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If an artificial intelligence aims to maximize risk-adjusted return,
then under mild conditions it is disproportionately likely to pick
an unethical strategy unless the objective function allows
sufficiently for this risk. Even if the proportion η of available
unethical strategies is small, the probability pU of picking an
unethical strategy can become large; indeed, unless returns are
fat-tailed pU tends to unity as the strategy space becomes large.
We define an unethical odds ratio, Y (capital upsilon), that
allows us to calculate pU from η, and we derive a simple
formula for the limit of Y as the strategy space becomes large.
We discuss the estimation of Y and pU in finite cases and how
to deal with infinite strategy spaces. We show how the principle
can be used to help detect unethical strategies and to estimate η.
Finally we sketch some policy implications of this work.
1. Introduction
Artificial intelligence (AI) is increasingly deployed in commercial
situations. Consider for example using AI to set prices of insurance
products to be sold to a particular customer. There are legitimate
reasons for setting different prices for different people, but it may
also be profitable to ‘game’ their psychology or willingness to shop
around. The AI has a vast number of potential strategies to choose
from, but some are unethical—by which we mean, from an
economic point of view, that there is a risk that stakeholders will
apply some penalty, such as fines or boycotts, if they subsequently
understand that such a strategy has been used. Such penalties can
be huge: although these happened too early for an AI to be
involved, the penalties levied on banks for misconduct are
currently estimated to be over USD276 billion (see appendix A). In
an environment in which decisions are increasingly made without
human intervention, there is therefore a strong incentive to know
under what circumstances AI systems might adopt unethical
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strategies. Society and governments are closely engaged in such issues. Principles for ethical use of AI have

been adopted at national [1] and international [2] levels and the area of AI ethics is one of very
considerable activity [3,4]. Recent work has proposed a framework for developing algorithms that avoid
undesirable outcomes [5].

Ideally there would be no unethical strategies in the AI’s strategy space. But the best that can be
achieved may be to have only a small fraction η of such strategies being unethical. Unfortunately this
runs up against the unethical optimization principle, which we formulate as follows.

If an AI aims to maximize risk-adjusted return, then under mild conditions it is disproportionately likely to pick
an unethical strategy unless the objective function allows sufficiently for this risk.
/journal/rsos
R.Soc.Open

Sci.7:200462
2. Problem formulation
The following is a deliberately oversimplified representation that emphasizes certain aspects and ignores
others. Consider an AI that is searching a strategy space S for a strategy s that maximizes the risk-
adjusted return for its owners, i.e. the return modified to account for the risk undergone in generating
it. For brevity we shall drop the term ‘risk-adjusted’ after this paragraph. The AI seeks its strategy by
attempting to maximize an apparent risk-adjusted return function A(s). However, unknown to the AI,
certain strategies in S would be considered unethical by stakeholders, who in the future may impose
a penalty for adopting them. Such penalties may include fines, reparations, compensation and
boycotts: what they have in common from our point of view is that they have a positive risk-adjusted
cost which we denote by C(s). We shall call the subset of S for which C(s) > 0 ‘unethical’ or Red, and
the complementary subset, for which C(s) = 0, ‘ethical’ or Green. Hence the true risk-adjusted return
T(s) due to adoption of strategy s may be expressed as

T(s) ¼ A(s)� C(s)þQ(s), (2:1)

where the ‘error’ Q(s) accounts for other differences between T(s) and A(s) even when C(s) = 0, due to
imperfections in the algorithm’s capacity to predict the future accurately.

For example, in early 2018 a UK national newspaper reported [6] that several motor insurance
companies quoted appreciably higher premiums for a fictitious driver named ‘Mohammed Smith’
than for one named ‘John Smith’, when all other data entered were identical. In this case the
strategy space S would contain mappings s from the data available to an insurance company to its
quotes, and A(s) would represent the apparent return to the company from adopting a particular
mapping s. The company’s true return T(s) would depend on various factors that cannot be known
when s is chosen, such as the behaviour of those drivers who ask for quotes. The cost C(s) to an
insurance company of adopting an unethical strategy s could include the financial impact of
reputational damage, regulatory actions, and, if sued for discrimination, legal costs and payouts.
The set Red would include mappings that used names in a way that was discriminatory, for
example by race or gender, as well as any other unethical strategies, and the set Green would
contain all other strategies in S. The error Q(s) would represent possible differences between the
true return T(s) and the apparent return minus the cost, which might arise even if the latter was
zero, i.e. even if s was ethical.

