpose could be to separately consider, for each PPI-CAP, the

pools of frames linked to given task contexts, and carry out statistical comparisons at this

level (Amico et al., 2014). Subtle spatial differences across task setting could then be revealed.

However, this aspect also depends on the number of clusters used in the analysis: at larger

values of K, different spatial patterns across contexts may rather be seen as context-specific

PPI-CAPs. Here, given the relatively low amount of available data and the clearly optimal

choice of K = 4 (Supplementary Figure B.4), we did not pursue this side of the analyses.

Yet other extensions could be, on the one hand, to consider more sophisticated measures than

PPI-CAP occurrences as features of interest (Chen and Glover, 2015) and, on the other hand,

to broaden the analysis of PPI-CAPs to a meta-state perspective (Miller et al., 2016; Vidaurre

et al., 2017), where a meta-state would symbolise a particular combination of expression and

polarity of the investigated patterns.

Ultimately, the goal is of course the application of the developed tools to better understand

both brain functions in healthy individuals, but also dysfunction in the case of neurological

pathologies. Our approach enables us to easily address this last point, by adding a group

factor to the employed nonparametric statistical assessment, enabling at the same time to

gain insight into which features (seed, task, interaction) relate to the studied disease.

Study considerations A natural limitation of this method is a consequence of the type of

data: the spatiotemporal resolution can only be as good as that of the fMRI data used. The

threshold for seed activation is the main free parameter in PPI-CAPs, but we showed that, as

has been confirmed in other independent studies that followed a PPA approach (Liu et al.,

2013; Tagliazucchi et al., 2012), the choice of this value does not affect the results within a very

wide range of options. If the magnitude of the seed activity is not correlated with the sign of

the task, then the resulting siMap will be proportional to the results of a PPI analysis, and its

interpretation can follow the same guidelines as for PPI (see Friston et al., 1997 Figure 5).

Recent work by Cole et al.(2019) has highlighted some challenges related to analysis of task-

based functional connectivity. The authors find that simply describing the task paradigm

as a dedicated regressor convolved with a canonical HRF, such as in PPI analysis, leaves a

relatively large amount of false positives in the data. This is partly explained by the facts that

the actual HRF shape varies across regions, and that task-related increases in activation will

not necessarily always have the same amplitude, leaving residual activity in the data despite

the use of a task regressor. In our work, we consider data that is deconvolved, a step for which

we assume a canonical HRF shape. Given the impact of HRF variability on task-based analyses,

and the advantage offered by approaches in which the HRF can be modeled individually across

regions, future work should enable the use of similar strategies in a deconvolution setting. A

second point made by the authors relates to the possible impact of differences in task-evoked
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activation amplitude across epochs. In our case, while we consider a naturalistic paradigm, we

delineate fun and science task sub-blocks. There is thus the risk that during one type of block,

task-based activation takes varying amplitudes, which would not be accounted for in the

modeling of the task. Note that we do not explicitly rely on amplitude information in deriving

and interpreting PPI-CAPs: rather, we examine how much the expression of a PPI-CAP (the

polarity that it takes) across frames is in line with that of the task paradigm, the seed paradigm,

or the PPI. A whole-brain pattern seen in a PPI-CAP thus may jointly represent those three

effects. In any case, future work should keep the points above in mind.

Conclusion

We presented a novel analysis that temporally decomposes task-modulated functional con-

nectivity into dynamic building blocks which cannot be captured by static methods such as

PPI analysis. We demonstrated that the PPI-CAPs approach successfully identifies dynamic

task-dependent patterns using only a subset of the available data, which will lead to a linear

decrease in computation time for large datasets proportional to the reduction in data size.

Moreover, we illustrated how our method can be used to analyse brain activity at a resolution

as low as the scanner’s repetition time. Finally, we indicated how our method can expand other

existing techniques and proposed new avenues for future research. Taken together, these show

that our approach provides a more accurate picture of brain activity during task performance.
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Abstract

Preterm birth is one of the leading causes of impaired neurodevelopment. Some of its con-

sequences only become apparent later in life, impacting children’s and their family’s lives.

The brain is, however, still in development during young adolescence, indicating that this

age may be within the intervention window. Understanding the mechanisms of altered brain

function in this population is thus paramount to identifying potential interventions. Func-

tional magnetic resonance studies have shown that brain function is highly dynamic at rest

and during task performance. Alterations in its complex organisation have been found to lead

to impairments in a variety of abilities ranging from cognition to the processing of emotions.

Here, we employ psychophysiological interaction of co-activation patterns (PPI-CAPs) analysis

to investigate moment-to-moment changes in task-driven modulation of brain activity during

a task involving movie watching and emotion regulation. We identify several patterns of

co-activation, including one involving the limbic network, which show a main seed; task; or

group effects, or an interaction between these. This study highlights the relevance of dynamic

approaches to study brain function.

5.2.1 Introduction

Infants born prematurely (i.e., before 37 completed weeks of gestation) are at significantly

higher risk for executive and cognitive functions impairment, including difficulties in emotion

reactivity and regulation later in life (Evrard et al., 2011; Langerock et al., 2013; Yaari et al., 2018).

These abilities are, however, still in plain development during childhood and adolescence,

suggesting that this age may still be within the intervention window. In order to identify and

develop interventions that promote positive outcomes in this population, it is paramount to

understand the neurological underpinnings of these difficulties.
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Most neuroimaging studies involving preterm adolescents rely on structural features, relating

brain volumes or microstructure to clinical and cognitive outcomes (Hüning et al., 2018;

Groeschel et al., 2019; Boardman et al., 2020). These structural studies provide relevant insights

into brain injuries that are associated with prematurity and potentially underlie neurocognitive

dysfunction, however they cannot provide information on brain activation driven by specific

demands. Functional MRI (fMRI) has thus become an increasingly popular approach for

this objective. For instance, Johns et al. (2019) have recently found that altered functional

connectivity in preterm-born adolescents was linked to socio-emotional impairments.

Of note, studies that investigate dynamic features of brain function and their links to cognition

have gained popularity in recent years. For instance, Garrett et al. (2013b) showed that the

variability of the blood oxygenation level dependent (BOLD) signal from fMRI is related to

cognitive ability at different stages in life. Moving from activation to a connectivity perspective,

studies relying on sliding-window approaches have established a link between dynamic

functional connectivity (dFC) and executive functions by showing that the former’s modulation

correlates with ongoing cognitive impairment (Nguyen et al., 2017) and meditative states in

children and adolescents (Marusak et al., 2018). Interestingly, using a similar approach, Tobia

et al. (2017) found that dFC may be the mechanism responsible for individual variation in

emotional responses to stress. Studies that probe into the link between dFC and emotional

processing in preterm-born individuals are still largely missing.

A recent development to sliding-window approaches is time-resolved analysis, allowing spe-

cific modulations of brain connectivity to be analysed at fMRI frame resolution. Freitas et al.

(2020) developed such a method called Psychophysiological Interaction of Co-Activation Pat-

terns (PPI-CAPs) to capture moment-to-moment changes in connectivity during performance

of a task. Importantly, the authors showed the method’s ability to link dynamic brain states to

specific stimulus cues within a Movie Watching (MW) paradigm. Studies including MW tasks

have the added benefit of approximating a real-life setting where subjects watch naturalistic

videos as opposed to the traditionally constrained experiments used in research (Vanderwal

et al., 2019). Naturalistic paradigms are thus intrinsically well-suited for dynamic analyses in

clinical populations, as has been recently been shown by Bolton et al. (2020a).

