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HISTOBREAST, a collection of 
brightfield microscopy images of 
Haematoxylin and Eosin stained 
breast tissue
Roxana M. Buga1,2,8, Tiberiu Totu1,2,8, Adrian Dumitru3,4, Mariana Costache3,4, Iustin Floroiu1,5, 
Nataša Sladoje6,7 & Stefan G. Stanciu1 ✉

Modern histopathology workflows rely on the digitization of histology slides. The quality of the 
resulting digital representations, in the form of histology slide image mosaics, depends on various 
specific acquisition conditions and on the image processing steps that underlie the generation of the 
final mosaic, e.g. registration and blending of the contained image tiles. We introduce HISTOBREAST, 
an extensive collection of brightfield microscopy images that we collected in a principled manner under 
different acquisition conditions on Haematoxylin - Eosin (H&E) stained breast tissue. HISTOBREAST is 
comprised of neighbour image tiles and ensemble of mosaics composed from different combinations 
of the available image tiles, exhibiting progressively degraded quality levels. HISTOBREAST can be 
used to benchmark image processing and computer vision techniques with respect to their robustness 
to image modifications specific to brightfield microscopy of H&E stained tissues. Furthermore, 
HISTOBREAST can serve in the development of new image processing methods, with the purpose 
of ensuring robustness to typical image artefacts that raise interpretation problems for expert 
histopathologists and affect the results of computerized image analysis.

Introduction
Over the past couple of decades medicine witnessed massive transformations and developments. In these efforts, 
the digitization of patient generated health-data has gained huge interest as it can enable sophisticated approaches 
for swift health state screening, or for automated analysis of complex multidimensional datasets for precise diag-
nostics1–4. Artificial Intelligence approaches, which have taken the field of medicine by storm in recent years, 
rely as well on digitized (big) medical data5,6. Furthermore, digital data can be relatively easily annotated7 and 
quickly retrieved from databases based on keyword queries, which can greatly facilitate its use for educational 
purposes8–11 or for correlative diagnostics assays8,12–14. The field of histopathology also benefits of these trends, 
making use of prominent advantages of the digital age, such as the portability of information and exponen-
tial growth of the computing power and its availability. An important step for exploiting these advantages has 
been made through the Whole Slide Imaging (WSI) approach, which can be used to scan an entire histology 
slide and convert it to a digital format. WSI facilitates medical data storing and manipulation13,15, together with 
cross-borders telemedicine14,16,17 and medical education8,9,18. Furthermore, WSI is useful to histopathologists to 
refine their decisions by enabling computer-aided diagnostic assays. These can automatically highlight diagnos-
tics cues that can lead to higher diagnostic accuracy19–21, while also saving time.
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Even though WSI is becoming widely spread, its use remains confined to countries with well-developed 
economies, due to the associated costs of the required hardware and software tools, and of data storage15. An 
alternative solution to WSI consists in the use of conventional light microscopes22,23 equipped with dedicated 
digital cameras (or even coupled to smartphone cameras24,25) in combination with algorithms for microscope 
image mosaicking (aka stitching), e.g.26,27. The mosaicking process consists in recording image tiles that overlap 
(by means of manual or programmable motorized stages) and then stitching these together to obtain the image 
mosaic of the entire histology slide (or of a part of it). Throughout the paper we will refer to such sets of image 
tiles that can be assembled to constitute a mosaic as Neighbour Image Tiles (NITs). The quality factor of the his-
tology slide image mosaic (HSIM) depends on a series of underling image processing steps, such as registration 
and blending (known as stitching) of the contributing NITs22,26. In turn, the result of these operations depends on 
the properties of the NITs making up the HSIM, which depend on the acquisition conditions, such as contrast, 
brightness and others. Same as in image panoramas acquired for natural scenes28, building a HSIM (of the whole 
slide, or only of part of it) using NITs acquired under different acquisition conditions (e.g. illumination) can 
result in prominent image artefacts, known as image seams29,30. Such artefacts have a significant importance with 
respect to HSIM analysis, as they can cause improper or deficient interpretation of the final image by the human 
or the automated expert, with implications in the diagnostic accuracy. Given that image artefacts (or other quality 
related issues) can raise interpretation problems for expert histopathologists and affect the results of computer-
ized image analysis, accurately assessing HSIM quality is very important.