Each term in (2.1) is treated as a random variable, the randomness arising from variation in the data
available to the AI when determining A(s), and from future events and data on which the cost C(s), the
true return T(s), and thus Q(s), also depend. Probabilistic operations below apply to the composite of
these sources of randomness, because of our focus on understanding the general ethical considerations
arising from such computations.

Let pU = Pr(s� ∈Red) denote the probability that the chosen strategy

s� ¼ argmaxs[SA(s)

is unethical, and assume there is some measure on S, so one could in principle compute the proportion η
of S that is red. The green strategies comprise the remaining proportion 1− η of S. Then we can define an
unethical odds ratio, denoted by capital upsilon,

Y :¼ pU
1� pU

4
h

1� h
, (2:2)

which represents the increase in odds of choosing an unethical strategy by using the AI, relative to
choosing a strategy at random. A value of Y close to unity will not represent a significant increase in
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risk due to use of the AI, whereas if Y � 1 then the AI acts as a significant unethical amplifier. If η equals

0.05 (or 0.01), for example, then having Y ¼ 10 gives pU ≈ 0.35 (or 0.09).
If T−Q has the same distribution on the red and green regions and the expected returns are finite, then

E(A j Red) ¼ E(T �Q j Red)þ E(C j Red)
. E(T �Q j Green) ¼ E(A j Green),

(2:3)

where, in a departure from conventional notation, we havewritten E(A|Red) as shorthand for E{A(s)} for s∈
Red, etc., and equation (2.3) holds for any s∈Red and any s0 ∈Green.

Moreover, under mild conditions on the correlation of C and T−Q, the variation of C in Red but not
in Green implies that s.d.(A|Red) > s.d.(A|Green), if these standard deviations are finite. Thus below we
shall suppose that the expected return in Red is Δ larger than that in Green, and that the standard
deviation in Red is a factor 1 + γ larger than that in Green, i.e.

E(A j Red) ¼ E(A j Green)þ D, s.d.(A j Red) ¼ (1þ g)s.d.(A j Green):

As we shall see, the trade-off between returns from ethical and unethical strategies will depend on η,
Δ and γ and on the tail of the distribution of returns.

3. Asymptotic strategy space
Let F be the cumulative distribution function (CDF) for the payoffs A(s) with respect to the assumed
measure on the green part of an infinite strategy space S. Making more precise our assumptions
about the red part, we assume that the CDF therein is FR(x) = F{(x− Δ)/(1 + γ)}. Although Δ and γ
were described above in terms of the expectation and standard deviation of returns, the argument
does not require these moments to exist; Δ and γ quantify the location and scale increases for red
returns relative to green returns even if the expected return is infinite.

Suppose that S strategies are drawn at random from S with respect to its assumed measure, and let m
denote the number of them that are unethical and n the number that are ethical. By the law of large
numbers, with large probability m/S will be close to η and n/S to 1− η. Let MR and MG respectively
denote the maximum payoffs for the m red and n green strategies. Then we would like to
approximate Pr(MR >MG), the probability that the best strategy found is red.

Inmany cases themaximumMn of a random sample of size n from a distribution F can be renormalized
using sequences {an} > 0 and {bn} , R in order that (Mn− bn)/an converges as n→∞ to a limiting random
variable X having a generalized extreme-value distribution. This distribution has a tail index parameter ξ
that controls the weight of its right-hand tail, with increasing ξ corresponding to fatter tails; it includes the
Gumbel distribution exp{− exp(− x)} as a special case for ξ = 0. Following the discussion above, we can
write MR = Δ + (1 + γ)Mm and MG =Mn, where Mm and Mn are respectively the maxima of m and n
mutually independent variables from F, and we suppose that (Mm − bm)/am and (Mn− bn)/an converge
to variables X and W, which are independent and have the same generalized extreme-value
distribution. In appendix A, we obtain general expressions for the limiting probability pU under mild
conditions, and compute pU and the unethical odds ratio Y for some special cases:

