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The Simple Essence of Algebraic Subtyping
Principal Type Inference with Subtyping Made Easy (Functional Pearl)

LIONEL PARREAUX, EPFL, Switzerland

MLsub extends traditional Hindley-Milner type inference with subtyping while preserving compact principal

types, an exciting new development. However, its specification in terms of biunification is difficult to understand,

relying on the new concepts of bisubstitution and polar types, and making use of advanced notions from

abstract algebra. In this paper, we show that these are in fact not essential to understanding the mechanisms at

play in MLsub. We propose an alternative algorithm called Simple-sub, which can be implemented efficiently

in under 500 lines of code (including parsing, simplification, and pretty-printing), looks more familiar, and is

easier to understand.

We present an experimental evaluation of Simple-sub against MLsub on a million randomly-generated

well-scoped expressions, showing that the two systems agree. The mutable automaton-based implementation

of MLsub is quite far from its algebraic specification, leaving a lot of space for errors; in fact, our evaluation

uncovered several bugs in it. We sketch more straightforward soundness and completeness arguments for

Simple-sub, based on a syntactic specification of the type system.

This paper is meant to be light in formalism, rich in insights, and easy to consume for prospective designers

of new type systems and programming languages. In particular, no abstract algebra is inflicted on readers.
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1 INTRODUCTION
The ML family of languages, which encompasses Standard ML, OCaml, and Haskell, have been

designed around a powerful “global” approach to type inference, rooted in the work of Hindley

[1969] and Milner [1978], later closely formalized by Damas and Milner [1982]. In this approach,

the type system is designed to be simple enough that types can be unambiguously inferred from

terms without the help of any type annotations. That is, for any well-typed unannotated term, it

is always possible to infer a principal type which subsumes all other types that can be assigned

to this term. For instance, the term 𝜆𝑥. 𝑥 can be assigned types bool → bool and int → int, but

both of these are subsumed by the polymorphic type ∀𝛼. 𝛼 → 𝛼 , also written 'a → 'a, which is the

principal type of this term.

This “Hindley-Milner” (HM) type inference approach contrasts with more restricted “local”
approaches to type inference, found in languages like Scala, C#, and Idris, which often require the

types of variables to be annotated explicitly by programmers. On the flip side, abandoning the

principal type property allows these type systems to be more expressive, and to support features
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like object orientation and dependent types. Even ML languages like OCaml and Haskell have

adopted type system features which, when used, break the principal type property
1
and sometimes

require explicit type annotations. Supporting principal types is a delicate tradeoff.

Subtyping is an expressive approach allowing types to be structured into hierarchies — usually

a subtyping lattice — with the property that types can be refined or widened implicitly following

this hierarchy. This lets one express the fact that some types are more precise (contain more

information) than others, but still have a compatible runtime representation, so that no coercions

between them are needed. For instance, in a system where the type ‘nat’ is a subtype of ‘int’, one

can transparently use a ‘nat list’ in place where an ‘int list’ is expected, without having to apply

a coercion function on all the elements of the list. Subtyping can be emulated using somewhat

heavy type system machinery (which both OCaml and Haskell do, to some extent
2
), but first-class

support for subtyping gives the benefit of simpler type signatures and better type inference.

While subtyping is a staple of object-oriented programming (being used to mirror class inher-

itance hierarchies), it is by no means limited to that paradigm, and has found vast domains of

applications in functional programming too, including refinement types for ML data types [Free-

man and Pfenning 1991], lightweight verification [Rondon et al. 2008; Rushby et al. 1998; Vazou

et al. 2014], full dependent types [Hutchins 2010], first-class modules [Amin et al. 2016; Rossberg

2015], polymorphic variants [Castagna et al. 2016], XML transformations [Hosoya et al. 2005], and

higher-rank polymorphism [Dunfield and Krishnaswami 2013; Odersky and Läufer 1996].

For a long time, it was widely believed that implicit subtyping got in the way of satisfactory

global type inference. Indeed, previous approaches to inferring subtypes failed to support principal

types, or resulted in the inference of large types containing sets of unwieldy constraints, making

them difficult to understand by programmers.

MLsub was introduced by Dolan and Mycroft [2017] as an ML-style type system supporting

subtyping, polymorphism, and global type inference, while still producing compact principal types.

Here, compact refers to the fact that the inferred types are relatively simple type expressions

without any visible constraints, making them easy to read and understand. This was achieved by

carefully designing the semantics of the subtyping lattice using an algebra-first approach, also
referred to as algebraic subtyping [Dolan 2017].

However, the specification of MLsub’s type inference algorithm as biunification is difficult to

understand for experts and non-experts alike. On the surface, it looks more complicated than

the algorithm W traditionally used for HM type systems, requiring additional concepts such

as bisubstitution, polar types, and advanced notions from abstract algebra. Although its elegant

presentation will appeal to mathematically-minded researchers, experience has shown that grasping

an understanding of the approach complete enough to reimplement the algorithm required reading

Dolan’s thesis in full, and sometimes more [Courant 2018].

Thankfully, it turns out that the essence of algebraic subtyping can be captured by a much

simpler algorithm, Simple-sub, which is also more efficient than biunification (or at least, than the

basic syntax-driven form of biunification used as a specification for MLsub
3
). In this paper, we show

that inferring MLsub types is surprisingly easy, and can be done in under 300 lines of Scala code,

1
OCaml has been quite conservative with such principality-breaking features, notable exceptions being GADTs and

overloaded record fields, but Haskell has been adopting them more liberally in order to increase expressiveness.

2
For instance, OCaml uses row types to make object types and polymorphic variants more flexible, avoiding the need for

explicit coercions, somewhat similarly to implicit subtyping [Pottier 1998]; and Haskell can use type classes to emulate

subtyping, as exemplified by the lens and optics libraries, which are both designed around a subtyping analogy.

3
Operationally speaking, Simple-sub has many similarities to the graph-based implementation of MLsub, though the two

algorithms are still quite different — in particular, MLsub separates positive nodes from negative nodes in its constraint

graph (while there is no such separation in Simple-sub), and MLsub generates many more type variables than Simple-sub.
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with an additional 200 lines of code for simplification and pretty-printing. Simple-sub is available

online at https://github.com/LPTK/simple-sub. While the implementation we present is written in

Scala, it is straightforward to translate into any other functional programming languages.

Our main contribution is to recast MLsub into a simpler mold and to disentangle its algebraic

construction of types from the properties actually needed by the type inference and type simplifi-

cation processes. We believe this will allow future designers of type systems and programming

languages to benefit from some of the great insights of the approach, without having to delve too

deeply into the theory of algebraic subtyping. In the rest of this paper, we:

• present MLsub and the algebraic subtyping discipline on which it is based (Section 2);

• describe our new Simple-sub type inference algorithm (Section 3);

• explain how to perform basic simplification on the types inferred by Simple-sub (Section 4);

• sketch the correctness proofs of Simple-sub through soundness and completeness theorems,

formalizing the minimal subtyping relation needed to carry out these proofs. (Section 5);

• describe our experimental evaluation: we verified that Simple-sub and MLsub agreed on the

results of type inference for over a million automatically-generated programs (Section 6).

2 ALGEBRAIC SUBTYPING AND MLSUB
Let us first describe MLsub and the algebraic subtyping philosophy that underlies its design.

2.1 Background on Algebraic Subtyping
There are at least three major schools of thought on formalizing subtyping. Syntactic approaches,
as in this paper, use direct specifications (usually given as inference rules) for the subtyping

relationship, closely following the syntax of types. Semantic approaches [Frisch et al. 2008] view

types as sets of values which inhabit them, and define the subtyping relationship as set inclusion

between these sets. Algebraic approaches [Dolan 2017] define types as abstract elements of a

distributive lattice, whose algebraic properties are carefully chosen to yield good properties, such

as “extensibility” and principal types.

Syntactic approaches somehow pay for their simplicity by forcing type system designers to

consider the consequences and interactions of all their inference rules, having to manually verify

that they result in a subtyping relationship with the desired algebraic properties.

The semantic approach is probably the most intuitive, and is also very powerful; however, it

suffers from difficulties related to polymorphism — an understanding of type variables as ranging
over ground types can lead to paradoxes and a lack of extensibility [Dolan 2017].

As a response to these perceived shortcomings, Dolan argues that algebra (not syntax) should
come first, in order to guarantee from the start that type systems are well-behaved, as opposed to

ensuring it as a sort of afterthought. In particular, he emphasizes the concept of extensibility of type

systems, the idea being that existing programs should remain well-typed when new type forms are

added. While the practical usefulness of this notion of extensibility is unclear,
4
the general approach

of making the subtyping lattice distributive does help simplify types aggressively and construct

algorithms for checking subsumption effectively (i.e., checking whether one type signature is as

general as another).

In the rest of this section, we explain the basics of MLsub and its static semantics, to set the

stage for the presentation of Simple-sub in Section 3.

4
We have some doubts that the extensibility property of algebraic subtyping is as useful as advertised by its author, besides

its simplifying consequences. First, practical programming languages already have extensible type systems by design, since

they allow user-defined data types, and the subtyping paradoxes which arise from closed-world formal calculi do not

typically arise or cause troubles in these settings. Second, extending the core type semantics of a programming language

happens exceedingly rarely, and thus is probably not a scenario worth optimizing for, when designing a type system.
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2.2 Basics of MLsub
2.2.1 Term Language. The term syntax of MLsub is given in Figure 1. Wemake some simplifications

compared to the original MLsub presentation: first, we omit boolean literals and if-then-else, as

they can easily be typed as primitive combinators; second, we use only one form of variables 𝑥

(MLsub distinguished between lambda-bound and let-bound variables, for technical reasons).

𝑡 ::= 𝑥 | 𝜆𝑥 . 𝑡 | 𝑡 𝑡 | { 𝑙0 = 𝑡 ; ... ; 𝑙𝑛 = 𝑡 } | 𝑡 .𝑙 | let rec 𝑥 = 𝑡 in 𝑡

Fig. 1. Syntax of MLsub terms, for which we want to infer types.

2.2.2 Type Language. The type syntax of MLsub, summarized in Figure 2, consists in primitive

types (such as int and bool) function types, record types, type variables, top ⊤ (the type of all

values — supertype of all types), bottom ⊥ (the type of no values — subtype of all types), type union

⊔, type intersection ⊓, and recursive types 𝜇𝛼. 𝜏 .