In this study, we employ PPI-CAPs to investigate functional connectivity changes over time

in preterm-born young adolescents and an age-matched control group of fullterm-born

individuals. Our participants watched a series of emotionally-loaded videos followed by

moments of self-regulation while focusing on their own breathing. Our goal was to explore

whether moment-to-moment rearrangements between brain regions differ across the two

groups in internally- versus externally-oriented tasks.

92



5.2. Journal Article: Tracking moment-to-moment functional connectivity in
preterm-born young adolescents during movie watching and emotion regulation

5.2.2 Methods

5.2.2.1 Participants

Twenty-seven healthy term-born (TB) early adolescents from 10 to 14 years of age (12 females,

mean age 12 ± 1.01 years) and thirty-seven age-matched preterm-born (PTB) individuals (20

females, mean age 12.1± 1.2 years) were recruited through advertisements. One TB participant

was excluded due to strong signal distortions on fMRI images caused by the subject’s dental

braces. Two TB and twelve PTB participants were excluded due to high head-motion. Twenty-

four TB and twenty-five PTB participants were finally included in the analysis.

Cognitive assessment at the time of the scan was performed using the French version of

the Wechsler Intelligence Scale for Children – Fifth Edition (WISC - V; Wechsler, 2014). For

one participant IQ score was evaluated using the Kaufman Assessment Battery for Children,

second edition (KABC-II; Kaufman and Kaufman, 2004). All participants scored within the

normal range of intellectual functioning (mean = 117.04 ± 11.35). Parents were asked to fill

a questionnaire assessing the presence of serious physical illness or neurological problems.

None of the participant had major disabilities, psychiatric or neurological diseases.

The Ethics Committee of the Canton of Geneva approved the study, which was carried out in

accordance with the Declaration of Helsinki. Caregivers and participants provided informed

written consent. Participants received a gift voucher of 100 Swiss francs for their participation

in the study.

5.2.2.2 fMRI Paradigm

Participants received instructions in text form on the screen, which was also read out loud by

the experimenter. They were requested to watch a series of 20 s-long videos and instructed to,

at the end of each one, relax and focus on their breathing for 20 s. At the end of this interval,

the children we asked to rate the video they have watched from negative to positive on a scale

from 1 to 5 by clicking on the corresponding number on the screen, using a mouse. A rating of

“1” would mean that the video brings very negative emotions such as fear, sadness or that it

is scary, while “5” means it brings very positive emotions such as happiness, laughter, or it

was cute. A rating of “3” would thus mean that the video’s emotional valence was neutral. At

the end of the rating, the trial was finished. This was repeated 12 times for a total time of 12

minutes and 1000 fMRI frames. Participants were asked to move as little as possible in general

and especially when rating the videos (e.g., by moving only their wrist rather than the whole

arm while making their choice using a mouse). Figure 5.5 illustrates the task paradigm. The

12 videos were selected from a published database (Samson et al., 2016) which includes 300

videos with emotional valence ratings from 75 adult participants. For our selection, we used

the following criteria: we chose the 6 most positive videos (excluding those that would be

likely to cause bursts of laughter, to avoid motion artefacts in the fMRI scans) and the 6 most

repulsive videos (excluding those that would have been too scary, since our study involved
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children).
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Figure 5.5 – The movie-regulation task paradigm. After instructions are shown on the screen
and read out loud, the first trial starts with a fixation cross of variable duration, followed by
a 20 s-long video. This is followed by a 2 s cross and then a 20 s interval where participants
are asked to concentrate on their breathing. At the end of the trial, participants must rate the
video on a scale from 1 to 5, where 1 represents "negative" and 5 indicates "positive". Each
trial lasts roughly one minute, and the total protocol includes 12 such trials.

5.2.2.3 MRI acquisition

MRI data were acquired on a Siemens 3T Magnetom Prisma scanner at Campus Biotech,

Geneva, Switzerland. Structural T1-weighted MP-RAGE (Magnetization Prepared Rapid Gradi-

ent Echo) sequences were acquired using the following parameters: voxel size = 0.9 x 0.9 x 0.9

mm; repetition time (TR) = 2300 ms; echo time (TE) = 2.32 ms; inversion time (TI) = 900 ms;

flip angle (FA) = 8°; field of view (Fov) = 240 mm. Functional images were T2*-weighted with a

multislice gradient-echo-planar imaging (EPI) sequence of 64 slices; voxel size = 2 x 2 x 2 mm;

TR = 720 ms; TE = 33 ms; Fov = 208 mm. In addition, a fieldmap was acquired every time a

participant entered the scanner, with TR = 627 ms; TE1 = 5.19 ms; TE2 = 7.65 ms; and FA = 60°.

5.2.2.4 MRI data preprocessing

All data were preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience,

UCL, UK) in MATLAB R2019a (The MathWorks, Inc., Natick, Massachusetts, United States).

The fMRI images from each participant were spatially realigned and unwarped, respectively,
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to correct for motion artefacts and potential geometric distortions. The unwarping step

brings two main advantages: it improves the co-registration between structural and functional

images, and reduces the distortion variability across subjects during spatial normalization to

a common space (Hutton et al., 2002). Functional images were then coregistered to structural

images in subject space and smoothed with a Gaussian filter of full width at half maximum

(FWHM) = 6 mm.

In order to approximate BOLD signals as much as possible to actual brain data, one of the initial

steps in PPI-CAPs analysis is to deconvolve the time series with the haemodynamic response

function (Freitas et al., 2020). To this end, here we apply total activation (TA) deconvolution

(Karahanoglu et al., 2013), a method based on sparse spatio-temporal priors to uncover the

underlying activity-inducing signal of fMRI without relying on timing information.

After Total Activation deconvolution, data were warped into MNI (Montreal Neurologic In-

stitute) space via a study-specific DARTEL (Diffeomorphic Anatomical Registration Through

Exponentiated Lie algebra) template to be allow group level comparisons. This normalisation

method has been shown to be robust to age differences in participants from the age of 7

(Ashburber and Friston, 1998; Burgund et al., 2002) and is among the top ranked currently

available deformation algorithms (Klein et al., 2009).

5.2.2.5 Head motion

Head motion was assessed in terms of framewise displacement (FD; Power et al., 2014). Two

TB and fourteen PTB subjects for whom more than 20% of frames would be affected by motion

(that is, frames with FD > 0.5 mm, one frame before, and two after those) were excluded

from further analyses. For the remaining subjects, total head motion was quite low in both

groups: In the control group, for the first fMRI run the mean FD per frame was 0.159 mm with

a standard deviation (SD) of ± 0.05 mm; for the second run the mean FD was 0.154 mm ± 0.05

mm; In the Preterm group, for the first fMRI run the mean FD per frame was 0.163 mm with a

standard deviation (SD) of ± 0.05 mm; for the second run the mean FD was 0.165 mm ± 0.06

mm. The two groups did not significantly differ in mean FD (unpaired t-test, p = 0.65).

5.2.2.6 fMRI analysis

To explore moment-to-moment changes in functional connectivity during movie watching or

breathing intervals and to see how this changes across groups, we employed a psychophysi-

ological interaction of co-activation patterns (PPI-CAPs) analysis (Freitas et al., 2020). This

approach selects moments in which a seed is highly active and clusters frames based on

their activation patterns, allowing positive and negative polarities of the same pattern (that is,

moments in which activation patterns have completely opposite signs) to be grouped together.