Given the aforementioned context, there is a great need for datasets that can be used to evaluate, test, and 
benchmark the effects of various image processing operations required for HSIM assembly on the overall quality 
of the resulted images. At the same time, publicly available NITs and HSIMs collected with different quality attrib-
utes would also be of great benefit to the computer vision communities that develop image analysis algorithms 
for digital pathology. With such datasets, the developers can consider specific problems related to variations in 
HSIM quality, and hence evaluate and consolidate the robustness of their methods with respect to such issues.

To respond to these needs, we introduce here HISTOBREAST31, an extensive collection of brightfield micros-
copy (BM) images collected on a Haematoxylin - Eosin (H&E) stained breast tissue sample. HISTOBREAST 
is comprised of NITs collected at different acquisition settings and at two different magnifications, and also 
includes an ensemble of HSIMs composed from different combinations of the available NITs, exhibiting pro-
gressively degraded quality levels, according to a hierarchy that we previously introduced32. We envision that 
HISTOBREAST can be useful in the development and benchmarking of a variety of image processing and analysis 
algorithms/methods relevant for digital histopathology, such as image quality assessment, restoration, registration 
or mosaicking. In the following we present the structure of HISTOBREAST, the NITs acquisition and HSIM gen-
eration protocols, together with the interpretation of the imaged scenes, and discuss potential utility scenarios.

Data Records
The HISTOBREAST31 collection is comprised of BM images acquired on a tissue fragment from a patient diag-
nosed with moderately differentiated (G2) invasive breast cancer of no special type (NST) with extensive foci of 
high grade ductal carcinoma in situ (DCIS)33. More specifically, HISTOBREAST consist of four Sets of NITs and 
two Sets of HSIMs, with each Set hosting multiple Subsets, which are further structured in Versions. The four 
NITs Sets are comprised of a total number of 1216 of image tiles, summing up ~35 GB. All image tiles have been 
recorded at a digital resolution of 3648 × 2736 pixels and are provided in Tagged Image File Format (TIFF). The 
two HSIMs Sets are comprised of a total number of 578 HSIMs, summing up 163 GB. All six HISTOBREAST Sets 
are accompanied by ReadMe.txt files describing their structure, which we also briefly detail next.

The four NITs Sets consist of NITs that were acquired under different exposure, gain and gamma settings, with 
5x and 50x objectives, at two image tile overlap levels, ~15% and ~25%. The nomenclature of the HISTOBREAST 
folders hosting the four NITs Sets reflects these latter two conditions (magnification and overlap level):

•	 “5x_15per_overlap_tiles”
•	 “5x_25per_overlap_tiles”
•	 “50x_15per_overlap_tiles”
•	 “50x_25per_overlap_tiles”

Each NITs Set contains three Subsets, named “Exposure”, “Gain”, “Gamma”. The nomenclature of the Subsets 
indicates thus the parameter modified during acquisition, as for each Subset a single parameter (exposure, gain or 
gamma) was modified, the other two being kept constant at a reference value. Furthermore, each Subset is struc-
tured in two Subset Versions, each one corresponding to an increase or a decrease of the modified parameter’s 
value, with respect to a reference value. The “Reference” Subset contains the NITs acquired under the reference 
setting (see Description of HISTOBREAST).

The nomenclature of the HISTOBREAST folders hosting the two HSIMs Sets is:

•	 “5x_25per_overlap_mosaics”
•	 “50x_25per_overlap_mosaics”

The two HSIMs Sets host HSIMs that were assembled from NITs acquired by individually varying the expo-
sure, gain or gamma parameters. The varying range and values were specifically selected to allow achieving a 
known hierarchy among the generated HSIMs32. Same as for the NITs Sets, the HSIMs Sets are organized into 
three Subsets, “Exposure”, “Gain” and “Gamma”, according to the parameter modified within the stitched NITs. 
Each Subset is further structured in two Subset Versions according to an increase or decrease in the value of 
the parameter considered for generating the Subset (compared to the reference value). The filename syntax of a 
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HSIM indicates via an integer value its quality level; a higher integer value is equivalent to lower HSIM quality 
and vice-versa. A fourth Subset coined “Reference” contains the HSIM assembled using the reference NITs (see 
Description of HISTOBREAST). Along with the HSIMs we provide as registration ground truth the coordinates 
of the incorporated NITs.