𝜏 ::= primitive | 𝜏 → 𝜏 | { 𝑙0 : 𝜏 ; ... ; 𝑙𝑛 : 𝜏 } | 𝛼 | ⊤ | ⊥ | 𝜏 ⊔ 𝜏 | 𝜏 ⊓ 𝜏 | 𝜇𝛼. 𝜏

Fig. 2. Syntax of MLsub types.

2.2.3 Type System. The declarative type system of MLsub is given in Figure 3. It is mostly as

presented by Dolan and Mycroft [2017]. We support recursive let bindings explicitly for clarity,

though recursion could also be factored out into a combinator [Damas and Milner 1982]. We write

𝐸
𝑖
for a repetition of elements 𝐸 indexed by 𝑖 . Of particular interest are the rules T-Sub, which takes

a term from a subtype to a supertype implicitly (without a term-level coercion), T-Let, which types

𝑥 in its recursive right-hand side in a monomorphic way, but types 𝑥 in its body polymorphically,

and T-Var, which instantiates polymorphic types using the substitution syntax [𝜏0/𝛼0]𝜏 .
We appeal to the reader’s intuition and leave the precise definition of subtyping unspecified for

now, as it requires some technicalities around recursive types. In contrast to MLsub, which gives

an algebraic account of subtyping, we will present a syntactic subtyping system in Section 5.1.

T-Lit

Γ ⊢ 𝑛 : int

T-Var

Γ(𝑥) = ∀𝛼𝑖 .
𝑖
𝜏

Γ ⊢ 𝑥 : [𝜏𝑖/𝛼𝑖 ]
𝑖
𝜏

T-Abs

Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑡 : 𝜏1 → 𝜏2

T-App

Γ ⊢ 𝑡0 : 𝜏1 → 𝜏2 Γ ⊢ 𝑡1 : 𝜏1
Γ ⊢ 𝑡0 𝑡1 : 𝜏2

T-Rcd

Γ ⊢ 𝑡𝑖 : 𝜏𝑖
𝑖

Γ ⊢ { 𝑙𝑖 = 𝑡𝑖
𝑖 } : { 𝑙𝑖 : 𝜏𝑖

𝑖 }

T-Proj

Γ ⊢ 𝑡 : { 𝑙 : 𝜏 }
Γ ⊢ 𝑡 .𝑙 : 𝜏

T-Sub

Γ ⊢ 𝑡 : 𝜏1 𝜏1 ≤ 𝜏2

Γ ⊢ 𝑡 : 𝜏2

T-Let

Γ, 𝑥 : 𝜏1 ⊢ 𝑡1 : 𝜏1 Γ, 𝑥 : ∀𝛼𝑖 .
𝑖
𝜏1 ⊢ 𝑡2 : 𝜏2

Γ ⊢ let rec 𝑥 = 𝑡1 in 𝑡2 : 𝜏2
(𝛼𝑖 not free in Γ)

succ : int → int iszero : int → bool true : bool false : bool if : ∀𝛼. bool → 𝛼 → 𝛼 → 𝛼

Fig. 3. Declarative typing rules of MLsub (and Simple-sub).
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2.3 Informal Semantics of Types
While most MLsub type forms are usual and unsurprising, two kinds of types require our special

attention: set-theoretic types (especially unions and intersections), and recursive types.

2.3.1 Set-Theoretic Types. To a first approximation, union and intersection types can be understood

in set-theoretic terms: 𝜏0 ⊔ 𝜏1 (resp. 𝜏0 ⊓ 𝜏1) represents the type of values that are either (resp. both)
of type 𝜏0 or (resp. and) of type 𝜏1.

MLsub uses these types to indirectly constrain type variables: When a type variable 𝛼 is supposed

to be a subtype of some type 𝜏 (i.e., values of type 𝛼 may be used at type 𝜏), MLsub substitutes

all occurrences of 𝛼 in input position with 𝛼 ⊓ 𝜏 , making sure that any arguments passed in as 𝛼

values are also 𝜏 values. Similarly, when 𝛼 is supposed to be a supertype of some 𝜏 (i.e., values of

type 𝜏 may be used at type 𝛼), MLsub substitutes all occurrences of 𝛼 in output position with 𝛼 ⊔ 𝜏 ,

making sure that results returned as 𝛼 values are also 𝜏 values.

As an example, one type inferred for the term 𝜆𝑥 . { L = 𝑥 − 1 ; R = 𝑥 } could be 𝛼 ⊓ int →
{ L : int ; R : 𝛼 }, assuming operator (−) has type int → int → int. This type reflects the fact that
the original argument, of some type 𝛼 , is returned in the R field of the result record (as the input of

the function ends up in that position), but also that this argument should be able to be treated as an

int, expressed via the type intersection 𝛼 ⊓ int on the left-hand side of the function type. Keeping

track of the precise argument type 𝛼 is important: it could be later substituted with a more specific

type than int, such as 𝛼 = nat, which would give us nat → { L : int ; R : nat }. On the other hand,

there may be type signatures where 𝛼 becomes undistinguishable from int. For instance, consider
the term ‘𝜆𝑥 . if true then 𝑥 − 1 else 𝑥 ’, whose simplified inferred type would be just int → int, as
the seemingly-more precise type 𝛼 ⊓ int → 𝛼 ⊔ int does not actually contain more information

(we expand on this in Section 4.3.1).

The beauty of MLsub is that this sort of reasoning scales to arbitrary flows of variables and higher-

order functions; for instance, the previous example can be generalized by passing in a function

𝑓 to stand for the · − 1 operation, as in 𝜆𝑓 . 𝜆𝑥 . { L = 𝑓 𝑥 ; R = 𝑥 } whose type could be inferred

as (𝛽 → 𝛾) → 𝛼 ⊓ 𝛽 → { L : 𝛾 ; R : 𝛼 } and further simplified to (𝛼 → 𝛾) → 𝛼 → { L : 𝛾 ; R : 𝛼 }.
Applying this function to argument (𝜆𝑥. 𝑥 − 1) yields the same type (after simplification) as in the

example of the previous paragraph.

2.3.2 Recursive Types. A recursive type 𝜇𝛼. 𝜏 represents a type we can unroll as many times as we

want; for instance, 𝜇𝛼. (⊤ → 𝛼), which we write just 𝜇𝛼.⊤ → 𝛼 , is equivalent to ⊤ → 𝜇𝛼.⊤ → 𝛼 ,

which is equivalent to ⊤ → ⊤ → 𝜇𝛼.⊤ → 𝛼 , etc., and is the type of a function that can be applied

to any arguments (any subtypes of ⊤) indefinitely. A recursive type is conceptually infinite — if we

unrolled the above fully, it would unfold as an infinitely-deep tree ⊤ → ⊤ → ⊤ → ....

If this sounds confusing, that’s perfectly fine.Wewill get some deeper intuition on recursive types

and why we need them in Section 3.4.1, and we will give them a formal treatment in Section 5.1.

The high-level idea is that recursive types are sometimes necessary to give principal types to

MLsub terms. The example given by Dolan [2017] is that of the term 𝑌 (𝜆𝑓 . 𝜆𝑥 . 𝑓 ) where 𝑌 is

the call-by-value 𝑌 combinator. This term represents a function which ignores its parameter and

returns itself. It can be given type ⊤ → ⊤ as well as ⊤ → ⊤ → ⊤, and ⊤ → ⊤ → ⊤ → ⊤, etc. Its
principal type is the recursive type shown in the previous paragraph.

2.3.3 Typing Surprises. It is worth noting that inferring recursive types can lead to typing terms

which appear ill-typed, and would in fact not be well-typed in ML.
5
This kind of surprises can also

5
Interestingly, the OCaml compiler supports recursive types, but it only allows them as part of object types by default,

because they can otherwise lead to surprises — in some cases inferring recursive types instead of reporting obvious errors.

In a practical language based on MLsub, it would be possible to have similar restrictions on the inference of recursive types.
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arise simply due to subtyping. For instance, in MLsub, the strange-looking term 𝜆𝑥 . 𝑥 𝑥 , which

takes a function in parameter and applies it to itself, can be typed as ∀𝛼, 𝛽. (𝛼 → 𝛽) ⊓ 𝛼 → 𝛽 .

Indeed, if the input 𝑥 passed to the function has type (𝛼 → 𝛽) ⊓ 𝛼 , that means it has type 𝛼 → 𝛽 (a

function taking an 𝛼 argument) and type 𝛼 , meaning that it can be passed as an argument to itself.

2.4 Expressiveness
There is an important caveat to add to the definition of types we gave above: these types cannot

actually be used freely within type expressions. The true syntax of MLsub is segregated between

positive and negative types. In particular, unions are positive types (and may not appear in negative

position) and intersections are negative types (and may not appear in positive position).

2.4.1 Polarity of Type Positions. Positive positions correspond to the types that a term outputs,
while negative positions correspond to the types that a term takes in as input. For instance, in

(𝜏0 → 𝜏1) → 𝜏2, type 𝜏2 is in positive position since it is the output of the main function, and the

function type (𝜏0 → 𝜏1) is in negative position, as it is taken as an input to the main function. On

the other hand, 𝜏1, which is returned by the function taken as input is in negative position (since it

is provided by callers via the argument function), and 𝜏0 is in positive position (since it is provided

by the main function when calling the argument function).

2.4.2 Consequence of the Polarity Restriction. These polarity restrictions mean that the full syntax

of types we saw above cannot actually be used as is; programmers cannot write, in their own type

annotations, types that violate the polarity distinction. In fact, in MLsub, one cannot express the
type of a function which takes “either an integer or a string”: type int⊔ string → 𝜏 is illegal because

it has the int ⊔ string union in negative position. On the other hand, MLsub may assign the legal

type 𝜏 → int ⊔ string to functions which may return either an integer or a string... but this is not a

very useful type, since one cannot do anything useful with an int ⊔ string value in MLsub.
6

What this all comes down to, perhaps surprisingly, is that the MLsub language is fundamentally

no more expressive
7
than a “structurally-typed Java”, by which we mean a hypothetical Java dialect

with structural records and lower as well as upper bounds for type variables. To understand this,

consider the following function:

𝜆𝑥 . { L = 𝑥 − 1 ; R = if 𝑥 < 0 then 0 else 𝑥 }
which could be given the following unsimplified type by MLsub or Simple-sub:

𝛼 ⊓ int → { L : int ; R : 𝛽 ⊔ nat ⊔ 𝛼 }
or equivalently, after simplification:

𝛼 ⊓ int → { L : int ; R : nat ⊔ 𝛼 }
The 𝛽 type variable is introduced to represent the result type of the if expression. During type

inference, both constraints nat ≤ 𝛽 and 𝛼 ≤ 𝛽 are registered, which is handled by replacing all

occurrences of 𝛽 in positive positions (there is only one here) by 𝛽 ⊔nat⊔𝛼 . In this simple example,

the 𝛽 type variable turns out to be redundant, and is later removed during simplification.