It is then possible to test, for each obtained PPI-CAP, whether it varies according to the seed

activity, the task progression, or an interaction between the two.
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For this study we selected the dorsal anterior cingulate cortex (ACC) as a seed, as it is a key

node of the Salience Network and has been previously shown to be affected by preterm birth

in studies involving both static (White et al., 2014b; Daamen et al., 2015; Lordier et al., 2019)

and dynamic (Chapter 3) analyses. As all of these studies involved resting-state paradigms

so, to the best of our knowledge, this is the first investigation of task-related dynamic ACC

connectivity in this population. In addition, to show that interesting task-related dynamics

may be found independently of the seed choice, we also conducted the analysis using the

PCC as a seed given its description as a hub region (Andrews-Hanna et al., 2010), and its wide

variety of connection arrangements (Lin et al., 2017), including during internally- (Raichle,

2001) and externally-oriented cognition (Freitas et al., 2020). These additional results can be

found in Supplementary Material Section B.3. In both cases, 30% of the frames in which the

seed was most highly (de)active were selected as a trade-off between using less data while

keeping enough frames to obtain stable results (Freitas et al., 2020). The clustering step was

performed across both groups together, to avoid the problem of matching similar PPI-CAPs

between groups if these were calculated separately.

To identify the optimal number of PPI-CAPs that must be retrieve, we performed a Consensus

Clustering analysis(Monti et al., 2003). This approach applies K-means clustering on several

subsamples of the data and calculates the consensus matrix M . Each element M (a,b) in-

dicates the fraction of subsamples in which two frames a and b were both retained in the

subsample and clustered together. The optimal number of clusters can then be inferred by

visual inspection of the ordered matrix M , as well as of the cumulative distribution function

(CDF) of M for different values of k. Once the final k was identified, the final clustering step

was performed using 100 replicates.

5.2.2.7 Network assignment

After PPI-CAPs were obtained in the clustering step, we identified the regions and networks

highlighted in each pattern by comparing them to those from previous studies using two

approaches. First, we compared them to the 7 functional networks identified by Thomas Yeo

et al. (2011). This was achieved by calculating what proportion of each functional network

was activated or deactivated in each PPI-CAP, and then applying the Hungarian Algorithm

Munkres (1957) to the resulting matrix, to assign networks to each pattern. In addition, we

uploaded the PPI-CAPs’ files to NeuroSynth.org (Wager, 2011) and investigated the regions

most associated with each PPI-CAP according with the automated meta-analysis tool.

5.2.2.8 Significance assessment

For each PPI-CAP, we tested 3 main (Seed; Task; Group) and 3 interaction (Seed vs. Task, or PPI;

Group vs. Task; and Group vs. Seed). If a PPI-CAP has a strong main or interaction effect, the

polarity of the frames that constitute it will tend to correlate with the sign of that effect for the

same time points. To visualise if this is the case, we can thus generate confusion matrices for
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each effect and PPI-CAP. When there is a strong correlation, the higher values of a confusion

matrix will tend to load on one of its diagonals, and the relevance of this relationship can

be measured by taking the matrix’s determinant, or det-index. To test whether this value is

significant, we generate null distributions by performing random permutations of the effect

of interest’s labels and re-calculate the det-index each time. Finally, we see where the real

det-index stands in the distribution (Figure 5.1F). For this study, we performed 3000 random

permutations for each test. We disclose the null distributions and uncorrected p-values in

the Supplementary Figures for this chapter and, in the Results Section, indicate effects with

significance level α 0.05/6 = 0.008), to correct for the number of PPI-CAPs.

5.2.2.9 Investigation of seed heterogeneity

Finally, we investigated the source of the seed activity to test how heterogeneous the seed

was. To this end, we clustered the seed’s voxelwise time courses — signed after z-scoring —

into three subgroups. We then projected these groups back onto the brain to identify possible

subdivisions of the seed and to better understand where the averaged signal likely came from.

5.2.3 Results

5.2.3.1 Consensus clustering

We performed consensus clustering using a K range from 3 to 20 to identify the most stable

number of clusters for our data. Visual inspection of the confusion matrices for each value of K,

as well as the plot of the proportion of ambiguously clustered frames for each case, identified

K = 6 as a clear optimal value. These results can be found in Supplementary Figure B.7

5.2.3.2 Six patterns from ACC-based PPI-CAPs

Clustering ACC-selected frames yielded the patterns shown in Figure 5.6. According to the

Hungarian Algorithm-based assignment of networks each PPI-CAP was identified as the fol-

lowing: PPI-CAP1 corresponds to an activated somatomotor network (SMN) and deactivated

default mode network; PPI-CAP2 is assigned to an activated ventral attention Network, also

known as salience network (SN), and deactivated limbic; PPI-CAP3 contains an activated

Visual and deactivated fronto-parietal network (FPN); PPI-CAP4 includes an activated dorsal

attention (DAN) and deactivated visual network; PPI-CAP5 has an activated FPN and de-

activated SMN; and PPI-CAP6 includes an activated limbic and deactivated DAN. As visual

inspection of Figure 5.6 suggests, some CAPs had similarities with more than one network.

The full similarity matrix can be found in Figure B.8 in the Supplementary Material for this

chapter. For simplicity, we will interpret the results based on the assigned networks.
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Figure 5.6 – PPI-CAPs focused on the ACC yield six dynamic patterns. Using K = 6 for the
clustering step as defined in Figure B.7 yielded the six PPI-CAPs above. Each row corresponds
to one PPI-CAP, numbers indicate slice coordinates in MNI space.
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5.2.3.3 Main and interaction effects

For each PPI-CAP, we tested for main and interaction effects by checking if the flipping of each

pattern correlates with the sign of each effect. The resulting confusion matrices can be seen in

Figure 5.7. Each row corresponds to a PPI-CAP. Permutation testing then identified which of

these effects were significant, which can be seen in Figure B.9 in the Supplementary Material.

Figure 5.7 – ACC-seed PPI-CAPs show a variety of main and interaction effects. To identify
main and interaction effects for each PPI-CAP, confusion matrices show how often the sign
of a PPI-CAP switches in the same way as each of the effects. We tested three main effects
(Seed; Task; and Group) and three interaction effects (Seed vs. Task (PPI); Group vs. Seed;
and Group vs. Task). The signs for each effect are as follows: Seed — positive and negative
signs correspond to frames when the seed was activated of deactivated, respectively; Task —
positive signs correspond to "Movie Watching" while negative signs correspond to moments of
"Emotion Regulation"; Group — positive signs correspond to fullterm controls, while negative
signs correspond to preterm-born individuals. Interaction signs are calculated as element-
by-element multiplication of the main effect signs. Light yellow indicates the lowest number
of frames, while dark red indicates the highest number of frames. *** = p<0.001; ** = P<0.008.
Significance level α 0.05/6 = 0.008).
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Main effects: All the PPI-CAPs showed a significant seed effect at p < 0.001 (Figure B.9, first

column). As the direction of the diagonals in the first column of Figure 5.7 suggests, PPI-CAPs

2, 4 and 5 we positively correlated with the seed, while PPI-CAPs 1, 3 and 6 were negatively

correlated with it. PPI-CAP 2 was positively correlated with the task (p < 0.001), meaning that

the salience network was more active during the Movie Watching Task. In contrast, PPI-CAPs

1, 3, 5 and 6 were anti-correlated with the task, meaning that the areas shown in red for

these patterns in Figure 5.6 tended to be more active during the Emotion Regulation task (all,

p < 0.001). Only PPI-CAP 1 showed a group effect, occurring more often in the preterm group

(p < 0.03, uncorrected), with a tendency to appear more often in its positive configuration.