In brief, in the HISTOBREAST31 collection root folders represent the Sets, level one folders represent Subsets, 
and level two folders represent Subset Versions.

Description of HISTOBREAST
The HISTOBREAST collection is comprised of four NITs Sets, which allow the assembly of a vast number of 
HSIMs that exhibit various quality levels and aspects. The first two Sets consist of NITs collected with a 5x magni-
fication objective under ~15%, and ~25% overlap. The two other NITs Sets are acquired with a 50x magnification 
objective, under the same levels of overlap of ~15% and ~25%. The 5x and 50x NITs collected at ~25% overlap 
can be stitched together to constitute HSIMs depicting the two scenes presented in Fig. 1. Noteworthy, the sample 
region corresponding to the 50x HSIM is included in the one corresponding to the 5x HSIM. The NITs collected 
with the two objectives under 15% overlap can be stitched together to constitute HSIMs covering sample areas 
larger than those represented in Fig. 1 (which include these). In the next part we present the protocols for assem-
bling the NITs and HSIMs Sets and provide the histopathological interpretation of the imaged scenes.

NITs Sets: acquisition protocol.  The NITs Sets were assembled by imaging 16 neighbour sample regions, 
for each of these regions 19 images being collected under different acquisition conditions, Fig. 2a. The parameters 
that have been modified to generate these 19 image tile variants are: exposure time (e), gain (g) and gamma (γ). 
These three parameters have the following interpretations:

•	 Exposure time represents the length of time when the s-CMOS sensor is exposed to light
•	 Gain represents an image acquisition setting by which the amplification of the whole signal (including asso-

ciated background noise) from the camera sensor is controlled
•	 Gamma represents a digital camera setting that controls the grayscale reproduced in the image; a gamma 

value equal to unity indicates that the camera sensor exhibits a linear response and thus precisely reproduces 
the object’s grayscale.

We considered these three parameters as they are the main to require a recalibration before acquiring each of 
the required NITs in a typical HSIM assembly protocol. This recalibration procedure is needed to achieve a homo-
geneous HSIM with respect to features such as contrast, brightness, sharpness, etc. Different calibration methods, 
and the use of different mosaicking algorithms, can result in HSIMs with distinct quality levels.

Each NITs Set is structured in four Subsets, reflecting the acquisition parameters. These Subsets are discussed 
next:

The “Reference” Subset.  In the adopted approach for NITs acquisition and HSIM assembly, for each considered 
sample region an image tile was recorded under an acquisition configuration identified by two expert pathol-
ogists involved in this study as being optimal with respect to the visibility of diagnostic features. Under this 
configuration, specific values of the exposure time (e), gain (g) and gamma (γ) settings were selected so that the 
recorded images exhibit a good contrast between the two markers used for staining, Haematoxylin and Eosin. 
We further refer to these optimal acquisition parameters as eref, gref, γref, and to the corresponding images as 

Fig. 1  HSIMs of H&E stained breast tissue. The two HSIMs are assembled from image tiles collected with (a) 
a 5x magnification objective and (b) a 50x magnification obj. (c) Geometrical correspondence between the two 
HSIMs depicted in (a) and (b).
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reference parameters and reference image tiles, respectively. Within each of the four NITs Sets the reference image 
tiles constitute the “Reference” Subset. To support our claim that the reference parameters were selected such that 
the imaged scenes (interpreted later) are optimally visualized, we find important to mention that: (i) a strong 
contrast between Haematoxylin and Eosin is very useful for the study of desmoplastic stroma or collagen-rich 
areas (including some vessels hyalinization), (ii) a strong contrast between Haematoxylin and Eosin highlights the 
clear optical spaces of the adipose tissue and the luminal component of the ductal carcinoma in situ, especially of 
low-grade appearance with a cribriform pattern, (iii) optimal brightness favours the success of detecting cellular 
and nuclear details that are relevant for establishing a correct Elston-Ellis grading score.

