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Abstract. In many problems such as phase retrieval, molecular biology, source localization, and
sensor array calibration, one can measure vector differences between pairs of points and attempt to
recover the position of these points; this class of problems is called vector geometry problems (VGPs).
A closely related field studies distance geometry problems (DGPs), where only the Euclidean distance
between pairs of points is available. This has been extensively studied in the literature and is often
associated with Euclidean distance matrices (EDMs). Although similar to DGPs, VGPs have received
little attention in the literature; our goal is to fill in this gap and introduce a framework to solve
VGPs. Inspired by EDM-related approaches, we arrange the differences in what we call a coordinate
difference matrix (CDM) and introduce a methodology to reconstruct a set of points from CDM
entries. We first propose a reconstruction scheme in 1D and then generalize it to higher dimensions.
We show that our algorithm is optimal in the least-squares sense, even when we have only access
to partial measurements. In addition, we provide necessary and sufficient conditions on the number
and structure of measurements needed for a successful reconstruction, as well as a comparison with
EDMs. In particular we show that compared to EDMs, CDMs are simpler objects, both from
an algorithmic and a theoretical point of view. Therefore, CDMs should be favored over EDMs
whenever vector differences are available. In the presence of noise, we provide a statistical analysis
of the reconstruction error. Finally, we apply the established knowledge to five practical problems
to demonstrate the versatility of this theory and showcase the wide range of applications covered by
the CDM framework.
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ometry problem, range and angle measurements, array calibration, source localization, incomplete
data, measurement uncertainty, molecular conformation, ranking
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1. Introduction. Many problems in science and engineering take the following
form: Given a dissimilarity measure between entities, can one find an entity embed-
ding in which similar objects are close to each other, and dissimilar objects are far?
In the field of medical imaging, for instance, the entities can be retina images, and we
might want to find an embedding such that retina images of the healthy patients are
grouped together, while images of patients with diabetic retinopathy can be distin-
guished [37, 77]. In text-based information retrieval, we try to find word embeddings
such that words that are related are close [78]. In this case, the similarity could be the
number of word co-occurrences in training documents. The embedding of such high
dimensional entities is often estimated using variants of principal component analysis
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[72], linear discriminant analysis [57], or neural networks [58, 37, 77]. In the present
work, we focus on point embeddings of arbitrary dimension where dissimilarities are
measured by coordinate differences, which model many relevant problems.

A vast and mature literature looks at a framework similar to ours, where the
dissimilarity measures are Euclidean distances between points. Such problems form
the category of distance geometry problems (DGPs), of which a thorough overview
is given in [53]. One broadly distinguishes between assigned DGPs (aDGPs) and
unassigned DGPs (uDGPs) [26]. In aDGPs, the indices of the pairs of points from
which the measured distances originate are known, so we say that the distances are
labeled. In such a framework, it is a common practice to arrange the measurements
in a Euclidean distance matrix (EDM), where the element at position (i, j) is the
squared Euclidean distance between points i and j [20]. By exploiting their various
properties, EDMs can be completed and denoised, and many algorithms for recovering
admissible point embeddings exist [40, 30, 21, 65, 23].

Recently, interest has grown for vector geometry problems (VGPs), which are
an extension of distance geometry to vector measurements. In vector geometry, the
dissimilarity between points is given not only by their distance but also by the orien-
tation of the edge between them. The term vector geometry was coined in [5] in the
context of molecular conformation reconstruction. In this problem, certain measure-
ment methods can provide the relative orientation of the atoms, induced, for example,
from bond and torsion angles. DGP build-up methods, which have been widely used
for molecular conformation reconstruction to date [59], do not exploit this additional
information.

To establish and further develop the foundations of VGPs, and inspired by EDMs,
we introduce new objects that we call coordinate difference matrices (CDMs). Similar
to their Euclidean distance counterpart, CDMs contain differences between the coor-
dinates of pairs of points. In this work, we put them in perspective with respect to
EDMs in terms of properties, characteristics, and algorithms. We propose methods to
recover the point embeddings from a variable number of coordinate differences, and
we discuss the uniqueness and optimality of the embeddings. We provide conditions
on the number and structure of measurements for the recovery to be well defined, as
well as statistical analyses on the reconstruction error.

The main building block for point recovery in any dimension is the CDM con-
structed from 1D coordinates: given D-dimensional difference vectors between D-
dimensional points, we can simply create one CDM for each coordinate and recover
the coordinates of the points independently. When we are given the difference vectors
of the points projected onto K \geq D frame vectors, we can rely on the same idea and
obtain a suboptimal but efficient approach. Interestingly, we show that this method
in certain cases leads to the optimal solution in the least-squares sense, even in the
presence of noise and missing measurements.

Furthermore, we illustrate the usefulness of CDMs and show that their field of
application ranges from molecular conformation to ranking problems. In Figure 1 we
depict six different applications that can be solved by our algorithms. Besides the
already discussed molecular conformation problem (Figure 1a), we can also measure
distances and angles in sensor networks (Figure 1b). In these two applications, we
can project the measurements onto a standard basis. In microphone array calibra-
tion (Figure 1c), the measurements can be interpreted as coordinate differences in
K \geq D directions, each corresponding to the location of one far-field speaker. In
phase retrieval (Figure 1d), a problem arising in X-ray tomography, we obtain unla-
beled coordinate differences. While resolving the labeling problem, partial solutions
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Fig. 1. Overview of applications of CDMs: (a) molecular conformation, (b) sensor array
localization, (c) geometric microphone calibration, (d) phase retrieval, (e) structure from motion,
(f) ranking and rating estimation.

can be denoised using CDMs. In affine structure from motion (Figure 1e), we recover
coordinates of points from their projections onto image planes. Finally, in ranking
sports teams (Figure 1f), the net scores of games can be viewed as coordinate differ-
ences from which we reconstruct relative rankings of teams [56].

To summarize, we lay down important mathematical concepts regarding VGPs.
Our contributions are threefold. First, we introduce and analyze CDMs. We study
their properties in section 2, provide a simple point recovery algorithm as well as a
reconstruction uniqueness result in section 3, and compare the result with the classic
EDM-based approach in section 5. Second, we propose two algorithms for recovering
point embeddings from coordinate differences in higher dimensions in section 4: one
which is optimal in the least-squares sense, and one which is computationally more
efficient. We also identify cases in which these two algorithms coincide and conduct
an error analysis in section 6. Third, we showcase and solve a variety of applications
which can be formulated as coordinate difference problems in section 7, hoping that it
will convince the reader of the practical relevance of a research topic that has received
little attention so far.

2. Coordinate difference matrices. ConsiderN 1D points \bfitx =
\bigl[ 
x1 . . . xN

\bigr] \top 
\in \BbbR N . We define a coordinate difference matrix (CDM) \bfitC \in \BbbR N\times N with entries
Cij = xi  - xj as the matrix that contains the pairwise coordinate differences of the
points in \bfitx . It can be expressed as

(1) \bfitC = \bfitx 1\top  - 1\bfitx \top ,

where 1 is the all-one vector.
In Table 1, we provide a nonexhaustive list of properties of CDMs that are lever-

aged later to reconstruct a point set from a given CDM (for derivations, see Appen-
dix A). It is worth mentioning that the special case of equally spaced points results
in the CDM being a Toeplitz matrix. These ten properties are necessary conditions
for a matrix \bfitC to be a CDM. Additionally, we can derive a sufficient condition.
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Table 1
Properties of CDMs.

Properties Description

P.1 Rank-2 rank(\bfitC ) = 2 for N > 1

P.2 Triangular equality Cij = Cik + Ckj

P.3 Skew-symmetry \bfitC =  - \bfitC \top 

P.4 Hollowness diag(\bfitC ) = 0

P.5 Zero-sum 1\top \bfitC 1 = 0

P.6 Columns as a solution set CDM of \bfitx = \{ Cij | \forall i \leq N\} is \bfitC 

P.7 Row averaging \bfitx + c = 1
N
\bfitC 1, where c is a constant

P.8 Translation invariance \bfitx and \bfitx + c have the same CDM \bfitC 

P.9 Imaginary eigenvalues \Re (\lambda i) = 0 for i = \{ 1, 2\} 
P.10 Anti-symmetric eigenvalues \lambda 1 =  - \lambda 2

Proposition 2.1. A matrix \bfitC is a CDM if and only if its elements satisfy the
triangular equality Cij = Cik + Ckj for all triples (i, j, k).

Proof. A matrix \bfitC whose entries satisfy the triangular equality implies both
hollowness and skew-symmetry: Cij = Cii + Cij ensures that Cii = 0, while Cii =
Cij + Cji = 0 implies Cij =  - Cji. Combining the triangular equality with the skew-
symmetry, we can express all elements as Cij = Cik - Cjk. Without loss of generality,

we define \bfitx =
\bigl[ 
C1k C2k . . . CNk

\bigr] \top 
. Using this definition, we can rewrite Cij as

Cij = xi  - xj for every i and j; therefore, \bfitC is of the form (1).

An alternative way to check if the sufficient condition is satisfied is based on
consistent positive reciprocal matrices [73], described below for completeness.

Definition 2.2. The matrix \bfitR \in \BbbR N\times N is positive reciprocal if Rij > 0 and
Rij = R - 1

ji for any i, j = 1, . . . , N . If Rik = RijRjk, it is said to be consistent.

We can transform a CDM \bfitC into a reciprocal matrix \bfitR with elementwise expo-
nentiation, \bfitR = exp(\bfitC ). The consistency property is then the natural extension of
the triangular equality to reciprocal matrices, and it provides an alternative way of
testing if a matrix is a CDM.

It is known that a reciprocal matrix is consistent if and only if it has N  - 1
zero eigenvalues and one eigenvalue equal to N [73]. As a consequence, we can ver-
ify whether a matrix is a CDM by examining the eigenvalues of its corresponding
reciprocal matrix.

3. Recovering point embeddings from CDMs. In general, CDMs can be
incomplete. To take into account missing entries, we introduce a symmetric weight
matrix \bfitW with nonnegative entries, where Wij = 0 indicates that the entry (i, j)
is missing. Moreover, Wij > 0 denotes the importance of each difference Cij , and
it can encompass, for example, multiple measurements of the same difference or the
certainty about each measurement. To simplify the notation, we adopt the convention
that Wii = 0 for all i. The idea of assigning different priorities to measurements was
first introduced in [35].

In addition to being missing, the measured differences can also be noisy; in that
regard, we introduce the noise matrix \bfitZ , whose entries are independent noise realiza-
tions. We define an incomplete and noisy CDM as

(2) \widetilde \bfitC = (\bfitC +\bfitZ ) \circ \bfitW .
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In case we have multiple measurements between the points xi and xj , the elements\widetilde Cij and Zij are the weighted average of the measurements and the noise realizations,
respectively.

The inverse problem that arises naturally from (1) and (2) is formalized as follows.

