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Abstract

In this work, we borrow tools from the field of
adversarial robustness, and propose a new frame-
work that permits to relate dataset features to
the distance of samples to the decision bound-
ary. Using this framework we identify the sub-
space of features used by CNNs to classify large-
scale vision benchmarks, and reveal some intrigu-
ing aspects of their robustness to distributions
shift. Specifically, by manipulating the frequency
content in CIFAR-10 we show that the existence
of redundant features on a dataset can harm the
networks’ robustness to distribution shifts. We
demonstrate that completely erasing the redun-
dant information from the training set can effi-
ciently solve this problem. This paper is a short
version of (Ortiz-Jimenez et al., 2020).

1. Introduction
Despite its tremendous success in controlled laboratory en-
vironments, deploying deep learning in the real world has
turned to be a great challenge. One of the main reasons
for this, is the extreme sensitivity of neural networks to
small corruptions of the input data (Szegedy et al., 2014;
Hendrycks & Dietterich, 2019) or to slight shifts on the
testing distribution (Recht et al., 2019). One possible expla-
nation for these two weaknesses is the over-reliance of deep
networks on brittle and non-human aligned features of the
training and validation sets, which might not be present in
the real world distribution that they try to represent.

For this reason, it has become a pressing issue to identify
which features do deep classifiers really use, as well as to
describe the mechanisms that lead them to select certain
features. In this sense, the decision boundary of a classi-
fier encapsulates all the information required to interpret
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Figure 1. Test accuracy of CNNs trained and tested on combina-
tions of CIFAR-10 and a low-pass version of CIFAR-10 (TLP).

its decisions. However, due to its high complexity and di-
mensionality, obtaining a precise description of the decision
boundary of a deep neural network is close to impossible.

The main properties of these boundaries have been studied
mainly from a robustness point of view (Fawzi et al., 2018;
He et al., 2018; Ramamurthy et al., 2019). Interestingly,
the extreme vulnerability of deep networks to adversarial
perturbations (Szegedy et al., 2014; Goodfellow et al., 2015)
implies that their boundaries still lie alarmingly close to any
input sample. However, it seems that such perturbations are
not irrelevant signals, but rather discriminative features of
the training set (Jetley et al., 2018; Ilyas et al., 2019).

In this paper, we leverage this particular connection to de-
velop a new framework that allows to discover the features
used by a neural network. In particular, we use adversarial
proxies to construct a local summary of the decision bound-
ary of a deep classifier based on margin observations along a
sequence of orthogonal directions. This framework permits
to carefully shift the training distributions and measure the
induced changes on the geometry of the boundary. This pro-
vides a new perspective on the relationship between margin
and the discriminative features used by deep networks.

Furthermore, we can use this new tool to understand an
intriguing aspect of the robustness of deep learning to dis-
tribution shifts; namely, its directionality. Let A and B be
two data distributions differing only by a small shift. Sur-
prisingly, the performance of a classifier trained on A and
tested on B, can be significantly worse than the performance
of the same classifier trained on B but tested on A.
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(a) MNIST (Test: 99.4%)
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(b) CIFAR-10 (Test: 93.0%)
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(c) ImageNet (Test: 76.2%)
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(d) MNIST flipped (Test: 99.3%)
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(e) CIFAR-10 flipped (Test: 91.2%)
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(f) ImageNet flipped (Test: 68.1%)

Figure 2. Margin distribution of test samples in subspaces taken from the diagonal of the DCT (low to high frequencies). The thick line
indicates the median values of the margin, and the shaded points represent its distribution. Top: (a) MNIST (LeNet) (Lecun et al., 1998),
(b) CIFAR-10 (DenseNet-121) (Huang et al., 2017) and (c) ImageNet (ResNet-50) (He et al., 2016) Bottom: (d) MNIST (LeNet), (e)
CIFAR-10 (DenseNet-121) and (f) ImageNet (ResNet-50) trained on frequency “flipped” versions of the standard datasets.