The “Exposure”, “Gain” and “Gamma” Subsets.  The NITs in each of these Subsets were acquired by varying the 
acquisition parameter which gives the name to the respective Subset (e.g. the exposure parameter was varied for 
generating the “Exposure” Subset), while keeping the other two imaging parameters fixed, at their reference value. 
The acquisition parameter that was varied to generate a NITs Subset takes six values, in addition to the reference 
value (e.g. eref e1, e2, e3, e4, e5, e6 for the “Exposure” Subsets), as presented in Table 1. The step to vary each param-
eter was chosen so that the differences between image tiles are consistent, while ensuring that the extreme values 
of the parameters’ range result in image tiles whose quality level is not fully compromised, and still meaningful for 
diagnosis. We refer to the image tiles acquired under non-reference parameters as degraded tiles, as they exhibit 
a sub-optimal aspect. The numerical values corresponding to each parameter used in the acquisition process are 
provided in Table 1.

The NITs Subsets were further organized in six Subset Versions (two per each Subset), reflecting unidirec-
tional variations of the considered parameters, as follows:

•	 Exposure increase: (e1, e2, e3) • Exposure decrease: (e4, e5, e6)

Fig. 2  Acquisition protocol for generating the four NITs sets available in HISTOBREAST, together with an example 
of how these can be used to generate progressively degraded HSIMs. (a) Acquisition configuration for each of the 
16 (overlapping) sample regions imaged to jointly constitute a geometrically homogenous HSIM (as depicted in 
Fig. 1a,b); 19 different acquisition settings were considered for each region (resulting thus in 19 versions of the same 
image tile) (b) Example scheme for generating HSIMs with various quality levels and aspects32. (c) The four NITs 
Sets are accompanied in HISTOBREAST by several collections of progressively degraded HSIMs generated using 
the available image tiles and the previously proposed controlled degradation scheme32.

Exposure parameter e6 e5 e4 eref e1 e2 e3

Value [ms] 2.60 3.60 4.70 5.70 6.60 7.50 8.60

Gain parameter g6 g5 g4 gref g1 g2 g3

Value 1.2 1.4 1.6 1.8 2 2.2 2.5

Gamma parameter γ6 γ5 γ4 γref γ1 γ2 γ3

Value 0.45 0.50 0.55 0.60 0.70 0.80 1

Table 1.  The acquisition parameters used for generating the NITs Sets.
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•	 Gain increase: (g1, g2, g3) • Gain decrease: (g4, g5, g6)
•	 Gamma increase: (γ1, γ2, γ3) • Gamma decrease: (γ4, γ5, γ6)

To conclude on this part, to generate a NITs Set 16 sample regions were imaged, each under 19 distinct acqui-
sition settings (Table 1), resulting in 304 image tiles per NITs Set. The four NITs are thus comprised of a total of 
1216 image tiles. These can be used independently, or as assembled HSIMs, to benchmark image processing and 
analysis methods relevant for digital pathology (see Utility).

HSIMs Sets: generation protocol.  Using various combinations of image tiles collected at different acqui-
sition settings one can generate HSIMs with a priori known quality levels or of random quality. These can be used 
in the development and benchmarking of image processing methods relevant for histopathology, such as image 
quality assessment, flat field correction, etc. (see Utility). To exemplify HISTOBREAST’s usefulness in this regard, 
we provide two Sets of HSIMs with progressively degraded quality. Each HSIMs Set corresponds to one of the 
two considered magnifications (5x and 50x), and both rely only on the NITs that we collected with 25% overlap. 
Obviously, similar HSIMs Sets can be generated by using the two other NITs Sets available in HISTOBREAST, 
collected at 15% overlap.

