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Abstract
Optical microscopy is one widely used tool to study cell functions and the interaction of

molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided

into two categories: partially coherent and incoherent. Coherent microscopy techniques are

usually label-free and provide diffraction limited structural information about the sample

refractive index distribution though the measurement of phase delay induced by the sample.

Since they can be very conservative in the illumination power directed toward the sample, they

exhibit very low photo-toxicity and are suitable for both high speed and time lapse imaging.

Fluorescence microscopy is an incoherent microscopy method which uses biochemistry tech-

niques to label cellular structures with fluorescent molecules which emit light when excited by

a laser. Fluorescence microscopy provides diffraction limited high specificity imaging but is

limited in time due to photo-bleaching and photo-toxicity. Super-resolution microscopy is a

sub-category of fluorescence microscopy which manipulates and exploits some properties of

the fluorescent molecules to achieve high specificity sub-diffraction imaging. Super-resolution

comes however at the price of an increased total acquisition time, which limits the applications

of super-resolution microscopy to relatively slow cellular processes. The ideal microscope

however does not exist; due to the limited spatio-temporal bandwidth of far-field microscopy,

there will always be unavoidable trade-offs. There is therefore a need to find new ways to

ensure that the methods are reaching their optimal performances and a need to study how

different methods can complement each others.

In this thesis I introduce several new imaging methods for phase microscopy, SIM and SOFI. I

also propose a new method for the estimation of image resolution for diffraction limited and

super-resolution microscopy. Finally, in the context of the AD-gut consortium, I present the

application of deep neural networks for optical DNA mapping.

I start by presenting a new method for three-dimensional quantitative phase retrieval. I

derive a model for the image formation of three-dimensional bright field images and, from

the theoretical modeling, extrapolate a novel expression allowing to retrieve, in a single and

straightforward filtering operation, the phase distribution from a bright field image stack. I

then show that the phase image can be deconvolved in order to correct for the effect of the

partially coherent transfer function. I also point out how the presented method is linked to the

Transport-of-Intensity Equation. Using a unique image-splitting multi-plane prism that allows

to acquire 8 distinct focal planes in a single exposure without having to move the sample, I

demonstrate three-dimensional quantitative phase imaging at 200Hz . Finally, I show the

association of three-dimensional super-resolution SOFI with phase imaging.
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To improve the imaging speed and lower the illumination intensity, I combine the same prism

platform with a high-speed structured illumination. I present the first high-speed multi-

plane live cell SIM imaging. Since the structured illumination presented is using a digital

micro-mirror device, about 90 % of the laser light is diffracted outside of the optical path.

The imaging speed was therefore limited by the low illumination power density. To improve

the illumination efficiency but keep its speed and flexibility, I present a new approach for

achromatic high power high speed sinusoidal structured illumination generation, based on a

two-axis galvanometer mirror, a hollow retro-reflector and a mirror mounted on a piezo inside

a Michelson interferometer. With the access to high illumination power density, I also show

the first experimental combination of SIM with SOFI using a self-blinking dye.

Motivated by the absence of tools to objectively judge the performance of the microscopy

methods I develop, I present a novel algorithm for image resolution estimation. The method

estimate the resolution by correlating the image with several filtered version of itself. The

method estimate the resolution of a single wide field or super-resolution image without any

user defined parameter. I also show how the method can be used to identify the optimal

imaging conditions for various super-resolution methods.

Finally, in the context of the AD-gut consortium, I show a practical application of deep neural

networks used to assists the segmentation and mapping of the microscopy image of enzymati-

cally labeled DNA molecules.

Keywords: Microscopy, partially coherent, quantitative phase, phase retrieval, incoherent,

fluorescence, super-resolution, STED, SIM, multi-color SIM, SOFI-SIM, single molecule lo-

calization, SOFI, resolution estimation, image processing, optical DNA mapping, image

segmentation, deep neural network
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Résumé
La microscopie optique est un important outil de l’étude des fonctions cellulaires et des interac-

tions entre molécules au niveau subcellulaire. Les méthodes de microscopie optique peuvent

être globalement divisées en deux catégories : cohérentes et incohérentes. Les techniques

de microscopie cohérente sont appliquées généralement sans bio-marqueur et fournissent

une information structurelle concernant la distribution de l’indice de réfraction à travers la

mesure de retardation de la phase induite par l’échantillon, limitée en résolution spatiale par

la diffraction. Puisqu’elle nécessite une irradiation modérée de l’échantillon, la microscopie

cohérente montre un niveau de photo-toxicité très faible et est adéquate aussi bien pour de

l’imagerie à haute vitesse que pour de l’imagerie plus lente, où chaque image est prise à grand

intervalle. La microscopie à fluorescence est une méthode d’imagerie incohérente qui fait

appel à la biochimie pour marquer des structures cellulaires avec des molécules fluorescentes

qui sont capables d’émettre de la lumière sous excitation par un rayonnement. La microsco-

pie à fluorescence produit un signal hautement spécifique, également limité en résolution

spatiale par la diffraction, mais aussi limité dans le temps à cause de l’inévitable dégradation

des propriétés fluorescente des marqueur ainsi que de la photo-toxicité de l’excitation. La

microscopie à super-résolution est une sous-catégorie de la microscopie à fluorescence qui

manipule et exploite certaines propriétés des molécules fluorescentes pour obtenir des images

au delà de la limite de diffraction. La super-résolution nécessite cependant un temps d’acquisi-

tion significativement plus élevé, ce qui limite les applications de ce type de méthode à l’étude

de phénomènes relativement lent. Le microscope parfait ne peut tout simplement pas exister.

A cause de la bande-passante spatio-temporelle limitée des microscopes à champ-lointain, il

y aura toujours la nécessité de faire des compromis entre résolution spatiale et temporelle,

spécificité, sensibilité et photo-toxicité. Il y a par conséquent un besoin permanent de trouver

de nouvelles approches pour garantir que les méthodes employées opèrent au maximum de

leurs capacités et d’étudier comment différentes méthodes peuvent se compléter au mieux.

Dans cette thèse, je présente plusieurs nouvelles méthodes d’imagerie pour la microscopie

de phase, SIM et SOFI. Je propose également une nouvelle approche pour l’estimation de la

résolution des images pour la microscopie limitée en diffraction et à super-résolution. Enfin,

dans le cadre du consortium AD-gut, je présente l’application des réseaux neuronaux profonds

pour la cartographie optique d’ADN.

Je commence par proposer une nouvelle méthode pour le calcul de phase quantitative tridi-

mensionnelle. Je dérive un modèle pour la formation d’images tridimensionnelles en champ

clair et, à partir de la modélisation théorique, j’extrapole une nouvelle expression permettant
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de retrouver, en une seule et simple opération de filtrage, la distribution de phase d’une série

d’images en champ clair. Je montre ensuite que l’image de phase peut être déconvoluée afin

de corriger l’effet de la fonction de transfert partiellement cohérente. Je démontre également

comment la méthode présentée est liée à l’équation de transport d’intensité.

En utilisant un prisme multi-plans unique qui permet l’acquisition de 8 plans focaux distincts

en une seule exposition sans avoir à déplacer l’échantillon, je réalise de l’imagerie de phase

quantitative tridimensionnelle à 200 images par secondes . Enfin, je montre l’association

de l’imagerie de phase avec l’imagerie de fluctuation optiques à super-résolution (SOFI)

tridimensionnel.

Afin d’améliorer la vitesse d’imagerie et diminuer la dose d’illumination, je présente la pre-

mière réalisation expérimentale de la combinaison d’une illumination structurée (SIM) avec

le prisme multi-plans pour l’imagerie à haute vitesse de cellules vivantes. Comme l’illumi-

nation structurée présentée utilise un dispositif numérique à micro-miroirs, environ 95%

de la lumière laser est diffractée en dehors du chemin optique. La vitesse d’imagerie a donc

été limitée par la faible densité de puissance d’illumination. Afin d’améliorer l’efficacité de

l’illumination mais de conserver sa vitesse et sa flexibilité, je présente une nouvelle approche

pour la génération d’une illumination structurée sinusoïdale achromatique à haute puissance

et à haute vitesse, basée sur un miroir galvanométrique à deux axes, un rétroréflecteur creux

et un miroir monté sur un élément piézoélectrique placé à l’intérieur d’un interféromètre

de Michelson. Avec l’accès à une densité de puissance d’illumination élevée, je démontre

également la première combinaison expérimentale de SIM avec SOFI.

Motivé par l’absence d’outils permettant de juger objectivement des performances des mé-

thodes de microscopie que je développe, je présente un nouvel algorithme d’estimation de

la résolution des images en corrélant l’image avec plusieurs versions filtrées de celle-ci. La

méthode est capable d’estimer le support du contenu fréquentiel d’une seule image limitée

par la diffraction ou à super-résolution sans aucun paramètre défini par l’utilisateur. Je montre

également comment la méthode peut être utilisée pour identifier les conditions d’imagerie

optimales pour différentes méthodes de super-résolution.

Enfin, dans le contexte du consortium AD-gut, je montre une application pratique des réseaux

neuronaux profonds utilisés pour aider à la segmentation et à la cartographie de l’image

microscopique de molécules d’ADN marquées par des enzymes.

Mot-clés : Microscopie, cohérence partielle, phase quantitative, extraction de la phase, in-

cohérence, fluorescence, super-resolution, STED, SIM, localization de molécules, SOFI, es-

timation de la résolution, traitement d’image, recensement d’ADN optique, segmentation

d’image, réseaux neuronaux profonds
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Introduction

One of the first trace of optical engineering dates back to 424 B.C.E. where Aristophanes

mentions the burning glass, a large positive lens used to start a fire. Two treatises written

around 984 by Ibn Sahl (940-1000), termed "On the burning instruments" and "The book of

burners" report the first description of the Law of Refraction. Besides the use of lenses to set

thing on fire, Roman artisans also used magnifying glasses for detailed work[1].

It is only in the Seventeenth Century that Galileo Galilei (1564-1642) and Johannes Kepler

(1571-1630) built and developed the first generation of telescopes. At the same time, the first

microscope was invented by Zacharias Janssen (1588-1632). Theses practical creations were

followed by the rediscovery of the Law of Refraction by Willebord Snell (1591-1626) and René

Descartes (1596-1650) who published it in its modern form. The view of light as a particle or a

ray, strengthened by the contribution of Pierre de Fermat (1601-1665) and its Principle of Least

Time was however challenged by the discovery of diffraction by Francesco Maria Grimaldi

(1618-1663). The wave theory was born, and was a direct contradiction to the established ray

picture.

The debate concerning the wave/particle nature of light continued until 1801, year at which

Thomas Young (1773-1829) realized the famous double-slit experiment, disproving the ray

nature of light and presenting a fundamental concept, the Principle of Interference. A few

years later, Auguste Jean Fresnel (1788-1827) solved the problem of rectilinear propagation of

light by showing that a primary wave in which each point of the wavefront was the source of

spherical secondary wavelets would interfere to reform the same propagating primary wave

front.

In 1864, James Clerk Maxwell (1831-1879) synthesized the field of electricity and magnetism

in a single set of equations and was able to show that light is "an electromagnetic disturbance

in the form of transverse waves". He left in inheritage a fundamental equation:

O2~E = ε0µ0
∂2~E

∂2t 2 (1)

where O2 denotes the Laplacian of the electric field component~E and ε0,µ0 the electric and

magnetic vacuum permittivity, respectively.

In 1873, Ernst Abbe (1840-1905) developed the first theory of image formation for a microscope,
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which led to tremendous improvement in the design and manufacturing of low aberration

optical system. Assuming an ideal imaging setup, Abbe derived the equation for the resolution

of microscope, that is the smallest distance at which two points can still be distinguished as

two entities:

δr = λ

NAi +NAd
(2)

where λ is the central wavelength of the light used to illuminate the sample and NAi ,NAd is

the sine of the incidence and the detection angle, respectively.

In 1905, Albert Einstein (1879-1955) proposed a new theory in which light was composed

of particles of energy. The energy of one quanta of light or photon is equal to its frequency

ν multiplied by Plank’s constant h. Through the contributions of many great minds such

as Heisenberg, Schrödinger, Dirac, Bohr and others, quantum mechanics grew into a well-

grounded highly successful theory. The wave-particle debate of the last centuries changed

into a duality, where a particle can be in a superposition of states which can interfere.

In 1917, Albert Einstein published a paper postulating stimulated emission as a mode of

interaction of a quantum of radiation with a two level system. This theoretical discovery,

followed by its experimental observation in 1928 led to the invention of the laser in 1960.

The access to high power highly coherent monochromatic source allowed to discover and

study new optical phenomenon such as second harmonic generation, holography, frequency

mixing, optical phase conjugation, spectroscopy, laser trapping and cooling as well as novel

fiber based communication system.

In parallel, the development of high precision manufacturing tool enabled the production of

high-precision lenses and high-resolution diffraction limited imaging became a reality. The

discovery of fluorescent molecules and proteins, together with multi-layer thin film coating,

became an ubiquitous tool in life-science research. In the early 2000, several methods were

proposed to image structures beyond the diffraction limit, opening new applications in the

life-science research field. At the beginning of my thesis, super-resolution microscopy was a

well established field of research and was slowly finding its place into research groups that

aims at using super-resolution as a tool to answer their questions. Several approaches for

super-resolution were and are developed but, due to the limited spatio-temporal bandwidth of

far-field microscopy, all super-resolution techniques have to trade speed for spatial resolution.

Therefore, there is a general need to study how different methods can complement each other

and how the methods can perform at their optimal level.

The core of this thesis focuses on the theoretical and experimental development of new meth-

ods for microscopy, from label-free coherent imaging and super-resolution microscopy, both

in 2D and 3D. Building upon existing models, I developed a new method for 3D quantitative

phase retrieval from partially coherent bright field image stacks. Using an already developed

and implemented multi-plane prism, I shown volumetric quantitative phase imaging at 200

Hz in live cells. I also demonstrated how the method can be associated with super-resolution

microscopy and become a unique platform for three dimensional structural and functional

imaging. Aiming at improving the imaging speed and lowering the illumination power den-
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sity for live cell imaging, I combined the multi-plane prism with a structured illumination

and realized high-speed high-resolution three dimensional imaging of live cells. The SIM

implementation we used was based on a digital micro-mirror device, which has a very low

transmission of about 90% as most of the laser light is diffracted outside of the optical axis. To

improve the power efficiency but keep the flexibility and speed, I designed and realized a new

structured illumination concept based on a 2-axis galvanometer mirror, a retro-reflector and a

mirror mounted on a piezoelectric element inside a Michelson interferometer. The presented

illumination is insensitive to the illumination wavelength. I demonstrated the ability of the

setup to perform multi-color SIM imaging. Having access to high power-density, I show the

first experimental combination of SIM with SOFI using a self-blinking dye. Motivated by

the the absence of methods for resolution estimation in microscopy and super-resolution

microscopy, I proposed a new method based on partial phase correlation of the image with

filtered version of itself. The method is completely parameter free and is able to predict the

resolution of any microscopy images. Finally, in the context of the AD-gut[2] consortium, I

showed how deep neural networks can be used to assist the segmentation and mapping of the

image of enzymatically labelled DNA molecules.

This thesis is structured as follow:

Chapter 1 is devoted to present and review the theoretical concepts used and developed

throughout this thesis. The basic principle of a coherent imaging system is developed in the

section 1.2. The fundamentals of fluorescence as well as the sources of its fluctuations are

described in section 1.3. Section 1.4 presents an overview of super-resolution microscopy

techniques. Chapter 2 presents the combination of a glass prism based three-dimensional

microscope with a revisited derivation of partially coherent image formation, allowing volu-

metric quantitative phase measurement at camera limited frame rate. Chapter 3 describes

how the aforementioned setup can be modified to perform high-resolution SIM. Chapter 4

presents a new approach to generate high-frequency SIM pattern. The application of the

setup to multi-color SIM imaging and to the combination of SOFI with SIM is also discussed

and experimental results are presented. Chapter 5 introduces a new approach for parameter-

free image resolution estimation applicable, in principle, to any kind of microscopy images.

Finally, Chapter 6 presents the application of deep neural network to the field of optical DNA

mapping.
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1 Basic principles and methods

In the following chapter, I will review the basic principles of a microscope and the interaction

of light with a sample. Since this thesis focuses on the imaging of biological sample, the

discussion will be restricted to the classical interaction of light with a dielectric media. I will

then introduce the general theory of fluorescence. Finally, I will present how the fluorescent

emitter’s properties can be exploited to achieve sub-diffraction imaging.

1.1 Microscope layout and Fourier optics

1.1.1 Bright-field microscope

The etymology of the name microscope takes it source from the Greek micro-, small and

-scopein, to look at. The purpose of a microscope is to magnify the image of a microscopic

object in order to make small details resolvable to the human eye or a camera.
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Figure 1.1 – Layout of a bright-field microscope with a Köhler illumination.

Fig. 1.1 illustrates the layout of a bright-field microscope. The light originating from the source

(typically a halogen lamp) is collected by the collector lens to form the image of the filament

on the condenser diaphragm. A second condenser lens is then used to redirect the light

onto the sample. This configuration, known as a Köhler illumination[3], allows to produce a

homogeneous illumination independently of the source shape, with a perfect control of the

brightness and angle of incidence via the collector field diaphragm and condenser diaphragm.
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Chapter 1. Basic principles and methods

The light interacts then with the sample, via absorption or scattering and is collected by the

objective lens which can be approximated as an ideal lens with a very short focal length

(typically fobj ≈ 2−3 mm). Finally, a tube lens (typically ftl ≈ 160−220 mm) is used to form the

image of the sample onto the camera. The lateral magnification is given by M = ftl

fobj
≈ 50−100.

Typical modern camera have a physical pixel size of ≈ 6.5−10 µm leading to a projected pixel

size of ≈ 80−120 nm for a high-resolution microscope. Such a pixel size ensures that the

image of a point source spreads over 2-3 pixels, which implies that the system is limited only

by the diffraction.

1.1.2 Fourier optics

One of the most remarkable properties of a lens is that it performs analog two-dimensional

Fourier transform of the electro-magnetic field distribution located at a distance of the lens

equal to its focal length[4]. Being able to represent a lens as a Fourier transform allows to

describe an imaging system as a linear filtering operation.

Fourier Transform

The Fourier transform is a mathematical transformation developed by Jean-Baptiste Fourier

(1768-1830) in 1822 for as he was working on the analytical theory of heat. In his work, Fourier

claimed that any function can be expanded in a series of sines of various period and phase

offsets.

The Fourier transform of an integrable function f (x) is defined as

F (k) =F { f (x)} = 1p
2π

∫ ∞

−∞
f (x)e−2πi xk d x (1.1)

From the Euler relation e i kx = cos(kx)+ i sin(kx), we see that k defines the sine and cosine

frequency. For each frequency k, the integral quantify "how much" of this particular frequency

is present in the function f (x). The result of the integral is generally a complex number and

can be expressed as F (k) = a(k)e iφ(k), where a(k) is the amplitude of the sine and φ(k) is its

phase.

One of the most important property of the Fourier transform, besides its Linearity, is known as

the Convolution theorem, which states that the Fourier transform of the convolution of two

functions is equal to the product of their individual Fourier transform.

F { f (x)⊗ g (x)} =F {F (k)}F {G(k)} (1.2)

where F {·} denotes the Fourier transform and ⊗ denotes the convolution operator.
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1.2. Coherent imaging

A microscope as a linear filter

As can be seen in Fig. 1.1, the detection path is composed of two lenses (the objective lens

and the tube lens), each of them performing a Fourier transform. We know from the duality

property of the Fourier transform that

F {F {Usample(x)}} =Ucamera(−x/M) (1.3)

where U (x) denotes the field spatial distribution at the sample or camera plane and M is

the lateral magnification of the system. We see that the imaging apparatus should therefore

reproduce an exact magnified copy of the field Usample (x)[4]. However, due to the diffraction

of light, only frequencies up to 1/λ (where λ is the illumination wavelength) propagate to

the far-field. The effect of diffraction on the imaging can be effectively modeled by a circular

aperture

H(k) =
1, if k < 1/λ

0, otherwise
(1.4)

which filter the object frequency spectrum, restricting the resolving power of a microscope to

about λ[5].

Other imperfections of the microscope such as limited collection angle, uneven transmission

of the spatial frequencies and residual phase aberrations can be modeled by modifying the

amplitude and phase of the so-called transfer function H (k). Assuming a magnification M = 1,

the field at the detector is expressed as

Ucamera(x) =F {F {Usample(x)} H(k)} (1.5)

This equation is a simple yet very powerful description of the image formation of a microscope

and will be used throughout the whole thesis.

1.2 Coherent imaging

Coherent microscopy refers to any microscopy method that measures the interference pattern

between a typically strong reference field and the field scattered by a sample after its interac-

tion with the reference field. After the interaction, the scattered field will be attenuated, due to

the sample absorption, and phase shifted with respect to the reference field. The phase shift

or retardation is due to the sample refractive index and can be inferred from the measurement

of the interference pattern, providing label-free structural information about the sample.

In order to understand the microscopic origin of refractive index, we rely on the atomic theory,

where a dielectric media can be described as a spatial distribution of dipoles. Exposed to an

oscillating electric field, the dipoles will start to oscillate and in return produce a polarization

field P = ε0χE proportional but usually out of phase with the incident electric field, neglecting

7



Chapter 1. Basic principles and methods

the non-linear contributions. The factor ε0 is called the vacuum permittivity and χ is the

susceptibility. The total electric field inside the material is given by the interference of the

incident field with the polarization field.

Using Lorentz model[6], we model each dipole as a damped harmonic oscillator characterized

by a resonance frequencyω0 and damping factorΓ. Under the assumption that the nuclei is too

heavy to follow the field at high frequency oscillations, we can express the equation of motion

of a single bound electron acted on by the Lorentz force. Solving for the stationary solution,

we find a solution for the electron position with respect to its rest position. Summing up the

contribution of all electrons, we obtain for the material index of refraction n =√
1+Re(χ)

n2(ω)−1 = 4πNe2

m(ω2
0 −ω2)− iωΓ

(1.6)

By solving for the propagation of an incident electromagnetic plane wave in a dielectric media,

Ewald (1916) and Oseen (1915) demonstrated the extinction theorem. It states that at each

point within the medium, the dipole field can be expressed as the sum of two terms. The first

one is shown to have a propagation velocity or phase velocity equals to c/n while the second

one exactly extinguish the incident field. Therefore an plane wave propagating through a

dielectric media will accumulate a phase delay of

∆φ= ncL (1.7)

where L is the thickness of the dielectric media.

1.2.1 Imaging of a 2D phase object

Let us consider a thin transparent sample illuminated by a plane wave propagating along

the optical axis. In first approximation, the plane wave will accumulate a phase delayΦ(x) =
n(x)cL(x), with n(x) the sample refractive index and L(x) the sample thickness. The field

transmitted by such an object can be written as

F (x) = e iΦ(x) (1.8)

If we assume weak scattering (Φ(x) << 1), the sum of the illumination and the scattered field

can be rewritten

Usample(x) ≈ 1+ iΦ(x) (1.9)

where the term 1 represents the non-scattered wave and iΦ(x) the scattered wave.

We then place an ideal objective lens and image the field with a detector. Being only sensitive

to the intensity of the field, we have to take the magnitude square of of the field. The image of
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1.2. Coherent imaging

the object will be of the form

I (x) = |1+ iΦ(x)|2 = 1+Φ(x)2 ≈ 1 (1.10)

where we assumedΦ small compared to unity.

The phase object does not produce any contrast. The essence of phase microscopy is to

modify the illumination or detection path of the microscope in order to convey phase shifts

into intensity fluctuations, providing label-free structural information of otherwise transparent

sample.

We will now describe different methods to image transparent sample, briefly discussing their

advantages and disadvantages.

Dark field microscopy

The simplest way to gain phase contrast is to place a stop in order to block the non-scattered

light before it reaches the detector. The intensity will then be

I (x) =Φ(x)2 (1.11)

Since we assumeΦ small compared to unity, this approach is usually limited to highly scatter-

ing objects. Moreover, the recorded signal is not proportional to the phase.

Schlieren phase contrast

An alternative to the dark-field microscopy consists in blocking half of the detection aperture

in the Fourier plane of the sample. We have

Ucamera(x) =F {M(k)F {Usample(x)} H(k)} (1.12)

where M(k) =
{

1 for kx ≥ 0

0 otherwise
, is the Schlieren mask and k is the reciprocal space of x.

Lets suppose that we image a phase grating illuminated by a plane wave with a phase distribu-

tionΦ(x) = A sin(kg x), with A << 1 and kg is the grating frequency. The sample field is then

Usample(x) ≈ 1+ Ai sin(kg x). The Fourier transform of Usample(x) is

F {Usample(x)} = δ(0)+0.5i A
(
δ(k −kg )+δ(k +kg )

)
(1.13)

The effect of the mask M(k) is to remove half of the Fourier components. Assuming all the

Fourier components are transmitted by the transfer function H (k), we have for the intensity at

the camera plane

I (x) =
∣∣∣1+0.5Ai e i kg x

∣∣∣2 ≈ 1+Re
(
e i kg x

)
= 1+ A cos(kg x) (1.14)
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Chapter 1. Basic principles and methods

The intensity modulation is now proportional to the derivative of the phase along the orienta-

tion of the mask.

Zernike phase contrast

In 1935, F. Zernike (1888-1966) proposed a powerful and simple method to make the intensity

distribution directly proportional to the phase of the object[7]. The principle is to introduce

in the objective lens a phase plate that will delay the illumination field with respect to the

scattered field by a factor i = e iπ/2. The intensity at the detector plane will then be of the form:

I (x) = |i + iΦ(x)|2 ≈ 1+2Φ(x) (1.15)

Differential Interference Contrast Microscopy

Another way to gain phase contrast is to split a linearly polarized plane wave into two or-

thogonally polarized beam using a Wollaston birefringent prism [8]. As a consequence of the

splitting, the two beams will be spatially shifted and will interact with the sample at two slightly

different positions, potentially accumulating different phase shift. The two beams are then

recombined using a similar Wollaston prism, forming an interference pattern proportional to

the derivative of the phase in the direction of the spatial shift (see Fig. 1.2b).

Holography

Instead of looking into the interference of the illumination with the scattered field, another

option, proposed by Dennis Gabor in 1948 in the context of X-ray and electron microscopy[9]

consists in splitting the illumination into two fields. One field is directed towards the sam-

ple while the other propagates freely. Both fields are then recombined and interfere at the

detector plane. The phase accumulated by the propagation through the sample can then be

digitally recomputed from the interference pattern. Off-axis holography [10, 11] is the modern

implementation of Gabor’s method for phase measurement where the fields interfere at a

small angle and are digitally processed to extract the complex field information.

Defocussed phase microscopy and Transport of Intensity Equation

Another method to gain phase contrast is to defocus the sample. As it will be discussed in

more detail in chapter 2, the phase contrast originates from the axial analyticity of the system

transfer function. However, defocused phase microscopy is limited to thin sample..

An alternative approach, named the Transport of Intensity Equation (TIE)[12] relates the axial

derivative of the intensity of a coherent field to the Laplacian of its phase

− k

I0

∂I (x)

∂z
=O2φ (1.16)
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1.3. Fluorescence imaging

This expression allows to retrieve the quantitative phase of the field but is only valid for two

dimensional sample and for paraxial fields.

a b c

Figure 1.2 – Illustration of phase imaging (a) Input phase computed with the method discussed
in chap 2. (b) Differential Interference Contrast. (c) Dark-field. Images of the same cell. Scale
bar 5 µm.

1.3 Fluorescence imaging

Phase microscopy is a very powerful non-invasive tool to study cell morphology and reveal

sub-cellular structures. However, it can only be used on a sample or a process that naturally

exhibit refractive index contrast with respect to the surrounding medium.

In 1942, fluorescent antibody labeling was developed, paving the way to high molecular

specificity imaging with unprecedented contrast[13]. Fluorescence is a process in which

a molecule emits red-shifted light when irradiated with light at a lower wavelength. The

frequency shift between the incident and emitted light is called the Stokes shift and is the

key mechanism for high contrast as the illumination and the fluorescence signal can be

efficiently decoupled using optical filters. In 1994, the cloning of the green fluorescent protein

(GFP)[14] allowed in-vitro studies of protein expression of living cell by genetic encoding.

The fluorescent protein gene can be incorporated as a protein marker by fusing its gene to a

target gene using lipid transfection or viral transduction. Fluorescent protein can be used to

monitor gene expressions or label a sub-cellular structure. Together with indirect antibody

labeling, which uses a primary antibody to target a specific cellular structure and a secondary

antibody to carry the fluorescent dye, it provided tools that allow to image organelles and

protein distribution and to quantify interactions and molecular dynamics.

1.3.1 Photochemistry of fluorophores

Following the rules of quantum mechanics, molecules have an infinite but discrete number

of energy states, essentially determined by the electron orbitals. The lower energy states are

then filled with electrons according to the Pauli exclusion principle, which states that two or

more identical fermions cannot occupy the same quantum state. A molecule with all its lowest

energy orbital filled is said to be in the ground state.
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Chapter 1. Basic principles and methods

The process of absorption corresponds to the transfer of an energy quanta of the field or photon

to an electron, which will be promoted to a higher energy orbital. The absorption probability

is governed by selection rules which ensure the conservation of energy and momentum. In

the semi-classical picture, the molecule can be modeled as a dipole formed by the positively

charged nuclei and the center of mass of the delocalized electron. The absorption probability

is then proportional to the modulus squared of the dot product of the dipole moment with the

incident electric field. The absorption rate is of the order kex ≈ 106 −108s−1.
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Figure 1.3 – Jablonski diagram.