An example of the directionality of the robustness to dis-
tribution shift is illustrated in Fig. 1, where we can see a
performance comparison of several convolutional neural
networks (CNNs) trained and tested on combinations of
the standard CIFAR-10 dataset and a slightly shifted ver-
sion of it TLP, with low-pass filtered samples1. Clearly, the
CIFAR-10 classifiers perform badly on TLP. Meanwhile, the
classifiers trained on TLP data achieve equal accuracy on
both distributions, while still performing comparably to the
original CIFAR-10 classifier2.

In what follows, we will show that the reason for this strange
behaviour is the strong inductive bias of neural networks to
create boundaries only on discriminative features, regardless
of their generalization performance. This means that, if a
certain distribution contains too much unnecessary infor-
mation, there is a high chance that a network will create
boundaries around it. This will eventually harm its perfor-
mance on samples from a slightly different distribution that
does not contain this unnecessary information.

All in all, we demonstrate that one possible way to improve
the robustness of deep learning to distribution shift is the
identification and subsequent removal of all redundant fea-
tures of a dataset to avoid their use by neural networks.

2. Margin and discriminative features
Let F : RD → {1, . . . , L} be a neural network, such that,
for any input x ∈ RD, it outputs a class label y = F (x).
Given a sub-region of the input space S ⊆ RD, we define
the (`2) minimal adversarial perturbation of x in S as

δS(x) = argmin
δ∈S

‖δ‖2 s.t. F (x+ δ) 6= F (x).

1The construction of this distribution is detailed in Sec. 2.
2A similar effect was shown on ImageNet (Yin et al., 2019),

although the network was only tested on filtered data.

The magnitude ‖δS(x)‖2 is the margin of x in S.

In this work, we obtain a local summary of the decision
boundary around a set of observation samples, by measuring
their margin in a sequence of distinct subspaces {Sj}R−1j=0 .
In practice, we use a subspace-constrained version of Deep-
Fool (Moosavi-Dezfooli et al., 2016)3 to approximate the
margins in each Sj . Having access to these new measure-
ments, we can show that deep networks have a strong in-
ductive bias towards invariance, which translates to small
margins only along the direction of the discriminative fea-
tures. As far as we know, we are the first to rigorously
corroborate this property on state-of-the-art CNNs trained
on standard computer vision datasets4.

Let W,H,C denote the width, height, and number of chan-
nels of the images in those datasets, respectively. In our
experiments we use the 2-dimensional discrete cosine trans-
form (2D-DCT) (Ahmed et al., 1974) basis of size H ×W
to generate the observation subspaces. In particular, let
D ∈ RH×W×H×W denote the 2D-DCT generating tensor,
such that vec(D(i, j, :, :)⊗IC) represents one basis element
of the image space. We generate the subspaces by sampling
K ×K blocks from the diagonal of the DCT tensor using a
sliding window with step-size T :

Sj = span{ vec (D (j · T + k, j · T + k, :, :)⊗ IC)

k = 0, . . . ,K − 1}.

In fact, previous studies on the robustness of CNNs have
shown that these networks are more vulnerable to noise in
certain frequency bands than others (Yin et al., 2019). Hence
we can expect large differences in margin to appear in the

3We do not enforce the [0, 1]D box constraints on the adversar-
ial images, as we are not interested in finding “plausible” adversar-
ial perturbations, but in measuring the distance to the boundary.

4We provide an additional validation on a controlled synthetic
example on Sec. A of the Appendix.
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Figure 3. (Top) Original and (bottom) flipped ImageNet samples.

spectral domain. The sliding window on the diagonal of the
DCT gives a good trade-off between visualization abilities
in simple one-dimensional plots, and a diverse sampling of
the spatial spectrum of natural images, with a well-defined
gradient flowing from low to high frequencies.

The margin distribution of the evaluated test samples is
presented in the top of Fig. 2. For MNIST and ImageNet,
the networks present a strong invariance (i.e., high margin)
along high frequency directions and small margin along low
frequency ones. Notice, however, that for CIFAR-10 dataset
the margin values are more uniformly distributed.