The two HSIMs Sets are organized into three Subsets (“Exposure”, “Gain” and “Gamma”). The three Subsets 
contain instances of progressively degraded quality of the same HSIM, according to the acquisition parameters 
giving the name to the respective Subset. Furthermore, the three Subsets are organized in six Subset Versions 
(two per Subset), whose structure is the same with that of the NITs Subset Versions (Exposure increase/decrease, 
Gain increase/decrease, Gamma increase/decrease). The progressively degraded HSIMs available in these Subset 
Versions were generated using the strategy described in our previous work32 and depicted in Fig. 2. The principle 
of this progressive degradation can be overviewed in Fig. 3, where we present a sequence of 48 progressively 
degraded HSIMs generated to constitute the “Exposure increase” Subset Version in a HSIMs Set. A similar strat-
egy is adopted to assemble all Subset Versions in the HSIMs Subsets. As can be observed in Fig. 3, each Subset 
Version satisfies a unidirectional variation of the modified parameter. This approach was adopted to simplify the 
comparison of HSIMs in terms of their quality, and hence ensure their correct ranking. Representative images 
belonging to some of these Subset Versions are presented in our previous work32, where several cases which 
could lead to a questionable objectivity with respect to HSIM quality assessment were also identified (examples 
are shown in Fig. 4). The HSIMs corresponding to these ambiguous cases have been left out of HISTOBREAST, 
but, if needed, the user can easily generate them. In each HSIMs Set, together with the “Exposure”, “Gain” and 
“Gamma” Subsets we provide a reference HSIM constituted of NITs collected at the reference settings, which can 
be regarded as ground-truth in terms of HSIMs quality.

Fig. 3  Representation of the HSIM degradation flow with the associated HSIM index and acquisition 
parameters for each image tile, in the case of “Exposure increase” Subset Version. Similar strategies were 
adopted for the other Subset Versions. HSIMs’ indices indicate their quality, according to the methodology 
presented in32 (higher index value indicates lower HSIM quality).
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Interpretation of the imaged scenes.  In the context of an invasive breast cancer of no special type, the 
HSIM assembled from the reference NITs collected at 5x magnification (Fig. 1a) shows an invasive component 
exhibiting sheets, nests, cords or individual malignant cells with prominent ductal-tubular differentiation. The 
overall Elston-Ellis score is 6: glandular acinar/tubular differentiation in about 50% of tumoral areas – score 2; the 
score for nuclear pleomorphism is also 2 as the nuclei are larger than normal with visible nucleoli, and moderate 
variability in both size and shape and finally the score for mitotic figures is 2 as the mitotic count revealed approx. 
12 mitotic figures, 10 high power fields (HPF), field diameter 0.65 mm. As such, the invasive tumoral proliferation 
can be regarded as moderately differentiated (G2). The tumour exhibits an extensive in situ component, mainly 
high grade, but also some foci of low-grade DCIS with predominantly a cribriform pattern. The in situ component 
also shows comedo-type necrosis and microcalcification, however the diagnosis of high grade DCIS is based on 
the nuclear features of the lesions, and not by the presence of the comedo-type necrosis; even if this latter feature 
is commonly seen with high-grade DCIS, its presence is not obligatory33,34. In addition, a desmoplastic stromal 
reaction can also be observed in Fig. 1a, which obscures the tumor cells in some areas. The dense collagenous 
stroma had apparently few stromal cells, but focally some inflammatory cells (tumor infiltrating lymphocytes - 
TILs) can be observed, especially at the periphery of the infiltrative component of the lesion.

The HSIM assembled from the reference NITs collected at 50x magnification (Fig. 1b) shows typical features of 
florid ductal hyperplasia: the epithelial cells almost completely fill the ducts but with fenestrations and slits spaces 
(irregular pseudolumina at periphery of the lesion). Some important features to highlight are: overlapping neo-
plastic cells with indistinct borders, acidophilic and granular cytoplasm, and oval normochromatic nuclei with 
small or indistinct nucleoli. There are no mitotic figures or necrotic areas. At the periphery of the lesion elongated 
myoepithelial cells and few macrophages are present. The adjacent stroma has a few chronic inflammatory cells 
(lymphocytes). This relatively common breast lesion has a 1.5 to 2 time increased risk for invasive carcinoma. 
We find noteworthy to highlight in the context of the scene imaged in Fig. 1b, that florid ductal hyperplasia 
may evolve into a true precursor lesion: in situ ductal carcinoma. In fact, low-grade ductal carcinoma in situ  
is the main differential diagnosis to be considered. When the lesion develops into a ductal carcinoma in situ 
the pseudolumina become more rounded with a rigid appearance (Roman bridges) and the cell population is 
more monotonous, polarized toward luminal space, the ratio between the nucleus and the cytoplasm is slightly 
increased and mitotic figures are more common.