Now, recall that Java allows users to quantify types using type variables, and also allows bounding

these type variables with subtypes and supertypes.
8
The insight is that unions and intersections,

6
In that sense, int ⊔ string is similar to ⊤, although MLsub does not consider these two types to be equivalent.

7
Note that several features of Java go well beyond what can be expressed in MLsub (such as polymorphic methods and

generic class hierarchies), so MLsub really is strictly less expressive than our hypothetical structurally-typed Java.

8
In fact, in real Java, lower-bound specifications are inexplicably only supported for wildcard type arguments – an apparent

oversight. For more details on type bounds in Java, see https://docs.oracle.com/javase/tutorial/java/generics/bounded.html

and https://docs.oracle.com/javase/tutorial/java/generics/lowerBounded.html.
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when used at the appropriate polarity, are only a way of indirectly bounding type variables. For

instance, the unsimplified MLsub type seen above is equivalent to the following Java-esque type,

where type parameters are written between ‘⟨’ and ‘⟩’:

⟨𝛼 extends int, 𝛽 super nat | 𝛼⟩(𝛼) → { L : int ; R : 𝛽 }

meaning that 𝛼 should be a subtype of int and that 𝛽 should be a supertype of both nat and 𝛼 .

Moreover, the simplified type is equivalent to:

⟨𝛼 super nat extends int⟩(𝛼) → { L : int ; R : 𝛼 }

meaning that 𝛼 should be a supertype of nat and also a subtype of int.
As for MLsub’s recursive types, they are expressible via F-bounded polymorphism, which Java

also supports. F-bounded polymorphism allows a type variable 𝛼 to bounded by a type expression

that contains occurrences of 𝛼 itself.

The fact that type intersections can be used to encode upper bounds on type variables was

originally remarked by Castagna and Xu [2011, footnote 4]. Naturally, the same goes for type

unions and lower bounds respectively. What we proposed above is, in a sense, the reverse direction
of this translation: stating that polar usages of unions and intersections can be encoded as lower

and upper bounds on type variables.

2.5 Essence of MLsub Type Inference
Reading Dolan [2017]; Dolan and Mycroft [2017], one could be led to think that MLsub is all about:

• supporting unions and intersections in the type language, forming a distributive lattice;

• a new algorithm called biunification as an alternative to traditional unification;

• separating the syntax of types between positive and negative types.

However, we argue that this is not the most helpful way of understanding the processes at work in

this type inference algorithm; instead, we argue that the essence of the approach is:

• making the semantics of types simple enough that all inferred subtyping constraints can

be reduced to constraints on type variables, which can be recorded efficiently (for instance

using mutation, as done in this paper and in MLsub’s actual implementation);

• using intersection, union, and recursive types to express compact type signatures where type

variables are indirectly constrained, avoiding the need for separate constraint specifications.

3 THE SIMPLE-SUB TYPE INFERENCE ALGORITHM
We now present Simple-sub. We start with the internal Scala syntax used in the algorithms (Sec-

tion 3.1); we then describe the basic mechanisms of type inference, at first omitting let bindings for

simplicity (Section 3.2); we show how to produce user-facing type representations from the results

of type inference (Section 3.3); we discuss some insights on recursive types and unroll an example

of type inference (Section 3.4); and we explain how to support let polymorphism and recursive let

bindings (Section 3.5). Finally, we summarize the full Simple-sub algorithm (Section 3.6).

3.1 Simple-sub Syntax
3.1.1 Term Syntax. The Scala implementation of the term syntax is shown in Figure 4. We derive

it directly from Figure 1, except that we add a construct for integer literals.

As mentioned before, there is no need for an if-then-else feature, since we can just add one as a

combinator: our parser actually parses code of the form “if 𝑒0 then 𝑒1 else 𝑒2” as if it were written
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enum Term {

case Lit (value: Int) // as in: 27

case Var (name: String) // as in: 𝑥

case Lam (name: String, rhs: Term) // as in: 𝜆𝑥 . 𝑡

case App (lhs: Term, rhs: Term) // as in: 𝑠 𝑡

case Rcd (fields: List[(String, Term)]) // as in: { a : 0; b : true; ... }
case Sel (receiver: Term, fieldName: String) // as in: 𝑡 .a
case Let (isRec: Boolean, name: String, rhs: Term, body: Term) }

Fig. 4. Scala syntax for MLsub terms (using the enum10 keyword for defining algebraic data types).

“if 𝑒0 𝑒1 𝑒2,” and we perform type checking starting from a context which assigns to the ‘if’ identifier
the type ∀𝛼. bool → 𝛼 → 𝛼 → 𝛼 .9

enum SimpleType {

case Variable (st: VariableState)

case Primitive (name: String)

case Function (lhs: SimpleType, rhs: SimpleType)

case Record (fields: List[(String, SimpleType)]) }

3.1.2 Type Syntax. We start from the realization that union, intersection, top, bottom, and recursive

types are all not really core to the type inference approach. Therefore, we focus on type variables,

basic type constructors (primitive types), function types, and record types as the cornerstone of the

algorithm. Their Scala syntax is shown above.

The state of a type variable is simply given by all the bounds that are recorded for it:

class VariableState(var lowerBounds: List[SimpleType],

var upperBounds: List[SimpleType])

Notice that we use mutable variables (var instead of val) in order to hold the current state of the

algorithm — these lists will be mutated as the algorithm proceeds.

All we need to do in order to perform type inference now is to find all subtyping constraints

entailed by a given program, and to propagate these constraints until they reach type variables,

which we can constrain by mutating their recorded bounds.

3.2 Basic Type Inference
3.2.1 Typing. The core function for type inference is typeTerm, which assigns a type to a given

term in some context of type Ctx; it is complemented by a constrain function to imperatively

constrain one type to be a subtype of another, raising an error if that is not possible:

9
As explained by Dolan and Mycroft [2017], this type is just as general as the more natural ∀𝛼, 𝛽. bool → 𝛼 → 𝛽 → 𝛼 ⊔ 𝛽 .
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type Ctx = Map[String, SimpleType]

def typeTerm(term: Term)(implicit ctx: Ctx): SimpleType = ...

def constrain(lhs: SimpleType, rhs: SimpleType): Unit = ...

Above, we made the ctx parameter in typeTerm implicit so it does not have to be passed explicitly

into each recursive call if it does not change.

We make use of two small helper functions, freshVar and err, to generate new type variables

and raise errors, respectively:

def freshVar: Variable =

Variable(new VariableState(Nil, Nil))

def err(msg: String): Nothing =

throw new Exception("type error: " + msg)

Remember that VariableState is a class and not a case class (also called data class). This means

that each VariableState instance, created with new, is unique and distinct from other instances.

Now that we have established the necessary premises, we can start writing the core of the basic

type inference algorithm:

def typeTerm(term: Term)(implicit ctx: Ctx): SimpleType = term match {

// integer literals:

case Lit(n) => Primitive("int")

Below, the ctx.getOrElse(k, t) function is used to access the ctx map at a given key k, specifying

a thunk t to execute in case that key is not found:

// variable references:

case Var(name) => ctx.getOrElse(name, err("not found: " + name))

// record creations:

case Rcd(fs) => Record(fs.map { case (n, t) => (n, typeTerm(t)) })

In order to type a lambda abstraction, we create a fresh variable to represent the parameter type, and

we type the body of the lambda in the current context extended with a binding for this parameter,

where name -> param is another syntax for the pair (name, param):
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// lambda abstractions:

case Lam(name, body) =>

val param = freshVar

Function(param, typeTerm(body)(ctx + (name -> param)))

To type applications, we similarly introduce a fresh variable standing for the result type of the

function that we are applying:

// applications:

case App(f, a) =>

val res = freshVar

constrain(typeTerm(f), Function(typeTerm(a), res))

res

Finally, record accesses result in a constraint that the receiver on the left-hand side of the selection

is a record type with the appropriate field name:

// record field selections:

case Sel(obj, name) =>

val res = freshVar

constrain(typeTerm(obj), Record((name -> res) :: Nil))

res

}

As one can observe, the basic MLsub type inference algorithm so far is quite similar to the

traditional algorithm W for HM-style type inference.

3.2.2 Constraining. The first thing to diverge from algorithm W is the handling of constraints.

First, note that type variable bounds, which are updated using mutation, may very well begin to

form cycles as type inference progresses. We have to account for this by using a cache parameter

(initially empty) which remembers all the type comparisons that have been or are being made. This

not only prevents us from falling into infinite recursion, but also avoids repeating identical work

(i.e., solving some of the sub-constraints more than once), which is important to avoid making the

algorithm exponential in complexity [Pierce 2002, Chapter 21.10].

def constrain(lhs: SimpleType, rhs: SimpleType)

(implicit cache: MutSet[(SimpleType, SimpleType)]): Unit = {

if (cache.contains(lhs -> rhs)) return () else cache += lhs -> rhs

The next step is to match each possible pair of basic types which can be constrained successfully,

and propagate the constraints accordingly:
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(lhs, rhs) match {

case (Primitive(n0), Primitive(n1)) if n0 == n1 =>

() // nothing to do

case (Function(l0, r0), Function(l1, r1)) =>

constrain(l1, l0); constrain(r0, r1)

case (Record(fs0), Record(fs1)) =>

fs1.foreach { case (n1, t1) =>

fs0.find(_._1 == n1) match {

case None => err("missing field: " + n1 + " in " + lhs)

case Some((_, t0)) => constrain(t0, t1) }}

Function types are constrained according to the usual rules of contra- and co-variance of parameter

and result types (respectively), and record types according to the usual width and depth subtyping.

The case for type variables appearing on the left- or right-hand side is interesting, as this is

when we finally mutate the bounds of variables. Crucially, after adding the corresponding upper

or lower bound to the variable state, we need to iterate
11
over the existing opposite bounds of the

variable being constrained, in order to make sure that they become consistent with the new bound:

case (Variable(lhs), rhs) =>

lhs.upperBounds = rhs :: lhs.upperBounds

lhs.lowerBounds.foreach(constrain(_, rhs))

case (lhs, Variable(rhs)) =>

rhs.lowerBounds = lhs :: rhs.lowerBounds

rhs.upperBounds.foreach(constrain(lhs, _))

Note that there is something deeply non-trivial happening here: we install the new upper bound

rhs before recursing into the lhs.lowerBounds. This turns out to be essential — without it, recursive

constraining calls which would get back to lhs would miss this new upper bound, failing to

constrain it. Another subtlety is that new bounds may very well appear in lhs.upperBounds and

lhs.lowerBounds while we are recursing. This subtlety is briefly discussed further in Section 5.3.1.