Problem 1. Given a set of noisy 1D differences \widetilde Cij for some i, j, recover the set
of points \{ xi\} Ni=1 that generated them.

3.1. Reconstruction algorithm. To solve Problem 1, we propose estimating
the points from a measured subset of their pairwise differences as

(3) \widehat \bfitx = argmin
\bfitx 

f(\bfitx ) = argmin
\bfitx 

\bigm\| \bigm\| \bigm\| \bfitW \circ (\bfitx 1\top  - 1\bfitx \top  - \widetilde \bfitC )
\bigm\| \bigm\| \bigm\| 2
F
.

In Appendix B we prove that f(\bfitx ) is convex. Thus, we can find the optimal solution
by setting the first derivative of f(\bfitx ) to zero:

(4) xi =
1

\Lambda ii

N\sum 
j=1

(xj + \widetilde Cij)Wij ,

where

\Lambda ij =

\Biggl\{ \sum N
k=1 Wik, i = j,

0 otherwise.
(5)

We can rewrite this result in matrix form \bfitA \bfitx = \widetilde \bfitv , where \bfitA = \Lambda  - \bfitW and \widetilde \bfitv =
(\widetilde \bfitC \circ \bfitW )1.

The matrix \bfitA has a particular structure and belongs to the class of so-called
M-matrices [68, 46]. We study its invertibility in the following section.

3.2. Invertibility of \bfitA . Let us define the weighted graph G = (\bfitx ,\bfitW ), where
vertices are represented by the points \bfitx and their connecting edges are given by \bfitW .
In general, graphs provide an interesting alternative representation for CDMs, but in
the scope of this paper we solely leverage them to study the invertibility of \bfitA .

Observe that \bfitA is the Laplacian matrix of its corresponding graph G, as it is the
difference of the degree matrix \Lambda and the adjacency matrix \bfitW . Hence, rank(\bfitA ) is at
most N  - 1 [41], and it is not invertible.

This result is not surprising; indeed, Property P.8 states that we can recover the
original points only up to a translation. In order to anchor the translation, we can
arbitrarily fix one point of the embedding; in this paper we set x1 to zero, without
loss of generality. To that end, we remove the first entry of \bfitx and \widetilde \bfitv and denote the
new vectors by \bfitx \prime and \widetilde \bfitv \prime . Similarly, we remove the first row and column of \bfitA to get

\bfitA \prime , and we define the matrices \Lambda \prime , \bfitW \prime , and \widetilde \bfitC \prime 
analogously. This yields the following

linear system:

(6) \bfitA \prime \bfitx \prime = \widetilde \bfitv \prime .

3.2.1. Complete CDM. In the special case where we measure all pairwise
differences and assign them the same weight---we call it a complete CDM---an analytic
solution for (\bfitA \prime ) - 1 exists. Indeed, with \Lambda \prime = (N  - 1)\bfitI and \bfitW \prime = 11

\top  - \bfitI , we obtain

(7)
\bigl( 
\bfitA \prime \bigr)  - 1

=

\biggl( 
\bfitI  - 11

\top  - \bfitI 

N  - 1

\biggr)  - 1
1

N  - 1
=

\bfitI + 11
\top 

N
.
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This can be easily verified by direct computation. To recover \bfitx from a complete
CDM, we substitute (7) into (6):

(8) \widehat \bfitx \prime =
\bigl( 
\bfitA \prime \bigr)  - 1 \widetilde \bfitv \prime =

\bfitI + 11
\top 

N
\widetilde \bfitC \prime 
1 =

1

N
\widetilde \bfitC \prime 
1+ c1,

where c = 1
N

\sum 
ij
\widetilde C \prime 
ij is a constant that only translates the solution; this result con-

firms Property P.7. We conclude that the optimal point recovery in the complete case
corresponds to a simple average of the rows of a CDM.

3.2.2. Incomplete and weighted CDM. In the following, we study the in-
vertibility of \bfitA \prime when some entries of the CDM are missing or/and they have different
assigned weights.

We say that the CDM \bfitC is connected if and only if its underlying graph G
is connected, or, in other words, if for all indices i \not = j there is a path of indices
i1, i2, . . . , im such that Wii1 \not = 0,Wi1i2 \not = 0, . . . ,Wim - 1im \not = 0,Wimj \not = 0. According
to Kirchhoff's matrix tree theorem [13], the number of spanning trees of G is given by
\kappa (G) = det

\bigl( 
\bfitA \prime \bigr) . Obviously, G is connected if and only if \kappa (G) \not = 0, or, equivalently,

if and only if \bfitA \prime is nonsingular.
It is not hard to see that\bfitA \prime is weakly diagonally dominant, | A\prime 

ii| \geq 
\sum N - 1

j=1,j \not =i | A\prime 
ij | ,

as | A\prime 
ii| =

\sum N
j=1 Wi+1,j , | A\prime 

ij | = Wi+1,j+1, and
\sum N

j=1 Wi+1,j \geq 
\sum N

j=2 Wi+1,j for every

row i. When \bfitC is connected, then \bfitA \prime is reducible, and for at least one row i we
have a strict inequality

\sum N
j=1 Wij >

\sum N
j=2 Wij ; hence, \bfitA 

\prime is irreducibly diagonally

dominant. This proves the same result as above, that \bfitA \prime is nonsingular [69], but it
provides two additional insights: it shows that we can solve (6) in nearly linear time
in N [74], and it enables a simple derivation for the inverse of \bfitA \prime ; for a connected
matrix \bfitC , it is given by Neumann series

(9) (\bfitA \prime ) - 1 =

\Biggl( \infty \sum 
k=0

((\Lambda \prime ) - 1\bfitW \prime )k

\Biggr) 
(\Lambda \prime ) - 1.

The proof follows directly from the Gershgorin circle theorem [33], which proves that
the eigenvalues of (\Lambda \prime ) - 1\bfitW \prime are inside the unit circle, and the Neumann series theo-
rem [44]. In Appendix C we confirm that the infinite sum (9) converges to (7) in the
case of complete measurements.

The invertibility of \bfitA \prime enables us to reconstruct the points \bfitx from (6) as

(10) \bfitx =

\biggl[ 
0

(\bfitA \prime ) - 1\widetilde \bfitv \prime 

\biggr] 
.

Clearly, we cannot apply (10) when \bfitC is not connected. What we can do in such
a case is recover the points by invoking (10) within each connected component of \bfitC .
As the recovered connected components can shift independently, we have an infinite
number of solutions.

4. Generalization to higher dimensions. In practice, we can often measure
the vectors between multidimensional points projected onto some measurement direc-
tions; examples of such setups are given in subsection 7.3 and subsection 7.4. This
naturally motivates a generalization of CDMs to higher dimensions.

4.1. Vector form in 1D. Before discussing the multidimensional case, we in-
troduce an alternative way to represent a CDM by arranging its entries in a vector
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(a) measurements (b) incomplete CDM (d) reconstructed points(c) vectorized form

=

=

Fig. 2. An instance of Problem 1. (a) Assume that we can measure a subset of noisy 1D
differences between the points. (b) We arrange them in a CDM and either use it directly, or (c) use
its vectorized form to (d) reconstruct the points that give rise to measurements.

\bfitd \in \BbbR M , where M denotes the total number of measurements. Then, dm = xi  - xj

are the pairwise differences between the points, and m is indexing the observed entries
of the flattened CDM. To assign the difference dm to the pair of points xi and xj , we
introduce a sparse measurement matrix \bfitB \in \BbbR M\times N with Bmi = 1, Bmj =  - 1, and 0
otherwise. Using this notation, we can write

(11) \bfitB \bfitx = \bfitd .

In the case of noisy measurements, we define \widetilde \bfitd = \bfitd + \bfitz , where \bfitz contains in-
dependent noise realizations. In the case of multiple measurements, \bfitB has identical
rows for every repeated measurement, and \widetilde \bfitd contains all of their realizations. An
instance of Problem 1, both in matrix and vectorized form, is illustrated in Figure 2.

Recall that in section 3 we defined \bfitW to be a nonnegative matrix whose entries
are the weights of each difference measurement. To be aligned with such a definition,
we should allow not only multiple measurements of each difference (identical rows in
\bfitB ) but also different weights for these measurements. To do so, we can simply scale

rows of \bfitB and \widetilde \bfitd with the same factors. To keep the notation clean, in the rest of the
paper we assume that \bfitB and \widetilde \bfitd encompass these weights.

We can estimate \bfitx by solving the normal equations, \bfitB \top \bfitB \bfitx = \bfitB \top \widetilde \bfitd . Due to
translation ambiguity, a system is noninvertible. We resolve it by removing the first
column of \bfitB to get \bfitB \prime , which corresponds to setting x1 = 0. This brings us to

our well-studied problem (6), where \bfitA \prime = \bfitB \prime \top \bfitB \prime , \widetilde \bfitv \prime = \bfitB \prime \top \widetilde \bfitd \prime 
, and the points are

reconstructed as

(12) \widehat \bfitx \prime = (\bfitB \prime )\dagger \widetilde \bfitd = ((\bfitB \prime )\top \bfitB \prime ) - 1(\bfitB \prime )\top \widetilde \bfitd .
Such a problem definition is not novel; it appears in the broad literature on sta-

tistical ranking from pairwise comparisons. For instance, it is used in [56] to rank
a collection of sport teams based on their scores, and in [62] to design tournaments
that maximally improve the informativeness of a ranking for a given number of future
comparisons. The reason we introduce it here is twofold: (a) As we are the first to
show the connection of (11) with CDMs, it may be useful to recast the existing prob-
lems such as [56, 62] that rely on (11) to the CDM framework and take advantage
of the devised properties, bounds on the reconstruction error, more efficient imple-
mentations, and connections to other applications. (b) The vector form proves to be
beneficial in the error analysis.
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4.2. Vector form in higher dimensions. We extend points and their pairwise
differences to D dimensions and consider K \geq D frame vectors \{ \bfitvarphi k\} Kk=1 [79]. Then,
we formulate the generalization of Problem 1 and expand the formulation introduced
in subsection 4.1.

Problem 2. Given a subset of noisy D-dimensional coordinatewise differences
observed in the frame \{ \bfitvarphi k\} Kk=1, recover the set of points that generated them.

We assume that we measure Mk differences in each frame direction k, k =
1, . . . ,K, and construct the measurement matrix \bfitB k \in \BbbR Mk\times N and the vector of
differences \widetilde \bfitd k \in \BbbR Mk for every k, analogously to \bfitB and \widetilde \bfitd in (11). The total number

of differences is denoted by M =
\sum K

k=1 Mk. For every frame vector \bfitvarphi k, we create the
matrix \Phi k \in \BbbR N\times ND, such that

\Phi k =

\left[     
\bfitvarphi \top 

k 0 . . . 0
0 \bfitvarphi \top 

k . . . 0
...

...
. . .