— if F is Gaussian, then the limiting variables X and W are Gumbel, and Y ! 1 if Δ, γ or both are
positive;

— if F is log-Gaussian or exponential, then the limiting variables X andW are Gumbel and Y ! 1 if γ > 0;
— if F is Pareto, i.e. F(x) = 1− x−ν for x > 1 and ν > 0, then X and W have Fréchet distributions with tail

indexes ξ = 1/ν, and

lim
S!1

pU ¼ h(1þ g)n

1� hþ h(1þ g)n
, (3:1)

which yields

Y ! Y� ¼ (1þ g)n as S ! 1; (3:2)

and
— if F is Student t with ν degrees of freedom, then the Pareto limit applies.

The significance of these results is that if a large number of strategies is tested at random, then unless the
distribution of the returns is fat-tailed, as in the cases of the Pareto or t distributions, a responsible
regulator or owner should be extremely cautious about allowing AI systems to operate unsupervised
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Figure 1. Dependence of the asymptotic unethical odds ratio Y� on tail index ν and additional volatility γ.
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Figure 2. Dependence of probability pU and unethical odds ratio Y on size of strategy space S for normal distribution (solid) and
t12 distribution (dots) when η = 0.1: γ = 0.2, Δ = 0 (black); γ = 0.2, Δ = 0.5 (red); γ = 0, Δ = 0.5 (blue). The grey horizontal
lines in the left-hand panel show the limiting probabilities from (3.1).
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in situations with real consequences. If the returns are fat-tailed, then (3.2) gives some idea of the risk of
using an unethical strategy.

Figure 1 shows how the tail index ν influences (3.2) in the heavy-tailed case. If ν = 7, for example, then
Y� � 1:4 for γ = 0.05 and Y� � 17 for γ = 0.5. For large γ the value of Y� rises rapidly with ν, and it remains
small for all ν only when γ≈ 0.

4. Finite strategy space
For large but finite S a simple and widely applicable algorithm to estimate pU and hence Y is given in
appendix A. Numerical experiments show that its limiting value Y� is reached quite rapidly for fat-
tailed distributions, whereas Y grows roughly as log S for Gaussian returns.

Figure 2 shows how the finite-sample unethical odds ratio Y depends on S for some special cases. In
the Gaussian case the probabilities approach unity most rapidly when the volatility is inflated, i.e. γ > 0,
and the unethical odds ratio appears to be ultimately log-linear in log S. In the case of Student t returns
with ν = 12 degrees of freedom, the probabilities overshoot their asymptotic values when Δ > 0, and the
asymptote (3.2) is approached rather slowly.

5. Correlated returns
So far we have represented the payoff function A by independent draws from green or red distributions.
A more general model is that A is a random field over S, dependence of which will result in nearby
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strategies often having similar payoffs. Furthermore, the random field will not be stationary, in either its red

or green regions; indeed, the concept of translations will not be meaningful. To obtain the probability that
the maximum of A is red requires specification of the random field and of the regions. One direction in
which this can be addressed is presented in appendix A.

More generally, one could consider shades of red, corresponding to the likely size of the penalty and
then ask for the distribution of redness for the maximum. Specifically, at every shade r of red one could
consider p(r)dr = Pr{s� ∈ [r, r + dr)}.
ing.org/journal/rsos
R.Soc.Open
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6. Estimating the parameters
The unethical optimization principle can help risk managers and regulators to detect unethical strategies.
Consider a reasonably large sample L , S. Manually examining L for potential unethical elements may
be prohibitively expensive if this requires human judgement. Suppose, however, that we rank the
elements of L by their values of A(s) and focus our attention on the subset Lk with the k largest values
of A(s), where k≪ |L|. We assume that careful manual inspection can divide this set into red and
green elements and write p̂Uk ¼ jLk > Redj=k. By (2.2) we then have an estimator