Due to the interaction with its environment and vacuum fluctuations, a molecule in an excited

state is bound to decay to the ground state. Several transitions are available. To each transition

we can associate a characteristic time or rate, which describes the transition probability.

The transitions are usually represented using a Jablonski diagram[15] (Fig. 1.3). The most

common transition corresponds to the radiative decay (k f ≈ 107−1010s−1) fluorescence, where

a photon is emitted following a dipole emission pattern. Due to internal non-radiative thermal

relaxation(ktr ≈ 1011 −1012s−1), the energy of the emitted photon is red-shifted compared to

the energy of absorbed photon. This is called the Stoke-shift[16]. The red-shifted emission

allows to decouple the excitation and detect only the fluorescence signal. The electron can also

transition to the ground state through non-radiative decay (knr ≈ 109 −1011s−1), or transition

to a triplet state via inter-system crossing (ki sc ≈ 106 −1010s−1), where the excited electron

has the same spin as the ground electron. The triplet state has a long lifetime as the direct

transition from the triplet state to the ground state is forbidden by the Pauli exclusion principle.

The process in which a photon is emitted by a transition from an excited triplet state to the

ground state is called phosphorescence (kp ≈ 10−2 −104s−1).

While in the long lived excited triplet state, the molecule is more likely to interact with other

species. One possible result of this interaction is irreversible photobleaching, where the

molecule loses its ability to emit fluorescence. The molecule can also change into a meta-

stable reduced non-fluorescent state or OFF state[17, 18]. In opposition to photobleaching,
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1.3. Fluorescence imaging

the molecule can return to a fluorescent or ON state. The change to the OFF state is called

photo-switching and is used in super-resolution microscopy to temporally separate single

emitters and localize them with a precision smaller than the diffraction limit. Other switching

mechanisms involve cis-trans isomerization, hydration-dehydration reaction or absorption of

near-UV photons[15].

1.3.2 Incoherent image formation and resolution

Fig. 1.4a shows the implementation of an epi-illumination fluorescence microscope. A laser

source is focused on the back-focal plane of the objective lens to produce a Gaussian-shaped

illumination profile. A fraction of the fluorescence light is then collected by the objective

and transmitted by the dichroic. The numerical aperture (NA) of an objective is defined

as NA = n sinθ, where n is the refractive index of the medium between the object and the

objective and θ the collection angle. The larger the NA, the higher the resolving power. An

emission filter is usually required to suppress spurious reflections of the intense laser light.

Using a tube lens, the fluorescence light is then focused on the camera to form an image of the

sample.

Due to its stochastic nature, the field emitted by two fluorophores does not exhibit spatial

or temporal correlations. The fluorescent light is said to be incoherent. Consequently the

intensity distribution of the image of a distribution of fluorescent molecules can be expressed

as a sum of the intensity of each molecules

I (x) =
N∑
i

AiU (x−xi) (1.17)

where Ai is the brightness of the molecule and U (x− xi) is the microscope point-spread

function shifted at the molecule location and xi is the molecule location.

The resolving power of a microscope is characterized by its point-spread function, which

describes how a point source is blurred by the unavoidable diffraction, the limited numerical

aperture of the objective lens and the optical aberrations of the optical component used.

Using the convolution theorem, the Fourier transform of the intensity distribution I (k) can

be expressed in terms of the Fourier transform of the emitters spatial distribution, also called

object function F (k) and the Fourier transform of the point-spread function (see Fig. 1.4)

OT F (k), the optical transfer function. We have

I (k) =OT F (k) F (k) (1.18)

where k is the reciprocal space of x.

The OTF can itself be defined as the auto-correlation of the pupil function P (k), a complex

function that describes the transmission in amplitude and phase of an optical system. The

phase of the pupil function contains all the information about the aberrations present in the
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Chapter 1. Basic principles and methods

system. A constant phase corresponds to a diffraction limited imaging system and corresponds

to the highest resolving power for a given wavelength and numerical aperture. The phase

of the pupil function can be decomposed into Zernike coefficients[19], allowing to classify

and categorize the many type of aberrations that can occur in the design and alignment of an

optical system.
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Camera
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Figure 1.4 – (a) Epi-fluorescence setup (b) Incoherent three-dimensional PSF generated using
the "PSF Generator" imageJ plugin [20], NA = 1.4,λ= 560 nm. Scale bar µm.

In order to understand the 3D image of point source, the pupil function has to be projected

on the so called Ewald sphere[21]. The Ewald sphere lives in the reciprocal space k and has a

radius equal n 2π
λ where n is the refractive index of the immersion media and λ is the main

wavelength of the fluorescent emission. The 3D OTF is then naturally given by taking the

auto-correlation of the projected pupil function.

Following Abbe principle, the lateral resolution achievable by an optical system is then given

by the highest lateral spatial frequency with non-zero value. Expressed in nanometer, the

resolution when imaging an incoherent self-luminous object is given by

δ⊥ = λ

2NA
(1.19)

Similarly, the axial resolution can be defined as the highest axial frequency with non-zero

value. We have

δz = λ

2
(
n −

√
n2 −NA2

) (1.20)

While being a very powerful guidance in the design of optical system, theses concepts remain

theoretical. They do not provide any information about the actual performance of a real

system, only the theoretically ideal achievable resolution. In particular the crucial notion of

noise and signal-to-noise ratio is not considered at all by this definition. The potential issue of

residual aberrations, motion blur due to sample drift and the degradation of image quality

due to out-of-focus background are also important practical aspect that cannot be modeled in

a general formula.
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1.4. Super-resolution imaging

There exists therefore a need for a method, compatible with the theoretical framework de-

scribed above, that is able to estimate the resolution directly from the image. A solution to this

problem is presented in chapter 4.

1.4 Super-resolution imaging

While providing high contrast and specificity at the molecular level, fluorescence microscopy

has been for a long time limited to resolutions in the order of 200 nm, which is about two order

of magnitude larger than routinely achievable electron microscopy image. In 1928, Edward

Synge laid out the idea of a near-field scanning microscope, where a sub-diffraction aperture

placed a few nanometers above the surface is used to illuminate or collect evanescent waves

that do not propagate in the far-field. After solving the many technical issues, a resolution

of λ/60 was reported by Ash and Nicholls[22]. In the early 2000, several far-field techniques

have been proposed to go beyond the diffraction limit. An important conceptual aspect which

applies to all methods is that they are all exploiting some a-priori knowledge about the sample,

which can then be exploited to improve the spatial resolution. This gain of resolution is usually

associated with an increase in the total acquisition time.

Super-resolution methods can be divided into two categories: patterned illumination and

stochastic imaging. The first category exploits photo-physical properties of the fluorophores

such as stimulated emission or saturation of the fluorescence. Theses approaches involve a

non-linear response of the sample. The second category exploits uncorrelated fluctuations of

fluorescent emitters to separate them beyond the diffraction limit.
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Figure 1.5 – Overview of super-resolution microscopy (a) STED (b) SIM (c) SOFI (d) Localization
microscopy.
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Chapter 1. Basic principles and methods

1.4.1 Stimulated Emission Depletion Microscopy (STED)

Stimulated emission is one mode of interaction of a photon with an excited two level system.

In this process, the incoming photon trigger the two-level system decay to the ground state,

emitting a new photon, with a phase, frequency, polarization and momentum identical to the

incident photon.

The approach to exploit this property can be decomposed in two steps. First the fluorophores

are excited by a diffraction limited laser spot. If we wait until the molecules spontaneously

decay and count all the photons emitted, the signal will be approximately proportional to

the number of molecules present in the laser spot and no gain in resolution will be achieved.

The second step consists in depleting a fraction of the fluorophores using a torus or donut-

shaped diffraction limited beam whose central minimum coincide with the maximum of the

Gaussian excitation. The subsequently recorded signal can therefore only originate from a

much narrower volume. The resolution gain is proportional to the depletion cross-section.

We have

δST ED = λ

2NA
√

1+ I
Isat

= δ⊥√
1+ I

Isat

(1.21)

where δ⊥ is the wide-field resolution, I is the depletion laser beam intensity and Isat is the

saturation intensity, defined as as the intensity at which the stimulated emission gain drops to

half of the gain approximation for small incident depletion intensity.

We note that the resolution achieved by STED microscopy is, in principle, arbitrary small

provided high enough depletion intensity and perfect shape of the STED beam[23–25]. In

practice however, the relatively high power density of the STED beam, the depletion cross-

section of the fluorophore, the residual aberration of the STED pattern and signal to noise

limit the achievable resolution. The need also exists for a method to assess the resolution

directly from the recorded image. A resolution of about 2.5 nm has been demonstrated on

solid-state samples[26], where photo-bleaching and high-power densities is not an issue.

By modifying the shape of the depletion beam, STED super-resolution can also be achieved

in 3D. The gain in axial resolution (≈ 100 nm), however, comes at the cost of a lower lateral

resolution in practice[27, 28].

1.4.2 Structured Illumination Microscopy (SIM)

The inclusion of SIM[29–31]among other super-resolution methods is sometimes contested

as the linear version of SIM is limited to a 2-fold resolution improvement. SIM exploits the fact

that the fluorescence signal is proportional to the illumination intensity, which is a non-linear

response with respect to the electric field. This non-linearity allows to access information

beyond the cut-off frequency[32] of the microscope by a clever patterning of the illumination.

While the first implementation of SIM was using a sinusoidal pattern, it was recognized

that a Gaussian illumination is also one form of structured illumination which also achieve
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1.4. Super-resolution imaging

increased resolution[33]. While its first implementation, termed image scanning microscopy,

[34], involved scanning of the sample and numerical rescaling, a more recent approach,

termed iSIM, proposed an all optical parallel implementation, dramatically increasing the

imaging speed at the cost of a more complex setup[35].

The non-linear version of SIM, also called saturated SIM[36] exploit the fact that, beyond

a certain intensity threshold, the fluorescence signal saturate. The illumination sinusoidal

pattern appears then truncated. This saturation is the source of high order non-linearity that

can be used to achieve an arbitrarily small resolution, in principle. While being interesting

conceptually, this method is however extremely inefficient in terms of photon budget and

bleaching.

We will now focus on the case of a linear sinusoidal pattern. Such a pattern can be realized by

two crossing beams interfering in the sample plane. The two beams are usually generated by a

phase grating placed in a conjugated sample plane. The use of a pixelated digital micro-mirror

device [37] or transmissive liquid crystal[38] was also proposed as a faster way to change the

illumination pattern, usually at the cost of higher losses in the illumination path.

The intensity distribution under an idealized patterned illumination is given by

I (x) = [
O(x) 0.5(1+cos(x ·ki +φ))

]⊗ps f (x) (1.22)

where O(x) is the spatial distribution of fluorescent labels, ki is the wave-vector, defining the

period and direction of the oscillating pattern, φ is the phase offset, determining the position

of the maxima relative to the optical axis, ps f (x) is the point-spread function of the imaging

setup and ⊗ is the convolution operator. A trivial but crucial aspect of the method is that the

point-spread function physically acts on the image after the interaction of the illumination

with the sample.

We have in Fourier space

I (k,φ) =
[

O(k)⊗ (δ(0)+0.5e±iφδ(k±ki ))
]

OT F (k) = I0(k)+0.5I±(k±ki ) (1.23)

We see that the illumination added two components to the object spectrum, phase shifted by a

factorφ and frequency shifted by a factor ki . If we simplify the effect of the OT F (k) to act as an

ideal low-pass filter with a cut-off frequency kc , we see that the frequency shifted component

contains high frequency information that is not present in the central component. The three

components are however overlapping and no sub-diffraction resolution can be achieved at

this point. In order to unmix the three components, the solution is to acquire at least three

images with different pattern phases φ.
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Chapter 1. Basic principles and methods

The situation is best described in matrix form I (k,φ= 0)

I (k,φ= 2π/3)

I (k,φ= 4π/3)

=

1 0.5 0.5

1 0.5e i 2π/3 0.5e−i 2π/3

1 0.5e i 4π/3 0.5e−i 4π/3


 I0(k0)

I+(k+ki )

I−(k−ki )

 (1.24)

which can be inverted to retrieve the three components I0, I+ and I−. Finally the components

have to be shifted by the illumination pattern frequency ki and added to form the final SIM

image. The frequency support, i.e. the resolution, of the SIM image is then kc +|ki | along the

direction of ki . To achieve quasi isotropic resolution improvement, the whole procedure has

to be repeated in at least three directions.

The non-trivial step in the reconstruction of a SIM image is the accurate estimation of the

pattern frequency and phases[39–41]. Imperfect SIM reconstructions typically show well

known artifacts[42].

In order to increase the resolution along the axial direction, a third on-axis beam has to be

added, providing axial modulation of the intensity[43]. While it requires the acquisition of two

additional phases shifts and adequate axial sampling, the reconstruction is essentially similar

to the 2D case.

1.4.3 Single Molecule Localization Microscopy (SMLM)

Sub-diffraction microscopy can also be achieved by imaging stochastically blinking fluorophores[44]

over time. Assuming that a sufficiently small fraction of the emitters are in the ON state such

that their point-spread function do not spatially overlap, the center of mass of each molecule

can be numerically estimated with a spatial precision far beyond the diffraction limit. The

gain in spatial resolution is traded with temporal resolution as the acquisition of many camera

frames will be required to sample the underlying structure.

Three main mechanism are routinely used to achieve sparse blinking. Direct Stochastic Optical

Reconstruction Microscopy ((d)STORM, [45–47]) uses reversible switching to a metastable

dark state, either by employing specific buffer solution or multiple lasers. Photo-Activated

Localization Microscopy (PALM, [48, 49]) uses dyes that can be photoactivated, imaged and

consequently bleached. Finally Point Accumulation for Imaging in Nanoscale Topography

(PAINT, [50, 51]) uses the stochastic and transient binding of diffusing dyes in solution with a

complementary molecule bound to the target structure.

Using a standard diffraction limited microscope, it is very challenging to localize the molecule

position along the axial direction due to the limited depth-of-field. However, by carefully

adding aberrations to the system, the most common being astigmatism[52, 53], it is possible

to trade lateral localization precision for axial precision and increased depth of field. This type

of aberration breaks the symmetry of the point-spread function and encodes the axial position

in its shape. Alternative approaches such as biplane microscopy[54, 55], double-helix psf[56],
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1.4. Super-resolution imaging

self-bending psf[57], self-interfering psf [58] and illumination modulation [59] have also been

proposed to span the trade-off between the probing depth, the axial localization precision

and the penetration depth.

More recently, a combination of STED and localization microscopy, termed minFlux, was

proposed[60, 61], which uses a donut shaped illumination to probe the fluorescent molecules.

Assuming there is only one molecule in the ON-state within the diffraction limited area, the

photon statistics become a function of the position of the fluorescent molecule with respect

to the donut excitation. By translating the illumination pattern and trying to minimize the

fluorescence signal, it is possible to iteratively localize the position of the molecule down to

the nanometer size while using as few photons as possible.

1.4.4 Image formation and resolution in localization microscopy

The "image formation" of a localization microscopy experiment is quite different from other

microscopy techniques in the sense that the resulting image is entirely artificial and do not

contain noise.

Standard localization algorithms work as follow. First the raw image is filtered in order to

enhance the signal coming from single emitters. All local maxima above a given threshold are

then identified. The image of all potential single emitter is then extracted and fitted to estimate

the position of the fluorophore. The presence of many sources of noise in the intensity signal,

limited photon budget, multiple emitters and finite sampling of the point-spread function

limit the localization precision and accuracy. Under the assumption of shot-noise limited

signal and a Gaussian shaped point-spread function, the localization uncertainty[62] is

σ⊥ = σ2
a

N

(
16

9
+ 8πσ2

ab2

N a2

)
(1.25)

where σa = σ2 + a2/12, σ is the standard deviation of the point-spread function, a is the

camera projected pixel size, N is the number of photon from the emitter and b is the average

photon background per pixel. While nanometer and subnanometer localization microscopy

have been demonstrated, a typical localization microscopy experiment achieves a localization

uncertainty of about 15-30 nm[63].

All the localizations can then be filtered based on the results of the fitting operation and ren-

dered as a histogram, Gaussian with standard deviation equal to the localization uncertainty

or using more advanced rendering methods[64].

The resolution of localization microscopy experiments is discussed in Chapter 4.
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1.4.5 Stochastic Optical Fluctuation Imaging (SOFI)

Instead of relying on the fitting of sparsely blinking emitter, sub-diffraction imaging can also

be achieved through the statistical analysis of the fluorescence fluctuation. Stochastic Optical

Fluctuation Imaging (SOFI, [65–68]) proposes to compute spatio-temporal cross-cumulant of

a sequence of blinking emitters. SOFI can be applied to any fluctuating signal provided the

three following conditions are fulfilled:

• The fluctuations should originate from two visibly distinct states

• The fluctuations should be stochastic and independent

• The Nyquist sampling criterion has to be fulfilled

Following these three rules, the signal of an emitter is only correlated with itself, in space and

time. Making use of the additivity property of cumulants, the signal originating from each

emitter can be processed independently and the resolution increased by a factor
p

n where n

is the cumulant order.

1.4.6 Cumulants

Cumulants are an infinite set of quantities that describe a probability distribution. Compared

to moments, the key property of cumulants is their additivity, which entails that the cumulant

of the sum two independent variables is the sum of their cumulants.

Since a probability distribution can be equivalently represented by an infinite set of moment,

both quantities are intimately linked. We start by reminding the definition of the nth moment

of a real-valued continuous function around 0

µn = 〈
fn(x)

〉= ∫ ∞

−∞
xn f (x)d x (1.26)

The moments can also be derived from the characteristic function

ΦX (t ) =
〈

e i t X
〉

(1.27)

where 〈·〉 denotes the expectation value. The Taylor expansion of e i t X gives

ΦX (t ) =
∫ ∞

−∞

[
1+ i t〈X 〉+ i 2t 2〈X 2〉

2!
+ ...

]
f (x)d x (1.28)

The nth order moment, coefficient of the nth term, is then obtained by taking the nth order

derivative of the characteristic function at t = 0

µn = i−n
[
δnΦX (t )

δt n

]
t=0

(1.29)
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1.4. Super-resolution imaging

The cumulants κn are then similarly defined as the coefficients of the Taylor expansion of the

cumulant characteristic function

ΨX (t ) = ln(Φ(t )) =
∞∑

n=0
i nκn

t n

n!
(1.30)

1.4.7 Image formation of SOFI

As already stated before, the stochastic intensity fluctuation of fluorophores can be exploited to

achieve super-resolution. For a given set of stochastically blinking fluorophores, the intensity

signal can be written as

I (x, t ) =
N∑
i

AiU (x−xi)si (t )+b(x)+n(x, t ) (1.31)

where Ai is the molecule brightness, U (x) is the microscope point-spread function, xi is its

position, si (t ) ∈ [0,1] is the signal fluctuation over time, b(x) is the constant background signal

and n(x) is the uncorrelated noise.

Using the semi-invariance and additivity properties, we have for the cumulant of the intensity

κn(x) =
N∑
i

An
i U n(x−xi)κn{si (t )}+κn{b(x)}+κn{n([x], t )} (1.32)

The resolution increase of the nth order SOFI image κn(x) is due to the raising of the system

point-spread function to the nth power. We know from the Fourier transform properties

that the Fourier transform of a function raised to the nth power is given by the nth auto-

correlation of the Fourier transform of the function. The frequency support of the SOFI image

is then increased by a factor n. However, the auto-correlation do not preserve the shape of

the transfer function. The effective resolution improvement is therefore closer to
p

n and a

deconvolution/Fourier reweighing operation is required to flatten the transfer function and

get closer to the ideal resolution improvement factor of n. There is no fundamental limit

in computing high order SOFI image to reach nanometric resolution, however it is limited

in practice by the signal to noise ratio which decreases with the cumulant order. The other

problems concerning the fixed pixel size, the non-vanishing noise term and the non-linear

response to brightness can be solved by introducing cross-cumulant and additional post-

processing.

Cross-cumulants exploit spatio-temporal correlations to enhance the fluorescence signal

while suppressing the uncorrelated pixel noise. Formally, the nth order cross-cumulant from

the n positions x = {x1,x2, ...,xn} and the n time lags τ= {τ1,τ2, ...,τn} is

κn(x,τ) =
N∑

i=1
An

i

[
n∏

k=1
U (xk −xi)

]
κ(si (t −τ)) (1.33)
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The product
∏n

k=1 U (xk −xi) can be interpreted as a distance dependent factor which depends

on the system point-spread function. The equation 1.33 provides the cumulant at the position

x′ = 1
n

∑n
i xi. Since the position x′ might be in between physical pixels, it can be used to

increase the image sampling.

SOFI resolution improvement naturally expands in 3D. If the volume is acquired plane by plane,

the axial resolution is however not increased as there will be no temporal correlations between

two adjacent planes. The solution consists in acquiring two or more planes simultaneously,

allowing to compute cumulants in all directions and to increase the inter-plane sampling[69].
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2 Three-dimensional partially coherent
quantitative phase microscopy

Super-resolution fluorescence microscopy provides unprecedented insight into cellular and

subcellular structures. However, going ‘beyond the diffraction barrier’ comes at a price, trading

temporal for spatial super-resolution. We combine a novel label-free white light quantitative

phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution.

We realized multi-plane imaging using a customized prism for the simultaneous acquisition of

8 planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate

fluorescence super-resolution optical fluctuation imaging within the same optical instrument.

The following chapter is based on a reorganized version of two published / submitted manuscripts
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

2.1 Polychromatic light scattering

2.1.1 Monochromatic scattering

Following the seminal work of Born & Wolf[6], we consider a monochromatic scalar electro-

magnetic field U (x) at frequency ω (assuming a slowly varying refractive index n (x)). This

electromagnetic field has to satisfy the Helmholtz equation1

(52 +k2
0n2 (x))U (x) = 0 (2.1)

where x = (
x, y, z

)
is the spatial coordinate, 52 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator,

k0 = ω
c = 2π

λ the wavenumber of the electromagnetic field in vacuum and n(x) being the

spatial refractive index distribution of the sample.

Equation 2.1 cannot be solved in general due to the spatially varying refractive index. We

therefore take the index of refraction to vary around the mean refractive index n̄. Equation 2.1

can now be rewritten as

(52 +k2
0 n̄2)U (x) =−F (x)U (x) (2.2)

where F (x) = k2
0(n2 (x)− n̄2) is the scattering potential.

The left-hand side of equation 2.2 is the homogeneous wave equation, whereas the right hand

side represents a source term containing the scattering potential F (x).

Outside of the scattering volume [70], the total field is written as a superposition of the incident

field and the scattered field

U (x) =Ui (x)+Us (x) . (2.3)

Using the homogeneous Helmholtz equation for the incident field Ui (x), we obtain

(52 + n̄2k2
0)Ui (x) = 0. (2.4)

By combining equations 2.2 and 2.3 and using 2.4, we write for the scattered field Us(x), which

1 Throughout all the calculations we use the same notation for the intensity and its Fourier transformed
spectrum. The distinction is made by explicitly noting the variable x or g and the bold font is reserved for the
spatial coordinates in three dimensions, i.e. x = (

x, y, z
)

and g = (
g⊥, gz

)
, with g⊥ shorthand for

(
gx , g y

)
. The

wavenumber, i.e. the magnitude of the wave vector, is denoted as k0 =
√

k2
⊥+k2

z = 2π
λ

= ω
c .
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2.1. Polychromatic light scattering

satisfies the inhomogeneous Helmholtz equation

[52 +k2
0 n̄2]Us (x) =−F (x)U (x) . (2.5)

Using a Green’s function ansatz[6] we write

[52 +k2
0 n̄2]G(x−x′) =−δ(x−x′) (2.6)

where δ
(
x−x′

)
is the 3D Dirac function.

Approximating the far-field response of a point scatterer as a spherical wave, we have

G
(
x−x′

)= e i k0|x−x′|
|x−x′| . (2.7)

Because the scattered field is much weaker than the incident field (first-order Born approxima-

tion), we neglect the scattered field in comparison to the dominant incident field. We obtain

outside of the scattering volume Vs for the scattering field

Us (x) =
∫

Vs

G
(
x−x′

)
F

(
x′

)
Ui

(
x′

)
d 3x′ (2.8)

This represents a 3D convolution of the source term F
(
x′

)
Ui

(
x′

)
with the Green’s function.

The Green’s function (equation 2.7) can be expressed by a series expansion (Weyl’s expansion

of a spherical wave in terms of plane waves) in the lateral coordinate x and y as [70],[5]

G
(
x−x′

)= i

2πkz

Ï ∞

−∞
e i(kx (x−x ′)+ky (y−y ′)+kz (z−z ′))dkx dky . (2.9)

Inserting equation 2.9 into 2.8 and taking a Fourier transform, we use the convolution theorem

and obtain for Us (k; z) in Fourier space

Us (k; z) = i

kz
e i kz z [

F
(
g
)⊗kUi (g)

]
, (2.10)

where g is the object spatial frequency space and k is the scattered field spatial frequency

space, ⊗k is the convolution operator evaluated at k, e i kz z represents the propagation of

the wave and kz = n̄k0 cos(θdet) represents the projection of the scattering vector k onto the

optical axis (where we follow the derivation of Singer et al.[70] ).

Assuming a monochromatic plane wave (in Fourier space) with an amplitude A, propagating
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

along the direction ki for the incident field Ui
(
g;ki

)
, expressed as

Ui
(
g;ki

)= Aδ
(
g−ki

)
, (2.11)

and neglecting the propagation term (z = 0), we obtain a general expression where the scat-

tered field appears as an interaction of the illumination field and the scattering potential,

given as

Us (k;ki ) = i A
F (k−ki )

kz
. (2.12)

The object spectrum or scattering potential is interrogated by the illumination field, repre-

sented by its wave vector ki . The scattering event results in a plane wave with an amplitude

Us (k;ki ), propagating along the direction k.

2.1.2 Coherent Transfer Function

The microscope is modeled as a telecentric, diffraction limited optical imaging system. The

microscope is fully characterized by the source spectrum and the illumination and detection

Numerical Aperture (NAill,NAdet). Due to the limited bandwidth of our detection system (sC-

MOS camera), the intensity is described by a temporal average (denoted 〈 〉) of the interference

between the scattered and un-scattered field and integrated over the source spectrum ω and

the angular spectra (ki ,k).

I (x) = 〈
∣∣∣∣∫
ω,ki ,k

(Ui (x;ω,ki )+Us (x;ω,ki ,k))dkdki dω

∣∣∣∣2

〉. (2.13)

with Ui (x;ω,ki ) = A (ω)e i x·ki and Us (x;ω,ki ,k) = i A (ω) F (k−ki )
kz

e i x·k.

Developing the equation 2.13, we decompose the intensity into a sum of mutual intensities as

I (x) = 〈
∫
ω′,k′

i

∫
ω′′,k′′

i

Ui
(
x;ω′,k′

i

)
U∗

i

(
x;ω′′,k′′

i

)
dω′dk′

i dω′′dk′′
i 〉+

〈
∫
ω′,k′

i ,k′

∫
ω′′,k′′

i

Us
(
x;ω′,k′

i ,k′)U∗
i

(
x;ω′′,k′′

i

)
dω′dk′

i dk′dω′′dk′′
i 〉+c.c. (2.14)

where c.c. denotes the complex conjugate term U∗
s Ui . We neglected the weak UsU∗

s contri-

bution due to the weak scattering approximation.

Using the generalized Wiener-Khintchine theorem [71], the mutual intensity of two fields is

only non-zero for ω′ =ω′′. Following the work of N. Streibl[72], which applies for a telecentric

configuration and a Koehler illumination, the mutual intensity is non-zero only for k′
i = k′′

i .
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2.1. Polychromatic light scattering

We then obtain

I (x) =
∫
ω,ki

Ui (x;ω,ki )U∗
i (x;ω,ki )dωdki+

∫
ω,ki ,k

Us (x;ω,ki ,k)U∗
i (x;ω,ki )dωdki dk+ c.c. (2.15)

The first term represents the unscattered field and the second term the mutual interference

between the illumination and scattered fields.

The situation is illustrated in Fig. 2.1 where a monochromatic plane wave incident on a

refractive index distribution gives rise to a weak scattered field. Both illumination and scattered

field are then collected by the optical system and interfere at the image plane.

 Ui(x;ω,ki) Ui(x;ω,ki)

F(x)

Us(x;ω,ki,k)

z

x

 

Us(x;ω,ki,k)
~

I(x) ≈ I0 + ∫Ui(x;ω,ki)Us(x;ω,ki,k)dωdkidk
ω,ki,k

~ ~

+ c.c.

Ui(x;ω,ki)
~

Figure 2.1 – Illustration of image formation process in bright field transmission microscopy.