Finally, if all other options have failed, we report an error that the two types cannot be constrained:

case _ => err("cannot constrain " + lhs + " <: " + rhs)

}

}

11
Scala syntax (foo(a, _, c)) is a shorthand for the lambda abstraction (x => foo(a, x, c)).
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In this subsection, we saw the core of the Simple-sub type inference algorithm, which distills

what we argue is the “simple essence” of Dolan’s type inference approach. However, we are not

quite done yet. We still need to produce user-readable type representations (next section) and to

support polymorphism and recursion through let bindings (Section 3.5).

3.3 User-Facing Types Representations
Where did union, intersection, top, bottom, and recursive types go? It turns out these are not really
core to the type inference approach, and are more like emergent properties of type pretty-printing

and simplification. They only come up once we try to display friendly type expressions to users,

after type inference has done the gist of its job.

3.3.1 Constraining Type Variables Indirectly. Remember that we have been constraining type

variables, but that type variable constraints are not part of the syntax that MLsub and Simple-sub

are supposed to output. The “trick” is to indirectly encode these constraints through the use of

union and intersection types (recall the examples given in Section 2.3.1).

3.3.2 Targeted Type Syntax. In order to produce user-friendly type representations in the tradition

of MLsub, we target the type syntax tree presented in Figure 5.

enum Type {

case Top

case Bot

case Union (lhs: Type, rhs: Type)

case Inter (lhs: Type, rhs: Type)

case FunctionType (lhs: Type, rhs: Type)

case RecordType (fields: List[(String, Type)])

case RecursiveType (name: String, body: Type)

case TypeVariable (name: String)

case PrimitiveType (name: String) }

Fig. 5. The type syntax targeted as the end result of type inference.

3.3.3 Type Coalescing Algorithm. In order to produce immutable Type values from our inferred

SimpleType internal representation, we need to go through a process we refer to as type coalescing,
whose goal is to replace the positive occurrences of type variables with a union of their lower

bounds, and their negative occurrences with an intersection of their upper bounds.

We define a PolarVariable type synonym which associates a type variable state with a polarity.

The algorithm starts by initializing an empty mutable map called recursive, whose goal is to

remember which type variables refer to themselves through their bounds, assigning them a fresh

type variable which will be used when constructing the corresponding RecursiveType value:

type PolarVariable = (VariableState, Boolean) // 'true' means 'positive'

def coalesceType(ty: SimpleType): Type = {

val recursive: MutMap[PolarVariable, String] = MutMap.empty
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The (VariableState, Boolean) keys of the recursive map include the polarity in the right-hand

side to make sure we produce only polar recursive types (those whose variables occur with the

same polarity as the types themselves); this turns out to be necessary for principality [Dolan 2017].

Then, we define a worker function go which calls itself recursively in a straightforward manner,

but makes sure to keep track of the type variables that are currently being coalesced, and to keep

track of the current polarity — whether we are coalescing a positive (polar == true) or negative

(polar == false) type position:

def go(ty: SimpleType, polar: Boolean)(inProcess: Set[PolarVariable]): Type

= ty match {

case Primitive(n) => PrimitiveType(n)

case Function(l, r) =>

FunctionType(go(l, !polar)(inProcess), go(r, polar)(inProcess))

case Record(fs) =>

RecordType(fs.map(nt => nt._1 -> go(nt._2, polar)(inProcess)))

The interesting case is the following.
12
In the code below, vs.uniqueName, is an attribute defined in

the VariableState class, which holds a name unique to vs.

case Variable(vs) =>

val vs_pol = vs -> polar

if (inProcess.contains(vs_pol))

TypeVariable(recursive.getOrElseUpdate(vs_pol, freshVar.uniqueName))

else {

val bounds = if (polar) vs.lowerBounds else vs.upperBounds

val boundTypes = bounds.map(go(_, polar)(inProcess + vs_pol))

val mrg = if (polar) Union else Inter

val res = boundTypes.foldLeft(TypeVariable(vs.uniqueName))(mrg)

recursive.get(vs_pol).fold(res)(RecursiveType(_, res))

}

We first check whether the variable is already being coalesced. If it is, we look up the ‘recursive’

map: if this map already contains an entry for the variable, we simply return it; otherwise, we

create a new fresh TypeVariable and update the map using getOrElseUpdate.

If we are not coalescing a recursive variable occurrence, we look into the bounds of the variable.

Depending on the current polarity, we recurse into the lower or upper bounds. Then, if the recursive

12
In Scala, opt.fold(t)(f) folds the opt option by applying a function f on the contained value, or by evaluating a default

thunk t if the option is empty. The map.getOrElseUpdate(k, t) method of MutMap looks up a key k in map; if the key is not

found, it evaluates the thunk t and update map with the value; otherwise, it returns the value associated with the key.
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map now contains an entry for the variable, it means the variable was recursive. In this case, we

wrap the result in RecursiveType with the variable found in the map.

We conclude the algorithm by calling go on the top-level type ty with an empty inProcess:

}

go(ty, true)(Set.empty)

}

This algorithm does produces some unnecessary variables (variables which could be removed to

simplify the type expression); we see how to simplify type representations in Section 4.

3.4 Examples
Now is a good time to pause and exemplify some crucial aspects of Simple-sub.

3.4.1 Recursive Types. The reason for having recursive types in the user-facing type syntax has

now become quite obvious: we need them in order to “tie the knot” when we are trying to coalesce

type variables which appears in the coalescence of their own bounds.

For instance, consider the possible inferred representation Function(Variable(s), Variable(t)),

where s = new VariableState(Nil, Nil) and t = new VariableState(Nil, Function(Variable(s),

Variable(t)) :: Nil). Notice that there is a cycle in the upper bounds of t; therefore, the coa-

lescing algorithm turns this SimpleType representation into the user-facing type FunctionType(

TypeVariable("s"), RecursiveType("t", FunctionType(TypeVariable("s"), TypeVariable("t")))),

which corresponds to 𝛼 → (𝜇𝛽.𝛼 → 𝛽) (and which will then be simplified to ⊤ → (𝜇𝛼.⊤ → 𝛼)).

3.4.2 Example of Type Inference. To facilitate our understanding of the typing and coalescing

algorithms, we now unroll the execution of a type inference run. Consider the term twice =

𝜆𝑓 . 𝜆𝑥 . 𝑓 (𝑓 𝑥), which takes a function 𝑓 and some 𝑥 as parameters, and applies 𝑓 twice on 𝑥 .

typeTerm(𝜆𝑓 . 𝜆𝑥 . 𝑓 (𝑓 𝑥))(empty)�� typeTerm(𝜆𝑥. 𝑓 (𝑓 𝑥))(Map(𝑓 ↦→ 𝛼)) // 𝛼 fresh�� �� typeTerm(𝑓 (𝑓 𝑥))(Map(𝑓 ↦→ 𝛼, 𝑥 ↦→ 𝛽)) // 𝛽 fresh�� �� �� typeTerm(𝑓 )(Map(𝑓 ↦→ 𝛼, 𝑥 ↦→ 𝛽)) = 𝛼�� �� �� typeTerm(𝑓 𝑥)(Map(𝑓 ↦→ 𝛼, 𝑥 ↦→ 𝛽))�� �� �� �� typeTerm(𝑓 )(Map(𝑓 ↦→ 𝛼, 𝑥 ↦→ 𝛽)) = 𝛼�� �� �� �� typeTerm(𝑥)(Map(𝑓 ↦→ 𝛼, 𝑥 ↦→ 𝛽)) = 𝛽�� �� �� �� constrain(𝛼, Function(𝛽, 𝛾)) // 𝛾 fresh�� �� �� �� �� 𝛼.upperBounds = Function(𝛽, 𝛾) :: 𝛼.upperBounds�� �� �� = 𝛾�� �� �� constrain(𝛼, Function(𝛾, 𝛿)) // 𝛿 fresh�� �� �� �� 𝛼.upperBounds = Function(𝛾, 𝛿) :: 𝛼.upperBounds�� �� = 𝛿�� = Function(𝛽, 𝛿)
= Function(𝛼, Function(𝛽, 𝛿))
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After this process, we end up with two upper bounds on 𝛼 , namely Function(𝛽, 𝛾) and Function(𝛾,

𝛿). We next see how the type coalescing algorithm unrolls from this inferred SimpleType represen-

tation. We omit the details of some of the less interesting sub-executions, and by a slight abuse of

notation we use 𝛼 to denote 𝛼.uniqueName:

coalesceType(Function(𝛼, Function(𝛽, 𝛿)))�� go(Function(𝛼, Function(𝛽, 𝛿)), true)(empty)�� �� go(𝛼, false)(empty)�� �� �� val bounds = Function(𝛽, 𝛾) :: Function(𝛾, 𝛿) :: Nil�� �� �� val boundTypes�� �� �� �� go(Function(𝛽, 𝛾), false)(Set(𝛼 ↦→false)) = 𝛽 → 𝛾�� �� �� �� go(Function(𝛾, 𝛿), false)(Set(𝛼 ↦→false)) = 𝛾 → 𝛿�� �� �� = 𝛽 → 𝛾 :: 𝛾 → 𝛿 :: Nil�� �� = 𝛼 ⊓ (𝛽 → 𝛾) ⊓ (𝛾 → 𝛿)�� �� go(Function(𝛽, 𝛿), true)(empty)�� �� �� go(𝛽, false)(empty) = 𝛽�� �� �� go(𝛿, true)(empty) = 𝛿�� �� = 𝛽 → 𝛿�� = 𝛼 ⊓ (𝛽 → 𝛾) ⊓ (𝛾 → 𝛿) → 𝛽 → 𝛿

= 𝛼 ⊓ (𝛽 → 𝛾) ⊓ (𝛾 → 𝛿) → 𝛽 → 𝛿

Finally, we will see in Section 4 that this type can be compacted to 𝛼 ⊓ (𝛽 ⊔ 𝛾 → 𝛾 ⊓ 𝛿) → 𝛽 → 𝛿 ,

and then simplified to (𝛽 ⊔𝛾 → 𝛾) → 𝛽 → 𝛾 , since 𝛼 occurs only negatively (thus can be removed)

and 𝛿 and 𝛾 co-occur negatively (thus can be merged into a single variable).