...
0 0 . . . \bfitvarphi \top 

k

\right]     .(13)

Then, we can formalize Problem 2 as follows:\left[     
\bfitB 1 0 \cdot \cdot \cdot 0
0 \bfitB 2 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot \bfitB K

\right]     
\left[     
\Phi 1

\Phi 2

...
\Phi K

\right]     
\left[     
\bfitx 1

\bfitx 2

...
\bfitx N

\right]     =

\left[      
\widetilde \bfitd 1\widetilde \bfitd 2

...\widetilde \bfitd K

\right]      ,(14)

or, in matrix form,

(15) \bfitB \Phi \bfitx = \widetilde \bfitd ,
where \widetilde \bfitd \in \BbbR M contains all M measured K-dimensional differences in all frames
arranged in one vector, \Phi \in \BbbR NK\times ND contains the matrices \Phi k stacked in a tall
matrix, and \bfitx \in \BbbR DN is the vector of all N D-dimensional points \bfitx n that we want
to recover, n = 1, . . . , N . Figure 3 presents a simple example of three points in a 2D
space to illustrate the notation and clarify the above expressions.

4.3. Optimal solution. Analogously to (11), the system (15) is noninvertible,
so we fix the first coordinate of every dimension to zero. This corresponds to re-
moving every Kth column of \bfitB , as well as every Kth row and the first D columns
of \Phi , resulting in the new matrices \bfitB \prime \in \BbbR M\times (N - 1)K and \Phi \prime \in R(N - 1)K\times (N - 1)D,
respectively. Then, we can reconstruct the canonical coordinates of the points as

(16) \widehat \bfitx \prime = (\bfitB \prime \Phi \prime )\dagger \widetilde \bfitd .
This approach is optimal in the least-squares sense.

4.4. Splitting algorithm. To reduce the complexity of the solution, we propose
and study an alternative approach that decomposes Problem 2 into many instances
of Problem 1 of smaller dimension. We divide the multidimensional problem into
K 1D CDM recovery problems and estimate the points from their differences sepa-
rately in each frame direction. Therefore, we first recover the expansion coefficients
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Fig. 3. An example of the point recovery in 2D. (a) The simple case of the Cartesian coordinate
system. We use dk,m for k = 1, 2 and m = 1, 2, 3 to indicate the measured pairwise differences
between the Cartesian coordinates of the points \{ \bfitx n\} 3n=1. (b) A frame with K = 3 vectors. We
assume we measure dk,m for k = 1, 2, 3 and m = 1, 2, 3, and we want to recover \{ \bfitx n\} 3n=1.

of the points for each frame vector, given by (\bfitB \prime )\dagger \widetilde \bfitd , and then we find their canonical
coordinates by a change of basis:

(17) \widehat \bfitx \prime = (\Phi \prime )\dagger (\bfitB \prime )\dagger \widetilde \bfitd .
Note that in a more efficient implementation, (17) is solved in two steps. The compu-

tation of (\bfitB \prime )\dagger \widetilde \bfitd in the first step is divided into K independent problems, each giving

an estimate of \bfitf k \in \BbbR K , \bfitf k = (\bfitB \prime 
k)

\dagger \widetilde \bfitd k. Then, the canonical coordinates of the
estimated points \widehat \bfitx \prime are in the columns of (\Phi \prime 

0)
\dagger \bfitF , where \bfitF \in \BbbR K\times N contains vectors

\bfitf k in its columns. Besides the reduction in the size of the problem, the main benefit
of this formulation is that we can take advantage of the structure of \bfitB \prime 

k to solve
the problem faster: indeed, as mentioned in subsection 3.2.2, (\bfitB \prime 

k)
\top \bfitB \prime 

k is irreducibly
diagonally dominant, which enables us to invert it in nearly linear time. The splitting
formulation also allows for the method to be easily parallelized.

4.5. Uniqueness and number of solutions. Given a set of coordinate differ-
ences, there is an infinite number of valid point sets which are generated by translating
the original point set. Here, we refer to a problem with a nonunique solution when at
least two different point sets that are not translated versions of each other are both
valid solutions.

For the multidimensional point reconstruction to be possible, we need to extend
the connectivity requirement. At the coordinate level, every point needs to be con-
nected with the others by at least D frame measurements. Since we have N points
and therefore at least N  - 1 connections, the minimum number of measurements
is D(N  - 1). When using the splitting algorithm, this requirement is more restric-
tive: we require that the CDM corresponding to every frame vector is connected, and
hence, we need at least (N  - 1)K measurements. We summarize the results on the
uniqueness and number of solutions in the following proposition.

Proposition 4.1. We refer to the ensemble of all translated reconstructions as
one single solution. Then, the CDM problem in 1D can have either one or an infinite
number of solutions. It has one solution if and only if the CDM is connected. The
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Table 2
Comparison of CDMs \bfitC and EDMs \bfitE .

Properties CDM EDM

Rank rank(\bfitC ) = 2 rank(\bfitE ) = D + 2

Triangular (in)equality Cij = Cik + Ckj

\sqrt{} 
Eij \leq 

\surd 
Eik +

\sqrt{} 
Ekj

Symmetry \bfitC =  - \bfitC \top \bfitE = \bfitE \top 

Hollowness diag(\bfitC ) = 0 diag(\bfitE ) = 0

Invariance to translations all rigid motions

CDM problem in D dimensions can have either one solution or an infinite number
of solutions. If the CDMs of at least D independent frame vectors are connected, a
unique solution exists.

Note that the uniqueness condition for D > 1 is sufficient, but not necessary. The
study of the exact number of solutions is tightly connected with the (global) graph
rigidity problem, and, to the best of our knowledge, no trivial solution exists at this
point.

5. Comparison of CDMs with EDMs. In this section, we relate the intro-
duced framework of CDMs with the more mature field of EDMs. The EDM and the
CDM theories arise in similar applications, but one can be more useful than the other
depending on the measured information. CDMs can be used to solve assigned VGPs
(aVGPs), while EDMs play an important role in aDGPs, which are harder by nature
(the difference vectors are collapsed into one dimension). Oftentimes, EDM is the
tool of choice simply because the coordinate information is not available by design;
however, due to its popularity, the EDM framework is sometimes used where CDMs
would be more adequate, precise, and efficient. The molecular conformation appli-
cation is one such example: even though coordinate information is available through
different angle measurements, more focus was given to distance-based methods to this
date [5]. We discuss this problem in more detail in subsection 7.5.

We compare below CDMs and EDMs with respect to (a) matrix properties, (b)
minimal number of observed entries required for the reconstruction, (c) uniqueness of
the reconstruction, and (d) applications other than point recovery.

There are some obvious algebraic differences between CDMs and EDMs, summa-
rized in Table 2. The rank of both matrices is independent of the number of points:
for CDMs constructed for 1D points, the rank is equal to 2, while for EDMs of D-
dimensional points it is equal to D + 2. Furthermore, the entries of CDMs satisfy
the triangular equality, while the elements of EDMs respect the triangular inequal-
ity. Moreover, CDMs are skew-symmetric, while EDMs are symmetric. Finally, when
transitioning from a point set to a CDM, information about the absolute translation
of the points is irremediably lost. When estimating points from EDMs, in addition
to translation, we also lose the information about their rotation and reflection.

Let us now consider the recovery of points in 1D. Assuming a connected CDM,
we require at least one measurement per point, that is, N  - 1 coordinate differences
to recover N points. To visualize this, we can think in terms of a build-up algorithm
and fix the first point at 0. Then we can iteratively reconstruct the remaining points
in one pass from the coordinate differences. The entries of EDMs in 1D are simply the
squared values of the entries of CDMs, but this small difference makes the recovery
problem significantly harder. In addition to fixing the first point at 0, we also need
to pick the sign of the second point to fix the reflection. Then we can iteratively
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build a solution, observing that for every newly added point we have two possibilities.
To identify the correct one, we need at least one additional measurement from a
previously recovered point.

Moving to point recovery in higher dimensions, the measurements in CDMs are
given as K-dimensional coordinate differences between D-dimensional points, where
K \geq D. The minimal number of measurements is achieved for N  - 1 connected
measurements per each dimension, resulting in the total number of D(N  - 1) mea-
surements. For noiseless EDMs, there is no exact formula that describes the minimum
number of measurements, but we can lower bound it by a counting argument. We
have DN unknowns (N D-dimensional points) to recover, but these points are only
recovered up to rigid motions, which encompass D degrees of freedom for translations
and D(D - 1)/2 degrees of freedom for orthogonal transformations. We conclude that
the number of measurements is lower bounded by DN  - (D + 1)D/2. Moreover, to
ensure that every point is rigidly connected to the others, at least D+1 measurements
are needed for every point. As the dimension of the space in most applications is typ-
ically 2 or 3, the contribution of the second term is negligible, and the reconstruction
of points from CDMs and noiseless EDMs requires the same number of measurements.
When distances are noisy, there is no clear expression for the minimal number of mea-
surements in the EDM reconstruction problem, and no existing algorithm guarantees
an optimal solution [23]. On the other hand, our proposed algorithm within the CDM
framework has an optimal closed-form solution even with imperfect measurements.

This leads to another important difference between CDMs and EDMs. As no
algorithm guarantees an optimal solution for EDM reconstruction with incomplete
matrices, many methods in the EDM literature split the problem into two independent
steps: matrix completion and denoising, followed by point recovery. The goal of
the matrix completion and denoising is to determine the closest EDM for a given
incomplete matrix. Having the complete EDM, the point recovery is then obtained
via a simple SVD. When using CDMs, the completion and denoising steps are not
required because one can directly apply the point recovery algorithm on incomplete
CDMs, which implicitly denoises and completes CDMs.

Lastly, although CDMs and EDMs are both designed to solve assigned distance
problems, they prove to be useful as labeling and denoising tools in various applica-
tions. As an example, the rank property of EDMs has been used to recover distance
labels in room geometry reconstruction from echoes [24]. When we measure unlabeled
coordinate differences instead of unlabeled distances, CDMs could be used in the same
way. Concretely, one could iterate over possible permutations and check if the result-
ing matrix satisfies Proposition 2.1, the sufficient condition of CDMs. Alternatively,
EDMs and CDMs can be used in unassigned geometry problems to denoise a partial
solution set during any iterative point recovery algorithm, as shown in subsection 7.2.

6. Reconstruction error. In this section, we analytically compute the expected
value and variance of the estimation error of the points. For the multidimensional case,
we derive the gap in the reconstruction accuracy between the optimal solution and
the splitting algorithm. We perform numerical simulations to validate the theoretical
analysis and illustrate the dependence of the estimation error on the amount of noise,
the number of missing measurements, and the number of frame vectors.