The product between the scattered and un-scattered field contains all information of the

object. Following equation 2.11 and 2.12, we obtain in the object Fourier space

Us
(
g;ω,k

)⊗U∗
i

(
g;ω,ki

)=
i A (ω)

F (K;ω)δ
(
g−k

)
kz

⊗k A∗ (ω)δ
(
g+ki

)= i S (ω)
F (K;ω)

kz
δ

(
g−K

)
, (2.16)

where K = k−ki (Laue equation) and A A∗ = S (ω) the intensity of the light source. This

expression is illustrated in Fig. 2.2a by the corresponding Ewald sphere construction taking

into account the elastic light scattering. For a given frequency ω, illumination and scattering

vector ki and k, the scattering potential F
(
g;ω

)
at the spatial frequency K is interrogated

with an amplitude S(ω)
kz

.

Finally the interference term i.e. the cross-spectral density Γ
(
g
)

is expressed

Γ
(
g
)= ∫

ω,ki ,k
i

S (ω)F
(
g;ω

)
δ

(
g−K

)
kz

dki dkdω (2.17)
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where we integrate over the source spectra and the angular spectra (illumination and scatter-

ing).

Due to the limited bandwidth of our illumination, we neglect the dispersion of the scattering

potential. This results in a linear relationship for the cross-spectral density.

Γ
(
g
)= i F

(
g
)

H
(
g
)

(2.18)

with the polychromatic coherent transfer function H
(
g
)
,

H
(
g
)= ∫

ω,ki ,k

S (ω)

kz
δ

(
g−K

)
dki dkdω. (2.19)

Each combination of illumination and detection modes (frequency (ω) dependent) interro-

gates a different point of the object’s spatial frequency content. The final transfer function is

then given by a linear superposition of all contributions.

We obtained this result based on the Helmholtz equation using the first order Born approx-

imation for describing the scattering field as an interaction between the illumination field

and a weakly scattering object. The polychromatic illumination has been embedded in a

generalized Wiener-Khintchine formalism. The spatial coherence is taken into account by a

mutual intensity consideration following the seminal work of N. Streibl[72].

This work on 3D imaging is based on a telecentric configuration containing a Koehler illu-

mination matching all experimental elements of our setup. As a main result of this analysis,

the scattering potential F (g) is low pass filtered by the imaging system as described by the

Coherent Transfer Function (CTF) H
(
g
)
.

A key assumption we made to derive this linear model (equation 2.18) is the weak scattering

approximation, i.e. only single scattering events contribute to the measured signal. This

assumption is valid for example when imaging single layer of cells. Imaging thicker samples

requires a modified theory taking into account multiple scattering events[6].

The complex ingredients of the theoretical analysis are illustrated in an Ewald sphere rep-

resentation (Fig. 2.2b). For each wavelength, the Ewald sphere shows the frequency sup-

port which corresponds to an axially shifted sphere cap of radius n̄k0 with a lateral extent

given by the product of the rescaled wave number k0 with the detection numerical aperture(
g⊥max = n̄k0NAdet

)
and an axial extent limited to[73] gz,max

(
g⊥,NAdet

)= n̄g⊥

(
1−

√
1− NA2

det

n̄2

)
.

Each of these wavelength-dependent sphere caps are summed up to build the support of the

polychromatic system transfer function, where the weights are given according to equation

2.19.

Taking into account the full angular spectrum of the illumination, we integrate over all illumi-

nation ki . The resulting CTF H
(
g
)

is shown in Fig. 2.2c.
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NAill = 0, NAdet = 1.22
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Figure 2.2 – Construction of the polychromatic coherent transfer function. (a) Illustration
of elastic light scattering (b) Frequency support of the polychromatic CTF with plane wave
illumination, (c) Frequency support of the polychromatic CTF with Koehler illumination, (d)
Logarithmic absolute valued 3D-FFT of experimental intensity stack, acquired by translating a
sample of fixed hippocampal primary neurons in steps of 200 nm (≈50 µm x 50 µm m x 40 µm),
showing the system transfer function and its mirrored complex conjugate, (e) Logarithmic
absolute valued 3D-FFT of simulated 3D intensity stack based on the proposed model (
NAill = 0.26,NAdet = 1.15 ).

In complement to the theoretical analysis and the Ewald sphere representation, we calcu-

late (Fig. 2.2d) the experimental 3D-fast Fourier Transform (FFT) of a large intensity stack,

containing the transfer function H(g) and its mirrored complex conjugate. Fig. 2.2e shows

the simulated 3D-FFT of an equally large intensity stack, based on the experimental source

spectrum, the illumination and detection NA.

2.2 Retrieving the complex 3D cross-spectral density

To recover the 3D cross-spectral density and its corresponding phase, only a 3D bright field

image stack is required. The different planes can be acquired sequentially by a z-scan or in a

multi-plane configuration (see Fig. 2.11), which provides camera rate 3D phase tomographic

measurements. For each plane zp we detect the interference of the incident field with the

scattered field. Using equations 2.15 and 2.17, we write

I
(
xp

)= IDC +Γ(
xp

)+Γ∗ (
xp

)
, (2.20)

where we used the short-hand notation xp = (
x, y, zp

)
.
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

Taking the 3D Fourier transform of this equation, we obtain

I
(
g
)= IDCδ

(
g
)+Γ(

g
)+Γ∗ (−g

)
. (2.21)

The intensity spectrum can be decomposed into a DC-part IDCδ
(
g
)

and an AC part, composed

of two symmetric and conjugate cross-spectral densities.

Filtering the intensity I
(
g
)

Γ+
(
g
)= I

(
g
)

K
(
gz

)
(2.22)

with a cutoff filter K (gz )

K
(
gz

)={
1 if gz > 0

0 else
(2.23)

suppresses the conjugated cross-spectral density Γ∗
(−g

)
.

This filtering condition entails the analyticity of the cross-spectral density along the axial

direction i.e. the real and imaginary part of Γ (x) form a Hilbert transform pair (Titchmarsh

theorem)[74]. Therefore, the amplitude and the phase are simply two alternative representa-

tions of the filtered scattering potential, where the amplitude appears as the imaginary part

of transfer function H(g) and the phase as the real part of H(g) (see equation 2.18). In other

words, a point scatterer appears in intensity as an axial phase shift with no contrast in focus

while the phase appears as a Gaussian with maximum contrast (see Fig. 2.4a).

2.2.1 Quantitative phase derivation

From a general point-of-view, the quantitative phase can be expressed as

ϕ (x) = angle

(
Us +Ui

Ui

)
(2.24)

where Ui is the reference field that would be measured without any sample and Us +Ui is the

total field, including a sample. Hence, ϕ represents the phase delay due to the sample.

In order to link this expression to the cross-spectral density, we rearrange equation 2.24

ϕ (x) = angle

(
1+αUs

Ui

)
= tan−1

 α
∣∣∣Us

Ui

∣∣∣sin
(
∆ϕ

)
1+α

∣∣∣Us
Ui

∣∣∣cos
(
∆ϕ

)
 , (2.25)
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2.3. Simulation and validation

which corresponds to the quantitative phase[75], with∆ϕ=ϕs−ϕi . It is important to note that

equation 2.24 applies to the object space. Since Us and Ui have a different spatial frequency

spectra, both fields will be filtered differently while propagating from the sample plane to the

detector[76]. In order to account for this effect, we introduce a real positive calibration factor

α which is experimentally determined using known and well-characterized technical samples

(see 2.4).

Expanding the fraction by |Ui |2
|Ui |2 , equation 2.25 can be further simplified as,

ϕ (x) = tan−1

(
α |Ui | |Us |sin

(
∆ϕ

)
|Ui |2 +α |Ui | |Us |cos

(
∆ϕ

))
. (2.26)

Noting that |Ui |2 is the mean intensity I0, and |Ui | |Us |sin
(
∆ϕ

)
and |Ui | |Us |cos

(
∆ϕ

)
are

equivalent to the imaginary and real part of Γ+ (x) respectively, we obtain a general equation

linking the quantitative phase to the cross-spectral density as,

ϕ (x) = tan−1
(

αℑ (Γ+ (x))

I0 +αℜ (Γ+ (x))

)
. (2.27)

2.2.2 Quantitative phase algorithm

The phase retrieval algorithm (see Fig. 2.3) can be summarized as follows

1. Data acquisition.

2. Signal mirroring along the axial direction to avoid boundary effects and 3D Fourier

transform of the 3D stack.

3. Application of mask K for removing all gz≤0 contributions of the Fourier spectrum and

Fourier denoising using a CTF-shaped mask.

4. Inverse Fourier transform for retrieving the cross spectral density in real space. Recon-

struct the image field and calculate the 3D quantitative phase.

2.3 Simulation and validation

2.3.1 Calculating the partially coherent system transfer function

For the illumination k-spectrum (limited by NAill), the corresponding Ewald sphere cap

(limited by NAdet) is weighted according to the polychromatic spectrum of the source and

projected on the reciprocal Fourier space (according to the specified field of view). These

k-supports (Ewald sphere caps) are added to form the full polychromatic k-support. The

calculated 2D CTF (basically a convolution of the illumination aperture and the detection
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

STEP 4: i-FFT and phase calculation

STEP 1: Data aquisition and multi-plane coregistration STEP 2: Signal mirroring and 3D FFT

STEP 3: Fourier filtering and denoising

gz

g⊥
 

gz

g⊥

Figure 2.3 – Workflow of the phase retrieval algorithm. In STEP 1 and 4, 8-plane image stacks
of fixed HeLa Cell are shown. In STEP 2 and 3, the data is displayed using a logarithmic scale.

aperture) is then mapped onto the 3D frequency support, taking into account the symmetry

properties of the CTF (weighing according to equation 2.16), as shown in Fig. 2.2d.

2.3.2 3D image formation simulation

We define a point scatterer in real space by a Dirac function. The corresponding scattering

potential is calculated and convolved with the previously established system transfer function

H(g) resulting in the complex 3D cross-spectral density Γ (x). The 3D image intensity is given

by the absolute squared interference of the incident field with the scattered field (equation

2.18). All calculations have been performed using Matlab (R2016a).

2.3.3 Experiment vs simulation

We imaged 200 nm polystyrene beads sparsely distributed in agarose. Due to their size (≤λ/2),

we used the beads as an approximation of a point scatterer.
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2.4. Quantitative phase calibration using technical sample

Fig 2.4a displays an axial cross-section of the computed and experimental 3D image (averaged

over 15 individual measurements), showing an almost perfect match between experimental

and simulated images. Their corresponding calculated phase underlines the validity of our

model and is further demonstrated in lateral and axial line plots (Fig. 2.4b). Fig. 2.4c shows

the color-coded maximal z-projection of the full experimental recovered phase stack. The

orthogonal slice 1-2 shows the optical sectioning for our 3D phase imaging.
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Figure 2.4 – Experiments and simulations with polystyrene beads (a) 3D axial slice of computed
and experimental (average over 15 measurements) intensity and phase of 200 nm polystyrene
beads. Scale bar 1 µm, (b) Comparison of the theoretical and experimental phase profile
showing almost perfect agreement, (c) Color coded maximum z-projection of the phase of
sparsely distributed beads. The orthogonal slice 1-2 demonstrates the sectioning capability of
the method. Scale bar 5 µm.

2.4 Quantitative phase calibration using technical sample

As discussed in chapter 2.2.1, a calibration step is required to accommodate for the unequal

transmission of the reference and the scattered fields.

In order to calibrate our analysis, we imaged a staircase-like nanometric structure made by

repetitive chemical etching of a glass substrate (borosilicate, see Section 8.5). A total of 50

planes with an inter-plane distance of 200 nm were used to accurately extract the calibration

factor. The in-focus bright field image and its corresponding calibrated phase are shown in Fig.

2.5a respectively Fig. 2.5b. Fig. 2.5c shows the Atomic Force Microscopy (AFM) measurement
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Figure 2.5 – Quantitative phase imaging of technical sample. (a) In-focus bright field image of
nanometric step like borosilicate structure, (b) Corresponding quantitative phase after pro-
cessing of the intensity stack, (c) AFM measurement (insert : 3D surface plot using ImageJ[77]),
(d) Line plots of selected lines indicated in (b) and (c), quantitative phase (orange), AFM
measurement (blue), (e) Measured phase vs. theoretical phase for step heights (orange dots),
200 nm polystyrene beads (green cross) and 750 polystyrene beads (blue circle). The 1:1 line
is also plotted to provide a visual reference, (f) Max. phase projection of 750 nm polystyrene
beads.

of the staircase structure used to calibrate the phase measurements. Due to the limited spatial

coherence (same illumination aperture used for all imaging) which acts as a high-pass filter,

only the edges can be quantitatively resolved in the phase image.

The AFM measurements allow to compute the theoretical phase signal as ϕ= k0∆nh, where

k0 = 2π
λ = 10.8µm−1, ∆n = nglass −nair = 1.51−1 in air and h is the relative step height. The

calibration factor is then estimated by solving equation 2.27 for α and using the expected

theoretical phase and the measured imaginary and real parts of the cross-spectral density, and

the average intensity. For our setup, we estimated α= 3.15. The Fig. 2.5d shows calibrated

phase and AFM line plots demonstrating how the phase signal varies proportionally to the

step height. The Fig. 2.5e shows (orange dots) all the recovered phase jumps of the 6 steps (Fig.

2.5c).

In order to validate the calibration, we imaged 200 nm and 750 nm polystyrene beads (nbeads =
1.59) embedded in agarose

(
nagar = 1.33

)
, for a total of 50 planes with an inter-plane distance

of 200 nm (shown in Fig. 2.4). The obtained phases are in total agreement with the theory. The

200 nm beads being smaller than the system point-spread function, the theoretical phase has
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2.5. Symmetry of the coherent transfer function and coherence

to be adjusted by averaging the optical path length over the beads diameter which provides

an estimated correction factor of ≈0.6, leading to a theoretical phase shift of 0.34[rad]. We

measured an average phase of 0.33±0.014[rad] (average over 15 beads, depicted as a green

crosses in Fig. 2.5e). The 750 nm beads being larger than the phase point-spread function, we

only have to consider the maximal phase shift. Fig. 2.5f shows the maximal phase projection

of 750 nm beads, providing another independent confirmation of the ability of the method to

achieve quantitative phase imaging (theoretical phase of 2.106[rad] and average measured

phase of 2.08[rad]).

2.5 Symmetry of the coherent transfer function and coherence

As it was shown in section 2.2, the cross-spectral density Γ
(
g
)

is the phase delayed object func-

tion F
(
g
)

weighted by the partially coherent transfer function H
(
g
)
, acting as the transmission

amplitude of all spatial frequencies. The three-dimensional shape of H
(
g
)

is essentially deter-

mined by the illumination and detection numerical aperture NAill and NAdet .
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Figure 2.6 – Partially coherent transfer function and Ewald sphere (a) Monochromatic CTF
with λ = 580nm, NAill ≈ 0 and NAdet = 1.4. (b) Partially coherent CTF with NAill= 0.3. (c)
Partially incoherent CTF with NAill = 0.6.

In the case of partially coherent illumination ( 0 < NAill < NAdet), the transfer function, and

in consequence the cross-spectral density, is almost completely located in the upper half

of the frequency space (gz > 0), whereas its complex conjugate extends in the negative fre-

quency space (gz < 0). Both transfer functions overlap in a common region near the low axial

frequencies. The Fourier transform of the intensity in this overlapping area is given by

I
(
g
)= I0δ

(
g
)+Γ(

g
)+Γ∗(−g) (2.28)

where Γ∗
(−g

) = (
iF

(−g
)

H
(−g

))∗. This is illustrated in Fig. 2.6. Fig. 2.6a shows a slice of a

highly coherent monochromatic CTF ( σ= NAill
NAdet

≈0) together with its complex conjugate. In

this case, only the zero frequency is suppressed by the overlap. In other word, in a bright-

field configuration, it is not possible to recover the average phase shift of the scattered field.

Increasing the illumination NA to 0.3 as shown in Fig. 2.6b, we observe a thin frequency band
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

near the low axial frequencies ( ±2rad/µm in this case) where the amplitude of the transfer

function is affected. For Fig. 2.6c, we have NAill = 0.6(σ= 0.42). The overlap has the shape of

an incoherent CTF with a NA equal to NAill. A further increase of NAill expands the lateral and

axial support of the CTF as well as of the overlap. For the incoherent case (NAill = NAdet ;σ= 1),

the overlap area dominates the CTF, which has as a consequence that no phase information

can be recovered.

We now evaluate the transfer function in the overlap region. Assuming H
(
g
)

being a real

function (i.e. the system has no phase aberration, H
(
g
) = H∗ (

g
)
) and F (g) is a Hermitian

function (i.e. there is no absorption; F (x) is real; F
(
g
) = F∗ (−g

)
). We decompose F

(
g
)

in

its real and imaginary contribution Fr
(
g
)+ i Fi (g) and obtain for the intensity (ignoring the

DC-contribution I0δ
(
g
)
)

Γ
(
g
)+Γ∗ (−g

)= (
i Fr

(
g
)

H
(
g
)−Fi

(
g
)

H
(
g
))− (

i Fr
(−g

)
H

(−g
)+Fi

(−g
)

H
(−g

))
. (2.29)

Using the fact that F
(
g
)

is Hermitian
(
F

(
g
)= F∗ (−g

))
, we obtain

Γ
(
g
)+Γ∗ (−g

)= [
H

(
g
)−H

(−g
)][

i Fr
(
g
)−Fi

(
g
)]= iF

(
g
)[

H
(
g
)−H

(−g
)]

(2.30)

We therefore see that the cross-spectral density and its complex conjugate in the considered

overlap area, can be interpreted as an object function F
(
g
)

modulated by a new effective

transfer function

Heff
(
g
)= H

(
g
)−H

(−g
)

(2.31)

The amplitude of Heff
(
g
)

is linked to the symmetry of H
(
g
)
. We know from the equation 2.19

and from H. Gross et al[5] that the axial symmetry of H
(
g
)

is directly related to the degree

of spatial coherence of the field (i.e. σ= NAill/NAdet). For σ= 0 (coherent case), there is no

overlap. For σ = 1 (incoherent), H
(
g
)

becomes completely symmetric which implies that

H
(
g
)−H

(−g
)= 0 over the whole frequency support of H

(
g
)
. This is consistent with the fact

that no phase information can be extracted from an incoherent system. In the case of partial

coherence, the overlap transfer function Heff
(
g
)

is strongly attenuated in the corresponding

spatial frequencies. However the object F
(
g
)

is fully preserved and can in principle be

recovered via a deconvolution operation.

Due to its axial symmetry, we note that the complex cross-spectral density can be retrieved by

measuring the 3D intensity distribution and filtering with the mask

M
(
g
)={

1 if gz > 0

0 elsewhere
(2.32)

This mask is nothing else than an axial Hilbert transform (i.e. the analytical axial continuation

of the signal). Applying this mask to the Fourier transformed of the 3D intensity allows to
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2.5. Symmetry of the coherent transfer function and coherence

recover the complex cross-spectral density Γ+
(
g
)= M(g)I

(
g
)= iF

(
g
)

Heff
(
g
)
, with

Heff
(
g
)={

H
(
g
)

for g outside of the overlap

H
(
g
)−H

(−g
)

for g inside of the overlap
(2.33)

There is no general analytical expression for Htexte f f
(
g
)

possible. However, for a given spec-

tral bandwidth, illumination and detection NA, it can be computed and used to deconvolve

the cross-spectral density, taking into account the partial coherence and allowing to retrieve

F
(
g
)= Γ+(g)

Heff(g) over the whole frequency support of H
(
g
)
.

2.5.1 Link with Transport of Intensity Equation

To demonstrate the close relation to the Transport-of-Intensity Equation and our Helmholtz

based approach, we proceed in two steps. First, we show that the intensity filtering operation

(i.e. applying M
(
g
)

on I
(
g
)
) is identical to computing the discrete axial intensity derivative.

Second, we show that the partially coherent transfer function Heff
(
g
)

projected in 2D is

well approximated by the Fourier transform of the Laplacian operator ∇2 for low spatial

frequencies.

We remind the definition of the Transport of Intensity Equation[78]

k0

I0

∂I
(
x, y, z

)
∂z

=∇2ϕ
(
x, y

)
(2.34)

where we made the assumption that the in-focus intensity is uniform, i.e. ∇I∇ϕ= I0∇2ϕ.

We define an arbitrary intensity out (+,-) and in the focal plane as

I [z] =

I+
I0

I−

=

I0 +∆I

I0

I0 −∆I

 , with I0 = I++ I−
2

, ∆I = I+− I−
2

and ∆I¿I0 (2.35)

I [z] represents the axial intensity in 3 planes of a 2D pure phase object positioned in the

intermediate object plane. The average intensity is I0. The Fourier transform matrix W and

the filter matrix M can be expressed as

W =

1 e
2πi

3 e
4πi

3

1 1 1

1 e
−2πi

3 e
−4πi

3

 ; M =

1 0 0

0 1 0

0 0 0

 (2.36)
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The cross-spectral density Γ [z] writes as

Γ [z] =W −1MW Iz (2.37)

where we apply W (forward Fourier transform), the mask M , and W −1 (inverse Fourier trans-

form).

The complex field associated to the focal plane I [0] is given as

Γ [0] = I0 + i
1

3
sin

(π
3

)
∆I (2.38)

We have shown (2.27) that the quantitative phase (phase difference between the field Us +Ui

and the field Ui ) can be expressed as a function of the cross-spectral density as

ϕ (x) = tan−1
(

αℑ (Γ+ (x))

I0 +αℜ (Γ+ (x))

)
(2.39)

where α is a real positive experimental factor required to model the transmission from the

sample plane to the detector plane. Under the weak scattering approximation I0À
∣∣Γ+ (

g
)∣∣,

the quantitative phase can be rewritten as

ϕ (x)≈αℑ (Γ+ (x))

I0
=αF (x)⊗ℑ(

Heff (x)
)

I0
(2.40)

where ⊗ denotes a convolution.

Using equation 2.39 , we express the quantitative phase associated to Γ [0] (equation 2.38)

ϕ [0] = tan−1

(
α

sin
(
π
3

)
∆I

3I0

)
≈β∆I

I0
(2.41)

where β = αsin(π/3)/3 is a setup dependent parameter that needs to be estimated via a

calibration with a known phase object. The recovered phase is directly proportional (under

the weak scattering approximation) to the axial intensity derivative normalized by the average

intensity. The quantitative phase ϕ [0] (equation 2.41) is therefore identical to the left-hand

side of the TIE (equation 2.34) up to a factor β that arise from the processing and is in all cases

compensated by the experimental calibration of α.

The transfer function Heff (equation 2.19 and 2.33) is equivalent to the Laplacian of the TIE

(equation 2.36). We also note a difference in notation where the phase of the TIE ϕ (equation

2.34) represents the deconvolved quantitative phase of our model, that is the object F (x). The
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Figure 2.7 – Helmholtz and Paraxial transfer functions. (a) Slice of Helmholtz based transfer
function and its complex conjugated (white line), λcentral = 580nm,NAill = 0.3,NAdet = 1.42.
(b) 2D projection of Heff

(
g
)
. (c) Paraxial based 2D transfer function HTIE (Laplacian). (d)

Line profiles of (b, Helmholtz, blue) and (c,Laplacian, orange) showing how the Paraxial
approximation matches the Helmholtz based model for the low frequencies.

situation is summarized in Table 2.1.

Table 2.1 – Comparison to the phase retrieval from 3D intensity data using either TIE or our
Helmholtz based model

TIE Helmholtz

Cross-spectral density Γ (x) I0 + i∆I sin(π/3)/3 F−1
(
I
(
g
)

M
(
g
))

Coherent transfer function H
(
g
) ∇2

∫
ω,ki ,k

S(ω)
kz

δ
(
g−K

)
dkdki dω

Quantitative phase ϕ (x) ∆I /I0 αℑ (Γ+ (x))/I0

Scattering potential F (x) ∇−2 k0
I0

∆I
∆z F−1

(
H−1

(
g
)
αℑ (Γ+ (x))/I0

)
However, the Helmholtz based approach is more general as it accepts an arbitrary number of

planes, is not restricted to 2D phase objects and does not involve the paraxial approximation.

Since there is no analytical expression for the partially coherent effective transfer function

Heff
(
g
)
, we rely on in-silico computation. The calculation requires a high-resolution 3D grid

representing the Fourier space g. Then for each wavelength, illumination and detection angle

(ω,ki ,k), the value S(ω)
kz

is added at the scattering vector K = k−ki . Fig. 2.8a shows an

axial slice of a 3D transfer function computed according to the equation 2.19. The white

line indicates its complex conjugate. Fig. 2.8b shows the 2D projection of (a) (sum along

gz ) which is required to be able to compare the model with the paraxial approximation

where a solution only exists for 2D phase objects. Fig. 2.8c shows the TIE transfer function

(Laplacian HTIE
(
g
)= g 2

x + g 2
y ). Fig. 2.8d shows the line profiles of the two model, showing a

good agreement for the low frequencies (where the paraxial approximation is valid) and a

clear discrepancy at high frequencies. We therefore expect from our model to amplify the

low-frequencies and but also to preserve the high-frequencies that will be attenuated by the

inverted Laplacian.
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2.5.2 Experimental comparison of TIE vs Helmholtz

In order to demonstrate the usefulness of our model, we deconvolve experimental data of

an ion-beam etched borosilicate wafer ( n = 1.51, ∆n = 0.51 in air). This technical sample

consists in two 10 µm wide perpendicular lines with consecutive etching depth of 15 and 30

nm, forming a well with a width of 45nm in the center. The sample was characterized with

an atomic force microscopy (AFM) measurement (see Figure 2.8a). The same sample was

imaged on a bright-field microscope with a Kohler illumination ( NAill ≈ 0.3,λcentral = 580 nm),

a 60x 1.42NA oil objective (Olympus Apo-plan N), an xyz-translation stage (piezoLEGS, Nanos

Instruments GmbH) and a Hamamatsu Orca flash V4.2 (projected pixel size of 108nm).
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Figure 2.8 – Phase calibration of etched borosilicate with two 10 µm wide perpendicular lines
with consecutive etching depth of 15 and 30 nm (a) AFM measurement of. (b) TIE phase image.
(c) Deconvolved phase using the proposed model. (d) Averaged line profile (indicated by the
green rectangle in (c)) of AFM (black), Laplacian (green) and Heff (magenta). Scale bar, 5 µm.

First a z-stack of 50 bright-field defocused planes axially spaced by 200 nm is acquired. The

cross-spectral density and phase are then retrieved following equation 2.34 ( α= 3.15, where α

was estimated using the AFM measurement). The in-focus plane (plane with highest contrast)

is then deconvolved (Wiener filtering with a regularization factor of 5 10−4) by using the

Laplacian as a transfer function (TIE, Figure 2.8b) and the 2D effective transfer function

Heff
(
gx , g y

)
(Figure 2.8c). Figure 2.8d shows the averaged line profile (indicated by the green

rectangle in Figure 2.8c) of the AFM scan (black curve), Laplacian (green curve) and Heff

(magenta curve) with a 10 and 20 nm offset to improve visibility. We clearly see how the inverse

Laplacian operation strongly attenuates the high-frequencies, resulting in a smooth height

transition. On the other hand, the proposed transfer function yields a sharper transition while

also retrieving the low frequencies. We also notice that our model produces Gibbs oscillations,

which is the typical step response to a low-pass filter. The only way to reduce these oscillations

is to apodize the edges of the transfer function, attenuating high-frequencies information.

The Laplacian and the effective transfer function have been calibrated using the AFM data.

The calibration allows to extract quantitative optical path difference (OPD) from the intensity

measurement. For the technical sample, the refractive index is constant, allowing to assess the

sample height. As shown, both method are in a good agreement with the AFM ground truth.

The obtained phase precision is ∼ 2 nm (standard deviation of phase) and an accuracy of ∼ 4

nm (average error between AFM and Heff phase).
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2.5. Symmetry of the coherent transfer function and coherence

In addition to the solid-state technical sample, we also imaged fixed cos-7 cells to compare

our model with the standard TIE reconstruction. Figure 2.9a shows the raw quantitative phase

retrieved by measuring the 3D intensity, applying the mask M(g), taking its imaginary part

and multiplying it by α=3.15
I0

.
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Figure 2.9 – Phase reconstruction. (a) Phase image of fixed cos-7 cell. (b) 2D deconvolution
using the inverted Laplacian. (c) 2D deconvolution using the proposed model Heff

(
g
)
. (d) Line

profiles of (a), (b) and (c) indicated by white line in (c). Scale bar: 5 µm.

Figure 2.9b shows the results of the deconvolution of the Figure 2.9a using the Laplacian,

as performed in TIE. Figure 2.9c shows the results of the same deconvolution operation but

using the 2D projection of the effective transfer function Heff
(
g
)
. Figure 2.9d shows the line

profiles of Figure 2.9a, b and c, highlighting the fact that our model intrinsically enhances the

low frequencies in the image (envelope of the cell) but also preserves the high-frequencies.

The paraxial model (Laplacian), on the other hand, completely removes the high-frequency

contribution, and preserves only the phase envelope.

2.5.3 Pupil modulation of coherent transfer function

To demonstrate the viability of the model, we modulated the phase in the illumination pupil

by various filters (various NA, ring mask, half-pupil). We imaged a fixed neuron[79], as a 3D

weakly scattering source, while simultaneously imaging the back focal plane of the objective.

