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Abstract
From 2016, Paul Scherrer Institut (PSI) started an activity related to developing design, con-

struction and testing of the superconducting magnets. My thesis work is part of this activity

and mainly concerns the design and construction of an innovative high-field superconducting

magnet of the Canted-Cosine-Theta (CCT) type - a possible candidate for the Future Circular

Collider (FCC) 16 T dipole magnet design. The unique mechanical structure intercepts the

accumulated forces lowering the stress on the windings, constituting intrinsic stress manage-

ment in the high-field Nb3Sn accelerator magnets. However, this structure also constitutes a

barrier for heat to quickly propagate in case of a quench. To succeed in the CCT-type magnet

design and construction, quench protection is a challenging task that requires a detailed

investigation of the electrothermal behavior of this magnet.

In this thesis, the potential detection and protection concepts are studied by the multiphysics

simulations on a two-layer short model built at PSI and also in a subscale experiment. The

2D User-Defined Elements (UDEs) developed at Lawrence Berkeley National Laboratory

(LBNL) in ANSYS Mechanical APDL, which support multi-dependence material properties

and include the effect of inter-filament coupling currents, are adapted and used in the coupled

electrothermal, electrodynamic, and electrical-circuits calculations for a two-layer CCT-type

magnet with different protection methods, such as Coupling-Loss Induced Quench (CLIQ)

and Energy-Extraction (EE) system. A first-of-a-kind CCT-type magnet protection study

using UDEs is presented. The generic model method is validated through the test data of

CCT4, a model magnet constructed at LBNL, protected by an energy-extraction system. The

simulation predictions are the first steps of the conceptual design and feasibility validation

of the construction of a fast and efficient quench protection system for CCT-type magnets

to be operated in an accelerator. These calculations are to be compared to the experimental

data in the near future on the PSI’s first 1-m long two-layer CCT-type model magnet, CD1.

Furthermore, these studies lay the ground for the four-layer CCT protection concepts for FCC.

Keywords: superconducting magnets, Canted-Cosine-Theta (CCT), Future Circular Collider

(FCC), quench detection, quench protection, numerical methods, multiphysics simulation,

circuit modeling, CLIQ.
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Résumé
Depuis 2016, l’Institut de Paul Scherrer (PSI) développe une activité liée à la conception, la

construction et les tests d’aimants supraconducteurs. Mon travail de thèse fait partie de cette

activité de recherche liée au développement d’un aimant supraconducteur à champ élevé

avec une géométrie de type Canted-Cosine-Theta (CCT), candidat possible pour les aimants

dipolaires 16 T du Futur Collisionneur Circulaire (FCC). La structure mécanique unique de ce

type d’aimant intercepte les forces électromagnétiques accumulées et réduit les contraintes

sur les enroulements. La gestion intrinsèque des contraintes est constituée pour maintenir les

performances à champ élevé des aimants supraconducteurs de type CCT utilisant du Nb3Sn.

Cependant, cette structure constitue également un obstacle pour une propagation rapide de

la chaleur en cas de transition brutale de l’aimant de l’état supraconducteur vers l’état résistif

(quench). Une protection efficace d’un aimant de type CCT pour éviter toute dégradation est

une tâche difficile qui nécessite une étude détaillée du comportement électrothermique de ce

type d’aimant.

Dans cette thèse, des concepts de détection et de protection potentiels sont étudiés par des

simulations numériques multiphysiques sur un modèle court à deux couches construit au

PSI et certains paramètres vérifiés expérimentalement dans des petits échantillons de câble

supraconducteur. Les éléments définis par l’utilisateur (UDE) à deux dimensions dévelop-

pés par le laboratoire Lawrence Berkeley National Laboratory (LBNL) dans le logiciel ANSYS

Mechanical APDL prennent en charge les propriétés des matériaux utilisés dans la modé-

lisation. Ils incluent l’effet des courants de couplage inter-filamenteux, et utilisés dans les

calculs des circuits électrothermiques, électrodynamiques et électriques couplés. Ils ont été

utilisés pour un aimant de type CCT à deux couches avec différentes méthodes de protection,

comme le Coupling-Loss Induced Quench (CLIQ) et le système d’extraction d’énergie (EE). La

méthode et les résultats du modèle généré ont été validés par les données provenant du test à

température cryogénique d’un aimant modèle (CCT4) construit au LBNL et protégé par un

système d’extraction d’énergie. Les résultats de ces simulations sont les premières étapes de la

conception et de la faisabilité d’un système de protection efficace contre les effets d’un quench

pour les aimants de type CCT. Ces calculs doivent être comparés aux données expérimentales

lors du futur test à température cryogénique du premier aimant modèle de type CCT (CD1),

modèle à deux couches de 1-m de long construit au PSI. En outre, cette étude est une base

solide pour le développement du système de protection des aimants CCT à quatre couches

pour FCC.
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1 Introduction

1.1 Future Circular Collider project

The Future Circular Collider (FCC) study explores the post-LHC (Large Hadron Collider) era

[1, 2, 3, 4, 5, 6]. In a tunnel of approximately 100 km circumference, which is more than

three times of the size of LHC, a hadron collider, so-called FCC, is conceptually designed to

increase the centre-of-mass energy from 14 to 100 TeV, and the peak luminosity from 1.0 to

30 × 1034 cm-2 s-1 [5]. The particle centre-of-mass energy and the beam peak luminosity are

pushed to another high level in order to further study the high-energy physics. Figure 1.1

illustrates the proposed location of the new FCC tunnel. Table 1.1 summarizes the FCC-hh

baseline parameters, including a comparison with the LHC and HL-LHC (High-Luminosity

LHC) parameters.

Figure 1.1 – Geographic localization of the Future Circular Collider.
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Chapter 1. Introduction

Table 1.1 – FCC-hh baseline parameters compared to the LHC and HL-LHC parameters.

LHC HL-LHC FCC-hh
Initial Nominal

c.m. Energy [TeV] 14 100
Circumference C [km] 26.7 97.75
Dipole field [T] 8.33 < 16
Arc filling factor 0.79 0.8
Straight sections 8 × 528 m 6 × 1400 m + 2 × 2800 m
Peak luminosity [1034 cm-2 s-1] 1.0 5.0 5.0 < 30.0
Dipole coil aperture [mm] 56 50

To steer a 100 TeV beam over a 100 km tunnel, a total amount of 4578 dipole magnets with a

length of 14.3 m for each is required. A magnetic field of 16 T needs to be produced, based on

a calculation using the following magnetic rigidity formula [7],

Bρ = p

e
(1.1)

or in practical units,

[T ·m]Bρ = 1

0.29979
pm

[
GeV

c

]
(1.2)

where B is the dipole field, Bρ the beam rigidity, ρ the dipole bending radius, pm the momen-

tum of the particle, and e the particle charge.

Among various magnet geometries, a four-layer twin-aperture Canted-Cosine-Theta (CCT)

type 16 T Nb3Sn superconducting dipole magnet has been proposed as a possible candidate

and has been designed for the FCC [8, 10, 11]. The magnet design is shown in Figure 1.2 and

the key parameters are listed in Table 1.2. In this table, cuNc is the copper to non-copper

(superconductor) ratio in a strand. The superconductor fraction in a strand is thus given by

fsc = 1/(1+cuNc).

Since 2016, the magnet section at the Paul Scherrer Institut (PSI), in collaboration with CERN

(European Organization for Nuclear Research) and LBNL (Lawrence Berkeley National Labo-

ratory), is responsible for the R&D of this magnet type in terms of optimization of the FCC

design, with respect to safety and efficiency, which motivates my thesis subject: analysis of

quench detection and protection of a Nb3Sn CCT technology demonstrator dipole for FCC.

1.2 CCT-type magnets

In modern accelerators, superconducting magnets are used in the pursuit of high fields and

high current densities. As a result, high Lorentz forces are accumulated on the coil windings,

which tend to push the conductor towards the mid planes and supporting structure, causing a

2



1.2. CCT-type magnets

(a) Twin-aperture CCT magnet design.

(b) Coil sectional view.

Figure 1.2 – Sectional views of a four-layer CCT magnet design for the FCC.

Table 1.2 – PSI’s four-layer CCT design parameters for the FCC.

Layer number 1 2 3 4

Current [A] 18025 18025 18025 18025
Inner bore radius [m] 0.025 0.0456 0.0636 0.0798
Spar [m] 0.0015 0.0015 0.0015 0.0015
Strand diameter [m] 0.0012 0.0012 0.0012 0.0012
Number of strands 29 25 22 20
cuNc 0.8 1.1 1.95 2.6
Cable thickness [m] 0.002184 0.002184 0.002184 0.002184
Cable width [m] 0.01827 0.01575 0.01386 0.0126
Insulation thickness [m] 0.00015 0.00015 0.00015 0.00015
RRR 110 110 110 110
Tilt [deg] 15 -15 15 -15
Pitch [m] 0.0110581 0.0110581 0.0110581 0.0110581
Bmean [T] 14.75 11.466 8.089 6.28
Bmax [T] 16.35 15.2 13.22 11.58
Number of turns 1294 1294 1294 1294
Length of a turn [m] 0.436398 0.775854 1.08583 1.35466
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Chapter 1. Introduction

stress increase on the conductor, and therefore a conductor movement or a deformed winding

[12]. The conductor stress must be minimized due to the nature of Nb3Sn being a brittle

superconductor material [13]. Currently, the resulting stress should be maintained below

150 MPa at room temperature and below 200 MPa in cryogenic conditions in order to avoid

any performance degradation in Nb3Sn magnets [14].

In addition to an external supporting structure, the CCT-type magnet features an internal

structure that is part of the coils. A full view of a two-layer CCT coil is presented in Figure 1.3.

A CCT magnet superposes fields of nested and tilted solenoids that are oppositely canted. The

current distribution of a canted layer generates a pure dipole field as well as a solenoid field

that can be canceled with an oppositely canted layer [15]. The particles are thus bent by the

pure dipole field. Figure 1.4 illustrates the superposition of produced fields. In a two-layer CCT

coil, the rib and spar are pointed out in Figure 1.5. The ribs are placed between the adjacent

cable turns and the spars are located beneath the insulated cables. Ribs and spars constitute

winding formers. The superconducting cables are placed within the formers intercepting

Lorentz forces of each turn to prevent stress accumulation on the coil.

Figure 1.3 – Full view of a two-layer CCT-type coil.

Figure 1.4 – Dipole field produced by a two-layer CCT-type coil.

The concept of coil pre-stress is applied in most of the accelerator dipole magnets [16]. How-

ever, the winding formers of CCT-type magnet provide an intrinsic azimuthal and axial stress
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1.3. CCT program at PSI

Figure 1.5 – Cross section of a two-layer CCT-type coil.

management since the Lorentz forces are transmitted first to the ribs, and then to the solid spar.

Thanks to this unique mechanical structure, a lower stress on the coil and thus a better me-

chanical stability are expected at high field, comparing to other conventional superconducting

magnets as each turn is independently supported [10].

In the LHC, a large amount of superconducting dipole and quadrupole magnets are equipped

with quench heaters in order to protect the superconducting magnets in case of a quench

[17, 18]. These quench heaters consist of a thin stainless steel strip covered by a layer of

polyimide foil on each side for electrical insulation purposes. When there is a big contact

surface between the heaters and the coil, the fired quench heaters can bring the entire coil

to the normal state in a fast way. The stored magnetic energy is dissipated in the entire coil

and therefore the coil temperature remains low enough compared to the allowed maximum

temperature in the magnet because of the quench heaters.

However, for the CCT-type magnets, the traditional quench heaters become inefficient since a

big amount of heat produced is transferred to the former rather than to the superconducting

cables. Therefore the CCT-type magnet design and its construction are challenging in the

aspect of protection. In my thesis, the specific issues of quench detection and protection are

studied.

1.3 CCT program at PSI

LBNL started working on CCT-type magnets as part of the LBNL magnet R&D since 2013 and

within the US Magnet Development Program (MDP) since 2016 [19, 20], pursuing a high-field

dipole development and exploring the limits of Nb3Sn technology [15]. PSI’s program is

complementary to LBNL’s program to provide specific features in terms of efficiency (design,

performance, protection and cost reduction) of CCT magnets for FCC. The keys to an efficient

CCT design are thin spars combined with an external mechanical structure, wide cable (large

strands) and thin ribs, allowing an increased current density [21, 22]. To achieve this goal, PSI

collaborates closely with LBNL to exchange ideas and discuss progress.

At PSI, a two-layer 1-m long Nb3Sn CCT model magnet (called CD1, Canted Dipole) was

built to further explore CCT technology [23]. The main parameters, as well as the magnet
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component materials are listed in Table 1.3. The magnetic design of the two-layer CCT model

coil features a short sample current of Iss = 18.1 kA and a field of B = 10.4 T in the magnet

centre, at a working temperature Top = 4.2 K [22] 1.

Table 1.3 – Main parameters of the CD1 Nb3Sn dipole magnet.

Magnet parameter Value

Number of turns 66
Cable thickness 1.475 mm
Cable width 9.85 mm
Number of strands 21
Strand diameter 0.85 mm
Filament twist pitch 9 mm
Glassfiber insulation thickness 0.15 mm
Cu RRR 150
Non-Cu fraction 0.465
Short-sample current (4.2 K) 18.1 kA
Short-sample bore field (4.2 K) 10.4 T
Coil physical length 1 m
Coil magnetic length 0.6 m

Magnet component Material

Strand type Nb3Sn
Former (spar, rib) Aluminum bronze
Protective shell Aluminum
Pad Aluminum bronze
Outer shell Aluminum

The construction of CD1 introduces CCT technology to PSI, in cable winding, heat treatment,

impregnation methods, and mechanical structure. In order to keep a low stress on the coil and

minimize the movement of the coil, a bladder-and-key type structure with an aluminum shell

has been introduced for an increased rigidity of the impregnated coil-former assembly. The

design of the model magnet together with the mechanical structure is illustrated in Figure 1.6.

The supporting structure includes an aluminum protective shell enveloping the two-layer coil,

two symmetric aluminum bronze pads surrounding the coils, two half iron yokes surrounding

the pads, and an outer aluminum shell enclosing the whole structure.

Figure 1.7a presents the manufactured CD1 formers with the distinction of rib and spar. There

are in total 66 turns in the model magnet CD1. The Nb3Sn cable shown in Figure 1.7b, is

insulated with a thick fiberglass braided sleeve. The insulated cable is then wound into the

channels between the ribs, as illustrated in Figure 1.7c. After the heat treatment, all the voids

in the coil volume are filled with epoxy resin.

1The magnetic design was re-valuated in April 2020 with the following parameters: the short sample current
17.64 kA, the peak field on the conductor 10.65 T and the dipole field in the magnet centre 9.74 T, at a working
temperature 4.2 K.
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1.3. CCT program at PSI

Figure 1.6 – Structure of the CD1 model magnet.

(a) 1-m long formers.

(b) Nb3Sn cable windings.

(c) Coil winding process.

Figure 1.7 – CD1 coil winding process with distinction of cable and former.
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The development of a quench protection system for the CCT magnets is an important part of

the PSI magnet program. In the framework of my thesis, a detection and protection system

for PSI’s model magnets CD1 is therefore designed and implemented. The CD1 test will take

place in the near future 2.

1.4 Critical surface and load line

Some essential notions often used in the field of superconducting magnets are introduced in

this section for a better understanding of the study.

The critical surface is the boundary between the superconducting state and normal state

in the current density J , magnetic field B , temperature T space. It is defined by the short

sample (SS) measurements and considered as the perfect magnet’s physical performance limit.

Everywhere below the critical surface is the superconducting state and everywhere above

it is the normal state. The critical surface is described by the critical current fit functions,

which are implemented in the quench simulations to determine different regimes. Figure 1.8

displays the critical surface of Nb3Sn used in the CD1 cable. Tc0 is the maximum critical

temperature (at B = 0) and Bc20 is the maximum critical field (at T = 0). These two parameters

are determined by the characteristics of superconducting material. It is worth noting that, for

strain-sensitive Nb3Sn material, Tc0 and Bc20 also have a dependency on strain. The existence

of strain could lead to a reduction in Jc.

Figure 1.8 – Critical surfaces of Nb3Sn used in the CD1 cable.

2The outbreak of Coronavirus disease (COVID-19) caused a delay on the magnet test.
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1.4. Critical surface and load line

At a fixed temperature, the relationship between the magnet current and field on the conductor

can be plotted. The operation point is determined by the magnet design. The line connecting

the working point and zero is called the load line. If we extend it until it reaches the short

sample curve, we obtain what is called in superconducting magnet jargon "100% of short

sample on the load line". The load line is temperature-independent. Typically the working

point is situated between 60 and 86% of the short sample on the load line, which means a load

line margin of 40 to 14%. The value of working point is selected empirically based on many

prototypes, e.g., HL-LHC [24]. Figure 1.9a shows the load lines of an 8.4 T bore-field magnet

design using Nb3Sn conductor. The yellow line represents the field in the magnet aperture,

whereas the red line represents the peak field on the superconductor. The peak field on the

superconductor is always larger than the field in the magnet aperture. The ratio between them

depends on the selected coil geometry.

For magnets operated in liquid helium, the critical surface is represented by a curve of current

versus field at 4.2 K. For magnets operated in superfluid helium, e.g., magnets of LHC and

prospective FCC, the critical surface is represented by a curve of current versus field at 1.9 K.

The practical operation always requires safety margins: critical current margin, critical field

margin, margin along the load line, and temperature margin (Figure 1.9b). These margins can

limit the number of training quenches, i.e., progressive improvement of the reached field level

after a series of repeated quenching events, and avoid quenches during operation, described

in the following section. The margin needed depends on the design and operating conditions.

(a) Load line representation. (b) Different margins for operation.

Figure 1.9 – Load lines and different margins for an 8.4 T bore-field magnet design using Nb3Sn
conductor.
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1.5 Magnet quench and protection

Quench is the sudden transition from the superconducting to the normal-conducting state.

It happens when the working point exceeds the critical surface, which is defined by current

density, temperature and magnetic field. The triggering of a quench can have several origins.

The temperature increase can be caused due to conductor movement (resin cracking), induced

eddy current losses, radiation, beam losses, quench heaters, and heat transfer (adjacent

parts). If one of those events occurs, then a certain amount of heat is deposited in the cable

resulting in a rise in temperature. When the local temperature becomes higher than the

critical temperature value, the superconducting properties are lost locally (i.e., an increasing

zone of normal conductivity) causing a jump in resistance and rapid Joule heating in the

coil. An increase in current or field also quenches the magnet once the critical surface is

exceeded. These can be caused by induced voltage, current variation, and external fields.

During a quench, a large amount of magnetic energy stored is released into heat after a

quench detection and can destroy the magnet in the worst case [25].

There are three regimes of current distribution in the superconducting cable, presented in

Figure 1.10), using Nb3Sn as an example. In a Nb3Sn superconducting cable, the supercon-

ducting filaments are embedded in a copper matrix to provide time to act on power circuit

and stabilize the conductor against flux jumps.

(a) T < Tcs (b) Tcs ≤ T < Tc (c) T ≥ Tc

Figure 1.10 – Different regimes of current distribution in a superconducting cable.

Figure 1.10a illustrates the normal operating regime where the total current in the cable Iop

goes into the superconductor, when the local T is smaller than the current-sharing temper-

ature Tcs. If the local T exceeds Tcs, then a part of current starts flowing into the stabilizer,

called the current-sharing regime, as shown in Figure 1.10b, where Isc(B ,T ) is the current

flowing into the superconductor, and Iop − Isc(B ,T ) is the current flowing into the stabilizer. If

the local T increases further, reaching the critical temperature Tc, all the current goes into the

stabilizer, shown in Figure 1.10c.

The current level flowing in the superconductor depends on the temperature and B field [26]:

Isc(B ,T ) =


Iop, T < Tcs(B)

Iop
Tc−T

Tc−Tcs(B) , Tcs(B) ≤ T < Tc

0, T ≥ Tc

(1.3)
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The relationship between magnet current and temperature is presented in Figure 1.11. Note

that the Joule losses start at Tcs.

Figure 1.11 – Critical current versus temperature.

When a short part of the conductor is heated to be resistive due to any possible reason, if

more heat is moved out of the resistive zone than generated therein, the resistive zone shrinks.

Otherwise, it grows to trigger a quench. The minimum propagating zone MPZ is the minimum

zone that produces enough heat at a given current, magnetic field, and cooling condition. The

minimum quench energy MQE is the amount of energy needed to put into a given zone over

a given time interval at a given temperature, magnetic field and current to produce thermal

runaway. When MPZ and MQE are as large as possible, it is difficult to quench the conductor

which is good for the quench stability. However, they may well be bad for quench protection,

as detection takes longer and the protection systems may be ineffective.

During the process of a quench, we can distinguish different phases and associate them with

time, as shown in Figure 1.12.

Figure 1.12 – Current profile versus time during a quench. 1a: detection phase ∆tthres, 1b:
validation phase ∆tval, 2a: protection switch phase ∆tswitch, and 2b: discharge phase ∆tdec.

When the current stays constant, the quench propagates until the resistive voltage reaches a

pre-set threshold (in case of a voltage detection) (detection ∆tthres), then some extra time is

added to confirm if it is a real quench (validation ∆tval). After a detection, the magnet current

supply is disconnected and the protection system is fired to trigger a quench over the whole
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coil to increase the quench resistance (protection switch ∆tswitch), consequently, the current

drops and the magnetic energy is dissipated (discharge ∆tdec). It is worth noting that td is the

time when the power is switched off and the current starts to decrease. Some typical values for

a traditional quench protection system are listed in Table 1.4 [27].

Table 1.4 – Typical value of different times for a traditional quench protection system.

Name Time [ms]

Detection time for a voltage threshold of about 100 mV 5-20
Validation time to avoid false triggers 5-20
Switch opening for discharge 1-5
Switch opening for quench heaters 1-2
Heater delay time from strip to cable 10-40

When a quench occurs, the stored magnetic energy is converted into heat. The overheating

of the coil leads to damage to the components, e.g., conductor, insulation, and splices. The

abrupt decrease of current can result in large inductive voltage spikes and arcing, causing

internal short circuits. Moreover, the mechanical structure can be over-stressed during a

quench.

Magnet protection against quench damage is to take proper actions to safely dissipate the

stored magnetic energy and limit the maximum temperature in the magnet. The location of

the initial transition from the superconductor to the normal conductor is generally where

the maximum temperature appears since the Joule heating lasts for the longest time. This

maximum temperature can also be called peak temperature or hot-spot temperature. The

allowable peak temperature after a quench is given by the lowest temperature at which any

of the used materials either breaks or deforms plastically. This lowest temperature is the

glass-transition temperature Tg of the resin. If we pass it, the coil risks deforming permanently.

During a quench, the action of turning off the power source is far and away not quick enough

to protect the coils because the hot-spot temperature increases with time before the current

turns to zero. Thus protection system is needed to accelerate the current discharge in the coil.

1.6 Detection and protection methods

In high-field superconducting magnets, the very high stored energy per unit volume of coil

windings requires a fast action, from quench initiation to a full effective protection, in order to

avoid any damage or degradation caused by the quench. The design of the quench protection

system (QPS) is part of the design of superconducting high-field magnets. Typically when

people talk about the protection of a magnet, the detection part is also included as they

are closely associated. Different detection and protection means are found in the literature

[28, 30]. Traditional and innovative detection and protection methods are both considered for

CCT-type magnets. Their principles are presented in the following subsections.
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1.6.1 Detection methods

A quench creates an increasing normal zone of the conductor (i.e., an increase of resistance)

and an increase of temperature in the normal zone. Therefore a quench can be detected based

on the change of voltage (or current), temperature, or pressure. The possible methods are

voltage detection, current detection, optical detection, quench antennas, pressure gauges,

acoustic detection, and stray-capacitance change monitoring. They are discussed in the

following paragraphs.

Voltage detection

With a large amount of current in the cable, the resistive voltage rises. A quench is detected

when the output voltage is above a pre-set threshold. A direct voltage measurement is shown

in Figure 1.13a. The voltage taps connected to the coil give an imperfect result because both

the voltage on the rising quench resistance and the inductive voltage of the coil are measured.

A more precise knowledge is required for analysis.

One can also measure the rising voltage with inductive compensation. The most convention-

ally used method is a comparative measurement, shown in Figure 1.13b. The subtraction of

the voltage from the mid-coil to one lead and the voltage from the mid-coil to the other lead

can cancel out the main inductive signals of two parts of the coil. However, this method cannot

cancel out the noise from both coil parts. In addition, the inductive voltage may effectively

hide the resistive voltage or lead to an erroneous trigger in the absence of a quench.

(a) Direct measurement. (b) Comparative measurement.

Figure 1.13 – Principle of direct and comparative voltage-based detection.

In order to measure purely the voltage on the rising quench resistance, one can connect the

voltage taps to a co-wound copper wire. The wires are wound in anti-series to cancel out the

effects of the magnetic field and noise, as shown in Figure 1.14a. The position of the co-wound

copper wire inside the channel is illustrated in Figure 1.14b.

The voltage-based detection time depends on the longitudinal and transverse heat propaga-

tion velocity in the coil during a quench, which can be predicted in a 3D simulation, explained

in Subsection 3.2.2. The voltage detection method is a straightforward way, nevertheless, the

measurements are affected by flux jumps and electromagnetic fluctuations. To be precise, a

flux jump is an avalanche of flux flow caused by a flux motion due to a breakdown of a pinning
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(a) (b)

Figure 1.14 – Principle of voltage-based detection using a co-wound copper wire. (a) Electrical
circuit; (b) Wire position inside the channel (not-to-scale).

site in the Low-Temperature Superconductor (LTS) materials, while the electromagnetic fluctu-

ations are the motion of electrically charged particles inside materials caused by a fluctuating

electromagnetic field. A validation time is compulsory to avoid any false trigger in this kind of

detection. This extra time needs to be minimized or even suppressed.

Current detection

The current detection relies on a co-wound superconducting wire, which is insulated from

the cable (Figure 1.14b). The insulation can be realized by a mica sheet separating the cable

and the wire. An alternative approach is in the absence of mica, the superconducting sensing

wire could be ceramically insulated, provided sufficiently robust insulation can be found. In

the case of a quench in the superconducting cable, a transverse heat propagation quenches

the sensing wire after a certain delay in the millisecond range, explained in Section 4.2. This

detection delay time depends on the heat propagation speed from the cable to the co-wound

wire through insulation, which can be studied in detail in the simulation.