ĥk ¼
p̂Uk

(1� p̂Uk )Yþ p̂Uk

, (6:1)

which provides a rough estimate of η given Y and p̂Uk . Perhaps more importantly, focusing on Lk to find
examples of unethical strategies that might be adopted not only weeds out those most likely to be used,
but will help develop intuition on where problems might be found. Observing the bulk distribution of
A(s| s∈ L) gives an idea of overall shape of A(s) and an idea of ν. To generate reasonably robust
estimates of γ and Δ it will generally be necessary to do some more manual inspection of another
subset of L to determine red and green elements but this can be relatively small if well targeted.
Details are discussed in appendix A.
7. Implications
Ideally one would assign a measure of ethicality to strategies and adjust the objective function
accordingly. If this is infeasible, practical advice to the regulators and owners of AI is to sample the
strategy space and observe whether the returns A(s) have a fat-tailed distribution. If not, then the
‘optimal’ strategies are likely to be unethical whatever the value of η. If, however, the observed return
distribution is fat-tailed, then the tail index ν can be estimated using standard techniques [7,8] and η
can be estimated as discussed above. However, it would be unwise to place much faith in the
precision of such estimates: there are so many imponderables that the main point is to avoid sailing
close to the wind. In addition the principle can be used to help regulators, compliance staff and others
to find problematic strategies that might be hidden in a large strategy space—the k ‘optimal’ strategies
can be expected to contain disproportionately many unethical ones, inspection of which should show
where problems are likely to arise and thus suggest how the AI search algorithm should be modified
to avoid them in future.

The principle also suggests that it may be necessary to re-think the way AI operates in very large
strategy spaces, so that unethical outcomes are explicitly rejected in the optimization/learning process;
see for example Thomas et al. [5] and Spiegelhalter [9].

This article introduces the unethical optimization principle and provides a simple formula to estimate
its impact, as well as providing code for more detailed exploration. We hope that this quantitative
connection between economics, financial regulation and AI ethics will provide a fruitful basis for
discussion and for further research.

Data accessibility. This article has no additional data.
Authors’ contributions. N.B. had the initial idea, formulated the principle, co-wrote the paper and performed some of the
analytical work. H.B. indicated that the extremal types theorem could be used to quantify the risk in wide generality.
R.S.M. did the initial analysis, leading to formulating the problem in terms of the odds ratio. A.C.D. provided most of
the analysis and co-wrote the paper. All authors contributed importantly to the review, editing and revision of the
paper, and did extensive background analysis.
Competing interests. At the time of writing, R.S.M. is an associate editor of Royal Society Open Science, but he had no
involvement in the review or assessment of the paper.



royalsocietypubli
6
Funding. This work was supported by the Swiss National Science Foundation, the UK Engineering and Physical Sciences

Research Council grant number EP/P002757/1, Alan Turing Institute Fellowship TU/B/000101 and Capital
International.
Acknowledgements. We thank Prof. He Ping, Deputy Governor Pan Gonsheng and Alex Brazier for organizing seminars at
Tsinghua School of Economics and Management, the PBOC/SAFE and the Bank of England in March and April 2019
where N.B. presented the initial ideas that led to this paper. We also thank Andrew Bailey, Karen Croxson and
Wolfram Peters for helpful discussions.
 shing.org/journal/rsos

R.Soc.Open
Sci.7:200462
Appendix A
A.1. Recent penalties in financial services
The Financial Times listed [10] the major sets of fines and penalties levied on Western banks for various
forms of misconduct. There were 11 types of misconduct and the fines and penalties totalled USD276
billion. Penalties (including compensation) for payment protection insurance totalled USD62 billion
and was the second largest category.