For each illumination filter, we imaged a bright field stack (field of view: 80 µm, 100 planes

spaced by 400 nm) of a fixed neuron sample. We then computed the expected effective transfer

function Heff as a function of the experimental conditions. Figure 2.10a shows the axial slice

of the computed transfer function for a low illumination NA of 0.05, a detection NA of 1.4 and

a central wavelength of 580 nm. Figure 2.10b shows the experimental axial slice of the Fourier

transform of the weakly scattering media under similar conditions. The image of the back

focal plane of the objective is shown in the inset. We repeated the experiment for two different

ring illuminations (Figure 2.10c and d, ring radius of 0.08; Figure 2.10e and f, ring radius of 0.3).

We observe an excellent agreement between the calculated and the experimental results. We

see that for all conditions, the experimental transfer function vanishes for spatial frequencies

larger than 11rad/um. This can be attributed to the apodization caused by the edges of the

illumination and detection path. We also compare the theoretical and experimental effective

transfer function of a knife-edged ring illumination in Figure 2.10g and f. The knife-edge was

realized by adding an appropriate mask in the image of the back-focal plane of the objective,
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Figure 2.10 – CTF modulation via pupil manipulation. (a) Axial slice of the theoretical Heff for
an illumination NA of 0.05 (b) Axial slice of the log of absolute value of 3D Fourier transform
of the bright-field image (Inset: Experimental image of the objective back focal plane) (c-d)
Ring illumination; Ring radius of 0.08. (e-f) Ring radius of 0.3; (g-h) Ring illumination and
knife-edge.

blocking both half of the illumination Ui and half of the scattered field Us . These results show

that our model allows to describe the partially coherent transfer function beyond the paraxial

approximation.

2.6 PRISM multi-plane platform

In order to perform fast 3D image acquisition, we conceived a multi-plane platform (MP)

based on a novel image splitter. As shown in Fig. 2.11, a customized image splitting prism

in the detection arm of the microscope directs the light into 8 distinct images (see Table A.1

and Fig. A.2,A.1). The image splitter, placed in the convergent beam path, provides high

inter-plane image stability for recording a sample volume of about 50 µm x 50 µm x 2.5µm.

The MP platform allows diffraction limited multiplexed image acquisition of 8 planes with

no moving parts (optical design provided in Section A.2, Fig. A.3-A.9). The dominant speed

limitation is given by the camera frame-rate (up to 200 Hz in this work).

Due to the common path configuration and fast 3D (8 plane) image acquisition, excellent

phase stability is achieved. Our high-NA water immersion objective provides a lateral resolu-

tion of 380 nm and an axial resolution of 560 nm for phase imaging (NAdet = 1.2, see Section

2.3, Fig. 2.4). We assessed the influence of the 3D intensity sampling on the phase retrieval in

detail. As the prism allows fast imaging of 8 planes with an inter-plane distance of 350 nm,

we have a trade-off on sampling in Fourier space. The limited axial sampling translates in an

additional lateral and axial high-pass filtering of the phase. We have chosen this compromise

for the benefit of 3D depth-resolved phase imaging of subcellular structures at 200 Hz.
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b

C
am

er
a 

1

Camera 2

d/2n

d I8
I6
I4
I2

I7 I5 I3 I1 

T1 T2

Epi-illumination
for fluorescence  

White-light
  source

Sample

TL

Multi-plane 
    prism

Camera 2

Camera 1

Field stop

a

Multi-plane 
    prism

Koehler 
illumination

Figure 2.11 – Overview of the PRISM setup. (a) Microscope layout combining epi-fluorescence
illumination and white-light Koehler illumination for 3D phase retrieval with the multi-plane
imaging platform. TL tube lens, T1 and T2 telescope lenses. (b) Multi-plane image splitter (for
all specifications and parameters see Section A.2).

Due to the classical layout of the microscope, adding an epi-illumination fluorescence channel

is straightforward (see Fig. 2.11). The combination of both imaging modalities merges the

advantages of phase microscopy such as label-free, long-term dynamic cell imaging with the

complementary features of fluorescence, e.g. molecular specificity and single molecule detec-

tion. We named our multi-plane microscope Phase Retrieval Instrument with Super-resolution

Microscopy (PRISM), as wide-field super-resolution imaging can be easily integrated via the

fluorescence channel.

PRISM splits the fluorescence signal into eight simultaneously acquired depth images and is

ideally suited for 3D Super-resolution Optical Fluctuation Imaging (SOFI). Fast, background-

free, super-resolution imaging with inherent optical sectioning is possible by analysing

time-series of independent, stochastically blinking emitters with higher-order cumulant

statistics[65]. SOFI can be applied on the same dataset as (d)STORM and PALM[80, 81]. It also

provides reliable results for high labelling densities and limited photon budget, which is an

advantage for analysis of the brightness reduced multi-plane images. Cross-correlation (or

precisely cross-cumulant) analysis is not limited to the lateral dimension. In consequence,

if the inter-plane distance is adjusted smaller than the axial PSF extent and the 3D image
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Chapter 2. Three-dimensional partially coherent quantitative phase microscopy

stack is acquired simultaneously, a 3D super-resolved image acquisition can be realized. The

parallel acquisition significantly reduces the overall imaging time and thus the photobleaching

compared to sequential recording of image stacks. We demonstrated a lateral resolution of

110 nm and an axial resolution better than 500 nm for 3rd order 3D SOFI[69]. The chosen

specifications for the new MP configuration allows a robust multiplexed image acquisition

matching all these requirements. Using PRISM, we demonstrate high-speed live cell phase

microscopy and the combination of SOFI with phase imaging in 3D.

2.7 High-speed dynamic 3D phase imaging

To highlight the fast acquisition of PRISM 3D phase imaging, we monitored a living human

fibroblast at an imaging speed of 200 Hz as it migrates on a glass substrate. The overview in Fig.

2.12a shows the cell body with the nucleus and lamellipodia extending into the direction of

migration for a selected plane. The membrane of the nuclear envelope separating the nucleus

from the cytoplasm is clearly visible. In the zoomed region of interest (green-dashed square

in Fig. 2.12a), the fast movement of a vesicle (white circle) and an apparent fusion of two

small organelles (white arrow) are indicated (Fig. 2.12b). A kymograph perpendicular to the

leading edge of the cell (along the magenta line in Fig. 2.12a) shows membrane ruffles that

move centripetally towards the main body[82] (Fig. 2.12c). Intracellular vesicle movement

in 3D can be observed in the close-up of a color-coded maximum phase z-projection of the

green-dashed region of interest (Fig 2.12d, the particle that is indicated moves up and down

(yellow-red-yellow)).

2.8 Combining SOFI and phase imaging

We explored the full potential of our PRISM multimodal multi-plane imaging by investigating

different cell types using super-resolution optical fluctuation imaging followed by phase

imaging, both in 3D (Fig. 2.13). As a proof of principle, we first acquired image sequences

of microtubules in fixed HeLa cells that were fluorescently labelled with Alexa Fluor 647 by

indirect immunostaining. We obtained 3D super-resolved images by computing second and

third order bSOFI[68] images of the fluctuating signals of blinking labels (Fig. 2.13a). This SOFI

implementation linearizes the brightness response of the cumulants to balance the image

contrast. The optical sectioning capability and the removal of out-of-focus background are

apparent in the bSOFI images. A selected xy-plane displays the rich (intra-) cellular context

provided by the subsequently acquired corresponding phase tomogram (Fig. 2.13d). Clearly,

the cell nucleus coincides with the void volume that is surrounded by the labelled cytoskeleton

filaments, whose network extends almost to the outline of the cell. A color-coded maximum

z-projection of the green-dashed region of interest indicated in the 2D phase illustrates the

3D nature of the phase images (Fig. 2.13g). Our correlative phase and bSOFI images are

intrinsically co-aligned, as they were taken successively using the MP microscope without

moving the sample.
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Figure 2.12 – Fast live cell 3D phase imaging of cellular dynamics. (a) Human fibroblast
migrating on a glass substrate. First frame of a 25s movie imaged at 200 Hz for a selected
plane. (b) Close-up of the green-dashed ROI indicated in (a) at different times illustrates
intracellular organelle movement, indicated by a white circle and a white arrow. (c) Kymograph
for every 10th frame along the magenta line 1-2 in (a) shows ruffling of lamellipodia. (d) Close-
up of the green-dashed ROI indicated in (a) across all planes at different times illustrates
intracellular organelle movement in axial direction, indicated by a white circle. Phase color-
coded maximum z-projection (threshold T = 0 rad). Scale bar 5 µm.

Fig. 2.13b, e and h summarize the imaging of mouse hippocampal primary neurons that

were treated with α-synuclein fibrils. The protein is abundant in the brain and abnormal

accumulation of aggregates is a characteristic for a number of neurodegenerative diseases

including Parkinson’s[83]. SOFI reveals the 3D architecture of newly formed Alexa Fluor 647-

immunostained α-synuclein aggregates (Fig. 2.13b). Several long fibres extend over the whole

imaging depth. The corresponding phase tomogram (Fig. 2.13e, h) shows that, in this case,

most of the α-synuclein aggregates are found within a bundle of neurites. The outline of a

neuronal cell body is barely visible slightly off the centre of the 2D image.

Next, we investigated live cells with 3D phase imaging and SOFI. To do so, we transfected

RAW 264.7 macrophages with a reversibly photoswitchable fluorescent protein construct,

Lifeact-Dreiklang. This fluorescent fusion protein labels actin filaments in live cells[84], that

are visualized in 2nd order bSOFI (Fig. 2.13c). A visual comparison between fluorescence

and phase imaging reveals that only one out of five cells in the field of view are expressing

Lifeact-Dreiklang (Fig. 2.13c, f). The semi-adherent macrophages have a round shape with

several thin, actin driven protrusions that emerge from the cellular membrane.
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Figure 2.13 – Multi-plane SOFI and phase imaging. SOFI maximum intensity projection,
selected 2D phase image, and colour coded maximum phase z-projection of the corresponding
highlighted area (threshold T = 0 rad). (a), (d), (g) HeLa cell with Alexa Fluor 647 antibody-
labelled microtubules, (b), (e), (h) mouse hippocampal primary neurites incubated with
external α-synuclein fibrils and immunostained for newly formed α-synuclein aggregates
Alexa647 and (c), (f), (i) live murine RAW 264.7 macrophages expressing Lifeact-Dreiklang.
SOFI acquisition at 50 Hz of 5000 frames for Alexa647 and of 3000 frames for Dreiklang imaging.
Subsequent phase imaging camera exposure time 20 ms, Scale bar 5 µm.

2.9 Summary and discussion

We provide a novel concept for retrieving the phase information in all 3 spatial dimensions.

The theory is based on the Helmholtz wave equation and is embedded in the framework of

the generalized Wiener-Khintchine theorem[71]. We consider elastic light scattering using the

first order Born approximation. An Ewald sphere construction reveals the attainable frequency
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2.9. Summary and discussion

support of the image spectrum. Measuring the interference of the forward weak scattering

with the illumination enables decoding of the phase information along the z-direction. The

theoretical effort goes in parallel with a fast and elegant algorithm comprising a masking

operation to recover the 3D phase information from an acquired volumetric intensity stack.

The common-path configuration integrated with white-light Koehler illumination and high

detection NA provides stable and speckle-free high-resolution quantitative phase imaging

of sub-cellular structures. Our simulations confirmed and matched an experimental lateral

and axial resolution of 350 nm and 560 nm. We demonstrated the quantitative nature of our

method by assessing the relative step heights of a nanometric phase object, referenced using

AFM measurements and confirmed by imaging polystyrene beads of known size. The method

allows one to upgrade a classical bright-field microscope into a simple and reliable 3D phase

microscope.

The experimental counterpart is based on an innovative multi-plane configuration, containing

an image splitting prism for “volumetric” multiplexing, i.e. the simultaneous acquisition of 8

images originating from 8 conjugated object planes with an inter-plane distance of 350 nm.

Our Phase Retrieval Instrument with Super-resolution Microscopy (PRISM) combines fast 3D

phase imaging with 3D fluorescence super-resolution microscopy for a unique 4D imaging

modality.

This powerful and innovative concept opens the door to a wide range of applications, here

demonstrated by imaging different cell samples. As shown, retrieving the 3D phase informa-

tion at an acquisition rate up to 200 Hz responds to an ever growing demand for imaging fast

dynamic cell processes. However, the gain in acquisition rate based on phase imaging is paired

with a lack of specificity. Since our proposed MP configuration allows super-resolved fluo-

rescence imaging based on super-resolution optical fluctuation imaging, fluorescence based

specificity and high acquisition speed are realized in the same 3D platform. This multimodal

and versatile microscope promises to fulfil the expectations for many novel applications and

investigation in biology and life sciences.
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3 Multi-plane SIM, High power high-
speed multi-color SIM and experimen-
tal combination of SOFI with SIM
3.1 High speed multi-plane Structured Illumination Microscopy of

living cells using an image-splitting prism

Super-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate

acquisition speeds when combined with high-speed spatial light modulators and sCMOS

cameras, rendering it particularly suitable for live cell imaging. If, however, three-dimensional

(3D) information is desired, the sequential acquisition of vertical image stacks employed by

current setups significantly slows down the acquisition process. In this work we present a multi-

plane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of

multiple object planes, employing a recently introduced multi-plane image splitting prism

combined with high-speed SIM illumination. This strategy requires only the introduction

of a single optical element and the addition of a second camera to acquire a laterally highly

resolved three-dimensional image stack. We demonstrate the performance of multi-plane

SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7

cells.
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Chapter 3. Multi-plane SIM, High power high-speed multi-color SIM and experimental
combination of SOFI with SIM

3.1.1 Introduction

Conventional fluorescence microscopy is inherently limited in its spatial resolution due to

diffraction. Optical super-resolution imaging techniques allow us to overcome this limitation.

For super-resolution structured illumination microscopy (SR-SIM) this is achieved by using

high spatial illumination frequencies that down-modulate spatial frequencies beyond the

cut-off into the passband of the microscope[29, 43, 85, 86].

Linear implementations of SR-SIM create a sinusoidal interference pattern in the sample plane,

leading to a spatial resolution improvement of at best two-fold over wide-field microscopy, and

additional contrast enhancement for high spatial frequencies and strong suppression of out-of-

focus light by filling the missing cone of the instrument’s optical transfer function[43, 87, 88]. In

return, only a small number of raw images with defined illumination patterns (9 in the standard

2D implementation, less when using advanced algorithms[89]) are needed for the image

reconstruction process. The excitation powers are comparable to conventional wide-field

imaging, so photo-damage can be minimized, and no special dyes (e.g. dyes that are photo-

switchable or inherently blinking) are required for the approximately two-fold resolution

enhancement. The combination of these features makes SR-SIM a very fast super-resolution

imaging technique, with current instruments[90, 91] providing 2D imaging with approximately

100 nm spatial resolution in the lateral direction at video-rate speed and even faster.

Live-cell imaging is the primary domain for SR-SIM. Here, its high temporal resolution excels,

especially when observing highly dynamic processes on sub-second time-scales. If, however,

3D volumetric imaging is required, current state-of-the-art SR-SIM systems slow down the

acquisition rate significantly, due to the need to physically move the object through the focal

plane, e.g. by piezo-translation stages. The slowdown arises not just from the repeated image

acquisitions, but also from the intermediate sample movement that needs to be accounted for.

Also, advanced control electronics are required if stage movement, SR-SIM illumination and

camera exposure are to be synchronized precisely.

Such delays can be avoided if a full 3D volume of the sample could be acquired at once. Two

different approaches to multi-plane image detection currently exist: A diffractive element,

based on a phase-shifting spatial light modulator (SLM) or a lithographically-produced op-

tical element[92, 93], can be introduced into a conjugated image plane and create almost

arbitrary multi-plane detection schemes. Chromatic aberrations can be corrected using ad-

ditional elements[94]. Recently, this approach was combined with a commercial SR-SIM

microscope[95] and provided the first multi-plane SR-SIM images in a prototype system. Al-

though this proved to be a great demonstration of the future of SR-SIM imaging, these tests

ended up being limited by the slow speed of the commercial SR-SIM platform, which was not

originally conceived for video-rate super-resolution imaging. Here, we present a multi-plane

imaging approach to SR-SIM that circumvents these issues and achieves high-speed imaging

rates previously only available to 2D SR-SIM.
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3.1. High speed multi-plane Structured Illumination Microscopy of living cells using an
image-splitting prism
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Figure 3.1 – Opto-mechanical schematics of the high-speed multi-plane SR-SIM imaging
system. The SR-SIM pattern is created by a 532 nm 1 W laser (Roithner) coupled into a single
mode fiber for mode cleaning. The light at the distal end of the fiber is then collimated,
expanded by a factor of 2 and directed onto a digital micro-mirror device (DMD), which is
used as a fast, electronically controlled optical grating. A segmented aperture mask removes
spurious diffraction orders, arising due to the binary nature of the DMD. A relay lens system
focuses the light into the back focal plane of the objective lens (Olympus UPLSAPO 60 x/1.2 NA
water immersion). Excitation and emission light is wavelength-separated by a dichroic mirror
(DM). In the detection path, the tube lens (TL) forms an intermediate image (Image Plane),
where a field stop (IIP) sets the field-of-view size and prevents overlapping signals in the
multi-plane detection system. A magnification of 58.5 x is achieved, which corresponds to a
projected pixel size of 111 nm for the sCMOS cameras (ORCA Flash 4.0, Hamamatsu). Lenses
form a relay telescope into the main component, the precision-made multi-plane prism [79].
It provides 2×4 copies of the image onto 2 scientific sCMOS cameras, where each copy has a
defined path-length difference and thus defined, axially offset focal plane.

3.1.2 Multi-plane SIM

Our work is based upon an imaging strategy for multi-plane detection that divides the detected

fluorescence light into multiple image planes by introducing discrete optical path length

differences to the image path [69, 79, 96]. This path length difference guarantees perfect

object-image conjugation for 8 object planes equally displaced along the axial direction. As

seen in Fig. 3.1, the classical 8f set-up of the detection path allows us to easily realize a

telecentric instrument ensuring identical scaling of all 8 images obtained from different axially

displaced object planes.

While image splitting via subsequent changes in detection path length is a robust concept,

its typical implementation with discrete optical elements is sensitive to thermal drifts and

vibration and rather difficult to align. A recent development[79] solved this problem by

integrating this approach into a single, stable, precision-made optical element: a compound

image-splitting prism. This device allows for the simultaneous detection of up to 8 diffraction

limited images obtained at equally spaced vertical planes with only minimal alignment of

the overall optical set-up. Compared to diffraction based multi-plane microscopy[95], our
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Figure 3.2 – Data processing and SIM image reconstruction procedure. (a) The raw images are
first averaged to produce a pseudo wide-field image. This image is then used to estimate the
inter-plane transformation matrix T (z). This matrix is used to coregister the raw SIM images
and reorder the data in x,y,z,t space. Then, the data is either averaged (WF), deconvolved in
3D (WF dec), reconstructed (SIM) or deconvolved and reconstructed (SIM dec). (b) Color
coded maximum intensity z-projection of 3D images for all 4 modalities on a fixed COS-7 cells
labelled with MitoTracker Orange. Inset shows a zoomed in comparison between WF and
deconvolved SIM. Scale bar 5µm.

approach has the advantage that the prism consists of a single, compound refractive element

instead of 2 separate gratings and a refractive correction prism. This greatly improves the

stability and simplifies the alignment of the system. While the diffractive solution can in

principle be tailored to a specific imaging application, the method presented here is very

versatile, and, through a careful selection of tube lenses, can be used at any wavelength,

allowing for example 3D correlative microscopy [79].

We combined our prism-based detection path with a coherent SIM excitation path based on a

high-speed digital mirror device (DMD - DLP7000, Vialux) and a high-power laser (532 nm,

1W, Roithner). By utilizing two synchronized sCMOS cameras (Hamamatsu Orcaflash V4.0),

we achieved high-speed volumetric imaging with 50 ms exposure time. Taking camera readout

and device synchronization into account, this results in about 1.3 reconstructed SIM data sets

per second, to image a full volume of about 40×40×2.45µm3.Both the DMD-based spatial

light modulator and the cameras could, in principle, be tuned to provide even higher imaging

speeds[90], if required by the application and if sufficiently bright fluorophores are used to

compensate for the lower signal to noise ratio.

In its current configuration, the SIM is operated in coherent two-beam mode. Here, the ±1st

diffraction orders generated by the DMD grating pattern can interfere in the sample plane to

generate a lateral modulation of the excitation pattern. The 0th order is blocked, so no axial

modulation of the SIM pattern is introduced. This approach sacrifices the axial resolution

improvement possible in full three-beam SIM, but comes with a set of advantages. First of
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Figure 3.3 – Time series of SR-SIM imaging data following mitochondrial dynamics (stained
with MitoTracker Orange) in COS-7 cells, color coded maximum intensity z-projection of the
deconvolved and SIM reconstructed 8 planes (see Fig. 3.2). The full series contains 74 time
points, each acquired with 50 ms SR-SIM acquisition time to allow for motion-artifact-free
imaging (see Visualization 1). The series has been renormalized in brightness to compensate
for photo-bleaching, but no further processing beyond a standard SIM reconstruction had to
be performed. Insets (FOV 7x7µm2) show deconvolved SIM exhibiting high spatial motility of
the mitochondria during the imaging. Scale bar 5µm.

all, including SIM modulation along the axial direction would entail aligning each z-plane

with the axial periodicity of the SIM pattern, which would take away some of the systems

robustness and simplicity. Also, the acquisition of 15 instead of 9 raw images is required for a

direct SIM reconstruction of three-beam SIM data, which impacts overall imaging speed, as

well as sample photobleaching and phototoxicity. Most importantly, the optical sectioning

intrinsically provided by three-beam SIM can also be obtained in a two-beam approach (albeit

at lower axial resolution) by trading in some of the lateral resolution enhancement for optical

sectioning capability. In brief, using a slightly coarser SIM pattern (frequency of 1.8µm−1,

or 555nm periodicity, here) leads to an overlap of the shifted copies of the optical transfer

function obtained by SIM, which, in turn, allows to fill their missing cone and thus provides

axial sectioning [87, 88].

Additionally, using a coarser SIM pattern simplifies the aspect of polarization control. For

optimal pattern contrast, the polarization of the interfering beams would have to be rotated to

match the three orientations of the SIM pattern. However, when using a coarser pattern, and

thus steeper interference angles, the influence of polarization becomes less pronounced[97].

This allows us to use a fixed linear polarization while maintaining reasonable pattern modula-

tion contrast for all pattern orientations, which both simplifies the optical setup and avoids

light loss in the filter elements that would otherwise occur. To summarise, we tuned the SIM

system to a compromise of both optical sectioning and lateral resolution improvement, while

operating at the minimum of 9 raw SIM frames to achieve high imaging speeds.

3.1.3 Results

We applied our multi-plane SIM system to the fast imaging of mitochondrial dynamics [98, 99].

Here, SIM is an enabling imaging method, as its increase in spatial resolution and inherent

53



Chapter 3. Multi-plane SIM, High power high-speed multi-color SIM and experimental
combination of SOFI with SIM

background suppression allows us to visualize the mitochondria and their three-dimensional

morphology and dynamic changes thereof which cannot be observed with conventional

wide-field resolution [37]. Furthermore, the rapid movement of mitochondria requires high

imaging speed, while their three-dimensional nature greatly benefits from acquiring signals

from multiple z-planes. However, the structures are still rather "thin" compared to their length,

and a coverage of 2.45µm (8 planes with an axial sampling of 350 nm) as provided by our

system is typically sufficient to capture the entire three-dimensional mitochondrial structure

in a single shot multi-plane exposure. In this case, no axial movement of the sample is needed

at all, which greatly simplifies data acquisition and decreases the acquisition time. The data

processing and results are presented in Fig. 3.2, where our imaging was performed with 50 ms

exposure time per raw data frame. As mentioned earlier, 3 angles and 3 phases are required

for the 2D SIM image reconstruction process, thus reaching 770 ms acquisition time for the

full imaged volume.

Fig. 3.2a summarizes the flow of data. A key challenge is that the the 8 planes are all slightly

shifted with respect to each other, due to unavoidable limitations in the prism manufacturing.

By cross-correlating two consecutive planes, we are able to recover the prism transformation

matrix T (z) and perform a sub-pixel coregistration for all the raw SIM frames. We then

average all the frames to form a pseudo-widefield image (WF), deconvolve the 3D WF using 10

iterations of Lucy-Richardson (LR) deconvolution (deconvlucy, Matlab 2017b), reconstruct the

SIM image plane by plane (SIM) or deconvolve in 3D the raw SIM frames and reconstruct the

SIM images plane by plane (SIM dec). Results are shown in Fig. 3.2b, where we encoded the

depth information using a color-coded maximum z-projection. Using the recently introduced

image resolution estimation method [100], we measure a resolution of 460nm for WF and

434nm for WF dec. This relatively high value is due to the presence of out-of-focus light,

which is partially removed by the 3D deconvolution. For SIM, we measure 266nm (263nm

for SIM dec), which corresponds to a resolution gain of about 1.7 compared to WF. We note

that for SIM, the deconvolution mostly improves the image contrast and does not change the

resolution.

We used a custom 2D SIM reconstruction algorithm implemented in Matlab, following closely

the work from [101]. For the 3D LR deconvolution, we used an experimentally acquired 3D

PSF of the setup, obtained by imaging, localizing and averaging the 3D image of 15 sparsely

distributed sub-diffraction (100nm diameter) fluorescent beads.

In Fig. 3.3, the time series of a second data set is shown. With an exposure time of 50 ms we

achieved about 1.3 fps volumetric SIM imaging speed. We estimate for the resolution 520nm

for WF, 460nm for WF dec, 375nm for SIM and 265nm for SIM dec. The small degradation of

resolution for SIM and WF is due to unavoidable sample movement. No further degradation

of resolution over time is observed. However, we find (see Visualization 1) that this speed

allows us to capture the 3D dynamics of the mitochondrial network. While the reconstructed

sequence had to be bleach-corrected by normalizing the average of each frame, 74 time points

(about 60 sec) could easily be acquired, without the need to resort to any advanced image

reconstruction algorithms.
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3.1.4 Conclusion

The results presented here demonstrate the first proof-of-concept of high-speed two-beam

multi-plane SIM imaging of living cells using an image-splitting prism. They show that the

combination of multi-plane image detection with fast two-beam SIM illumination indeed

yields the desired high speed volumetric imaging. These results also indicate that this system

is well suited to image mitochondrial dynamics, as both the necessary temporal and spatial

resolution is reached.

Our work also provides several insights into current limitations and challenges. For example,

the current DMD implementation encounters significant losses of the excitation light due

to spurious diffraction, with a maximum of about 3 mW reaching the sample (single-mode

fiber coupling: 25%, DMD transmission: 6%, SIM mask: 30%, dichroic and objective lens:

70%). Newer liquid crystal on silicon (LCOS)-based designs will allow for a 10× improvement

in power management albeit at the cost of more complex timing requirements. By utilizing

polarization control and higher pattern frequencies, the lateral spatial resolution could also

be pushed towards ∼ 130 nm. In combination with more advanced algorithms taking full

advantage of the 3D information for low signal to noise image reconstruction, we envision

that 5-10 ms exposure times, and thus volumetric imaging within 50-100 ms will be possible.

Very recent development into advanced denoising SR-SIM reconstruction algorithms[102]

point to solutions that will allow for the use of significantly lower signal levels in the image

reconstructions, and thus might allow us to push for even faster imaging speed. Advanced

fluorescent dyes will allow for even more extended observation times. Novel, smart data-

driven feedback loops should also be able to dynamically adapt the imaging speed depending

on the observed dynamics. These approaches will all complement multi-plane video-rate

SR-SIM imaging quite well.

In its current state, image-splitting multi-plane SR-SIM technology provides an early demon-

stration of what this technology will be able to achieve in more improved configurations. As

the approaches and their implementations evolve, we believe they will provide an important

tool for future high-speed super-resolution 3D imaging of living cells and organisms.

Sample preparation and staining

#1.5 cover glass coverslips were cleaned with a piranha solution and coated with fibronectin

(0.5 µM/ml). Cells were grown in DMEM without phenol red medium, containing 10 % of fetal

bovine serum. Mitochondria were stained with 100 nM MitoTracker Orange (Thermo Fisher)

according to manufacturer-provided staining protocol for 30 min. Then cells were either fixed

with 4% PFA or used for live cell imaging. For live-cell imaging, cells were washed twice with

grown medium and imaged in PBS pH=7.4, which proved to reduce background fluorescence

and short-term imaging was perform in a custom build incubator at 37 ◦ C.
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3.2 High power high-speed multi-color SIM

In order to generate a high frequency sinusoidal pattern in the sample plane, two coherent

beams need to interfere at the sample location. As already presented in the introduction,

several solutions (fixed phase grating, liquid crystal device, digital micro-mirror device) exist

with different limitations regarding speed, losses, multi-color compatibility and complexity. In

particular, the use of a digital micro mirror device, presented in Chapter 3, allows for flexible

and high speed projection of a variety of patterns. It however suffers from very high losses due

to unavoidable diffraction of light outside of the optical path. The use of a grating to generate

the structured illumination also complicates the implementation of several illumination colors

since the diffraction pattern strongly depends on the wavelength.

Here we report the design of an achromatic, high power, fast SIM illumination design. The

setup can operate in two or three-beams configuration, is compatible with polarization control

and can in principle reach 100% transmission efficiency. We start by describing how the pattern

is generated and show its performance on fixed cell sample. We then demonstrate the ability

of the setup to achieve multi-color SIM imaging. Finally, we show the first experimental

realization of the combination of SOFI with SIM.