When the sensing wire is powered by a constant voltage source, the rise of quench resistance

of the superconducting wire leads to a drop in current, which can be directly measured (I )

and also detected by a current derivative sensor (dI /dt ). The electrical circuit of the principle

is presented in Figure 1.15. In this connection way, the current in the sensing wire does

not produce any field on the beam. In addition, the inductive disturbance on the sensor is

compensated by running current in an opposite direction than the coil.

As we run a small current (several ampere) in the co-wound sensing circuit, the heating

produced during the current discharge should not be an issue. Nevertheless, the power supply

of the co-wound sensing circuit could be switched off after a quench detection for safety

considerations. The presumed advantage of this method is that the sensing of the loop current

is localized and can be electromagnetically shielded. It is, thus, presumed to be less impacted

by flux jumps and electromagnetic noise on the coil.
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1.6. Detection and protection methods

Figure 1.15 – Electrical circuit of current-based detection.

Optical detection

The optical detection uses Rayleigh backscattering interrogated optical fibers (RIOF) [31, 32].

The position of the co-wound optical fiber inside the channel is illustrated in Figure 1.14b.

The principle relies on the measurement of spectral shift (i.e., the deviation between a mea-

surement and a reference condition), based on Rayleigh backscattering spectra, containing

information of temperature and strain. From the perspective of photon interactions with mat-

ter, all of the defects (e.g., density fluctuations, voids, and impurities) are scattering centres for

Rayleigh scattering. Some scattering events result in backscattering and are used to calculate

the spectral shift as a function of fiber length. The swept wavelength interferometry is used to

measure the spectral shift.

The optical fibers can detect any thermal or mechanical perturbation and to locate hot-

spots. The validation time is not mandatory in this case because the measurements are not

affected by electromagnetic noise (i.e., time-varying magnetic field). The quench delay time is

therefore reduced (but the processing time may be longer, in the order of millisecond). The

optical detection method has so far only been employed and tested in High-Temperature

Superconductors (HTS). PSI has discussed with North Carolina State University (NCSU) to

investigate the usage of an optical fiber for LTS, e.g., a Nb3Sn CCT magnet.

There are two modes to configure the fiber working conditions. The first mode is a detection

mode. A fast scan of the whole cable checks any perturbation. A heat deposition should

be detected by an external analyzer (swept wavelength interferometry) within around a mil-

lisecond. In this mode, the spatial resolution is not necessary. Validation time should be

eliminated. The second mode is a scanning mode. After a quench detection, a detailed scan is

performed with spatial resolution in the order of a centimeter to find the hot-spot location in

the magnet. The fibers are connected to the analyzer which can produce a qualitative picture

of the temperature profile along the coil.

Other detection methods

Four additional detection methods are briefly outlined.
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A quench antenna is a device using arrays of pick-up coils lined up along the aperture of the

magnet [33]. The inductive pick-up coils can detect a current redistribution in the quenching

cable. Quench antennas are mainly used to localize the origin of quench since they are

too sensitive to perturbations to use them as a detector. Figure 1.16 shows a linear array

PCB (Printed Circuit Board) antenna, implemented on the CCT2 at LBNL [34]. The quench

antenna was successfully tested, however as it was installed on the outer layer of the coil, only

the quench signals from the outer layer were captured. An inner-layer quench antenna is

necessary if this method is considered for the test of a CCT-type magnet.

Figure 1.16 – Linear array PCB antenna for quench localization, implemented in the CCT2 at
LBNL.

Pressure gauges detect a change in pressure due to the thermal expansion in the hot-spot.

The limitation is that a large number of gauges are needed to have a fast detection. Thus the

pressure gauges are not suitable for quench detection in a CCT-type magnet.

Acoustic detection uses amplified piezoelectric transducers, in combination with fast data

acquisition and processing techniques, for detecting mechanical vibrations in superconduct-

ing magnets. This acoustic sensing technique has been tested on the LARP high-field Nb3Sn

quadrupole HQ01 [35]. The recorded acoustic data showed a good correlation with voltage

instabilities measured simultaneously in superconducting magnets during ramping, quench

and recovery [36]. The inexpensive acoustic sensors are easy to be installed on the magnet

and they are not sensitive to the magnetic field. Therefore this method can be easily adapted

to various magnet configurations. Nevertheless, the interpretation of the acoustic data is a

challenging problem, requiring further development of the acoustic technique, especially on

improving sensitivity, developing instrumentation and software for precise localization of the

sound sources, and quantifying energy release in the detected acoustical events. Acoustic

detection is a good approach for quench diagnostics in a CCT-type magnet.

A new detection technique based on stray-capacitance monitoring is proposed in [37] for HTS

16



1.6. Detection and protection methods

magnets. The principle is to monitor the capacitance change, due to the variation of electrical

permittivity of the cryogenic fluid impregnating insulation layers between coil parts, to obtain

an indication of local heat deposition in the conductor. This technique was successfully tested

on three small-scale Bi-2212 magnets manufactured at LBNL [38]. This method offers high

sensitivity to heat deposited in the coil. However it is particularly promising for HTS magnets

operated in cryogenic liquid since the critical temperature of HTS is well above helium boiling

temperature, and thus a significant change of stray-capacitance is expected. For this reason,

the method is not applied in a CCT-type magnet using Nb3Sn LTS.

1.6.2 Protection methods

A quench leads to a fast temperature increase in the coil as a large amount of energy stored, of

the order of magnitude of mega-joule, is released. The action of turning off the power source is

far and away not quick enough to protect the coils because the hot-spot temperature increases

with time before the current turns to zero. Thus the current should decay as quickly as possible

to avoid any damage in the coil.

There are two ways to protect the magnet. The first way is called passive protection. We extract

the stored energy on a dump resistor REE, which is connected in series with the magnet. After

a quench detection, the magnet can be electrically modeled as an LR circuit. The current in

the coil is thus given by

I (t ) = I0e−t
Rquench(t )+REE

L(I ) (1.4)

where I0 is the initial current. The second way is called active protection. We maximize Rquench

to decrease I for minimizing Joule heating. The current in the coil can be written as

I (t ) = I0e−t
Rquench(t )

L(I ) (1.5)

By quenching the entire coil volume, one can increase the quench resistance in the coil and

distribute heat dissipation quickly across the magnet. Four different protection methods,

energy extraction, Coupling-Loss Induced Quench (CLIQ) system, inductive protection, and

heater strip, are discussed in the following paragraphs. In this document, only the energy

extraction is considered as a passive protection method, while the others are considered as

active protection methods 3.

Energy-extraction system

The energy-extraction system dissipates the magnet’s energy in a dump resistor REE. The

dump resistor is added in series with the magnet, illustrate in Figure 1.17, making the method

3Note that there is an ambiguity on the type (active or passive) of the energy extraction with a switch. It is
considered to be active, as the switch needs to be actuated. It is considered to be passive, as the main component
is a passive resistor.
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suitable for a single-magnet system. When the switch is closed, we are in normal operation.

When the switch is open, we initiate the energy-extraction system after a quench detection.

The energy extraction is the basic safety method for R&D magnets on a test bench. However,

this method is difficult to implement when several magnets are powered in series. In an

energy-extraction system, the value of the dump resistor and the current decay time, are

limited by the maximum voltage-to-ground V = REE · I .

Figure 1.17 – Electrical circuit of energy-extraction system.

Coupling-Loss Induced Quench method

The CLIQ system was recently developed [39]. The electrical circuit is illustrated in Figure 1.18.

The essential part of CLIQ is a capacitive discharge unit. Once a quench is detected, the CLIQ

system starts working by inducing current oscillations in the coil, resulting in a change in the

local magnetic field, which introduces high Inter-Filament and Inter-Strand Coupling Losses

(IFCLs and ISCLs). Hence the varying magnetic field heats up a large portion of the coil. With

the CLIQ system, the heat is generated directly in the conductor, leading to a fast quench

initiation. However, an analysis of additional mechanical stress due to the introduced current

is required. Furthermore, if the CLIQ concept is applied to a chain of magnets, detailed studies

have to be done to investigate the implementation means, transient waves, resonances, etc

[40].

The CLIQ system is the protection baseline method for the FCC dipole magnets according to

the conceptual design report [5]. The reasons are described as follows. The protection study

of another three 16 T dipole magnet candidates for FCC, i.e., cos-theta- [43], block- [44] and

common- [45] coil type magnet, is presented in [46], using either CLIQ or traditional quench

heaters or both of them. In the case of a CCT-type magnet, CLIQ promises fast protection

because it shows that at nominal operation current, the performance of CLIQ is more efficient

in terms of peak temperature reduction than the case of heaters. The study of CLIQ for the

two-layer CCT magnet CD1 is presented in Section 3.3.

Inductive protection method - co-wound copper tape

In a CCT-type magnet, a co-wound copper tape, placed beneath the cable in the channel

(Figure 1.19a), can be seen as a secondary LR circuit, which is inductively coupled to the

magnet coil (Figure 1.19b). When a quench occurs in the primary loop, the variation of current
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Figure 1.18 – Electrical circuit of CLIQ system (Figure from [39]).

induces a voltage in the secondary. The secondary circuit removes a portion of the magnet

energy and dissipates it in a low-cost copper tape. Heat in the secondary circuit can also

be supplied back to the coil to quench its superconducting fraction: an effect that is called

"quench back". The aim to make a compact magnet by adding a co-wound copper tape. This

study is presented in Section 3.4 for the two-layer CCT magnet CD1.

(a) (b)

Figure 1.19 – Principle of inductive protection using a co-wound copper tape. (a) Position in
the channel (not-to-scale); (b) Electrical circuit.

Quench heaters

Heaters are thin foil strips placed (usually epoxy-impregnated) on the top of windings. This

method relies on the thermal diffusion across insulation layers, whereby the protection delay

is determined by the insulation thickness and material. By heating up the coil, the normal

conducting zone expands quickly. A large normal conducting volume results in a low energy

density in the coil. In this way, a low peak temperature is obtained. However quench heaters

may cause electrical shorts and get damaged during magnet assembly, cool-down, or powering.

Furthermore, in a CCT-type magnet, their installation is not optimal due to the large exterior
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coil surface that is covered by the winding former, as illustrated in Figure 1.20.

Figure 1.20 – Illustration of heater strips installed on the outer layer of a two-layer CCT coil.

1.7 Thesis objectives

Following the EuroCirCol’s (European Commission funded European Circular) guideline and

according to the quench protection analysis for the FCC [49, 50, 51, 52], the maximum allowed

values in the system during a quench are 350 K for the peak temperature and 2 kV for the

voltage to ground. In order to safely dissipate the very high stored magnetic energy in the coil

windings and to protect the magnet against the consequences of a quench (cable degradation

or even coil destruction), we need a fast and reliable detection and a fast and efficient discharge

to prevent overheating of the magnet.

The characteristics of a protection system depend on diverse factors: the superconducting

cable composition (copper to non-copper ratio), the magnet geometry (inductance, shape

of the coil), the magnetic energy, and the operating conditions (temperature, field, current

ramp rate). In the case of a CCT-type magnet, these topics have not yet been explored in detail.

Therefore the topic of quench protection deserves a meticulous study.

My thesis research program covers three main parts for the CCT magnet detection and quench

problem: simulation methods, detection and protection concepts, as well as experimental

work. On one hand, I work on the multiphysics simulations in order to predict the real

electrothermal behavior of the magnet. On the other hand, different approaches to detect

a quench and to protect the magnet are studied. I implement and use generic simulation

methods to qualify different protection concepts. The new User-Defined-Elements (UDEs) in

ANSYS APDL, developed at LBNL [53, 54, 55], are adapted and used in the quench simulation

models. Based on the simulation results, the appropriate detection and protection methods

are selected and developed for testing. One method is tested in the subscale experiments and

others are to be tested on a two-layer CD1 model magnet that was built over the thesis period

at PSI. The results allow us to validate the conceptual design and feasibility of the construction

of a reliable, robust, fast, and efficient quench detection and protection system for a two-layer

CCT magnet.
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In this document, Chapter 2 focuses on the general simulation methods used in the quench

study. Chapter 3 presents the simulation studies of different quench protection methods, e.g.,

energy extraction, CLIQ and co-wound copper tape, using the example of the two-layer CCT-

type magnet CD1. Chapter 4 presents the experimental studies of different quench detection

methods. The voltage detection and optical detection techniques are tried out on the CD1

model magnet. The current detection method is investigated in a subscale experiment.
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2 Simulation Methods

2.1 Overview

The quench phenomenon is a multiphysics problem. The simulations are usually performed

by Finite Element Analysis (FEA), such as ANSYS [53], COMSOL Multiphysics [56] or network

models, such as ROXIE [57], Thea [58], LEDET [59], etc. MATLAB [60] and Excel spreadsheets

are also used to compute some simple approximations. ANSYS Mechanical APDL (ANSYS

Parametric Design Language), a scripting language to build models and analyses in terms of

parameters, is selected as the principal working tool due to the use of ANSYS for mechanical

models, a collaboration with LBNL, as well as the license availability at PSI.

ANSYS is an adequate and promising tool for quench simulation in superconducting magnets

by combining electrodynamics, thermal, mechanical, and possibly fluid dynamics analysis

[61]. Different phases in a quench can be studied in a detailed way, with standard ANSYS fea-

tures (magnetostatic, heat-flow at a constant field, conventional eddy-currents). For example,

a quench propagation can be modeled in order to investigate the detection and validation

phase. Nevertheless, ANSYS is still not a perfect quench simulation tool since at present it

does not support multi-dependency material properties and does not include the effects of

inter-filament coupling currents [62, 63, 64]. These features are necessary to simulate the full

quench evolution, in particular the discharge phase.

One of ANSYS’ capabilities is the user-programmable feature, which allows implementing

custom commands, material laws, and also complete new elements. At LBNL, the 2D thermal

and electromagnetic User-Defined Elements (UDEs) are developed in ANSYS for quench

simulations to include the missing features mentioned above: the multi-dependency material

properties and the losses of inter-filament coupling currents [55]. The purpose of developing

these UDEs is to improve simulation accuracy and performance. The performance of these

ANSYS elements have been verified via a benchmark study, showing a good agreement, be-

tween the new elements and a COMSOL Multiphysics implementation developed at CERN

on a simple-geometry Nb3Sn block dipole, using a dump resistor and coupling-loss induced

quench (CLIQ) based magnet protection approaches. Furthermore, with these elements,
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ANSYS reproduced the strong coupled quench back behavior, observed during the test of a

Nb3Sn superconducting undulator prototype at LBNL [55].

As far as the CCT-type magnet is concerned, the unique geometry has already been created

in ANSYS APDL and can be used for different types of simulations [11, 23, 65], e.g., quench

simulation. In order to determine the realistic dynamic behavior of the coil during a quench, it

is worthwhile to investigate the coupled problem in the electrical circuit, the electromagnetic,

and the electrothermal domains. The simulation methods are applied to our CCT-type model

magnet for test and validation. Nevertheless, by their nature, they are also generic for all other

types of superconducting magnets.

There are two major original contributions on the simulation side. The first one is the adaption

of UDEs in order to account for particular geometry effects that are inherent to the modeling

in 2D of CCT-type magnets. The second one is the creation of an automated Mathematica-

generated ANSYS quench model generator [66], with UDEs, for superconducting magnets

using Nb3Sn Rutherford cables. The implementation of the setup of the UDE-based model in

a model-generation software makes the work useful for future projects and simulations in the

wide superconducting magnet community.

In this chapter, the simulation models or techniques, covering all the phases of the quench

process, are developed and explained in a hierarchical pattern from the simplest to the most

sophisticated one. An overview of the simulation methods is given in Table 2.1. The model

magnet CD1 introduced in Section 1.3 is used as an example in all of the calculation methods

outlined in this chapter. The coupled quench model using UDEs is applied for the CCT4 model

magnet, which was built and tested at LBNL. The comparisons between the simulation results

and experimental data are described at the end of this chapter in order to validate the coupled

simulation method. It is worth noting that round strands are assumed in all the calculations.

The simulation results using these simulation methods for CD1 are presented in Chapter 3.

Table 2.1 – Overview of simulation methods.

Simulation method Direct output and purpose

MIITs adiabatic calculation td budget or Tpeak estimation

Adiabatic integrator Rquench for calculation of a rising voltage during
detection phase or a current decay

3D magnetostatic/thermal model Temperature profile along the cable for determina-
tion of a voltage-based ∆tthres

2D magnetoquasistatic/thermal
model with UDEs

Current profile in the coil for a CLIQ and/or EE
protection study
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2.2 MIITs adiabatic calculation

MIITs is an essential parameter in superconducting magnet design. MIITs stands for M (Mega)

I (current) I (current) T (time) s (plural). MIITs is used to link a current profile during a quench

(from the current plateau or ramp after a quench initiation to the end of the current decay) to

a peak temperature for a given cable type under adiabatic conditions [67]. MIITs calculation is

a reliable conservative estimate in a fast way for the peak temperature after a quench or the

total time budget before the current discharge. In this section, for a given superconducting

cable, the equation of total time budget to detect and actuate the protection after a quench is

outlined, using a given time constant of the current decay function. This calculation helps

us study the detection, validation and protection phases introduced in Section 1.5. MIITs

calculation is applied in the following locations: Subsection 3.2.1, 3.2.3, 3.3.5, and Section 3.4.

2.2.1 MIITs calculation

The MIITs expression can be obtained starting from the heat-balance equation in adiabatic

conditions:

cv
∂T

∂t
= qv (2.1)

where cv is the volumetric specific heat; T the temperature; t the time; k the conductivity and

qv the volumetric heat source, e.g., Joule losses, in the coil.

Joule losses start when current flows into stabilizer (i.e., T > Tcs):

P = I 2R = I 2ρ
l

A
= ρ I 2

A2 l A = ρ J 2V (2.2)

where P is the power source; I the current; R the resistance; ρ the resistivity; l the length; A

the cross-section area; J the current density and V the volume.

Therefore the volumetric heat source qv equals ρ J 2. Eq. (2.1) becomes:

ρcu(T,B)J 2
cu(t )dt = cv(T,B)dT (2.3)

where ρcu is the copper resistivity and Jcu the current density in the copper. It is worth noting

that only copper resistivity is considered as the resistivity of other cable components are

considerably higher than the one of copper. Therefore their contributions are negligible in a

parallel connection. More explanation is given in Subsection 2.4.2.

The copper resistivity is computed as follows [68]:

ρ(T,RRR) = 10−8

[
1.7

RRR
+

(
2.32547 ·109

T 5 + 9.57137 ·105

T 3 + 1.62735 ·102

T

)−1]
+MR ·B (2.4)
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where T is the temperature and RRR the residual resisitivity ratio. The term MR ·B is the

magnetoresistivity with MR = 0.5 ·10−10 Ω·m/T.

The RRR is defined as the ratio between the resisitivity at a high temperature Th and a low

temperature Tl at zero field:

RRR = ρ(Th,B = 0 T)

ρ(Tl,B = 0 T)
(2.5)

In the model, the coefficients are selected for Tl = 4 K and Th = 290 K.

For MIITs calculation to work, we have to choose one B-field value and keep it constant, which

is a wrong assumption during the current decay. To be conservative, the peak B-field value is

chosen to compute material properties. The following equation is obtained after integration:∫ ∞

0
I 2(t )dt = f3 A2

∫ Tmax

T0

cv(T,B)

ρcu(T,B)
dT = F (Tmax) (2.6)

where I is the magnet current; A the cable cross section; T0 the operating temperature; Tmax

the maximum temperature in the system and cv the average volumetric specific heat of the

cable across copper, superconductor and resin, which is given by

cv = f1cv,res + f2cv,sc + f3cv,cu (2.7)

The fractions of different components are defined as

f1 = 1− fcond = Ares

Acab
(2.8)

f2 = fcond fsc = Asc

Acab
(2.9)

f3 = fcond(1− fsc) = Acu

Acab
(2.10)

f1, f2 and f3 are respectively the cross-section area fraction of the resin, superconductor and

copper in the cable area. fcond is the conductor fraction in the cable area. fsc and (1− fsc) are

respectively the fraction of superconductor and copper within the conductor area.

Example:
The fraction calculations are explained using the CD1 parameters listed in Table 1.3. The

multiplication of cable thickness and cable width gives the cable area Acab = 14.53 mm2.

The conductor area in the cable area is the sum of all the round-strand areas, which is

11.92 mm2. Thus we have fcond = 11.92/14.53 = 0.82 and f1 = 0.18. The resin area in the

cable area is the difference between the cable and conductor Ares = 2.61 mm2. The non-Cu

fraction is the fraction of superconductor within the conductor area fsc = 0.465. Therefore

we obtain Asc = 5.54 mm2, Acu = 6.38 mm2, f2 = 0.38, and f3 = 0.44.
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The calculation of MIITs gives:

MIITs = 10−6
∫ ∞

0
I 2(t )dt = 10−6

(
I 2

optd +
∫ ∞

td

I 2(t )dt

)
(2.11)

with td =∆tthres +∆tval +∆tswitch, as illustrated in Figure 1.12.

The final formulation is obtained from inserting the MIITs expression into Eq. (2.6) and solving

for a maximum temperature.

F−1
(∫ ∞

0
I 2(t )dt

)
= Tmax (2.12)

The function is used to yield a worst-case estimate of the hot-spot temperature for a given

current decay.

Example:
For a maximum allowed temperature of 350 K [69], the MIITs number at 8.9 T should be

smaller than 10.7 MA2s, calculated from the material properties of the superconducting

cables used in CD1, given in Table 1.3. The plot of peak temperature versus MIITs values at

B = 8.9 T for CD1 is shown in Figure 2.1.
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Figure 2.1 – Peak temperature versus MIITs values at B = 8.9 T for the CD1 cable.

2.2.2 Time budget estimation

The time budget before current decay can be calculated from Eq. (2.11) as follows:

td =∆tthres +∆tval +∆tswitch =
F (Tmax)−∫ ∞

td
I 2(t )dt

I 2
op

(2.13)
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with

I (t ) = I0e−t
REE+Rquench(t )

L(I ) (2.14)

Since REE À Rquench, if only considering the dump resistor in the circuit, the current expression

can be simply written as follows

I (t ) = I0e−t
REE
L(I ) (2.15)

2.2.3 Current decay expression

The knowledge of current decay function is necessary for computing MIITs calculation. Once

the quench is detected and the power supply is switched off, the equation in the loop can be

written as

Ld(I )
dI (t )

dt
=−(REE +Rquench(t ))I (t ) (2.16)

Note that the lead resistance is neglected here.

The dump resistor value is determined by the maximum operating current and the maximum

voltage rating of the test station equipment and the magnet’s ground insulation.

Example:
For a test of CD1 magnet at LBNL, we have Vmax = 800 V [70] and Imax = 18.1 kA. The dump

resistor value can be estimated as:

REE = U

I
= 800 V

18.1 kA
= 44 mΩ (2.17)

Without any consideration of active protection (Rquench), the current decay function is com-

puted numerically via:

In = In−1 −∆t
REE

L(In−1)
In−1 (2.18)

where ∆t = tn − tn−1 and In = I (tn) with small steps. Note that the inductance L has a depen-

dence on the current I . The inductance profile needs to be included to get a realistic current

decay function.

2.2.4 System inductance

A magnetostatic model was solved beforehand in Opera [81], to calculate the energy of CD1

full model at several different current levels. From that, the differential inductance is derived.
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2.2. MIITs adiabatic calculation

The total energy is

W =
∫ ϕ

0
I dϕ=

∫ I

0
I

dϕ

dI
dI =

∫ I

0
LdI dI (2.19)

where ϕ is the linked magnetic flux in the magnet coil and Ld is the differential inductance. If

we rewrite Eq. (2.19), it becomes

∆W = Ld(Ī )Ī∆I (2.20)

where Ī is the average current for two adjacent values with small steps. The differential

inductance function is computed from consecutive energy values via

Ld(Ī ) = ∆W

Ī∆I
(2.21)

Example:
Figure 2.2a shows the differential inductance value as a function of current for CD1. At

the beginning of discharge Ld = 1.4 mH while at the end of discharge Ld = 1.9 mH. If we

substitute L in Eq. (2.18) by Eq. (2.21), the current decay is obtained as well as the MIITs

value for the decay part. Figure 2.2b plots the current discharge when power supply is

switched off at Iop = 15.5 kA, using a nonlinear Ld or a constant Ld = 1.4 mH. The MIITs

value for both cases is respectively 4.8 and 4.2 MA2s. From this figure, we remark a slight

difference in the current decay. It is more conservative assuming Ld = 1.4 mH to compute

the time budget available before discharge. The usage of a nonlinear Ld is mainly to make

the simulation more realistic.
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(a) CD1 inductance in 3D full model.
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Figure 2.2 – CD1 differential inductance and comparison of current decay profile with/without
Ld(I ), when the CD1 is protected by a dump resistor of 40 mΩ, without consideration of
quench resistance.
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2.3 Adiabatic integrator

An adiabatic integrator assumes a time of quench for each turn. The quench resistance is

computed via adiabatic integration of the temperature in each turn. When a temperature

profile in the superconducting cable centre is available, the resistivity of the normal zone, its

quench resistance as well as the voltage rise in the magnet can be calculated as a function

of time. This calculation helps us study the detection and discharge phase introduced in

Section 1.5. The adiabatic integrator is applied in Subsection 3.2.2 and 3.4.

For each mesh element of the cable in the model, a fixed temperature Te, a constant magnetic

field across the coil, a constant cable cross-section area and a discretization length ∆x are

assumed to calculate the quench resistance. The current-sharing regime is neglected here. An

element is considered to be quenched when the element temperature is larger than Tcs. The

element resistance is calculated as Re = ρcu(Te) ·∆x/Acu.

The total quench resistance is the sum of all the resistances of the quenched elements, given by

Rquench =∑n
i Re,i. The voltage rise in the coil is written as Vquench = IopRquench. In the voltage

detection method, Vquench is used to determine the quench detection time assuming that the

inductive voltage is canceled out.

2.4 Magnetostatic and electrothermal finite-element model

In a magnetostatic and electrothermal model, the thermal diffusion and quench propagation

in the coil are investigated at a fixed magnetic field (i.e., a fixed current), to study the longitu-

dinal and turn-to-turn propagation. A magnetic-field map, that does not change over time,

is implemented in the model. Based on the temperature profiles obtained in the simulated

models, we aim to quantify the detection problem by evaluating the detection time for the

voltage-based method, using the adiabatic integrator, described in Section 2.3. These models

help us study the detection and validation phases in Section 1.5.