A.2. Derivation of limiting pU
The extremal types theorem [11, theorem 1.4.2] implies that in wide generality, the maximum Mn of a
random sample Z1,…, Zn with cumulative distribution function F may be renormalized using
sequences {an} > 0 and {bn} , R so that (Mn− bn)/an converges as n→∞ to a limiting random variable
X having a generalized extreme-value distribution. A simple sufficient condition for this is that F(x) is
twice continuously differentiable with probability density function f (x) and that the derivative of the
reciprocal hazard function r(x) = {1− F(x)}/f (x) converges to a constant ξ as x approaches the upper
support point x� of f. Then we can take bn = F−1(1− 1/n), an = r(bn) > 0 and the distribution of X is

Gj(x) ¼ exp {� (1þ jx)�1=j
þ }, x [ R, (A 1)

where a+ =max (a, 0); setting ξ = 0 gives the Gumbel distribution G0(x) = exp{− exp(− x)}. The quantity ξ,
sometimes called the tail index, typically satisfies |ξ|< 1, with smaller values corresponding to lighter
tails. If ξ < 0, then the limiting density has an upper support point at −1/ξ, whereas if ξ≥ 0 then the
limiting density has no finite upper support point, so the limiting random variable has no upper bound.

This implies that we can write Mn≈ bn + anX for sufficiently large n, where the quality of
the approximation depends on F; it has long been known that the convergence is extremely slow
for Gaussian variables [12]. A result of Khintchine [11, theorem 1.2.3] implies that if m = ηS and
n = (1− η)S for some fixed η∈ (0, 1), then as S→∞,

bm � bn
an

! bh ¼ {h=(1� h)}j � 1
j

and
am
an

! ah ¼ h

1� h

� �j

,

with bh ¼ log {h=(1� h)} when ξ = 0.
To apply these results, let MG denote the maximum of independent random variables Z1,…, Zn with

common distribution function F, which represent the returns of ethical, green, strategies, and suppose
that (MG− bn)/an converges in distribution to a random variable X as n→∞. Let MR denote the
maximum of m independent random variables Δ + (1 + γ)Z0

j representing the returns of unethical, red,
strategies. We suppose that Z0

1,…, Z0
m is a random sample from F and that Δ≥ 0 and γ≥ 0 quantify

the increase in return and in volatility for unethical returns. We briefly discuss the case where the Zj

and Z0
j have different distributions below. Then

MR ¼ Dþ (1þ g)max (Z0
1, . . . , Z

0
m),

and as S→∞, {(MR− Δ)/(1 + γ)− bm}/am will converge in distribution to a random variable W with the
same distribution as X.
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If m is large enough, then we can write MR≈ Δ + (1 + γ)bm + am(1 + γ)W, and so the probability that the

best return from an unethical strategy exceeds the best return from an ethical one satisfies

lim
S!1

Pr(MR . MG) ¼ Pr{bh þ A(D, g, h)þ (1þ g)ahW . X},

where A(Δ, γ, η) = lim S→∞ (Δ + γbm)/an depends on η, Δ, γ and the normalizing sequences for maxima of
random samples from F.

We now discuss the behaviour for large S of

D

an
þ g

bm
an

¼ D

an
þ g

bm
am

am
an

: (A 2)

—If the upper support point x� is finite, then an→ 0 and bm/am→∞, so A(Δ, γ, η) =∞. In this case the
distributions of MG and MR become more and more concentrated for large S, and any advantage
for Red leads to it beating Green with probability one, in the limit, because red returns have a
higher upper limit than green ones.

—If the upper support point x� is infinite, then an/bn = r(bn)/bn→ ξ as n→∞, so
bm=an ¼ bm=am � am=an ! j�1ah, which is infinite if ξ = 0. The behaviour of Δ/an depends on the
limit of an = r(bn) as bn→∞. For example, if F is exponential, then an converges to a constant,
whereas if F is Gaussian, then an→ 0. For exponential maxima, therefore, A(Δ, γ, η) is infinite if γ >
0, but is finite if γ = 0, for any Δ. For Gaussian maxima, ξ = 0 and an→ 0, so A(Δ, γ, η) =∞ if either
of Δ or γ is positive, i.e. if there is any systematic advantage for red strategies.

Other limits might appear when Δ and γ depend on S, but one would need to consider whether this is
realistic; for example, this might apply if η→ 0, i.e. red strategies are a vanishingly small fraction of all
possible ones. This does not seem very realistic, since presumably any ethical strategy could be
tweaked slightly to make it more profitable but unethical.

