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Abstract

In part I, we address the issue of existence of solutions for Cauchy problems involving nonlin-
ear hyperbolic equations for initial data in Sobolev spaces with scaling subcritical regularity.
In particular, we analyse nonlinear estimates for null-forms in the context of wave Sobolev
spaces H*?, first in a flat background, then we generalize to more general curved backgrounds.
We provide the foundations to show that the Yang-Mills equation in R!*3 are globally well-
posedness for small weighted H34* x H~1/4* initial data, matching the minimal regularity
obtained by Tao [106]. Our method, inspired from [14], combines the classical Penrose com-
pactification of Minkowski space-time with a null-form estimates for second order hyperbolic
operators with variable coefficients. The proof of the null-form appearing in the Yang-Mills
equation will be provided in a subsequent work. As a consequence of our argument, we shall
obtain sharp pointwise decay bounds.

In part II, we show that the finite time type II blow-up solutions for the energy critical nonlinear
wave equation

Uu=-u
on R3*! constructed in [62], [61] are stable along a co-dimension one Lipschitz manifold
of data perturbations in a suitable topology, provided the scaling parameter A(¢) = t~!7V
is sufficiently close to the self-similar rate, i. e. v > 0 is sufficiently small. This result is
qualitatively optimal in light of the result of [56], it builds on the analysis of [49] and it is joint
work with my thesis advisor Prof. J. Krieger.

Key words: critical wave equation ; blowup ; Yang-Mills equation ; nonlinear waves ; null
structures ; space-time compactification ; Penrose transform.
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Introduction

As already mentioned in the abstract, the objective of the current work is twofold. Part I
concerns the existence of solutions for a wide class of nonlinearity whereas in part II we
analyse the obstructions to the existence of solutions, i.e. blow-up solutions.

Part I: Low regularity theory for scaling subcritical equations

In the first chapter we investigate the existence of local-in-time solutions to Cauchy problems
associated to a class nonlinear wave equations in flat space-time. We address the issue of
finding the minimal assumptions on the regularity of initial data such that a unique local
solution exists. Finding such low regularity thresholds is important for several reasons: the
obvious one is to obtain a solution even for very rough initial data. Secondly, for some
equations, conservation laws of L% and H! can be easily obtained, therefore extending a local
existence result to a global existence one can be easier if we are working at low regularities
than high regularities. All the results presented below are perturbative in the sense that they
are obtained via a contraction argument in a suitable Banach space.

We consider a class of semilinear wave equations with quadratic nonlinearities called geomet-
ric wave equations, such a class includes Wave maps, Maxwell-Klein-Gordon, and Yang-Mills

equation:
Ou =T(u)Ny(Ou,0u) (No)
Ou =T (1) Ngg(0v,00) (Nap)

Ou=D"1N(@v,0dv)

(MKG type)
Ov=N(D'ou,ov)

Ou=D"'N@u,ou) + N(D"'ou,ou) (YM type)



Contents

Ou = B(0u,du) (GQ)

where Ny(Ou,0u) = 0%ud, u and Naﬁ(au,au) =0y uaﬁu - aﬁ udq u are called null-structures,
and N is a linear combination of N;; null-structure. Moreover B(0u,0u) = beP(w)a, udp,
and (GQ) stands for a general quadratic nonlinearity. For a complete introduction, the reader
should refer to [91], [45] [118], [29] and [13].

Let us couple one of the previously mentioned equations with initial data of s-regularity given
on a time-slice ¢ = 0:
(w, up)l ;=g = (uo, u1) € H'R™) x H* ' (R")

We aim to determine the optimal exponent s such that the Cauchy problem is locally well-
posed. The first breakthrough in this direction was achieved by Klainerman and Machedon,
in [38] they show local well-posedness in H2(R3) x HY(R3) for the Ny and the Ngp equations.
Thus they were able to gain an extra 1/2 in regularity compared with the energy method.
However, the scaling critical exponent is s = 3/2 in dimension n = 3, therefore there is another
1/2 room of regularity to explore. The previous result was improved by the same authors in
[35] and [36] to n = 3 and s > n/2, reaching the critical scaling exponent. More precisely, in
[35] and [36] only the case n = 3 is considered. However the argument presented there extends
to n = 3 without major differences. In [35], Klainerman and Machedon consider equations
involving only the Ny null-forms and in the subsequent paper [36] they were able to extend
the result for Ny g null-forms. Subsequently, Klainerman and Selberg [44] extended the local
well-posedness theory for Ny null-forms in the harder case n =2 and s > 1 completing the
subcritical theory for wave maps equations. The n = 1 case was analyzed by Keel and Tao
in [34]. The corresponding result for the Ngg null-form in dimension # = 2 holds only for
s> 1+ 1/4, hence there is a 1/4 gap between Ny and Nggp null-forms in dimension n = 2.
However for n = 3 the local well-posedness results obtained are the same.