In the model, the quench is triggered by assigning a temperature profile that locally exceeds

Nb3Sn critical temperature for a certain region in the superconducting cable. A 3D 3-turn

helical model of CD1 cable on the inner layer is generated. In the simulation, we assume that

the first turn is already quenched (20 K) and other turns are set at the operating temperature

(4.2 K) as the initial conditions, since my interest is to observe the longitudinal and transverse

quench propagation in a CCT-type magnet on the quench front. Figure 2.3 illustrates an exam-

ple of a temperature profile on the cable and former in the coil at 15.5 kA after a simulation

time of 10 ms. The results and discussions for CD1 are presented in Subsection 3.2.2. Note

that the propagation velocity is best measured when the quench reaches the third turn, i.e.,

when the influence of the initial condition is no longer relevant.

Once the detection plateau, as well as the current decay is known, when the magnet is pro-

tected by the energy-extraction system, one can calculate the MIITs, described in Section 2.2,
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4.2         10.2        16.1        22.1        28.1        34.1       40.0         46.0       52.0      58.0 [K]

Figure 2.3 – Quench propagation illustration in the CD1 3-turn helical model at 15.5 kA after
10 ms. The cable insulation is not included in the figure for a better illustration of temperature
profiles in the bare cable and former.

during a quench, in order to estimate the worst-case peak temperature in the conductor,

explained in Subsection 3.2.3. Furthermore, the voltage-based detection time can be used

in other quench protection simulations, e.g., when we combine the detection time with the

CLIQ unit, explained in Subsection 3.3.4. Additionally, the voltage-based detection time can

be used to compare with other detection methods, e.g., current-based method, explained in

Subsection 4.2.7.

The following subsections concentrate on the different aspects of the modeling. The 3D coil

geometry is first generated with the model general settings. Then all the material properties

involved are added into the code, as well as the critical current fit functions of the supercon-

ductor. The real magnetic-field map is implemented and associated with corresponding finite

elements.

2.4.1 Model geometry and general settings

In Figure 2.4a, different components (cable representing Nb3Sn, copper and resin, insulation

in G10, spar and rib in aluminum bronze) are observed in a superconducting cable of a 3-

turn helical model of CD1 inner layer. Finer meshes are applied between turns for a better

observation of transverse propagation in a quench propagation simulation (Figure 2.4b).

The time substep in ANSYS, as well as the mesh size, depend on the geometry and the physics

(material parameters, excitation, etc.). The total simulation duration is set differently depend-

ing on the current levels. A finer mesh or a smaller time substep means a longer simulation

running time. In order to guarantee convergence, the mesh size and time substep are chosen

as large as possible and as small as necessary.

2.4.2 Material properties and homogenization

Material properties from different sources are used [68], e.g., MATPRO [72], NIST [73], CUDI

[74], CryoComp [75], LBNL, and Fermilab. In my study, the temperature range of interest for

quench simulation is from 4 to 350 K. The different types of material properties are used, e.g.,
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(a) Plot in volumes. (b) Plot in elements.

Figure 2.4 – ANSYS plots of a 3-turn helical model of the CD1 inner layer, illustrating model
geometry and meshing.

electrical resistivity ρ [Ω· m], thermal conductivity k [W/(K · m)], mass density d [kg/m3],

and specific heat c [J/(K · kg)] or volumetric heat capacity cv = d ·c [J/(K · m3]. The following

considerations are taken into account in the modeling.

We only consider the copper electrical resistivity in the simulation because the electrical

resistivity of the other cable components are considerably higher than the one of copper, thus

their contributions are negligible in a parallel connection. For example, according to MATPRO,

the normal-state electrical resistivity of Nb3Sn is in the range of 2.3 ·10−7 ∼ 4.1 ·10−7 Ω · m,

where the lower value is for cryogenic temperature (4.2 K) and the higher value for room

temperature (295 K). While the copper resistivity is about 1.7 ·10−8 Ω · m at room temperature

(290 K), and is 100 to 200 times lower at cryogenic temperature. Thus there is at least more

than one order of magnitude of difference between the resistivity of Nb3Sn and copper.

To calculate the longitudinal propagation of heat through the cable, only copper is considered.

The reason is the same for the electrical resistivity. For example, according to MATPRO, the

maximum thermal conductivity of Nb3Sn is 2.8 W/(K · m) and the thermal conductivity of

copper is bigger than 100 W/(K · m). For the calculation of transverse propagation of heat

(between different turns), the material properties of the ribs from former and the cable are

involved.

The change in mass density due to thermal expansion is neglected, because the warm geometry

is used, so the contraction is neglected. In addition, it seems to be quite small. For example,

the copper density decreases about 1.33% from room to cryogenic temperatures [76] and

Nb3Sn has even a smaller thermal expansion than copper [77].

Table 2.2 specifies the source of material property for each type material used in the simulation.

This table is also valid for the simulation described later in Section 2.5. In a quench propagation

simulation, only the material properties of copper, Nb3Sn G10, and aluminum bronze are

involved. For the simulation in Section 2.5, everything listed in the table is involved. It is worth

noting that in the quench propagation model, the simplest Wiedemann-Franz law is used for
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calculation of copper thermal conductivity while a more precise database CUDI is used in the

model in Section 2.5. Moreover, for simplicity, the epoxy regions in the cable are considered to

be glassfiber reinforced due to a lack of material properties for pure epoxy. Thus the properties

of G10 are assumed.

Table 2.2 – Source of material property for each type material used in the ANSYS FEM simula-
tion.

Material Property Source

Copper
ρ CUDI
k Wiedemann-Franz law / CUDI
cv CUDI

Nb3Sn cv CUDI

G10
k NIST
c Fermilab

Aluminum bronze
k LBNL
c LBNL

Aluminum
k NIST
c NIST

Kapton
k NIST
c NIST

In finite element analysis, the material properties are assigned to elements, and elements

resolve the entire cable, which is assumed to contain resin, copper stabilizer and supercon-

ductor. The material properties are blended using area fractions for thermal conductivity k

and volumetric heat capacity cv. With all these assumptions the blended properties used are

given by

k = f3kcu (2.22)

cv = f1cv,res + f2cv,sc + f3cv,cu (2.23)

with the definition of fractions described in Subsection 2.2.1.

The generated volumetric heat is

qv(T ) = Acu

Acab
ρcu(T )

(
Iop − Isc(B ,T )

Acu

)2

(2.24)

where Acu is the copper area; Acab the bare cable area; and Isc(B ,T ) the current flowing in the

superconductor.
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2.4.3 Critical current fit function

As mentioned in Section 1.4, Nb3Sn is a strain-sensitive material, the large transverse forces

can cause irreversible damage to the conductor, which happens in high-field magnets. In

addition to large transverse forces, a relatively small longitudinal force can cause degradation.

We know that a transverse stress below 130 MPa does not lead to a significant reduction in Jc

and it avoids any irreversible degradation [13, 78]. For this reason, the CCT geometry using the

Nb3Sn conductor can mitigate the issue related to the strain or stress management, because

the expected peak coil stress is respectively 135 MPa at nominal field for the FCC CCT dipole

magnet and 101 MPa at short sample step for the CD1 model magnet [11, 23]. Furthermore,

the quench model is not coupled to a mechanical one, therefore the strain function is not

included in the fit functions described in this subsection.

The Summers critical current fit function is given by [68] 1:

Bc2(T ) = Bc20

[
1−

(
T

Tc0

)2]{
1−0.31

(
T

Tc0

)2 [
1−1.77ln

(
T

Tc0

)]}
(2.25)

Jc(B ,T ) = Cp
B

(
1− B

Bc2(T )

)2 [
1−

(
T

Tc0

)2]2

(2.26)

where Tc0 and Bc20 are characteristics of the superconducting material. C is a normalization

constant. The respective values are Tc0 = 18 K, Bc20 = 28 T and C = 3.7·1010 A.T
1
2 /m2, obtained

from the CD1 strand short sample measurement.

For numerical efficiency, i.e., in order to avoid numerically solving a nonlinear problem to

compute Tcs, the below critical current fit function is implemented in the magnetostatic and

electrothermal model [80]:

Tc(B) = Tc0

(
1− B

Bc20

)0.59

(2.27)

Jc(B ,T ) = (C1 +C2B)

(
1− T

Tc(B)

)
(2.28)

The Summers fit functions are replaced by this simplified version. For a selected operating

point, the current-sharing temperature can be easily computed with this simplified version in

Eq. (2.29).

Tcs(B) = Tc(B)

(
1− Jop

C1 +C2B

)
(2.29)

However it is impossible to get a perfect superposition of the standard (Eq. (2.25) and (2.26))

and the simplified (Eq. (2.27) and (2.28)) fit functions everywhere. Nevertheless if we also

adapt Tc0 and Bc20 values in addition to the constant C1 and C2, we are able to obtain the

1A discrepancy of fit function exists between the original paper [79] and ROXIE document [68]. To be consistent
with the superconducting magnet community, the critical current fit function in ROXIE is used in the calculations.
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same results of critical current for the standard and simplified equations within a range of

temperature and magnetic field (quench zone).

Example:
Figure 2.5 shows an example when Iop = 15.5 kA. Figure 2.5a plots the critical current as a

function of temperature at a fixed magnetic field while Figure 2.5b plots the critical current

as a function of B field at two different temperatures. In the figure, the linear (simplified)

and curved (standard) lines are overlapped around T = 7.2 K and B = 8.9 T. These simplified

critical functions may not be appropriate when we are at low B field. Nevertheless, since

the quench propagation model is based on the cables turns in the inner layer of CD1, the B

field range is approximately between 5 to 9 T at 15.5 kA.

(a) Critical current versus temperature at a fixed B field. (b) Critical current versus magnetic field at a fixed tem-
perature.

Figure 2.5 – Comparisons of critical current fit functions between the Summers and the
simplified version for the CD1 at 15.5 kA.

Finally, for computations of FCC magnets, the following fit function are suggested in [69]

C (t ) =C0(1− t 1.52)α(1− t 2)α (2.30)

Bc2(T ) = Bc20(1− t 1.52) (2.31)

Jc = C (t )

Bp
b0.5(1−b)2 (2.32)

where t = T /Tc0, b = Bp/Bc2(t), with Bp the peak field on the conductor. The following

fit parameters are used, representing the target values for the FCC R&D wire: Tc0 = 16 K,

Bc20 = 29.38 T, α= 0.96 and C0 = 267845 A/mm2 for FCC CCT study [69].

2.4.4 Magnetic-field map implementation

In a magnetostatic model, the magnetic field changes with location, and the value of the mag-

netic field impacts some material properties, e.g., electrical resistivity, specific heat. Therefore
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the B-field map needs to be imported in ANSYS. Since the mesh discretization is done in

ANSYS, the centroid coordinates of each element are extracted from the model built. Then

the corresponding B-map table is extracted from an Opera model, based on the element cen-

troid coordinates (Figure 2.6). Finally, the B value is rescaled with the operating current and

assigned to each element in the ANSYS model. The scaling law used is as follows B = I ·Bd/Id,

where d denotes magnetic design.

6.26
6

5

4

3

2

1.11

Surface contours: B [T]

Figure 2.6 – CD1 magnetic field distribution in Opera with a centre B field of 10 T. Note that
the yoke in this simulation is round, whereas the yoke aperture in the final CD1 magnet is
square-shaped.

2.5 Electrothermal and magnetoquasistatic finite-element model

In a time-varying magnetic field, the efficiency of the protection methods and the current

decay are studied, when the magnet is protected by only CLIQ, or only EE, or both of them

initiated at the same time or with a delay time between them. The goal of this study is to

simulate the electromagnetic and electrothermal behavior of a 2D cross-section model with

the quench protection system connected in the electrical circuit. The model helps us study

the protection and discharge phases introduced in Section 1.5.

In this approach, the coupled model includes, on the electromagnetic side, inter-filament

coupling currents in the bare cable, quench-state check algorithm, eddy currents in the spar

domains, Al protective shell and outer shell, and a non-linear B-H curve in the iron yoke; on

the thermal side, losses in the bare cable, and temperature- and field-dependent material

properties in the bare cable, insulation, spars, ribs and Al protective shell. As mentioned

in Section 2.4, the obtained voltage-based detection time can be added at the beginning of

simulationl in order to calculate the peak temperature in the conductor after a quench. The

results and discussions are presented in Section 3.3, for the CD1 model magnet.
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2.5.1 Basic formulations

On the thermal side, the heat-balance equation is given by:

dc
∂T

∂t
−O · (kOT ) = qv (2.33)

where d is the mass density, c the specific heat, T the temperature, t the time, k the thermal

conductivity and qv the volumetric heating power.

On the electromagnetic side, the Ampere’s law is written as

~O× ~H =~J (2.34)

where H is the magnetic-field strength and J the current density.

The relationship between B and H is ~B =µ0(~H + ~M), where µ0 is the permeability and M the

magnetization. If we inject this formula into Eq. (2.34), we obtain

~O×
(
~B

µ0
− ~M

)
=~J (2.35)

In the magnetic vector potential formulation ~B =~O×~A, thus Eq. (2.35) becomes

~O×
(

1

µ0
~O×~A

)
−~O× ~M =~J (2.36)

The current density J can be expanded as~J =σ~E +~Js, where σ is the electrical conductivity, E

the electric field and Js the source current density. Eq. (2.36) is thus further developed:

~O×
(

1

µ0
~O×~A

)
−~O× ~M −σ~E =~Js (2.37)

If we put the relationship between the electric field E and the vector potential A, which is

defined by ~E =−∂~A
∂t , into Eq. (2.37), the final magnetoquasistatic equation is:

~O×
(

1

µ0
~O×~A

)
−~O× ~M +σ∂

~A

∂t
=~Js (2.38)

where σ∂~A
∂t is the eddy-current term.

In the bare cable region, an equivalent magnetization term ~Me is formed to include the

inter-filament coupling currents [82, 83].

~O×
(

1

µ0
~O×~A

)
−~O× ~Me =~Js (2.39)
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The equivalent magnetization term has been used in different models with the following

definition [57, 84, 85]:

~Me =−2τ

µ0

∂~B

∂t
(2.40)

with a time constant τ for inter-filament coupling losses:

τ= µ0

2ρet

(
L

2π

)2

(2.41)

where ρet is the effective resistivity of the strand copper matrix and L the filament twist pitch

length.

Considering the form of ~Me, the differential equation to be solved in the bare cable is

~O×
(

1

µ0
~O×~A

)
+~O×

(
2τ

µ0
~O× ∂~A

∂t

)
=~Js (2.42)

The equivalent magnetization approach, which includes the effects of eddy currents, is benefi-

cial in the simulation since the finite-element formulation is derived from the vector potential

only, without the need for an additional degree of freedom.

When the model is coupled to an electrical circuit, a stranded formulation is used which adds

a current I and an electromotive force V degree of freedom to the vector potential A, where I

is the current per stranded coil turn, and V the voltage drop across the coil. The total voltage

drop across the coil V is a combination of a resistive part Vr and an inductive part Vl, given by

V =Vr +Vl.

The resistive voltage drop is Vr = I R. The current flowing in the copper part is defined as Icu =
I fcs, with fcs the fraction of current flowing in the copper compared with the superconductor.

The copper resistance is computed as follows

R = ρcu
l

A
(2.43)

with ρcu the copper resistivity, l the total cable length and A the copper area in one stranded

coil turn.

The cable length per stranded coil area is the multiplication of the number of turns per

stranded coil area nt and the effective length chosen to match the resistance of the 3D coil Lc

(physical length). The cable length is thus given by l = ntLc. Note that in a CCT-type magnet,

nt is always 1. This parameter is useful for multi-turn areas in other types of magnet.

The copper area in one stranded coil turn is written as A = Acu/nt, with Acu the total copper

area in the stranded coil area, which can be expressed by Acu = Sc fcond(1− fsc), where Sc is the
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stranded coil area, fcond the conductor fraction in the stranded coil area and fsc the fraction of

superconductor within the conductor area.

By injecting the expressions of l and A into Eq. (2.43), we obtain

R = Lc
n2

t

Sc

1

fcond(1− fsc)
ρcu (2.44)

Since the FEA is done on the cable elements, the above equation is developed as

R = Lc

(
nt

Sc

)2 1

fcond(1− fsc)

∫
ρcudS (2.45)

The final expression of the resistive voltage is given by

Vr = I Lc

(
nt

Sc

)2 fcs

fcond(1− fsc)

∫
ρcudS (2.46)

The inductive voltage is given by the time derivative of the linked flux:

Vl =
∂Φ

∂t
= nt

∂

∂t

∫
(~u ·~A)dS (2.47)

where ~p is current direction vector and ~A the nodal potential. For a 2D model with current

restricted to flow only in the z direction, the equation becomes

Vl = nt
∂

∂t
Li(u Az) (2.48)

where Li is the effective length scaling of the inductance chosen to match the 3D magnet

(magnetic length), u the variable +1 or -1 based on the direction of the current and Az the

nodal potential in the z direction for 2D model. It is convenient to reformat this into a surface

integral such that

Vl = Li
nt

Sc
u

∫
∂Az

∂t
dS (2.49)

2.5.2 Model key features

There are three key features: the ANSYS Multi-Field Solver (MFS) between electromagnetic

and electrothermal domain, the electrical circuit coupling to the electromagnetic domain for

the quench protection system modeling, and the usage of ANSYS thermal and electromagnetic

UDEs for the bare superconducting cable areas.

39



Chapter 2. Simulation Methods

ANSYS Multi-Field Solver

The ANSYS Multi-Field Solver (MFS) is available for a variety of coupled problems. The MFS

solves sequentially the coupled physics problems. The working principle is described as

follows. Each type of model is created with an independent set of equations and mesh, the

ensemble of which is called a field. Each field has a group of defined element types. The

surfaces or volumes, where the loads need to be transferred, are identified. By using a set of

MFS commands, one can configure the problem and define the solution sequencing. The MFS

iterates between each physics field until the loads across physics interfaces converge. In our

case, the heat generation and temperature are defined as loads. At the end of the simulation,

independent results files are created for each field.

Circuit coupling

In addition, electrical circuits are connected to the magnetoquasistatic FEM domain in order

to evaluate the response of the protection components, e.g., an energy-extraction (EE) system

or a coupling-loss induced quench (CLIQ) system. Every cable area in a 2D cross section is

defined as a stranded coil element and connected in the electrical circuit. By coupling or

uncoupling the voltage degrees of freedom between nodes, we are able to control the function

of the circuit, e.g., to charge the CLIQ capacitor. Moreover, by coupling the finite element

regions to an electrical circuit defined within ANSYS using the CIRCU124 element, the effect

of eddy currents in the magnet structure can be coupled to the behavior of the magnet in the

circuit.

ANSYS 2D User-Defined Elements

In the coupled simulations, the 2D UDEs of ANSYS are used for a better prediction of the

superconducting magnet quench behavior. The basis of UDE creation is the modification

of the individual stiffness, mass and damping matrix in the FEM equations. The integration

of the modified codes is done by compilation of the code fragments and linking them to the

ANSYS libraries. A full description of these UDEs and the benchmark study can be found in

[55]. There are two new types of UDEs.

The thermal UDE supports the multi-dependence material properties, which are not only tem-

perature dependent but also magnetic-field dependent, while the ANSYS standard elements

only support temperature-dependent material properties. If B-field dependent material prop-

erties are needed, one has to update them through APDL code in each element and at each

time substep, the execution of which is computationally inefficient. The thermal UDE solves

this problem and the necessary material properties are generated internally in the code, which

is convenient and efficient for numerical computation.

The electromagnetic UDE includes the Inter-Filament Coupling Currents (IFCCs) within the

conductor. The generated losses of IFCCs are critical in CLIQ modeling. For the CCT-type
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magnet quench protection, the study of CLIQ performance during a quench is an essential

task since CLIQ is the baseline protection method in the FCC conceptual design study. The

generated losses of IFCCs within the cables are for the first time included in the CCT-type

magnet quench simulations, by using the electromagnetic UDE in ANSYS. Furthermore, the

quench status check process is incorporated inside these two elements.

Note that only the bare cable areas use the new UDEs. The remaining areas (iron, insulation,

structure, air) use the standard elements. The 2D UDEs are initially created for a magnet

cross section that can be longitudinally extruded to a 3D one. Some modifications, which

are described in the following paragraphs, are made within these UDE FORTRAN files to

accommodate the special locally 3D features of CCT-type magnets. An overview of the coupled

electromagnetic, circuit, and thermal simulation in ANSYS with user-defined elements is

shown in Figure 2.7 at the example of CD1.

Figure 2.7 – Overview of coupled electromagnetic, circuit, and thermal simulation in ANSYS
with user-defined elements at the example of CD1 (following [55]).

Addition of critical current fit functions

The critical current fit functions in Eq. (2.25), (2.26) and Eq. (2.30), (2.31), (2.32) are imple-

mented in the UDE code.
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Adjustment of current density

In a 2D cross-section model of a CCT-type coil, none of the cables is cut orthogonally. Thus,

depending on the cutting angle, the cable cross section appears always larger than the real

section. The cross-section through the CCT magnets yields wide cable areas in the pole regions,

which can be observed in Figure 2.8a. Figure 2.8b shows a comparison of the FEM turn area

and real cable area.

(a) (b)

Figure 2.8 – The apparent cable cross-section in the cross-section of a CCT magnet, as com-
pared to the actual cable cross-section. (a) CD1 insulated cable cross-section. The cross-
section yields wide cable areas in the pole regions, observed in the red boxes; (b) Definition of
cable areas.

A tilt factor ftilt is defined as the real cable cross section area Acab over the FEM turn area

AFEM, given by ftilt = Acab/AFEM. This factor is implemented as a new real constant in the

electromagnetic UDE and can be passed via APDL code to the thermal UDE for usage. The

value is calculated for each turn. In Subsection 2.4.2, different fractions of a defined cable

area is distinguished. When we do the multiplication of a fraction with the tilt factor, we get

simultaneously the corresponding fraction of a selected FEM area. An example is shown as

below

fcond ftilt =
Acond

Acab

Acab

AFEM
= Acond

AFEM
(2.50)

The tilt factor is used in order to adjust the current density in the superconducting fraction of

the conductor region, so that the total current entering or exiting each cross section is the same.

The current density is defined for calculation of quench status check and current-sharing

regime. The new current density Jsc is thus calculated as

Jsc = Je

ftilt fcond fsc
(2.51)

for an applied current density Je in an element. When this cable turn section is defined as a

stranded coil coupled to an electrical circuit, the current density Jsc is written as

Jsc = Int

ftiltSc fcond fsc
(2.52)
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where I is the current per stranded coil turn, nt the number of turns per stranded coil area,

and Sc is the stranded coil area.

Moreover, ftilt is used to appropriately adjust the quantity of material properties in different

cable turns. The new homogenized volumetric heat capacity is calculated as

cv = ftilt( f1cv,res + f2cv,sc + f3cv,cu) (2.53)

To be balanced in the heat equation, the Joule heating per unit volume of modeled conductor

is modified as below

Pres = ρcu ftilt
( fcs Je)2

fcond(1− fsc)
(2.54)

and IFCC heat generation power per unit volume is modeled as below

Ptau = 2τ ftilt
fcond

µ0

∣∣∣∣∂B

∂t

∣∣∣∣2

(2.55)

In addition, the resistive voltage drop across the coil is also modified as below

Vr = I Lc

(
nt

Sc

)2 fcs

ftilt fcond(1− fsc)

∫
ρcudS (2.56)

Adjustment of conductor length

The 2D UDEs are independent of length. However, in a 3D coil, the turn length of each turn is

different for a chosen cut, shown in Figure 2.9. The physical length Lc and magnetic length

Li are used for coupling resistive and inductive effects to the circuit, so the lengths impact

the current and voltage in the electromagnetic model. Since each FEM area represents a

different length of cable, the conductor physical length is adjusted in the real constants of

each conductor piece for the calculation of resistance, voltage and current.

Figure 2.9 – Periodic slice model of a two-layer CCT-type coil.
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A length factor fl is defined as the real longitudinal cable length in a pitch distance l over the

pitch distance p, given by fl = l /p. Figure 2.10 illustrates the lengths used in the definition of

the length factor.

Figure 2.10 – Lengths used in the definition of the length factor.

In a CCT-type magnet, the magnetic length Li is simply expressed as Li = pnp, where p is the

pitch length and np the number of pitches. The pitch length is defined as the moving distance

of a cable after one turn.

One turn length can be written as the sum of all the real longitudinal cable lengths in a pitch

distance on a chosen 2D cut:
∑nsec

s ls = Turn length. where nsec is the number of cross-section

slots on one cut area. Therefore each cable cross section s represents a physical conductor

length of

Lc,s = fl,sLi (2.57)

This length is calculated for each cross-section slot and involved in the voltage drop across

the coil. In Eq. (2.46) and (2.49), we observe the importance of using right lengths, i.e., Lc and

Li, to compute the voltage drop in a circuit-coupled model. Eq. (2.57) is then injected into

Eq. (2.56) for the conductor length adjustment.

2.5.3 Validation of automated model generator

The automated 2D model generator is created for the CCT-type magnets. In this generator, the

different protection cases can be pre-selected for the corresponding study, e.g., only energy

extraction, or only CLlQ, or both of energy extraction and CLIQ, or natural decay without

any protection system, with a cross-section turn already quenched at the beginning of the

simulation. The delay time between the initiation of energy extraction and CLIQ can also

be adjusted in the case when both are involved in the coupled simulation. Furthermore, an

additional detection time can be introduced before turning on the protection methods to

estimate the hot-spot temperature in the magnet after a quench.

As the test results of CD1 is not available within the period of my thesis, the existing test results

of CCT4, a model magnet built at LBNL [86, 87, 88], are therefore used to compare with the

simulation and to validate the model and the model generator, since this magnet is one of the

closest magnets to CD1. Figure 2.11 shows the CCT4 coil assembly. The main parameters, as

well as the magnet component materials are listed in Table 2.3. The dimensions of different

layers are listed in Table 2.4. There are several differences between CD1 and CCT4, such as the
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conductor and the mechanical structure. The CCT4 coil is surrounded by a large aluminum

shell of a thickness of 55.2 mm and then an iron yoke of a thickness of 197.5 mm. Note that the

yoke was clamped around the shell, thus the gap between the shell and yoke was eliminated.

Figure 2.11 – CCT4 coil assembly at LBNL. The most-outer silver cylinder is the thick aluminum
shell.