The setup is presented in Fig. 3.4 and note that the SIM design and the ideas presented in this

chapter were obtained independently of the publication [103].
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laser light source
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reflector

Mirror on 
piezo

xy galvo mirror

Mirror on 
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 Dichroic mirror

optional 3beams
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Figure 3.4 – Achromatic high-power fast SIM setup. The setup description is provided in the
text.

A collimated laser light beam is directed towards a 2-axis galvanometer mirror (GVSM002-

EC/M, Thorlabs), located at a distance f of the lens L1 (f=100 mm). The converging beam is

then sent in a balanced Michelson interferometer. One arm consists of a mirror mounted
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on a piezo (PE4, Thorlabs, Open loop control) to provide fast phase modulation. The second

arm consists of a fixed hollow retro-reflector (HRR201-P01, Thorlabs) which laterally shifts the

beam. Both beams are then collimated by the lens L2 (f=250 mm) to form the intermediate

illumination image plane where both beams interfere and form a sinusoidal pattern. For

3beams SIM mode, two additional beam splitters and the lens L5 (f=100 mm) have to be

placed before the galvo system and after the Michelson interferometer and another mirror

mounted on a piezo is required to modulate the phase of the central beam. The pattern

is then imaged on the sample using the lens L4 (f=150 mm) and the objective (Olympus

water immersion 60x, 1.2 NA). The fluorescence collected by the objective is transmitted by

the dichroic (AHF, TIRF Quad Line Beam splitter zt405/488/561/647rpc) and focused on the

camera (Hammamatsu Orca Flash V4.2) by the tube lens L4 (f=200 mm). The residual laser

light is filtered using a Quad Line Laser Rejection band (AHF, ZET405/488/561/647).

Since we avoid the use of a grating, the proposed SIM illumination is well suited for multi-color

imaging. The galvanometer system and piezo can easily be driven in the millisecond range.

The limiting speed factor is then given by the fluorescence signal or the camera frame rate. The

illumination is also compatible with polarization control for optimal pattern contrast. With

the use of a polarized beam splitter and quarter wave-plates, 100% of the light can in theory

be directed towards the sample. In its current implementation, we measure an illumination

efficiency of 40%, the losses being mainly due to the beam splitter.

3.2.1 System control and calibration
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Figure 3.5 – Setup calibration (a) Atto565 stained microtubules of fixed COS7 cells with pattern
projected near microscope cut off (inset: log of absolute Fourier transform of (a) showing the
presence of a sinusoidal pattern). (b) Estimated pattern phase as a function of voltage applied
to piezo. (c) SIM reconstruction using 3 angles and 3 phases. Resolution estimated using the
method presented in chapter 5. Scale bar 5 µm.

The Fig. 3.5a shows a typical image of atto565 stained microtubules of fixed COS7 cells

using a water immersion objective (60x,NA = 1.2) and an Hammamatsu Orca Flash V4.2

(projected pixel size of 97 nm). By applying a voltage to the 2-axis galvanometer system

(Vx = 2.1 V , Vy = 3.19 V ), we generate a 2D sinusoidal illumination (laser wavelength of 561

nm) with a period of 390 nm. Since this pattern is close to the cut off of the system, it is barely

visible in real space. We show in inset of Fig. 3.5a the log of absolute Fourier transform of Fig.
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3.5a, which indicates the presence of the pattern in the form of two peaks close to the image

frequency support.

To ensure equally spaced phase between each SIM pattern, it is mandatory to calibrate the

change of the pattern phase as a function of the voltage applied to the piezo. Fig. 3.5b shows

the result of the calibration. The pattern phase was estimated following the work of Wicker

et. all. [39]. We see that the response of the piezo is nearly linear and that 5 V analog voltage

output can almost produce a full revolution of the pattern phase.

Finally we show in Fig. 3.5c the result of a 2D SIM reconstruction using 3 angles and 3 phases

(custom SIM reconstruction algorithm, see Appendix C), with an exposure time of 50 ms per

frame. Using the method presented in chapter 5, we estimate a wide field resolution of 392

nm and a SIM resolution of 203 nm, which is expected since the pattern frequency is located

at the edge of the wide field frequency support. The illumination frequency ki is almost equal

to the frequency support of the object kc and the SIM reconstruction will have a frequency

support of ≈ kc +ki ≈ 2kc .

To reliably handle the camera triggering and voltage control sequence of the piezo and galvo

system, we rely on a FPGA board (NI 9147 4 Slot Ethernet Expansion chassis) equipped with 8

0-5 V analogue outputs (NI-9381). The programming of the board was done using Labview

FPGA and enable the acquisition of raw SIM frames at 1 ms exposure time. The current system

frame rate is currently limited by the readout time of the camera (Hammamatsu Orca Flash

V4.2) of about 4.5 ms in single frame trigger mode.

3.2.2 Multi-color SIM

In order to demonstrate the ability of the setup to perform sequential multi-color SIM, we

imaged dense layer of fluorescent tetra-speck beads (T7280, ThermoFisher) with a diameter of

200 nm deposited on a glass coverslip. For the demonstration, we used a laser combiner (MLC

400B, Agilent Technologies) with 488, 561 and 647 nm laser lines. For each color channel, the

laser power was adjusted to stay close to saturation of the camera (exposure time of 30 ms).

We projected 5 angles with 3 phases per angle with variable pattern period.

The results are shown in Fig. 3.6. Fig. 3.6a shows the wide field and SIM reconstruction using a

laser wavelength of 647 nm. We estimate a resolution of 450 nm and 245 nm for the wide field

and SIM image. The resolution improvement is consistent with the used pattern period of 477

nm. Fig. 3.6b shows the same sample imaged at 561 nm. As expected, the wide field resolution

slightly decreases to 380 nm. The SIM resolution of 228 nm is also consistent with the pattern

period of 510 nm. Fig. 3.6c shows the same sample imaged at 488 nm with a pattern period

of 359 nm. We measure a resolution of 350 nm for wide field and 203 nm for SIM. Since the

pattern period is almost equal to the wide field resolution, we expect to observe a two fold

improvement of the resolution. The resolution estimation is limited by the sample since we

are using 200 nm beads. The image in not diffraction limited but it is the object itself that

does not contain any higher frequencies (see also section 4.4.2). Finally, Fig. 3.6d shows line
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Figure 3.6 – Multi-color SIM imaging on beads sample. (a) Wide-field and SIM at 647 nm.
(b)Wide-field and SIM at 561 nm. (c) Wide-field and SIM at 488 nm. (d) Line profile indicated
in (c). Scale bar 5 µm.

profiles (indicated in Fig. 3.6c) of all the imaging conditions.

The next step of this project would be to implement the laser combiner into the Labview

control software, optimize the pattern frequency as a function of the wavelength and image a

live cell sample at high speed.

3.3 SOFI-SIM

The non-linear response of SOFI can be combined with SIM to achieve resolution improve-

ment unreachable by the techniques alone[104, 105]. In theory, 4th order SOFI-SIM could

outperform 25th order SOFI, which would be of high interest for the imaging of live samples

with very high label density.

The image formation is nearly identical to the one presented in the introduction (see equation

1.32), except for the dye brightness which is now modulated by the position dependent pattern

intensity p(xi). We have for the nth order SOFI image

κn(x) =
N∑
i

An
i pn(xi)U

n(x−xi)κn{si (t )}+κn{b(x)}+κn{n([x], t )} (3.1)

The SOFI image is now modulated with a non-linear pattern pn(x) which has been raised

to the nth power. Taking a sinusoidal function to the nth power gives rise to high-frequency

harmonics, carrying sample information lying outside of the frequency support of the same

SOFI image without any modulations. By shifting the phase of the pattern and acquiring more

SOFI image (2n +1 per angle), we can unmix the contributions of the different harmonics and

increase the resolution of the SOFI image.

In theory, we expect a resolution increase of
p

n +n, where
p

n is the contribution of the

non-linearised SOFI cumulants and n is the contribution of the non-linear SIM reconstruction.

In practice, there are several factors that will limit the gain in resolution.
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• Drift : A typical experiment requires 7500 to 15000 frames and takes 2-15 minutes

depending on the exposure time. During the acquisition, the sample must be stationary

with respect to the illumination pattern. Drift in the direction of the pattern is equivalent

to changing the phase of the pattern by an unknown amount. All the frames need to be

rearranged for SOFI processing based on their pattern orientation and phase. The drift

contribution will appear as a spread of the phases for each substack, ultimately leading

to a loss in pattern visibility. Only the drift in the direction perpendicular of the pattern

can be compensated in a post-processing step.

• Homogeneity of the phases : SIM reconstruction algorithm expects the intensity vari-

ations between the phases to be due to the pattern phase shift. This assumption is

challenged by the stochastic blinking required for SOFI, where the difference between

two SOFI subsequences can be due to stochastic switching. To minimize this contradic-

tion, dense labelling, high on-time ratio and long acquisitions are required.

• Pattern SNR : The resolution gain of n from the non-linear SIM reconstruction requires

the successful unmixing of the nth order harmonic. However, the harmonic SNR de-

creases with the order, which limits the ability to unmix high order harmonics. To

minimize this effect requires high contrast SIM pattern, dense sample and relatively

long exposure time.

In summary, we need a densely labelled sample for homogeneous structure and visible pattern,

high-power illumination, relatively long exposure time to maintain high SNR and no drift.

3.3.1 Experimental results

For this experiment, a 350mW 561nm continuous laser (gem 561, Laser Quantum) was coupled

to a single mode fiber ( 55% coupling efficiency) and redirected at the input of the setup shown

in Fig. 3.4. At maximum power, we have about 70mW reaching the sample, illuminating an

area of about 75x75µm (maximum illumination power density of 1.2kW /cm2). The drift was

minimized by leaving the sample on the microscope for 20-30 minutes prior to imaging.

We imaged the microtubule network of fixed COS-7 cells densely immunostained with primary

anti-tubulin (1:50 dilution) and secondary donkey anti-mouse-AbberiorFlip565 antibody (1:50

dilution) with Abberior Flip self blinking dye in PBS buffer with 50% glycerol for longer ON-

time using a water immersion objective (60x,NA = 1.2). We used 3 angles with 7 phases per

angle, required to unmix third order SOFI images, and 700 frames per pattern (total of 14700

frames). We projected a pattern period of 460 nm and used an exposure time of 30 ms (+6

ms between each frame for camera eadout). The choice of the pattern period is based on the

compromise between resolution gain and pattern contrast.

As already discussed, the homogeneity of the SIM phases is required for a successful recon-

struction. The data acquisition can be carried out in two different ways. The first method (SOFI

first then SIM) consists in projecting a fixed pattern for 500 to 1000 frames, then change the
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phase or angle of the pattern and repeat the acquisition. This approach has the disadvantage

to introduce inhomogeneous bleaching between each SIM images. The second method (SIM

first then SOFI) consists in continuously changing the SIM pattern. This approach distribute

the bleaching evenly but introduces a time lag proportional to the number SIM pattern be-

tween each SOFI frames. To minimize the bleaching artefacts, all the results shown have been

obtained using the second acquisition method.

In theory, the reconstruction can also be carried out in two different ways. The first method

consists in reconstructing the SIM for each frames and then computing SOFI. This approach

has the disadvantage that it requires very fast exposure to record all the patterns faster than

the On-time, which significantly reduces the raw SNR and leads to unreliable reconstruction.

The second approach consists in computing SOFI on each subsequence and then compute

SIM. This approach does not require fast exposure but requires a dense sample such that all

the frames processed with SOFI shows the same structure. We note that the SOFI processing

consists in computing the raw cross-cumulant and image flattening[66].

In summary, we found out that the optimal acquisition-processing pipeline was of the form

SIM-SOFI for acquisition and SOFI-SIM for the reconstruction.
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Figure 3.7 – Experimental realization of SOFI-SIM (a) Schematic of data acquisition, data re-
ordering and SOFI processing on each patterns. (b) Raw camera frame. The Fourier transform
of the frame is shown in inset. (c) Fourier transform of 3r d order raw SOFI frame, showing up
to 3r d order non-linear peak. (d) SIM reconstruction and comparison of pseudo wide field
(average of all the frames), 3r d order raw SOFI, SIM reconstruction on averaged pattern and
3r d order SOFI-SIM. (e) Resolution estimate as a function of the modality. Scale bar 5 µm

Fig. 3.7a shows the processing pipeline from the data acquisition, data reordering and group-

ing of the different pattern and phases for SOFI processing. Fig. 3.7b shows a raw camera
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frame of dense labelling. The Fourier transform of the raw image is shown in inset, with easily

identifiable structured illumination peak. Fig. 3.7c shows the Fourier transform of a 3r d order

raw SOFI frame. The non-linearity of SOFI is visible in the presence of high-order peaks. Fig.

3.7d shows the resulting SIM reconstruction, compared with different modalities. The pseudo

wide-field has been obtained by averaging all the frames and has a resolution[100] of 392

nm. The 3r d order raw SOFI was obtained by averaging all the patterns and computing SOFI.

We estimate a resolution of about 236 nm. The SIM image was obtained by averaging all the

frames with the same pattern and reconstructing the SIM image. We estimate a resolution of

196 nm. The two fold resolution improvement is consistent with the wide field resolution and

illumination frequency. Finally, the 3r d order SOFI-SIM image shows a resolution of 151 nm.

From the theory and assuming infinity SNR, we expect a two fold resolution improvement

compared to 3r d order raw SOFI, similar to the resolution improvement from wide-field to

SIM. We therefore expect a 3r d order SOFI-SIM resolution of about 116 nm (236/2), which is

not reached due to the low SNR of the 3r d order non-linear SIM peak. Each order provides

a gain in resolution of about 116/3 ≈ 39 nm, and we have in this case 236−2∗39 = 158 nm.

Presumably, the information carried out by the 3r d order peak is too close to the noise level to

produce significant correlations.

Finally, Fig. 3.7e shows the estimated resolution as a function of the modality. As we can

see, there is almost no improvement from SOFI-SIM2 (165 nm) to SOFI-SIM3 (151 nm). Even

if it was possible to successfully compute higher order SOFI images, the reconstruction of

high-frequency content will still be limited by the SNR.

3.3.2 Conclusion

We present the first experimental realization of the combination of SOFI with SIM. Although

the results are promising, several options could be investigated to further improve the perfor-

mances of the method, mainly by improving the signal to noise ratio.

Using a high NA TIRF objective and TIRF SIM would greatly improve the signal to noise ratio

and minimize the out-of-focus signal. The pattern contrast could be maximized by imple-

menting a polarization control scheme using a quarter-wave plate with a liquid crystal retarder.

The implementation of an active drift correction would also be beneficial to the method. From

the processing point-of-view, more advanced low-noise SIM reconstructions[102, 106] could

be used.
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4 Parameter-free resolution estimation

Super-resolution microscopy opened diverse new avenues of research by overcoming the

resolution limit imposed by diffraction. Exploitation of the fluorescent emission of individual

fluorophores made it possible to reveal structures beyond the diffraction limit. To accurately

determine the resolution achieved during imaging is challenging with existing metrics. Here,

we propose a method for assessing the resolution of individual super-resolved images based

on image partial phase autocorrelation. The algorithm is model-free and does not require

any user-defined parameters. We demonstrate its performance on a wide variety of imaging

modalities, including diffraction-limited techniques. Finally, we show how our method can be

used to optimize image acquisition and post-processing in super-resolution microscopy.

The following chapter is a reorganized version of the published manuscript

Descloux, A.C.1, Grußmayer, K.S.1 and Radenovic, A.1, 2019. Parameter-free image resolution

estimation based on decorrelation analysis. Nature methods, 16, pp.918-924.

A.D. proposed and developed the method, processed all the presented data, wrote the Matlab and Java code. K.S.G.

prepared all the cells and performed measurements. A.R. supervised the research. A.D. wrote the manuscript with

comments of all co-authors at all stages.

1LBEN and LOB, EPFL, 1015 Lausanne, Switzerland
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Chapter 4. Parameter-free resolution estimation

4.1 Introduction

Over the past decades, a broad range of novel imaging methods have emerged, providing

unprecedented insights into sub-cellular structures[107, 108]. When designing a microscopy

experiment, one should select an appropriate imaging modality taking into account the

required spatio-temporal resolution. The image quality greatly varies among different tech-

niques and is influenced by sample properties. Image formation can be modelled as the

convolution of a ground-truth object with the specific point-spread function plus various

method-related noise contributions. In Fourier space, the object spectrum is multiplied by

the transfer function of the system. Its shape depends on the imaging method, but common

to all techniques is image low-pass filtering, characterized by a cut-off frequency. This spatial

frequency limit already known to Abbe[109] is generally expressed as kc = NA 2π
λ , where NA is

the numerical aperture and λ the illumination central wavelength, and corresponds to the

resolution in coherent imaging.

Super-resolution techniques overcome the diffraction limit by exploiting specific fluorophore

properties such as stimulated emission or temporal fluctuations. Therefore, image resolution

needs to be reconsidered by taking into account the fluorescent properties of the sample[110].

Ideally, this resolution criterion should work on a single image, be independent of the imaging

method, have no user-dependent settings and be compatible with classical resolution. Such an

estimator of resolution is of particular interest for autonomous adaptive microscopes[111, 112]

that require robust tools to automatically achieve and maintain optimal performance in long-

term imaging of biological samples.

In 1982, van Heel[113] and Saxton[114] independently proposed Fourier Ring Correlation

(FRC) using two independent images of the same object for resolution estimation of electron

microscopy images. The idea was quickly expanded to 3D via Fourier Shell Correlation by

Harauz[115] and several threshold concepts have been proposed (0.5, 0.14310, 2σ [114–117],

SSNR[118]) to extract a resolution measure. Later, Banterle[119] and Nieuwenhuizen[120]

independently extended, reconsidered and applied the method to assess the resolution of

single-molecule localization microscopy (SMLM) images. They define the cut-off frequency

as the spatial frequency where the so-called FRC curve drops below 0.143.

In SMLM, the two image realizations are typically accomplished by splitting the localizations

into two distinct subsets. In general, it can be achieved for any imaging technique[121] by

acquiring two consecutive images under the same conditions. Maintaining these conditions

may be difficult due to, e.g., bleaching or temporal fluctuations of the fluorescence signal.

This is especially pertinent in live-cell imaging and significantly challenges the stationarity

assumption of FRC.

Here, we propose a new method for resolution estimation based merely on an individual

image without further requirements or a priori knowledge. The algorithm expects only a

non-saturated, bandwidth-limited signal with adequate spatial sampling. This novel estimator

is based on partial phase correlation and does not rely on any user-defined parameters. The

algorithm is fast, uses only linear operations and enables the real-time objective assessment of
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4.2. Method

image resolution and Signal to Noise Ratio (SNR). We successfully applied our new approach

on a variety of microscopy data sets, ranging from widefield imaging to SMLM and STED

microscopy. We show that our estimator can also be used to optimize image resolution, both

during experiments and throughout data post-processing.

4.2 Method

To achieve objective threshold-free resolution estimation, we introduce a processing method

termed decorrelation analysis. The main algorithm is divided into two steps. First, the

Fourier transform of the image is computed after standard edge apodization to suppress

high-frequency artefacts. The Fourier transform is normalized as In (k) = I (k)
|I (k)| . The input

image I (k) and its normalized version In (k) are then cross-correlated in Fourier space using

Pearson correlation and condensed in a single value between 0 and 1 (Fig. 4.1a). Second, the

operation is repeated, but the normalized Fourier transform is additionally filtered by a binary

circular mask of radius r∈[0,1] expressed in normalized frequencies (Fig. 4.1b). By repeating

the calculation, we compute d (r ) which is expressed as

d (r ) =
Î ℜ{

I (k) I∗n (k) M (k;r )
}

dkx dky√Î |I (k)|2 dkx dky
Î |In (k) M (k;r )|2 dkx dky

(4.1)

where k = [
kx ,ky

]
denotes Fourier space coordinates, I (k) the Fourier transform of the input

image, In(k) the normalized Fourier transform and M (k;r ) the binary mask of radius r. For a

detailed mathematical derivation and additional considerations, see section 4.2.1.

The core idea of the method is that by normalizing the Fourier transform of the input image,

we balance the signal and noise contributions while the information of the object structure is

preserved in the phase (the phase is responsible for organizing the constructive and destructive

interferences of the complex exponentials to form the image, the amplitude plays only a minor

role in this process). Taking a binary mask radius of 1 allows the extraction of the correlation

value related to the original ratio of signal and noise. If we consider an image containing

only white noise, we see that d(r = 1)≈1, since the white noise power spectrum is constant by

definition (the normalization does not affect the signal). If we add a bandwidth-limited signal

to the image, the correlation value for r = 1 will decrease (the normalization now has a direct

effect on the added signal and thus In (k) only partially correlates with I (k)).

By decreasing the radius of the mask (r < 1), we progressively remove the noise contribution

but preserve the signal due to its bandwidth-limited nature. If the image contains only

noise, the cross- correlation value will decrease linearly as a function of radius r . If we now

add a signal, the decorrelation function d (r ) will exhibit a local maximum of amplitude

A0 that indicates the spatial frequency r0 of best noise rejection and signal preservation

ratio. Restricting the mask further removes more signal than noise, reducing the correlation

below A0 until it drops to 0 for r = 0. The position r0 of the local maximum is therefore
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Figure 4.1 – Image decorrelation analysis workflow. (a) Cross-correlation of the image with
its Fourier-filtered normalized version. (b) Cross-correlation coefficient as a function of
the mask radius. (c) High-pass filtering of the input image and resolution estimation. (d)
The plot of all decorrelation functions computed for the image and resolution estimation;
Green: Decorrelation function without any high-pass filtering, Grey: Decorrelation functions
with high-pass filtering, Blue cross : Local maxima, Black: decorrelation function of highest
frequency peak, Vertical dashed line: cut-off frequency kc . Scale bar, 5 µm.

directly related to the spatial frequency distribution of the image and its amplitude A0 is

positively correlated with the image SNR, however the use of A0 as an SNR metric would

require additional investigations. See section 4.2.1 for a detailed description of the algorithm

and decorrelation function behaviour with respect to different noise statistics, aberrated

transfer functions, cut-off frequencies, SNRs and high-pass filtering.

While being related to the spatial frequency content of the image, the position of the maximum

does not directly indicate the resolution of the image. The input image is then subjected to

a total of Ng high-pass filters (from weak to very strong filtering) to attenuate the energy of

low frequencies. For each filtered image, a decorrelation function is computed and the peak

position ri and amplitude Ai are extracted, generating a set of [ri , Ai ] pairs (Fig. 4.1c). If the
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4.2. Method

high-pass filtering removes too much signal, the decorrelation function will not exhibit a local

maximum and the peak position and amplitude will both be set to 0. We investigated two

strategies for resolution estimation (see section 4.2.3) and define the estimate as

kc = max
[
r0, . . .,rNg

]
(4.2)

which corresponds to the local maximum of highest frequency (Fig. 4.1d). The resolution is

then resolution = 2 pixel size
kc

, where kc is expressed in normalized frequencies. By computing

the resolution with varying sampling of d (r ) and varying number of high-pass filtering Ng ,

we confirm the robustness of the algorithm and estimate the precision to be ±1 to 3 nm,

independently of the type of image. Simulations of point emitters, MTFs, rings and crossing

lines, corroborate that our resolution estimate depends linearly on the frequency support

of the image and that the amplitude of the local maximum A0 before any filtering is directly

correlated with the image SNR.

Instead of searching for the frequency at which the transfer function vanishes (only possible

in the absence of noise), we estimate the highest frequency from the local maxima of the

decorrelation functions, enabling parameter-free image resolution estimation. The presented

method does not estimate the theoretical resolution as stated by Abbe, but rather the highest

frequency with high enough correlated signal with respect to the uncorrelated noise. It

provides a rapid and objective way to quantify the frequency content of a single image without

any user-defined parameter.

4.2.1 Mathematical framework- derivation of the analytical expression of the decor-
relation function d(r)

We consider an incoherent imaging apparatus characterized by the ideal transfer function

H(k) of frequency support kth

H (k) =
{

1− |k|
kth

|k| < kth

0 otherwise
(4.3)

where k =
√

k2
x +k2

y . We image an idealized point emitter of brightness A located on the

optical axis. During the acquisition, the image is corrupted with pure white noise. The

resulting intensity I (k) is expressed in Fourier space, as

I (k) = A

(
1− |k|

kth

)
(|k| < kth)+e iθ(k) (4.4)

where θ (k) is the random phase of the white noise.
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Chapter 4. Parameter-free resolution estimation

The decorrelation analysis, i.e. the computation of the partial phase cross-correlation between

the original image and its normalized version is expressed in Fourier space as

d (r ) =
Î ∞

−∞ℜ
{

I (k) I∗(k)
|I (k)|M (k;r )

}
dkx dky√Î ∞

−∞ |I (k)|2 dkx dky
Î ∞

−∞
∣∣∣ I (k)
|I (k)|M (k;r )

∣∣∣2
dkx dky

(4.5)

where M (k;r ) is a binary mask of radius r . The expression of the partial phase correlation in

Fourier space allows us to make several general considerations. Using complex arithmetic, the

numerator can be simplified as I (k) I∗(k)
|I (k)| = |I (k)|, while the denominator is composed of two

terms. The first is simply the energy of the input image. This number does not depend on r

and normalizes the function d (r ) between 0 and 1. Finally, due to the normalization, the last

term is equal to the mask
∣∣∣ I (k)
|I (k)|M (k;r )

∣∣∣2 = M (k;r ).

Transforming equation 4.5 to polar coordinates
[
kx ,ky

]=> [kr ,θ], we obtain

d (r ) =
∫ 2π

0

∫ 1
0 |I (k)|M (k;r )kr dkr dθ√

E
∫ 2π

0

∫ 1
0 M (k;r )kr dkr dθ

(4.6)

where E stands for the energy of the input image (which is independent upon coordinate

transform) and where we used the Cartesian-Polar transformation dkx dky = kr dkr dθ.

Using the simplified imaging model introduced above (equation 4.3), it is possible to ana-

lytically solve the expression for d (r ) and get a better understanding of how the function

depends on the image transfer function.

We start with the numerator of equation 4.6 and use the fact that the mask M (k;r ) is 0 for

kr > r .

∫ 2π

0

∫ 1

0
|I (k)|M (k;r )kr dkr 2dθ = 2π

∫ r

0

∣∣∣∣A

(
1− |k|

kth

)
(|k| < kth)+e iθ(k)

∣∣∣∣kr dkr (4.7)

In order to be able to integrate the noise term e iθ(k) analytically, we make the additional

assumption that the random phase fluctuations averages out under integration, which allows

to approximate the expression 4.7 as the sum of the transfer function and the noise:

2π
∫ r

0

∣∣∣∣A

(
1− |k|

kth

)
(|k| < kth)+e iθ(k)

∣∣∣∣kr dkr≈2π
∫ r

0
A

(
1− |k|

kth

)
(|k| < kth)kr dkr +πr 2 (4.8)
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The remaining integration is trivial and we obtain for the numerator of equation 4.6

dnum (r )≈
{

2πA
(

r 2

2 − r 3

3kth

)
+πr 2 for r≤kth

πA
3 k2

th +πr 2 for r > kth

(4.9)

Using similar argumentation, we can express the signal energy E as

E =π
[

A2k2
th

6
+ 2Ak2

th

3
+1

]
(4.10)

and the normalized denominator term of equation 4.6 as

∫ 2π

0

∫ 1

0
M (k;r )kr dkr dθ =πr 2 (4.11)

Using equations 4.9, 4.10 and 4.11, we obtain for the decorrelation function d (r ) (for r < kth)

d (r ) =
2πA

(
r 2

2 − r 3

3kth

)
+πr 2√

π
[

A2k2
th

6 + 2Ak2
th

3 +1
]
πr2

(4.12)

From equation 4.12, we clearly see that if A¿1 , i.e. the signal is extremely weak compared to

the noise , the decorrelation function becomes a line with a slope of 1.

dA¿1 (r )≈ πr 2

p
π2r 2

= r (4.13)

We find the position of the local maxima by computing the partial derivative of the analytical

expression of equation 4.12 with respect to r . We find

rmax = 3kth (A+1)

4A
(4.14)

We would like to note that the expression 4.14 is only valid for r < kth and that rmax = kth

when A = 3. For this basic model, an amplitude below 3 will not yield any local maxima.

This result shows that, as long as the signal is strong enough, there is always a local maximum.