The next part of the theory led to the study of Maxwell-Klein-Gordon (MKG), and Yang-Mills
(YM) equations. In fact, in [39] Klainerman and Machedon proved that MKG type equation
when n = 3 is locally well-posed in the non-optimal range s = 1. The previous result was
extended to n = 4 spatial dimensions in [42] giving local well-posedness for the optimal
s> n/2—1. Turning back to the case of n = 3 we have to mention that the lower bound on
the exponent to assure local well-posedness was improved by Cuccagna [12] to s > 3/4, which
also prove that for the MKG type problem this is the optimal exponent. However Machedon
and Sterbenz [70] proved that the full MKG equation is locally well-posed for s > 1/2 and
n = 3, reaching the optimal result. For the YM type equation the situation is similar: in [40]
Klainerman and Machedon studied the n = 3 case proving local well-posedness for s = 1, their
result was improved by Tao [106] to s > 3/4. The optimal well-posedness result up to s > 1/2 for
the full YM equation is still open. On the other hand, for n = 4 spatial dimensions Klainerman
and Tataru [46] proved the optimal local well-posedness result for s > n/2 — 1.
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In this chapter we take a pedagogical approach. First, we start to show how Sobolev embedding
leads to a series of existence results for very regular initial data. The argument applied here
is often referred in the literature as the energy method. Next, we describe how Strichartz
estimates and hyperbolic Sobolev spaces lead to better lower bounds on the regularity of the
initial data for a class of problems involving nonlinearities which are multilinear forms of
the space-time gradient of the unknown. A detailed analysis is carried out for the extensively
studied null-forms nonlinearities.

Scaling critical problems

While in this first part of the thesis we consider only scaling subcritical problems we shall
briefly mention here few results concerning scaling critical equations. Here one tries to prove
global existence for data having small critical s = s, homogeneous Sobolev norm. In the
literature, this is referred to global regularity for small data. In the pivotal work [112], Tataru
showed that the wave maps problem admits a global solution if the initial data have small
BJ"? x B}{*! norms in n = 2,3 dimensions. This result extended the previous work [114]
which treated dimensions n = 4. Furthermore, replace Besov norm with the Critical Sobolev
norm H’? was a non-trivial issue. Tao was able to improve Tataru result and to show the
existence of global solutions of the wave maps equation with sphere target if the initial data
have small critical ™2 x H™2~1 norms. Tao first work [103] settled the high dimensional n =5
case, and in a subsequent paper [104] extend the result to low dimensions n = 2. Subsequently
Krieger enlarge Tao result to include maps with target the hyperbolic plane, global existence
with small H""'2 x F12-1 data was proved in n = 3 dimensions [47], and in n = 2 dimensions
[48]. The general case of any target manifold was solved subsequently by Tataru in [116].
Moreover the work by Shatah and Struwe [93] provide an alternative proof, based on the
Hodge system, of global regularity for small critical Sobolev data in high dimensions n = 4
and for general manifolds (parallelizzable and bounded curvature). See also the related work
by Nahmod, Stefanov, and Uhlenbeck, [76] and Klainerman and Rodnianski [43] for similar
results in high-dimensional setting.

For the Maxwell-Klein-Gordon type equation, global regularity for small H’/2~1(R") x H"/?>~2(R")
data and high dimensions, n = 6, was proven by Tao and Rodnianski [90]. This result was
improved to include dimensions up to n = 4 by Krieger, Sterbenz, and Tataru [64]. The cor-
responding results for the Yang-Mills type equation are due to Krieger and Sterbenz [63] in
the high dimensional setting 7 = 6 and Krieger and Tatatu [65] in the optimal n = 4 case. For
the Yang-Mills type equation global regularity for small critical Besov radial data was solved
by Sterbenz [98] for n = 4 and by Stefanov [96] in n = 5 dimensions. The global regularity
problem for small critical Sobolev spaces for both Maxwell-Klein-Gordon and Yang-Mills type
equations in dimension n = 3 is still open.