Table 2.3 – Main parameters of the CCT4 Nb3Sn dipole magnet of LBNL.

Magnet parameter Value

Nb turns 64
Cable thickness 1.4 mm
Cable width 10.1 mm
Number of strands 23
Strand diameter 0.8 mm
Filament twist pitch 14 mm
Insulation thickness 0.2 mm
Measured Cu RRR 300
Non-Cu fraction 0.54
Short-sample current (4.2 K) 19.3 kA
Short-sample bore field (4.2 K) 10.4 T
Coil physical length 1 m
Coil magnetic length 0.5 m

Magnet component Material

Strand type Nb3Sn
Former (spar, rib) Aluminum bronze
Shell Aluminum

The critical current fit functions in Eq. (2.25) and (2.26) are used in the case of the CCT4 with

the following coefficients to match the short sample measurement: Tc0 = 18 K, Bc20 = 28 T and

C = 4.5 ·1010 A.T
1
2 /m2.
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Table 2.4 – Dimensions of different layers of the CCT4 Nb3Sn dipole magnet of LBNL.

Unit [mm] Inner diameter Outer diameter Thickness

Inner layer 45 64.4 19.4
Outer layer 64.9 78.8 13.9
Shell 79.8 135 55.2
Yoke 137.5 335 197.5

When we compare the data, it is also important to match the 2D to 3D no-loss inductance

as best as possible, with a single scaling parameter which in this case is the magnetic length.

Since the iron saturates at fairly low current in the case of CCT4, the scaling factor is expected

to be mostly constant with current. Therefore a constant length is used to match with the

extraction current.

CCT4 has 64 turns with a pitch length of 7.93 mm, which in turn gives a magnetic length of

507.8 mm. As a start, this value is used in the simulation model without any loss. The no-loss

inductance at the beginning of the decay is calculated and the value matches the one from the

3D model, which is 1.8 mH [54].

The CCT4 model magnet was protected only by an energy-extraction system. Simulations

are run with REE = 30 mΩ. We proceed step by step, starting with a no-loss model, adding

successively eddy currents in the aluminum shell, eddy currents in the spars, and inter-

filament coupling currents, to obtain the results of a complete model. The simulation is

started with the peak current. Figure 2.12 presents the contribution of different losses to the

current decay behavior. We confirm that the eddy currents in the aluminum shell dominate

the behavior by increasing the decay speed, leading to a deviation from the no-loss case [54].

The effect of the addition of eddy currents in the spars is negligible compared to the one of the

shell. The contribution of IFCL only accelerates the current decay by a small amount.

The comparisons of current decay curves between simulation and test data at different excita-

tion levels are presented in Figure 2.13. For these three current levels, a very good agreement

is observed between the computed decay curves and the measurement. It is worth noting

that for the excitation current of 13.6 kA, the current measurement saturates at 10 kA. Thus

the comparison starts when the saturation ends by overlapping the timing for benchmarking

at high currents. Besides, the large spike on the graph at extraction is due to noise from the

switch opening.

To summarize, the 2D coupled model is capable to accurately predict the current decay

behavior when the magnet is protected by an energy-extraction system. This can only be

previously achieved by a full 3D model including the end effects, according to [54]. The fact

that IFCL contributes relatively little to the overall shape of the current decay implies that

the model validation is not complete. For completing validation, we need data from a CLIQ

discharge, in which case IFCCs are the dominant effect in the first milliseconds.
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Figure 2.12 – Comparison of current decay curves from ANSYS with contributions of different
losses in the CCT4 model magnet.

Figure 2.13 – Comparison of current decay curves between ANSYS simulation and test data at
different current levels of the CCT4 model magnet, when the magnet is protected by a dump
resistor of 30 mΩ.

However, the adopted equivalent magnetization formulation for homogenized cables, men-

tioned in Eq. (2.40) and (2.41), might not be appropriate for simulating fast transients, such

as a CLIQ discharge. According to [29], a shorter time constant of ∆B was obtained when

the effect of IFCC was implemented using the homogenized formulation, with respect to a
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multi-strand model. As a consequence, IFCLs are quantitatively different, leading to a different

current decay curve.

The 2D model is therefore not fully conservative as the fast response from IFCLs may lead to a

slight anticipation of the moment of quench. Nevertheless, it is still a good tool to predict the

whole current decay profile in the coil. Since the used modeling technique has never been

validated against experimental results for CLIQ-discharge transients, how big the impact is

will be evaluated when the measurement results are available.

As CCT5 was also protected by the energy-extraction system, the CLIQ behavior needs to be

verified after the test of the CD1 model magnet 2. To conclude, the model and automated

model generator could be partially validated based on the test results of CCT4, protected only

by an energy-extraction system.

2Due to the outbreak of Coronavirus disease (COVID-19), CD1 could not be tested within the time frame of this
thesis.
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3 Quench Protection

3.1 Goals and overview

The final goal of my thesis is to develop an efficient quench detection and protection system

of a two-layer CCT magnet. To achieve this, the development, construction, and test of a

detection and protection system for PSI’s two-layer model magnet CD1 is necessary. In this

chapter, we aim to investigate the possibility via simulations to apply different protection

methods, energy extraction, CLIQ, and co-wound copper tape, described in Chapter 1, to

the CD1 short model. The protectability study with a dump resistor is first discussed in a 3D

magnetostatic and electrothermal model, in Section 3.2. Then the CLIQ protection study is

described in a 2D electrothermal and electrodynamic model using UDEs, in Section 3.3. The

co-wound copper tape protection study is then explained in Section 3.4.

3.2 Energy extraction

In order to study the energy-extraction system with a value of REE = 40 mΩ, several steps are

needed. A MIITs calculation is first computed for the CD1 cable to have an estimation of the

time budget without exceeding a maximum temperature of 350 K. A magnetostatic/thermal

model described in Section 2.4 is used to simulate the quench propagation scenario. With

the temperature profiles obtained from the simulation, one can calculate the rising quench

resistance in the coil using the adiabatic integrator, allowing the computation of a voltage

detection time. Once th time is known, the total MIITs from the quench initiation to the end

of the current decay can be calculated when the magnet is protected with a dump resistor.

For the study of CD1, the Summers critical current fit functions in Eq. (2.25) and (2.26) are used.

The time budget for the detection phase is studied via MIITs calculation, which is explained in

Subsection 2.2.2. The adiabatic integrator explained in Section 2.3 is involved to determine

the detection time needed and the current decay for a selected dump resistor value. With the

MIITs calculation introduced in Section 2.2, a worst-case estimate of the hot-spot temperature

in the coil after a quench using the energy-extraction method is performed [89].
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3.2.1 Time budget estimation

For quench detection, a voltage threshold and a validation time, explained in Section 1.5, need

to be selected. A lower voltage threshold (∼ 100 mV) implies a shorter∆tthres but a longer∆tval,

since a voltage rise of a short duration caused by a flux jump is not considered as a quench.

Only a continuous voltage rise can be confirmed as a quench in the magnet. On the contrary,

a higher voltage threshold implies a longer ∆tthres but a shorter ∆tval.

When a high current flows in the superconductor, the fluxoids within the superconductor are

subjected to forces that could lead to a flux flow causing a local heat deposition. This is called a

flux jump. A flux jump can lead to eventually a local normal zone. If the induced heat amount

is dissipated throughout the conductor, then the normal zone returns to the superconducting

state. When there is a huge amount of heat generated by the flux jumps, it results in a magnet

quench. All flux jumps induce voltage spikes, that are picked up by the detection electronics

[90, 91].

In our study, a threshold of 500 mV is used, which means we can nearly suppress the validation

time at high currents, where flux jumps do not cause detection problems any more [92]. This

choice is made because of two reasons: 1) to avoid a false trigger due to flux jumps and noise;

2) higher thresholds are reached in a quick way at high operation currents due to the fast

longitudinal quench propagation.

Therefore, assuming a threshold of 500 mV and a switch time ∆tswitch ∼ 5 ms to turn on the

quench protection system, the total detection time is defined as td = ∆tthres +∆tswitch. The

time budget to reach the threshold ∆tthres,ref for different excitation levels is listed in Table 3.1,

where MIITsref is the MIITs value for 350 K and ∆tthres,ref the time budget to reach a threshold

of 500 mV. In addition to the nominal operation level (86% Iss=15545 A), we take into account

in our simulation a high operation level (90% Iss = 16268 A) and a low operation level (60% Iss

= 10845 A).

Table 3.1 – Estimation of time budget by MIITs calculation for the CD1, when magnet is
protected by a dump resistor of 40 mΩ.

I [A] B [T] MIITsref [MA2s] td,ref [ms] ∆tthres,ref [ms]

16268 9.4 10.6 20.2 15.2
15545 8.9 10.7 24.3 19.3
10845 6.2 11.4 75.4 70.4

By varying the RRR of copper in the strand, a sensitivity study on the time budget estimation by

MIITs calculation for CD1 is conducted for different current levels. The results of the total time

needed before the current discharge td,ref are shown in Table 3.2 to allow for a comparison.

We remark that a higher RRR results in a higher total MIITs value and thus a longer detection

time budget.
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Table 3.2 – Sensitivity study of Cu RRR on time budget estimation by MIITs calculation for the
CD1.

RRR 16268 A 15545 A 10845 A

MIITsref [MA2s]
100 10.3 10.4 11.0
150 10.6 10.7 11.4
250 10.9 11.0 11.8

td,ref [ms]
100 19.1 23.0 71.8
150 20.2 24.3 75.4
250 21.3 25.5 78.8

3.2.2 Quench propagation simulation results

The longitudinal and turn-to-turn quench propagation of an inner layer of CD1 are investi-

gated in ANSYS. The results of a simulation time of 30 ms are presented in Figure 3.1 when

I = 15.5 kA (86% of Iss), B = 8.9 T and Tcs = 7.2 K. The 3D coordinates of the cable centre are

converted into a linear line for figure plotting purposes. The length of a turn is approximately

0.63 m.

In Figure 3.1a, the temperature profiles at different times are plotted. The quenching zone

enlarges longitudinally with time. We remark that the longitudinal propagation is much faster

than the turn-to-turn propagation since the heat has to go through a barrier of insulation

and winding former. In Figure 3.1b, at a selected node, the temperature rises with time. As

the first turn is assumed to be quenched at the beginning of the simulation, the variation of

temperature in the first turn is therefore not taken into account since we are interested in

the quench propagation in the longitudinal and transverse directions. The resistance in each

small element in the second and third turns is calculated. The sum gives the total quench

resistance. By multiplying this term by the operating current, we obtain the voltage rise in the

coil. Figure 3.1c and 3.1d illustrate respectively the quench resistance and voltage rise in the

coil over time.

At a current level of 1 kA, The temperature profile in the centre of the cable, along the coil at

different times for a total simulation time of 8 s is presented in Figure 3.2. We remark that the

onset of the turn-to-turn quench propagation is not evident compared to the longitudinal

one.

3.2.3 Peak temperature estimation

From Figure 3.1d, the voltage-based detection time needed can be obtained for a threshold of

500 mV. The detection time ∆tthres, the total time needed before current decay td, the peak

temperature Tcable predicted by MIITs, as well as the longitudinal propagation velocity vp

at different current levels are presented in Table 3.3. The layer-to-layer propagation is slow
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(a) Temperature profile in the centre of cable, along
the coil at different times.

(b) Temperature profile at a fixed location.

(c) Quench resistance with time. (d) Voltage rise in the coil.

Figure 3.1 – Quench propagation simulation results of a 3-turn CD1 helical model at 15.5 kA.

Figure 3.2 – Temperature profile in the centre of cable, of a 3-turn CD1 helical model in a
quench propagation simulation at 1 kA, along the coil at different times.
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and would not occur until well after detection and protection measures are active. With the

energy-extraction system, the maximum temperature calculated in the coil after a quench is

below 350 K, remaining on the safe side. The results obtained show that the system is capable

to protect the CD1 model magnet in the case of a quench. The quantities, like vp, Rquench

and voltage, are best measured when the quench goes into the third turn, as then we are

independent of the initial conditions.

Table 3.3 – CD1 peak temperature estimation after a quench, when magnet is protected by a
dump resistor of 40 mΩ.

I [A] ∆tthres [ms] td [ms] Tcable [K] vp [m/s]

16268 13.5 18.5 316 15
15545 15.0 20.0 278 12.7
10845 48.7 53.7 197 5.5

3.3 Coupling-Loss Induced Quench

In this section, the protection studies of CLIQ on the CD1 geometry at different current

levels are presented, allowing us to assess its performance and to have an overview of the

protectability of CLIQ on CCT magnets. A simplified schematic of the electrical circuit is first

outlined in Subsection 3.3.1 to illustrate the connection between the magnet coil and different

protection components.

The Subsection 3.3.2, 3.3.3 and 3.3.4 are dedicated for the protection studies using a given set

of CLIQ parameters, available at LBNL, to study different cases listed in Table 3.4, e.g., when

the magnet is protected by only CLIQ (Case 1), or only EE (Case 2), or by both EE and CLIQ

[89]. These two protection systems can be initiated at the same time (Case 3), or with a delay

time between them (Case 4). In Case 4, when the CLIQ is first fired, EE is turned on after a

delay time tEE. In this way, we can qualify the magnet’s behavior to the CLIQ unit without

damaging the magnet.

Table 3.4 – Different case studies in CLIQ quench protection simulation.

Case td CLIQ EE tEE

1 x
2 x
3 x x 0
4 x x x
5 x x

The results of Case 1 at different current levels, as well as the comparison of results of Case 1, 2

and 3 at the same current level are shown in Subsection 3.3.2 and the results of Case 4 are shown

in Subsection 3.3.3. By adding the necessary detection time, obtained in Subsection 3.2.3,
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one can calculate the peak temperature after a quench, when the magnet is protected by only

CLIQ (Case 5), explained in Subsection 3.3.4. Remind that td is the total time needed before

current decay.

In addition to the CLIQ protection studies made for the CD1 short model magnet using

the CLIQ unit with pre-defined parameters, a optimization study on the selection of CLIQ

parameters is presented in Subsection 3.3.5 in the case of a short magnet and a long magnet

using the CD1 geometry.

3.3.1 Simplified schematic of the electrical circuit

A simplified schematic of the whole circuit with EE and CLIQ is illustrated in Figure 3.3. L1l

and L1r respectively stand for all the stranded elements on the left and right side of the inner

layer while L2l and L2r respectively stand for all the stranded elements on the left and right side

of the outer layer. It is worth noting that in the simulation each cable cross section represents

a stranded element. The main part of the energy-extraction system is a dump resistor REE,

connected in series with the coil stranded elements. The components CC, RC and VC constitute

the CLIQ unit. The CLIQ unit is connected to the extremities of the inner layer to introduce

opposite current change in the coils that are physically adjacent for an efficient magnetic-field

change. N signifies node and P signifies coupling between nodes. We control the function of

the circuit by coupling or uncoupling the voltage degrees of freedom between nodes.

L2l L1rL2r L1l

P1

P3

P2

N1

N2

Figure 3.3 – Simplified CD1 electrical circuit with EE and CLIQ.

An example of the simulation steps is presented for Case 4. The electrical circuit in different

time intervals in the simulation are illustrated in Figure 3.4. The procedure can be adapted to

accommodate other cases. The start and end time of each step can be modified to adapt the

modeling requirements.

Step 1 in Figure 3.4a lasts 5 ms from 0 to 5 ms. The coupling P2 is broken, while P1 and P3 exist.

The first 5 ms of the simulation is dedicated to solving a static solution to charge the CLIQ

capacitance and set up the current in the magnet.
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(a) Step 1: Charge the CLIQ capacitance
and set up the current in the magnet.

(b) Step 2: Switch off the EE and power
supply.

(c) Step 3: Fire the CLIQ to solve current
decay.

(d) Step 4: Add the EE after a certain
time.

Figure 3.4 – Simplified CD1 electrical circuit with EE and CLIQ in different time intervals of a
transient protection simulation.

Step 2 in Figure 3.4b lasts 10 µs from 5.00 to 5.01 ms. The coupling P3 is broken. The voltage

degree of freedom of N1 and N2 are defined as V = 0. The transient solutions algorithm is

turned on. The voltage source in series with the dump resistor VGND is turned off to zero in

order to model the energy-extraction switch.

Step 3 in Figure 3.4c lasts 10 µs from 5.01 to 5.02 ms. The coupling P1 is broken, while P2 is

added. CLIQ is fired. The voltage across the CLIQ unit VC is switched off to zero. The 10 µs

between 5.00 to 5.01 ms and 5.01 to 5.02 ms is used in the simulation to turn off the voltage

supply and turn on the CLIQ in order to observe a smooth current transition to verify if the

model is correct. The voltage switch used is a piecewise linear load. The transition has to be as

small as possible. To be compatible with the model setup, 10 µs is chosen. From 5.02 to (5.02 +

tEE) ms, the current decay is solved.

Step 4 in Figure 3.4d starts from (5.02 + tEE) ms and ends at 100 ms. The voltage constraints
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of N1 and N2 are deleted. The coupling P3 is added. EE is connected in the circuit again for

current decay solution.

3.3.2 Case of CLIQ, or EE, or both initiated together

In the first set of simulations, the initial condition of temperature is T = 4.2 K for all the

single-turn areas. The cases with only CLIQ, or EE, or both EE and CLIQ initiated at the same

time are studied. At a current level of 15.5 kA, the initial B field is presented in Figure 3.5. The

peak B value on the conductor is 9.3 T while the peak B value in the bore region is 8.6 T.

(a) In the magnet.

(b) In the coil.

Figure 3.5 – CD1 initial electromagnetic field distribution at 15.5 kA.

Figure 3.6 shows the coupled simulation results of temperature, when the magnet is only

protected by CLIQ or by both EE and CLIQ system initiated at the same time at I = 15.5 kA.

Recall that the dump resistor value REE is 40 mΩ. The parameters of the CLIQ unit are set

as follows: the charging voltage VC = 400 V, the lead resistance RC = 25 mΩ and the internal

capacitance CC = 10 mF, in agreement with LBNL’s test facilities [39, 70]. After a simulation

time of 100 ms, a variation in the temperature across the turns are observed because the

material properties and losses vary across them, and also the cable turns in the pole regions

quench earlier than others.
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(a) In the coil with only CLIQ. (b) On the bare cable with only CLIQ.

(c) In the coil with both EE and CLIQ initiated at the
same time.

(d) On the bare cable with both EE and CLIQ initiated
at the same time.

Figure 3.6 – CD1 temperature distribution at 15.5 kA after 100 ms, when magnet is protected
by only CLIQ, or by both EE and CLIQ system initiated at the same time.

The current distributions at different operating currents in the cables are plotted in Figure 3.7

with only the CLIQ protection means to assess its performance. The amplitudes of the in-

troduced oscillations are similar, whatever the current is in the magnet since IC is nearly

proportional to the capacitance value. The coupling losses induced scale with the field be-

cause this term is driven by ∂B/∂t with a small effect of magneto-resistance. Meanwhile,

the model confirmed that it is easier for the magnet to quench at high currents because the

temperature margin is smaller. After a simulation time of 50 ms, 69.0% of the initial current is

attenuated at I = 15.5 kA. And after a simulation time of 100 ms, 88.6% of the initial current is

attenuated.

As the 2D coupled model does not include the longitudinal quench propagation, one turn

can quench without spreading of quenching zone along the cable. In reality, the quench will

spread through the helical turn relatively quickly to quench the entire coil, even if CLIQ only

quenches a tiny fraction of the cable initially. This is the case at 10.8 kA, where in the 2D

simulation the fired CLIQ unit cannot bring down the current in the coil even though a few
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(a) For a simulation of 100 ms.

(b) At the beginning of the simulation.

Figure 3.7 – Current profiles in the inner layer I1 and outer layer I2, with IC = I2−I1, at different
current levels, when the CD1 is protected by a CLIQ system of 400 V and 10 mF.

cable cross sections are quenched.

The contribution of different losses to the current decay behavior is presented in Figure 3.8. We

start with a no-loss model, where the oscillation is damped only because of the lead resistance.
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Then we add successively inter-filament coupling currents and eddy currents in the spars and

protective shell, to obtain the results of a complete model. The simulation is started with the

nominal current. In this figure, we observe that the quench is initiated due to IFCLs when

using CLIQ for the magnet protection.

(a) For a simulation of 100 ms.

(b) At the beginning of the simulation.

Figure 3.8 – Comparison of current decay curves from ANSYS with contributions of different
losses in the CD1 model magnet.

If we have a close look at the beginning of the simulation, displayed in Figure 3.8b, the initial

current change rate of the induced oscillation, when we add the inter-filament coupling losses
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in the model, is slightly higher than the no-loss case. This can be partially explained by the

inappropriate adopted equivalent magnetization formulation for homogenized cables in the

model for simulating fast transients, as mentioned in Subsection 2.5.3.

Besides, a comparison of the current profiles in the different protection configurations is

illustrated in Figure 3.9 at I = 15.5 kA. When the dump resistor and CLIQ are both fired at

the same time, a faster current decay is observed compared to the case with only CLIQ. The

amplitude of the alternating component of the current is reduced due to the energy dissipated

in the energy-extraction resistor.

(a) For a simulation of 100 ms.

(b) At the beginning of the simulation.

Figure 3.9 – Current profile comparisons at 15.5 kA, when the CD1 is protected by only EE, or
only CLIQ, or both EE and CLIQ initiated at the same time.
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3.3.3 Case of CLIQ and EE with an in-between initiation delay time

In the second set of simulations, the initial condition of temperature is still T = 4.2 K for all the

single-turn areas. The case with both EE and CLIQ, but initiated with a delay time between

them, is studied.

When CLIQ is first triggered during a magnet test, the energy-extraction system should be

included in the circuit for CD1 safety reasons. By delaying the triggering of the EE system,

we can qualify the magnet’s response to CLIQ without risking the magnet. The delay time

between the CLIQ trigger and initial CLIQ-induced quench is 0.5 ms and 24 ms respectively

when the operating current is 15.5 kA and 12.7 kA. In order to validate the UDE-based model,

different delay times between the initiation of CLIQ and EE need to be selected for different

current levels. For a nominal current (high current), we wait for the end of the damping of the

CLIQ oscillations to avoid a too high voltage to ground due to voltage superposition. For a low

current level, we may need a longer delay time to validate the behavior of CLIQ, e.g., 30 ms for

a current level of 12.7 kA.

Three EE delay times are used in the study: 10, 20 and 30 ms when the magnet is powered

at 15.5 kA. Figure 3.10 illustrates the temperature distribution in the coil and cable. A lower

maximum temperature is observed after a simulation of 100 ms when the energy-extraction

system is initiated at an earlier time, as expected. Furthermore, the position of the peak

temperature is changed from the Al protective shell to the cable when the delay time of

initiating the energy-extraction system increases.

Table 3.5 summarizes the maximum temperature obtained in the cable and in the Al protective

shell with different delay times. Figure 3.11 shows the current discharge profile in the coil. It is

confirmed that the addition of EE in the loop accelerates the current discharge in the coil.

Table 3.5 – CD1 peak temperature at 15.5 kA after 100 ms, when magnet is protected by both
EE and CLIQ in the circuit, but initiated with different delay times.

tEE [ms] Tcable [K] TAl shell [K]

10 72.7 112.9
20 104.4 114.6
30 123.5 123.5

The voltage to ground is calculated as the sum of the voltage on the magnet coils and voltage

on the rest of the circuit. The voltage to ground in the circuit at 15.5 kA is illustrated in

Figure 3.12a, when CLIQ and EE are initiated at the same time or with a 20 ms delay time. The

initial voltage value (620 V) is because we set up the current in the magnet as illustrated in

Figure 3.4a in ANSYS, which relies on the current level (15.5 kA) and the connected dump

resistor value (40 mΩ). A high voltage is observed when both protection systems are turned on

at the same time. When the EE is initiated after a delay time of 20 ms, the voltage rise due to EE

is also delayed, which can be seen in Figure 3.12a. A zoom at the beginning of the simulation

61



Chapter 3. Quench Protection

(a) In the coil with a delay time of 10 ms. (b) On the bare cable with a delay time of 10 ms.

(c) In the coil with a delay time of 20 ms. (d) On the bare cable with a delay time of 20 ms.

(e) In the coil with a delay time of 30 ms. (f) On the bare cable with a delay time of 30 ms.

Figure 3.10 – CD1 temperature distribution at 15.5 kA after 100 ms, with both EE and CLIQ in
the circuit, but initiated with different delay times.

is shown in Figure 3.12b. The voltage drops to zero between 0 and 10 µs is because once we

set up the current in the coil, the voltage (i.e., power supply) is switched off with a piecewise

linear function. Then between 10 µs and 20 µs, CLIQ is turned on, therefore a voltage rise is

observed.
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Figure 3.11 – Current profile comparisons at 15.5 kA, when the CD1 is protected by both EE
and CLIQ in the circuit, but initiated with different delay times.

(a) For a simulation time of 95 ms. (b) At the beginning of simulation.

Figure 3.12 – CD1 voltage to ground in the circuit at 15.5 kA, when CLIQ and EE are initiated at
the same time or with a delay time of 20 ms.

We investigate here the performance of protection methods from 4.2 K without considering

the temperature rise during the quench detection phase, as CLIQ experiments on CD1 are

foreseen to be carried out on current plateaus without a spontaneous quench. The peak

temperature in the cable and coil at different currents are listed in Table 3.6 with only CLIQ

and both EE and CLIQ with a delay time of 20 ms. With only CLIQ, the peak temperatures

are observed in the cable pole turn regions. With both of them, the highest temperatures

are found in the Al protective shell where the eddy currents are the strongest. This can be

explained by the lower resistivity of the Al shell with respect to the aluminum-bronze former.

The addition of EE in the loop significantly decreases the temperature in the pole turn regions.
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Table 3.6 – CD1 peak temperature at different current levels after 100 ms, when magnet is
protected by only CLIQ, and by both EE and CLIQ in the circuit, but initiated with a delay time
of 20 ms.

CLIQ CLIQ+EE

I [A] Bbore [T] Tcable [K] Tcoil [K] Tcable [K] Tcoil [K]

15545 8.9 148.1 148.1 104.4 114.6
12653 7.3 152.4 152.4 71.2 93.8

3.3.4 Peak temperature estimation

In a further study, we initiate one cable area, e.g., the first turn on the pole region of the inner

layer, to the quenched state after a static solution of 5 ms. The initial condition of temperature

for all the other single-turn areas remains to be T = 4.2 K. We let the simulation run for the

detection time calculated in Subsection 3.2.3, then we turn on the protection system. In this

way, we are able to include the temperature rise during the quench detection phase. The

detection time calculated in Table 3.3 is used in the coupled simulation with only CLIQ in the

circuit.