6.1. 1D setup. We can rewrite (12) as \widehat \bfitx \prime = \bfitx \prime + (\bfitB \prime )\dagger \bfitz . As \widehat \bfitx \prime and \bfitx \prime contain
N  - 1 points, we have to prepend the removed leading zero to \widehat \bfitx \prime and \bfitx \prime and align
them before computing the estimation error. More precisely, we set their centroids
to the origin, introduce the centering matrix \bfitJ = \bfitI  - 1

N 11
\top \in \BbbR N\times N , and obtain
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\bfitJ \prime \in \BbbR N\times N - 1 from \bfitJ by removing its first column. Then, we can compute the
centered point sets as \widehat \bfitx c = \bfitJ \prime \widehat \bfitx \prime and \bfitx c = \bfitJ \prime \bfitx \prime . Their difference is the desired
estimation error vector, given as \bfite c = \bfitJ \prime (\widehat \bfitx \prime 

c  - \bfitx \prime 
c). Thus,

(18) \bfite c \sim \scrN (0,\Sigma \bfite c), with \Sigma \bfite c = \sigma 2\bfitJ \prime \bigl( (\bfitB \prime )\top \bfitB \prime \bigr)  - 1
(\bfitJ \prime )\top .

It follows that the reconstructed points \widehat \bfitx c are also normally distributed with mean
\bfitx c and covariance matrix \Sigma \bfite c .

We define the estimation error \epsilon as the mean squared error (MSE) between \widehat \bfitx c

and \bfitx c, \epsilon =
1
N \| \bfite c\| 2, and we can find its expected value from

(19) \BbbE [\epsilon ] =
\sigma 2

N
tr
\Bigl( 
\bfitJ \prime \prime \bigl( (\bfitB \prime )\top \bfitB \prime \bigr)  - 1

\Bigr) 
,

where we leverage the cyclic invariance of the trace and use \bfitJ \prime \prime to denote \bfitJ without
the first column and row, \bfitJ \prime \prime = (\bfitJ \prime )\top \bfitJ \prime .

This proves that the expected value of the error depends on the noise level \sigma 2

and the structure of measurements. To better understand the latter, we further
rewrite (19) as

(20)

\BbbE [\epsilon ] =
\sigma 2

N

\biggl[ 
tr
\Bigl( 
(\bfitA \prime ) - 1

\Bigr) 
 - 1

N
1
\top (\bfitA \prime ) - 1

1

\biggr] 
=

\sigma 2

N

\infty \sum 
k=0

\biggl[ 
tr
\Bigl( \bigl( 

\bfitW \prime (\Lambda \prime ) - 1
\bigr) k
(\Lambda \prime ) - 1

\Bigr) 
 - 1

N
1
\top \bigl( \bfitW \prime (\Lambda \prime ) - 1

\bigr) k
(\Lambda \prime ) - 1

1

\biggr] 
\mathrm{d}\mathrm{e}\mathrm{f}
=

\sigma 2

N

\infty \sum 
k=0

fk(\bfitW 
\prime ,\Lambda \prime ),

where (\bfitA \prime ) - 1 is from (9).

The expression fk(\bfitW 
\prime ,\Lambda \prime ) simplifies for k = 0 and k = 1 to N - 1

N

\sum N - 1
i=1 \Lambda \prime 

i
 - 1

and

 - 1
N

\sum N - 1
i,j=1 W

\prime 
ij\Lambda 

\prime 
i
 - 2

, respectively.1 For k \geq 2, we have

fk(\bfitW 
\prime ,\Lambda \prime ) =

N - 1\sum 
i,j=1

1

\Lambda \prime 
i

\sum 
m1,...,mk - 1

\bigl( \prod k - 2
\ell =0 W \prime 

m\ell ,m\ell +1

\bigr) \bigl( 
NW \prime 

i,mk - 1
 - (N  - 1)W \prime 

mk - 1,j

\bigr) \prod k - 1
\ell =0 \Lambda \prime 

m\ell 

,

(21)

where the second sum is over all k  - 1-tuples (m1, . . . ,mk - 1) with 1 \leq m\ell \leq N  - 1
for \ell = 1, . . . , k  - 1, and m0 = i.

In what follows, we use (21) to prove that the smallest error is achieved for the
uniform distribution of measurements. Let us consider any \bfitW a with the correspond-
ing \Lambda a defined by (5). From the first row, we take two weights W a

1j and W a
1k such

that W a
1j > W a

1k, and we choose \Delta such that 0 < \Delta \leq (W a
1j  - W a

1k)/2.

Additionally, let us define the matrix \bfitW b such that it is equal to \bfitW a except for
W b

1j = W b
j1 = W a

1j  - \Delta and W b
1k = W b

k1 = W a
1k +\Delta . Using (5), we also associate the

matrix \Lambda b to \bfitW b. Furthermore, let us construct \bfitW a\prime and \bfitW b\prime from \bfitW a and \bfitW b

by removing their first column and row.
Note that \bfitW b brings the measurements closer to being uniformly distributed.

Our goal is to show that \bfitW b leads to a lower estimation error than \bfitW a. To see this,

1To ease the notation, we use \Lambda \prime 
i instead of \Lambda \prime 

ii in this section.
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observe that, on the one hand, \bfitW a\prime = \bfitW b\prime , but, on the other hand, \Lambda b
j = \Lambda a

j  - \Delta ,

\Lambda b
k = \Lambda a

k +\Delta , and \Lambda b
i = \Lambda a

i for i \not = j, i \not = k. As a consequence, since the numerators

in (21) depend only on the weights, they are identical for both \bfitW a\prime and \bfitW b\prime , and
only their denominators differ. From (21) we can therefore compute the difference of

fk(\bfitW 
a\prime ,\Lambda a\prime ) and fk(\bfitW 

b\prime ,\Lambda b\prime ) as

(22)

fk(\bfitW 
a\prime ,\Lambda a\prime ) - fk(\bfitW 

b\prime ,\Lambda b\prime )

=

N - 1\sum 
i,j=1

\sum 
m1,...,mk - 1

h(\bfitW \prime )

\Biggl( 
1

\Lambda a
i
\prime \prod k - 1

\ell =0 \Lambda a
m\ell 

\prime  - 
1

\Lambda b
i
\prime \prod k - 1

\ell =0 \Lambda b
m\ell 

\prime 

\Biggr) 
,

where h(\cdot ) is used to shorten the expressions of the numerators in (21).

As 0 \leq \Lambda b
j  - \Lambda b

k < \Lambda a
j  - \Lambda a

k and
\sum N

i=1 \Lambda 
a
i =

\sum N
i=1 \Lambda 

b
i , it is not hard to show

that (22) is positive for every k. In other words, we have shown that if we rearrange
the entries of the first row in\bfitW such that they are more uniform and that the variance
of \Lambda is smaller, then the estimation error decreases. With a derivation analogous to
the above, we can show that the contrary is also true; by rearranging the entries of
the first row of \bfitW such that the variance in \bfitW and \Lambda increases, then the estimation
error also increases. As we can arbitrarily swap rows in \bfitW , as long as we swap their
corresponding columns, the entries in the first row of \bfitW can be associated to any
point i = 1, . . . , N . Therefore, the above proof is general and valid for any i. In fact,

we can show that by maximizing expression (22) over the entries in \Lambda b\prime , the global

maximum is achieved when \Lambda b
1
\prime 
= \cdot \cdot \cdot = \Lambda b

N - 1

\prime 
; these values are equal to the sum of

all entries in \bfitW a divided by N  - 1.
Lastly, we provide expressions for the best and the worst arrangements of mea-

surements with the total sum of the weights fixed to L(N2  - N), L \in \BbbN . As shown
above, the smallest error is achieved when Wij = L for every (i, j), i \not = j,

(23) \epsilon min =
\sigma 2

N

\infty \sum 
k=0

N tr(\bfitW k) - 1
\top \bfitW k

1

N(L(N  - 1))k+1
=

\sigma 2

N

L(N  - 1)

L(N  - 1) + 1
.

On the other extreme, the largest error occurs when there exists p for which Wpj =
Wjp = LN/2 for every j, j \not = p, while Wij = 0 for every other entry (i, j), i \not = p,

(24) \epsilon max =
\sigma 2

N
tr((\Lambda \prime ) - 1) - 1

N
1
\top (\Lambda \prime ) - 1

1 = \sigma 2 2(N  - 1)2

LN3
.

Simulation results. The dependence of the error on the noise level and number of
measurements is illustrated in Figure 4. The number of measured differences spreads
from the minimum required for reconstruction, M = N  - 1, to the complete case,
M = N(N  - 1)/2. We compute the error \epsilon for multiple realizations of the matrix
\bfitB , i.e., different connectivities between the points, and take their average to estimate
the expected value of \epsilon defined in (19). It is clear that the error increases with the
amount of noise and number of missing entries.

6.2. Multidimensional setup. We extend the statistical analysis from subsec-
tion 6.1 to the multidimensional setting and provide a closed-form expression for the
difference in the estimation errors of the optimal and the splitting algorithms.

We assume that we add independent Gaussian noise to all the differences, such
that \widetilde \bfitd \sim \scrN (\bfitd , \sigma 2\bfitI ). Analogous to the 1D case in subsection 6.1, we first estimate the
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29 130 232 333 435
M

10 7
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SE
 

(a)

 = 0.01
 = 0.04
 = 0.07
 = 0.1

10 2 10 1

(b)

M = 29
M = 165
M = 300
M = 434

Fig. 4. CDM estimation error \epsilon . We consider N = 30 points drawn independently and uni-
formly from [0, 1] and assume Gaussian noise on the differences with 0-mean and a variance of \sigma 2.
(a) Dependence of \epsilon on number of measurements M for fixed \sigma . (b) Dependence of \epsilon on \sigma for fixed
M .

partial point sets \widehat \bfitx \prime 
o and \widehat \bfitx \prime 

s from (16) and (17), aligned such that their first points are
0. We create \bfitJ \prime 

D by generalizing the centering matrix \bfitJ \prime to D dimensions, such that
the sum of the point coordinates in every separate dimension is 0. It follows that the
centered estimated points, \widehat \bfitx o = \bfitJ \prime 

D\widehat \bfitx \prime 
o and \widehat \bfitx s = \bfitJ \prime 

D\widehat \bfitx \prime 
s, have Gaussian distributions

with the following parameters:

(25)
\widehat \bfitx o \sim \scrN (\bfitx ,\Sigma \widehat \bfitx o

), where \Sigma \widehat \bfitx o
= \sigma 2\bfitJ D(\bfitB \Phi )\dagger ((\bfitB \Phi )\dagger )\top (\bfitJ D)\top ,\widehat \bfitx s \sim \scrN (\bfitx ,\Sigma \widehat \bfitx s

), where \Sigma \widehat \bfitx s
= \sigma 2\bfitJ D\Phi \dagger \bfitB \dagger (\bfitB \dagger )\top (\Phi \dagger )\top (\bfitJ D)\top .

For a less cluttered notation, in (25) and the rest of the section, we omit the prime
symbol \prime on \bfitJ D,\bfitB ,\Phi .