For general quadratic nonlinearities, i.e. without relying on any null-structure, global regularity
for small Bg’lz X 351/12—1 and high dimensions n = 6 was show by Sterbenz in [97]. An open
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problem is to prove global regularity for general quadratic nonlinearities with data having
small B2 x H™2~! norms in high dimensions. Hence to extend Sterbenz result to critical
Soblev spaces in the same spirit that Tao, Krieger and Tataru extended to critical Soblev spaces
the global regularity result for wave maps obtained earlier by Tataru for critical Besov spaces.

There are few works that threat scaling critical problems with large data. First of all, large
data results are only proved in energy critical problems, that is when the energy controls the
critical Sobolev norm. Hence for wave maps we consider the domain to be the Minkowski
space R'*2, for Maxwell-Klein-Gordon and Yang-Mills we consider n = 4 spatial dimensions.
Loosely speaking global regularity for large data means that the Cauchy problem is global
well-posed for any initial data in H (R") x H%~1(R") whose energy is less than the minimal
energy required to have a stationary solution.

For the wave maps equation, we can isolate three major contributions. The impressive series
of work, [107][108][109][110][111] Tao solved the global regularity for large data problems
for wave maps with H target. The second major contribution is the book by Krieger and
Schalg [58] where wave maps with H? target are considered. Global existence is proved using
a concentration compactness argument. The third major contribution comes from the works
of Sterbenz and Tataru [100] [99] and it primary addresses the case when the target N is a
compact manifold.

The global regularity for large data problem is solved for both Maxwell-Klein-Gordon and
Yang-Mills equation. For the Maxwell-Klein-Gordon equation, two similar results are proved
by Oh and Tataru [82][78][77] and by Krieger and Luhrmann [51]. The first extends the pre-
vious work of Tataru for the wave maps equation and the second is a continuation of the
Krieger and Schlag’s book, it does apply the concentration compactness argument to the
Maxwell-Klein-Gordon system. Concentration compactness is not yet applied to the Yang-
Mills equation, however, Oh and Tataru, in a series of works [79][83][81][80], where able to
push their techniques further and show global regularity for large data for the Yang-Mills
equation.

Finally, for general quadratic nonlinearities the global regularity for large data problem seems
to be open, here, nonetheless one should first understand what the corresponding energy
critical exponent is.

Yang-Mills equation in R' "3 Minkowski space-time

In the second chapter of part I, we analyse in more details the Yang-Mills equation. Let G be

a Lie group and (g, [-]) its associated Lie algebra. The unknown of the Yang-Mills equation is

R1+3

A= Aqdx®: a connection 1-form on the Minkowski space-time with value in g. Let

Faﬁ = 0aAﬁ - aﬁAa +[Aq, Aﬁ]
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be the correspondent curvature 2-form. The Yang-Mills equation Dy F% = 0 are obtained as
the Euler-Lagrange equations of the Yang-Mills Lagrangian

1
z(A)z__f (F*F Fop)dtdsx.
4 Jr1+3

Here D, =04 + [Aq, -] is the covariant derivative. To obtain a more familiar formulation from
a PDE perspective one can expand the Yang-Mills equation in term of the connection 1-form.
Set the initial data Ap € H*(R3) and A; € H*" 1 (®3) on the time slice ¢ = 0, and consider the
following initial value problem for the Yang-Mills equation:

DAp— 0507 Ag = —2(Aq, 0 Ag) + [Ag, 0% Ag] + [Aq, 05 A%] + [AY, [Ag, Ag]]
A(0,) = Ap (1)
OOA(O)) = Al

We are interested in proving global well-posedness for the Cauchy problem (1) with small
H* data. By this we mean that for any given initial data (Ag, A1) € H® x H*"!, there exists
some € > 0 such that if | Agll s + [l A1l gs—1 < € then a unique global solution of (1) which lies
in CO(R, H%) n CL(R, H*™!) exists. The primary aims of our research is to prove a new global
well-posedness result on the Minkowski space-time R'*3 for small weighted H3/4* x H~1/4+
data. This result will match the minimal regularity assumption available for the local theory
[106].