A peak temperature of 319 K is obtained when we operate at 86% of the Iss, which is 15.5 kA,

while a peak temperature of 351 K is reached at 90% of the Iss, which is 16.3 kA. If we compare

these values with those in Table 3.3 when the magnet is protected only by EE, we observe a

higher peak temperature in the case when the magnet is protected only by CLIQ. The obtained

peak temperature results are close to the maximum allowed temperature 350 K in the system.

In other words, it might be not sufficient when there is only CLIQ in the circuit to protect the

CD1 model magnet at high current. That also implies that we put the EE system in the loop for

safety reasons. Note, however, that the CLIQ parameters used for this study are not optimized

for minimal peak temperatures and voltages.

3.3.5 CLIQ optimization

The CLIQ simulation study using LBNL’s unit was previously presented. As that CLIQ unit is

not optimized for CD1 protection, therefore in this subsection, we are seeking for a proper

combination of CLIQ system parameters (charging voltage VC and internal capacitance CC)

to allow protecting the magnet at both low and high current using CLIQ as the only quench

protection system.

The optimization study is conducted with the geometry of CD1, but with two different lengths,

to evaluate the CLIQ protectability for selected CLIQ parameters. The first case is a short

magnet, i.e., CD1 model magnet with a magnetic length of about 0.6 m. The second case is a

long magnet, i.e., a full-scale FCC dipole magnet with a magnetic length of about 14.3 m.

We evaluate the quench protection for these two cases at different current levels. At high
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current, low energy is needed to start a quench due to high energy density and fast quench

propagation in the magnet. However at low current, high energy is needed to start a quench

due to low energy density and slow quench propagation in the magnet. Quench protection at

low-medium current could be challenging, since in this current range the margin to trigger

a quench is significantly higher than the case of the nominal current, which requires more

power and more energy to quench.

Prior to the CLIQ quench protection studies, the characteristics of a CLIQ discharge will

be analyzed to evaluate the impact of varying CLIQ parameters on the quench protection

performance.

Characteristics of a CLIQ discharge

For a given magnet and a given connection scheme of the CLIQ unit, the introduced current

in the magnet after triggering depends on the characteristic parameters of the CLIQ unit. By

changing these parameters, e.g., charging voltage VC and internal capacitance CC, we can

assess their impact on the quench protection performance. A comparison of the induced

current IC in the CD1 coil at 15.5 kA after 5 ms is illustrated in Figure 3.13.

Figure 3.13 – Comparison of induced current IC by CLIQ in the CD1 coil at 15.5 kA for different
combinations of charging voltage VC and internal capacitance CC.

The induced current is given by IC(t) = CC ·dVk(t)/dt , where Vk is the voltage across the

capacitor CC. The amplitude of the induced current is proportional to the charging voltage

since Vk ∝VC. The peak value of the induced current is reached after a quarter of oscillation

and it can be approximated as

IC,peak ≈VC

√
CC

Leq
(3.1)
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where Leq is the equivalent inductance of the magnet. The formula is simply the inductance

of two parallel opposing inductors, written as

Leq = L1 ·L2 −M 2
12

L1 +L2 +2M12
(3.2)

where L1 and L2 are respectively the self-inductance of the coil branches 1 and 2, and M12 is

their mutual inductance.

The initial current change is a key parameter of the CLIQ performance, and it can be approxi-

mated as

dIC

dt
(0) ≈ VC

Leq
(3.3)

The initial current change does not depend on the capacitance. It is confirmed in Figure 3.13

that the initial current change rate is the same when a doubled value of capacitance is applied,

with the same charging voltage.

According to the studies presented in [40, 71], we know that a large fraction of the stored

energy in the CLIQ unit is deposited in the coil windings during the first current oscillation.

Much of this energy is converted to heat which serves to quench the coil. For this reason, the

CLIQ performance depends mainly on the initial peak power deposition. As the peak power

loss is proportional to (VC/Leq)2, one can increase the charging voltage, without exceeding the

maximum allowed voltage to ground in the circuit, to ensure the protection performance in

the case of long magnets with a large inductance.

For a given magnet and a given CLIQ configuration, the internal capacitance of a CLIQ unit

determines the time period of the current oscillations, as outlined in the equation

tw = 2π
√

LeqCC (3.4)

The total stored energy in the CLIQ unit depends on the charging voltage and capacitance,

given by ECLIQ = 1
2CCV 2

C . Therefore the peak power deposition lasts for a longer time with a

larger value of capacitance.

For the CD1 magnet at 15.5 kA, we have L1 = 0.234 mH, L2 = 0.465 mH, and M12 = 0.263 mH.

With Eq. (3.2), we can calculate the CD1 equivalent inductance, which is Leq = 0.032 mH. The

mentioned equations are used to calculate the current oscillation period length, induced

current peak amplitude and initial current change rate in order to estimate the CLIQ perfor-

mance. Take an example of the CLIQ unit of 400 V and 10 mF, the simulation results shown in

Figure 3.13 give tw ≈ 3 ms and IC,peak ≈ 6 kA, while the numerical estimates using the above

equations give respectively 3.6 ms and 7 kA. The estimated values are slightly higher than the

simulation results, but they are still good for comparison. Regarding the initial current change

rate, the simulation result is slightly higher than the estimated value, but both of them have

the same order of magnitude. This is due to the wrong time constant in the homogenized
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model, as explained in Subsection 2.5.3.

Figure 3.14 shows a comparison of the temperature distribution on the CD1 bare cable at

15.5 kA after 5 ms, when the magnet is protected by only CLIQ, for the same combinations of

charging voltage VC and internal capacitance CC, as used in Figure 3.13.

(a) VC = 400 V, CC = 10 mF.

(b) VC = 800 V, CC = 10 mF. (c) VC = 400 V, CC = 20 mF.

Figure 3.14 – CD1 temperature distribution on the bare cable at 15.5 kA after 5 ms, when
magnet is protected by only CLIQ, for different combinations of charging voltage VC and
internal capacitance CC.

From this figure, we find a very close peak temperature in the conductor after 5 ms of the

current oscillation for different combinations of charging voltage VC and internal capacitance

CC. Increasing the capacitance value can quench a few more cable turns due to a longer time

for the peak power deposition. A higher charging voltage can quickly quench a big fraction of

the conductor, resulting in a higher temperature distribution in the overall coil cross section.

However, it is worth noting that the charging voltage of a CLIQ unit imposes directly a certain

voltage to ground, which is limited by the coil circuit design for safety and risk reduction

considerations.
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Case of a short magnet

In this paragraph, the optimization study using different CLIQ parameters on the CD1 with a

magnetic length of 0.6 m is discussed.

Lowest current level for CD1 self-protection

Typically we design a quench protection system to protect the magnet in all operating condi-

tions, unless it can be demonstrated that the magnet is self-protected. For example, at very

low current some coils might recover from a quench, or at low current some coils develop

sufficient quench resistance to slowly, but safely, discharge the magnet current. Each magnet

is different and should be studied independently. For the short magnet CD1, the lowest current

level for self-protection is 1.4 kA, i.e., 9% of its nominal current. This value is obtained based

on a study via a quench propagation simulation and a calculation of current decay using the

adiabatic integrator. Figure 3.15 shows the temperature profile in the centre of cable, along

the coil at different times and the current discharge in the magnet with the growing quench

resistance. The magnet is proved to be self-protected after the current discharge as the peak

temperature in the coil is smaller than 350 K.

(a) Temperature profile in the centre of cable, along
the coil at different times.

(b) Current discharge in the coil.

Figure 3.15 – Quench propagation simulation results of a 5-turn CD1 helical model at 1.4 kA
for determination of the lowest current level to be self-protected.

LBNL CLIQ unit with increased charging voltage

In the previously presented CLIQ simulation in Subsection 3.3.2, we remark that a CLIQ unit

with 400 V and 10 mF cannot bring down the current in the coil in the case at 10.8 kA, as shown

in Figure 3.7. Indeed, the power supply of the CLIQ unit at LBNL can be charged up to 800 V.
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This indicates that one can protect the magnet down to a lower current level. Such a CLIQ

unit with 800 V and 10 mF is able to protect the coil down to 5.7 kA. Figure 3.16 illustrates a

comparison of current decay curve at different current levels.

Figure 3.16 – Current discharge in the CD1, when magnet is protected by a CLIQ system of
800 V and 10 mF.

By fixing the peak temperature of 350 K in the coil and using the obtained current decay curves

in Figure 3.16, one can compute, via a MIITs calculation, the total time budget before the

discharge, which is written as td =∆tthres +∆tval +∆tswitch. The results are listed in Table 3.7.

Table 3.7 – Estimation of time budget by MIITs calculation, when the CD1 is protected by a
CLIQ system of 800 V and 10 mF.

I [kA] td,ref [ms]

15.5 24.6
10.8 51.2
5.7 125.6

If we compare td,ref with td obtained in Table 3.3, we remark that the magnet is safe at 15.5 kA,

but not at 10.8 kA when we use a threshold of 500 mV in case of a voltage detection. In fact, the

voltage threshold should be chosen carefully for each current because the quench propagation

speed is different in Nb3Sn CCT magnets for different excitation levels, as shown in Table 3.3.

Typically we adapt the pre-set threshold Vthres with the current level and add a validation time

∆tval at low current to avoid false trigger caused by flux jumps and noise. Thus for different

current ranges, different combinations of Vthres and ∆tval are selected to constitute td.

A lower voltage threshold with some validation time can be used, along with this CLIQ unit to

protect the magnet for the current range from 5.7 to 15.5 kA. As td,ref at low current (< 2 kA) is

missing with a CLIQ unit of 800 V and 10 mF, a complete combination will be proposed later

based on an optimized CLIQ unit applied to the CD1.
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Optimized CLIQ unit

Since the lowest current level for self-protection of CD1 is found to be 1.4 kA, the optimized

CLIQ parameters will be selected in order to protect the magnet from this lowest value up to

its nominal current.

As discussed before, the CLIQ charging voltage has a direct impact on the voltage to ground,

which is limited by the circuit design. However, there is no obvious limitation in increasing the

internal capacitance. It is worth noting that a big capacitance occupies more physical space

for installation. So far the produced CLIQ units had a capacitance between 1 and 80 mF. A

typical CLIQ unit of 40 mF and 1 kV has an approximate size of 50 cm in length, 50 cm in width

and 100 cm in height, as a standard electronic rack.

With a capacitance of 40 mF, a charging voltage of 700 V is required to protect a short CD1

model magnet. If the capacitance is further increased to 80 mF, then the charging voltage can

be reduced to 620 V. The simulation are run at four current levels: 1.4, 6.0, 10.8 and 15.5 kA

to evaluate the protection performance at low, medium and high current. These values are

respectively 8%, 33%, 60% and 86% of the short sample current, where the last one is the

nominal current.

The same kind of study on the total time budget before the current discharge is conducted for

these two CLIQ units at different current levels by fixing the maximum temperature of 350 K in

the coil and using the obtained current decay profiles from simulation. The results are listed

in Table 3.8.

Table 3.8 – Estimation of time budget by MIITs calculation, when the CD1 is protected by a
CLIQ system of 700 V and 40 mF, or of 620 V and 80 mF.

td,ref [ms] CLIQ: 700 V, 40 mF CLIQ: 620 V, 80 mF

I = 15.5 kA 23.9 23.3
I = 10.8 kA 59.0 55.2
I = 6.0 kA 216.4 207.5
I = 1.4 kA 6030.6 4913.3

If we compare the values of td,ref for both CLIQ units, a longer time budget is obtained with

the CLIQ of 700 V, 40 mF. It is confirmed again that increasing the CLIQ charging voltage has a

bigger effect than increasing the internal capacitance on the peak temperature reduction after

a quench.

Using the CLIQ unit of 700 V, 40 mF as an example, a combination of Vthres and maximum∆tval

is proposed in Table 3.9 for different current levels. The time needed to reach the threshold is

also listed in this table following the quench propagation simulation described in Section 2.4.

To be conservative, a switch time ∆tswitch of 5 ms is assumed to turn on the quench protection

system.
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Table 3.9 – Proposed combination of voltage threshold, time to reach threshold, maximum
validation time and switch time at different current levels when the CD1 is protected by a
CLIQ system of 700 V and 40 mF.

I [kA] Vthres [mV] ∆tthres [ms] ∆tval,max [ms] ∆tswitch [ms] td,ref [ms]

15.5 500 15 3.9 5 23.9
10.8 100 27 27.0 5 59.0
6.0 100 113 98.4 5 216.4
1.4 100 2912 3113.6 5 6030.6

With the assumption of 20 ms for the total time before current discharge, as presented in

Table 3.3, the estimated peak temperatures are around 290 K at CD1 nominal current level

for both proposed optimized CLIQ units and they are well below the limit of 350 K. For other

current levels, a sufficient validation time is observed for detecting a quench, in addition to the

time to reach the voltage threshold. If we summarize, both combinations of CLIQ parameters

(700 V, 40 mF and 620 V, 80 mF), are well sufficient and efficient to protect the CD1 model

magnet in case of a quench.

Case of a long magnet

In order to have further insights of CLIQ protection performance in an accelerator magnet,

we study here the case using the CD1 geometry but with a magnetic length of 14.3 m, which

is the length of an FCC dipole. Since the stored energy in this long magnet is approximately

24 times of that in the CD1 short magnet with a magnetic length of 0.6 m, the lowest current

level for self-protection would be much lower due to the same quench propagation speed. In

this situation, designing a proper CLIQ unit for an FCC CCT magnet could be difficult as large

unrealistic CLIQ parameters would appear. A value of 1 kA was used as the lowest current

level for the CLIQ protection studies, following the reasoning for other 16 T FCC-hh dipole

magnets [47, 48]. This assumed value was selected because a similar assumption was made

for the protection of LHC dipole magnets. In addition, a quench at such low current levels was

never observed.

In this study, we fix the boundaries of the CLIQ parameters to find out the lowest current

level that we can still protect the magnet with a realistic CLIQ unit. Based on [47], a charging

voltage of 1.2 kV is selected to maintain the protection performance in case of a long magnet

with a large inductance. Regarding the capacitance, we know that its value can be increased,

if needed, to protect a longer or a more challenging magnet. However, a higher capacitance

signifies a larger unit size and it would be inconvenient to use and integrate in the accelerator

tunnel. It is also worth noting that the current decays after a first current oscillation induced

by the CLIQ unit. Therefore, a bigger capacitance can result in a higher hot-spot temperature

after a quench as the capacitance changes the current oscillation frequency. This is crucial

for quench protection at high current. Thus we select the capacitance value in a way that the
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estimated peak temperature at the nominal current after a quench is below 350 K. The chosen

CLIQ unit has a charging voltage of 1.2 kV and a capacitance of 50 mF.

With this unit, we can protect the magnet down to a current level of approximately 1 kA.

Table 3.10 outputs the total time budget before the current discharge and a proposed combi-

nation of Vthres and maximum ∆tval for different current levels, when the peak temperature is

fixed to be 350 K in the coil and using the obtained current decay profiles from the coupled

simulation. The time needed to reach the threshold is obtained via a quench propagation

simulation and we assume always the same switch time ∆tswitch of 5 ms. The validation time

margin observed in the table for detecting a quench, in addition to the time to reach the

voltage threshold, is sufficient and efficient to protect a long magnet with the geometry of

CD1 by a CLIQ unit of 1.2 kV and 50 mF for the current range from 1.0 to 15.5 kA in case of a

quench.

Table 3.10 – Proposed combination of voltage threshold, time to reach threshold, maximum
validation time and switch time at different current levels, when a magnet having the CD1
geometry with a magnetic length of 14.3 m, is protected by a CLIQ system of 1.2 kV and 50 mF.

I [kA] Vthres [mV] ∆tthres [ms] ∆tval,max [ms] ∆tswitch [ms] td,ref [ms]

15.5 500 15 0 5 20.0
10.8 100 27 9.1 5 41.1
6.0 100 113 69.8 5 187.8
1.0 100 5773 4602.0 5 10380.0

3.4 Co-wound copper tape

The quench protection method by adding a co-wound copper tape beneath the supercon-

ducting cable in the channel is explained in this section. The goal of the co-wound copper

tape is to dissipate a portion of the stored energy in the low-cost tape. As a consequence, the

amount of copper in the strands can be reduced in favor of the amount of superconductor.

We aim to find out if, in this way, the number of strands in the coil can be reduced to improve

the efficiency in terms of usage of conductor 1. It is worth noting that the co-wound copper

tape is an add-on protection method as this solution is far from being sufficient to protect the

magnet. It can be used when accompanied by another quench protection system to further

accelerate the current discharge in the coil.

There are two variables in this study: the cuNc ratio in the strand and the co-wound copper

tape thickness tcu. The co-wound copper tape width is kept the same as the superconducting

cable to fit in the channel. When changing the cuNc ratio, the number of strands is recalculated

to keep the same current density in the superconducting material, leading to a change in cable

dimension. If the cuNc ratio decreases, there is more superconductor than copper, supposing

1As this study is not generic for other magnets, the equations involved are described specifically in this section.
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the same number of strands, thus the strand number should be reduced.

The new number of strands in a superconducting cable is calculated as

ns,n = 4Asc

πd 2
s fsc,n

(3.5)

where n denotes new, ds is the strand diameter, and fsc,n the new superconductor fraction in

a strand, which is defined as fsc,n = 1/(1+cuNcn), where cuNcn is the new cuNc ratio in the

strand. Note that the calculated value of ns,n is rounded to the nearest positive integer.

As the cable thickness is assumed to be constant, with a small cuNc ratio, the cable width can

be reduced. The new cable width is computed as cl,n = cl ·ns,n/ns, where cl is the nominal

cable width and cl,n the new cable width.

Since we reduce the copper fraction in the strand, we have to compensate this fact by adding a

co-wound copper tape to have enough material to dissipate a portion of the stored energy in

case of a quench. The co-wound copper tape cannot be too thin to avoid high temperatures

in it. In principle, there is no limitation on the copper tape thickness as long as the total

amount of superconductor is reduced. However, adding a copper tape on the inner layer shifts

the outer layers away from the aperture and makes the use of superconductors less efficient,

leading to an increase in the cost. With these restrictions, a maximum copper tape thickness

of 1 mm is used in this study. The feasibility of the co-wound copper tape is studied in a

two-layer case, which is CD1.

The electrical circuit of the co-wound copper tape protection method is illustrated in Fig-

ure 3.17. The mutual coupling of primary and secondary is taken into account for solving

the current in both circuits using the adiabatic-integrator method. To distinguish physical

parameters, we denote the primary circuit as 1 and the secondary as 2. The resistance in the

primary circuit equals the quench resistance (R1 = Rquench).

Figure 3.17 – Electrical circuit of inductive protection using a co-wound copper tape for the
CD1.

The voltage on the coil (V1) and on the co-wound tape (V2) can be expressed by:{
V1 = L11

dI1
dt +M12

dI2
dt =−R1I1

V2 = M21
dI1
dt +L22

dI2
dt =−R2I2

(3.6)
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Several approximations are made in this calculation. First, the inductance of superconducting

cable and co-wound tape are considered to be the same: L11 = L22 = L, since both of the cable

and tape follow the same winding form. Meantime, we know that the mutual inductance is the

same on both sides: M12 = M21 = M . As these two circuits are extremely close to each other,

ideally we can say M = L, nevertheless, a mutual coupling coefficient is added to maintain

the system stability. This coefficient is computed in a ROXIE simulation. Thus we get a new

relationship: M = 0.95L. The nonlinear coil inductance, extracted from Opera, is considered

for calculation.

The implicit finite difference method is applied to solve the differential equations (3.6). If we

write the system in the form of a matrix 2, we have:

1

∆t
L̄∆I + R̄ I (tn) = 0 (3.7)

The backward difference is used to maintain the numerical stability, thus ∆I = I (tn)− I (tn−1).

n signifies the number of time substep. The system becomes:

1

∆t
L̄∆I + R̄(I (tn−1)+∆I ) = 0 (3.8)

After rearrangements, the current at instant n can be represented by one at the previous

instant n −1:

I (tn) =−(L̄+∆t R̄)−1∆t R̄ I (tn−1)+ I (tn−1) (3.9)

with

I (t ) =
(

I1(t )

I2(t )

)
, L(t ) =

(
L(t ) 0.95L(t )

0.95L(t ) L(t )

)
, R(t ) =

(
R1(t ) 0

0 R2(t )

)
(3.10)

Without any consideration on heat diffusion, the heat balance equation in both circuits is

developed as:Acabcv,cab
∂T1
∂t = Acu,1

(
Icu

Acu,1

)2
ρcu

Acu,2cv,cu
∂T2
∂t = Acu,2

(
I2

Acu,2

)2
ρcu

(3.11)

where A is the cross-section area. After some arrangements, the temperature at instant n +1

can be estimated based on the previous one n with small steps. The temperature evaluation

for two circuits are:T1,n+1 = T1,n + ρcu I 2
cu∆t

cv,cab Acab Acu,1

T2,n+1 = T2,n + ρcu I 2
2∆t

cv,cu A2
cu,2

(3.12)

2A variable with a bar on top means that it is a matrix.
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We are studying the co-wound tape on the CD1 model magnet as a first check whether the tape

could be useful to save conductor in a Nb3Sn high-field CCT magnet. The nominal cuNc ratio

of CD1 is 1.15, considered as reference. According to [69], the minimum allowable cuNc value

0.8 is used for calculation, limited by superconductor stability reasons and strand fabrication

restrictions [93, 94].

With the initial conditions or results of the last time step, we can update the material properties,

resistance and inductance values for solving the mutual coupling matrix to obtain new currents

and evaluate new temperatures. The initial condition of current is I1(t = 0) = Iop = 15.5 kA

and I2(t = 0) = 0 with B(t = 0) = 9.3 T. In this analysis, it is assumed that the entire magnet

is quenched. Thus the initial temperature is set right above Tcs. The B-field scaling law is

done based on the sum of I1 and I2. In this study, no current-sharing regime is considered for

simplicity. We reach Tcs at the beginning of the simulation, and the total current goes into the

stabilizer. The reference without co-wound tape can be obtained with the initial cuNc ratio,

and zero width in the co-wound tape.

The simulation with and without co-wound tape are carried out in MATLAB. Three different

cables are involved in the calculation. The first one is the nominal cable used in the CD1.

Cable A and B have three fewer strands than the nominal cable. Both of them have the same

cuNc ratio, number of strands, cable width, and co-wound copper tape thickness. The only

difference is that the co-wound copper tape length Ltape in Cable B is 30% longer than the one

in Cable A. By extending the length of the copper tape, we increase the copper resistance, and

therefore the maximum temperature can be reduced in the tape. In reality, we can keep the

same length of the co-wound copper tape with respect to the cable. The functionality of the

extra 30% longer tape can be achieved by adding a resistor to the co-wound tape of an equal

value.

The parameters of these cables are listed in Table 3.11, with Ltape/Lcab as the longitudinal

length factor between the co-wound copper tape and superconducting cable. It is worth

noting that the amount of the conductor required for the FCC dipoles is approximately 10 kt.

The reduction of three strands indicates 14% less mass of superconducting cable, i.e., over 1 kt

of conductor. As the conductor is the most expensive component of the magnet system [9],

this would yield significant savings.

Table 3.11 – Cable parameters for inductive protection study in a two-layer CCT.

Cable cuNc ns cl [mm] Ltape/Lcab tcu [mm]

Nominal 1.15 21 9.85 1 0
A 0.8 18 8.4 1 1
B 0.8 18 8.4 1.3 1

Figure 3.18 shows the variation of current and temperature with time for the nominal cable

and Cable A while Figure 3.19 shows the results for the nominal cable and Cable B. At the

beginning of the simulation displayed in Figure 3.18, T1 increases faster due to the generated
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quenching heat in primary (T1 > T2). After a few milliseconds, the balance is established

(T1 = T2), when we observe a reduction in I1 and an increase in I2. After that, T2 becomes

higher than T1 because more heat is generated in secondary (T1 < T2). Moreover, the tape has

a smaller surface area, so it heats up faster.

(a) Current profile. (b) Temperature profile.

Figure 3.18 – Comparisons of current and temperature profiles, between the nominal CD1
cable, and the Cable A with a co-wound copper tape.

(a) Current profile. (b) Temperature profile.

Figure 3.19 – Comparisons of current and temperature profiles, between the nominal CD1
cable, and the Cable B with a co-wound copper tape.

In general, we can remark from the results that by introducing a co-wound copper tape, a

faster current decay is observed in the coil rather than the nominal case. The variation of T1

and Tnom are very similar because the effect of reducing the number of strands (temperature

increase) and adding the copper tape (temperature drop) are balanced here. If we keep the

same length for the cable and co-wound tape, a difference of temperature (T2 > T1) is observed

at the end of the current decay. By increasing the length of the co-wound copper tape, we

could avoid a higher temperature in the secondary loop.
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3.4. Co-wound copper tape

The simulation results are verified by comparison of stored magnetic energy and energy

extracted on all the resistances.

W =
∫ t

0
(R1I 2

1 +R2I 2
2 )dt = 0.21 MJ (3.13)

At 15.5 kA, the MIITs are computed for a maximum temperature of 350 K for the listed cables.

The estimation of the time budget is presented in Table 3.12. For the case with a co-wound

copper tape, the remaining time for detection and actuation 14 ms is very short compared

to the nominal case. It is worth noting that in cables with a reduced number of strands, the

quench propagation may be faster, but the quench resistance is also reduced for voltage

detection due to a smaller fraction of copper in the conductor.

Table 3.12 – Estimation of time budget by MIITs calculation, when the CD1 is protected by
a co-wound copper tape. MIITs is the total value from the quench detection to the end of
current decay whereas MIITsdecay is the value for the current decay after quench detection.