Interaction effects: PPI-CAPs 1, 3, and 6 show a positive interaction between seed and task

(PPI effect), meaning that these patterns correlate with the seed more during Movie Watching

and are anti-correlated with the ACC during Emotion Regulation (all, p < 0.001). In contrast,

PPI-CAPs 2 and 4 show a negative PPI effect, such that they correlate more with the seed during

Emotion Regulation (all, p < 0.001). PPI-CAPs 1 (p < 0.001), 3 (p = 0.002), 5 (p < 0.001)

and 6 (p < 0.001) have a positive group versus task interaction, such that during Movie

Watching, the regions shown in red for these patterns are more often activated in controls

than in preterms, while during Emotion Regulation these regions are also more often de-

activated for this group. Finally, PPI-CAP 2 has a positive group versus seed interaction effect

(p < 0.001), while PPI-CAPs 1 (p < 0.001), 4 (p = 0.003), 5 (p < 0.001), and 6 (p < 0.001)

have a negative group versus seed interaction effect.

5.2.3.4 Seed heterogeneity

Clustering the seed’s voxels’ based on their signed time courses revealed three clear spatial

subdivisions. The averaged seed activation seems to come mainly from subdivisions one and

two, with subdivision three having a temporal pattern that resembled the former less. Figure

5.8 illustrates this result.

5.2.4 Discussion

In this study we investigated dynamic functional connectivity in the context of a task involving

movie watching and emotional regulation in a preterm-born population of young adolescents.

We employed a state-of-the-art method to uncover several patterns of co-activation with an

anterior cingulate cortex (ACC) seed and analyse their relationship with three main effects

(namely seed; task; and group), as well as three interaction effects (namely seed versus task;

group versus task; and group versus seed). We identified several patterns with a significant

effect, many of which involved differences across the two groups, revealing dynamic aspects

of brain function in the preterm population that had not been uncovered before.

Our exploration of ACC-based connectivity patterns revealed several reproducible PPI-CAPs,
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Figure 5.8 – ACC-seed subdivisions based on temporal activity. Temporally clustering the
voxelwise seed activity’s sign (large rectangle) across all subjects yielded three spatial subdivi-
sions of the dorsal anterior cingulate cortex, indicated in green, yellow and red in the brain
plot. The activity of voxels within regions one and two (as indicated by the top two layers of
the large rectangle) resembled more closely and thus seem to be driving the seed’s averaged
signal (top rectangle).

with six being the optimal number of repeatable patterns. Previous studies had shown a wide

variety of possible brain states in connection with other brain regions such as the posterior

cingulate cortex (Liu et al., 2013; Lin et al., 2017; Freitas et al., 2020). The ACC, in turn, has often

come up in BOLD variability studies, including some involving clinical populations (Zöller

et al., 2017; Zhang et al., 2020), suggesting this brain region’s high flexibility and that dynamic

aspects of its function and connectivity may be implicated in the neurological mechanisms of

clinical disorders. While Chapter 3 investigated resting-state co-activation pattern with an

ACC seed, to the best of our knowledge this is the first study to have explored the task-related

dynamic connectivity range of the ACC.

Only one PPI-CAP had a pure group effect close to significance. This was PPI-CAP 1, with

somatomotor (SMN) areas being more highly active, while the default mode network (DMN)

was deactive, in preterm-born children throughout the experiment. In addition, the group

versus polarity effect indicates that it appears more often when this group is performing the

movie watching task (note the darker colours on the right side of the corresponding confusion

matrix in Figure 5.7). In typically developing individuals, motor stimulation is related to con-
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tralateral activation of the motor cortex. Furthermore, not only physical stimulation, but even

just the act of watching someone else move, or of imagining oneself moving, already generates

similar activation (Butler and Page, 2006). Studies involving somatomotor stimulation in

preterm-born infants, however, have often found bilateral (as opposed to only contralateral)

activation of the motor cortex in response to unilateral stimulation (Heep et al., 2009b; Arichi

et al., 2010; Allievi et al., 2016). Many of the the videos shown during Movie Watching blocks

involve high movement such as sports scenes of families playing football. Taken together, the

above facts may justify not only the occasional appearance of motor-related areas during this

experiment, but also why it appears more for the preterm group. Further analyses based on

transients (Karahanoglu and Van De Ville, 2015; Freitas et al., 2020) would help to disentangle

the spatiotemporal overlapping of the different regions included in the PPI-CAP in this case.

Interestingly, PPI-CAP 6, which includes the limbic network (LN) and the dorsal attention

network (DAN) with opposite signs, shows both a group versus task and a group versus

seed interaction effects. In controls, the LN is more often active when movie watching than

during emotional regulation, while the opposite is true for the preterm group. It is also more

deactivated (and the DAN activated) when the preterm are movie watching. These results

are in line with previous results which found altered structural connectivity of the cortico-

basal-thalamo-cortical loop and the limbic system, which are essential for socio-emotional

processing (Olson et al., 2007; Braun, 2011), in preterm-born school aged children as compared

to term-born controls (Fischi-Gómez et al., 2015; Fischi-Gomez et al., 2016).

The investigation of seed homogeneity by clustering voxels based on their temporal features

revealed three spatial subdivisions. This was done in a data-driven way, showing that there is

a high level of consistency between neighbouring voxels. It also highlights that the seed itself

is not entirely homogeneous and that the effects we found mainly related to the ventral part of

the dorsal anterior cingulate cortex.

Taken together, the results presented here underline the potential of dynamic analyses to

uncover brain function relationships that cannot be examined using traditional static method-

ologies. The potential to study these dynamic features in combination with behavioural and

clinical outcomes proves a compelling direction for future research.

Considerations and future avenues

Although we identified a variety of patterns that co-activate with the ACC, it is not possible

to know whether all the brain regions contained in each pattern activated (or deactivated)

simultaneously — and it probably is not the case. Future studies would benefit from combining

the PPI-CAPs approach with a method that extracts transients, or moments of change, from the

data, and only then performs the clustering step (Karahanoglu and Van De Ville, 2015; Freitas

et al., 2020). This would help clarify the co-occurrence of certain networks with opposite signs

in some of the PPI-CAPs we uncovered.
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This study includes a task block where participants are asked to focus on their breathing. The

very act of concentration one one’s breathing has been shown to alter breathing patterns

(Conrad et al., 2007), which may cause changes not only in motion, but also CO2 levels

(Western and Patrick, 1988). A recent study by Chen et al. (2020) has shown that increased

CO2 levels induce vasodilation and an increase in blood flow, which may drive so-called

"physiological networks". Thus, including physiological measures in a subsequent analysis

would help control for these potential confounds when exploring task effects.

Another compelling next step would be to explore potential relationships between the occur-

rence of patterns identified here with behavioural and clinical measures from the participants.

For example, does the occurrence of PPI-CAP 6, which has a strong emotional component,

correlate with scores of emotional aptitude in these young adolescents? Future studies will

help clarify this point.