Here are the details for the special cases in the main text.

—If F is Gaussian, then we can take bn = (2log n)1/2 and an = 1/bn→ 0, giving ξ = 0, so bh ¼ log {h=(1� h)}
and ah ¼ 1. The limiting variables X and W are Gumbel, and Red will beat Green if either Δ or γ is
positive.

—If F is log-Gaussian, then we can take bn = exp{(2log n)1/2} and an = bn/(2log n)1/2, so ξ = 0,
bh ¼ log {h=(1� h)} and ah ¼ 1. The limiting variables X and W are Gumbel. Here an→∞ and bm/
an→∞, so Red always beats Green, owing to its higher volatility.

—If F is exponential, then bn = log n, an = 1 and ξ = 0, so X andW are Gumbel, bh ¼ log {h=(1� h)}, ah ¼ 1
and

(Dþ gbm)
an

¼ Dþ g log Sþ g logh

tends to infinity unless γ = 0: Red beats Green in the limit owing to its higher volatility.
—If F is Pareto, then bn = n1/ν, an = bn/ν and ξ = 1/ν, so bh ¼ n[{h=(1� h)}1=n � 1], ah ¼ {h=(1� h)}1=n and
A(D, g, h) ¼ (1þ g)nah. Here X and W have Fréchet distributions, exp{− (1 + x/ν)−ν} for x >−ν, and as
S→∞, we obtain

Pr(MR . MG) ! h(1þ g)n

1� hþ h(1þ g)n
: (A 3)

Hence Pr(MR >MG) > η for large S if and only if γ > 0. This calculation also applies to other
distributions with Pareto-like tails, such as the Student t. Inserting (A 3) into (2.2) yields (3.2).

The discussion above presupposes that the red and green returns only differ by a location and/or scale
shift. If the limiting variables have the same support but different tail indexes, then the variable with the
higher ξ asymptotically dominates the other: ifW has a higher tail index than X, then red returns will beat
green returns with probability one for large S.
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A.3. Computation of pU

Let m = Sη and n = S(1− η). It is straightforward to check that

pU ¼ m
ð
Fn{Dþ (1þ g)x}f(x)Fm�1(x) dx,

which can be estimated by Monte Carlo simulation as follows:

—generate U1, . . . , UR �iid U(0, 1), then set M�
r ¼ F�1(U1=m

r ) for r = 1,…, R;
—compute an estimate

p�1 ¼ R�1
XR
r¼1

F{Dþ (1þ g)M�
r }

n

of pU = Pr(MG≤MR);
—repeat the steps above, with U�

r replaced by 1�U�
r to give an estimate p�2;

—return p�U ¼ (p�1 þ p�2)=2 as an estimate of pU.

The first step uses inversion to generate maxima M�
r directly from Fm, the second step averages the exact

probabilities Pr(MG , M�
r ), and the third and fourth steps use antithetic sampling to reduce the variance

of p�U . With R = 105 this gives probabilities accurate to three decimal places almost instantaneously. The R
[13] code below embodies this.

prob.sim <- function(S, eta, delta, gamma, R=10^5)

{ # F is distribution function and Finv its inverse

n <- (1-eta)*S

m <- eta*S

u <- runif(R)

x <- Finv( u^(1/m) )

m1 <- mean( F(delta+(1+gamma)*x)^n )

x <- Finv( (1-u)^(1/m) )

m2 <- mean( F(delta+(1+gamma)*x)^n )

(m1+m2)/2

}

High-precision arithmetic may help in computing p�U more accurately for very large S, though its
precise value is rarely crucial.

Once pU has been estimated, Y is obtained using equation (2.2).

A.4. Correlated returns
As one example of the kind of approach discussed in the paper, consider the following.