Towards verifying that these margin differences are associ-
ated to the data features exploited by the networks, we must
first ensure that the directions of the observed invariance
(large margin) are related to the features presented in the
dataset, rather than being just an effect of the network itself.
We do so, by first showing that the margin values follow the
data representation, and later demonstrating that removing
features in certain directions leads to a margin increase.

Adaptation to data representation Based on our obser-
vation that the margin tends to be small in low frequency
directions and large in high frequency ones, we choose to
carefully tweak the representation of the data, such that the
low frequencies are swapped with the high frequencies. In
practice, if D denotes the forward DCT transform operator,
the new image representation x′ is expressed as

x′ = D−1(flip(D(x))),

where flip corresponds to one horizontal and one vertical flip
of the DCT transformed image (see Fig. 3). Thus, if the di-
rection of the resulting margin is strongly related to the data
features, the constructed decision boundaries should also
adapt to this new data representation, and the margin along
the invariant directions (high frequencies) should swap with
the margin of the discriminative ones (low frequencies).
Informally speaking, the margin distribution should “flip”.

We apply our framework on multiple networks trained on the
“flipped” datasets, and the margin distribution is depicted
at the bottom of Fig. 2. For both MNIST and ImageNet,
the directions of the decision boundaries indeed follow the
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Figure 4. Median margin of test samples from CIFAR-10 for a
DenseNet-121 (i) trained on CIFAR-10 and fine-tuned on TLP (test:
90.79%), and (ii) trained on TLP from scratch (test: 89.67%).

new data representation – although they are not an exact
mirroring of the original representation. This indicates that
the margin strongly depends on the data distribution, and
it is not solely an effect of the network architecture. Note
again that for CIFAR-10 the effect is not as obvious, due to
the quite uniform distribution of the margin.

Removing features causes invariance The second prop-
erty we need to verify is that the small margins reported
in Fig. 2 do indeed correspond to directions containing dis-
criminative features in the training set. For doing so, we
exploit the flat margin of CIFAR-10 in Fig. 2b, and show
that, by explicitly modifying the CIFAR-10 data, we can
induce a high margin response in the measured curve in a
set of selected directions.

In particular, we create a low-pass filtered version of CIFAR-
10 (TLP), where we retain only the frequency components
in a 16 × 16 square at the top left of the diagonal of the
DCT-transformed images. This way we ensure that no train-
ing image has any energy, hence information, outside of
this frequency subspace. The median margin5 of CIFAR-
10 test samples for a network trained on TLP is illustrated
in Fig. 4. Indeed, by eliminating the high frequency con-
tent, we have forced the network to become invariant along
these directions. This clearly demonstrates that there existed
discriminative features in the high frequency spectrum of
CIFAR-10, and that by effectively removing these from all
the samples, the inductive bias of training pushed the net-
work to become invariant to them. All in all, we can say that
small margins can only be identified in the discriminative
directions used by the network.

Moreover, this effect can also be triggered during training.
To show this, we start with the CIFAR-10 trained network
studied in Fig. 2b and continue training it for a few more
epochs with a small learning rate using only TLP. Fig. 4
shows the new median margins of this network. The fine-
tuned network is again invariant on the high frequencies.

The elasticity to the modification of features during training
gives a new perspective to the theory of catastrophic forget-
ting (McCloskey & Cohen, 1989), as it confirms that the

5We do not plot the full distribution to avoid clutter. The 5-perc.
of the margin in the last subspace is 5.05.
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Figure 5. (Top) CIFAR-10 and (bottom) TLP samples.

decision boundaries of a neural network can only exist as
long as the classifier is trained with the features that hold
them together. In Sec. D of the Appendix we provide an
additional experiment to further discuss this relation.

3. Redundant features and distribution shift
Now that we understand the relationship between discrim-
inative features and margins, we can try to understand the
intriguing generalization directionality exposed in Fig. 1. In
this sense, note that the low-pass version of CIFAR-10 pro-
vides a good controllable model of distribution shift. Indeed,
as we can see in Table 1, the average `2 distance between
corresponding samples in CIFAR-10 and TLP is very small
(the standard `2 robustness threshold on CIFAR-10 is set at
a norm of ε = 1 (Madry et al., 2018)).