We define the estimation error vectors of the optimal and splitting algorithms
as \bfite o = \widehat \bfitx o  - \bfitx and \bfite s = \widehat \bfitx s  - \bfitx , respectively. The expectations of the MSEs are
\BbbE 
\bigl[ 
1
N \| \bfite o\| 2

\bigr] 
= 1

N tr (\Sigma \widehat \bfitx o
) and \BbbE 

\bigl[ 
1
N \| \bfite s\| 2

\bigr] 
= 1

N tr (\Sigma \widehat \bfitx s
).

Simulation results. We consider Gaussian noise with 0-mean and \sigma = 0.01 added
to the difference measurements, and we assume the complete case in 2D, such that
both approaches are optimal. Then, for a given pair (N,K), we generate K directions
of frame vectors uniformly at random from [0, 2\pi ) and the complete measurement
matrix \bfitB . Figure 5 shows that the estimation error decreases with the number of
frame vectors K and the number of points N .

6.3. The cost of splitting. To evaluate the performance of the proposed split-
ting algorithm with respect to the optimal solution, we define the cost of splitting
c as the normalized squared norm of the difference between the two estimators,
c = 1

N \| \widehat \bfitx o  - \widehat \bfitx s\| 2. We can compute the expected cost of splitting as
(26)

\BbbE [c] =
\sigma 2

N
tr

\biggl[ \Bigl( 
\bfitJ D

\Bigl( 
(\bfitB \Phi )\dagger  - \Phi \dagger \bfitB \dagger 

\Bigr) \Bigr) \top \Bigl( 
\bfitJ D

\Bigl( 
(\bfitB \Phi )\dagger  - \Phi \dagger \bfitB \dagger 

\Bigr) \Bigr) \biggr] 
=

\sigma 2

N

\biggl( 
tr

\biggl[ 
(\bfitJ D)\top \bfitJ D\Phi \dagger 

\Bigl( 
\bfitB \top \bfitB 

\Bigr)  - 1

(\Phi \dagger )\top 
\biggr] 
 - tr

\biggl[ 
(\bfitJ D)\top \bfitJ D

\bigl( 
(\bfitB \Phi )\top (\bfitB \Phi )

\bigr)  - 1
\biggr] \biggr) 

=
\sigma 2

N
tr(\Psi (\Phi ,\bfitB )) - \sigma 2

N2
1
\top \Psi (\Phi ,\bfitB )1,

where \Psi (\Phi ,\bfitB ) = \Phi \dagger (\bfitB \top \bfitB ) - 1(\Phi \dagger )\top  - (\Phi \top \bfitB \top \bfitB \Phi ) - 1.
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Fig. 5. Estimation error \epsilon in 2D. We assume complete CDM for every frame vector and
Gaussian noise with 0-mean and \sigma = 0.01 on the measurements. (a) Dependence of \epsilon on N for fixed
K. (b) Dependence of \epsilon on K for fixed N .

As the splitting approach leads to a more efficient algorithm, identifying cases
in which we can apply the splitting algorithm and still obtain an optimal solution
is valuable. From (26) it follows that the cost is equal to 0 if (\bfitB \Phi )\dagger = \Phi \dagger \bfitB \dagger or,
equivalently, if \Psi (\Phi ,\bfitB ) = 0. For \bfitB and \Phi as defined in (14), we prove that there
are two practical cases for which \BbbE [c] = 0: (1) K = D and (2) \bfitB k = \bfitB 0 for every
k = 1, . . . ,K.

6.3.1. Case \bfitK = \bfitD . When the number of frame vectors is the same as the
dimension of the space, \Phi is invertible; thus \Phi \dagger = \Phi  - 1. The splitting algorithm
results in the optimal solution:

\widehat \bfitx o = (\bfitB \Phi )\dagger \widetilde \bfitd 
= (\Phi \top \bfitB \top \bfitB \Phi ) - 1\Phi \top \bfitB \top \widetilde \bfitd 
= \Phi  - 1(\bfitB \top \bfitB ) - 1\bfitB \top \widetilde \bfitd = \widehat \bfitx s.

6.3.2. Case \bfitB \bfitk = \bfitB \bfzero for every \bfitk . Assume that all measurement matrices for
every frame direction are equal to the matrix \bfitB 0. For instance, this is the case when
we observe all pairwise differences on all frame vectors k. In that case, \bfitB = \bfitI \otimes \bfitB 0,
where \otimes is the Kronecker product. We change the order of the entries in \widetilde \bfitd and the
order of the corresponding columns in \Phi , so that we can write \Phi = \Phi 0 \otimes \bfitI , where
the kth row of \Phi 0 \in \BbbR K\times D is \bfitvarphi \top 

k for every k = 1, . . . ,K. Note that this does not
influence the estimation of the points, but it provides a simpler expression for \Phi via
the Kronecker product. Then, we can show that the optimal solution is equal to the
solution of the splitting algorithm:

\widehat \bfitx o = (\Phi \top \bfitB \top \bfitB \Phi ) - 1\Phi \top \bfitB \top \bfitd 

=
\Bigl( 
(\Phi \top 

0 \otimes \bfitI )
\Bigl( 
\bfitI \otimes (\bfitB \top 

0 \bfitB 0)
\Bigr) 
(\Phi 0 \otimes \bfitI )

\Bigr)  - 1

\Phi \top \bfitB \top \bfitd 

=
\Bigl( 
(\Phi \top 

0 \Phi 0)
 - 1 \otimes (\bfitB \top 

0 \bfitB 0)
 - 1
\Bigr) 
\Phi \top \bfitB \top \bfitd 

= (\bfitI \otimes (\bfitB \top 
0 \bfitB 0)

 - 1)
\Bigl( 
(\Phi \top 

0 \Phi 0)
 - 1 \otimes \bfitI 

\Bigr) 
(\Phi 0 \otimes \bfitI )\bfitB \top \bfitd 

= \Phi \dagger 
0 \otimes \bfitB \dagger 

0\bfitd = \Phi \dagger \bfitB \dagger \bfitd = \widehat \bfitx s.
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k

k

k

k

k

Fig. 6. The cost of splitting c in 2D. We consider the setup of N = 6 points and assume
Gaussian noise with 0-mean and \sigma = 0.01 on the measurements. (a) Dependence of c on Mk for
fixed K. (b) Dependence of c on K for fixed Mk.

Simulation results. To visualize the difference between the two approaches, in Fig-
ure 6 we plot the cost of splitting (26) for different number of measurements Mk and
different number of frame vectors K. We consider N = 6 2D points drawn from [0, 1]2,
so the number of measurements ranges from the smallest value Mk = N  - 1 = 5 to
the complete case Mk = N(N  - 1)/2 = 15. We assume that Mk is the same for every
direction k. As shown in subsection 6.3.1 and subsection 6.3.2, the cost is equal to 0
for K = D = 2 and for the complete case; Figure 6 confirms these two special cases.
In addition, we observe that the cost decreases with Mk and K.

6.4. Algorithmic considerations. In this section, we compare the proposed
algorithms in terms of their numerical complexity and accuracy on simulated data. We
experiment with three different implementations of the optimal and splitting methods.
Two of the implementations are related to the vector form from subsection 4.2, and
one is a direct implementation of our initial CDM formulation from subsection 3.1,
generalized to higher dimensions. We describe them in more detail below.2

- Standard implementation. We implement the optimal and the splitting algorithms
as described in subsection 4.3 and subsection 4.4, respectively. The matrices \bfitB ,
\bfitB k, \Phi are represented with a standard linear algebra library. Least-squares solvers
are implemented with the same library and use the SVD to solve the linear problem.

- Sparse implementation. The splitting and the optimal algorithms solve the same
linear problem as in the standard implementation, but the matrices \bfitB , \bfitB k, \Phi are
represented as compressed sparse row matrices (CSRs).

- CDM implementation. To avoid costly computations resulting from the sparse and
large matrices of the vector form, we leverage the matrix representation offered by
CDMs. For the splitting strategy, we create K CDMs \widetilde \bfitC k, one for each frame vec-
tor. By counting the number of pairwise comparisons in every \bfitB k, we compose K
weight matrices \bfitW k. For every k, we compute the matrix \bfitA \in \BbbR N\times N from \widetilde \bfitC k and
\bfitW k as in subsection 3.1. Similarly, when implementing the optimal algorithm, we
directly compute a matrix equivalent to the product \Phi \top \bfitB \top \bfitB \Phi \in \BbbR DN\times DN , with-
out having to set up \Phi and \bfitB , whose dimension M can be arbitrarily large. This
is done through derivations analogous to subsection 3.1, where (3) is generalized to

2The methods are implemented using standard \ttP \tty \ttt \tth \tto \ttn libraries and solvers on a Linux server
with processor model Intel(R) Xeon(R) CPU X5675 @ 3.07GHz. The standard and CDM imple-
mentations are done using \ttn \ttu \ttm \ttp \tty and LAPACK's DGELSD solver. The sparse implementations use
the \tts \ttc \tti \ttp \tty .\tts \ttp \tta \ttr \tts \tte package and the sparse iterative LSQR solver [63].
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Fig. 7. Evaluation of proposed methods in terms of efficiency (average running time in seconds)
and reconstruction error (MSE). Figures (a) and (b) show results for high N , for which the standard
implementation is infeasible due to memory issues. The number of directions ranges from the
minimum required K = D = 2 to K = 60. For each implementation, the optimal and splitting
approaches are highlighted in purple and orange, respectively. The reconstruction error in (f) is
independent of the implementation strategy and the number of points N . The standard deviation of
the Gaussian noise added to coordinate differences is \sigma = 0.1. (Color available online.)

take into account all contributions from the frame,

f(\bfitx ) =

K\sum 
k=1

\bigm\| \bigm\| \bigm\| \bfitW k \circ (\Phi k\bfitx 1
\top  - 1\bfitx \top \Phi \top 

k  - \widetilde \bfitC k)
\bigm\| \bigm\| \bigm\| 2
F
.(27)

In all implementations, we exploit the distributed nature of the splitting approach
by parallelizing it on eight CPU cores.

6.4.1. Simulation setup. Throughout all experiments, N 2D points are chosen
uniformly at random from the interval [0,

\surd 
N ]2, such that the average density is one

point per unit area. The directions of K frame vectors are picked uniformly at random
from [0, 2\pi ]. We varied the number of points from N = 10 to N = 1000, and we chose
an average of four measurements per frame vector and per point, while ensuring that
the CDM for every k is connected. For such a connectivity value, the large memory
requirement restricted us from simulating the standard implementations for N \geq 100.

The time and error averages are taken over 100 independent geometry and noise
realizations. Note that the reported times do not include the time it takes to simulate
the measurements. It is therefore a measure of how fast we can solve the different
least squares problems with the proposed implementations.

6.4.2. Observations. The plots in Figure 7 show the simulation results of the
three described implementations. There is no single method that outperforms others
for every combination of N and K; thus we discuss below multiple important findings.