We find relevant to mention that while high-magnification (Fig. 1b) is important for assessing the morphology 
of cellular components relevant in the diagnostics of breast cancers (e.g. nuclei), low magnification (Fig. 1a) is 
also very important for the histopathological characterization of breast cancers, representing the most convenient 
method for documenting and assessing the histomorphological prognostic parameters (i.e., the distribution of 
the tumour’s invasiveness and in situ components, tumor extension -including tumor size, pattern of invasion, 
presence of calcification, desmoplasia and necrosis and even subgross evaluation of the therapeutic effect post 
neoadjuvant therapy). Typically, low magnification (5x or 10x magnification objectives) is used in conjunction 
with systematic radiological-pathological and clinical data.

Utility
As described in the previous section, the HISTOBREAST collection is comprised of four NITs Sets, and two 
HSIMs Sets. All the provided NITs and HSIMs, as well as the vast number of additional HSIMs that can eventu-
ally be generated based on the available data, are in our opinion useful in the development and benchmarking 
of various image processing and analysis methods relevant for digital histopathology. With respect to the addi-
tional HSIMs that can be generated based on the available NITs, we refer here to the “Exposure” NITs Subset 
which contains 7 image tile versions for each of the 16 regions. Thus, 716 (3.3232931e + 13) different HSIMs 
can be assembled, exhibiting various quality levels (either progressively increasing/decreasing or random) and 
appearances. On the other hand, if we would consider all the image tiles available in a NITs Set (for each tile, 3 
parameters are modified with 6 different degradation levels each, plus the reference value), then a total number 

Fig. 4  Examples of excluded HSIM generation scenarios, due to incompatibility with objective quality assessment.
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of 1916 (2.8844141e + 20) different HSIMs can be assembled. Furthermore, if we consider all image tiles availa-
ble within the four NITs Sets, this number would be 4 times larger (1.1537656e + 21). The potential usefulness 
of this vast number of HSIMs that can be generated is augmented by the fact that HISTOBREAST NITs and 
HSIMs are accompanied by two types of annotation/ground truth: (1) true positions of the NITs assembled in a 
HSIM, and (2) knowledge of optimal image quality (for both NITs and HSIMs). All these enable the utilization 
of HISTOBREAST in the development and benchmarking of methods and tools for a series of applications that 
we discuss next.

Image registration and stitching.  Image registration is the process of bringing in the same system of coor-
dinates, and geometrically aligning, two or more images of the same scene, which may be taken at different times, 
under different acquisition conditions, or by different sensors35. In microscopy imaging, multimodal and/or 
monomodal registration are typically required to perform side-by-side image comparison, which is often needed 
to monitor morphological changes and motion, or to perform template-, or atlas-based segmentation, classifica-
tion, detection, etc36–41. Furthermore, monomodal registration, e.g.22,25,42, is required for obtaining images that 
depict large sample areas, that cannot be imaged at the desired resolution with the imaging system’s maximum 
field-of-view (e.g. a FOV of 1 cm2 cannot be imaged in a single shot with a 100x objective). The HISTOBREAST 
collection contains four Sets, each comprised of 19 image tile variants (collected under different acquisition con-
ditions) collected for 16 samples regions. Given the available ground-truth in terms of image tile coordinates, 
pairwise or group registration algorithms can be evaluated on any combination of the 19 corresponding image 
tiles (where overlap is available), for each of the 16 regions. In particular, the robustness of such registration 
algorithms to automatically calculate homographies between image tiles collected under varying conditions can 
be observed and evaluated based on the available NITs Sets. By including NITs of different levels of overlap, 
HISTOBREAST supports the evaluation of image registration algorithms with respect to robustness to overlap 
variation. In the case of HSIMs assembled based on manually collected neighbouring tiles, such variations are 
common. By including NITs collected on a particular sample region at two different magnifications (5x and 50x), 
HISTOBREAST supports the evaluation and development of multi-scale registration or patch/image matching 
and retrieval approaches.

Besides registration, another important operation required to perform image stitching in the purpose of 
assembling HSIMs from NITs consists in the blending of their overlap regions. This step is required to remove 
brightness differences at the NITs borders and ensure seamless integration. HISTOBREAST is thus also useful 
to evaluate various blending algorithms with respect to their capacity to provide seamless mosaics in the case of 
H&E images.