Finally, recent studies have looked into another aspect of brain dynamics called quasi-periodic

patterns (QPP; Majeed et al., 2011). This approach assumes that brain activity and BOLD

fluctuations are dominated by a slow propagation of activity involving the DMN and task

positive networks (Abbas et al., 2019). The QPPs can then be tested on their spatiotemporal

pattern, frequency and strength, which is useful to identify whether not only the existence of

different patterns of activity per se, but also e.g. the specific order in which they appear, brings

novel information about clinical populations (Briend et al., 2020).
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6 Summary and future perspectives

This work explored the dynamic features of brain function in young adolescents and how they

are affected in individuals who were born preterm. To this end, both task-based and resting-

state fMRI paradigms were analysed, and one methodological advancement was developed to

bring the advantages of dynamic approaches also to task-based studies. Here, I summarise

our main findings and identify potential avenues for future work that builds upon the analyses

and clinical contributions presented so far.

6.1 Summary of findings

Resting-state brain dynamics in preterm-born young adolescents: We investigated, for the

first time, the development of blood oxygenation level dependent (BOLD) signal variability

and co-activation patterns (CAPs) in young adolescents born prematurely as compared to

fullterm-born controls. To address the issue of high dimensionality in voxelwise BOLD vari-

ability maps, we employed a partial least squares correlation (PLSC) approach to identify

multivariate patterns of alterations across groups and how they relate to life course measures,

namely age at assessment; gestational age; and an interaction between the two. We used

a similar PLSC approach to identify differences in CAP expression between the groups and

their relationship with the aforementioned life course variables. Through this approach, we

discovered that the development of BOLD signal variability is indeed altered in the preterm

group in a broad pattern distributed across several areas of the brain, but especially in the

bilateral hipoccampi and salience network including bilateral insulae and anterior cingulate

cortex (ACC). Since the ACC has been recently identified in other studies as having altered

connectivity in preterm-born individuals, we investigated this region further by performing

an ACC-based CAPs analysis to uncover dynamic functional connectivity patterns that arise

across age. Similarly to the BOLD variability analysis, we found different trajectories of CAP

development in both groups. Indeed, the change in the balance between internally- and

externally-oriented networks across age is more accentuated in the preterm group. Taken

together, our observations suggest that the preterm-born brain triggers neurological compen-

sation mechanisms that start during the highly dynamic age range of early adolescence and

105



Chapter 6. Summary and future perspectives

fail to find an optimal balance.

Reality Filtering task processing in preterm-born young adolescents: To test whether pre-

term-born young adolescents would be able to complete a task that relies on a particularly

vulnerable region in this population (the orbitofrontal cortex, OFC), we performed a reality

filtering experiment. By looking into how brain activation changed depending on the type of

stimulus being shown and comparing the preterm and control groups, we found that despite

being able to perform the task with comparable accuracy to the fullterm group, the levels of

OFC activation in the preterm group are lower. Moreover, no other regions were significantly

more activated in the preterm than in controls. This suggests that preterm-born individuals

may have developed mechanisms to optimise OFC activity such that they are still able to

perform the task without depending on the same level of activation as the control group.

Time-resolved task-driven modulations of brain connectivity: We thus proceeded to inves-

tigate how brain organisation changes over time as a result of task performance in the preterm

population. Given their higher risk of attentional and socio-emotional deficits, we elaborated a

task that includes a movie watching aspect and an emotion regulation one. To explore this rich

data set we first developed a time-resolved method to recover task-driven co-activation pat-

terns (PPI-CAPs) and analyse their relationships with the seed, task, or an interaction between

the two. We initially validate this framework in an adult data set. Once the methodology was

stable, we applied it to the preterm data and extended the method to allow group comparisons.

Here, we identified a series of dorsal anterior cingulate cortex (ACC)-based co-activation

patterns that vary differently in preterms and controls according to the task. Interestingly, a

new pattern including the limbic network emerged from this data which had not been found

in the CAP analysis from Chapter 3, which was based on resting-state data. This is in line

with existing evidence that the limbic network is involved in emotion processing. Together,

these results highlight the relevance of studying brain dynamics in clinical populations. The

code developed to perform the analysis described in this work has been made available on

https://github.com/lorenafreitas/PPI_CAPs

6.2 Perspective for future research

Linking dynamic brain function and clinical outcomes

The studies presented in this thesis characterise dynamic features of brain function in preterm-

born young adolescents and how they compare to fullterm-born individuals at his age. Several

of these involve areas known to be part of high-order functional networks (see, for example,

chapter 3). An interesting follow-up will thus be to see how the markers unveiled here relate

to clinical outcomes such as attention levels, working memory, executive functions, etc. In

fact, this data is available from the Building the Path to Resilience in Preterm-Born Infants

project, of which this work is a constituting part. This would thus be a natural and feasible

development for the near future.
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6.2. Perspective for future research

Mindfulness meditation as a potential intervention in preterm young adolescents

Although interventions for premature babies have been routinely implemented with a positive

effect on cognition and motor abilities (Ferreira et al., 2020), so far there is no consensus

regarding procedures applied at later stages in life. Socio-emotional and executive function

skills are, however, still in plain development during childhood and adolescence, suggesting

that this age may still be within the intervention window.

Mindfulness meditation is a form of mind training to develop a reflective (as opposed to

reflexive) way of responding to both internal or external events (Bishop, 2004) that involves

attention, attitude and intention. As (Kabat-Zinn, 1994) describes it, it involves "paying

attention (Attention), in a particular way (Attitude), on purpose (Intention), in the present

moment, and non-judgmentally". Studies on its benefits for physical and mental health as

well as its neurocognitive mechanisms have gained increased popularity in investigations

involving adults, children and adolescents. In fact, even short sessions of meditation given to

inexperienced participants have been deemed enough to improve attention levels Norris et al.

(2018); Jankowski and Holas (2020). Moreover, regular practice has been shown to have long-

term effects on attention (Zanesco et al., 2018) and brain funtion. Benefits such as the ones

described above have put meditation in the spotlight as a potential intervention in clinical

practice (Simkin and Black, 2014; Zhang et al., 2018).

In young populations, mindfulness meditation training has emerged as a potential tool to help

manage a wide variety of symptoms including disruptive behaviour (Perry-Parrish et al., 2016)

and lack of attention (Zhang et al., 2018). A study involving typically developing children at 11

years old showed that 8 weeks of mindfulness training already has the potential to improve

attentional self-regulation (Felver et al., 2017). Another, found that meditation programs can

enhance cognitive and social-emotional development in young populations (Schonert-Reichl

et al., 2015). Taken together, these results further suggest a link between these cognitive

domains and that mindfulness meditation may be an avenue for intervention in clinical

populations.

The Building the Path to Resilience in Preterm-Born Infants project, of which this thesis is part,

has acquired functional and structural MRI data from the preterm-born young adolescents

studied here after 8 weeks of mindfulness training. Crucially, mindfulness has recently been

found to relate to dynamic — as opposed to static — features of neural function and neural

network interactions over time (Marusak et al., 2018). This highlights PPI-CAPs as a compelling

avenue to explore the effects of mindfulness meditation as a potential intervention for young

adolescents born prematurely, as its focus is precisely to uncover dynamic aspects of brain

function during performance of a task.
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PPI-CAPs as markers for neurofeedback

FMRI Neurofeedback (NF) is a technique in which real-time information about someone’s

own brain activity is fed back to them, which gives them the chance to attempt to control it.