Moreover, the position of the local maximum is directly connected to the cutoff frequency kth.
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Chapter 4. Parameter-free resolution estimation

Following our mathematical framework, in Fig. 4.2a , we calculate decorrelation function

d (r ) with (orange, corresponds to equation 4.12 ) and without (blue) idealized noise as well

as their corresponding transfer functions (orange and blue dashed lines). The position of

the local maxima of the orange curve corresponds exactly to the analytical expression. We

observe a deviation from the theoretical model when dealing with white noise. The fact that

the maximum shifts to a lower frequency (and that its amplitude decreases) translates the

degradation of the transfer function (the cutoff frequency is no more clearly identifiable).

a b c

d e f

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

1.2

C
.c

. c
oe

fic
ie

nt
s

Model
Non ideal noise

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

C
.c

. c
oe

fic
ie

nt
s

white
gaussian
poisson

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

C
.c

. c
oe

fic
ie

nt
s

WF
Abberated

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

C
.c

. c
oe

fic
ie

nt
s

kth : [0.1:0.7]
A : 10

kth = 0.7
kth = 0.6

kth = 0.5
kth = 0.4

kth = 0.3
kth = 0.2

kth = 0.1

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

C
.c

. c
oe

fic
ie

nt
s

kth : 0.5
A : [0:10]

A =10

A =7.5
A= 5

A = 2.5

A = 0

0 0.2 0.4 0.6 0.8 1
Normalized spatial frequency

0

0.2

0.4

0.6

0.8

1

C
.c

. c
oe

fic
ie

nt
s

kth : 0.5
A : 10
High-pass filtering

σ = 0.5 

σ = 0

Figure 4.2 – Detailed behavior of decorrelation analysis. (a) Comparison of idealized vs non-
ideal noise for the function d (r ) (solid lines) and radial average of the Transfer function
(dashed line). (b)The plot of d(r) for three different noise statistics. (c) The plot of d(r) for
aberration-free and aberrated point-spread function. (d) The plot of d(r) for fixed amplitude
and varying cutoff. (e) The plot of d(r) for fixed cutoff and varying amplitude. (f)The plot of
d(r) for various high-pass filtering of the input image.

We also show in Fig. 4.2b computation of d (r ) for various noise figures (white noise, Gaussian

and Poisson). Here, we observe a very interesting feature of the algorithm. Spatially uncorre-

lated signal corresponds to a straight line, independently of the noise statistics. The fact that

the functions are not equal to 1 for r = 1 is due to the fact that their power spectral densities

are not perfectly flat.

We also illustrate in Fig. 4.2c, d and e, how d (r ) evolves as a function of aberrations, the

cutoff frequency and the Signal-to-Noise ratio. For aberrations, we computed multiple transfer

functions with a fixed cutoff (kth = 0.5) and SNR (A = 10) and increased defocus by adding a

circular symmetric quadratic phase
(
e iW r 2

)
to the pupil function, with W varying between 0

and 100. As expected, increases in defocus shifts the position of the maxima to the left. The

decrease in the amplitude of the maximum is due to a decrease in SNR due to the spread of

the point-spread function. A similar effect is seen when varying the cutoff frequency (Fig.
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4.2d) from 0.7 to 0.1, where the position of the maximum follows the cutoff frequency. Again,

the change in amplitude is due to the fact that the total energy of the signal decreases with

the cutoff while the noise energy remains constant. On the contrary, when keeping the cutoff

frequency fixed and changing the SNR via the parameter A, we observe that the position of

the peak does not change until the signal is too weak to produce a peak. This corresponds to

the limit of the method.

Finally, we show how d (r ) behave when the input image is filtered with a high-pass filter

(in our case, we use a standard inverted Gaussian). As we increase the filtering strength, the

position of the maximum shifts towards higher-frequencies. At some point we observe that too

much signal has been removed from the image as no more peaks are observable. By filtering

the input image, we are effectively modifying the transfer function in order to emphasize the

high-frequencies. This provides a unique and robust way of estimating the resolution of the

image based on the position of the peaks.

Due to the fact that the function is computed by integration over a disk of radius r , our

analysis produces smooth and noiseless functions, without the need to apply any additional

smoothing or any kind of fit. Two neighboring values d (r ) and d(r +∆r ) share a large amount

of information. They are therefore naturally correlated and evolve slowly with respect to r .

4.2.2 Algorithm implementation

The following section describes the implementation of the method. The source code is publicly

available on github (https://github.com/Ades91/ImDecorr.git ) and is currently implemented

in Matlab (CPU and GPU) and Java (CPU, as an ImageJ plugin, see Appendix B).

Pre-processing

We first compute the mean and subtract it from the image. We then apodize the edges by

multiplying the image with a cosine window function defined as

W (x) =
{

cos
(
kx |x|+ϕ

) |x|≥xmax −w

1 |x| < xmax −w
(4.15)

where x∈[−xmax, xmax], xmax is half the field of view, w is the window length, kx = π
w and

ϕ = π− π
w xmax. High frequency artefacts arising for edge discontinuities are consequently

minimized. The image is then Fourier transformed and all values for r > 1, where r is the

normalized radial frequency, are set to 0.

Initial decorrelation computation and peak finding

The initial decorrelation function d (r ) is computed according to equation 4.1. For speed
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consideration, the computation is performed in Fourier space as

d (r ) =
∑∑

kx ,ky
ℜ{

I
(
kx ,ky

)
M (r ) In

(
kx ,ky

)∗}√∑∑
kx ,ky

∣∣M (r ) In
(
kx ,ky

)∣∣2 ∑∑
kx ,ky

∣∣I
(
kx ,ky

)∣∣2
(4.16)

As discussed in section 4.2.1, the function d (r ) has a local maximum which we need to

locate. This is a very general signal processing task and many solutions exist. In our case,

the decorrelation function always exhibit a highly specific shape where it is equal to 0 for

r = 0, raises to a certain value based on the SNR and decreases as it decorrelates. Using our

knowledge of the shape of d (r ), we propose the following strategy for determining the local

maxima.

We pick the maximum of d (r ). If the position of the picked maximum is the last value of the

array, this means that either the tail of d(r ) is larger than the local maximum or there is no

local maximum. In both cases, we exclude the value from the array and repeat the operation

with the remaining values. We stop the loop as soon as we find a maximum that is not the last

element of the array (local maximum exists) or if we run out of values (no local maxima at

all). By processing a significant amount of simulated and experimental images, we concluded

that our strategy for localizing the local maximum of any decorrelation function was robust

enough and that we did not need to implement more sophisticated approach.

In order to avoid the selection of noisy local maxima (very rarely arising when analyzing

post-processed or poorly sampled images), we also impose that the local maximum should be

at least 0.001 larger than the smallest value from the position of the maximum to the last value

of the array. We point out the fact that, unlike the Fourier Ring Correlation or Power Spectral

Density threshold, it cannot be used to tune the resolution as it works only as a rejection

criterion and is only useful in very specific situations rather than being mandatory.

The average image SNR estimate is set as A0 = d (r0) and the position of the local maximum of

r0 is used as a first guess for the spatial frequency content, useful for the following high-pass

refinement steps (Fig. 4.1c).

High-pass filtering and resolution estimation

In order to find the highest significant frequency, the input image has to be high-pass filtered

in a smooth way, in order to weaken low frequencies contributions. Here we propose the use

of Gaussian filtering. In both Matlab and ImageJ implementation, this operation is performed

in real space (conveniently using B = imgaussfilt(A) for Matlab or the GaussianBlur() class

for ImageJ). This operation could also be implemented in Fourier space for processing speed

optimization. We obtain the high-pass filtered version of the image I as:

IHP (x) = I (x)− ILP (x;σ) (4.17)
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where ILP (x;σ) is the low-pass version of the image with a σ.

In the current implementation, we propose to compute Ng (typically 10) high-pass version

of the input image with σi = e
i

Ng

(
log

(
2

r0

)
−log(0.15)

)
+log(0.15)

. Each σ is then exponentially dis-

tributed between 2
r0 (weak high-pass) and 0.15 (very strong high-pass) where r0 is expressed

in pixels units. For each high-pass filtered image, a corresponding decorrelation function is

computed and the local maximum position and amplitude are extracted [ri , Ai ].

We then get the highest frequency peak and the largest geometric mean from all peaks.

The σB corresponding to the “best” curve is identified for both criterion and the whole

procedure is repeated with refined high-pass filtering distributed between min
(
σB ,gm,σB ,max

)
and max

(
σB+1,gm,σB+1,max

)
.

While it is not the fastest implementation (more advanced method could be used to improve

the convergence and minimize the number of correlations to be computed), it guarantees a

result in a fixed and reasonable computation time (typical processing speeds are ranging from

1 to 15 seconds depending on the implementation, the size of the image and the number of

points Nr and Ng used for the computation).

The image resolution is then defined as resolution = 2 pixel size
kc

, where kc = max
i=[1,Ng ]

ri is ex-

pressed in [1/µm].

4.2.3 Resolution criterion, frequency sampling and error estimation

So far, we have introduced a way to process an image to extract several curves that exhibit

a local maximum directly linked to the spatial frequency content of the image. The remain-

ing operation consists of selecting the most suitable peak to be our resolution estimator.

We consider the two most natural choices that are: the peak corresponding to the highest

frequency

(
kc,m = max

i=[1,Ng ]
ri

)
or the peak corresponding to the highest geometrical mean(

kc,GM = ri | max
i=[1,Ng ]

p
ri Ai

)
(giving the same amount of weight to the amplitude of the peak,

i.e. SNR, and the spatial frequency).

We conducted a large study, computing the resolution using both criteria, with a varying

sampling of d (r ) ( Nr = [30:100] in steps of 10) and different numbers of high-pass filtering (

Ng = [10:30] in steps of 5). Fig. 4.3a displays the STED image used to show how the resolution

estimated from the highest frequency
(
kc,m

)
changes with respect to Nr and Ng.

Fig. 4.3b shows the resolution estimate using the maximum frequency criterion res = 2/kc,m ,

where kc,m is expressed in [1/um] as a function of Nr and Nr . Using the geometric mean

criterion, we measure an average resolution of 113nm and a precision of ±1.8nm (not shown

here) and 113±1.3nm using the maximum frequency (see Fig. 4.3b). This demonstrates the

robustness of the method to large changes in processing parameters and the absence of bias
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for (b). (b) Estimated resolution of (a) as a function of Nr and Ng , with an average and
standard deviation of 113 ± 1.3nm . (c) Resolution estimate average and standard deviation
(n=40) for different modalities and the two resolution criteria: geometric mean (orange circles)
and highest frequency (blue crosses). (Confocal: Fig. 4.11a, STED: Fig. 4.11c, WF: Fig. 4.14a,
SIM: Fig. 4.14c, SOFI3-4: Fig. 4.17a and PAINT: Fig. 4.18f).

introduced by the choice of the parameters. Fig. 4.3c shows the same comparison for different

imaging modalities presented in Fig. 4.11,4.14,4.18). Besides for confocal data, there is no

significant difference between the estimated resolution using the geometric mean (orange

circles) or the maximum frequency (blue crosses) criteria and the precision is typically ±3nm

or less. The reason why the confocal data has a different behavior is linked to the shape of

its transfer function and can be directly seen in Fig. 4.11. The amplitude of the peaks drops

very quickly for a small increase in spatial frequency. This is due to the fact that confocal

transfer function has a quadratic decrease in amplitude as a function of spatial frequency.

Therefore, the criterion that includes SNR is more likely to be conservative when estimating

the resolution.

Unless specified otherwise, all resolutions and cutoff frequencies shown in the manuscript are

calculated using the highest frequency criterion.

4.3 Simulations

Point emitters

To validate the ability of the proposed analysis in estimating the resolution and Signal-to-

Noise Ratio (SNR), we performed additional simulations. The simulated object consists in a

random distribution of point emitters, contributing incoherently to the image intensity. The

image SNR is controlled by the amplitude of the incoherent point spread function and the

resolution is controlled by the extent of the transfer function H (k). We then compute several

images with a cutoff frequency ranging from 0 to 0.8. The incoherent transfer function H (k)
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can be expressed as

H (k) =
{

A
(
1− |k|

kth

)
|k| < kth

0 otherwise
(4.18)

where kth is the theoretical cutoff frequency and A controls the amplitude of the transfer

function. The noise level is controlled by Gaussian additive noise of statistic 100+/-2 counts

(corresponding to averaged dark frames statistics of a Hamamatsu Orca Flash V4.0) and

additional Poisson noise.

Consequently, we can attribute to each simulated image a theoretical resolution kth and a

signal to noise ratio SNR = µsig

σnoise
= <I (x)>−100

2 . We then vary the image resolution over the range

kth = [0,0.8] and the image SNR over SNR = [0,500] (via adequate tuning of A).
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Figure 4.4 – Simulations (a) Estimated cutoff frequency vs simulated NA for various image SNR
(Orange line: SNR < 0.1, Solid black lines: SNR between [0.1 and 0.15], Solid blue line: SNR >
0.15 (average of dashed blue lines), Dashed black line: 1-1 reference line). (b) The amplitude
of the initial decorrelation function vs simulated image SNR for various normalized cutoff
frequency.

Our algorithm exhibits (Fig. 4.4a) a linear dependency with the simulated cutoff kth, with an

offset of about 10% when the image SNR is above ≈ 0.15. H (k) drops to 0 at the frequency

kth. In the case of lower SNR, this frequency cannot be reliably estimated. For an image SNR

between 0.1 and 0.15, the algorithm recovers a lower resolution, which is consistent when

considering low SNR images where the transfer function is partially embedded in the noise.

Images with a SNR smaller than 0.1 do not exhibit any peaks in the analysis.

Fig. SR1.1b shows the amplitude A0 of the peak of the original decorrelation function without

any high-pass filtering. While the cutoff frequency estimate is independent of the image SNR

(in the high SNR case), we see that our SNR estimator depends on both the input image SNR

and the cutoff frequency. This is due to the fact that, in our simulation, we are keeping the
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Chapter 4. Parameter-free resolution estimation

amplitude of the transfer function H (k) constant as a function of the cutoff frequency kth.

This means that the signal energy (that is the volume under the surface defined by H (k))

decreases with the cutoff. Since we are keeping the noise energy constant, the SNR decreases

with reduced cutoff, which is what we observe. A detailed plot of the functions is shown in Fig.

4.2d.

The modulation transfer function (MTF)

One of the important tools by which image resolution is measured is the Modulation Transfer

Function (MTF). This object consists of a series of parallel lines with progressively decreased

spacing. As the lines get closer, the line modulation contrast
(
M = Imax−Imin

Imax+Imin

)
drops to 0.
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4.3. Simulations

We simulated a widefield image of a dense (about 500 emitters perµm2 in average) distribution

of point emitters forming an MTF pattern. We have a FOV of 20µm and started with a period

of 460nm up to 80nm, decreasing in steps of 10nm. Each period is repeated two times. Each

point emitter contributes incoherently to the image intensity. We show in Fig. 4.5 (a-c) three

MTF images of varying resolution ( res = λ
2NA , 320, 262 and 222nm, corresponding to a NA of

respectively 0.9, 1.1 and 1.3 for a wavelength of 576nm). The blue line denotes the estimated

resolution and the white line the theoretical resolution. The FRC resolution (314, 257 and

218nm), obtained by computing the second image in identical conditions, is shown as an

orange dashed line and is slightly over-estimating the theoretical resolution. We then compute

MTF curves (Fig. 4.5d-f) by averaging along the direction perpendicular to the pattern and

selecting adequate sub-windows for contrast computation. Again, we indicate the estimated

resolution (blue line) and the theoretical resolution (black line). Fig. 4.5 (g-i) shows the results

of the decorrelation analysis.

Ring and sparse lines structures
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Figure 4.6 – Test objects in simulations. (a) The simulated intensity of ring structures (inner
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profile showing the decreases of the contrast in the ring centers. (c) Decorrelation analysis
with an estimated resolution of 338nm. (d) The simulated intensity of sparse line structures
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with decreased spacing. (f) Corresponding decorrelation analysis with an estimated resolution
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We also simulated ring structures with an inner diameter ranging from 600 to 200nm and a

width of 30nm. We set the theoretical resolution to be equal to the inner diameter of a ring.

Each ring is constituted of 1000 molecules, resulting in about 10’000 to 40’000 emitters per
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Chapter 4. Parameter-free resolution estimation

µm2.

We show in Fig. 4.6a the resulting image. Interestingly, the ring with an inner diameter equal

to the theoretical resolution cannot be resolved. This is due to the shape of the structure. The

contribution of all the emitters actually decreases the contrast of the dip. This means that to

be able to resolve a ring, one needs to have a resolution of a least two times the inner diameter.

To confirm this effect, we show in Fig. 4.6d-f sparse line structures with similar spacing as

the rings, simulated under the exact same conditions. The lines with a spacing equal to the

resolution are this time resolved. By computing another image, we measure an FRC resolution

of 316nm.

Crossing lines

Finally, we simulated crossing lines (Fig. 4.7a-c) as another structure of interest to quantify the

validity of our resolution estimator. The structure consists in two 30nm width and 10µm long

lines crossing each other with an angle of 5°. Each line is made of 6000 randomly distributed

emitters.
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With a theoretical resolution of 263nm, the algorithm independently estimated a resolution

of 275nm, which is consistent with all the other simulations and what is expected from the

theory. We repeated the simulation and changed the input numerical aperture from 0.5 to

1.4 NA (Fig. 4.7d). The estimated resolution (orange curve) follows precisely the theoretical

resolution (solid blue curve). We also notice that, similar to the results obtained in Section 4.3,

the estimated resolution is equal to about 1.1 times the resolution as defined by Abbe. Our

resolution estimator does not exhibit any structure dependent bias. By computing another

image, we measure an FRC resolution of 256nm.

4.4 Experimental results

4.4.1 GATAquant nanorulers

Due to their high reproducibility and nanometric accuracy, DNA origami have been pro-

posed as calibration standards for resolution measurement in classical and super-resolution

microscopy[122]. To demonstrate the validity and broad applicability of the method, we

processed DNA origami nanorulers images with different geometries[123] kindly provided

by GATTAquant (courtesy of P. Tinnefeld and J. Schmied). The resolutions estimated by our

algorithm are smaller than the mark-to-mark distances of the nanorulers, which corroborates

the fact that they are resolved in all imaging modalities.

For the PAINT dataset (see Fig. 4.8), we localized 10 molecules, co-aligned them and averaged

them to get the resolution estimate. Particle-averaging methods widely used in cryo-electron

microscopy, have been also adopted by researchers using SMLM . For example, several labs,

working with hightroughput SMLM setups used, particle averging to elucidate labeled protein

organization in structures such as of the nuclear pore complex[124] and centrioles[125].

We also computed the resolution over the whole field of view and obtained a resolution of

32nm using FRC and 45nm using our method. The difference between the particle averaged

resolution and the whole FOV resolution can be attributed to sub-optimal co-alignment.
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Figure 4.9 – Figure SR2.1: GATTAquant nanorulers and resolution estimate. (a-c) Confocal
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images. Nanoruler type is indicated above the image, the number indicates the mark-to-
mark distance in nm. (Middle column) Corresponding decorrelation analysis and resulting
resolution. (Right column) Average (black line) lines profiles of 10 (gray lines) individual
molecules and modulation contrast M.

In order to demonstrate the validity and robustness of our method, we processed several

datasets nanorulers directly provided by GATTAquant (Fig. 4.9 a,d,g,j). Independently of the

modality, the resolution estimate (Fig. 4.9 b,e,h,k) is in perfect agreement with the samples
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specifications and manually selected line profiles (Fig. 4.9 c,f,i,l). We see that when the

structure is properly resolved, as it is the case for confocal, STED and PAINT images, the

resolution estimate is significantly smaller than the nanoruler size. For the two SIM images,

the resolution estimate is much closer to the DNA origami size, which is consistent with the

line profiles and contrast measurement, where the structure can barely be resolved.

4.4.2 Fluorescent beads resolution

A typical way to assess the performance of a microscope is to image a single layer of fluorescent

monodispersed beads. If the beads are sufficiently smaller than the system point-spread

function and if the beads are well separated, a fit of the beads image can provide a good

estimate of the microscope resolution in idealized conditions.

Here we demonstrate how our method performs on a technical sample (Tetraspeck beads,

175 nm). Two large z-scan (10µm, steps of 25nm) were acquired (Fig. 4.10, a-d), with 488

and 635nm excitation. As it can be seen, most of the beads formed clusters. This sample

is therefore not suitable for fitting. Each frames were then processed with our algorithm to

estimate the cutoff frequency.
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Figure 4.10 – Resolution of fluorescent beads. (a-d) Images of Tetraspeck beads excited with
488nm excitation laser line at various axial positions. (e) Cutoff frequency estimate as function
of the defocus for 488 (magenta) and 635nm (green) excitation. Scale bar 5 µm.

Fig. 4.10e shows how the cutoff frequency evolves through the z-scanning. As expected, the

488 excitation leads to an overall better resolution, independently of the z-position.

We measure the lowest resolution of 332nm with 640nm excitation and 276nm with 488

nm. Considering the size of the beads (175nm, which cannot be considered to be an ideal

point emitter), the excitation wavelength and the objective NA (Nikon super-resolution water

immersion 1.27NA), we can approximate the expected resolution as Res640

p
2562 +1752 =

310nm and Res488

p
1962 +1752 = 262nm. Both measurements show good agreement with
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the theoretical value.

We observe the expected resolution is reached, but only on a very narrow 200nm range. The

asymmetry of the cutoff as a function of z shown in Fig. 4.10e reflect the asymmetry of the

point-spread function. Consequently, we propose our method as a practical way to test the

performance of an objective lens and the alignment of a microscopy setup.

4.4.3 Confocal and STED

Confocal[126] and Stimulated Emission Depletion (STED) microscopy[23, 127] are point-

scanning techniques that can be realized on the same setup, allowing the transition from

diffraction-limited to super-resolution imaging. STED microscopy is a super-resolution

method that uses confocal illumination for excitation and a donut-shaped depletion beam

to de-excite the surrounding fluorophores prior to fluorescence emission. The resolution of

STED microscopy for a given fluorophore depends on the spatial and temporal co-alignment

of the two beams[128], the shape, and the quality of the depletion beam and its power[129].

Using a commercial state-of-the-art microscope, we imaged the microtubule network of COS-

7 cells both in confocal and pulsed STED mode. Fig. 4.11a-d show the resulting images and

their corresponding decorrelation analysis.

As expected, all decorrelation functions exhibit a local maximum, with STED showing a 2.52-

fold resolution improvement over confocal imaging. We plotted in Fig. 4.11c the manually

selected line profile of a microtubule cross-section, a method typically used to estimate the

resolution. The measured FWHMs are in good agreement with our estimates.

Fig. 4.11e and f show the result of the analysis performed on a time series of eight consecutive

STED images. As expected, repeated imaging of the same structure gradually bleaches the

fluorophores, progressively degrading the SNR as indicated by the parameter A0 . We also

observe a consistent deterioration of the resolution until the 7th frame, where we reach a

resolution close to confocal imaging. The bleaching is so strong that the structure is no longer

continuous. The proposed method confirms the expected degradation of image resolution and

provides an estimate of the image SNR and resolution (see 4.12). Fig. 4.11g and h illustrate how

our resolution estimation can be used to optimize STED imaging. Imaging under several STED

illumination powers was performed, adjusting the excitation power to maintain the optimal

dynamic range of the image to avoid noise-limitation of STED resolution15. Using 20% STED

laser power has a significant improvement on the resolution ( 2.4 fold) but further doubling

the power only decreases the resolution by a factor of 1.1 as expected due to the non-linear

behaviour of STED. Further increases in STED power do not lead to significant changes in

resolution, possibly due to misalignment of the excitation and STED beam, imperfect “zero” of

the STED doughnut as well as excess photo-bleaching and background induced by the STED

beam[127]. We conducted additional experiments, investigating more acquisition parameters

such as the STED delay, pixel size and comparing the performance of different dyes to choose

the optimal label (see 4.13). Our algorithm provides a direct and straightforward estimation
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Figure 4.11 – Confocal and STED. All images show microtubules in fixed COS-7 cells immuno-
labeled with Abberior Star 635P. (a) Confocal image and (b) its corresponding decorrelation
analysis. Green line: decorrelation functions before high-pass filtering. Magenta line: Radial
average of log of absolute value of Fourier transform of (a). Gray lines: all high-pass filtered
decorrelation functions. Blue to Black lines: decorrelation functions with refined mask radius
and high-pass filtering range. Blue crosses: all local maxima. Dashed vertical line : cut-off kc

(for the sake of readability, we used the same color and style representation for all the subse-
quent analysis). (c) STED image of the same structure as in (a) with line profile of selected
microtubule and (d) its corresponding decorrelation analysis. (e) Sequential STED imaging of
two different cells (f) SNR estimator and resolution (average and standard deviation) of a total
of 4 STED sequences of different cells as a function of time. (g) STED images as a function of
STED power. The lower panel shows the corresponding Fourier space with indicated cut-off
frequency. (h) Resolution as a function of STED power (average and standard deviation of 5
images of different cells per STED power). Scale bar, 5 µm.

of image resolution to objectively find the best acquisition settings and optimize sample

preparation, based on a single image of the sample of interest without imposing additional

requirements on the data acquisition scheme. In principle, it should be possible to use our

resolution estimate to tune the microscope alignment, e.g. to adjust the overlap of the STED

donut with the confocal excitation spot.

Fig. 4.12a shows the evolution of the non-filtered decorrelation function d0 used for SNR

estimation for the STED data in Fig. 4.11e-f. We clearly see that as the frame number increases

(magenta to green), the peak amplitude drops. If we continued the imaging, the peak would

have eventually vanished as the function will tend towards a straight line. Figure 4.12b-f shows

the full decorrelation analysis of STED for 5 different relative depletion powers for Fig. 4.11g-h.

We see that at 0%, the resolution is that of a normal confocal. As we increase the STED power,

the resolution improves as expected. We observe no significant improvement in resolution

between 60 and 80%. The ideal relative STED power is then estimated between 40 and 60%.
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Figure 4.12 – Detailed decorrelation functions for STED. The data corresponds to Figure 4.11g,h.
(a) Non-filtered decorrelation function d0 of repeated STED imaging. (b-f) Decorrelation
analysis of STED images with varying relative STED power ranging from 0-80%.

STED microscopy critically depends on photophysics that can also be exploited to increase

the resolution (lifetime10, photostability11, spectra12, etc.). For pulsed STED experiments,

the best resolution is reached when the depletion pulses immediately follow the excitation

pulse. We used our resolution estimate as a readout to adjust the delay between the pulses in

the Leica system as well as other parameters (STED power, dyes, excitation wavelength, STED

delay, etc..) associated with any microscopy experiment.

We show in Fig. 4.13a how the resolution improves as a function of the STED beam intensity

for COS7 microtubules labelled with Atto594. We observe that the maximum resolution is

reached at about 40 to 60% of relative STED power. Further increases in the STED power has

even a detrimental effect on the resolution. Similar experiments were done with Atto940LS.

We see (Fig. 4.13b) that the optimal STED power now lies in between 80 to 100% of relative

STED power. Fig. 4.13c shows representative data of Fig. 4.13b. We show in Fig. 4.13d that

the confocal resolution estimate does not significantly depend on the pixel size. Another

crucial parameter for STED imaging is the delay between the excitation and depletion of the

fluorophores. An incorrect pulse synchronization will result in less efficient depletion and

significantly impact the final image resolution.

We show in Fig. 4.13e the resolution as a function of the STED delay and corresponding

representative data in Fig. 4.13f. We observe a drastic improvement in resolution at about

∆t=1800ps. Previously, an indirect strategy based on minimizing the remaining fluorescence

intensity[130] or an FRC resolution estimate was used[121].We see that an added delay of at
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Figure 4.13 – Additional STED experiments (a) Resolution vs STED power for Atto594 labelling.
(b) Resolution vs STED power for Atto490LS labelling. (c) Representative STED images for 10,
40 and 80% STED power for the data in (b). (d) Confocal resolution vs pixel size for AbberiorStar
635P labelling (short: AbStar635P). (e) Resolution vs added delay between the excitation and
STED laser pulse for AbberiorStar 635P labelling. (f) Representative STED images for 1600,
1700 and 1800ps STED delay for the data in (e). (g) STED resolution for different labelling at
100% STED power. Alexa594 is short for Alexa Fluor 594. (h-i) Representative images of STED
for different labelling for the data in (g). The data points were always acquired using a newly
focused FOV and/or cell. The gray dots represent the mean value per condition (n=3 for the
whole figure) and the error bars indicate the standard deviation. Scale bar, 5 µm.

least 1800ps is required in order to reach the optimal STED regime.

Finally, we also show in Fig. 4.13g how the resolution varies as a function of the dye. Fig. 4.13h

and 4.13i show representative images.
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4.4.4 Wide field and SIM

High-resolution live-cell STED imaging has been performed, but care should be taken to avoid

sample damage due to high-depletion laser powers by special imaging procedures[127]. A

super-resolution method that is widely used for imaging dynamics of living cells is Structured

Illumination Microscopy[29–31] (SIM). SIM aims at improving the lateral and axial resolu-

tion by multiple imaging of the sample with high-frequency illumination patterns[131]. The

theoretical resolution improvement of SIM is linked to the illumination spatial frequency.