Figure 7a and Figure 7c confirm that the CDM implementation of the optimal
method does not depend on K. This is a significant advantage over the implementa-
tion strategies that rely on the vector form, for which the execution times grow with
K. Moreover, to optimally benefit from the CDM implementation, one should choose
the splitting algorithm since it is faster than the optimal method when K is below a
certain threshold dependent on N .

When N is larger than 100 and K is smaller than 60, the sparse implementations
of the vector form exhibit shorter execution times than the CDM approach; this can
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be seen by comparing Figure 7a and Figure 7b. However, as the execution times of
sparse implementations increase with K, the CDM implementation of the optimal
method surpasses its sparse implementation after a certain value of K.

In the standard implementation, the optimal solution relies on the SVD of a ma-
trix whose number of rows equals the total number of measurements; this becomes
prohibitively large with increasing K. As a consequence, the splitting algorithm be-
comes attractive for higher values of K; for more than 30 points splitting is on average
always faster than the optimal solution. However, the standard implementation does
not compare favorably either with the CDM implementation or with the sparse im-
plementation for any N and K.

The last column shows that we lose little in terms of accuracy by applying the
splitting algorithm instead of the optimal solution. The reconstruction error is inde-
pendent of the number of points N and the type of implementation.

Finally, we would like to stress that more efficient and robust solvers for the
systems of linear equations can be used. In particular, methods that avoid squaring the
condition number and exploit the diagonally dominant structure of \bfitA are preferable
for applications requiring fast performance. We expect that the splitting algorithm
would specifically benefit from such methods, as the corresponding linear system
involves the inversion of irreducibly diagonally dominant matrices, while this is not
the case for the optimal formulation.

7. Applications and results. We showcase five seemingly different applica-
tions that can all be solved using CDMs; in particular, we show that the labeled
vector geometry problem is present in many fields, ranging from sport ranking to
molecular biology. We emphasize that our goal is not to demonstrate the superior
performance of our method over state-of-the-art techniques but rather to demonstrate
a wide range of applications of the CDM framework. For the first two applications,
we provide a brief description of the problem as well as the connection with our pro-
posed framework. The other three applications are described in more detail, along
with simulations and experiments on real data.

7.1. 1D case: Rankings and ratings in sports. In the sports community,
ranking teams based on their performances has been a long-standing question with
a number of proposed solutions [45, 47, 17, 29, 14, 36, 15]. The problem statement
is fairly simple---arrange teams in order such that the better team has a higher rank.
Here, we focus on a more general problem called rating, which assigns to teams
absolute scores that reflect their performance or strength. In fact, this is an instance
of a 1D labeled vector problem that belongs to the CDM framework.

One of the most widely used rating algorithms in the sports community is called
Massey's method [56]. It abstracts the problem by considering the strength of teams as
points on a line. The strength of a team encompasses all its characteristics, including
the quality of the players, points scored in the past games, statistics, etc. The greater
the strength, the higher the likelihood that a team is going to win a game. Then, the
net score of a game between two teams is the (noisy) difference between the strengths
of the teams. Additionally, one might assign different importance to different games:
for instance, the first game in a sport championship should probably have less weight
than the final of the playoffs.

With this formulation, rating teams from their scores boils down to solving Prob-
lem 1. Massey's method tackles it by computing the solution to (11). In other words,
Massey's method is a 1D case of the problem described in this manuscript and can
be solved with (10).
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7.2. Unlabeled vector geometry problems. We demonstrate that the CDM
framework can also be leveraged in the context of the unlabeled vector geometry
problem as a denoising tool.

A typical problem that arises in this field is the (noisy) turnpike problem [19],
also known as partial digest. It finds applications in many fields, including X-ray
crystallography and genetics, where the goal is to recover structures from measured
distances. The noisy turnpike problem can be formulated as the reconstruction of
points whose pairwise differences are the closest to a given set of measured differences.
The distinction between this formulation and Problem 1 is that the labels are not
known: in the context of CDMs, it corresponds to having access to the matrix elements
but not their positions.

The main difficulty resides in inferring the proper labeling for the differences; in
fact, it can be shown that this problem is NP-hard [16]. Nevertheless, approximative
solutions exist. For instance, a greedy algorithm has been proposed in [4] as a build-
ing block to solve the problem of phase retrieval for sparse signals. This algorithm
retrieves the labeling by iteratively selecting the point that is the most likely to gen-
erate a subset of the measured differences. For every partial estimate of the labeling,
it leverages (10) to denoise the solution set. The authors show that this improves the
final accuracy of the result.

7.3. 2D case with \bfitK > \bfitD : Sensor array calibration. We exploit CDMs for
sensor array calibration, that is, the problem of determining the locations of sensors
given measurements from external calibration sources. Sensor arrays have been em-
ployed in real-time monitoring and measurement for decades, and the importance of
the accurate calibration of their relative positions is evident in numerous applications,
such as source localization [55, 71, 64], source separation, and noise reduction [31].

We consider measurements from a number of sources placed in the far field at
known locations. Even though the problem is of practical relevance, it has not received
much attention in the literature. Many proposed methods consider the sources in the
near field and assume their exact synchronization [8, 6, 34, 18, 32, 51, 80]. These
approaches use measured distances between sources and sensors and are closely related
to the framework of EDMs. Extensions to far-field calibration also exist [60, 28, 76, 50];
however, in these works the source locations are assumed to be unknown, and the
algorithms iteratively estimate the direction of arrival along with the sensor locations,
which is not necessary in the method we propose. We show that the knowledge of the
source locations in the far field can be used to directly apply a CDM-based algorithm
for point recovery in higher dimensions.

We aim to localize N sensors from the measurements of K calibration sources
placed at angles \{ \bfitvarphi k\} Kk=1 in the far field. The far-field assumption implies that the
sources emit plane waves, and the incident angle \bfitvarphi k of some fixed source k is the same
for all sensors. This notation is illustrated in Figure 8, along with the experimental
setup in which we investigate the performance of the proposed method. The setup
includes a microphone array called Pyramic [70, 3] and three loudspeakers in an
anechoic chamber. Pyramic (see Figure 8b) is a pyramidal array composed of six
branches, each containing eight microphones (see Figure 8c). The shortest distance
between two microphones is 8mm, while their maximum distance is 200mm. As the
loudspeakers are located as far away as possible to emulate far-field conditions, it is
more practical to place the Pyramic array on a turntable and rotate it instead of the
speakers, yielding the same desired relative orientation.

The measurements from the calibration sources are conducted in the following
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40
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16

16
8

Fig. 8. Calibration of sensor arrays: Geometry and real experiment. (a) Three edges of the
Pyramic array with several microphones. The differences of the measured times of arrival for the
calibration source k and two microphones i, j are denoted dkij . (b) Pyramic array (foreground) and

speakers (background) in an anechoic chamber. (c) Eight microphones placed in one branch of the
Pyramic array, where distances are in mm.

way: The speakers produce waves at unknown times, and the sensors register the
absolute times of arrival (TOAs) of the waves, denoted \tau nk for the nth sensor and the
kth source. If there is a sensor n that registered all the TOAs for every source k, then
we can subtract \tau nk from the detected times \tau mk of all the sensors m = 1, . . . , N for
every direction k. This corresponds to fixing the nth sensor at the origin. However,
if this is not the case, we cannot combine measurements from different sources k, as
each of them has a different emission time. Nevertheless, we can compute the pairwise
differences of the registered times, which brings us to the framework of CDMs. Such
measurements can be seen as coordinate differences of the sensors' locations, projected
onto the directions of the frame vectors \bfitvarphi k. In accordance with the theory developed
in section 4, we can thus reconstruct the sensors' locations in D dimensions as long
as we have K \geq D noncollinear calibration sources and enough measurements for the
connectivity requirement (see subsection 4.5).

We localize the 21 microphones of the top triangle of the Pyramic array using
90 calibration directions uniformly spaced in [0, 180\circ ). We use three loudspeakers
at different heights in the far field (3.5 meters away). The measurement directions
correspond to the directions of arrival of the sound played by the loudspeakers, so we
have a total of K = 3\times 90 = 270 vectors \bfitvarphi \bfitk .

All microphones worked properly throughout the experiment, so for every k =
1, . . . , 270 we can compute the pairwise differences of the sound detection times for
all pairs chosen from the 21 microphones, arrange them in a measurement vector \widetilde \bfitd ,
and create a corresponding matrix \bfitB k as

(28) \bfitB k =

\left[     
1  - 1 0 . . . 0 0
1 0  - 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1  - 1

\right]     \in \BbbR 210\times 21.

Then, we use the splitting algorithm (17) to find the locations of the microphones.
As \bfitB k = \bfitB 0 for every k, it leads to the optimal solution, but more efficiently than
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4 6 8 10 12 14 16 18

Fig. 9. CDM estimation error \epsilon . We consider N = 21 microphones in the plane, K = 90
frame vectors in the same plane, uniformly spread by 2\circ , and Gaussian noise on the differences
with 0-mean and a variance of \sigma 2. We illustrate the dependence of \epsilon on number of measurements
M for different values of \sigma . The number of measured differences varies from M = 3000 to the
complete case, M = 18900.

solving the original problem by (16). Our method localizes the microphones with an
MSE of 4.49 µm when using all speakers and all directions. The error remains almost
unchanged (4.45 µm) when considering only the middle speaker (placed at the same
height as the top triangle of the Pyramic array), and localizing the microphones in
2D.

In addition to this real experiment, we perform numerical simulations in 2D with
K = 90 and N = 21 to evaluate the impact on the number of active microphones
on the robustness of the reconstruction. We start with a complete set of pairwise
differences M =

\sum K
k=1 Mk = 90

\bigl( 
21
2

\bigr) 
, as in the real experiment, and keep decreasing

the value of M until we have a sparsely connected graph for every frame. The results
are illustrated in Figure 9. These simulations confirm that the MSE decreases at a
faster rate when adding a measurement in a relatively incomplete setup (see the left
side of the graph). On the other hand, adding a measurement to an almost complete
setup has little benefit.

7.4. 2D case for \bfitK = \bfitD : Multimodal sensor localization. We consider
the self-localization of nodes in a sensor network, where the nodes can measure the
distances and angles between each other. If we can only measure distances between
the nodes, the problem is well studied and can be solved with a number of algorithms
relying on the EDM theory [61, 18, 32, 22]. Similarly, if we only have access to the
angles between nodes, several solutions have been proposed [12, 52, 67].

Setups leveraging both measurement modalities did not attract as much atten-
tion, despite many applications including indoor localization and self-calibration of
ad hoc sensor arrays. The consistent combination of quantities of different unities
into one framework is studied in [42]. For the particular case of angles and distances,
trigonometric properties linking the two can be exploited, as in [7]. Macagnano and
De Abreu [54] improve on this method by introducing edge-multidimensional scaling
(E-MDS), which solves an MDS problem adapted for the vectors between points.