3.5 Let Polymorphism and Recursion
3.5.1 Let Polymorphism. In traditional ML languages, local let bindings may be assigned polymor-

phic types. This requires keeping track of generalized typing schemes which are to be instantiated
with fresh variables on every use, and making sure that we are not generalizing those type variables

which occur in the environment, which would be unsound.

One way of determining which type variables to generalize is to scan the current environment,

looking for references to the type variables in question. However, that is quite inefficient (it adds a

linear-time operation in an important part of the algorithm).

Efficient generalization in ML. A better approach is to use levels. The idea is that all fresh type

variables created inside the right-hand side of a let binding are first assigned a higher level, which

indicates that they should be generalized. However, the level of a variable is lowered when the

variable “escapes” through a constraint into the enclosing environment, preventing its future

generalization (see the web article by Kiselyov [2013] for an excellent resource on the subject).

Simple-sub typing with levels. We can use the same idea to achieve let polymorphism in Simple-

sub, though we have to be a little more careful, because we do not merely unify type variables as in

ML, but instead we constrain their bounds. Our idea is to make sure that lower-level type variables

never refer to higher-level ones through their bounds, and to enforce that property by duplicating

type structures as needed, when it would otherwise be violated by the addition of a bound.

We first need to add a lvl field to type variable states:

class VariableState(val level: Int,
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var lowerBounds: List[SimpleType],

var upperBounds: List[SimpleType])

and to update freshVar correspondingly:

def freshVar(implicit lvl: Int): Variable =

Variable(new VariableState(lvl, Nil, Nil))

Next, we add an implicit lvl parameter to the typeTerm function, and we make sure to type the

right-hand sides of let bindings with a higher level than the current one:

def typeTerm(trm: Term)(implicit ctx: Ctx, lvl: Int): SimpleType = trm match {

...

// non-recursive let bindings:

case Let(false, nme, rhs, bod) =>

val rhs_ty = typeTerm(rhs)(ctx, lvl + 1) // incremented level!

typeTerm(bod)(ctx + (nme -> PolymorphicType(lvl, rhs_ty)), lvl)

...

}

Notice that in the context used to type the body of the let binding, we wrap the right-hand side

type into a PolymorphicType wrapper, which is defined at the end of Figure 6. A polymorphic type

wraps a simple type body, but additionally remembers above which level the type variables that

appear in body are to be considered universally quantified. Its instantiate(lvl) method copies

body, replacing the type variables above level with fresh variables at level lvl (a task performed

by freshenAbove, whose implementation is too boring to warrant taking space in this paper).

In order to make PolymorphicType and SimpleType type-compatible, we create a common base

trait
13 TypeScheme, as shown in Figure 6. This trait contains two abstract methods: one to instantiate

the type at a given level, and one to compute the level of the type. The latter is implemented in

SimpleType by a field which is lazily evaluated, to avoid needless recomputation; this field is used

to remember the maximum level of any type variables contained in the type.

Finally, we adapt typeTerm to instantiate the types associated with variable names in ctx:

type Ctx = Map[String, TypeScheme]

def typeTerm(trm: Term)(implicit ctx: Ctx, lvl: Int): SimpleType = trm match {

...

case Var(name) => ctx.getOrElse(name, err("not found: " + name)).instantiate

13
In Scala, a sealed trait is like an interface which can only be implemented by types defined in the same file.
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sealed trait TypeScheme {

// to be implemented in SimpleType and TypeScheme:

def instantiate(implicit lvl: Int): SimpleType

def level: Int

}

enum SimpleType extends TypeScheme {

case Variable (s: VariableState)

case Primitive (name: String)

case Function (lhs: SimpleType, rhs: SimpleType)

case Record (fields: List[(String, SimpleType)])

// the following members are required to implement TypeScheme:

def instantiate(implicit lvl: Int) = this

lazy val level = this match {

case Function(lhs, rhs) => max(lhs.level, rhs.level)

case Record(fields) => fields.map(_._2.level).maxOption.getOrElse(0)

case Variable(vs) => vs.level

case Primitive(_) => 0

}

}

case class PolymorphicType(level: Int, body: SimpleType) extends TypeScheme {

def instantiate(implicit lvl: Int) = freshenAbove(body, level)

}

class VariableState(val level: Int,

var lowerBounds: List[SimpleType],

var upperBounds: List[SimpleType])

Fig. 6. Final definitions of Simple-sub’s internal type representation.

...

}

Constraining with levels. The next step is to make sure that variables of higher level do not

escape into the bounds of variables of lower level. We do that by adding guards in the constraining

algorithm, preventing it from happening:

def constrain(lhs: SimpleType, rhs: SimpleType)

...

case (Variable(lhs), rhs) if rhs.level <= lhs.level => // new guard here

lhs.upperBounds = rhs :: lhs.upperBounds

lhs.lowerBounds.foreach(constrain(_, rhs))
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def extrude(ty: SimpleType, pol: Boolean)

(implicit lvl: Int, c: MutMap[PolarVariable, VariableState]): SimpleType

= if (ty.level <= lvl) ty else ty match {

case Primitive(_) => ty

case Function(l, r) => Function(extrude(l, !pol), extrude(r, pol))

case Record(fs) => Record(fs.map(nt => nt._1 -> extrude(nt._2, pol)))

case Variable(vs) => c.getOrElse(vs -> pol, {

val nvs = freshVar

c += vs -> pol -> nvs

if (pol) {

vs.upperBounds ::= nvs

nvs.lowerBounds = vs.lowerBounds.map(extrude(_, pol)) }

else {

vs.lowerBounds ::= nvs

nvs.upperBounds = vs.upperBounds.map(extrude(_, pol)) }

nvs

})

}

Fig. 7. Type extrusion algorithm.

case (lhs, Variable(rhs)) if lhs.level <= rhs.level => // new guard here

rhs.lowerBounds = lhs :: rhs.lowerBounds

rhs.upperBounds.foreach(constrain(lhs, _))

Naturally, we also need to handle the cases where there is a level violation. In such cases, we make

a copy of the problematic type up to its type variables of wrong level (including their bounds)

using the extrude function, which returns a type at the right level that mirrors the structure of the

original type:

case (lhs @ Variable(_), rhs0) =>

val rhs = extrude(rhs0, false)(lhs.level, MutMap.empty)

constrain(lhs, rhs)

case (lhs0, rhs @ Variable(_)) =>

val lhs = extrude(lhs0, true)(rhs.level, MutMap.empty)

constrain(lhs, rhs)

...

The extrude function is defined in Figure 7. Its goal is to make a copy of the problematic type such

that the copy has the requested level and soundly approximates the original type. If a variable vs

needs to be copied as part of an extruded type, two new variables should be created, one for each
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of vs’s bounds (unless of course the variable occurs strictly positively or strictly negatively, in

which case one of the two bounds can be discarded). This way, we essentially create a conservative

approximation of vs in the result of the extrusion, and any later instantiation of vs (created at every

point the nested let binding is used) will be able to receive additional constraints independently, as

long as these constraints are within the extruded approximating bounds of vs.

extrude recursively traverses its argument type tree up to its subtrees of acceptable levels. When

it finds a type variable vs with the wrong level, it creates a copy nvs of the faulty type variable

at the requested level lvl and registers the necessary constraints. This works because nvs has a

level lower than vs, satisfying the invariant on levels. We have to recursively extrude the bound

of vs to place it in the nvs copy, but this bounds may form cycles. To avoid going into an infinite

extrusion loop, we keep a cache c of the variables already being extruded, along with the polarity

of that extrusion. In other words, extrude copies not only type trees, but also the potentially-cyclic

subgraphs of type variable bounds which are rooted in these type trees.

Let polymorphism in MLsub. In contrast to the approach presented here, Dolan uses an equivalent

“lambda-lifted” type system, which associates to let-bound variables entire typing environments, in

the typing context. While this can make for a slicker specification, it is rather counter-intuitive and

thus harder to understand, creates many useless type variables (which need to be simplified later),

and needlessly duplicates constraints, which causes inefficiencies [Pottier 1998, Chapter 16.2].

3.5.2 Recursive Let Bindings. Finally, supporting recursive let bindings is done in the usual way, by

typing the right-hand side of the let binding with, in the context, a name bound to a type variable

which is later checked to be a supertype of the actual right-hand side type (see Figure 8).

3.6 Summary
We summarize the final typing and constraining algorithms in Figures 8 and 9, respectively.

Overall, Simple-sub looks more like traditional type inference algorithms than Dolan’s biu-

nification, and it completely eschews the complexities of bisubstitution and polar types. Yet, as

we confirm experimentally in Section 6, both algorithms produce equivalent results. This shows

that bisubstitution and polar types are not, in fact, essential to type inference with subtyping and

principal types in the style of MLsub.

4 SIMPLIFYING TYPES
As it is, the algorithm shown in the previous section infers types which often contain redundancies

in their structures, as well as type variables which could be removed or unified. An important

component of type inference when subtyping is involved is to simplify the types inferred, so as to

make them compact and easy to comprehend [Pottier 1998]. If we did not perform any simplification,

the inferred types would usually grow linearly with the size of the program!

In this section, we explore the design space and tradeoffs of type simplification (Section 4.1);

we recall how MLsub performs automaton-based simplification (Section 4.2); we explain the ideas

behind Simple-sub’s more basic approach to simplification, which turns out to be sufficient most of

the time — and sometimes better (Section 4.3); and we describe an intermediate representation to

facilitate the application of these ideas (Section 4.4).

4.1 Type Simplification Tradeoffs
Part of the appeal of algebraic subtyping is that it produces compact principal types, which are

easy to read, unlike previous approaches to subtype inference. However, this comes at a cost: it

requires making simplifying assumptions about the semantics of types. These assumptions hold in

MLsub, but may not hold in languages with more advanced features.
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def typeTerm(trm: Term)(implicit ctx: Ctx, lvl: Int): SimpleType = trm match {

case Lit(n) => Primitive("int")

case Var(name) => ctx.getOrElse(name, err("not found: " + name)).instantiate

case Rcd(fs) => Record(fs.map { case (n, t) => (n, typeTerm(t)) })

case Lam(name, body) =>

val param = freshVar

Function(param, typeTerm(body)(ctx + (name -> param), lvl))

case App(f, a) =>

val res = freshVar

constrain(typeTerm(f), Function(typeTerm(a), res))

res

case Sel(obj, name) =>

val res = freshVar

constrain(typeTerm(obj), Record((name -> res) :: Nil))

res

case Let(isrec, nme, rhs, bod) =>

val rhs_ty = if (isrec) {

val exp = freshVar(lvl + 1)

val inf = typeTerm(rhs)(ctx + (nme -> exp), lvl + 1)

constrain(inf, exp)

exp

} else typeTerm(rhs)(ctx, lvl + 1)

typeTerm(bod)(ctx + (nme -> PolymorphicType(lvl, rhs_ty)), lvl)

}

Fig. 8. Full specification of term typing in Simple-sub.