In practice, SIM resolution depends on refractive index mismatch, the pattern modulation

contrast and local distortion[42]. Fig. 4.14a shows a pseudo widefield image of actin filaments

in U2OS cells28 obtained on a commercial SIM instrument (courtesy of T. Huser). A resolution

of about 253nm is estimated by decorrelation analysis (see Fig. 4.14b). Fig. 4.14c shows the

SIM reconstruction and its corresponding decorrelation analysis in Fig. 4.14d, estimating a

1.56 fold improved resolution of 161nm. Measuring the position of the illumination peaks in

the Fourier transform of the raw data ( 4.75 and 9.5[1/µm for the first and second diffraction

order respectively), provides a way to estimate the theoretically expected resolution improve-

ment. We observe that the contribution of the first diffraction order with wide-field resolution(7.9+4.75
7.9 ≈1.6

)
fits well with our estimation, indicating that the information encoded in the sec-

ond diffraction order is not sufficiently contrasted. The use of more advanced reconstruction

algorithms may improve this result.
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Figure 4.14 – Widefield and SIM (a) Pseudo widefield image (WF, average of the SIM sequence)
of the actin network in fixed U2OS cells labeled with phalloidin-Atto 488 (Courtesy of T.
Huser). (b) Corresponding decorrelation analysis. (c) SIM reconstruction of (a) with selected
cross-sections. (d) Corresponding decorrelation analysis. (e) Pseudo widefield and SIM
reconstruction of mitochondria network in U2OS cells labeled with mitotracker (Courtesy
of M. Sauer). (f) Sectorial resolution estimation (dashed white line) and average resolution
(solid white circle). (g) Local resolution estimate of (e) in tiles of 70x70 pixels with an overlap
of 20 pixels. (h) Histogram of local resolution shown in (g). Dashed line indicates the median
resolution. Scale bar, 5 µm.
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So far, we only considered the global resolution, i.e. averaged over the whole image. In order to

account for non-isotropic resolution, we subdivide the Fourier space into sectors and compute

the cut-off frequency as a function of the direction (sectorial resolution). Fig. 4.14e shows a

pseudo widefield and SIM reconstruction of mitochondria[101] in U2OS cells measured on

a different commercial microscope (courtesy of M. Sauer, resolution gain of 1.73). Fig.4.14f

displays the Fourier transform of the SIM reconstruction, overlapped with the sectorial and

average resolution.

By subdividing the image into smaller tiles (as for FRC in [120]), we can estimate the resolution

over the whole field-of-view and reveal local variations in resolution (Fig. 4.14g). Due to the

very weak signal in the top and center part of Fig. 4.14e, corresponding sub-regions have large

resolution values. In order to preserve the dynamic range, all resolutions larger than 400nm

were set to 400nm. Furthermore, the resolution map can be plotted as a histogram (Fig. 4.14h),

providing yet another perspective. We also see that the average resolution is approximatively

the median of all local resolutions.

4.4.5 Sectorial resolution

The proposed method is very flexible and can be easily translated into higher dimensions. In

order to estimate the sectorial and axial resolution, the shape of the mask has to be adjusted.

Fig. 4.15a shows another STED image of the microtubules. The Fourier transform of (a) is

shown in Fig. 4.15b and reveals a clear asymmetry of the Fourier spectrum. The dashed white

circle represents the resolution estimated by our method when applied to the whole image.

In order measure the resolution as a function of the direction, the shape of the mask as to be

adjusted. Fig. 4.15c indicates how the circular mask has to be segmented in order to estimate

the sectorial resolution in 8 directions. In this case, a total of 8 sectors (S1-S8) are defined and

a standard decorrelation analysis is performed for each sector.
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Figure 4.15 – Sectorial and axial resolution (a) Example image. (b) log of abs of Fourier
transform of (a) indicating the average resolution as a white dashed circle. (c) Shape of the
masks used for the sectorial resolution estimation in 8 directions. (d) Sectorial resolution
estimate (solid line) and average resolution (dashed circle). (e) Theoretical shape of the 3D
mask required in order to estimate axial resolution. Scale bar, 5 µm.

Fig. 4.15d shows the resolution dependent cutoff frequency (dashed white line), correctly

measuring the anisotropy of the Fourier spectrum. Fig. 4.15e illustrates the shape of the mask
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required for axial resolution estimation. The parameter ϕ is the angle of the cone oriented

along the z-direction and defines the trade-off between the selectivity of the mask and the

noise (small ϕ means good selectivity but few data points leading to a noisy estimate, large

ϕ means poor selectivity but more robust estimate). The extension of the algorithm to 3D

requires to move from polar to spherical coordinate. Another strategy for the estimation of

z-resolution could be based on the computation, for all x and y position, of a 1D decorrelation

function along the z-axis. This will result in a 2D image, containing the cutoff frequency

estimate for each point. A histogram analysis may be used to determine which resolution was

the most prominent, providing an alternative mean to assess the axial resolution with ideal

selectivity of the z-resolution. However, this question requires further work, investigating for

example the effect of a limited number of z-plane.

4.4.6 Bright-field microscopy

In addition to fluorescence microscopy, our method can also be applied to partially coherent

imaging.
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Figure 4.16 – Bright field analysis (a-d) Selected slice of a 3D bright field stack of fixed HeLa
cell (Inset: corresponding Fourier transform and estimated cutoff indicated by white circle).
(e) A0 as a function of the axial position. (f) Estimated cutoff frequency as a function of axial
position. Scale bar, 5 µm.

We processed a bright-field z-stack (50 slices, 200nm axial step size) of a fixed HeLa cell (Fig.

4.16a-d)4. We see (Fig. 4.16e) that the estimate A0 is maximal when the cell is in focus and

well contrasted. The cutoff frequency estimate demonstrates the ability of the method to

estimate the spatial frequency content. As we approach the focus, the cutoff frequency rises

continuously until we reach the coverslip at around -2µm. As we move through the cell, the
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resolution stays roughly constant, until it starts to drop at around 1µm. The cutoff frequency

peaks observed at 2 and 3.4µm are due to highly scattering vesicles.

4.4.7 Stochastic Optical Fluctuation Imaging

Sub-diffraction imaging can also be achieved by analysing a time series of stochastically

blinking emitters. Stochastic Optical Fluctuation Imaging5,6 (SOFI) achieves super-resolution

by computing high-order spatiotemporal cumulants. SOFI processing is of interest to analyse

because it predicts a resolution improvement of 1/
p

n, where n is the correlation order and

1/n after deconvolution and brightness linearization. It provides an ideal test case for our

resolution estimator.

Fig. 4.17a shows the results of SOFI analysis (up to 6th order) of MEF cells expressing paxillin

labelled with mEos277 (courtesy of H. Deschout[81]). Fig. 4.17b displays the results of the

decorrelation analysis, where the raw cumulants follow the theoretical resolution improve-

ment up to 70 nm for 6th order linearized SOFI, indicating good blinking statistics. The

deviation observed for the widefield (average of the whole sequence, here denoted as SOFI 1)

and 2nd order SOFI can be attributed to sub-optimal out-of-focus light rejection. Similarly,

the linearized SOFI cumulants, obtained by 10 iterations of Lucy-Ridcharson deconvolution

and taking the nth root of the SOFI image, follow a similar trend close to the theoretical value.

The deconvolution operation by itself constitutes an interesting case study for our algorithm.

We show (see Section 4.4.10) that the resolution can be set to any value, as a function of the

input point-spread function and number of iterations of the deconvolution. It is the duty

of the user to ensure that the resolution is not enhanced beyond the limit supported by the

microscopy method. Our algorithm can thus be used to quantify deconvolution strength but

not the validity of the deconvolution.

To minimize bleaching and drift artefacts, practical SOFI processing is achieved by first

subdividing the whole acquisition into sub-sequences, computing SOFI and averaging the

results of the sub-sequences[65, 132]. By using our decorrelation analysis over the resulting

SOFI image for various sub-sequences lengths, we are able to identify the optimal resolution-

SNR sub-sequence length for the given input data. Fig. SR4.1c shows the results of such an

analysis (sub-sequence length ranging from 50 to 4000 frames), performed on a sequence of

blinking Alexa647 targeting microtubules of HeLa cell (images shown in Fig. 4.21, Fig. 4.17a,

8000 frames in total). For this data, we found an optimal sub-sequence length of 1500 frames.

Fig. 4.17d and 4.17e demonstrate how the total number of frames used to compute SOFI

impacts the resolution in HeLa-cell microtubules labelled with Alexa 647. We see that 50

frames already allow the computation of a 3rd order SOFI image. However, due to the blinking

kinetics, many more frames are required to properly resolve the underlying structure. We

also see that the resolution is slightly better when the image consists only of sparse point-like

structures. This is due to the fact that our algorithm estimates the resolution from a single

image. Using only 50 frames, the algorithm sees a sparse distribution of high-frequency

dots. As we include more frames in the analysis, a larger-scale structure containing more low
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Figure 4.17 – SOFI (a) Raw SOFI and Linearized SOFI images of focal adhesions in MEF cells
expressing paxillin-mEos2 (courtesy of H. Deschout) shown up to order 6. (b) Estimated and
theoretical resolution vs the SOFI order. (c-e) Cumulant analysis of microtubules in HeLa cells
immunolabeled with Alexa Fluor 647. (c) Resolution and SNR estimate vs the sub-sequence
size used for SOFI processing. (d) Resolution estimate vs number of frames. (e) Raw SOFI
3 images for 50, 200 and 3000 frames. (f) Un-optimized raw SOFI image of fixed HeLa cells
labeled with wheat germ agglutinin-Atto 565 using “default” processing parameters. (g) Same
images as (f) after optimization of the resolution. Scale bar, 5 µm.

frequencies starts to emerge, leading to a slightly modified resolution estimate. Finally, Fig.

4.17f shows a raw 3rd order SOFI image of HeLa cells stained with wheat germ agglutinin-Alexa

488, processed with default parameters (first 1000 frames removed and sub-sequence length of

500 frames). Fig. 4.17g shows the same image, after optimization of the sub-sequence length

and the number of frames to be removed at the beginning and the end of the acquired data to

obtain the best resolution (1800 first frames removed, subsequence length of 1000, no frames

removed at the end of the sequence). The optimized processing procedure results in a 1.6-fold

improvement of resolution compared to the starting image.

4.4.8 Single molecule localization microscopy

Finally, we applied our method on single molecule localization microscopy [45, 48, 133] data.

In this case, super-resolution is achieved by the individual localization of a subset of sparsely

and stochastically blinking emitters in successive image frames. By fitting the emission point-

spread functions, single- and multiple-emitter positions can be determined with nanometric

accuracy[134, 135]. To estimate the resolution, our method requires a rendered image. We
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validated, using simulations, that our algorithm is able to correctly estimate the resolution

in SMLM. Fig. 4.18a shows a STORM image based on 16000 frames of Abberior Flip 565 -

immuno-labelled microtubules in COS-7 cells.
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Figure 4.18 – Localization microscopy (a) Pseudo widefield (WF), standard deviation (STD)
and STORM image of microtubules in COS 7 cells labelled with Abberior Flip 565 based on
16000 frames. (b) Decorrelation analysis of (a). (c) Fourier Ring Correlation analysis of (a).
(d) Decorrelation resolution (black line) and FRC resolution (orange line) as a function of a
number of frames. (e) Line profile of 15 randomly selected microtubule cross-sections (f) (f)
GATTAquant PAINT image of HiRes 40R nanoruler with mark-to-mark distances of 40nm. (g)
Zoom of (f) and decorrelation and FRC resolution estimate. (h) 10 line profiles of HiRes 40R
molecules indicating a resolution better than 40nm.

With self-blinking dyes[136, 137], it is not possible to take a widefield image. We thus obtained

a pseudo widefield (WF) and standard deviation (STD) image by computing the temporal

average and STD of all frames. We estimate a resolution of 542nm for WF due to the low SNR of

the image, 302nm for the STD image and 89nm for the STORM image. Fig. 4.18b and c display

the corresponding decorrelation analysis and FRC curve, respectively. Both estimates agree

on the resolution, with FRC (estimated resolution of 85nm) being slightly more optimistic,

consistent with the behaviour observed in simulations and reported recently by Marsh et

al[134].

Fig. 4.18d shows how our method and FRC resolution vary as a function of the number of

frames. We observe a drastic difference in the predicted resolution only up to 5000 frames. For

a low number of frames, the localization events in the two split FRC images are too sparse to

produce significant correlations, leading to a large resolution estimate. On the other hand,

our method only considers a single image, consisting of sparse Gaussians with no apparent

structure but excellent SNR (rendered localization image without noise). This leads to a
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very optimistic resolution estimate with the localization uncertainty as a lower bound. As

we increase the number of frames, the two random subsets of localization events start to

correlate and the FRC resolution estimate decreases. Similarly, as we include more localization

events, a larger-scale structure (containing low spatial frequencies) emerges. Consequently,

our resolution estimate increases as the structure is built up. We observe that both methods

converge at approximately the same speed at around 12000 frames, with FRC estimating a

slightly better resolution[138]. Fig 4.18e shows randomly selected microtubules cross-sections.

The apparent average microtubule diameter of about 95nm is consistent with the resolution

estimate and secondary immunostaining, which increases the apparent microtubule diameter

by 10-30nm[139, 140].

Fig. 4.18f displays an image of GATTAquant HiRes 40R nanorulers[122] (courtesy of P. Tinnefeld

and J. Schmied). The closeup of three molecules (Fig. 4.18g) as well as line profiles of individual

molecules (Fig. 4.18h) show that the three point-source spaced by 40nm can be resolved. Our

algorithm estimates a resolution of 32nm while FRC estimates a resolution of 28nm, again

being slightly more optimistic.

4.4.9 Single Molecule Localization Microscopy simulations

To confirm that our algorithm is also able to estimate the resolution of localization based

image, we conducted simulations. The simulation consists in a total of 16000 point emitters

forming a regular pattern of pair of lines with decreasing spacing, starting from 128nm to

8nm (see Fig. 4.19a). Each line is 400nm long and 2nm wide, corresponding to a density of

625’000 molecules per µm2. The effect of diffraction and of the limited numerical aperture

is simulated by convolving the point emitters (represented on an oversampled grid with an

up-sampled pixel size of 1nm) with an incoherent 2D airy function (corresponding to a wide

field resolution of 215nm) of integrated intensity ION determining the average number of

photons per frame and per emitters. The blinking required for the localization of the emitter is

simulated by a Markovian process where the ON time (number of frames where the molecule

emits photons), the OFF time (number of frames where the molecule does not emit photons)

and the bleaching time (number of frames before the molecule is not able to emit photons

anymore) all follow an inverse exponential law of characteristic time TON = 2,TOFF = 1000

and Tbl = 2000. Therefore, at each frame and for a total of 1000 frames, only a sparse subset

of emitters contributes to the signal intensity, typical for SMLM. The final camera signal

is then obtained by adding shot noise and a Gaussian background noise (Fig. 4.19b). The

molecules are then localized using ThunderSTORM[141], filtered to reject unphysical or poor

localization events and rendered in Matlab by replacing each localization by a Gaussian of

standard deviation equal to the localization uncertainty[62, 63] (Fig. 4.19c) that we compute

in Matlab.

Each pair of lines are then isolated and averaged along their major orientation (Fig. 4.19d),

which allows us to compute the contrast between the maximum intensity Imax and the

intensity in the dip between the two lines Idip, defined as M = Imax−Idip

Imax+Idip
. By repeating this
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computation for all the sub-structures, we are able to compute an effective Modulation

Transfer Function (MTF), which provide an objective way to determine the resolution of the

reconstructed image (Fig. 4.19e). We see that as the spacing between the lines diminishes,

the contrast drops almost linearly. We then define the resolution of the image to be the

intersection of the MTF with the threshold 0.1, which corresponds to the modulation contrast

of two point emitters spaced by a distance equal to the resolution as defined by Abbe. We

obtain an effective resolution of 32nm.

We then use our algorithm on the reconstructed image (Fig. 4.19c) and compare its value

with the effective resolution. Our algorithm estimates a resolution of 36nm (Fig. 4.19e, green

dashed line), which is in perfect agreement with the previous simulations (see section 4.3

above). The resolution estimate provided by the FRC metric and a threshold of 0.143 predicts

a resolution of 27nm, which is more optimistic estimate as it corresponds to a contrast of 0,

consistent with the literature[138].

We repeated the simulations by varying the number of counts per point spread function (via

adequate tuning of ION ) and keeping the background noise constant. For each ION , we varied

the off-time TOFF from 500 to 1250 in steps of 250, effectively changing the average number

of emitters ON per frames from 34 to 14 and the average number of blinks per emitters from

0.98 to 0.38. For each reconstructed image, we then computed (Fig. 4.19f) the Ground Truth

(GT) resolution from the MTF for M = 0.1 (solid black line) and M = 0 (dashed black line), the

resolution using the decorrelation analysis (solid green line) and the FRC resolution using

the 0.143 threshold (solid magenta line) and using the 3σ criterion (dashed magenta line).

We see that both methods are able to pick up the resolution improvement due to the higher

number of photons per psf. However, we also see that our estimate is in good agreement with

the ground truth resolution estimate, while both FRC criteria overshoots the ground truth

resolution with M = 0.

We also show (Fig. 4.19g) how both algorithm performs as a function of the uncertainty

threshold imposed on the localization prior to rendering. We filter any localization event

with an uncertainty greater than the uncertainty threshold. We see from the ground truth

resolution that as we remove poorly localized events, we indeed improve our ability to resolve

the fine structures in the image. Our algorithm is also able to pick up this trend. We do

however observe a clear difference of behavior when removing more than 78% of the total

localization. In this case, the FRC resolution jumps to about 100nm while our resolution

estimate drops below the ground truth resolution. This behavior is due to the difference in

how the two algorithms try to estimate the resolution. FRC is based on splitting the localization

in two stochastically independent subsets. If the number of localization is too low, the two

images cannot correlate and thus the algorithm predicts a deterioration in resolution. On the

other hand, the decorrelation analysis, which works on a single image will have a completely

opposite prediction. All the algorithm see is a sparse distribution of very high-frequency

Gaussians. The corresponding resolution in terms of Fourier space frequency content is

therefore over-estimated.
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Figure 4.19 – Simulations of Localization microscopy. (a) Spatial distribution of point emitters
forming a series of lines with decreasing spacing from 128 to 8nm. (b) Temporal average (wide
field) and single-frame of blinking emitters. (c) SMLM reconstruction using ThunderSTORM
and Matlab; the dashed rectangle indicates the selection of a sub-structure and the arrow
the direction of averaging. (d) Intensity profile of the sub-structure indicated in (c). (e)
Contrast as a function of the line spacing for the image shown in (c); vertical black line:
Ground truth resolution, green dashed line: decorrelation resolution, magenta dashed line:
FRC resolution. (f) Ground truth resolution (black line: M=0.1, dashed black line: M=0),
decorrelation resolution (green line) and FRC resolution (magenta line: 0.143 threshold,
dashed magenta line: 3σ as a function of ION for various TOFF (the lines are showing the mean
resolution over TOFF ; stars are showing the data points for the GT res, decorr. res. and FRC
res.). (g) Ground truth (black line), decorrelation resolution (green line) and FRC resolution
(magenta line) as a function of the uncertainty threshold.

Finally, it has been shown that multiple blinking events can severely impact the FRC resolution

estimate by introducing spurious correlations[120]. While this effect can in principle be

mitigated, it requires an accurate estimation of the underlying blinking statistics[142]. While it

is possible to compensate for this effect by estimating the spurious correlation factor Q from

the reweighted numerator of the FRC, it is not easily applicable when the blinking statistic

is not precisely known. We performed simulations with added multiple blinking events. All

fluorescent emitters that just turned OFF has a certain probability, controlled by the number

pMB (probability of multiple blinking), to switch ON again. We show in Fig. 4.20a the log of

the histogram of number of blinking events per molecule for different pMB. As expected, the

larger the probability, the more a molecule is likely to blink during the same amount of time
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(1000 frames). We also show in Fig. 4.20b the resolution estimation as a function of pMB. We

see that the FRC resolution (orange line) estimation gets lower with the probability due to

increasing spurious correlations. In contrast, we see that our estimate (blue line) as well as

the ground-truth resolution estimate (black line) are insensitive to the probability of multiple

blinking events.
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Figure 4.20 – Resolution estimation vs multiple blinking. (a) Histogram of number of blinking
events for three different values of probabilities of multiple blinking (pMB) on a logarithmic
scale. (b) Ground-truth (black line), decorrelation (blue line) and FRC (orange line) resolution
as a function of the probability of multiple blinking.

4.4.10 Deconvolution and post-processing

In the following section, we discuss and illustrate issues arising when applying various post-

processing algorithm prior to the decorrelation analysis.

First we show in Fig. 4.21a, 3rd order raw SOFI image of microtubule network labelled with

Alexa647. The Fourier transform is shown in the inset. Fig. 4.21b shows its corresponding

decorrelation function. Fig. 4.21c shows the same image after a basic Fourier filtering oper-

ation. In this case, a simple binary mask with a normalized radius of 0.6 has been applied.

While the image looks almost identical to the original, the decorrelation analysis is strongly

affected by this artificial operation. It interprets the mask as a transfer function. In this very

specific case, the mask does not affect the shape of the function near the real cutoff frequency

so one could circumvent the issue by only computing the curve up to the spatial frequency 0.5

for example (Radius max. = 0.5 in the case of the imageJ plugin). However, if the mask is closer

to the cutoff, this simple trick is likely to fail and no resolution estimate could be performed

on such image.

Fig. 4.21e shows the same image, after Lucy-Richardson deconvolution (Matlab R2017b

“deconvlucy”) with various input Gaussian PSF FWHM (ranging from 108 to 238nm). The

decorrelation analysis shows very drastic changes where the resolution goes from 288 to 100

nm. Fig. 4.21f shows their corresponding Fourier transform, where the effect of deconvolution

is now clearly visible (10 iterations of LR, psf FWHM of 238, 180 and 108nm respectively). Fig.

4.21g shows the resolution estimate of the same image for different FWHM and number of

iterations of Lucy-Richardson deconvolution.
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Figure 4.21 – Fourier filtering and deconvolution (a) Raw SOFI 3 images and its Fourier trans-
form in inset. (b) Corresponding decorrelation analysis. (c) Fourier filtered version of (a)
with the used mask in inset. (d) Corresponding decorrelation analysis, showing incorrect
result due to the artificial intervention. (e) Lucy-Richardson deconvolution using 20 iterations
and a FWHM of 238, 180 and 108nm. (f) Corresponding Fourier transform, showing how the
deconvolution modified the frequency spectra and the resolution estimate. (g) Resolution
estimation for various FWHM and number of iterations of LR deconvolution. Scale bar, 5 µm.

It demonstrates that the resolution can be artificially set to any value. We here have to mention

that we do not recommend to blindly deconvolve an image and that proper deconvolution

ideally requires an experimentally acquired point-spread function. The purpose of this section

is just to demonstrate how ANY deconvolution will influence, in general, our method. This

means that our algorithm can be used as a tool to quantify the deconvolution strength and

also to estimate the ideal number of iterations but not check the validity of the deconvolution.

In addition to Fourier filtering and deconvolution, there are also several sources of artificial

high-frequencies that we came across during the development of the algorithm. This is a non-

exhaustive list of common practice that may hinder the ability of the algorithm to estimate the

resolution:

• Removing negative values by applying a threshold creates local non-linearity, adding a

high-frequency signal to the image.

• Background subtraction algorithms (especially morphological operation based such as

the rolling-ball algorithm) are prone to produce high-frequency artefacts.

• Camera lines artefacts or fixed pattern noise are very-high frequency signals that might

lead to overestimation of the resolution. The camera pattern should be characterized

and used to pre-normalize the image.
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• Image up-sampling/down-sampling, in real space or via Fourier zero-padding, should

be avoided.

• Small images are more vulnerable to noisy peaks in the decorrelation analysis (256x256

is usually large enough).

• Quantization error when changing the bit-depth of the data may introduce edges all

over the image, which can result in wrong estimate. The images should be normalized

to the full bit-depth prior to quantization.
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5 Deep neural network optical DNA
mapping

5.1 Optical DNA mapping

So far we only discussed the use of fluorescence and super-resolution microscopy for qual-

itative structural assessment of biological sample. However, it can also be used to achieve

quantitative measurement of biological sample. We now consider the field of optical DNA

mapping, where measurements aim to extract quantitative information from the microscopy

image.

Optical mapping[143] has been an excellent technique for large-scale reading of DNA se-

quences. In short, the working principle of optical mapping is to bind fluorescent molecules

(see Fig. 5.1) at specifics DNA sequences (CG, TCGA, etc...) through the use of methyltrans-

ferase enzymes[144] (respectively MpeI, TaqI, etc...) or intercalating dyes of AT-rich regions

[145]. Similar to a barcode, the relative distance between two labels provides a sequence

specific information. By imaging the intensity profile of the labelled DNA molecule using

nanofluidics [146] or stretching the DNA on a glass slide[143] and comparing it to a database

of sequence [147, 148], it is possible to identify to which species it belongs and even find its

position into the larger genomic sequence.

One application of DNA mapping is the species identification of a mixture of viral and bacterial

sample. Optical DNA mapping can provide high throughput species identification and requires
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Figure 5.1 – Workflow of optical DNA mapping. This figure is adapted from [148].
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long sequence read [149], compared to other approaches such as 16s ribosomal DNA or whole-

genome sequencing [150] which are unable to achieve both long sequence read and high

throughput[148]. Being able to estimate the bacterial population of a given sample finds

interest in the study of microbiome composition, which has been shown to be correlated with

health and diseases[2, 151, 152].

This chapter will present two approaches where we used deep neural networks to assist the

segmentation of the DNA intensity profile from images and to map the intensity trace to a

database of species.

The automatic segmentation of DNA images is a mandatory step for high-throughput optical

DNA mapping. The challenge of automatic segmentation is that, at a small scale, the DNA

molecule appear as sequence of dots with random gap between them. At a larger scale, the

dots are arranged in a line with a small curvature. While there exist many approaches that

can be design to automatically extract the DNA molecules, they all suffer from an excessive

number of user-defined parameters that have to be manually adjusted to account for image to

image variations. If we include these variations in a database, a neural network would be able

to learn how the image of a DNA look like and output a normalized probability map that a

DNA molecule is present in a pixel. A simple line detection algorithm could then be used to

extract the DNA molecule position.

There already exist several approaches to classify optical DNA map such as the Smith-Waterman

algorithm or cross-correlations combined with statistical resampling and p-value. The issue is

that these methods are computationally expensive and do not scale well with the length of the

DNA map. We investigate here how using neural networks as correlators might speed up the

matching process.

5.2 Machine learning and Neural networks

The term machine learning was coined in 1959 by Arthur Samuel[153]. It refers to the ability

of a computer program to learn, in a supervised or unsupervised manner, how to perform a

given task based on a set of data. Typical tasks of early machine learning algorithm include

classification of data into predefined class, building of a mathematical model (regression

algorithm) or finding unknown structure in the data (cluster analysis).

An artificial neural network[154] is a class of machine learning which architecture follows

a specific structure inspired from nervous activity. The building block of a neural network

is called the perceptron[155]. It is a mathematical structure that accepts a fixed number N

of inputs x = {x0, ..., xN }, takes their weighted average w = {w0, ..., wN }, applies a non-linear

activation function g (s) and returns a single number y . Formally, it can be written

y = g

(
1

N

N∑
i

xi wi

)
(5.1)
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5.3. Deep DNA segmentation

The goal of the activation function is to add non-linearity into the network. Typical activation

functions used in this chapter are the sigmoid activation g (s) = 1
1+e−s and the hyperbolic

tangent function, which have both the property to map any input to a number between -1

and 1. A collection of perceptrons which accepts an arbitrary number of inputs is called a

dense layer. The number of outputs is given by the number of perceptrons in that layer. By

stacking several layers, we form the simplest form of a deep neural network also called a fully

connected network.

To perform a certain task, the many weights of the network need to have a certain value.

Obtaining theses values is the purpose of the training. In order to train a network, a database

containing a pair of inputs and target output has to be constituted. The training procedure

consists in feeding the network with the input and measuring the error between the network

output and the target output. The error is then back-propagated through the network to apply

a small correction to the weights such that feeding the same input to the network will produce

a slightly lower error. In order to avoid biases toward the training dataset, the dataset is split

into a training and a validation dataset. The validation is not used to update the weight but

is used to verify that the information learned by the network also improves its performance

on unseen data. The training is divided into several epoch were the training and validation

data set might be shuffled and several training parameter updated. After convergence of the

network, the network is tested against a test dataset. Unlike the validation set, the test dataset

was never shown during the training which allows to measure the final performance of the

network.

Fully connected network are very powerful for classification or compression task but are not

well suited for image processing as they do not take advantage of spatial correlations. Another

type of network used in this chapter that solves this problem is called a convolutional neural

network[156]. A convolution layer works by convolving the input image with a filter of kernel

size n and weights w = {w0, ..., wn2 }. This time the weight of the filter are updated during the

training. Convolution layer can be combined with fully connected layer and vice-versa. Many

more layers exists to solve problem specific issues and to build more complex architecture

such as generative adversarial network[157] or long-short term memory network[158].

In this thesis, all networks were developed in Python, using the open-source Keras high level

API[159] and tensorflow in back-end.

5.3 Deep DNA segmentation

To achieve high throughput species identification through optical DNA mapping, it is neces-

sary to automatize as many part as possible of the whole pipeline. The task we are interested

in consists in taking an input microscopy image of labelled and stretched DNA molecules and

output the coordinates of the DNA molecules present in the image. While this task is, except

for rare edge cases, trivial for a human, it is very challenging due to the nature of the signal, the

presence of varying gap, the increased background signal near the DNA molecules, the free
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dyes and the entanglement of DNA molecules. There actually exists many methods that can be

combined to solve this task, such as background removal, morphological operations, Hough

transform, peak finding, etc... However, all the methods we evaluated were heavily relying on

external parameters that have to be fine tuned in order to get high quality segmentation. Here

we show how a convolutional neural network can be used to denoise, remove the background

and make continuous lines by connecting the signal of adjacent fluorophores. The neural net-

work filtered image can then be fed in a standard line finding algorithm to segment individual

molecules.