We propose constructively combining distance and angle measurements into CDMs,
which allows us to localize sensors in closed form. We compare our algorithm with
the state-of-the-art solution [54] and demonstrate its superior performance.
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Fig. 10. Localization setup in 2D. The difference vector \bfitd ij between points \bfitx i and \bfitx j is defined
either with its distance \ell ij and directed angle \theta ij , or with its projections onto the x-axis and y-axis,
d1ij and d2ij , respectively.

Consider a set of N points in 2D with coordinates denoted by \bfitx i \in \BbbR 2 for i =
1, . . . , N . The vector of coordinate differences \bfitd ij \in \BbbR 2 between the points \bfitx i and \bfitx j

is given by \bfitd ij = \bfitx i  - \bfitx j . Its length is the Euclidean distance between the points,
\ell ij = \| \bfitx i  - \bfitx j\| 2, while its orientation \theta ij lies between 0 and 2\pi and is defined with
respect to some common reference direction (see Figure 10). Note that the angles
are often measured in a coordinate system that is local and different for each node.
Distributed algorithms such as [25] can convert these relative angles to a common
coordinate system.

Our goal is to estimate points \widehat \bfitx i from a noisy subset of measured distances \widetilde \ell ij
and angles \widetilde \theta ij . Once again, we can leverage CDMs; the noisy coordinate differences

are recovered from \widetilde \ell ij and \widetilde \theta ij as \widetilde \bfitd ij = [\widetilde \ell ij cos \widetilde \theta ij \widetilde \ell ij sin \widetilde \theta ij ]\top . We observe that
this is a 2D point recovery problem, which can be optimally solved with the splitting
algorithm from subsection 4.4; we can decompose the problem into two independent
subproblems and resolve each independently with (10). In this case, we always work
in the canonical basis; hence \Phi = \bfitI .

We compare the CDM algorithm with the state of the art in multimodal local-
ization, E-MDS [54], and the most common approach for range-only measurements,
MDS [49]. We consider N = 10 points chosen uniformly at random from [0, 1]D. As in
most real-world applications, the measurements of distances and angles are obtained
in an independent manner from time-of-arrival and angle-of-arrival estimates. We
also generate independent additive noise for these quantities. We assume Gaussian
noise with 0-mean and standard deviation \sigma \ell and \sigma \theta , respectively. Note that the noise
exceeding \pm \pi will distort the angle noise distribution, but for the range of standard
deviations chosen in these experiments, this effect is negligible.

We evaluate the performance of the three algorithms using the root mean squared
error (RMSE) between the original and the estimated point sets and illustrate its
dependence on the noise levels in Figure 11. For a more convenient comparison, we
slice the graphs at four different values of \sigma \ell and \sigma \theta . Figure 11a shows the dependence
of the RMSE on the distance noise level for two chosen levels of angle noise: low
(\sigma \theta = 0.11) and high (\sigma \theta = 0.5). We observe that for low \sigma \theta it is advantageous to
include angle measurements, since both multimodal methods achieve smaller error
than MDS. For higher \sigma \theta , our method still outperforms MDS, as long as the distance
noise is not too small. The dependence of the RMSE on the angle noise level for
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Fig. 11. Comparison of the CDM with E-MDS and MDS for different distance and angle noise.
(a) RMSE versus \sigma \ell for two fixed \sigma \theta . (b) RMSE versus \sigma \alpha for two fixed \sigma \ell .

two chosen levels of distance noise is shown in Figure 11b. For low distance noise
(\sigma \ell = 0.05), we observe that using multimodal methods is beneficial only when angle
noise is low; otherwise the angle information becomes detrimental, and one should rely
on the distance-based method MDS. However, for higher distance noise (\sigma \ell = 0.15),
using angles significantly improves the result for all considered noise levels.

Numerical simulations show that the proposed algorithm based on CDMs sur-
passes the state-of-the-art multimodal localization method E-MDS for every pair of
(\sigma \ell , \sigma \theta ). It also compares favorably with range-only based method MDS, except for
the case of high \sigma \theta and low \sigma \ell .

7.5. 3D case with splitting algorithm: Molecular conformation prob-
lem. Determining the 3D structure of a protein molecule is one of the most important
and at the same time most challenging problems in biology [1]. A common experi-
mental method for finding the parameters pertaining to molecule structure is nuclear
magnetic resonance (NMR) spectroscopy. The most relevant signals provided by NMR
spectroscopy are distance restraints between pairs of atoms close to each other in the
molecule [43]. These distances are either between the nuclei of two bonded atoms
(covalent bond distances) or between the closest approach of two nonbonded atoms
(van der Waals distances).

Another important piece of information extracted from NMR data is the torsion
angle [27], defined as the angle between planes through two sets of three atoms with
two atoms in common. Torsion angles are reported as intervals in which the true
torsion angles lie [43]. In addition to distances and torsion angles, one can assume
that the angles between three consecutive bonded atoms (bond angles) are known and
accurate in a molecule. Figure 12a illustrates the definitions of the above quantities.
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Fig. 12. (a) A small part of the backbone of protein 1G6J, Ubiquitin. We illustrate and indicate
bond angles, bond lengths, torsion angles, and van der Waals distances. (b) Coordinate system for
four consecutive atoms used in the proposed reconstruction algorithm to independently construct
three CDMs, one for each basis.

The molecular conformation problem consists of finding the position of the atoms
given measurements of torsion angles and distances, along with the information about
the bond angles. A large category of the existing approaches uses Euclidean dis-
tance matrices consisting of bond lengths and van der Waals distances to estimate
the molecule structure [10, 11, 35]. The authors in [53] provide a thorough sum-
mary of such approaches. A more recent overview of the methods, including the case
where the distances are not assigned, is found in [5]. Other approaches combine the
distance measurements together with the information about torsion angles. For ex-
ample, G\"untert, Mumenthaler and W\"uthrich transform the problem in the so-called
torsion-angle space and estimate the geometry in that space [38, 39]. Several meth-
ods then take the torsion angles and sequentially find the coordinates of the atoms
using simple geometrical angular relations [9, 75, 66], often assuming a constant bond
length and ignoring van der Waals distances. In a different approach, Alipanahi Ra-
mandi constructs a semidefinite program using the distances and adds torsion angles
as constraints to the SDP [1].

Here we propose a new approach that combines labeled distance and angle infor-
mation to construct CDMs in 3D and solve the molecular conformation problem as
a recovery of points from the noisy and incomplete measurements of their coordinate
differences. In this paper, we focus on reconstructing the structure of the protein mol-
ecule backbone (which consists of repetitions of three atoms: nitrogen, alpha carbon,
and carbonyl carbon). NMR spectroscopy also produces distance constraints between
pairs of hydrogen atoms in the protein. However, as in this application we combine
torsion angles and distances for estimating the protein structure, we only reconstruct
the protein backbone, ignoring the hydrogen atoms.

Let us start by formulating the relation between bond distances, bond angles,
and torsion angles with CDMs. We look at four consecutive atoms A, B, C, and D
in a molecule backbone as depicted in Figure 12b. We define \ell 

AB
, \ell 

BC
, \ell 

CD
as the

bond distances, \ell 
AC

, \ell 
BD

as the van der Waals distances, \beta 
ABC

, \beta 
BCD

as the bond
angles, and \theta 

ABCD
as the torsion angle. We assume that the distance \ell 

AD
does not

fall in the van der Waals radius and is unknown. We set the atom C to the origin of
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the coordinate system and the z-axis along bond B-C. More formally, we define the
canonical basis vectors in this local system as follows:

(29) \bfitz =
\bfitd 

BC

\| \bfitd 
BC

\| 
, \bfity =

\bfitd 
AB

\times \bfitd 
BC

\| \bfitd 
AB

\times \bfitd 
BC

\| 
, \bfitx = \bfity \times \bfitz ,

where \bfitd 
AB

denotes the vector difference between points A and B.
To shorten the notation, we introduce the following variables: \scrC 

\beta 1
= cos(\beta 

ABC
),

\scrS 
\beta 1

= sin(\beta 
ABC

), \scrC 
\beta 2

= cos(\beta 
BCD

), \scrS 
\beta 2

= sin(\beta 
BCD

), \scrC 
\theta 
= cos(\theta 

ABCD
), and \scrS 

\theta 
=

sin(\theta 
ABCD

). Given the measurements of the distances and angles described above, for
every basis \bfitx , \bfity , and \bfitz defined in (29), we construct a CDM as follows:

\bfitC x =

\left[    
0 \ell AB\scrS \beta 1

\ell AB\scrS \beta 1
NA

 - \ell AB\scrS \beta 1
0 0  - \ell CD\scrS \beta 2

\scrC \theta 

 - \ell AB\scrS \beta 1
0 0  - \ell CD\scrS \beta 2

\scrC \theta 

NA \ell CD\scrS \beta 2
\scrC \theta \ell CD\scrS \beta 2

\scrC \theta 0

\right]    ,(30)

\bfitC y =

\left[    
0 0 0 NA
0 0 0 \ell CD\scrS \beta 2

\scrS \theta 

0 0 0 \ell CD\scrS \beta 2
\scrS \theta 

NA  - \ell CD\scrS \beta 2
\scrS \theta  - \ell CD\scrS \beta 2

\scrS \theta 0

\right]    ,(31)

\bfitC z =

\left[    
0 \ell AB\scrC \beta 1

 - Cz
CA

NA

 - \ell AB\scrC \beta 1
0  - \ell BC  - Cz

DB

Cz
CA

\ell BC 0 \ell CD\scrC \beta 2

NA Cz
DB

 - \ell CD\scrC \beta 2
0

\right]    ,(32)

where

Cz
CA =  - sign(Cz

BA
+ Cz

CB
) \ell AC

\sqrt{} 
1 - 

\biggl( 
\ell AB

\ell AC

\biggr) 2

\scrS 2
\beta 1
,

Cz
DB

=  - sign(Cz
CB

+ Cz
DC

) \ell BD

\sqrt{} 
1 - 

\biggl( 
\ell CD

\ell BD

\biggr) 2

\scrS 2
\beta 2
.

For every CDM \bfitC x, \bfitC y, and \bfitC z, we estimate the atoms' coordinates separately
in each dimension using (10). This method allows us to estimate the 3D location
of four consecutive atoms in the molecule backbone. To find the structure of the
entire molecule backbone, we perform the above procedure sequentially on 4-tuples
of consecutive atoms in the molecule. We select sequences of four consecutive atoms,
use our reconstruction algorithm to estimate their positions in their own coordinate
systems, and then apply orthogonal Procrustes [2] to optimally align the consecutive
4-tuples using their three common atoms. This procedure results in four different
coordinates for each atom (except for atoms at the boundary of the chain), and we
compute the final position as the average of these four positions. This is shown in
Figure 13.