Moreover, we can clearly see in Fig. 5 that the semantic
information on the samples of TLP is perfectly retained
and that the changes are barely perceptible. In fact, re-
call that the human visual system is mostly receptive to
low frequencies (Gonzalez & Woods, 2017), and hence the
human-assigned labels will necessarily correlate with the
information in that frequency band. Nevertheless, there ex-
ist of course other features in natural images, which are not
perceptible to humans, but that can be captured by neural
networks. This is precisely what the low margins in the high
frequency subspaces on Fig. 2b demonstrate.

However, it is clear that high frequency information is not
necessary for the network to achieve good generalization.
Actually, removing it as in Fig. 4, does not harm much the
network’s final performance. Yet, the existence of bound-
aries in this frequency band can heavily affect the robustness
of the network to small distribution shifts in this spectral
regime. Fig. 1 shows an example of such distribution shift,
where we can interpret each sample of TLP as a slightly
perturbed version (in the high frequencies) of CIFAR-10.

The fact that the CIFAR-10 networks are vulnerable to high
frequency perturbations means that they are exploiting some
features in this frequency subspace (see Fig. 2b). There-
fore, modifications of the input data in the high frequencies

Table 1. Average `2 distance between corresponding samples from
CIFAR-10 and TLP with an original pixel range of [0, 1].

TRAINING SET TEST SET

AVG. `2 DIST. 0.011 0.025

are likely to alter the networks’ decisions. On the other
hand, the networks trained directly on TLP cannot exploit
any information on the high frequencies to discriminate the
training data. Hence, they do not create boundaries in this
spectral regime, and treat samples coming from TLP and
CIFAR-10 equally.

4. Concluding remarks
In this paper, we proposed a new framework that permits to
relate data features and margin along specific directions. We
use this novel perspective to explain how redundant features
on a training set make neural networks prone to suffer under
distribution shifts, and show that removing these features
from the training data can improve the networks’ robustness
and boost their invariance.

Note that augmenting the training data with certain corrup-
tions can also improve robustness. In the case of CIFAR-10,
introducing high frequency noise during training would
probably achieve the same level of invariance. However,
this would require many more training epochs and heavy
fine-tuning. In general, we believe that directly removing re-
dundant and imperceptible features from the training set can
be an efficient preprocessing step to increase the robustness
of deep networks to distribution shift. The vast literature in
human perception and image compression could be a good
inspiration to address this. Nevertheless, some sources of
redundant features such as object positions, illumination,
or color, are not related to perception. In those cases, data
augmentation techniques combined with more sophisticated
methods to address these shifts might be necessary.

Finally, we would like to draw the attention of the research
community to an open question that stems from our obser-
vation, which is how neural networks select certain features.
In particular, we still cannot explain why a CNN exploits
high frequency information on CIFAR-10, if this is clearly
not necessary for generalization. Furthermore, how is it
possible that a small change in the position of the training
samples, e.g., low-pass filtering them, can trigger such a
dramatic change in the network geometry so that it becomes
invariant to the high frequencies? We believe that answer-
ing these questions is necessary to understand the success
(and limitations) of certain training regimes, like adversarial
training, that slightly modify the position of the training
samples to improve robustness.
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A. Validation of proposed framework on
synthetic data

We want to show that neural networks only construct bound-
aries along discriminative features, and that they are invari-
ant in every other direction6. To this end, we generate a
balanced training set T1(ε, σ) by independently sampling
N points x(i) = U(x

(i)
1 ⊕ x

(i)
2 ) such that x(i)

1 = εy(i) and
x
(i)
2 ∼ N (0, σ2ID−1), where ⊕ denotes the concatenation

operator and ε > 0 the feature size, and D = 100. The
labels y(i) are uniformly sampled from {−1,+1}. The mul-
tiplication by a random orthonormal matrix U ∈ SO(D)
is performed to avoid any possible bias of the classifier
towards the canonical basis. Note that this is a linearly sep-
arable dataset with a single discriminative feature parallel
to u1 (i.e., first row of U ), and all other dimensions filled
with non-discriminative noise.