Fig. 5.2a shows few examples of images used for the training of the network. The images were

obtained by visually inspecting and manually drawing lines on top of as many DNA molecules

as possible. The start and end point of each line was saved as ImageJ ROIs. Only single

molecules were selected and obviously entangled DNA molecules were ignored. The output

training dataset was obtained by redrawing the selected lines on a black background. The

obtained image was then convolved with a Gaussian with a FWHM of 2 pixels. In total, 60’000

training images of 128x128 pixels were generated from about 150 images of 1000x1000 pixels,

including data augmentation by mirroring. To improve the convergence of the network, all the

images are preprocessed to orient the molecules along the horizontal axis. This preprocessing

step can be reliably achieved using a Hough transform[160] to find the DNA molecules main

orientation.

Fig. 5.2b shows the U-net architecture[161] used. The U-net architecture is made of several

convolution layer combined with maximum pooling operations (2x downsampling where

the maximum of each pixel group is used instead of the mean) to progressively compress the

spatial features. In addition, the output of the layers before each max. pooling are copied

and directly concatenated to their corresponding convolution block skipping the feature
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compression. This architecture helps the network in outputting high-frequency images. Fig.

5.2c shows the loss resulting of the training as a function of the epoch. The network was trained

using Adam optimizer[159] (learning rate of 10−4) and mean squared error loss function with

a batch size of 50 for 16 epochs. We observe a fast convergence of the network were each

epoch takes about 1 minute to complete. Fig. 5.2d shows the prediction of the network on an

unseen image. The discontinuous DNA molecules are replaced by solid lines, single isolated

dyes are completely discarded and the brightness variations along the DNA molecules are also

suppressed.

The final segmentation of DNA molecules is then achieved by thresholding the image at a

value of 0.25, clustering all the pixels that are 4-connected and computing the main axis and

end points of each clusters. Using the end points of each cluster, the intensity along the path

of the molecule is then extracted from the microscopy image. The only remaining parameter

concerns the additional connection of two aligned molecules if the spacing was too large for

the network to connect them. This step is necessary as the DNA map can have a large gap due

to a lower labelling density.

5.4 Deep DNA mapping

As discussed before, a typical task of machine learning and neural networks is to classify data.

In this section, we investigate how a convolutional neural network followed by a dense network

can be used to classify DNA maps against a given database of species.

5.4.1 Viral DNA mapping

Optical mapping of viral DNA is an interesting case study as some are commercialized and as

they are relatively short (about 20 to 30 microns once stretched on the glass substrate). For a

pixel size of 80 nm, this means that the intensity trace of a viral DNA map does not exceed 400

pixels.
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The chosen strategy to classify DNA traces is shown in Fig. 5.3a. For each species from the

database, a corresponding network is trained. The network consists of a 400x1 input followed

by two convolutional layer, a max. pooling layer and two additional convolutional layer, which

act as feature extraction layers. The classification is handled by a fully connected layer of 200

perceptrons using a sigmoid activation function and a final single perceptron which outputs a

value between 0 and 1. The training is based on simulated data. The simulated data is obtained

by downloading the theoretical position of each label from a public database. We then distort

the map to simulate the experimental variations that will affect the label distribution. We start

by removing a fraction of labels from the original map (labelling efficiency 0.6-0.7). A number

of false positive labels are then added in proportion to the map length (false positive labelling

rate of 0.3-0.5 labels per kilobase-pair). A probability of double labelling at a correct sequence

site is also included (double labelling probability of 0.05-0.1). Finally, the trace is randomly

shortened the unavoidable random DNA breaking when being pipetted. Non-linear stretching

can also be included but did not led to any significant improvement in the matching and can

be assumed to be negligible for short DNA fragment. The map is then linearly stretched by a

random factor comprised in the range 1.65-1.75 and convolved with a Gaussian point-spread

function to simulate the limited imaging resolution. Fig. 5.3b shows examples of idealized,

distorted and randomized intensity traces.

The training database of each network is made of 10000 distorted traces, with 5000 belonging

to the specie that the network should recognize and the 5000 rest being randomly drawn from

other species traces.

All networks were trained using the Adam optimizer (learning rate of 10−4) and a mean squared

error loss function with batch size of 50 for 50 epochs. Fig. 5.3c shows the confusion matrix

of the classification using the collection of neural network on unseen simulated data using

similar distortion parameters. As expected, the neural networks are able to handle the many

distortion that a labelled DNA molecule can undergo and still be able to correctly classify them

with an accuracy ranging from 97 to 100 %.

Fig. 5.3d and e shows the performance of the collection of network on experimental data

of lambda (J02459) and T7 (V01146) DNA. Despite the fact that the networks were trained

on simulated data, they are completely able to classify real data. Compared to a p-value

analysis[148], neural network classification shows a better sensitivity (about 85% and 77% for

p-value) but also a lower specificity.

5.4.2 Bacterial DNA mapping

The major difference between viral and bacterial DNA is the length of the map. Compared

to a viral DNA molecule which takes less than 400 pixels, bacterial DNA can take more than

30’000 pixels. Since current sample preparation methods limits the size of the DNA molecules

to 400-600 pixels, the approach proposed to map viral DNA cannot be transferred to bacterial

DNA mapping. In this section, we aim at training a single network which would act as a

correlator between an ideal intensity trace and a distorted experimental trace.
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5.4. Deep DNA mapping

Fig. 5.4a shows the architecture of the network used. The network is composed of two distinct

inputs of size 400x1, one for the reference ideal trace and one for the experimental distorted

trace. Both traces go through several convolution, hyperbolic tangent activation and max.

pooling layer before being concatenated. After another set of convolution layer, two fully

connected layer followed by a single perceptron with a sigmoid activation function are used to

make the decision if the two traces are similar.
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The network training database was obtained by simulating a total of 40000 random map with

labelling site density similar to the bacteria Vibrio campbellii chromosome I (CP000789 ) and

II (CP000790). The map were randomly distorted in a similar way as the viral DNA map to

produce pair of traces that should be predicted as similar. Pair of map from different traces

were obtained by reshuffling the matching pair and randomly generating more traces. Fig.

5.4b shows the full simulated CP000789 map, a selected fragment of 30 µm and the same

fragment after distorting the map in a similar way as the viral DNA map.

The network was trained for 80 epochs with the Adam optimizer (learning rate of 10−4) and

mean squared error loss function in batches of 50 (test accuracy of 95%). Fig. 5.4c shows the

output of the network when comparing the distorted map against the CP000789 ideal map

(for one orientation). We see that the network identify certain region of the bacterial map

as very similar to the distorted map. While one of these peaks corresponds to the correct

location, other regions of the genome are also predicted to be highly similar by the network.

The non-linear nature of the network makes it prone to a low specificity as relatively small

correlations between two signals might be over-amplified and produce an over-estimated

similarity score. As an example we show in Fig. 5.4d and 5.4e a correct and a wrong prediction

of the network. While being from two different region of the genome, the two sequences show

some similarities which are amplified by the network.

In its current form, the network could be used a fast way to identify candidate regions of the

genomes where normalized cross-correlation and p-value analysis could be used to provide

the specificity. A solution to increase the specificity of the network would be to change its
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output prediction to not only compute a similarity score but also to predict the mapping hyper-

parameter such as labelling density or double labelling rate, imposing stronger constrain on

the network during the training.
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6 Conclusion and Outlook

In summary, my thesis aimed at developing new microscopy methods. I built a framework

for the 3D image formation of partially coherent bright field microscope. I introduced a new

method for quantitative phase retrieval and associated it with super-resolution microscopy

using a unique multi-plane prism. To improve the live cell compatibility of the multi-plane

setup, I combined the prism detection with a structured illumination and achieved volumetric

high-speed high-resolution imaging of mitochondria network in live COS7 cells. Triggered

by the limited illumination power, I designed, built and programmed a high-speed high-

power multi-color 2D or 3D SIM illumination using a galvanometer system, a mirror mounter

on a piezo and a retro-reflector inside a Michelson interferometer to generate a sinusoidal

pattern. Motivated by the lack of tools for resolution estimation, I proposed a new method

for resolution estimation, based on the computation of many cross-correlations of filtered

version of the input image with itself. Finally, I showed how we can use deep learning to assist

the specific field of optical DNA mapping.

This chapter is highly subjective and reflects my point of view on the results presented in this

thesis and further work that might be carried on.

6.1 3D quantitative phase microscopy

In chapter 2, a framework for the 3D quantitative phase retrieval from a stack of bright field

image was presented. This work is greatly inspired from the derivation presented in Born and

Wolf[6] to derive an expression for the scattered field as a function of the scattering potential

and incident field. We then expanded the derivation to include the partial spatial and temporal

coherence of the illumination. Making use of the Wiener-Khintchine theorem [71], which is

in essence the approximation that a scattering event is only coherent with itself, we arrived

to an expression for the 3D partially coherent image formation. By understanding the 3D

shape of the transfer function and rewriting the expression in term of the average intensity and

the complex cross-spectral density, it became clear that the complex cross-spectral density

could be retrieved via a simple filtering in Fourier space, which turned out to be a simple axial

Hilbert filter. Furthermore we showed how the quantitative phase could be expressed as a
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function of the real and imaginary part of the cross-spectral density and demonstrated the

quantitativeness of the method.

A detailed analysis of the overlap between the cross-spectral density and its complex conjugate

revealed that the phase information contained in this band could be recovered through a

deconvolution operation. This allowed us to link our theory with an established state-of-the-

art method for phase retrieval from defocused bright field measurement, called the Transport

of Intensity Equation. Unlike the TIE, our derivation is not restricted to 2D phase object and

paraxial field. While we showed slightly improved results for the recovery of high frequencies,

the main scientific contribution of this section remains, in my opinion, in the improved

theoretical understanding of the partially coherent image formation. Compared to other

approaches for phase imaging, our method has the advantage of simplicity as it only requires

a bright field illumination and no modifications of the detection path.

Combined with the multi-plane prism, designed by Dr. Marcel Leuteneger, Dr. Stephan

Geissbuehler and Prof. Theo Lasser, we demonstrated for the first time 3D quantitative phase

imaging at 200Hz. Since the phase imaging does not require any additional optical component

in the detection path, it can be readily combined with fluorescence and super-resolution

microscopy, providing the sensitivity and structural information of phase microscopy with the

specificity and sub-diffraction imaging of super-resolution microscopy.

While we mainly focused on a technical demonstration of how the multi-plane setup performs,

I believe that there is a lot more that can be done. One highly interesting application would

be to combine the 3D phase microscopy with machine learning to perform what is called

digital labelling[162–164]. While looking extremely promising, all theses results have to be

taken with a grain of salt as no one understand (and might never) what the network is learning

and how it interprets the data. It is clear that many cell structure scatters light and that the

signal, although imperceptible, is present in the input image. However, we clearly see that all

the results published so far are unable to accurately predict high-resolution structures and

are only accurate in predicting the shapes. While image segmentation is the task of choice

for a neural network, we have to ask the question if we can really trust a black box which has

been trained and therefore unavoidably biassed with already known data. This issue appears

in the work of Ouyang et. all.[165], where they trained a network to predict super-resolution

images from a sparse localization subset. In their case, the network acts as an interpolation

function. If trained on microtubule data, it will try to interpolate fibres. If trained on nuclear

pore complex data, it will try to interpolate circles, independently of the origin of the input

data, missing in the process the opportunity to learn something.

6.2 SIM microscopy

While SOFI is able to achieve 3D super-resolution with a relatively low acquisition time,

it remains limited to low cumulant order in practice. Relatively high illumination power

densities are also required to image the fluctuations of single molecules with sufficient SNR.

108



6.3. Image resolution estimation

To circumvent these limitations, we combined the multi-plane imaging setup with structured

illumination microscopy. We decided to implement the SIM illumination using a digital micro-

mirror device (DMD) due to its high-speed potential, its flexibility and its simplicity. We were

aiming to realize for the first time high-speed 3D SIM in live cells however the extremely high-

loss of the DMD due to spurious diffraction orders and the 8 fold splitting of the fluorescence

signal by the prism severely limited the achievable signal to noise ratio and prevented us from

reaching the theoretical limit of SIM. We therefore restricted ourselves to a higher contrast

coarser pattern and recorded volumetric 2D SIM images of live mitochondria in COS-7 cells.

This work was also the occasion to write my own SIM reconstruction method in Matlab.

The original challenging goal remains to achieve true 3D SIM on live cell using a multi-

plane prism however a different illumination design is required to minimize the losses in

the illumination path while keeping the high speed and flexibility of the DMD design. The

solution I designed is presented in chapter 3.2. The setup I built, aligned and programmed is

able to project sinusoidal patterns at 1 kHz and is ultimately limited by the fluorescence rate.

We demonstrated multi-color 2D SIM and, for the first time, the experimental combination of

SOFI and SIM on a fixed sample.

Further work would focus on demonstrating live cell multi-color imaging, improving the setup

signal to noise ratio of the SOFI-SIM experiment by implementing a polarization control

scheme or doing TIRF-SOFI-SIM. Another aspect would be to combine this SIM design with a

multi-plane prism and achieve super-resolution high speed 3D SIM imaging.

6.3 Image resolution estimation

When we are talking about super-resolution microscopy, the question of the achieved reso-

lution is obviously of great interest. However when I started my PhD, there was no universal

method for this task. A solution presented already in 1980 proposed the use of Fourier Ring

Correlation (FRC) of two images supposed strictly identical except for their noise content. As

stated in the name, it consists in computing the correlation between the two images in rings of

increasing radii in Fourier space. As the spatial frequency increases, the signal to noise of the

two images decreases which is translated in a decrease of the correlation. The so-called FRC

curve need then to be thresholded to estimate a cut-off frequency. The first problem of this

method is the need for a threshold which directly affects the resolution estimate. The second

is that the assumption that the two images are identical is most of the time partially fulfilled.

The violation of this assumption strongly biases the final estimate and there exists no solution

to correct for this.

Another method to estimate the image resolution is based on drawing line profiles and cherry-

picking the smallest resolvable structure. This approach is obviously highly subjective but

highlights the important fact that the information we are looking for is present in the image.

In this thesis, I developed a new method to extract this information from a single image using

partial phase correlations between the input image and many filtered version of the same
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input image. The strength of the algorithm is that it requires no additional parameters and

predicts an objective resolution estimate.

Further development concerns the expansion of the algorithm in the third dimension. While

being trivial in principle, a careful study is required to understand the behaviour of the method

when the sampling is limited and when the signal is sparse. The speed of the method could

also be greatly improved by designing a parallel version of the algorithm and optimizing

the convergence of the method in order to minimize the number of cross-correlations to be

computed.

Finally, it would be very interesting to implement the algorithm as a module in a autonomous

microscope, guaranteeing optimal imaging conditions of the sample. It could also be used as

a criterion to stop the acquisition of localization microscopy data based on the evolution and

saturation of the resolution estimate.

6.4 Deep DNA mapping

During my thesis, I also had the opportunity to study the field of deep learning and learn how

to use dedicated open source tools such as jupyter notebook, tensorflow and keras. I decided

to use neural networks to work on the problem of optical DNA mapping, an excellent example

of applying a microscopy technique as a quantitative tool. Using neural networks, I was able

to significantly simplify the problem of automatic segmentation by training the network to

recognize DNA molecules. I also trained a collection of networks to classify the extracted

signal to estimate the population of viral species. Finally I proposed a network architecture to

map a fragment against a much larger bacterial DNA map. The results were promising but

suffered from relatively low specificity, probably due to the highly non-linear response of the

network to small correlations. A possible solutions to increase the specificity would be to train

the network to not only predict a similarity score but also predict hyper-parameters such as

the stretching factor or the labelling efficiency.
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A PRISM multi-plane platform for 3D
phase and SOFI imaging

The telecentric multi-plane platform (MP) allows the simultaneous acquisition of 8 fluores-

cence or bright field images originating from 8 object planes with a constant inter-plane

distance (Fig. A.2). The fluorescence excitation is realized by wide-field epi-illumination,

whereas phase imaging uses the Koehler bright field arm from a commercial Zeiss micro-

scope. The detection system is common to both imaging modalities, i.e., the setup is a classical

microscope with an integrated telescope containing an image splitting prism in the detection

path (optical design (Section A.2) and specification LOB-EPFL, Lausanne; manufacturing

Schott SA, Yverdon, Switzerland). An adjustable field stop in the intermediate image plane

prevents the overlap of the images on the cameras. All lenses and optomechanics are standard

commercial components, except for the custom-made holder for the prism and cameras (see

Fig. A.1 and Table A.1 for the list of optical components). This versatile MP microscope allows

diffraction limited imaging for all 8 conjugated object-image planes.

Figure A.1 – Custom-made holder for the prism and cameras.
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Figure A.2 – Microscope setup. Wide-field epi-illumination for fluorescence imaging combined
with a Koehler trans-illumination for phase imaging. The multi-plane image splitting prism
directs the light coming from 8 axially distinct planes in the sample towards 4 adjacent fields of
view on each of the two cameras. The lenses in the detection path are arranged as a sequence
of four 2f configurations. DM dichroic mirror, LE lens, TL tube lens, T1 and T2 lenses.

A.1 Image splitter prism design

As shown in Fig. A.2 and A.3, the image splitter consists of 3 individual prisms glued along the

common interfaces. The different images have individual paths and accumulate path length

differences such that a conjugated object-image condition is ensured. The light paths undergo

multiple total reflection at the outer prism interfaces, whereas the common inner interface

has a customized 50:50 coating for equal image intensities.

Essential for a constant inter-plane distance and a constant lateral displacement d are the

different prism heights h and h ± 2ε ( ε = dp
2

). As indicated in Fig. A.2, the images are

channelled in an interlaced fashion, i.e. the odd images (1, 3, 5, 7) are acquired by camera

1, the even images (2, 4, 6, 8) are acquired by camera 2. The neighbouring images on both

cameras are laterally displaced by a distance d, which corresponds to a path length difference

of ∆z = d
n (prism refractive index n = 1.458), i.e. for example the path length difference of

image 7 to image 5 equals ∆z. The first camera is additionally shifted by ∆zIP = d
2n , which

results in a constant inter-plane (IP) distance of the consecutive axial planes ∆zIP. We chose

the displacement of neighboring images d = 3.32mm such that the row of four images matches
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A.2. Analysis of the MP design performance

Component Specifications
White light Koehler illumination Axiovert 100 M, 12 V 100 W Halogen lamp (Carl Zeiss)

Fluorescence widefield epi-illumination 120 mW, 405 nm laser (iBeam smart, Toptica)
800 mW, 635 nm laser (MLL-III-635, Roithner)
800 mW, 532 nm laser (MLL-FN-532, Roithner)

Objective UPLSAPO 60XW 1.2 NA (Olympus)
Microscope stage piezoLEGS® stage (3-PT-60-F2,5/5)

Motion-Commander-Piezo (Nanos Instruments)
Filters Dichroic zt405/488/532/640rpc, (Chroma)

Tube lens fTL = 140mm
(achr. doublet (AC 140/22.4, ANR 574070), Qioptiq)

Telescope lenses fT1 = 160mm and fT2 = 200mm
(achr. doublets (AC 160/22.4, ANR 576447)

(AC 200/22.4, ANR 556031), Qioptiq)
Prism Corning C-7980, n= 1.458 (at 587.56 nm),

Abbe number V = 67.8
Camera Orca Flash 4.0 (Hamamatsu), pixel pitch = 6.5µm

Table A.1 – Components of the MP detection. All optomechanics are standard commercial
components, except for the custom-made holder for the prisms and cameras.

the width of the sCMOS sensor (Orca Flash 4.0, Hamamatsu). The geometric path lengths of

the rays in the prism range from 96.52 mm for the images 7 and 8 to 106.48 mm for the images

1 and 2. We performed an analysis of image aberrations using Zemax. Results are summarized

in Section A.2 below.

The inter-plane distance of consecutive axial planes in object space is then given by δzIP = ∆zIP
Ma

where Ma = M 2
l is the axial magnification. Experimentally, the inter-plane distance was

estimated as 347±11nm (mean ± standard deviation of 8 individual measurements of surface

immobilized fluorescent beads scanned along the optical axis in 200 nm steps).

A.2 Analysis of the MP design performance

The overall system has been fully designed based on ray tracing with Zemax (Radiant Zemax

LLC). The layout of the optical design of the detection path is shown in Fig. A.2. As we are

lacking the objective’s design data, we modelled the objective as a paraxial lens with 3 mm

focal length and 7.2 mm aperture diameter. The field stop is adjusted to suppress crosstalk

between the different images, resulting in an image side numerical aperture of N Ai = 0.031.

All lenses (TL, T1, T2) are in this paraxial path and are standard lenses (Qioptiq) as indicated

in Table A.1. All optical distances are chosen at the effective focal length per element (see Fig.

A.4). The objective is placed in a telecentric configuration and the tube lens TL to the image

plane is almost image-side telecentric (exit pupil position > 33 m from the image plane).

Our analysis of the optical aberrations based on the Seidel diagram (Fig. A.5) shows that the

spherical aberration due to the prism is insignificant. Moreover, the axial colour (chromatic
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Figure A.3 – Technical drawing of the image splitter prism assembly.
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Figure A.4 – Layout of the detection system containing a 60×/1.20 NA water immersion objec-
tive, the tube lens ( fTL = 140mm), the field stop, the telescope lenses T1 ( f1 = 160mm) and T2
( f2 = 200mm) and the image splitter with two cameras. The free-space distances are indicated
in millimetres and are 3x downscaled in the Figure.

length aberration, CLA) of the prism compensates the axial colour of all lenses. Therefore,

the remaining system aberrations are due to the “unknown” aberrations of the objective

and the residual aberrations of the lenses. The Seidel diagram shows that the axial colour is

the dominant aberration with CLA <λ/2 the wavelength range 500–650 nm. These residual

aberrations are even lower for the used wavelength range. The optical path length differences

(OPD) are belowλ/2 for the wavelength range and field sizes up to 100 µm in diameter (Fig. A.6).

114



A.2. Analysis of the MP design performance

Spherical Coma Astigmatism Field curvature Distortion Axial color Lateral color

1 
w

av
e 

(5
50

nm
)

Tube lens TL Lens L1 Lens L2 Image splitter System (no objective)

Figure A.5 – Seidel diagram (third-order aberrations) of the detection path. The major aberra-
tions of the system are axial colour with about 0.4 waves, and lateral colour and astigmatism
with about 0.1 waves each.
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Figure A.6 – Optical path length difference (OPD) versus normalized pupil position. The OPD
shows diffraction-limited performance ( |W | < 0.2 waves) over an extended wavelength range
and field.

For all fields and wavelengths, the geometrical PSF is below the Airy radius indicating clearly

a diffraction-limited performance (Fig. A.7). As shown in the spot diagrams, the chief ray

positions shift slightly due to lateral chromatic aberration well below the Airy radius, indicating

that these residual lateral chromatic aberrations are insignificant. The diffraction-limited

performance of the detection system is also evidenced by the polychromatic modulation

transfer and point spread functions (Fig. A.8), showing a Strehl ratio > 0.95.

In summary we have a diffraction limited performance of our MP system.
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Field position: (0, 0) μm Field position: (0, -17) μm Field position: (0, 24) μm Field position: (-40, -24) μm

40
 μ

m

500 nm 550 nm 600 nm 650 nm 700 nmWavelength:Reference: Chief ray

RMS radius:
GEO radius:

4.158 μm
10.946 μm

4.064 μm
11.218 μm

4.010 μm
10.907 μm

4.430 μm
11.547 μm

Airy radius: 16.350 μm

Figure A.7 – Spot diagrams of the ray intersections in all image planes. The root-mean-square
(RMS) radii of the spots are much smaller than the Airy radius, which confirms the diffraction-
limited performance across all image fields.
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Figure A.8 – Polychromatic modulation transfer function (MTF) and point spread function
(PSF). The MTF closely approaches the diffraction limit for all field positions and the PSF peak
value and the Strehl ratio – are well above 0.8.

A.3 MP prism calibration

3D multi-plane imaging demands accurate calibration of the image planes. Co-alignment for

both imaging modalities is based on an affine transformation and bilinear image interpolation

(see Fig. A.9). The transformation parameters are extracted from a calibration measurement

of fluorescent beads scanned along the optical axis in 200 nm steps over the whole sampling

volume.

The beads calibration measurements are also used to correct the transmission variation among

the 8 image channels (slight deviation from 50:50 channel splitting) for SOFI processing. For

phase imaging, the channels transmission correction is based on bright field images.

116



A.3. MP prism calibration

...

Camera 1 Camera 2

Pair 1 Pair 2 Pair 7

X shift

Y
 s

hi
ft

X shift X shift

Y
 s

hi
ft

Y
 s

hi
ft

Figure A.9 – Co-registration of image planes. An affine transformation and bilinear interpola-
tion based on a calibration measurement with fluorescent beads is applied to (pairs of) image
channels at different steps in the analysis routine.
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B ImageJ plugin

In order to simplify the access to our method, we translated the algorithm in Java and devel-

oped an ImageJ plugin[77] (publicly available on https://github.com/Ades91/ImDecorr.git;

tested for ImageJ 1.48 to 1.52 and Micromanager 1.4). Fig. B.1 shows the current plugin

graphical user interface (GUI of Version 1.1.5).

Figure B.1 – ImageJ plugin V1.1.5 with default settings

The operation mode of the plugin is straightforward. Open the image of interest in ImageJ and

make sure it is the active window. Before running the analysis, it is important to set the image

pixel size and units (Image -> Properties. . . -> Unit of length, Pixel width and pixel height). If

empty or not defined, the plugin will return the resolution in pixel units. Click on compute

and once the analysis is done, results are added to the main results table.

The plugin supports multidimensional stacks of any bit depth. If a RGB image is supplied, it

will be automatically converted to grayscale. The plugin also supports rectangular ROI, which

allows to repeat the analysis on sub-regions and check the consistency of the estimate over

the whole image.

The settings panel is composed of 4 optional parameters of the computation, specifying the

range of normalized frequencies where the correlations have to be computed (from Radius

min to Radius max), as well as the number of points in between ( Nr , typically 50 points).
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Finally, Ng (typically 10) specify the number of intermediate high-pass filtering used to find

the resolution. These parameters essentially determine the speed of the computation. Since

all the points of the decorrelation function are independent of each other, the computation

time is proportional to the total number of points which is equal to Nr ∗ (2∗Ng +1). The

proposed default value of Nr = 50 and Ng = 10 were experimentally determined as good

compromise for fast but accurate results.

We also provide additional processing options in the form of 3 check-boxes:

Do plot:

If checked, plot all the computed decorrelation functions and local maxima (example of plot

shown in Fig. B.2).

Batch stack:

If checked, process all the frames, slices and channel of the current image. If do plot is also

checked, all the decorrelation functions for all the images will be plotted.

Batch folder:

If checked, the user will be asked to select a folder containing images. All images are then

opened, processed and the result table is automatically saved in the selected folder as a .csv

file. Again, if “do plot” is checked, all the decorrelation analysis will be plotted.

Figure B.2 – ImageJ plot of the analysis showing the non-filtered decorrelation function(black),
its local maximum (red triangle), all the high-pass versions (color gradient from red (weak
filtering) to blue (strong filtering)), all the local maxima (green triangle) and the estimated
resolution, cutoff frequency kc and SNR A0. The second set of lines (here from ˜ 0.15 to 0.52)
corresponds to the refinement operation where the computation is repeated on a smaller
range of Nr and Ng for increased robustness.
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C Resolution estimation compatible SIM
reconstruction

Due to the sensibility of the method to manipulations of the Fourier space, publicly avail-

able SIM reconstructions algorithms are not compatible with resolution estimation without

resulting in biased resolution due to Fourier filtering and deconvolution.

Consequently, we wrote our own SIM reconstruction algorithm (in Matlab) and discuss re-

quired features for decorrelation compatible SIM reconstruction.

Pre-processing

We first compute and subtract the mean of all images. We then apodize the edges of the all the

raw image with a cosine function and add the previously computed mean. High frequency

artefacts arising for edges discontinuities are consequently minimized.

Peak finding

After specification of the frequency band where the peak should be found, the absolute value

of the Fourier transform of all the raw images are multiplied with a circular symmetric inverted

OTF, defined as

OTFinv (k) =
( |k|

kc

)
(|k| < kc ) (C.1)

where k =
√

k2
x +k2

y is the radial frequency and kc is a user defined cutoff frequency. This

operation attempts to flatten the Fourier space by balancing the effect of the OTF on the peaks

intensity. Consequently, the 5 largest Fourier pixel within the frequency band are localized

and clustered. This allows to reliably exclude randomly bright Fourier pixels. The position and

phase of the peak are then stored.

Unmixing

Using the peaks phase values, an adequate transformation matrix is build and the correspond-

ing Fourier components are unmixed pixels per pixels for each angle.
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Reconstruction

For each angle, all the zero order components are averaged to reconstruct the pseudo wide

field image. This image is then zero-padded in Fourier space and all the other components are

translated according to their peak position and added together. The resulting Fourier spectrum

is then reweighted to balance the partial overlap of the Fourier components (otherwise, the

Fourier space of the SIM image will be plagued with weak edges that might produce significant

peaks in the decorrelation analysis, preventing any resolution estimate).

Finally, instead of masking the Fourier space with an apodization filter, that might bias the

resolution estimate, we crop the Fourier space. This partially removes the high-frequency

noise but without creating any artificial edges. This also have the side effect of changing the

projected pixel size of the resulting SIM image.
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