It has been found to be a promising means to reshape neural activity, and has been used as

an intervention tool in several neurological and psychiatric disorders (Güntensperger et al.,

2017; Misaki et al., 2019) including in adolescent clinical populations (Alegria et al., 2017).

Most relevant for this work is its potential for self-driven modulation of emotion processing

domains, both in adult (Koush et al., 2017; Lorenzetti et al., 2018) as well as children and

adolescent populations (Cohen Kadosh et al., 2016). In most of these studies, a seed region is

selected for which information on activation levels is provided to the user, who then tries to

modulate that brain area’s activity.

Recently, Koush et al. (2017) showed that it is also possible to gain control over entire networks

related to emotion regulation using a connectivity-neurofeedback approach. This opens

a promising avenue for future research built on the basis of this thesis. In Chapter 5, we

introduced Psychophysiological Interaction of Co-Activation Patterns (PPI-CAPs) as a seed-

based method to investigate time-resolved changes in effective connectivity also in a task-

based environment. With this method, we have investigated differences in dynamic brain

function during the performance of a task in the preterm group as compared to fullterm-

born controls. The very PPI-CAPs which are less elicited by the clinical population could

potentially be used as an NF target in future studies. In this paradigm, an initial run could be

performed to identify target PPI-CAPs — that is, those which were most differently expressed

between groups. Then, subsequent runs would be carried out where the subject’s goal is to

attempt to reproduce that pattern. It is important to note, however, that although fMRI NF

has been show to successfully modulate activation and connectivity in the brain, and to lead

to behavioural changes, how this translates into clinically significant improvements remains

debatable (Thibault et al., 2018).

Extensions for PPI-CAPs

As described in more detail in section 5.1.4 of Chapter 5 (Potential extensions of the PPI-

CAPs approach), there are several ways in which this methodology could be extended to

capture additional information on the dynamic features brain function. Of note, rather than

approaching brain function as a series of separately elicited brain sates (Leonardi et al., 2014;

Gonzalez-Castillo et al., 2015; Freitas et al., 2020), one could think of it as several patterns that

may overlap with each other in dynamic ways (Karahanoglu et al., 2013; Karahanoglu and Van

De Ville, 2015). The so-called innovation signals from Karahanoglu et al. (2013)’s work reflect

moments in which there are significant changes in activation intensity of certain brain areas,

rather than pure amplitude. One could thus apply the frame selection and clustering steps

on these signals to yield innovation-driven PPI-CAPs (or PPI-iCAPs), which would represent

spatial patterns of voxels whose signals transition simultaneously. Backprojecting these would
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then recover their time courses, thus revealing moments when different combinations of those

patterns may overlap.

Another attractive route for extension would be to consider the introduction of temporal

relationships between successive time points. This has been shown to be a promising avenue

both when considering sequential (Eavani et al., 2013; Chen et al., 2016; Vidaurre et al., 2017)

or overlapping (Sourty et al., 2016; Bolton et al., 2018b) brain states. For instance in the case

of the present work, given that the results from Chapter 5.1 which revealed default mode

network (PPI-CAP3), fronto-parietal network (PPI-CAP1 and PPI-CAP2) and salience network

(PPI-CAP2) contributions during movie-watching, causal interplays between these networks

could be assessed in the context of the so-called triple network model (Menon, 2011).

So far, PPI-CAPs address temporal dynamics alone, without taking into consideration how to

optimally tackle the spatial dimension of the data. One extension could thus be to inject a

spatial prior in deriving PPI-CAPs (Zhuang et al., 2018), or to study the spatial variability of

task-related functional activity patterns in more detail (Kiviniemi et al., 2011). This could be

achieved by separately considering, for each PPI-CAP, the pools of frames linked to given task

contexts, and carrying out statistical comparisons at this level (Amico et al., 2014).

Finally, one could investigate measures that are more sophisticated than pure occurrences as

features of interest (Chen and Glover, 2015; Bolton et al., 2020b), or broaden the analysis of

PPI-CAPs to a meta-state perspective (Miller et al., 2016; Vidaurre et al., 2017), where a meta-

state would symbolise a particular combination of expression and polarity of the investigated

patterns.

The ultimate goal is to apply novel tools to better understand brain function both in health

individuals and in clinical cohorts. I believe that the future avenues presented here would

help provide a more accurate picture of brain function dynamics and have great potential to

address these populations.

Probing into structure-function relationships

While the main goal of this thesis was to focus on the relevance of functional brain dynamics

for the study of preterm birth, it is important to consider that the brain’s underlying structural

architecture clearly affects not only static measures of brain function (Honey et al., 2009) but

also dynamic ones (Hansen et al., 2015). However, for reasons that remain to be explored —

and may include non-linear neural processing in specific brain areas as well as confound-

ing physiological artefacts — the BOLD signal contains information that does not simply

reproduce that of brain structure. Therefore, analysing both together may bring relevant,

additional information which previous studies had missed. For instance, Amico and Goñi

(2018) demonstrated how an approach combining multimodal canonical correlation as well

as joint independent component analysis can be used to investigate structural-functional al-

terations by recovering task-sensitive “hybrid” patterns of connectivity that represent subjects’
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connectivity fingerprint.

Graph signal processing (GSP) has recently emerged in the neuroimaging field as a novel

framework for brain data analysis that integrates brain structure and function (see Huang et al.

(2018) for a broad overview). In this scheme, brain structure defines a graph representation

where brain regions are the nodes and white matter tracts are the edges, while each frame of

fMRI activity is a temporal sample of a signal living on this graph. More recently, this concept

has seen an interesting extension in which high quality activity time courses within the white

matter are derived through the combination of a voxel-wise structural graph, and of grey

matter activity (Tarun et al., 2020).

To the best of our knowledge, graph analyses on preterm-born populations to date have solely

considered either structure or function individually. Therefore, this remains a promising

avenue to obtain a better-informed picture of brain function in prematurity.

A note on addressing the global challenge of prematurity

An important issue in the study of the neurodevelopmental effects of preterm birth is that,

although most of the global burden of preterm birth is shouldered by low- and middle-income

countries (LMICs), only a tiny portion of the currently available research evidence for their

prevention and treatment come from these settings (Smid et al., 2016). However, since high-

income countries tend to offer more funding for research and in many cases have better

facilities at researchers’ disposal, investigations in these regions of potential biomarkers for

targeted intervention that improves clinical outcomes in this population are also of utmost

importance. Once non-invasive interventions such as the ones the Building the Path to

Resilience in Preterm-Born Infants project — of which this thesis is a constituting part — aims

to investigate are found, the need for expensive equipment such as MRI machines will prove

less essential, and LMIC populations will also benefit from them.
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A Supplementary material for Chapter 3

A.1 Supplementary Figures
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Figure A.1 – Selecting the ideal number of Co-Activation Patterns. The plot shows the pro-
portion of ambiguous clustering (PAC) for cluster numbers ranging from 3 to 20. There is a
clear peak of (1 - PAC) for K = 6 indicating that, when this value is chosen, different runs of
k-means clustering yield the most consistent results.
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Figure A.2 – Correlation between brain and environmental scores for BOLD variability PLS.
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Figure A.3 – Correlation between brain and environmental scores for CAP PLS.
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Figure A.4 – Correlation between gestational age and age at assessment. There was no sig-
nificant correlation between the two measures in the control group (r =−0.22, n.s.). There as
a weak correlation between the two measures in the preterm group (r =−0.4, p = 0.02).
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B.1 Link between conventional PPI and the stationary PPI-CAP