To evaluate our hypothesis we train a heavily overparameter-
ized multilayer perceptron (MLP) with 10 hidden layers of
500 neurons using SGD (test: 100.0%). Table 2 shows the
margin statistics on the linearly separable direction u1; its
orthogonal complement span{u1}⊥; a fixed random sub-
space of dimension S, Srand ⊂ RD; and a fixed random
subspace of the same dimensionality, but orthogonal to u1,
Sorth ⊂ span{u1}⊥. From these values we can see that
along the direction where the discriminative feature lies, the
margin is much smaller than in any other direction. There-
fore, we can see that the classification function of this net-
work is only creating a boundary in u1 with median margin
ε/2, and that it is approximately invariant in span{u1}⊥.

Table 2. Margin statistics of an MLP trained on T1(ε = 5, σ = 1)
along different directions (N = 10, 000, M = 1, 000, S = 3).

u1 span{u1}⊥ SORTH SRAND

5-PERC. 1.74 4.85 30.68 17.21
MEDIAN 2.50 12.36 102.0 27.90
95-PERC. 3.22 31.60 229.5 80.61

Comparing the margin values for Sorth and Srand we see
that, if the observation basis is not aligned with the features
exploited by the network, the margin measurements might
not be able to separate the small and large margin directions.
Indeed, since Sorth is orthogonal to the only discriminative
direction u1 we see that the margin values reported in this
region are much higher than those reported in Srand. The
reason for this is that the margin required to flip the label of
a classifier in a randomly selected subspace is of the order
of

√
S/D with high probability (Fawzi et al., 2017), and

hence the non-trivial correlation of a random subspace with

6This is indeed a desired property for any classification method,
but note that for neural networks the existence of adversarial ex-
amples contests the idea of it being a reasonable assumption.

the discriminative features will always hide the differences
between small and large margin directions.

Finally, the fluctuations in the values and the fact that
the classifier is not completely invariant on span{u1}⊥
might indicate that the network has built a complex bound-
ary. However, similar fluctuations and finite values in
span{u1}⊥ would also be expected, even if the model was
linear by construction and was perfectly separating the train-
ing data.

B. Examples of frequency “flipped” images
Figure 6 shows a few example images of the frequency
“flipped” versions of the standard computer vision datasets.

(a) CIFAR-10

(b) MNIST

Figure 6. “Flipped” image examples. Top rows show original im-
ages and bottom rows the “flipped” versions.

C. MNSIT high-pass
We further validate our observation of Section 3 that small
margin do indeed corresponds to directions containing dis-
criminative features in the training set, but this time for a dif-
ferent dataset (MNIST), on a different network (ResNet-18),
and using different discriminative features (high-frequency).
In particular, we create a high-pass filtered version of
MNIST (MNISTHP), where we completely remove the fre-
quency components in a 14 × 14 square at the top left of
the diagonal of the DCT-transformed images (see Fig. 7
for some visual examples). This way we ensure that every
pairwise connection between the training images (features)
has zero components outside of this frequency subspace.
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Figure 7. (top) MNIST and (bottom) high-pass MNIST examples.
Notice that the digits can still be perceived, probably due to the
contribution of the medium frequencies.

The margin distribution of 1, 000 MNIST test samples for
a ResNet-18 trained on MNISTHP is illustrated in Figure 8.
Indeed, similarly to the observations on CIFAR-10, by elim-
inating the low frequency features, we have forced an in-
creased margin along these directions, while forcing the
network to focus on the previously unused high frequency
features.
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Figure 8. Median margin of test samples from MNIST for a
ResNet-18 trained on MNISTHP from scratch (test: 98.71%).