For instance, MLsub considers the types (int → int) ⊓ (nat → nat) and int⊔ nat → int⊓ nat to
be equivalent, although the latter intuitively contains strictly less information. This assumption is

sound, because MLsub programs cannot distinguish between the two types — program which works

with one will also work with the other. However, the equivalence would not hold in a language

which, for example, used intersection types to encode overloading.

As another example, MLsub does not distinguish between the types { tag : 0 ; payload : str } ⊔
{ tag : 1 ; payload : int } and { tag : 0 ⊔ 1 ; payload : str ⊔ int }, where 0 and 1 denote singleton

literal types (trivial to add to our type system). But in languages like TypeScript which support

flow typing [Pearce 2013; Tobin-Hochstadt and Felleisen 2010], the former holds more information,

since the different types of payload could be extracted separately by first matching on the tag.
14

These simplifying assumptions are not necessary for principal type inference — they are merely

a requirement of MLsub’s simplification and subsumption checking approaches (note that sub-

sumption checking is outside the scope of this paper). While they are implied by Dolan’s algebraic

construction of subtyping, making them inescapable in his system, these assumptions can actually

14
Some approaches achieve complete type inference in the face of this more advanced form of reasoning [Castagna

et al. 2016], but they typically lack the principal type property (they generate a set of possible types instead of a single,

most-general type), and they naturally do not enable the same level of simplification.
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def constrain(lhs: SimpleType, rhs: SimpleType)

(implicit cache: MutSet[(SimpleType,SimpleType)] = MutSet.empty): Unit = {

if (cache.contains(lhs -> rhs)) return () else cache += lhs -> rhs

(lhs, rhs) match {

case (Primitive(n0), Primitive(n1)) if n0 == n1 => ()

case (Function(l0, r0), Function(l1, r1)) =>

constrain(l1, l0); constrain(r0, r1)

case (Record(fs0), Record(fs1)) =>

fs1.foreach { case (n1, t1) =>

fs0.find(_._1 === n1) match {

case None => err("missing field: " + n1 + " in " + lhs)

case Some((_, t0)) => constrain(t0, t1) }}

case (Variable(lhs), rhs0) if rhs.level <= lhs.level =>

lhs.upperBounds = rhs :: lhs.upperBounds

lhs.lowerBounds.foreach(constrain(_, rhs))

case (lhs0, Variable(rhs)) if lhs.level <= rhs.level =>

rhs.lowerBounds = lhs :: rhs.lowerBounds

rhs.upperBounds.foreach(constrain(lhs, _))

case (lhs @ Variable(_), rhs0) =>

val rhs = extrude(rhs0, false)(lhs.level, MutMap.empty)

constrain(lhs, rhs)

case (lhs0, rhs @ Variable(_)) =>

val lhs = extrude(lhs0, true)(rhs.level, MutMap.empty)

constrain(lhs, rhs)

case _ => err("cannot constrain " + lhs + " <: " + rhs)

}}

Fig. 9. Full specification of subtype constraining in Simple-sub.

be separated from the type inference specification — we see a syntactic interpretation of subtyping

in Section 5 which does not imply them, the understanding being that the system can be completed

with more rules as desired, to achieve the simplification potential described in this section.

4.2 Type Simplification in MLsub
Thanks to the simplifying assumptions described in the previous subsection, MLsub can represent

types as finite-state automata, where the states are type variables and where the edges, which are

labelled, represent relations between these type variables. There are four sorts of labels on any edge

between two type variables 𝛼 and 𝛽 : an “is-a” label indicate that 𝛼 is a subtype of 𝛽 ; a “consumes”
label indicate that 𝛼 is a function which takes some 𝛽 in parameter; a “produces” label indicate that
𝛼 is a function which returns some 𝛽 as a result; and finally, a “contains-𝐿” label indicate that 𝛼 is a

record which contains a field named 𝐿 of type 𝛽 . The starting state of the automaton represents the

root of the type expression.

This clever representation allows one to simplify types by reusingwell-known existing techniques

from the domain of automata theory: type automata can be made deterministic (“is-a”-labelled
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edges are seen as 𝜖 edges, so type automata are initially non-deterministic) and then minimized, to

achieve simplification. However, this is a quite heavy and expensive approach. We found that in

practice, a more straightforward simplification algorithm was often sufficient. We describe such an

algorithm in the rest of this section.

4.3 Type Simplification in Simple-sub
Our simplification approach hinges on two main ideas: co-occurrence analysis and hash consing.

4.3.1 Co-occurrence Analysis. Co-occurrence analysis looks at every variable that appears in a type

in both positive and negative positions, and records along which other variables and types it always

occurs. A variable 𝑣 occurs along a type 𝜏 if it is part of the same type union ... ⊔ 𝑣 ⊔ ... ⊔ 𝜏 ⊔ ... or

part of the same type intersection ... ⊓ 𝑣 ⊓ ... ⊓ 𝜏 ⊓ ...

Based on this information, we can perform three kinds of simplification:

Removal of polar variable. First, we want to remove type variables which appear only positively

(or negatively) in a type expression. For instance, consider the type inferred for 𝜆𝑥.𝑥 + 1, which is

currently 𝛼 ⊓ int → int (because the typing of lambda expressions always assigns a type variable to

the parameter). The variable 𝛼 in this type is redundant since it only occurs in negative position —

whichever 𝛼 the caller may pick, the function will still require the argument to be an int, and it will
still produce an int as a result. So we can simply remove 𝛼 and obtain the simplified type int → int.

As another example, the type of a function which uses its argument as an int but never terminates,

int → 𝛼 , can be simplified to int → ⊥.

Unification of indistinguishable variables. We have previously mentioned that a type such as

bool → 𝛼 → 𝛽 → 𝛼 ⊔ 𝛽 (the natural type of if-then-else) is equivalent to the simpler type

bool → 𝛼 → 𝛼 → 𝛼 . This is true because the positive occurrences of the variables 𝛼 and 𝛽

are "indistinguishable" — whenever an 𝛼 is produced, a 𝛽 is also produced. Therefore, we cannot

distinguish the two variables, and they can be unified.

Based on the result of the co-occurrence analysis, we can unify all those variables that always

occur together either in positive or in negative positions (or both).

Flattening of “variable sandwiches”. What we call a "variable sandwich" is an inferred type variable

𝑣 which has a type 𝜏 both as an upper bound and as a lower bound, i.e., 𝑣 ≤ 𝜏 and 𝑣 ≥ 𝜏 . This

means that 𝑣 is equivalent to 𝜏 . In a coalesced type, this will transpire as 𝑣 co-occurring with

𝜏 both positively and negatively. So we can use the result of co-occurrence analysis to remove

variables which are sandwiched between two identical bounds. As an example, we simplify the

type 𝛼 ⊓ int → 𝛼 ⊔ int to just int → int.
Conceptually, this idea generalizes polar variable removal, which was explained above. Indeed,

if a variable never occurs positively, it conceptually occurs both positively and negatively along

with the type ⊥, so we can replace that variable with ⊥ (i.e., remove it from all type unions).

All these transformations are truly simplifications, in the sense that they yield new types which

contain fewer subterms but are still equivalent to the original types (i.e., the two types subsume

each other). Therefore, these transformations also preserve principality.

4.3.2 Hash Consing. Simple-sub’s other simplification approach, hash consing, deals with removing

duplicated structures in coalesced type expressions.

Consider the following recursive term:

let 𝑓 = 𝜆𝑥. { L = 𝑥 ; R = 𝑓 𝑥 } in 𝑓
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The coalesced type inferred for this term would be:

𝛼 → { L : 𝛼 ; R : 𝜇𝛽. { L : 𝛼 ; R : 𝛽 } }
Notice that there is an outer record layer that is redundant. We would like to instead infer:

𝛼 → 𝜇𝛽. { L : 𝛼 ; R : 𝛽 }
This can be done by performing hash consing on the types being coalesced, in the coalesceType

function: instead of simply remembering which variables are in the process of being coalesced, we

can remember whole type expressions; when we reach a type expression which is already being

coalesced, we introduce a recursive type variable in this position, removing the redundant outer

layer of types like the above.

Interestingly, MLsub does not currently perform a comparable simplification, so Simple-sub

infers simpler types in examples like the one above.

4.4 An Intermediate Representation for Simplification
The above two approaches do not work very well out of the box. First, we cannot perform them on

non-coalesced types, since co-occurrence analysis would miss information which only becomes

apparent after the bounds are flattened. For instance, if we inferred a type variable 𝛼 with upper

bounds 𝜏0 → 𝜏1 and 𝜏2 → 𝜏3, only after we flatten these bounds and merge the function types

into 𝜏0 ⊔ 𝜏2 → 𝜏1 ⊓ 𝜏2 do we notice the co-occurrence of 𝜏0, 𝜏2 and 𝜏1, 𝜏3. Second, it is awkward

to perform the normalization steps necessary for this sort of function type merging on the final

coalesced type representation, which is syntactically too loose (it can represent types which do not

correspond to inferred types, for instance merging unions and intersections).

case class CompactType(vars: Set[TypeVariable],

prims: Set[PrimType],

rcd: Option[SortedMap[String, CompactType]],

fun: Option[(CompactType, CompactType)])

case class CompactTypeScheme(cty: CompactType,

recVars: Map[TypeVariable, CompactType])

For these reasons, we introduce an intermediate CompactType representation between SimpleType

and Type, in which to perform simplification more easily. The CompactType representation, shown

above, corresponds to a normalized representation of types where all the non-recursive variable

bounds are coalesced. The recVars field of CompactTypeScheme records the bounds of recursive type

variables (which we cannot coalesce, as they are cyclic).