As an example on the dimension of our data set with respect to potential use in the development/benchmark-
ing of registration/stitching methods, we can observe that for a pair of two overlapping tiles, and 19 versions of 
each of the two tiles, one can generate a total number of 192 = 361 image pairs. For a 16 × 16 mosaic, we have 
3 pairs of overlapping image tiles per each row, and 3 per each column, hence a total of 18 pairs. Therefore, the 
number of image pairs that can be registered/stitched available in HISTOBREAST is 18 × 361 = 6498 (without 
taking into account image pairs that overlap in diagonal direction, which are also available).

Image quality assessment.  Current Image Quality Assessment (IQA) methodologies are split in two 
main categories: subjective and objective approaches. While the former are based on the quality scores provided 
by human experts, the latter rely on mathematical models that can automatically provide an estimate over the 
perceived image quality (which aims to be consistent with that of a human observer). These objective meth-
ods are also divided into three main classes according to the availability of a distortion-free reference image: (i) 
No-Reference IQA (NR-IQA), a.k.a. “blind”, (ii) Reduced-Reference IQA and (iii) Full-Reference IQA (FR-IQA). 
An example on the utility of the HISTOBREAST image datasets consists in our previous work32, where we used 
part of HISTOBREAST’s progressively degraded HSIMs (those collected under 5x magnification) to benchmark 
a set of Full Reference Image Quality Assessment Algorithms. The evaluation of “blind” image quality assess-
ment algorithms43 is also possible, considering that the quality level of each progressively degraded HSIM in 
HISTOBREAST is a priori known.

Furthermore, as discussed in the beginning of this section, exploiting all possible combinations of the image 
tiles available in HISTOBREAST, one can potentially generate a total number of 1.1537656e + 21 distinct HSIMs. 
These can be useful in the development/benchmarking of image quality assessment methods (reference based 
and blind).

Image restoration and enhancement.  Image restoration is the process of recovering an original image 
from its available degraded version. Availability of minimally degraded images (acquired by using the reference 
parameters), as well as availability of ordered sequences of degraded images, is essential for systematic evaluation 
of image restoration methods. The NITs and HSIMs contained in HISTOBREAST can be utilized to evaluate the 
performance of various image restoration methods, in particular of those focused on addressing exposure, gain, 
and gamma aspects. These parameters affect the brightness, the level of noise, and the amount of contrast present 
in the images.

Image enhancement techniques aim at emphasizing particular features of interest or at making images more 
visually appealing and, more importantly, easier to interpret, without utilizing any image formation model. They 
typically include image denoising44, contrast enhancement45,46 and flat-field correction methods47,48. The HSIMs 
available in HISTOBREAST, assembled from NITs systematically acquired under various acquisition settings, 
can be used for the development and benchmarking of image enhancement algorithms suitable for brightfield 
microscopy and histopathology.

https://doi.org/10.1038/s41597-020-0500-0


8Scientific Data |           (2020) 7:169  | https://doi.org/10.1038/s41597-020-0500-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

Evaluation of image analysis tools w.r.t. robustness under image degradation.  A large number 
of image analysis methods frequently used in microscopy such as, image segmentation, feature extraction, feature 
description, object detection, and image classification are highly sensitive to image quality49,50. This is because 
the building pieces of such methods, e.g. salient points51, keypoint descriptors52–54, or texture features55,56, aim 
at capturing subtle intensity variations, hence, aspects such as artefacts, noise or contrast deficiencies57 usually 
interfere with their successful use. Furthermore, the performance of some of these methods holds deep implica-
tions for further analysis steps. Let us take, for example, image segmentation methods that aim to extract specific 
objects of interest from a certain scene/image for further analysis. These are typically based on intensity homo-
geneity (detecting homogeneous regions, or borders between them), thus are often highly sensitive to noise or 
contrast. Their success clearly affects all the subsequent results, e.g. the classification of the detected objects. It is 
therefore of highest importance to develop algorithms robust to variations in image quality and to evaluate their 
performance on images sets relevant for such tasks. HISTOBREAST can offer significant support in the develop-
ment/benchmarking of image analysis tools, such as those above discussed. The availability of distinct variants 
of the same scene/sample region offers the possibility to experiment with the most frequently appearing types 
of image quality inconsistencies/problems in BM and evaluate the robustness of various algorithms w.r.t. them. 
HISTOBREAST not only offers a large number of NITs and HSIMs that are collected/assembled in a principled 
manner, but also enables the user to generate a vast number of additional HSIMs that can support other specific 
development/benchmarking purposes.