Let C(u, v) denote the copula that determines the dependence of random variables U and V having
uniform marginal distributions. One standard measure of extremal dependence is [14]

x(u) ¼ Pr(U . u j V . u) ¼ 1� 2uþ C(u, u)
1� u

, 0 , u , 1,

where u≈ 1 is of most interest in the present context. If χ = limu→1 χ(u) > 0, then U and V are said to be
asymptotically dependent, with χ = 1 corresponding to total dependence and χ = 0 to so-called
asymptotic independence. The quantity 2− χ can be roughly interpreted as the equivalent number of
independent extremes at high levels of (U, V ), so χ = 1 yields one ‘equivalent independent’ variable,
and χ = 0 yields two ‘equivalent independent’ variables. Rank-based estimators for χ(u) from
independent data pairs (u1, v1),…, (un, vn) are available for high values of u, e.g. u = 0.95. As these are
based on the ranks, the marginal distributions of U and V are irrelevant.

To apply these ideas, suppose that A(s) can be treated as a stationary process, that there is a measure
of distance on S, and evaluate A(s) on an equi-spaced grid, at s∈ 0, ± δ, ± 2δ,…, say. Thus we can observe
the joint properties of A(s) at distances δ, 2δ, …, taking U =A(s) and V =A(s + kδ) for each s in the grid. If
we take all such distinct pairs a distance kδ apart and estimate χ(0.95) as described above, then we can
assess the dependence of the extremes of the process at lag k, for example by plotting the estimate x̂k



−1.0

−0.5

0

0.5

1.0
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Figure 3. Four examples of x̂k for the linear interpolation process described in the text. The red points show the estimates of
χ(0.95) at different lags, and the tick marks show 95% confidence intervals for individual estimates. The sharp initial decline
shows that local dependence of extrema of A(s) becomes negligible when kδ > 1 or so, as would be expected from the
construction of A(s).
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against kδ. This extremogram [15] will equal unity for k = 0, and should drop to zero as k increases, and
thus can be used to assess the approximate number of equivalent independent values in S.

To illustrate this, we took S ¼ [0, 1000], created a function A(s) by linear interpolation between S =
1001 independent Gaussian variables at s = 0, 1,…, 1000, and evaluated A(s) on a grid with random
initial value and δ = 0.1. Figure 3 shows these plots for four simulated functions. The sampling
properties of x̂k for k large mimic those for the usual time-series correlogram in the presence of strong
dependence and are not good, but the sharp decline near the origin shows precisely the behaviour we
expect; it appears that extreme values of A(s) would be independent of those for A(s ± 2) or perhaps
A(s ± 1), as we would anticipate from its construction. Thus if we sampled S at sites no closer than
two units apart, the corresponding values of A(s) could be taken as independent at extreme levels.

Although further refinement is certainly feasible, the discussion above suggests that it should be
possible to identify an approximate number of ‘independent’ extrema in an infinite strategy space,
under assumptions similar to those above, perhaps using a development of the ideas in Leadbetter [16].

A.5. Estimation
To estimate the distributions for the ethical and unethical strategies, we suppose that the k sampled
strategies with the highest returns have been divided into kR unethical and kG ethical strategies, with
respective returns r1, . . . , rkR and g1, . . . , gkG , and we denote by u the largest sampled return that is
not among these k. In our asymptotic framework the generalized Pareto distribution (GPD) [17]
provides a suitable probability model for rj− u and gj− u, i.e. the ‘excess’ returns over u. The
probability density functions for the red and green excesses are

1
tR

1þ j
rj � u
tR

� ��1=j�1

þ
,

1
tG

1þ j
gi � u
tG

� ��1=j�1

þ
,

for j = 1,…, kR and i = 1,…, kG. The shape parameter ξ is the same as in (A 1), and τR, τG > 0 are scale
parameters. The effect of changes in both Δ and γ appears in the ratio τR/τG, which will be larger than



Table 1. Summary results from simulation study with η = 0.1. pU, pU0 and p̂U , shown as percentages, are respectively the
probability that red beats green, the average estimate of pU based on the top k values, and the average estimate based on
fitting generalized Pareto distributions to the red and green values. Power (%) is the estimated power for detecting a difference
between the red and green samples. See text for details.