Cable MIITs [MA2s] MIITsdecay [MA2s] td [ms]

Nominal 10.7 5.0 23.6
A 6.3 2.9 14.0
B 6.3 2.9 14.0

In this table, the MIITs accumulated during the current decay is significantly reduced using

the co-wound tape. However, the addition of the tape cannot help during the detection phase

when the primary current is constant. Moreover, the envisaged reduction in the number of

strands leads to a faster temperature rise in the quenched portion of the cable. We, therefore,

study the reduction in the detection time budget in the above cases. To conclude, the co-

wound tape approach is interesting only if the MIITs accumulated during the detection phase

are significantly smaller than those accumulated during the current decay, i.e., if a very efficient

quench detection is available. This protection method is not used for the CD1 model magnet.
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4 Quench Detection

4.1 Goals and overview

In this chapter, we aim to investigate the feasibility of three different detection methods, cur-

rent, voltage and optical detection using co-wound wires, described in Subsection 1.6.1. This

is a first-of-a-kind study on detection times for Nb3Sn magnets. The current detection method

is studied through a subscale experiment and compared to the simulation, in Section 4.2. The

implementation of the other two detection methods, voltage and optical detection were tried

out on the CD1 coil, outlined in Section 4.3. The final CD1 configuration for cryogenic test is

given at the end of this chapter.

4.2 Current detection subscale experiment

4.2.1 Goals of the experiment

The detection time of a traditional voltage detection method includes the time for a detectable

voltage rise on the quench resistance and the additional time for validation purposes. Our

goal is to shorten the total time before current decay. In the case of a CCT-type magnet,

the longitudinal heat propagation is much faster than the transverse one due to the former

structure. Nevertheless, instead of waiting for a significant longitudinal normal zone spread to

reach the detectable voltage threshold and/or the passage of the evaluation time, the idea of

testing a co-wound Nb3Sn superconducting wire was raised.

The principal is to place a thin superconducting wire beneath the cable. If the main cable

quenches, the heat will transmit transversely from the cable to the superconducting wire

through the in-between insulation layers. When the superconducting wire reaches its critical

temperature, it also quenches. If the electrical circuit of the superconducting wire is powered

with a constant voltage source, a change of the current and the current derivative can be

observed in the circuit at the moment when the superconducting wire becomes a normal-

conducting wire. Instead of a conventional voltage measurement on the rising resistance of
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the superconducting wire, a current derivative sensor is used since we expect to have less

noise and a cleaner signal with this method, which shall help to reduce or even eliminate the

validation time.

The superconducting material of the sensing wire is selected based on the operating conditions.

Typically, the sensing wire should have the same critical field and critical temperature with

respect to the magnet cables. Therefore in a Nb3Sn CCT-type magnet, the idea of a current-

based detection method could be implemented by running a thin Nb3Sn sensing wire along

the cable inside the glass-braid insulation to meet the requirement.

The general goal of this study is to test the feasibility and measure the detection time of this

current-based method using a co-wound superconducting wire, to compare experimental

results with the prediction from simulations, and compare with the predictions made for a

voltage-based method. An improvement in detection speed is expected for the current-based

detection method.

4.2.2 Nb3Sn wire characterization

A bare bronze-route Nb3Sn wire of diameter 0.5 mm from a company called Supercon, was

used as the sensing wire for this study [95]. A barrel of Nb3Sn wire was prepared for the

characterization test, which was done by the University of Geneva. Prior to that, the Nb3Sn

wires went through a thermal cycle of 5 days at 680 °C for reaction in the furnace. The critical

current profile as a function of the magnetic field was measured for a length of 849 mm on the

barrel, shown in Figure 4.1.

Figure 4.1 – Critical current profile as a function of magnetic field of the Nb3Sn sensing wire.

We are also interested in the critical temperature at zero field Tc0 of this Nb3Sn wire. Fur-

thermore, a Tc0 experiment at PSI allows commissioning the cryogenic infrastructure and

validating the test setup, as a step prior to the current detection test. The Gifford-McMahon

cryocooler, in which the cooling agent moves back and forth inside a cylinder to perform

adiabatic expansion of the refrigerant gas to generate a chill, from Sumitomo Heavy Industries

is used to cool down the sample [96]. The two-stage cryogenic section secures a long-term
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reliability in the 4 K temperature range.

The experiment proceeds as follows. When the Nb3Sn wire is cooled down to 4 K, the power

supply of cryocooler is turned off so that the temperature inside the cryostat slowly increases

due to the thermal conduction. As the superconducting wire is powered with a constant

current, the voltage on the extremities of the Nb3Sn wire can be measured. When there is

a quench, a voltage rise should be observed. Figure 4.2 shows the electrical circuit. The

temperature drift speed is approximately 1 K per minute at cryogenic temperatures. It takes

thus about 21 minutes for a temperature rise from 4 K to 25 K. The sample was clamped

between two copper plates, called sample holder. A rectangular copper plate with holes was

designed to connect the sample holder and the second stage of the cryocooler with screws.

This plate covered the whole surface of the second stage ensuring a good contact for the

cooling effect. One layer of 0.04 mm Kapton tape was placed on each inner side of the sample

holder to isolate the sample from the copper sample holder.

Figure 4.2 – Electrical circuit of Tc0 experiment of Nb3Sn sample.

The Lake Shore Cernox thin film resistance cryogenic temperature sensors were selected for

the temperature monitoring [97]. They can be easily mounted thanks to the small package

size. In addition, they have been proven very stable over repeated thermal cycling. In total,

four Cernox thermometers were attached and fixed on the outside of the sample holder, with

two on each side, in order to record the temperature drift. The two different types of sensors

used (SD and CU) are shown in Figure 4.3.

Figure 4.3 – Cernox cryogenic temperature sensors.

The SD type sensor has a smaller package size and a faster thermal response than the CU type.

While the CU type sensor has a bigger package size, which is easy for mounting and gives a

good lead thermal anchoring. Some indium foil and glue were used to ensure a good contact
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between the sensors and copper sample holder. With a sampling frequency of 1 Hz, the limit

of the Lake Shore temperature monitor used in the experiment, 60 data points were recorded

in a minute, giving a resolution in the temperature reading of 0.0167 K.

The plate of the sample holder is 1 cm thick and the sensors are placed on the side that

faces away from the sample. Moreover, between the sample and the sample holder, there

is a layer of Kapton. With all these intermediate materials, the temperature measured by

the Cernox thermometers is not exactly the value on the superconducting wire. Therefore a

temperature offset determination and adjustment is necessary. By using the same setup and

same principle, the Tc0 of a Nb-Ti wire is measured, together with a Nb3Sn wire. The reason

is that the Nb-Ti wire has a well-known critical temperature of 9.2 K at zero field [99]. The

temperature difference between 9.2 K and the measured critical temperature value can be

seen as a measurement offset for adjustment, that can be applied to a Nb3Sn wire.

To do that, a Nb-Ti wire was extracted from an LHC Rutherford cable, with the specification in

[100]. This Nb-Ti wire was added in series with the Nb3Sn wire. Both of them were powered

with a constant current. The voltage rise on both samples and temperature on the sample

holder were recorded. Figure 4.4 shows the electrical circuit is presented. A piping and

instrumentation diagram of the test is presented in Figure 4.5. The temperature range of

interest is from 5 K to 15 K for Nb-Ti and from 10 K to 25 K for Nb3Sn.

Figure 4.4 – Electrical circuit of Tc0 experiment of Nb3Sn and Nb-Ti samples.

The reacted Nb3Sn wire is very brittle. It cannot stand alone without any solid support. The

Nb3Sn wire was hence soldered with some tin along with an uninsulated copper wire of 1 mm

in diameter. As mentioned above, a layer of Kapton tape on the inner sides of the sample

holder can insulate the Nb-Ti wire and Nb3Sn wire from the copper sample holder. The Nb-Ti

and Nb3Sn samples had different final diameters, they were fixed inside the sample holder by

clamping them with screws.

The choice of connecting wire for the samples is based on the ohmic dissipation and heat

transfer power to the cold end [98]. The heat leak from room temperature to the cold end

of the connection wire must be minimized. Otherwise, the samples cannot be cooled to the

desired temperature. A small diameter lead results in large amounts of ohmic dissipation and

therefore the wire tends to become hot and the temperature gradient at the cold end increases.

For a given temperature gradient, a large diameter lead can cause a high rate of heat transfer
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Figure 4.5 – Piping and instrumentation diagram of Tc0 experiment of Nb3Sn and Nb-Ti
samples with current leads (not-to-scale).

to the cold end. There is a balance between these effects to achieve an optimal diameter. The

total heat leak to the cold end should be smaller than the cooling power produced by the

cryocooler. In the experiment, the maximum current was designed to be around 6 A. Figure 4.6

shows the heat leak to the cold end of each current lead as a function of the wire diameter by

solving the stationary heat balance equation when the current is 6 A and the connecting wire

is 1.5 m long. The minimum heat leak is obtained when the wire diameter is about 0.6 mm.

The wire dimension should also be big enough to carry the desired current. According to the

American wire gauge (AWG), a wire of 0.6 mm in diameter can carry about 3 A in the ambient

environment theoretically. Nevertheless, the major part of the connection wire is at cryogenic

temperature during the test, the current-carrying ampacity mentioned by AWG can be thus

exceeded. A copper wire of 0.6 mm is chosen to intercept the heat flux from the ambient

environment at the highest temperature and minimize its impact on the sample for the test.
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Figure 4.6 – Heat leak to the cold end of each current lead as a function of wire diameter, when
the current is 6 A and wire length is 1.5 m long.

The experiment lasts for about 20 minutes. Note that there is a short part of the wire between

the top shield and the flange which is always at room temperature, illustrated in Figure 4.5.

The distance between the top shield and flange is approximately 10 cm. We consider that a

slight higher current than its ampacity should not damage the wires due to the overload. The

connection wires are twisted and wrapped around the first and second stage of the cryocooler.

Outside the cryostat, wide-diameter insulated cables guide all the signals to different devices.

The Nb-Ti and final Nb3Sn sample are respectively shown in Figure 4.7a and 4.7b. The inner

side of the copper sample holder with the Kapton tape is shown in Figure 4.8a. The samples

were first fixed on one side of the sample holder with some thermal grease, presented in

Figure 4.8b. Then we clamped the two sides of the sample holder together. Figure 4.9 shows

the setup of the Tc0 experiment of those two superconducting wires from different views. The

Tc0 experiment results of both Nb-Ti and Nb3Sn wire are plotted in Figure 4.10 when the

samples are powered with a constant current of 6.2 A.

(a) Nb-Ti sample. Note that the connection wires in the figure are not the final ones used in
the test.

(b) Final Nb3Sn sample, soldered with a copper wire of 1 mm diameter.

Figure 4.7 – Nb-Ti and Nb3Sn samples for Tc0 experiment.

Note that the CU-type thermometer was placed on the top of the sample holder while the
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(a) Kapton insulation. (b) Samples fixed with thermal grease.

Figure 4.8 – Sample holder insulation for Tc0 experiment.

(a) Full view. (b) Side view.

Figure 4.9 – Experimental setup of Tc0 experiment of superconducting wires.

(a) Without T offset adjustment. (b) With T offset adjustment.

Figure 4.10 – Tc0 experiment results of Nb3Sn and Nb-Ti wires, when the current is 6.2 A.
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SD-type thermometer was placed on the bottom of the sample holder. The same configuration

was applied on the other side of the sample holder. An average temperature value of the

readings of the four temperature thermometers is used for plotting.

The mid temperature point of the quench transition is used for correcting the measurement

offset since the temperature difference may be not uniform across the sample. After an offset

adjustment of 3.5 K, from the Nb-Ti measurement, we find that the Nb3Sn sample starts to

quench around 19.1 K. This value is larger than the expected one, which is 18 K [101]. The

possible reason could be a different temperature difference between the averaged T and the

Nb-Ti wire, and between the averaged T and the Nb3Sn wire. In this experiment, only the

order of magnitude of the critical temperature of the Nb3Sn wire was verified. The Cernox

sensors must be placed as close as possible to the samples, allowing a precise temperature

measurement, which was not the case described here.

Table 4.1 lists the parameters of the two sample wires with the calculated and measured

voltage. A value of 2e-10 Ω · m is used for copper resistivity at 20 K. The resistivity of tin is

taken from [102], which is 9e-10Ω · m at 20 K. Note that the final cross-section diameter of the

Nb3Sn sample is not longitudinally homogeneous and varies between 2.5 and 3.0 mm. The

resistance of the whole sample is a parallel resistance of three parts: the copper part in the

Nb3Sn wire, the soldered copper support wire and tin. For both sample wires, the measured

and calculated voltage are reasonably close. In this Tc0 experiment, we confirm that the test

setup, as well as the cooling system work well.

Table 4.1 – Sample wire parameters with calculated and measured voltage for Tc0 experiment
when a current of 6.2 A is applied.

Nb-Ti sample

Cu fraction 0.667
Wire diameter 8.25e-4 m
Wire length 0.12 m
Calculated voltage 4.18e-4 V
Measured voltage 3.21e-4 V
Measured/Calculated voltage × 100% 76.84 %

Nb3Sn sample

Cu fraction 0.2
Nb3Sn wire diameter 5e-4 m
Wire length 0.08 m
Soldered Cu wire diameter 1e-3 m
Calculated voltage [5.84e-5; 4.56e-5] V
Measured voltage 4.3e-5 V
Measured/Calculated voltage × 100% [73.57; 94.38] %
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4.2.3 Principle of current detection test setup

In the current detection test, we aim to simulate a quench scenario in a co-wound loop com-

posed of a thin superconducting wire, which is placed beneath the quenching cable. The

principle relies on a transverse heat propagation from the cable to the co-wound supercon-

ducting sensing wire. To test this idea in a subscale model, a thin stainless-steel heater strip is

used to mimick a quenching cable and a Nb3Sn wire is placed beneath the heater strip with

several in-between layers of insulation. This design allows the transverse heat propagation

from the heater to the superconducting wire, as in a real superconducting cable.

A simple electrical schema is illustrated in Figure 4.11. There are two circuits in this test

setup. One is the heater strip circuit and the other one is the superconducting sensing wire

circuit. The green block represents the sample, which was placed in the cryostat and tested at

a cryogenic temperature of about 4 K. The remaining parts were in ambient temperature. A

piping and instrumentation diagram of the test is presented in Figure 4.12. The test setup is

shown in Figure 4.13. The same thermometer position was applied in this test as mentioned

in the Tc0 experiment: CU-type on the top and SD-type on the bottom of the sample holder.

Figure 4.11 – Electrical circuit of current detection test.

Both circuits are powered with a constant voltage. In order to reduce the noise level on the

output signal, batteries replace power supplies in both circuits. The circuit of the heater strip

is commanded by a solid-state switch, an electronic switching device that switches on or off

when a small external voltage is applied across its control terminals. The solid-state relay has

fast switching speeds compared with an electromechanical relay. The specifications of the

solid-state relay used are described in Table 4.2 [103]. When the control voltage is above 3 V,

the load circuit is closed and when the control voltage is below 1 V, the load circuit is open.

In the experiment, we deliver a rectangular heat pulse. A function generator is connected

between the control terminals of the solid-state switch to control the heater strip load circuit.

By using a function generator, one can customize the heat pulse by adjusting the amplitude,
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Figure 4.12 – Piping and instrumentation diagram of current detection test with current leads
(not-to-scale).

offset, pulse width, and frequency of a rectangular pulse signal.

Table 4.2 – Solid state relay specifications.

Input Specifications

Control Voltage Range 3 - 10 VDC
Max Turn-On Voltage 3 VDC
Min Turn-Off Voltage 1 VDC
Max Turn-On Time 1 msec
Max Turn-Off Time 0.3 msec
Nominal Input Impedance 300Ω

Output Specifications

Operating Voltage 0 - 100 VDC
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(a) Full view.

(b) Side view.

Figure 4.13 – Experimental setup of current detection.

In Figure 4.11, R1 and R2 are two value-known resistors. By measuring the voltage on each

resistor, the current in the respective circuit is monitored. R3 is used to regulate the current

level in the circuit of superconducting wire since the battery has a fixed voltage level. Besides,

R3 can be any other reasonable value to have several amperes in the superconducting circuit.

In this test, the value of R3 is either 3.3 Ω or 1 Ω. The wire of the superconducting circuit

constitutes the primary of the current derivative sensor and the response is obtained on

the secondary of the sensor. The current drop in the primary and the voltage peak on the

secondary are both measured in the experiment.

The cable sample design is based on an initial design of CD1 superconducting cable. A G10

block is used as the main support of a cable. A stainless-steel heater strip is made to trigger

a quench. The ensemble of both constitutes a quenching cable. The sample cross-section

design is shown in Figure 4.14. In this figure, x is the thickness of all the insulation layers

between stainless steel heater strip and Nb3Sn wire, and y is the resin thickness between the

mica sheet and Nb3Sn wire. These two parameters are not precisely known before cutting the

sample since the resin thickness is not well controlled during the impregnation process. x and

y are crucial in the experiment since they impact on the transverse propagation time, and

thus the detection time. The dimension of the sample is described in Table 4.3.
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Figure 4.14 – Sample cross-section design for current detection test (not-to-scale).

Table 4.3 – Sample main parameters for current detection test.

G10 block dimension

Block width 8 mm
Block thickness 2 mm
Block length 12 cm

Insulation thickness

Mica layer 0.08 mm
Fiber braiding 0.175 mm

Heater strip

Heater strip thickness 2 mm
Heater strip length 100 mm
Stainless steel strip thickness 0.025 mm
Kapton thickness 0.05 mm

Co-wound superconducting wire

Strand type Nb3Sn
Strand diameter 0.5 mm
Cu percent 20 %
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Figure 4.15 shows a sample overview. The sample overall length is 12 cm. The effective length

for the test is 8 cm. The 2 cm on both sides are reserved for soldering and fixing purposes. The

choice of copper connection wire in the detection circuit mainly depends on the heat leak to

the cold end. A wire of small diameter has a low heat leak. In this test, the same considerations

are taken into account as in the critical temperature experiment for the connection wire of

the heater strip, to use an insulated wire of 0.6 mm. Concerning the connections wire of the

superconducting sensing wire, an insulated copper wire of 0.5 mm is used. The explanation

for the selection choice is given in Subsection 4.2.4.

Figure 4.15 – Sample overview with connection wires for current detection test (not-to-scale).

When the heater strip delivers a pulse, the Nb3Sn superconducting wire heats up. Once it

quenches, the resistance Rquench(t ) increases with temperature. A constant resistance Rwire is

considered for the copper connection wires. The current profile in the detection circuit is thus

written as I =U /(Rquench(t )+Ro), with Ro = R2 +R3 +Rwire.

The wires are twisted to avoid large loops to reduce the inductance in the circuit. Note that

since the current flowing in the Nb3Sn wire is very small, the contribution of Joule heating

of the wire during the quench is negligible. The current flowing inside the superconducting

wire could also induce a magnetic field. The strength of this field depends on the level of the

current. When the field is strong enough, it may speed up the quench process. However, in

this case, the current in the Nb3Sn wire is very small thus the induced field is weak (in the

order of 0.1 T, calculated in Subsection 4.2.5). The critical temperature of the wire roughly

equals to Tc0.

The process of heating up the sample from the initial temperature 4 K to the critical temper-

ature is slow, compared to the case in a high-field magnet, since the temperature margin is

big. In a high-field magnet, the temperature change from the operating point to the current-

sharing temperature is only several kelvins (about 2-3 K) for a superconducting cable, resulting

in a significantly shorter quench detection time using the current-based detection method.

For example, in the case of CD1 at a current level of 15.5 kA, a quench occurs when the tem-

perature rises from 4.2 K to 7.2 K in the high-field zone of the inner-layer coil, as described in

Subsection 2.4.3. For a small current flowing in the Nb3Sn wire (< 5 A), the critical temperature

is almost at zero field, which is equivalent to 18 K. In this experiment, with 4 K initial sample

temperature, the temperature increase needed to initiate a quench is about 14 K. The recorded
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experimental detection time is therefore longer. Nevertheless, a similar temperature margin

can be reproduced by increasing the sample initial temperature to about 15 K, to conduct the

experiment.

4.2.4 Sample manufacturing

The sample preparation starts by building a heater. The heater is composed of a stainless-steel

strip which is covered by a layer of Kapton tape on each side for electrical insulation purposes.

The extremities of the stainless-steel strip are soldered to the copper connection wires (≈ 1.5 m

long). The length of the heater strip is 10 cm. We reserve 1 cm for soldering on each side.

Therefore the effective length of the sample is 8 cm. With the heater dimension outlined in

Table 4.3, the calculated heater resistance is 1.1Ω at 20 °C, using the value of 6.9e-7Ω · m for

the stainless-steel resistivity. The measured manufactured heater resistance is 1.3Ω. When

the connecting wires are soldered, the total resistance with wires is 1.7Ω at room temperature.

Once the heater strip is prepared, it is fixed on a G10 support on the extremities. A mica strip

is then added above the heater strip to simulate the insulation between the superconducting

cable and the sensing wire.

A reacted Nb3Sn wire soldered with the copper connection wires (≈ 1.5 m long) is fixed on the

mica strip. Theoretically, if a thick connection wire is used (low resistance in the circuit), a

large step is expected in the current due to the quench, which can be picked up by the current

derivative sensor. However, the heat leak of the thick wire to the cold end also increases, which

is not desired in the experiment. If a thin wire is used (high resistance in the circuit), a small

step in the current may not be able to be picked up by the sensor.

In fact, the resistance of the connection wire has at least one order of magnitude smaller than

other resistors (R2 and R3, both in the order of magnitude of ohm) in the sensing loop, as

shown in Figure 4.11. The diameter of the connection wire has little contribution to the current

step that we want to measure. The dominant factor is the heat leak of the wire to the cold end,

as presented in Figure 4.6 for a current of 6 A. Since a smaller current (than 6 A) is running in

the Nb3Sn wire, the minimum heat leak level is also reduced. For a current level of 5 A, the

minimum heat leak is obtained when the wire diameter is about 0.5 mm. Theoretically this

wire can carry 2.1 A in the ambient environment. The wire dimension should be big enough

to carry the desired current level. Because each experiment only lasts for a few seconds, we

assume that it is safe to use a copper connection wire of 0.5 mm in diameter for the Nb3Sn

wire at cryogenic temperatures.

Finally, a fiberglass band is wrapped on the whole sample to push all the components as

close as possible to make a tight sample since the distance between the heater and the Nb3Sn

sensing wire is crucial for a fast current-based detection. Note that some grooves were made

on the extremities of the G10 support, which provide space for the wire soldering. Some

photos of the sample manufacturing process are shown in Figure 4.16 for the current detection

test.
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(a) G10 support.

(b) Heater strip and mica strip.

(c) Addition of Nb3Sn wire.

(d) Fiberglass band wrapping.

(e) Impregnated sample.

Figure 4.16 – Sample construction process for current detection test.

The sample needs to go through the impregnation process to simulate the real superconduct-

ing cable. The epoxy resin FSU mix-61 [104], the same one used in the CD1 model magnet,

was applied in the sample. After a degassing of 15 minutes of the resin mixture in a vacuum,

we dripped the mixture on the samples, that were placed in an open mold in the ambient

environment. We put then the samples as well as the mold in the vacuum again to degas for

another 30 minutes in order to let the mixture flow through the entire sample. If the mixture

goes to the bottom of the mold, there is not enough mixture on the top any more. Additional

resin needs to be added and degassed to complete the procedure.

Once the samples are covered by the resin mixture, the mold is placed into the furnace for

polymerization. The curing cycle is 16 hours at 60 °C and the post curing is 24 hours at 120 °C.

When everything cools down, we can unmold the samples and machine the surfaces to be

smooth. In this impregnation way, almost no bubbles are observed in the samples. Figure 4.17

shows the sample impregnation process for the test.

4.2.5 Current derivative sensor

In order to measure the voltage peak at the moment of the quench, a dedicated current deriva-

tive sensor is constructed, according to the study discussed in [105]. Figure 4.18 illustrates the

sensor design, where I1 is the primary current, n1 the number of turns in the primary loop, I2

93



Chapter 4. Quench Detection

(a) In vacuum for degassing.

(b) In ambient environment.

Figure 4.17 – Sample with mold during impregnation process for current detection test.

the secondary current, n2 the number of turns in the secondary loop, lc the coil length, la the

air gap,Φ the magnetic flux in the coil, and U (t ) the voltage in the secondary loop.

Figure 4.18 – Current derivative sensor design (following [105]).

Ampere’s law gives∮
H ·dl = N I (4.1)

where H is the magnetic-field strength, l the mean path length of a solenoid or the circum-

ference of a toroid, N the number of turns in the coil, and I the electric current through the

circuit.
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The magnetic Kirchhoff law tells F =ΦR, where Φ is the magnetic flux and R the magnetic

reluctance of the circuit. For a uniform flux and magnetic field inside a rectangular or toroidal

element, the magnetomotive force (MMF) between the ends of element is F = Hl with H = B/µ

and B =Φ/Ac, where B is the magnetic field, µ the material permeability, and Ac the core area.

The MMF can be thus written as F =Φ · l/(µAc) with the reluctance of element R = l/(µAc).

The sensor model has two core parts and two air gaps, the whole equation is given by

Fa +Fc +Fa =Φ(Rc +2Ra) = I1 (4.2)

with the core reluctance Rc = lc/(µc Ac) and the air gap reluctance Ra = la/(µ0 Ac), where

µc =µ0µr. By injecting the reluctance equations into Eq. (4.2), the magnetic flux is written as

Φ= I1

Rc +2Ra
= I1

lc
µc Ac

+ 2la
µ0 Ac

= µ0 AcI1
lc
µr

+2la

(4.3)

According to Faraday’s law, the voltage in the secondary is U (t) = n2 ·dΦ/dt . Note that not

only the current depends on time, but also the reluctance Rc depends on current and therefore

on time. The final sensor response is thus given by

U (t ) = n2µ0 Ac

(
lc
µr

+2la

)
∂I1
∂t − lcI1

∂
∂t

(
1
µr

)
(

lc
µr

+2la

)2 (4.4)

There is another simple way to calculate the sensor response. As we knowΦ= B · Ac, and the

flux lines are perpendicular to the core cross section and the cross section is constant in our

case, therefore any change in magnetic field results in a change in flux ∆Φ = ∆B Ac. So the

sensor response becomes:

U (t ) = n2
dΦ

dt
= n2 Ac

dB

dt
(4.5)

For a given current in the primary loop, we can derive the following relationship from Eq. (4.1):

I =
∮

B

µ
dl = 2Bla

µ0
+ Blc

µc
(4.6)

Therefore the B field can be written as

B = I
2la
µ0

+ lc
µc

(4.7)

and the H field in the core is Hc = B
µc

. By repeating several iterations in the calculation, we can
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obtain the correct B field and core permeability by looking up if the values match with the

B-H curve of such a material. From that, we can calculate the sensor response with Eq. (4.5).