The compactType function to convert a SimpleType into a CompactTypeScheme is straightforward

and looks like the coalesceType function shown earlier. The simplifyType function is slightly

more complicated, as it has to perform a co-occurrence analysis pass followed by a rewriting

pass. Finally, hash consing is done as part of the coalesceCompactType function. We do not show

the implementations of these functions here for lack of space, but they can be seen in the code

associated with the paper.

5 FORMALIZATION OF SIMPLE-SUB
So far, we have appealed to an intuitive understanding of subtyping, eschewing a more explicit

characterization. In this section, we make our intuition more formal by giving a syntactic account
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S-Refl

𝜏 ≤ 𝜏

S-Trans

Σ ⊢ 𝜏0 ≤ 𝜏1 Σ ⊢ 𝜏1 ≤ 𝜏2

Σ ⊢ 𝜏0 ≤ 𝜏2

S-Weaken

𝐻

Σ ⊢ 𝐻

S-Assum

Σ,▷𝐻 ⊢ 𝐻
Σ ⊢ 𝐻

S-Hyp

𝐻 ∈ Σ

Σ ⊢ 𝐻

S-Rec

𝜇𝛼. 𝜏 ≡ [𝜇𝛼. 𝜏/𝛼]𝜏

S-Or

∀𝑖, ∃ 𝑗, Σ ⊢ 𝜏𝑖 ≤ 𝜏 ′𝑗

Σ ⊢ ⊔𝑖𝜏𝑖 ≤ ⊔𝑗𝜏
′
𝑗

S-And

∀𝑖, ∃ 𝑗, Σ ⊢ 𝜏 𝑗 ≤ 𝜏 ′𝑖

Σ ⊢ ⊓𝑗𝜏 𝑗 ≤ ⊓𝑖𝜏
′
𝑖

S-Fun

◁Σ ⊢ 𝜏0 ≤ 𝜏1 ◁Σ ⊢ 𝜏2 ≤ 𝜏3

Σ ⊢ 𝜏1 → 𝜏2 ≤ 𝜏0 → 𝜏3

S-Rcd

{ 𝑙𝑖 : 𝑡𝑖
𝑖 } ≡ ⊓𝑖 { 𝑙𝑖 : 𝑡𝑖 }

S-Depth

◁Σ ⊢ 𝜏1 ≤ 𝜏2

Σ ⊢ { 𝑙 : 𝜏1 } ≤ { 𝑙 : 𝜏2 }

◁(Σ, 𝐻 ) = ◁Σ, 𝐻
◁(Σ,▷𝐻 ) = ◁Σ, 𝐻
◁𝜖 = 𝜖

Fig. 10. Declarative subtyping rules of Simple-sub. These only cover part of the relationships present in
Dolan’s algebraic construction of types [Dolan 2017]. More subtyping rules can be added to give desirable
properties to the system (such as distributivity of unions, intersections, and type constructors), but they are
not strictly required for principal type inference. Note that by convention, we consider that an empty union
is ⊥ and an empty intersection is ⊤, so these rules cover things like int ≤ ⊤.

of the minimal subtyping relationship required to make the type inference algorithm of Section 3

sound and complete. We state the corresponding theorems and sketch how to carry out their proofs.

The complete proofs are outside the scope of this (already quite long) paper.

We restrict ourselves to the non-let-polymorphic version of Simple-sub for simplicity.
15

5.1 A Syntax-First Definition of Subtyping
Figure 10 presents the minimal subtyping rules necessary to perform sound and complete type

inference in Simple-sub. The general subtyping judgement has the form Σ ⊢ 𝜏0 ≤ 𝜏1 and includes a

subtyping context Σ made of subtyping hypotheses of the form 𝜏2 ≤ 𝜏3, possibly prefixed with a ▷
symbol. We use Σ ⊢ 𝜏0 ≡ 𝜏1 as a shorthand for Σ ⊢ 𝜏0 ≤ 𝜏1 ∧ Σ ⊢ 𝜏1 ≤ 𝜏0. When Σ is empty, we omit

the Σ ⊢ and just write 𝜏0 ≤ 𝜏1 and 𝜏0 ≡ 𝜏1.

Note that Figure 10 only presents a subset of all the rules one may want in an actual system. In

particular, type simplification and subsumption checking (to determine whether one type signature

is at least as general as another) require rules to merge type constructors like function types,

so that for instance the equivalence (𝜏0 → 𝜏1) ⊓ (𝜏2 → 𝜏3) ≡ 𝜏0 ⊔ 𝜏1 → 𝜏2 ⊓ 𝜏3 holds (see the

related discussion in Section 4.1). On the other hand, we do not expect rules like distributivity of

unions over intersections to be actually useful in a pure MLsub-style system, since unions and

intersections are normally kept separate (unions occurring strictly positively, and intersections

strictly negatively); however, they could come in useful in a generalized system.

5.1.1 Subtyping Recursive Types. A consequence of our syntactic account of subtyping is that we

do not define types as some fixed point over a generative relation, as done in, e.g., [Dolan 2017;

Pierce 2002]. Instead, we have to account for the fact that we manipulate finite syntactic type trees,
in which recursive types have to be manually unfolded to derive things about them. This is the

purpose of the S-Rec rule, which substitutes a recursive types within itself to expose one layer of

its underlying definition. However, as remarked by Amadio and Cardelli [1993], the S-Rec rule

alone is not sufficient to derive valid inequalities like 𝜇𝛼0. 𝜏 → 𝜏 → 𝛼0 ≤ 𝜇𝛼1 . 𝜏 → 𝛼1 because

15
Our implementation of let polymorphism can be proven correct separately, by showing it has the same effect as duplicating

the let-bound definition at each of its use sites (which is the semantics of let polymorphism [Damas and Milner 1982]).
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these types, although equivalent, never unfold to the precise same syntactic representation. This

motivates the next paragraph.

5.1.2 Subtyping Hypotheses. We make use of the environment Σ to store subtyping hypotheses, to

be leveraged later using the S-Hyp rule. We have to be careful not to allow the use of a hypothesis

right after assuming it, which would obviously make the system unsound. In the specification

of their constraint solving algorithm, Hosoya et al. [2005] use two distinct judgments ⊢ and ⊢′
to distinguish from places where the hypotheses can or cannot be used. We take a different, but

related approach. Our S-Assum subtyping rule resembles the Löb rule described by Appel et al.

[2007], which uses the “later” modality ▷ in order to delay the applicability of hypotheses — by

placing this symbol in front of the hypothesis being assumed, we prevent its immediate usage by

S-Hyp. We eliminate ▷ when passing through a function or record constructor, using ◁ to remove

all ▷ occurrences from the set of hypotheses, thereby unlocking them for use by S-Hyp.

These precautions reflect the “guardedness” restrictions used by Dolan [2017] on recursive types,

which prevents usages of 𝛼 that are not guarded by→ or { ... } in a recursive type 𝜇𝛼. 𝜏 . By contrast,

our restriction is not a syntactic one, and contrary to Dolan we do allow types like 𝜇𝛼. 𝛼 — this type

unfolds into itself by S-Rec — and 𝜇𝛼. 𝛼 ⊓ 𝛼 , about which no useful assumptions can be leveraged,

since they never go through a function or record constructor.

5.1.3 Example. As an example, let us try to derive the following inequality, which states that the

type of a function taking two curried 𝜏 arguments an arbitrary number of times is a special case of
the type of a function taking a single 𝜏 argument an arbitrary number of times:

𝜇𝛼0 . 𝜏 → 𝜏 → 𝛼0 ≤ 𝜇𝛼1. 𝜏 → 𝛼1

To facilitate the development, we use the shorthands 𝜏0 = 𝜇𝛼0 . 𝜏 → 𝜏 → 𝛼0; 𝜏1 = 𝜇𝛼1. 𝜏 → 𝛼1; and

𝐻 = 𝜏0 ≤ 𝜏1. We start by deriving that the respective unfoldings of the recursive types are subtypes;

that is, that 𝜏 → 𝜏 → 𝜏0 ≤ 𝜏 → 𝜏1 (1). Note that for conciseness, we omit the applications of

S-Weaken in the derivations below:

Fun

Refl

𝐻 ⊢ 𝜏 ≤ 𝜏

Fun

Refl

𝐻 ⊢ 𝜏 ≤ 𝜏

(𝜏0 ≤ 𝜏1) ∈ 𝐻

𝐻 ⊢ 𝜏0 ≤ 𝜏1
Hyp

𝐻 ⊢ 𝜏 → 𝜏0 ≤ 𝜏 → 𝜏1 𝐻 ⊢ 𝜏 → 𝜏1 ≤ 𝜏1
Rec

𝐻 ⊢ 𝜏 → 𝜏0 ≤ 𝜏1
Trans

▷𝐻 ⊢ 𝜏 → 𝜏 → 𝜏0 ≤ 𝜏 → 𝜏1 (1)
Then, we simply have to fold back the unfolded recursive types, using Rec and Trans:

Assum

Trans

Trans

Rec

▷𝐻 ⊢ 𝜏0 ≤ 𝜏 → 𝜏 → 𝜏0 (1)
▷𝐻 ⊢ 𝜏0 ≤ 𝜏 → 𝜏1 ▷𝐻 ⊢ 𝜏 → 𝜏1 ≤ 𝜏1

Rec

▷𝐻 ⊢ 𝜏0 ≤ 𝜏1

𝜏0 ≤ 𝜏1

5.2 Simplified Algorithms and Mutability
For ease of formal reasoning, we use a simpler definition of type coalescing, shown in Figure 11. In

this definition, we refer to TypeVariable(vs.uniqueName) as 𝛼vs, and we use 𝛼+
vs and 𝛼

−
vs to denote

two additional (distinct) unique names, to be used as positive and negative recursive occurrence

binders — they serve the purpose of freshVar.uniqueName in the version of type coalescing shown

in Section 3.3. Similarly, it is possible to give a simpler (but less efficient) definition of the constrain
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function using immutable data structures instead of mutable ones, which is easily proven equivalent;

we do not show this simpler version here for lack of space, but assume its existence.

The only mutability left in the simplified algorithms is the mutability of type variable bounds.

We refer to these bounds collectively as 𝜎 , which maps each VariableState instance to its current

upper and lower bounds. We write foo(args)𝜎 ⇓𝜎′ res to denote the execution of some function foo
given bounds 𝜎 and having the effect of producing the new bounds 𝜎 ′

. We use the shorthand lbvs𝜎
for vs.lowerBounds𝜎 and ubvs𝜎 for vs.upperBounds𝜎 .