distribution Δ γ pU pU0 p̂U power

normal 0 0 10.2 10.0 13.4 5.9

0.5 0 41.4 25.7 47.7 19.3

0 0.2 54.0 20.0 57.5 46.4

0.5 0.2 86.8 38.6 90.3 90.4

t12 0 0 9.8 10.0 12.8 5.2

0.5 0 20.4 21.3 25.4 5.4

0 0.2 33.7 18.3 37.6 20.1

0.5 0.2 50.1 32.1 58.4 33.0

t4 0 0 9.7 10.0 12.0 5.6

0.5 0 11.8 15.6 13.6 6.8

0 0.2 17.9 15.7 21.0 6.8

0.5 0.2 20.7 22.8 24.3 5.1
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unity if there is an advantage for red returns, whereas ξ should be the same for red and green subsets.
This last property is helpful: ξ can be hard to estimate from small samples, but inference for it will be
based on all k of the largest returns. The adequacy of the GPD is readily checked using standard
techniques [7, Ch. 4], and the parameters can be estimated, and models compared, using standard
likelihood methods [18, Ch. 4].

Having obtained estimates ĵ , t̂R and t̂G,we estimate pU byMonteCarlo simulation as follows.Wegenerate
standard uniform variables U�

1 , . . . , U
�
R and Poisson variables N�

1 , . . . , N
�
R with mean rkR , all mutually

independent. We then computeM�
r ¼ t̂R[{1� (U�

r )
1=N�

r }�ĵ � 1]=ĵ , for r = 1,…, R, and estimate pU by

p̂U ¼ R�1
XR
r¼1

exp [� rg{1� F̂G(M�
r )}],

where F̂G denotes the fitted cumulative distribution function for the green exceedances over u, which is
generalized Pareto with parameters ĵ and t̂G. In the simulations described below we took R = 105, which
reduces variation in p̂U to the third decimal place.

We performed a small simulation experiment to check these ideas. For different settings with normal,
t12 and t4 returns, we simulated 10 000 samples, each with S = 104 and η = 0.1. We constructed each
sample by generating Z1, . . . , ZS �iid F, and then made red returns Δ + (1 + γ)Z1,…, Δ + (1 + γ)ZSη, with
the green returns being ZSη+1…, ZS. We took the k = 200 largest returns for each sample, ascertained
whether they were red or green, and obtained u, r1 � u, . . . , rkR � u and g1 � u, . . . , gkG � u. We then
fitted the GPD to the entire sample of k excesses, and to the red and green excesses separately, using a
common value of ξ; this enabled us to compute the likelihood ratio statistic for testing whether τR =
τG, based on the k largest returns; the proportion of times this is rejected is the statistical power for
testing the hypothesis τR = τG at a nominal 5% significance level. If the return distributions differ
greatly, then this power should be high. We also computed the empirical value of pU, based on
whether the largest return in each sample was red or green, which would not be useful in practice, as
it would equal either 0 or 1, based on the single sample available. As estimates of pU we computed
the empirical proportion pU0 = kR/k and the estimate p̂U described above, both of which would be
available in practice.

Table 1 summarizes the results of this experiment. The rows with Δ = γ = 0 show that when there is no
difference between red and green returns pU and pU0 are both close to the expected value of 10%, and the
power is close to the anticipated value, 5%. Although pU0 increases when either Δ or γ is positive, in the
normal and t12 cases it generally has a downward bias and p̂U appears to provide a better estimate of pU.
Computations not shown indicate that p̂U can be highly variable, though taking k = 500 reduces its
variance. The power increases in the normal case when Δ or γ is positive, as predicted by the
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asymptotic theory; when Δ = 0.5 and γ = 0.2, for example, a difference between red and green returns can

be detected in around 90% of samples. For the t12 returns, pU and its estimates again increase, but more
modestly, and more for increased volatility, γ > 0, than for increased mean, Δ > 0. Again, this corresponds
to the asymptotic theory. In the t4 case neither pU0 nor p̂U dominates the other, and the power for
detecting differences between red and green returns is very small; when η = 0.1, γ = 0.2 and ν = 4, the
limiting expression (3.1) yields pU ≈ 0.15, and low power is to be expected.
lishing.org/jo
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