Our goal is to have a measurable voltage peak for a given ∂I /∂t at a given current level. The

factors that have an impact on the sensor performance are the number of turns in the primary

and secondary, the air gap thickness, the core area, and the core permeability. A core with high

permeability at low field, a small air gap, a big number of turns in the primary and secondary,

and a big core area gives a high sensitivity. Note that we must make sure that the core does not

saturate with the number of turns placed in the primary and secondary.

To meet the requirement, mumetal is selected as a suitable material for the test. It is a

nickel-iron soft ferromagnetic alloy with high permeability, often used for shielding sensitive

electronic equipment against static or low-frequency magnetic fields. Annealing the mumetal

objects helps increase the magnetic permeability. The annealing process alters the material’s

crystal structure, to align the grains and remove some impurities. An annealed toroidal

mumetal core was purchased from Magnetic Shield [106] to construct a dedicated current

derivative sensor in-house. The core is made of a mumetal strip of 0.2 mm thickness. This kind

of lamination suppresses eddy currents. The typical B-H curve and the relative permeability

with B field are shown in Figure 4.19.
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Figure 4.19 – Properties of mumetal (Data from [106]).
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The core geometry is illustrated in Figure 4.20, with OD (outer diameter) = 80 mm, ID (inner

diameter) = 40 mm, H (height) = 20 mm. To make a current derivative sensor, the toroidal core

needs to be cut into two parts. As the core is formed by a long and thin strip. If we cut, it will

fall apart. Hence before cutting, the core was impregnated with FSU mix-61 in order to keep

it in the initial form and to preserve its packing factor. The impregnation procedure was the

same as the one described for the sample.

Figure 4.20 – Current derivative sensor core shape for current detection test.

In fact, any mechanical shock after annealing of the mumetal objects could disrupt the grain

alignment of the material, leading to a decrease in the permeability of the affected areas.

In order to reduce any possible permeability damage during the construction process, the

impregnated core was cut with wire electrical discharge machining technique. The material

was removed by a series of rapidly recurring current discharges between two electrodes,

separated by a dielectric liquid and subject to an electric voltage.

Once we have two separate parts, on one part, 3000 turns of a copper wire of 0.3 mm diameter,

were wound onto the core with a plastic support in order to avoid any short circuit with the

round core. If the copper winding wire is too small, it is difficult to handle during the winding

process and may lose some performance. If a big wire is used, in a given space, the number

of turns is reduced, affecting the detection sensitivity. Thus there is a compromise between

the dimension of winding wire and the performance of the sensor. A copper winding wire of

0.3 mm in diameter was chosen.

The cut surfaces of the core were polished into the smooth surfaces so that the air gap is small

when the two parts of the core were clamped. By wrapping some layers of Kapton tapes on

the outer side of the whole sensor, the two parts were assembled together. Some pressure was

needed to enhance the contact between the parts. Note that the mumetal core saturates at low

magnetic fields, which is approximately 0.67 T. Therefore the number of turns in the primary

is chosen to be 1 in order not to saturate the material. In addition, the relative permeability is

very low when the core is saturated, as shown in Figure 4.19b. The main parameters of the

current derivative sensor are listed in Table 4.4. Some pictures of the fabrication process of

the current derivative sensor are presented in Figure 4.21, and the final sensor is displayed in

Figure 4.22.

In fact, a change in current (and also in B) in the case without an air gap causes a very small
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Table 4.4 – Main parameters of the constructed current derivative sensor.

Ac [m2] lc [m] la [m] n1 n2

4e-4 0.1885 7.5e-6 1 3000

(a) (b) (c) (d)

Figure 4.21 – Current derivative sensor fabrication process. (a) Initial toroidal mumetal core;
(b) Pour epoxy resin on mumetal core for impregnation; (c) Degas in vacuum; (d) Put windings
on half core.

Figure 4.22 – Final current derivative sensor in an iron shield box.

change (almost zero) in flux because the operating point situates in the flat part of the mumetal

B-H curve. We thus need to set the air gap to a value that puts the operating point into the

steep part of the B-H curve in order to obtain a high detectable voltage amplitude. Moreover,

the signal size in ∆H is small enough to ensure linear conditions around the operating point.

There is an optimum air gap thickness when the voltage reaches its maximum value. A rate

of current change of at least 1 A/s is expected in the primary circuit during the process of

heating up the sample to its critical temperature. Assuming that a 2 A current flows in the

primary circuit, the calculated voltage on the current derivative sensor versus different air gap

thicknesses is plotted in Figure 4.23 when a current drop of 1 mA in 1 ms has to be detected.

In this figure, a maximum voltage value is obsercved when a total air gap thickness is 5 µm,

which is difficult to achieve in reality. In our setup, an equivalent air gap thickness of 2la =

15 µm, is used for calculation of the sensor response. This value is estimated based on a test of
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Figure 4.23 – Calculated voltage on the current derivative sensor versus different air gap
thicknesses, assuming a 2 A current flows in the primary circuit, with a current drop of 1 mA in
1 ms to be detected.

the sensor performance with a triangle waveform in the primary.

When we have a current of 2 A in the primary circuit, by doing an iterative calculation of

Eq. (4.6), a B-field value of 0.15 T is obtained. The mumetal relative permeability at this level

is approximately 75000. With the core parameters listed in Table 4.4, the mutual inductance of

the current derivative sensor is estimated as 46.4 mH.

4.2.6 Data acquisition system (DAQ)

The batteries are used in the experiment to reduce the noise. Furthermore, all the components

and circuits are shielded in order to have a small noise-to-signal ratio. The current derivative

sensor, the heater strip circuit, as well as the superconducting wire circuit are placed into three

different boxes made of iron to eliminate any possible fluctuations from the environment, and

to reduce the cross-talk between the circuits.

In the experiment illustrated in Figure 4.11, three signals are recorded. The first one is the

current in the heater strip circuit. The second one is the current in the superconducting circuit,

and the last one is the voltage on the current derivative sensor.

The output signal is recorded with a National Instruments PCI-6036E NI DAQ card 16-bit with

a maximum sampling rate of 200 kS/s (multiplexing) [107]. The minimum range provided is ±
50 mV and the minimum voltage step is 100 mV/216 = 1.53 µV. An appropriate range needs to

be selected for data acquisition in order to achieve the best signal resolution for each signal.

Moreover, a sampling rate of 60 kS/s is used for each channel to get signals with high precision.

As each signal has its own properties, different signal connection schemes are applied in order

to produce the best signal for each one. In general, all the signals are measured using the

differential signal connection to reduce noise pickup and avoid ground loops.
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To get a value for the differential measurement, two analog inputs (AI) are used and paired.

The hardware measures the difference between the AI+ and AI- signals, and output this

measurement. Caution needs to be taken in the differential mode since the instrumentation

amplifier input bias currents could move the voltage level of the source out of the valid range

of the input stage of a data acquisition device. To anchor this voltage level to a reference, bias

resistors are used for each analog input. Consequently, two resistors of equal value are used for

each channel in order to maintain a balanced system. These resistors provide a DC path from

the instrumentation amplifier inputs to the instrumentation amplifier ground. According

to the recommendation of National Instruments [107], R = 100 kΩ is used since the value of

these bias resistors should be large enough to allow the source to float with respect to the

measurement reference (AI GND) and not load the signal source, but small enough to keep

the voltage in the range of the input stage of the device.

The complete connection schemes for three signals are described in the following paragraphs.

Current in the heater strip circuit

The connection scheme for the current signal in the heater circuit, measured on R1, is illus-

trated in Figure 4.24. The current in the heater strip circuit is obtained by measuring the

voltage on a 1Ω resistance. A range of ± 5 V is selected for data acquisition. We only apply the

differential connection for this channel as the signal amplitude is big (several volts) resulting

in a small noise-to-signal ratio.

Figure 4.24 – Connection scheme for the current signal in the heater circuit, measured on R1.

Voltage on the current derivative sensor

The connection scheme for the voltage signal on the secondary of the current derivative sensor

is illustrated in Figure 4.25. As the voltage on the sensor is sensitive to the current change

in the primary, the signal is always centered around zero except when there is a change of

current in the circuit.

In reality, the data acquisition system also introduces some noise to the measured signal. This

noise is minimized by selecting the smallest range available on the acquisition card to have

the lowest noise produced internally from the system. The minimum range of ± 50 mV is

therefore chosen. In addition to the differential connection, a capacitor (10 µF) is added on
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Figure 4.25 – Connection scheme for the voltage signal on the secondary of the current
derivative sensor.

AI+ input to build a high-pass filter with the bias resistor (100 kΩ), giving a time constant of 1 s.

The high-pass filter only passes signals above the selected cut-off frequency, eliminating any

low-frequency signals from the waveform. The cut-off frequency is fc = 1/(2πRC ) = 0.16 Hz.

Current in the superconducting circuit

The connection scheme for the current signal in the superconducting circuit, measured on

R2, is illustrated in Figure 4.26. The current in the superconducting circuit is obtained by

measuring the voltage on a 1Ω resistance. For a current of 2 A flowing in the circuit, a current

drop of approximately 0.2 mA is expected (explanation in Subsection 4.2.7). In order to have a

clean signal with a noise level as small as possible, the minimum range of ± 50 mV is used.

In this approach, a voltage compensation measurement method is involved. The principle

is described as follows. if a voltage of 2 V is measured, then an equal-value and opposite-

direction voltage is applied in parallel with the acquisition channel, canceling the initial signal

level before the data acquisition. Therefore only the signal change, i.e., a current drop when

there is a quench, is recorded.

Figure 4.26 – Connection scheme for the current signal in the superconducting circuit, mea-
sured on R2.
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To realize that, a 9 V battery, a fixed resistor and a variable resistor are added in series between

the AI+ and AI- inputs. We can regulate the signal level around zero by tuning the variable

resistor before firing the heater strip. Since a voltage source (9 V battery) is involved in the

data acquisition system, additional electrical components are added to avoid a high current

flowing into the data acquisition system. First, resistors R ′ are connected in the branches of

the AI+ and AI- inputs. Second, some diodes are connected in parallel with the bias resistors to

protect the analog inputs. When the voltage over the diodes is below 0.6 V, there is no current

passing through them.

In addition, a capacitor C (1 µF) is added in parallel with the AI+ and AI- inputs to build

a low-pass filter with the resistor R2 (1 Ω), giving a time constant of 1 µs. A low-pass filter

passes signals with a frequency lower than a selected cut-off frequency and attenuates signals

with frequencies higher than the cut-off frequency. The cut-off frequency is fc = 1/(2πR2C ) =
159.2 kHz.

4.2.7 Results and analysis

Since the samples were made manually, they show different characteristics. For the first

samples, the distance between the heater and superconducting wire was very large thus more

energy was needed, than expected, to trigger a quench in the sensing wire. The fabrication

process of samples was improved in order to keep the distances x and y as small as possible.

In this subsection, the results of two samples with different test configurations are presented.

The variable parameters are the length and the amplitude of the rectangular heat pulse, the

current level in the superconducting circuit, as well as the initial temperature of the test setup.

Eventually, the impregnated samples are cut to measure the distance between the heater strip

and the Nb3Sn wire for a detailed investigation.

Test results of Sample 1

Proof of concept with a fixed heat pulse and current in the sensing wire

For a given heat pulse illustrated in Figure 4.27, the test results of Sample 1 are shown in

Figure 4.28. The heat pulse has an amplitude of 5.2 A and it lasts for 20 ms. Its power density

is 439 W/m. The energy delivered is calculated as ∆E = I 2R∆t . An energy of 0.7 J is released

where the heater strip’s resistance is 1.3 Ω, measured at cold with the current leads. In the

superconducting wire circuit, R3 = 3.3 Ω is used. As a consequence, there is a current of

approximately 2.5 A flowing in the circuit, with the existence of a measured 0.4Ω resistance of

the connection wire.

Figure 4.28a shows the current in the superconducting wire circuit. A current drop is observed

around 3.9 s and after about 1.3 s the current goes back to its initial level. The current drop

is due to the quench of the Nb3Sn wire. The normal state lasts for a certain time when the
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(a) Current. (b) Power density.

Figure 4.27 – Heat pulse delivered in the heater strip over time. Its amplitude is 5.2 A and
length is 20 ms.

residual power is larger than the cooling power of the cryocooler. When the cooling power

exceeds the heating, the sensing wire starts to get cold again slowly since the cryocooler is

working all the time. The wire recovers to the superconductive state.

Figure 4.28b shows the voltage signal on the current derivative sensor. Note that the heat pulse

induces some inductive disturbances on the signal Isens and Vsensor, which is the disadvantage

of using a heater with a rectangular heat pulse to mimick the quenching cable. In a real

quench-detection setup, the current in the quenching cable would initially stay constant and

this perturbation would not be present.

With a zoom around the moment of quench, and a superposition of the plots of Isens and

Vsensor, we obtain Figure 4.28c. In the time interval [3925; 3930] ms, there are some residual

effects linked to the heater discharge. This feature is also present in room-temperature

measurements and therefore does not constitute a quench, but an inductive effect linked to

the heater firing. In the time interval [3935; 3940] ms, we observe the quench of the sample,

on both signals. The current Isens decreases twice with a brief plateau in between the slopes.

Therefore we have two peaks on the current derivative sensor, shown in Figure 4.28d. This can

be explained by the inhomogeneous distance between the heater strip and the sensing wire. A

certain length of the superconducting wire is close to the heater strip while the remaining part

is not as close to the heater strip. A second transverse quench propagation occurs in the wire

following a first transverse one from the heater strip to the wire.

It is worth noting that a slight slope is observed when measuring the current in both circuits of

the heater strip and the superconducting wire due to the battery’s loss in the output voltage

over time. For this reason, the data of the measured currents in Figure 4.28 was corrected for

the linear slope.
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(a) Current in superconducting wire circuit. (b) Voltage on sensor.

(c) Superposition of current in superconducting wire
circuit and voltage on sensor at quench moment.

(d) Zoom at quench moment.

Figure 4.28 – Current detection results on Sample 1 with R3 = 3.3Ω, when a heat pulse of 5.2 A
is applied for 20 ms .

The quench delay time between the initiation of the heater and the first peak is approximately

10.7 ms for a temperature rise from 4 K to 18 K. The current drop of Isens is 0.62 mA when

Isens = 2.5 A. Theoretically, if considering the resistance of the sensing wire in the sample is

0.4 mΩ at 20 K, a current drop of 0.21 mA is expected. The simulation assumes one step-like

transition at 18 K, whereas the transition in the experiment lasted for several milliseconds.

The average sample temperature at the end of the transition was, therefore higher than 18 K.

In addition, the measured resistance drop could also include some lead resistance change.

The current change rates in the superconducting wire are [0.21; 0.26] A/s for the first and

second part of the current drop. The measured Vsensor peaks are [10; 12.4] mV. This is consistent

with the mutual inductance of the sensor as indicated in Subsection 4.2.5. With the present

setup, only the peaks at the moment of quench can be detected. The drift part of the quench

recovery is invisible on the current derivative sensor.
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Comparison of simulation and test results of Sample 1

In a 2D adiabatic sample cross-section simulation without any cooling effect, the temperature

profile on the heater strip and Nb3Sn sensing wire are simulated, when a heat pulse with a

form shown in Figure 4.27, is initiated at t = 0. The goal is to mimick a quenching cable, that

heats up to 85 K in 20 ms with a background field of around 10 T. The resistance growth and

the current profile in the sensing wire as a function of time are calculated in order to have an

estimation of current variation. The predefined values x = 150 µm and y = 20 µm are used in

the simulation. Actually these parameters impact the quench delay time, however, we only

study in this paragraph the temperature in the heater strip, as well as the signal forms. Thus

the values of x and y are not crucial here. The simulation results are plotted in Figure 4.29.

(a) Heater strip temperature. (b) Nb3Sn wire temperature.

(c) Resistance rise on Nb3Sn wire. (d) Current drop on Nb3Sn wire.

Figure 4.29 – Simulation results for current detection, when a heat pulse of 5.2 A is applied for
20 ms.

We remark that the temperature rise in the heater strip is approximately 116 K in 20 ms, a

higher value than the one in a quenching cable with a background field of around 10 T, but

it is still a quite good approximation to mimick a quench cable by using a heater strip. In
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fact, an instantaneous quench occurs on the superconducting wire cut section, illustrated in

Figure 4.29, which means a big ∂I /∂t and a big voltage peak on the sensor. However, in the

measurement, a slow quench slope is observed and this low quench speed results in smaller

peaks (only about 10 mV) on the sensor than expected (about 50 mV).

Impact of the change in the pulse amplitude and length

We are interested in changing the heat pulse amplitude and duration to see the effects on the

detection in the experiment. For a constant amplitude, we vary its duration. When a heat

pulse has a power density of 439 W/m (same amplitude of 5.2 A as before) and it lasts for 5 ms,

the quench happens after the delivery of the pulse, as shown in Figure 4.30a. If the heat pulse

amplitude or the duration is further reduced, then no more quench can be observed any more.

Figure 4.30b illustrates this effect when a heat pulse has an amplitude of 3.6 A for 5 ms. From

these tests, an experimental minimum quench energy can be derived for Sample 1, which is

about 0.18 J.

For a constant heat pulse amplitude, the energy density of different durations versus the

measured delay time is plotted in Figure 4.31. When the heat pulse duration of 20 ms is applied,

the quench transition happens before the end of the pulse, as displayed in Figure 4.28c. When

the heat pulse lasts for 15 ms, part of the transition happens before the end of the pulse. These

two cases both have the same delay time of 10.7 ms. As long as the quench happens within the

heat pulse duration, the delay time is always the same, confirmed by the simulation. When the

heat pulse duration becomes shorter (e.g., 10 and 5 ms), the quench transition happens after

the end of the pulse, the detection delay time becomes longer, until no more quench can be

observed, i.e., an infinite delay time. In short, we can only observe the delay time difference

once the quench happens after the heater pulse when its duration is short.

The impact of pulse length on temperature of heater strip and sensing wire is studied only in

the simulation as the temperature monitoring is not precise in these fast transients with the

present experiment setup. Under the same condition, the simulation is launched for a pulse

time of 20 ms and 30 ms. By increasing the pulse time, the temperature rise on the Nb3Sn wire

is smaller than the one on the heater strip, which is not efficient from the point of view of the

experiment design. Thus a short pulse is more beneficial.

To summarize, with a shorter pulse length and a higher heater power, the detection delay time

is shorter and the heating process is faster. With a longer pulse length and a lower heater

power, the detection delay time is longer and the heating process is slower.

Measurement of the distance between the heater strip and the sensing wire

As mentioned before, the distances x and y , illustrated in Figure 4.14, are not precisely known
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4.2. Current detection subscale experiment

(a) Quench happens after the end of the pulse when a heat pulse of 5.2 A
for 5 ms applied.

(b) No quench observation when a heat pulse of 3.6 A is applied for 5 ms.

Figure 4.30 – Current detection test results on Sample 1 with R3 = 3.3 Ω, when varying the
length and amplitude of the applied heat pulse to determine minimum quench energy.
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Figure 4.31 – Energy density versus measured quench delay time. The Point 1 to 4 correspond
respectively a heat pulse duration of 20, 15, 10 and 5 ms.
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before cutting the samples, due to the impregnation process. These distances impact on the

time to quench. Once the minimum quench energy is found experimentally, one can use

this value and the delay time tdelay between the initiation of the heater pulse and quench to

estimate the distances that most closely fit the existing measurement data in the 2D cross-

section simulation. For Sample 1, x = 150 µm and y = 20 µm are found and applied when

fixing the delay time obtained from the measurement in the simulation.

In order to validate the assumptions on these values, the sample was cut into several pieces

as shown in Figure 4.32. The cutting surfaces from A to D were polished for measuring the

distances x and y . As the saw for cutting has a thickness of 1 mm, and the polishing process

also took away some additional material, the cutting surfaces at the same location, e.g., B

and C, are not mirrored as expected. Figure 4.33 presents the cutting surfaces of Sample 1 at

different locations.

Figure 4.32 – Locations of cutting surfaces of Sample 1.

(a) A (b) B

(c) C (d) D

Figure 4.33 – Cutting surfaces of Sample 1 for determination of the distance between the heater
strip and the edge of superconducting wire, as well as the transverse thickness of epoxy resin.

From top to bottom, the observed steel layer is the heater strip. The measurement of x is

considered from the bottom level of the silver layer to the edge of the superconducting wire

with a certain error margin. It is however difficult to distinguish the layers of Kapton, mica and

epoxy resin from the pictures in between the heater strip and superconducting wire. Therefore
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4.2. Current detection subscale experiment

the parameter y is only presented for the cutting surfaces where the material boundary can be

clearly seen. Considering the superconducting wire of 0.5 mm in diameter as a reference, the

measured distances x and y are tabulated in Table 4.5.

Table 4.5 – Measured distances between the heater strip and superconducting wire, and resin
thickness on cutting surfaces of Sample 1.

Distance A B C D

x [µm] 90 ± 3 88 ± 5 83 ± 2 87 ± 2
y [µm] / 27 ± 3 / 21 ± 2

From these data, a small variation of distance x is noticed at different locations. Due to the

limited number of cuts, larger variations along the sample cannot be excluded. Quench first

happens in the superconducting wire when it is at the closest location to the heater strip.

Despite the smallest value of x is found at surface C, the parameter y can not be measured

at this position. Thus the set of values at the cutting surface D are used and compared to the

simulation. Theoretically, one should get 130 µm for the Kapton and mica strip. Therefore

the value of x should be larger than 130 µm. However, the measured value of x is smaller

than expected which is due to the material compression. Nevertheless, we confirm, on the

sample edge, the measured total thickness of the Kapton and mica strip is between 130µm and

140 µm. The extra thickness can be explained by the filling of the epoxy resin. The measured

value of y gets very close to the assumption.

The quench delay time is calculated in the simulation again using the measured distances x

and y at the cutting surface D. The involved thickness of Kapton and mica layer are adjusted

due to the material compression. The thicknesses for Kapton, mica and epoxy resin are

respectively 25 µm, 41 µm and 21 µm. In this case, the quench delay time is 7.7 ms in the

simulation versus 10.7 ms in the experiment, when a pulse in Figure 4.27 is applied. The

time difference can be explained by the inhomogeneous heat transfer along the sample and a

cooling effect that is not taken into account in the model.

Impact of the change in the current level in the superconducting sensing circuit

By increasing the current in the superconducting wire, we can increase the signal amplitude in

both current drop and sensor voltage measurement. This time, R3 = 1Ω is used, which means

a current of 5 A in the sensing circuit. With the same heat pulse shape illustrated in Figure 4.27,

the results are plotted in Figure 4.34.

The measured current drop of Isens is 1.3 mA when Isens = 5 A. Theoretically, if considering

the resistance of the sensing wire in the sample is 0.4 mΩ at 20 K, a current drop of 0.81 mA is

expected. The experimental current drop caused by the quench is higher than the calculated

value due to the same reason described in Subsection 4.2.7.
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Chapter 4. Quench Detection

Figure 4.34 – Current detection results on Sample 1 with R3 = 1Ω, when a heat pulse of 5.2 A is
applied for 20 ms.

The current change rates in the superconducting wire circuit are [0.41; 0.43] A/s for the first and

second peak on the current derivative sensor signal. The measured values are [21.6; 26.4] mV

on Vsensor. The peak amplitude is doubled in this configuration. However, we cannot put too

much current in the primary circuit because the permeability of mumetal decreases when the

magnetic field increases. A different choice of material may allow for further optimization of

signal strength.

Impact of the change of the initial temperature in the setup

With a pulse duration of 20 ms, the quench delay time tdelay is measured for different tem-

perature ranges. By turning off the cryocooler, we let the temperature drift to the desired

initial temperature Tinit and then we start the experiment. When Tinit gets close to Tc0, the

temperature margin becomes small for triggering a quench. In this way, temperature margins

present in a high-field magnet in the high-field zone of the coil can be reproduced. And

therefore a short tdelay is expected.

When the initial temperature (> 14 K) approaches the critical temperature, the delay time can

not be measured any more since the sensor peak is embedded in the disturbances. In order

to extrapolate experimental results towards faster detection times, i.e., into a region where a

clean measurement is not possible due to the inductive noise from the heater circuit. We select

the length parameters of x and y that most closely fit the existing measurement data for initial

temperatures smaller than 14 K. The quench delay time is thus calculated in the simulation

using x = 150 µm and y = 20 µm. In this way, we can get the best approximation of delay

time for Tinit > 14 K in the 2D simulation, taking into account the inhomogeneous transverse

heat transfer along the sample. The quench delay times obtained from the experiment and

simulation with different initial temperatures are presented in Figure 4.35.
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Figure 4.35 – Transverse quench delay time (from heater initiation to first peak on the sensor)
obtained from the experiment and simulation with different Tinit in the current detection test.

Note that the measured distances x and y , which are obtained and discussed in Subsec-

tion 4.2.7, are not used here because of the large time difference found due to the inhomoge-

neous transverse heat transfer.

Test results of Sample 2

Figure 4.36 shows the results of Sample 2, with R3 = 3.3Ω, when a heat pulse shape illustrated

in Figure 4.27 with a duration of 30 ms is applied. For this sample, only one peak is observed on

the sensor signal. The current drop is approximately 0.87 mA, resulting in a slope of 0.014 A/s.

The current drops over a duration of 63.9 ms, indicating a rather long delay between the most-

and the least-heated point along the sensing wire.

If we zoom in Figure 4.36c and look at Figure 4.36d, the current drop slope at the very beginning

of the quench is about 0.06 A/s, which gives a theoretical peak value of 2.8 mV on the sensor.

In the experiment, a value of 3.7 mV is measured. Compared to the results of Sample 1, we

have a smaller peak amplitude of Vsensor and a much slower quench speed. There is still a

clear signal on the sensor, despite the slow quench. From that, we can derive that the distance

between the heater strip and sensing wire is not well-controlled in Sample 2, and considerably

larger than the one in Sample 1.

In order to validate the findings, the sample was cut into several pieces as shown in Figure 4.37.

The polished cutting surfaces from A to F are displayed in Figure 4.38. The same considerations

of measuring x and y described for Sample 1 are used for Sample 2. The measured distances

are outlined in Table 4.6. From these data, an inhomogeneous distance x is noticed at different

locations. The longitudinal variation of the distance is bigger than the one for Sample 1.