Within the PPA/CAPs framework, it is well known that averaging the frames where the seed

exceeds a “well chosen” threshold φ, yields a proxy for the conventional seed connectivity

map (Tagliazucchi et al., 2012; Liu and Duyn, 2013). This observation can be explained in the

following way: let us assume that the activity time course S(t ) of a seed voxel is a realization

over time, t = 1, . . . , N , of a random variable S for which E [S] = 0 and E [S2] = 1. To construct

conventional seed connectivity, a general linear model (GLM) is put forward to explain the

time course V (t ) of a target voxel as:

V (t ) = βS(t )+ε(t ), (Eq. B.1)

where β is the parameter weight (i.e., functional connectivity) and ε(t) is the residual and

assumed to be a realization of the noise with E [ε] = 0 and E [ε2] =σ2. In addition, we assume

the noise to be independent from the seed voxel activity; i.e., E [S ·ε] = 0. Multiplying both

sides of Eq. B.1 with S(t ) and taking the expectation leads to:

E [V ·S] = βE [S2]+E [S ·ε], (Eq. B.2)

which simplifies into β= E [V ·S].

To obtain the stationary map in the CAPs approach, we want the expectation value of the

target voxel for frames where the seed exceeds a threshold φ:

ICAP+ = E [V : S >φ] (Eq. B.3)

= E [βS +ε : S >φ] (Eq. B.4)

= βE [S : S >φ]+E [ε : S >φ], (Eq. B.5)

where in the first step we have substituted the previous GLM of Eq. B.1 and “:" implies

conditioning. Due to the independence of noise and seed voxel, and E [ε] = 0, the second term
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of Eq. B.5 will vanish, and we obtain

ICAP+ =βE [S : S >φ], (Eq. B.6)

which means that the expectation of suprathreshold frames in the PPA method will be pro-

portional to the result of a conventional correlation map, with the constant of proportionality

given by E [S|S > φ], which only depends on the seed, and not the target voxel. A similar

relationship can be derived when the seed activity is below the negative threshold:

ICAP- = E [V : S <−φ] (Eq. B.7)

= E [βS +ε : S <−φ] (Eq. B.8)

= βE [S : S <−φ]+E [ε : S <−φ] (Eq. B.9)

= βE [S : S <−φ] (Eq. B.10)

In the case of a two-sided threshold, using the identity sign(A)A = |A|, we can conclude that:

IC AP = E
[

sign(S)V : |S| >φ]
(Eq. B.11)

= E [βS sign(S)+εsign(S) : |S| >φ]
(Eq. B.12)

= βE [S sign(S) : |S| >φ]+E [εsign(S) : |S| >φ]
(Eq. B.13)

= βE
[|S| : |S| >φ]

. (Eq. B.14)

Based on this observation, we can generalize to PPI for which the GLM becomes:

V (t ) = βSS(t )+βT T (t )+βPPI P (t )+ε(t ), (Eq. B.15)

where T (t) is the time course of the task and P (t) is the “interaction term” given by P (t) =
S(t )T (t ). The stationary map of the PPI-CAPs analysis then averages values of the target voxel

multiplied with the sign of the interaction term, where the selection is based on the criterion

of the seed exceeding the threshold:

IPPI-CAP = E [sign(ST )V : |S| >φ]

= E [sign(ST )(βSS +βT T +βPPI P +ε) : |S| >φ]

= βSE [sign(ST )S : |S| >φ]+βT E [sign(ST )T : |S| >φ]+βPPI E [sign(ST )P : |S| >φ].

Using the identities sign(A)A = |A| and sign(AB)A = sign(B)|A|, this becomes

IPPI-CAP = βSE
[

sign(T )|S| : |S| >φ]+βT E
[

sign(S)|T | : |S| >φ]+βPPI E
[|ST | : |S| >φ]

≈ βPPI E
[|ST | : |S| >φ]

.

The last approximation can be made when the contributions of the first two terms are negligi-

ble. For the first term, we assume the absolute value of S to be independent of the task (that

weights the expectation operator) and T has equal number of positive and negative values,
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in which case the first term will be 0. For the second term, if the task is just a change of sign,

then its absolute value will be fixed and uncorrelated to the sign of the seed. Thus the second

term is proportional to E
[

sign(S) : |S| >φ]
, which is necessarily bound between ±1 and will

be exactly 0 if S is symmetric.

Therefore, what remains is the final term and we find that the result of a PPI analysis will be

proportional to the SiMap. This brief derivation also shows that the stationary PPI-CAP can be

contaminated by “leakage” from the seed and/or task contributions if these assumptions are

not fulfilled.
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B.2 Supplementary Figures for Section 5.1
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B)

* Moments where 
the seed is highly 
activated.

Case 1: When a  target voxel is 
only correlated with the seed, 
there should be no PPI effect. By 
adding up the values on the third 
plot into a Simap, the result will 
be close to zero, indicating this 
fact.

Case 2: When a target voxel is 
only correlated with the task, 
there should be no PPI effect. By 
adding up the values on the third 
plot into a Simap, the result will 
be close to zero also in this case, 
indicating this fact.

Case 3: When the target voxel’s 
correlation with the seed depends 
on the task, it means that there is 
a PPI effect. By adding up the 
values on the third plot into a 
Simap, the result will be very 
large, indicating this effect.* Moments where 

the seed is highly 
de-activated.

A)

Figure B.1 – An intuitive toy example to illustrate the relationship between the static inter-
action map (simap) and PPI analysis results. A) Moments where the seed activity is signifi-
cantly high (red stars) or low (blue stars) are selected. B) Three possible cases are depicted:
1) When the target voxel is correlated only with the seed (meaning that there is no interaction
effect), its resulting value in the siMap will be close to zero, as would be expected for its
corresponding beta value in a PPI analysis. 2) Similarly, when the target voxel is correlated
only with the task, its resulting value in the siMap will be close to zero. 3) when the target
voxel is correlated with the PPI regressor, meaning that its relationship with the seed changes
according to the context, the averaged value from its suprathreshold frames will yield a high
value, indicating a PPI effect.
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Figure B.2 – Sanity check on the chosen seed signal. Before proceeding with the PPI-CAPs
analysis, we checked the orthogonality of the seed, task and ppi regressors using SPM’s Check
Orthogonality tool, as well as the skewness of the seed. A) The group-averaged matrix confirms
that the regressors are not collinear at the group level. The highest off-diagonal value is 0.04.
B) Shows the same matrix at the single-subject level. C) The seed signal was not skewed for any
of the subjects: the skewness value stayed within the [-0.5 0.5] range for all of them. D) Shows
the distribution of z-scored seed signal values for each subject. Additionally, the magnitude of
the seed timecourse was not correlated with the sign of the task: the Pearson’s r coefficient for
the subject with the strongest correlation between the magnitude of the seed and the sign of
the task was 0.11.
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Figure B.3 – Group-level static interaction map resembles PPI analysis results. The spatial
correlation betweeen the two analyses’ results was 0.85 for the siMap calculated from 60%
frames.
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Figure B.4 – An analysis of the number of occurrences of each PPI-CAP per subject com-
bined with consensus clustering indicates the optimal number of groups in which to clus-
ter the suprathreshold frames. (Top) The PPI-CAPs distributions for k ∈ [3,8] showed that k
values of 6 and above yielded PPI-CAPs that never occurred for some subjects, while values
between 4 and 5 had the most homogeneous distribution of pattern occurrence per subject.
(Bottom) Visual inspection of the consensus matrices showed that the most stable values for
k (that is, those for which any two frames would most consistently be clustered together or
separately) were k = 3 and k = 4. Since 4 represents a better trade-off in terms of variety and
robustness, we chose this value for further analysis (see its clear pattern highlighted in green).
The colormap represents the proportion of time when two frames were consistently clustered
either together or separately.
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Figure B.5 – Significance assessment of PPI-CAPs. Each histogram illustrates the distribution
of determinant values of the confusion matrices obtained from 3000 random permutations
of the frame labels composing each PPI-CAP, with respect to seed, task or PPI. The red line
indicates where the determinant of the confusion matrix for real data lies.
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Figure B.6 – The high temporal resolution of the PPI-CAPs approach allows us to link brain
activity to stimuli presented at specific time points. Here, we show moments when each
PPI-CAP was highly consistent across participants (left). The y-axis shows the percentage
of subjects, out of the total 15 participants, who expressed the PPI-CAP at each given time
point. The histogram on the right hand side of the panel depicts the distribution of random
consistency across subjects. This was calculated by randomly permuting the time points on
which the PPI-CAP appeared for each subject, then re-calculating the subject consistency
across time (the same plot as the ones on the left). Finally, we plotted the distribution of
possible consistency values. The dashed line represents the value of the 99th percentile
from the random distribution, indicating that a subject consistency above this threshold is
significant. Selected time points of high consistency across subjects for each PPI-CAP are
indicated by numbers on the left plots, and the corresponding video frames are presented for
those times on the rightmost side of the figure.
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B.3 Supplementary Figures for Section 5.2