Methods
Instrumentation.  The NITs provided in HISTOBREAST were collected with a Leica DM 3000 LED bright-
field microscope, equipped with an MC 190 HD camera hosting an s-CMOS sensor with reduced noise factor58. 
For image acquisition we used two different magnifications 5x and 50x, available with HC PL Fluotar 5x/0.15 and 
N Plan L 50x/0.5 objectives. During image acquisition the field diaphragm was tuned to avoid vignetting effects. 
The digital resolution of the images collected in this work (with both objectives) is 3648 × 2736 pixels. For the 
5x magnification obj. the pixel size and field of view are 0,60727271 μm and 2215.55 × 1661.50 μm, respectively, 
while for the 50x magnification obj. the pixel size and field of view are 0.060727271 μm and 221.53 × 166.15 μm, 
respectively.

Assembly of HSIMs from NITs.  All HSIMs provided in HISTOBREAST were generated using the Grid/
Collection stitching plug-in59 from Fiji60, under the default settings. To ensure consistent alignment of the NITs in 
the assembled HSIMs we performed two steps. The first was to assemble the reference HSIM (from NITs collected 
at the reference parameters) using the sub-pixel accuracy option. The position of each image tile in the assembled 
reference HSIM was obtained by applying the stitching algorithm to the reference image tiles, and by utilizing 
a priori knowledge of the acquisition geometry (snake-by-rows with Right & Down orientation). The recovered 
coordinates of the reference tiles (provided in HISTOBREAST to serve as NITs registration ground-truth) were 
then further used in the second step, to assemble again the reference and all the degraded HSIMs (available in 
the “Exposure”, “Gamma” and “Gain” Subsets), without the usage of sub-pixel accuracy option. To alleviate image 
seams in the assembled HSIMs, the stitched image tiles were fused by the linear blending algorithm available in 
the above mentioned Fiji plugin.

Technical Validation
All 19 variants available for each considered image tile/sample region were acquired in the same ambient light 
conditions. Furthermore, to validate that no sample drift had occurred while recording the required image tile 
variants of a particular sample region, a registration algorithm61 based on the cross-correlation function, imple-
mented in the frequency domain by the use of Discrete Fourier Transform (DFT), was applied on each degraded 
tile. This algorithm was developed for recovering 2D translations and allows sub-pixel precision in the alignment 
of registered images. Usually, the DFT introduces typical errors (such as picket-fence), the translation invariant 
normalized RMS error having a non-zero value, this being reflected in some modified pixels’ values. In this case 
the pixels’ modification does not exceed unity, resulting in no changes within the registered tiles when compared 
to the degraded ones. After assessing the output error of the algorithm obtained between the reference tile and the 
registered one, no row or column shift was reported.

Sample preparation and interpretation.  Specimen samples were fixed with 10% buffered formalin for 
24 hours and were processed by conventional histopathological methods using paraffin embedding, 3 µm thick 
sectioning followed by H&E staining. The grade of the tumor was established using the Elston-Ellis grading sys-
tem (Nottingham modification of Bloom-Richardson system).

Ethics statement.  The human tissue samples imaged in this experiment to generate the introduced data-
set were available to the authors in the frame of the PN-III-P2-2.1-PED-2016-1252 MICAND grant funded 
by the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding 
(UEFISCDI). In this research grant, run in collaboration by Politehnica University of Bucharest and the Carol 
Davila University of Medicine and Pharmacy, the rules in effect for obtaining patient informed consent, estab-
lished by the Ethics Committees of the two institutions, were fully respected by the researchers involved in this 
study.

Code availability
The Grid/Collection stitching plug-in59 of Fiji used for generating the HSIMs collections is publicly available as 
a Java Script.
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