To evaluate the efficacy of using CDMs for molecular conformation, we consider
the backbone of protein 1G6J, Ubiquitin,3 which consists of 228 atoms. To mimic
restraints on distances and torsion angles from NMR spectroscopy, we assume that
the distances and torsion angles are corrupted by random uniform noise, \widetilde dAB = dAB+
zd, \widetilde \theta ABCD = \theta ABCD + z\theta , where zd \in \scrU ( - zd,\mathrm{m}\mathrm{a}\mathrm{x}, zd,\mathrm{m}\mathrm{a}\mathrm{x}) and z\theta \in \scrU ( - z\theta ,\mathrm{m}\mathrm{a}\mathrm{x}, z\theta ,\mathrm{m}\mathrm{a}\mathrm{x}).

3Downloaded from https://files.rcsb.org/download/1G6J.pdb. We use the coordinates presented
in model 1 as the ground truth.
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Fig. 13. We select sequences of four consecutive atoms, use our CDM reconstruction algorithm
to estimate their positions, and then align them using their three common atoms in consecutive
4-tuples.

Bond angles are typically considered to be known and fixed [1], so we do not apply
noise to them.

In the following experiment, we corrupt the distances and torsion angles with
uniform and independent noise for different values of zd,\mathrm{m}\mathrm{a}\mathrm{x} and z\theta ,\mathrm{m}\mathrm{a}\mathrm{x}, apply our
reconstruction algorithm to estimate the backbone structure of the protein, and com-
pute the RMSE with respect to the original atoms. Generally, for reconstructions
with RMSE values of less than 1.5 \r A, the structure is considered high-resolution and
useful for drug design. An RMSE value of around 4 to 6 \r A can still be useful, while
RMSE values above 10 \r A are considered significantly inaccurate [48].

Figure 14a shows the average RMSE for the values of zd,\mathrm{m}\mathrm{a}\mathrm{x} and z\theta ,\mathrm{m}\mathrm{a}\mathrm{x} ranging
from 0 to 0.5. Note that torsion angle measurements are normally reported in intervals
of length 10--30 degrees, and the average bond length for this protein is about 2 \r A. We
see that CDM reconstruction provides useful results in the presence of measurement
noise.

While our assumption about the noise model is slightly different than what is
normally reported as NMR measurements in practice, we mimic a similar scenario in
which we can compare the results of our method to other state-of-the-art approaches,
as described in the following. We again look at the structure of protein 1G6J and
compare our reconstruction accuracy to that of SPROS [1], which is a typical approach
to recover the atom positions. SPROS starts from a random structure that satisfies the
measured upper and lower bounds on distances and finds the optimal solution through
a semidefinite program. The NMR torsion angle measurements for protein 1G6J are
reported with intervals of length 10 degrees; this translates to z\theta ,\mathrm{m}\mathrm{a}\mathrm{x} = 0.175 radians
in our setting. Moreover, the maximum discrepancy between the pairwise distances
of the random structure and the true molecule in SPROS is on average 0.11 for the
backbone atoms; we use this value to set zd,\mathrm{m}\mathrm{a}\mathrm{x} = 0.11 \r A. By setting these noise
bounds to our experiment, we achieve an average RMSE of 0.48 \r A over 5000 trials,
while SPROS results in an average RMSE of 0.68 \r A [1]. Figure 14b illustrates one
example of the original and reconstructed backbone from our experiments.

To summarize this section, we have demonstrated that CDMs can be incorporated
in a simple build-up algorithm suitable for the molecular conformation problem. Here
we only scratch the surface of the potential of CDMs for this application, but we do
hope that we provide valuable insight for practitioners and researchers in the field.

8. Conclusion. The main contribution of our work is the formulation and analy-
sis of coordinate difference matrices (CDMs), simple tools that enabled us to introduce
an efficient optimization framework for reconstructing point sets from their noisy and
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Fig. 14. (a) RMSE for different values of the noise bounds zd,max and z\theta ,max, averaged over
5000 experiments. (b) An example of the original (orange) and reconstructed (blue) backbone of
1G6J with zd,max = 0.11 \r A and z\theta ,max = 0.175 rad, resulting in a reconstruction RMSE of 0.48 \r A.
(Color available online.)

partial coordinate differences. The structure of CDMs also relates to graph theory,
which in turn helped us provide necessary and sufficient conditions for the proposed
framework to work. A significant advantage of CDMs is their easy generalization to
the multidimensional setting, where we proposed several efficient and optimal meth-
ods for point reconstruction. Their potential is evident in practice: we have put the
theoretical findings of this work to the test in five different practical applications in
very active research fields and have shown that CDMs can be used to solve a wide
range of problems with both simulated and real data.

Appendix A. Proofs of CDM properties in Table 1.
P.1. Following a basic rank inequality, rank(\bfitC ) \leq rank(\bfitx 1\top ) + rank(1\bfitx \top ) = 2.

Observe that rank(\bfitC ) = 1 can only happen when N = 1.
P.2. Cij = xi  - xk + xk  - xj = Cik + Ckj .
P.3. Cij = xi  - xj =  - (xj  - xi) =  - Cji.
P.4. Cii = xi  - xi = 0.
P.5. Follows from Properties P.3 and P.4.
P.6.

\sum 
j Cij =

\sum 
j(xi - xj) = Nxi - 

\sum 
j xj . Dividing both sides by N , 1

N

\sum 
j Cij =

xi + c, where c =  - 1
N

\sum 
j xj .

P.7. Follows from (1): every column j of a CDM is equal to \bfitx shifted by  - xj .
P.8. (\bfitx + c)1\top  - 1(\bfitx + c)\top = \bfitx 1\top  - 1\bfitx \top .
P.9. Denote \lambda as an eigenvalue of \bfitC and \bfitv as a corresponding eigenvector. Then,

\langle \bfitC \bfitv ,\bfitv \rangle =
\Bigl\langle 
\bfitv ,\bfitC \top \bfitv 

\Bigr\rangle 
=  - \langle \bfitv ,\bfitC \bfitv \rangle . Observe further that \langle \bfitC \bfitv ,\bfitv \rangle = \langle \lambda \bfitv ,\bfitv \rangle =

\lambda \| \bfitv \| 2, and  - \langle \bfitv ,\bfitC \bfitv \rangle =  - \langle \bfitv , \lambda \bfitv \rangle =  - \lambda \ast \| \bfitv \| 2. We conclude that \lambda =  - \lambda \ast ;
i.e., the eigenvalues of \bfitC are imaginary.

P.10. Since rank(\bfitC ) = 2, we can denote nonzero eigenvalues as \lambda 1 and \lambda 2. Knowing
that eig(\bfitC ) = eig(\bfitC \top ) and \bfitC =  - \bfitC \top , we can write

det (\bfitI  - \lambda \bfitC ) = det
\Bigl( 
\bfitI  - \lambda \bfitC \top 

\Bigr) 
= det (\bfitI  - ( - \lambda )\bfitC ) .(33)

Therefore, if \lambda is an eigenvalue of \bfitC , then  - \lambda is also an eigenvalue. As there
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are only two nonzero eigenvalues, it follows that \lambda 1 =  - \lambda 2.

Appendix B. Proof of convexity. The Hessian matrix \bfitH of f(\bfitx ) has entries

Hij =

\Biggl\{ 
2
\sum N

k=1 Wik for i = j,

 - 2Wij otherwise.
(34)

Hence it is positive semidefinite for nonnegative values of the weight matrix \bfitW .
Indeed, for any vector \bfity \in \BbbR N , the value \bfity \top \bfitH \bfity is nonnegative:

N\sum 
i=1

N\sum 
j=1

Hijyiyj =

N\sum 
i=1

N\sum 
j=1

Wij(y
2
i  - 2yiyj + y2j ) \geq 0.(35)

Appendix C. Proof of convergence. Let us define matrices \bfitP and \bfitQ as

\bfitP =
\sum 
k

\bfitP k
0 =

\infty \sum 
k=0

\biggl( 
11

\top  - \bfitI 

N  - 1

\biggr) k

, \bfitQ =
N  - 11

N
(11\top + \bfitI ).(36)

We need to show that \bfitP = \bfitQ . To this end, we establish that the two matrices
have the same eigenvalues and corresponding eigenvectors. First, observe that we can
rewrite any square matrix in \BbbR (N - 1)\times (N - 1) that has diagonal values equal to \alpha and
nondiagonal values equal to \beta as

\beta 11\top + (\alpha  - \beta )\bfitI = (\alpha  - \beta )

\biggl( 
\bfitI +

\beta 

\beta  - \alpha 
11

\top 
\biggr) 
.(37)

From the matrix determinant lemma, we know that

det
\bigl( 
\beta 11\top + (\alpha  - \beta )\bfitI 

\bigr) 
= (\alpha  - \beta )N - 2

\biggl( 
1 + (N  - 1)

\beta 

\alpha  - \beta 

\biggr) 
.(38)

Using (38), we compute the eigenvalues of \bfitP 0 by solving its characteristic equation:

det (\bfitP 0  - \lambda \bfitI ) =

\biggl( 
\lambda +

1

N  - 1

\biggr) N - 2\biggl( 
1 - N  - 1

\lambda (N  - 1) + 1

\biggr) 
= 0.(39)

Thus, the eigenvalues of \bfitP 0 are \lambda 0 =  - 1
N - 1 (with multiplicity N  - 2) and \lambda 1 = N - 2

N - 1 .
The two eigenvalues of \bfitP are consequently equal to

\kappa 0 =

\infty \sum 
k=0

\biggl( 
 - 1

N  - 1

\biggr) k

=
N  - 1

N
, \kappa 1 =

\infty \sum 
k=0

\biggl( 
N  - 2

N  - 1

\biggr) k

= N  - 1.(40)

Furthermore, the eigenvectors of \bfitP 0 (and by extension of \bfitP ) can be found by solving
the eigenvalue equations

(41)
(\bfitP 0  - \lambda 0\bfitI )\bfitu 0 = 11

T\bfitu 0 = 0,

(\bfitP 0  - \lambda 1\bfitI )\bfitu 1 =
\bigl( 
11

T  - (N  - 1)\bfitI 
\bigr) 
\bfitu 1 = 0.

We use the matrix determinant lemma again to compute the eigenvalues of \bfitQ :

det (\bfitQ  - \lambda \bfitI ) =

\biggl( 
\lambda  - N  - 1

N

\biggr) N - 2\biggl( 
1 +

(N  - 1)2

N  - 1 - \lambda N

\biggr) 
= 0.(42)
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The corresponding eigenvalues are N - 1
N (with multiplicity N  - 2) and N  - 1, which

are the same as \bfitP . Moreover, the eigenvectors of \bfitQ can be found by solving

(43)
(\bfitQ  - \kappa 0\bfitI )\bfitv 0 = 11

T\bfitv 0 = 0,

(\bfitQ  - \kappa 1\bfitI )\bfitv 1 =
\bigl( 
11

T  - (N  - 1)\bfitI 
\bigr) 
\bfitv 1 = 0.

By comparing equations (41) and (43), we see that matrices \bfitP and \bfitQ also have equal
eigenvectors and thus are equal.
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