Finally, the directional robustness to this high-pass distri-
bution shift is illustrated in Fig. 1, where we can see a
performance comparison of several convolutional neural
networks (CNNs) trained and tested on combinations of the
standard MNIST dataset and a slightly shifted (high-passed)
version of it, MNIST-HP. Similarly to what we observed in
Fig. 1 for the CIFAR-10 dataset, MNIST classifiers do not
generalize to MNIST-HP data. Meanwhile, a LeNet trained
on MNIST-HP data achieves equal accuracy on both distri-
butions, while still performing comparably to the original
MNIST LeNet. Note though that, for the case of ResNet-
18, we can see a slight performance drop when trained on
MNIST-HP and evaluated on MNIST data.

In general, we cannot rule out the possible existence of
a certain directional bias on these architectures. This is,
they might be biased towards certain data representations
in which the discriminative features align with certain fre-
quency directions. We believe that this directional inductive
bias might explain the drop in accuracy and margin values
on the “flipped” distributions (see Fig. 2) and the perfo-
mance decrease on the ResNet-18 when trained only on

Figure 9. Test accuracy of CNNs trained and tested on combina-
tions of MNIST and a high-pass version of MNIST (MNIST-HP).

high-pass MNIST data.

D. Connections to catastrophic forgetting
The elasticity to the modification of features during training
gives a new perspective to the theory of catastrophic forget-
ting (McCloskey & Cohen, 1989), as it confirms that the
decision boundaries of a neural network can only exist for
as long as the classifier is trained with the samples (features)
that hold them together. In particular, we demonstrate this
by adding and removing points from a dataset such that
its discriminative features are modified during training, and
hence artificially causing an elastic response on the network.

To this end, we train a DenseNet-121 on a new dataset
TLP∪HP = TLP ∪ THP formed by the union of two filtered
variants of CIFAR-10: TLP is constructed by retaining only
the frequency components in a 16×16 square at the top-left
of of the DCT-transformed CIFAR-10 images (low-pass),
while for THP only the frequency components in a 16× 16
square at the bottom-right of the DCT (high-pass). This
classifier has a test accuracy of 86.59% and 57.29% on TLP
and THP, respectively. The median margin of 1, 000 TLP
test samples along different frequencies for this classifier
is shown in blue in Figure 10. As expected, the classifier
has picked features across the whole spectrum with the low
frequency ones probably belonging to boundaries separating
samples in TLP, and the high frequency ones separating
samples from TLP and THP

7.

After this, we continue training the network with a linearly
decaying learning rate (max. α = 0.05) for another 30
epochs, but using only TLP, achieving a final test accuracy
of 87.81% and 10.01% on TLP and THP, respectively. Again,
Figure 10 shows in red the median margin along different
frequencies on test samples from TLP. The new median
margin is clearly invariant on the high frequencies – where
TLP has no discriminative features – and the classifier has
completely erased the boundaries that it previously had in

7TLP and THP have only discriminative features in the low-
frequency and high-frequency part of the spectrum, respectively.



Redundant features can hurt robustness to distribution shift
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(a) Zoom-out axes for observing the general invariance.
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(b) Zoom-in axes for a more detailed observation.

Figure 10. Median margin of TLP test samples for a DenseNet-121.
Blue: trained on TLP∪HP; Red: after forgetting THP; Green: after
recovering THP.

these regions, regardless of the fact that those boundaries
did not harm the classification accuracy on TLP.

Finally, we investigate if the network is able to recover the
forgotten decision boundaries that were used to classify
THP. We continue training the network (“forgotten” THP)
for another 30 epochs, but this time by using the whole
TLP∪HP. Now this classifier achieves a final test accuracy
of 86.1% and 59.11% on TLP and THP respectively, which
are very close to the corresponding accuracies of the initial
network trained from scratch on TLP∪HP (recall: 86.59%
and 57.29%). The new median margin for this classifier
is shown in green in Figure 10. As we can see by com-
paring the green to the blue curve, the decision boundaries
along the high-frequency directions can be recovered quite
successfully.