Furthermore, a considerably big distance between the heater and the sensing wire is confirmed

from the measured data. The material compression only occurs at some locations, e.g., B and

D, since the distance x is smaller than the theoretical value 130 µm. Besides, because this

111



Chapter 4. Quench Detection

(a) Current in superconducting wire circuit. (b) Voltage on sensor.

(c) Superposition of current in superconducting wire
circuit and voltage on sensor at quench moment.

(d) Zoom at quench moment.

Figure 4.36 – Current detection results on Sample 2 with R3 = 3.3Ω, when a heat pulse of 5.2 A
is applied for 30 ms.

sample was not well compressed, an amount of epoxy resin exists in between the heater strip

and superconducting wire, e.g., at locations A, C, E and F.

Figure 4.37 – Locations of cutting surfaces of Sample 2.

As the quench first happens in the superconducting wire when it is at the closest location to

the heater strip, the smallest value of x found at surface B is applied in the simulation. After

a thickness adjustment due to the material compression, the thicknesses for Kapton, mica
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4.2. Current detection subscale experiment

(a) A (b) B

(c) C (d) D

(e) E (f) F

Figure 4.38 – Cutting surfaces of Sample 2 for determination of the distance between the heater
strip and the edge of superconducting wire, as well as the transverse thickness of epoxy resin.

Table 4.6 – Measured distances between the heater strip and superconducting wire, and resin
thickness on cutting surfaces of Sample 2.

Distance A B C D E F

x [µm] 131 ± 2 115 ± 2 141 ± 2 118 ± 2 137 ± 3 170 ± 2
y [µm] / 28 ± 3 / 26 ± 2 / /

and epoxy resin are respectively 33 µm, 54 µm and 28 µm. The calculated detection delay

time is 9.6 ms from 4 K, compared to a measured value of 17 ms in the experiment. This

time difference can be explained by the fact that during the heating period, heat may diffuse

longitudinally in the sensing wire from the most heated position towards the less heated

portions, thus slowing down the transition.
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Comparison with the voltage-based detection method

The real quench is a growing hot-spot, this needs to be taken into account in the detection

delay calculation. In the previous study of quench propagation presented in Table 3.3 for the

CD1 model magnet, we found that the time needed to reach a 500 mV threshold for a current

level of 15.5 kA is 15 ms for a voltage-based method. In the case of the current-based method,

for a temperature margin of 3 K, based on the simulation results in Figure 4.35, a prediction of

3.6 ms is obtained to have a quench on the cross section of the superconducting sensing wire

from the initiation of heater pulse.

The minimum propagating zone is very small, only 2-3 mm, for the Nb3Sn cables [108, 109].

From the experiments, a measurable signal is obtained for a quench zone of 8 cm in length.

Therefore, 6.3 ms is needed for a longitudinal heat propagation in a cable length of 8 cm, at

a velocity of 12.7 m/s when the magnet operates at 15.5 kA, using the quench propagation

velocity calculated in Table 3.3. This time should also be taken into account in this method. If

we sum these two values, the detection time in the current-based method is 9.9 ms, which

is slightly shorter than the traditional voltage detection one, i.e., 15 ms to reach the pre-set

threshold of 500 mV and 20 ms with the validation time.

As the quench propagation evolves in the conductor, the current drop amplitude should

also be significant large in the co-wound circuit. However, 500 mV is set arbitrarily and final

comparison is needed when the voltage-spike spectrum of magnet is available. Moreover, in

the real high-field magnets, some small fluctuations have the possibility to trigger a spike in the

secondary of current derivative sensor, e.g., a nearby power converter or a device shut-down

at emergency situations. In this case, some validation time may be necessary.

Conclusions and discussion

The detection method using a co-wound superconducting sensing wire was studied via both

a 2D simulation and a subscale experiment. The purposes are to study its suitability for

CCT-type magnets, to compare this current-based method with the traditional voltage-based

method.

In the current detection experiment, two types of measurement are used, a direct current

signal in the sensing wire and an indirect voltage signal on the current derivative sensor. The

advantages and disadvantages of each method are described here.

On one hand, the superconducting wire allows measuring the current directly, without picking

much noise in a co-wound loop. With a series resistance, we ensure that a voltage perturbation

does not have a large impact on the current measurement. Therefore the direct current drop

is a straightforward quench detection method. The direct current measurement allows the

introduction of an evaluation time, if needed.

On the other hand, there are some uncertainties and difficulties using the current derivative
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sensor to measure an indirect voltage signal. First, the permeability of the current derivative

sensor might change during the fabrication process. Second, the sensor picks any possible

fluctuations in the environment, causing an unstable signal in the measurement. In the

experiment, the voltage peaks are detectable at the moment of the quench. However, the

obtained peak amplitude is relatively small (about 10 mV) compared to the threshold used in

the voltage-based method, which is 500 mV. The main responsible reason is that, the distance

between the heater strip and the sensing wire is not well maintained along the sample causing

a slow transverse quench propagation in the sensing wire. Nevertheless, this method is better

suited to measure slow transitions as the sensors are sensitive. Moreover, the current derivative

sensor should give a larger signal-to-noise ratio for the actual quench than the one in the

subscale experiment.

From my experience, the direct current signal in the co-wound superconducting sensing wire

is easier to obtain and more reliable than the indirect voltage signal. However, whether it

is a direct or indirect measurement, the current-based detection method does not give full

immunity from noise.

As mentioned before, the application of the current detection relies on a small and uniform

distance between the quenching cable and the superconducting sensing wire along the coil

windings in order to have a fast transverse heat propagation from the cable to the wire for the

wire to quench, if we want to realize this detection method in a CCT-type magnet. Even though

the calculated current-based detection time is shorter than the traditional voltage detection

one at the example of CD1 at its nominal operating current, it may still be difficult to achieve

the homogeneously small distance throughout an entire magnet. Besides, the thin sensing

wire has the possibility to break during the manufacturing of the coil. In this case, we may

need technical support from specialized companies to overcome the implementation issues in

a full-size magnet. However, the current-based method may be well suited for the protection

of busbars in between magnets [41, 42], where the delay times are less critical. Nb-Ti wires

could also be used in that case.

4.3 Instrumentation of CD1

At LBNL, five CCT model magnets have already been tested in order to reach the design dipole

field and to improve the magnet performance [88]. The instrumentation of LBNL’s model

magnets is briefly described in [34]. LBNL used traditional voltage detection to learn about

the quench origin and propagation velocity. A special voltage tap arrangement was made in

the multi-layer CCT geometry for measuring quench propagation velocity. In terms of quench

protection, LBNL only used a dump resistor to extract the stored magnetic energy [110].

In addition, some diagnostic instrumentation was added to analyze the event during a quench.

A spot heater, shown in Figure 4.39a, is able to trigger a quench in a controlled way and, thus,

determine the heat propagation speed. An acoustic emission detection system identifies the

origin of mechanical events (e.g., crack or friction) by means of triangulation and allows for

115



Chapter 4. Quench Detection

studying their "acoustic signature" (a form of the signal) [36].

The polyamide traces were fabricated to make voltage tap connections (Figure 4.39b) and the

traces were soldered to flags that were brazed to the cable during heat treatment. Grooves

were made in the mandrels along the pole azimuthal locations to accommodate the traces.

(a) Spot heaters. (b) Voltage traces.

Figure 4.39 – Quench instrumentation of LBNL’s model magnets.

Since our model magnet CD1 was shipped to LBNL for a test at cryogenic temperature, the in-

strumentation of CD1 was based on that of the LBNL’s two-layer model magnets, in particular,

CCT4 and CCT5. According to the previously presented protection study results of the two-

layer model magnet CD1, described in Chapter 3, the energy extraction and CLIQ system are

selected for the magnet test. In addition, a spot heater and several acoustic emission sensors

are mounted for diagnostics purposes in the longitudinal direction. On the detection side, we

chose to study the feasibility of the voltage-based method with inductive compensation using

a co-wound copper wire and optical detection using a co-wound optical fiber.

4.3.1 Voltage detection using a co-wound copper wire

In the method of voltage detection with inductive compensation using a co-wound copper

wire, a pure voltage rise on the quench resistance is measured, resulting in a smaller voltage

threshold and hence a shorter detection time. A company called CGP [111], demonstrated

that a copper wire of 0.1 mm in diameter could be co-braided with mica and Rutherford cable,

shown in Figure 4.40.

With this co-braided copper wire embedded in the Rutherford cable, a first winding process

in the mandrel was carried out. During the process, we found that the braided fiberglass

insulation of the cable was weak. Numerous short circuit signals, extremely on the pole

regions where the cables are bent at these locations, were observed between superconducting

cable and the former. Therefore the cable insulation was improved. The co-braided copper

wire, mica sheets and fiberglass insulation were removed. Instead, a thicker fiberglass sleeve

was applied. Furthermore, additional fiberglass band was placed on the pole regions. This

time, a ceramic-insulated copper wire was placed beneath the insulated cable in the channel
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(a) Fiberglass sleeve braiding. (b) Thin co-wound copper wire.

Figure 4.40 – Insulation braiding with a thin co-wound copper wire.

on the outer layer of CD1.

The wire used was CERAFIL from CGP [112], a ceramic insulation conductor wire for very high

temperatures. The wire’s nominal operating temperature ranges from -90 °C to 500 °C with

a peak temperature of 1000 °C. According to the thermal characteristics, the wire is able to

withstand a temperature of 800 °C for 240 hours, which is similar to the reaction cycle of the

Nb3Sn superconducting cables. Unfortunately, after the heat treatment of the coil, part of

the ceramic insulation of the copper wire peeled off, leading to short circuits to the former.

Figure 4.42 shows this wire before and after the heat treatment.

(a) (b)

Figure 4.41 – Ceramic-insulated copper wire before and after the thermal cycle. (a) Before
thermal cycle; (b) Ceramic peeled off after thermal cycle.

In this situation, the co-wound voltage detection could not be tested on the CD1 coil. The

traditional voltage taps were prepared and implemented at several locations in the coil for

quench detection and localization. Alternative wires with high-temperature insulation systems

need to be studied to further investigate this method in order to confirm the wire stability for

use in the next CCT-type demonstrator.
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4.3.2 Optical detection using a co-wound optical fiber

In the method of optical detection using a co-wound optical fiber, the wire was co-wound

along the superconducting cable in the channel allowing a distributed sensing approach.

During the implementation, placing the fiber on the bottom of the channel prior to the coil-

winding, led to fiber breakage after the heat treatment, most likely due to the different thermal

expansion coefficients of the metal former and glass fiber. Moreover, the mounting of the

fiber atop of the reacted cable was proved to be laborious and unreliable. Therefore additional

studies are needed in order to find a reliable method of placing the sensing fibers for the next

CCT-type demonstrator.

4.3.3 Final configuration

Based on the detection studies outlined in this chapter, the voltage detection using voltage

taps, as shown in Figure 4.42a, will be used in the final CD1 instrumentation. Based on the

protection studies described in the previous chapter, the energy extraction and CLIQ system

of LBNL, presented respectively in Figure 4.42b and 4.42c, will be connected to the finished

CD1 magnet assembly, illustrated in Figure 4.43, for the cryogenic test.

(a) Voltage taps. (b) EE at LBNL. (c) CLIQ at LBNL.

Figure 4.42 – Final CD1 instrumentation.

Due to the time constraint, the test of CD1 model magnet is not foreseen within the time frame

of the thesis, thus the data analysis of CD1 test results is not included here.
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Figure 4.43 – Finished CD1 magnet assembly.
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5 Conclusion

5.1 Summary

The main contribution of PSI to the FCC study is to provide key technologies for the FCC

magnet development, including the magnet protection against damage from quench. In this

document, I have described the thesis problem: analysis of quench detection and protection

of a Nb3Sn CCT technology demonstrator dipole for FCC at the example of a two-layer model

magnet CD1, built at PSI, and have presented some potential approaches to detect the quench

and efficiently protect this kind of magnet.

On the detection side, three methods were studied. The implementation of the voltage

detection using a co-wound copper wire and the optical detection using a co-wound optical

fiber were tried out on the CD1 model magnet. The encountered difficulties are respectively

the wire insulation damage after heat treatment causing short circuits to the former, and

the mounting difficulties due to the thin-wire geometry for the optical fiber. The study of

the current-based detection method in a subscale experiment allowed us to investigate the

key technical issues. The obtained results show that it may be difficult to implement this

method throughout an accelerator magnet. Nevertheless, it would be helpful if it is used for

the protection of busbars between the magnets.

On the protection side, three methods were studied via simulations. It is proved that CD1 is a

protectable magnet with a dump resistor and a voltage-based detection, in a combination of

the quench propagation study plus a MIITs-based peak-temperature estimate. The co-wound

tape study for CD1 tells us that it is worth using this method only if we can reduce the total

time before the current discharge, otherwise the hot-spot temperature will be too high, even

though it is a more compact magnet.

The performance of the CLIQ unit is evaluated in the CD1 model magnet through a 2D elec-

tromagnetic/thermal model, using the thermal and electromagnetic User-Defined Elements.

Since the magnet will soon be tested at LBNL, the study was carried out with the CLIQ pa-

rameters of the unit which is available at LBNL. In the case of the CD1, the energy-extraction
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system will be added in the loop in addition to the installation of the CLIQ unit. In this way,

magnet quench protection is guaranteed in different operating conditions. An optimization

study of CLIQ parameters is conducted when applying a CLIQ-only protection system for a

short and long magnet, i.e., a magnetic length of 0.6 m and 14.3 m respectively, using the CD1

geometry. The different possible combinations of CLIQ parameters, along with the detection

requirements are proposed in the thesis. They are proved to be sufficient and efficient to

protect the magnet by a CLIQ-only system.

Concerning the simulations, new ANSYS UDEs were adapted and used in the quench simu-

lation of CCT-type magnets. The work with UDEs gave successfully the first-of-a-kind CLIQ

simulation on a two-layer CCT-type magnet. The model was partially validated by the test

data of CCT4, which was protected by an energy-extraction system. Unfortunately, due to the

outbreak of Coronavirus Disease (COVID-19), the model and the automated model generator

could not be fully validated as foreseen with measured CLIQ discharges on the CD1 magnet.

However, the CD1 test campaign has been prepared through simulations.

5.2 Future work

The simulations presented in this thesis laid the ground for the upcoming cold test of PSI’s

model magnet CD1 at LBNL, in which the quench detection is performed by the traditional

voltage taps, the protection by the energy extraction and CLIQ system, along with some

additional diagnostics instrumentation, e.g., spot heater and acoustic emission sensors. In

the test campaign, CLIQ will be fired first and then the energy extraction will be initiated

with a certain delay time. The performance of the CLIQ unit will be evaluated during the

cryogenic test of CD1. The test results obtained from CD1 aim to confirm the applicability of

an efficient quench protection system in CCT-type high-field magnets for accelerators. With

the test results of CD1, the magnet behavior will be compared to the simulation results from

the coupled model, described in the thesis, to validate the generic simulation model methods.

If some deviations are observed, the model has to be improved based on the current version.

The next step is to study the quench protection in a four-layer FCC CCT magnet based on the

findings from the study on a two-layer CCT magnet. The automatic APDL code generator can

be used to perform the same kind of numerical simulation study for a four-layer CCT magnet

in the accelerator environment without the presence of the energy-extraction system, in order

to predict the magnet behavior during a quench. In the next CCT-type demonstrators, the

voltage detection using a co-wound copper wire and the optical detection using a co-wound

optical fiber will be further investigated. On the protection side, a CLIQ-only protection system

will be tested in the next CCT-type magnet prototypes when a powerful CLIQ unit is available.

For the quench protection of busbars using the current-based detection method, the study

described in the thesis is a good starting point, but the efficiency of this method has to be

assessed in an experimental environment with real magnets.
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A Appendix

A.1 Circuit coupling technical details

There are several different commands to couple or uncouple the voltage degrees of freedom

between nodes in ANSYS APDL for controlling the circuit behavior.

• To build the electric connection by coupling the nodes:

CE defines a constraint equation relating degrees of freedom on selected nodes.

CP defines a set of coupled degrees of freedom on selected nodes. It is a simple way

to enforce constraint equations and is equivalent to using "CE". Both "CE" and

"CP" relate the degree of freedom between nodes. Usually, they force the degree

of freedom to be the same, but not necessarily a specific value.

D defines degree-of-freedom constraints on selected nodes. It forces the degree of

freedom of the selected nodes to be a specific value.

• To break the electric connection by uncoupling the nodes:

CPDELE deletes coupled degree of freedom sets with the numbers of the set defined by

"CP".

DDELE deletes degree-of-freedom constraints with the node number.

In principle, a circular usage of "CP" always causes issues in ANSYS. If one wants to cou-

ple the degree of freedom for a group of nodes, it is recommended to do it for all of them

at once, instead of using several commands to link them. For example, one should use

"CP,NEXT,VOLT,N1,N2,N3" rather than "CP,NEXT,VOLT,N1,N2" then "CP,NEXT,VOLT,N2,N3"

because ANSYS reports this as an error. Besides, if one wants to couple a node, which has a

constraint "D" placed on it, with other nodes using "CP". This node must be first in the list.

For example, one should write "CP,NEXT,VOLT,N3,N1,N2" and "D,N3,VOLT,0".
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To avoid any unexpected errors in ANSYS, we decide to couple the most right nodes with "D"

and force them to have V = 0 for a consistent way of modeling. In this way, we only ground

one location of the circuit. For the rest part of the circuits, "CP" and "CE" are used.

A.2 Coupled model generation steps

There are several steps to build a coupled electromagnetic-thermal quench model:

• Generate 2D coil cross-section geometry with the appropriate spatial discretization.

• Generate the mechanical structure and a large air background for electromagnetic

analysis.

• Build an electromagnetic model:

– Define material properties, electromagnetic elements, and corresponding key

options.

– Set cable parameters.

– Set a real constant for each conductor section with its own data (e.g., FEA area,

physical length).

– Set up an electrical circuit:

* Define circuit elements and corresponding key options.

* Set circuit parameters and real constants.

* Create circuit. A normal electric element is placed between two nodes in

the circuit. In addition to that, an FEA circuit coupled element has to be

connected in a node in the FEA domain.

* Couple the degrees of freedom for each conductor piece (e.g., electromotive

force drop, current).

– Define outer boundary conditions and couple all coincident nodes in z-vector

magnetic potentials within a tolerance.

• Build a thermal model:

– Define material properties, thermal elements, and corresponding key options.

– Duplicate thermal areas from the electromagnetic model.
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– The real constants of the conductor are mapped from electromagnetic to thermal

elements with a constant shift when the key option of "transfer with EMAG/Ther-

mal" is activated.

– Couple all coincident nodes in temperatures within a tolerance.

• Define interfaces for load transfer between EM and TH fields.

• Define MFS settings for two fields.

• Solve problem.

A.3 Peak temperature estimation with EE for different voltage thresh-

olds

In Subsection 3.2.3, we investigated the peak temperature in the CD1 coil after a quench

through a MIITs adiabatic calculation for a voltage threshold of 500 mV at different current

levels. Here the cases for three different thresholds, i.e., 100, 250 and 500 mV, are studied to

provide further insights on these quantities. Table A.1 shows the time needed to reach the

pre-set voltage threshold ∆tthres while Table A.2 presents the peak temperature after a quench,

when the magnet is protected by a dump resistor of 40 mΩ. It is worth noting that the total

detection time is still computed as td =∆tthres +∆tswitch, where tswitch = 5 ms. Nevertheless,

one can add the necessary validation time. By using the last column of temperature increase

rate in Table A.2, the corresponding temperature increase due to this additional time can be

added to the value listed in Table A.2 for obtaining a final peak temperature estimation.

Table A.1 – Time needed to reach different voltage thresholds ∆tthres for CD1.

∆tthres [ms] Vthres = 100 mV Vthres = 250 mV Vthres = 500 mV

I = 16.3 kA 6.0 10.2 13.5
I = 15.5 kA 7.2 11.6 15.0
I = 10.8 kA 26.6 38.0 48.7

Table A.2 – CD1 peak temperature estimation after a quench, when the magnet is protected by
a dump resistor of 40 mΩ, for different voltage thresholds.

∆tthres [ms] Vthres = 100 mV Vthres = 250 mV Vthres = 500 mV ∆T /ms [K/ms]

I = 16.3 kA 201 260 316 14-17
I = 15.5 kA 180 231 278 12-14
I = 10.8 kA 108 147 197 3-5
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B Glossary

Accelerator: Device used to produce high-energy beams of charged particles such as elec-

trons, protons, or heavy ions for research in high-energy and nuclear physics, syn-

chrotron radiation research, medical therapies, and some industrial applications.

AI: Analog Input of the data acquisition system.

APDL: ANSYS Parametric Design Language, a scripting language to build models and analyses

in terms of parameters.

CCT: Canted-Cosine-Theta. A CCT-type magnet superposes fields of nested and tilted solenoids

that are oppositely canted. The current distribution of a canted layer generates a pure

dipole field as well as a solenoid field that can be canceled with an oppositely canted

layer.

CCT4: The fourth CCT-type model magnet constructed at LBNL.

CD: Canted Dipole. Name of the model magnets at PSI.

CERN: European Organization for Nuclear Research.

CLIQ: Coupling-Loss Induced Quench. Once a quench is detected, the CLIQ system starts

working by inducing current oscillations in the coil, resulting in a change in the local

magnetic field, which introduces high inter-filament and inter-strand coupling losses

(IFCLs and ISCLs). Hence the varying magnetic field heats a large portion of the coil.

Collider: Particle accelerator to accelerate charged particles to collisions of them.

Critical surface: Critical surface is the boundary between the superconducting state and

normal state in the current density J , magnetic field B , temperature T space.

CryoComp: The software is a collection of properties for a lot of materials commonly present

in superconducting magnets.
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CUDI: The software computes some material properties useful for quench simulation for

Rutherford cable modeling.

DAQ: Data acquisition system.

Dipole: A magnet with a north and south pole, typically used to bend or steer a beam.

EE: Energy extraction. A system to extract the stored magnetic energy on an external dump

resistor.

EPFL: École Polytechnique Fédérale de Lausanne.

EuroCirCol: European Commission funded European Circular.

FCC: Future Circular Collider.

FEA: Finite Element Analysis.

FEM: Finite Element Method.

Fermilab: Fermi National Accelerator Laboratory.

G10: A fiberglass laminate. It is created by stacking multiple layers of glass cloth, soaking in

epoxy resin, and compressing the resulting material under heat until the epoxy cures.

G10 is the toughest of the glass fiber resin laminates and therefore the most commonly

used.

Heat treatment: Reaction process to form Nb3Sn phase.

HL-LHC: High-Luminosity LHC. It is an upgrade of the LHC to achieve a high luminosity of a

factor of five times larger than the LHC nominal value.

Hot-spot temperature: Hottest spot after a quench in a superconducting coil.

HTS: High-Temperature Superconductors. Temperature here refers to the temperature below

which the superconductor must be cooled for it to become superconducting; for HTS

superconductors that temperature is usually well above 30 K.

IFCC: Inter-Filament Coupling Current. Two parallel superconducting filaments in the metal-

lic matrix form large loops with large currents.

IFCL: Inter-Filament Coupling Losses. Losses due to IFCC.

ISCC: Inter-Strand Coupling Current. Two parallel superconducting strands in the metallic

matrix form large loops with large currents.

ISCL: Inter-Strand Coupling Losses. Losses due to ISCC.

LBNL: Lawrence Berkeley National Laboratory.
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LHC: Large Hadron Collider. It is the world’s largest and most powerful particle collider, most

complex experimental facility ever built, and the largest single machine in the world.

Load line: It shows the peak magnetic field on the windings versus the current in the magnet.

LTS: Low-Temperature Superconductors. It typically refers to Nb-based alloys (most com-

monly Nb-Ti) and A15 (Nb3Sn and Nb3Al) superconductors. Temperature here refers

to the temperature below which the superconductor must be cooled for it to become

superconducting; for LTS superconductors that temperature is usually well below 30 K.

Luminosity: The quantity that measures the ability of a particle accelerator to produce the

required number of interactions.

Magnets: Devices that produce magnetic fields that are applied to charged particles to bend,

focus, or correct the trajectory.

Magnet training: Typical process in which a progressive improvement of the reached field

level is observed after a series of repeated quenching events.

MATPRO: A computer library of material property at cryogenic temperature.

Mica: A lightweight material that offers high thermal resistance. Thin mica sheets allow for

rapid heat transfer and heating element cooling.

MIITs: M (Mega) I (current) I (current) T (time) s (plural). This term is used to link a current

profile during a quench (from the current plateau or ramp after a quench initiation

to the end of the current decay) to a peak temperature for a given cable type under

adiabatic conditions

MPZ: The minimum propagating zone MPZ is the minimum zone that produces enough heat

at a given current, magnetic field and cooling condition.

MQE: The minimum quench energy MQE is the amount of energy needed to put into a given

zone over a given time interval at a given temperature, magnetic field, and current to

produce thermal runaway.

Nb3Sn: Niobium-tin is a metallic chemical compound of niobium (Nb) and tin (Sn), used as

a superconductor. It remains superconducting up to a magnetic flux density of 30 T,

compared to a limit of roughly 15 T for Nb-Ti.

Nb-Ti: An alloy of niobium and titanium, used industrially as a type II superconductor wire

for superconducting magnets.

NCSU: North Carolina State University.

NIST: National Institute of Standard and Technology. Its official website contains a database

of cryogenic material properties.

Opera: Opera electromagnetic FEA simulation software.
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PSI: Paul Scherrer Institut.

Quadrupole: A four-pole magnet used to focus beams.

Quench: Quench is the sudden transition from the superconducting to the normal-conducting

state.

Quench protection: Protection of the superconducting magnet in case of a quench.

QPS: Quench protection system.

Ramping: A process in which the magnetic field changes over some time.

RRR: Residual Resistivity Ratio.

Rutherford cable: A Rutherford cable is a type of superconducting electrical cable used to

generate magnetic fields in particle accelerators. The cable is named after the Rutherford

Laboratory where the cable design was developed.

SS: Short Sample. It is considered as the perfect magnet’s physical performance limit.

Strand: Composite wire containing superconducting filaments dispersed in a matrix.

Superconductor: An element, inter-metallic alloy, or compound that will conduct electricity

without resistance below a certain temperature.

Thermal cycle: Temperature cycling between room temperature (293 K) and cryogenic tem-

perature (4.2 K or 1.9 K).

Twin-aperture magnet: A magnet housing two apertures in the same yoke.

UDE: User Defined Element. One of ANSYS capabilities to write user’s elements.

US-MDP: US Magnet Development Program.
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