ACC-seed PPI-CAPs in preterm-born adolescents

Figure B.7 – Choosing the best number of clusters for an ACC-seed PPI-CAPs analysis. 30%
of the frames when the dorsal anterior cingulate cortex (ACC) was most (de)activated were
selected for analysis. Consensus clustering was run for K ranging from 3 to 20, in 10 folds
for each of which a random subsample including 80% of the subjects was used. On the left,
the consensus matrices provide a visual appreciation of how often each pair of frames was
consistently clustered (i.e., both always in the same cluster, or both never in the same cluster).
Blue indicates never, red indicates always. On the right, we plot the proportion of ambiguously
clustered frames for each K. Since we want this value to be very low, a peak in the (1-PAC) plot
indicates the most stable choice of K. Since K = 6 has a clear peak and means we will have
a large number of frames per PPI-CAP (essential for averaging out noise), we select this as
opposed to higher K numbers who also had good results.
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Figure B.8 – Identifying networks present in each PPI-CAP. The two matrices compare the
activated (red) and deactivated (blue) voxels in each PPI-CAP from Figure 5.6 to the 7 functional
networks from Thomas Yeo et al. (2011). Colour intensity and numbers indicate the proportion
of voxels from each network that are present in the PPI-CAP. Networks were then ordered
according to the Hungarian Assignment Algorithm (Munkres, 1957). According to this result,
PPI-CAP1 corresponds to an activated Somatomotor Network (SMN) and deactivated Default
Mode Network; PPI-CAP2 is assigned to an activated Ventral Attention Network, also known as
Salience Network (SN), and deactivated Limbic; PPI-CAP3 contains an activated Visual and
deactivated Frontoparietal Network (FPN); PPI-CAP4 includes an activated Dorsal Attention
(DAN) and deactivated Visual Network; PPI-CAP5 has an activated FPN and deactivated SMN;
and PPI-CAP6 includes an activated Limbic and deactivated DAN.
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PCC-seed PPI-CAPs in preterm-born adolescents

In Chapter 5, Section 5.2, we perform a PPI-CAPs analysis to explore task-related dynamic

connectivity using the dorsal anterior cingulate cortex as a seed. Here we provide a similar

analysis using the posterior cingulate cortex (PCC). While interpreting these additional results

goes beyond the goal of this Section, this additional work illustrates that task-driven dynam-

ics are a powerful and compelling strategy to uncover features of brain function in clinical

populations independently of the choice of seed.

Figure B.10 – Choosing the best number of clusters for a PCC-seed PPI-CAPs analysis. 30%
of the frames when the posterior cingulate cortex (PCC) was most (de)activated were selected
for analysis. Consensus clustering was run for K ranging from 3 to 20, in 10 folds for each of
which a random subsample including 80% of the subjects was used. On the left, the consensus
matrices provide a visual appreciation of how often each pair of frames was consistently
clustered (i.e., both always in the same cluster, or both never in the same cluster). Blue
indicates never, red indicates always. On the right, we plot the proportion of ambiguously
clustered frames for each K. Since we want this value to be very low, a peak in the (1-PAC) plot
indicates the most stable choice of K. Since K = 4 has a clear peak and means we will have
a large number of frames per PPI-CAP (essential for averaging out noise), we select this as
opposed to higher K numbers who also had good results.
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Z-score
1
-1

3
-3

Figure B.11 – PCC-seed PPI-CAPs. Using K = 4 for the clustering step as defined in Figure B.10
yielded the four PPI-CAPs above. Each row corresponds to one PPI-CAP, numbers indicate
slice coordinates in MNI space.

127



Appendix B. Supplementary material for Chapter 5

Figure B.12 – Identifying networks present in each PPI-CAP. The two matrices compare
the activated (red) and deactivated (blue) voxels in each PPI-CAP from Figure B.11 to the 7
functional networks from Thomas Yeo et al. (2011). Colour intensity and numbers indicate
the proportion of voxels from each network that are present in the PPI-CAP. Networks were
then ordered according to the Hungarian Assignment Algorithm (Munkres, 1957). According
to this result, PPI-CAP1 corresponds to an activated Dorsal Attention Network (DAN) and
deactivated Default Mode Network; PPI-CAP2 is assigned to an activated Limbic Network (LN)
and deactivated DAN; PPI-CAP3 contains an activated Salience Network and deactivated LN;
and PPI-CAP4 includes an activated Visual Network and deactivated Fronto-Parietal Network.
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Figure B.13 – Confusion matrices for PCC-seed PPI-CAPs. To identify main and interaction
effects for each PPI-CAP, we generate confusion matrices to see how often the sign of a PPI-CAP
switches in the same way as each of the effects. We tested three main effects (Seed; Task;
and Group) and three interaction effects (Seed vs. Task (PPI); Group vs. Seed; and Group vs.
Task). The signs for each effect are as follows: Seed — positive and negative signs correspond
to frames when the seed was activated of deactivated, respectively; Task — positive signs
correspond to "Movie Watching" while negative signs correspond to moments of "Emotion
Regulation"; Group — positive signs correspond to fullterm controls, while negative signs
correspond to preterm-born individuals. Interaction signs are calculated as element-by-
element multiplication of the main effect signs. Light yellow indicates a low number of frames,
while dark red indicates the highest number of frames.
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Figure B.14 – Statistical assessment of each PPI-CAP’s effects. To check whether the effects
identified in Figure B.13 are significant, we performed permutation testing by shuffling the
corresponding effect’s labels 3000 times and calculating the det-index in each case, to generate
a null distribution. We then check where the real data’s det-index lies within this distribution
and calculate the p-value.
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