5.3 Soundness and Completeness
Our theorems of interest are the soundness and completeness of Simple-sub:

Theorem 1 (Soundness). Simple-sub only yields types which comply with the declarative type
system: if typeTerm(𝑡) (empty)∅ ⇓𝜎 st for some st and 𝜎 , then there exists a type 𝜏 such that ⊢ 𝑡 : 𝜏
and 𝜏 ≤∀ E+𝜎JstK.

Theorem 2 (Completeness). Simple-sub always finds principal type schemes: if ⊢ 𝑡 : 𝜏 , then
typeTerm(𝑡) (empty)∅ ⇓𝜎 st for some st and 𝜎 , and E+𝜎JstK ≤∀ 𝜏 .

5.3.1 Soundness. As usual, proving the theorem requires proving a more general lemma.

We use unifying type coalescing (Figure 12) — a variant of type coalescing which allows proving

the soundness lemmas more easily. The crucial property of unifying coalescing is that it instantiates

each type variable 𝛼vs in a way that makes the positive coalescing of vs a subtype of its negative
coalescing, as long as all lower bounds of vs are subtypes of all its upper bounds — i.e., its bounds

are consistent. We also denote by ⊢cons𝜎 the fact that the bounds of all variables in 𝜎 are consistent.

Lemma 1 (Soundness — General). Assuming ⊢cons𝜎 and typeTerm(𝑡)(ctx)𝜎 ⇓𝜎′ st, then ⊢cons𝜎 ′

and E−
𝜎′JctxK ⊢ 𝑡 : E−

𝜎′JstK.

The proof is by induction on the executions of typeTerm, assuming that typeTerm terminates

successfully. In the process, we need a number of auxiliary lemmas, most of which we do not show

here. The core of the proof actually resides in the proof of sound constraining (Lemma 2).

E𝜙𝜎JPrimitive(n)K𝐶 = n

E𝜙𝜎JFunction(s, t)K𝐶 = E¬𝜙𝜎 JsK𝐶 → E𝜙𝜎JtK𝐶

E𝜙𝜎JRecord(fs)K𝐶 = ⊓(n,t) ∈ fs { n : E𝜙𝜎JtK𝐶 }
E−𝜎JVariable(vs)K𝐶 = 𝛼−

vs if (vs,−) ∈ 𝐶

E−𝜎JVariable(vs)K𝐶 = 𝜇𝛼−
vs. 𝛼vs ∩⊓u∈ubvs𝜎 E−𝜎JuK (𝐶 ∪ {(vs,−)}) if (vs,−) ∉ 𝐶

E+𝜎JVariable(vs)K𝐶 = 𝛼+
vs if (vs, +) ∈ 𝐶

E+𝜎JVariable(vs)K𝐶 = 𝜇𝛼+
vs . 𝛼vs ∪⊔l∈lbvs𝜎 E+𝜎JlK (𝐶 ∪ {(vs, +)}) if (vs, +) ∉ 𝐶

Fig. 11. Type coalescing, where the metavariable 𝜙 is either + or − and ¬(+) = − and ¬(−) = +.

E−
𝜎 JVariable(vs)K𝐶 = 𝜇𝛼−

vs. ⊓u∈ubvs𝜎 E−
𝜎 JuK (𝐶 ∪ {(vs,−)}) if (vs,−) ∉ 𝐶

E+
𝜎JVariable(vs)K𝐶 = 𝜇𝛼+

vs. E−
𝜎 JVariable(vs)K𝐶 ∪⊔l∈lbvs𝜎 E+

𝜎JlK (𝐶 ∪ {(vs, +)}) if (vs, +) ∉ 𝐶

Fig. 12. Unifying type coalescing. All other cases are exactly like in Figure 11, and are omitted.
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Lemma 2 (Soundness of Constraining). When it succeeds, constraining in consistent bounds
ensures that the bounds remain consistent and the coalescing of the constrained types become subtypes:
if ⊢cons 𝜎 and constrain(st0, st1)𝜎 ⇓ _𝜎 ′ (), then ⊢cons 𝜎 ′ and E−

𝜎′Jst0K ≤ E+
𝜎′Jst1K.

This is proven by induction on executions of the constraining calls. We actually need a stronger

induction hypothesis, which relates the subtyping context Σ with the constraining cache, talks

precisely about the bounds introduced by each call, and states that existing subtyping relations

between coalesced types are not altered by further constraining calls. The Variable cases are quite

subtle; when we insert the new bound into the variable’s state, we temporarily break the consistency

of the variable’s bounds, but we restore it as an effect of the following recursive calls to propagate

the bound. To apply the induction on these recursive calls, we need to loosen the “consistent bounds”

premise of the hypothesis, making an exception for those variables which appear as part of the

current constraining cache, thus allowing the calls to happen in partially-broken bounds.

5.3.2 Completeness. Completeness is proven through the following more general lemma:

Lemma 3 (Completeness — General). Assuming Γ ⊢ 𝑡 : 𝜏 , then for all ctx, 𝜎 , and type-variable
substitution 𝜌 , if 𝜌 (E−𝜎JctxK) ≡ Γ then typeTerm(𝑡) (ctx)𝜎 ⇓ _𝜎 ′st for some st and 𝜎 ′, and there
exists a substitution 𝜌 ′ such that 𝜌 ′(E−

𝜎′JctxK) ≡ Γ and 𝜌 ′(E+
𝜎′JstK) ≤ 𝜏 .

Remark that “there exists a 𝜌 ′
such that 𝜌 ′(𝜏0) ≤ 𝜏1” is equivalent to “𝜏0 ≤∀ 𝜏1” by definition of

the subsumption relation ≤∀
. Again, the core of the proof resides in lemmas about constraining.

Lemma 4 (Termination of Constraining). For all st0, st1, and 𝜎 , either constrain(st0, st1)𝜎 hits
an err(...) case and fails, or there exists a 𝜎 ′ such that constrain(st0, st1)𝜎 ⇓𝜎′ ().

Lemma 5 (Completeness of Constraining). Constraining succeeds on types whose coalesced
forms are subtypes, and it does not alter existing subtyping relationships: for all st0, st1, 𝜌 , and 𝜎 , if
𝜌 (E−𝜎Jst0K) ≤ E+𝜎Jst1K, then constrain(st0, st1)𝜎 ⇓𝜎′ () for some 𝜎 ′ — i.e., constraining does not yield
an error — and for all st2, st3, 𝜎 ′ such that constrain(st2, st3)𝜎 ⇓𝜎′ (), then 𝜌 (E−

𝜎′Jst0K) ≤ E+
𝜎′Jst1K.

We prove Lemmas 3 and 5 by induction on typing and subtyping derivations, respectively. The

rule S-Trans causes some trouble: in case the subtyping derivation used it, we get premises which

refer to derivations on which we cannot apply the induction, because they do not correspond to

recursive constrain calls. S-Trans can be removed from the system and proven from the other

rules only in an empty subtyping context; indeed, Σ could in principle include transitivity-breaking

hypotheses, such as (⊤ ≤ ⊥) ∈ Σ. But the subtyping context, which will mirror the constraining

cache, will not be empty in the actual inductive proof of (a stronger version of) Lemma 5. The

solution is to show that no transitivity-breaking assumptions are ever introduced in the subtyping

context during successful constraining, and that the input subtyping relation can always be derived

without using S-Trans; we do this by strengthening the induction hypothesis accordingly.

6 EXPERIMENTAL EVALUATION
To evaluate the strengths of both the Simple-sub and MLsub implementations, we ran them on

1,313,832 randomly-generated expressions of varying sizes, of which 515,509 turned out to be

well-typed and 798,321 turned out to be ill-typed.

Subsumption checking. MLsub provides a subsumption checker, whose goal is to determine if

one inferred signature is at least as general as another (i.e., it tests for ≤∀
). We used MLsub’s

subsumption checker to verify that both algorithms produced equivalent result, checking that

mutual subsumption held between the two inferred type expressions.
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Generated expressions. We considered random expressions making use of integer literals, lambdas,

applications, record creations, field selections, recursive let bindings, and non-recursive let bindings.

We used at most five different variable names and at most three different field names per expression.

We stochastically generated well-scoped expressions without shadowing, using a depth-first search

with an exponential decrease in probability of recursing into non-leaf subexpression. This generated

1,313,832 expressions of sizes ranging from 1 to 23, the majority (about a million) being in the

10—15 range. The code used for generating and testing these expressions can be found online in

the mlsub-compare branch of the repository, as well as in the archived artifact of this paper.

Bugs found inMLsub. We found several bugs inMLsub: a variable shadowing bug— the expression

let rec x = (let y = x in (fun x -> y)) in x gets assigned the wrong type a -> a because of the

shadowing of let-bounds variable x;16 a type comparison bug due to a typo (which had already

been fixed in another branch of the project); and a simplification bug, giving (for instance) to the

record expression {u = 0; v = {w = {w = 0}}} the wrong type {u : int, v : (rec a = {w : a})}. Because

of the latter bug, to carry out the tests successfully, we had to disable MLsub’s simplifier (but the

Simple-sub simplifier was still enabled).

Summary. We were able to make sure that Simple-sub and MLsub agreed on type inference

for more than a million randomly-generated expressions. Systematic testing turned out to be a

surprisingly useful tool for detecting small mistakes which would have otherwise gone unnoticed.

7 CONCLUSIONS AND FUTUREWORK
Algebraic subtyping and its realization in MLsub demonstrated a very promising new technique for

inferring compact principal types in the presence of implicit subtyping. In this paper, we presented a

simpler foundational view of MLsub’s type system, which does not require notions of bisubstitution

or polar types, and slightly departs from the focus on algebra first. This new understanding lead us

to more approachable type inference specification and implementation. We showed the design of

Simple-sub, which achieves principal type inference and reasonable simplification in just 500 lines

of code, to serve as an inspiration to future type systems and programming languages designers.

There is still much to be explored among the possibilities offered by algebraic subtyping, and by

the new Simple-sub algorithm in particular. Polymorphic variants, a very useful language feature

[Garrigue 1998], are the dual of polymorphic record types. A simple form of polymorphic variants

(i.e., without default match cases and without nested patterns) can be handled in our system in

exactly the same way as we have shown for records. Both variants and records can also be extended

easily to support row variable for extensibility, yielding a powerful system; moreover, such a system

would still be simple and natural to use thanks to subtyping, which usefully complements row

polymorphism [Pottier 1998, Chapter 14.7]. Finally, we have been prototyping extensions for more

advanced features which also benefit from subtyping, such as first-class polymorphism.
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