Our technique requires the use of the Penrose compactification of Minkowski space-time,
which allows us to transfer the Cauchy problem on the flat Minkowski space-time (1) into a
Cauchy problem on a pre-compact manifold with curved metric (M, g). Since the Penrose
map is a confomorphism, the Yang-Mills equation on (M, g) take the form

DoF =V, F +[A,, F*P1 =0 )

where A, and F®P are respectively the components of a connection 1-form and of the curva-
ture 2-form. That is Ag, F%? : M — g are defined on the pre-compact manifold with curved
metric (M, g) with value in g. When we expand equation (2) in term of the connection we
obtain the following PDE:

Vo VEAP v VP A +2[A,, VEAP) = [Ay, VP A% + [V, A%, AP] + [Ag, A%, APT1=0  (3)

which is exactly the first equation in (1) where derivatives have been replaced by covariant
derivatives.

We can reduce the equation (3) further by fixing the gauge. Following the idea of Tao [106]
for flat space-time, we choose to work under the temporal gauge to obtain a semilinear wave
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equation on curved background with a well-behaved nonlinearity, called Q;; null structure'.
Let us divide the connection A in its temporal and spatial components A, = (Ag, A) where
A= (A;, Az, A3), and let us fix the connection to lie in the temporal gauge, thus Ay = 0. We
decompose further the spatial component A of the connection in its divergence-free part A4/
and curl-free part A°f then the Yang-Mills equation (3) simplifies to

ABgAN) =V(A-0g A+ E(A) + & (DA) + & (A, A))
OgAY =|v|7LQ(AYS, A%y + QUVITL A, ATy + IM(AY 0 A°T) + IM(AT 0 A9))
+OM(AS,0 A7) —M(A, A, A) — E(A) — E(DA) — E(A, A)

where &g, 2, and &, are nonlinear functions and Q is a linear combination with constant
coefficients of Q;;-null-forms. Hence, if we ignore the well-behaved elliptic equation for
the curl-free part A°/ and the high-order nonlinearities in the hyperbolic equation for the
divergence-free part A%/, the resulting model equation for the Yang-Mills system is

OgA=IVIT'Q(A, A) + Q(IVI ' A, A).

The aimed result will be reached via a fixed point argument in the X*? spaces introduced
by Geba-Tataru [30]. This is the key step of the proof since the extension of such hyperbolic
Sobolev spaces, used extensively in the 90s by Klainerman and Machedon [40] for flat metrics,
to the curved setting, developed by Geba-Tataru [30] and Geba [28], does not include Q;;
nonlinearities. Thus we prove the following novel bound for the Q;; null structure in the
context of a curved background metric: let n=3,3/4<6 <1,and s—1> 6, then

1Qij (w, V)l xs-10-1 S Nl xsollvll xs0 4

The Q;; estimate above shall generalize to include the corresponding estimates for the Yang-
Mills null-forms: let n =3,3/4 <6 <1, and s > 0, then

VI Qu, )l gemr0-1 S Nl sl s, ®)

1QUVI™ w4, )l 01 S el xsa [Vl s (6)

The proof of estimates (5) and (6) will be deferred to a subsequent work. Here we shall prove
only (4). Finally, translating this result back to the Minkowski space R!*3 will lead to small
data global well-posedness in a weighed Sobolev space.

The potential of X*¢ spaces for non-flat metrics is difficult to overestimate. Looking back to
the development in the past 30 years of the low-regularity theory for geometric hyperbolic
equations, such as Wave maps, Maxwell-Klein-Gordon, Yang-Mills, and Einstein’s equations,

IThe Qjj null structure is defined as Q; j(u, v) = 0;udjv—0;ud;v
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the X9 spaces play a central role. The careful analysis of the extension to non-flat metrics,
carried out in our work, is the starting point for many different research programs. The
most ambitious of all will be to adapt these spaces to study quasilinear problems. In the
author modest opinion, this represents a far-reaching goal, the ultimate application for such
techniques. More accessible are the questions of existence of local solution of Wave maps,
Maxwell-Klein-Gordon or of equations with general quadratic forms, in cured space-time and
in subcritical regime. Once the subcritical theory is completed we can aim to attach the more
difficult critical problems, mimicking the program already developed in the context of a flat
metric. The application of non-flat X*¢ spaces to semilinear problems certainly represents
a mayor area of development that will be the training ground to then assault quasilinear
problems.

Part II: focusing energy critical wave equation

The understanding of long time dynamics for critical nonlinear dispersive equations has
attracted a lot of attention in recent years. Roughly speaking a nonlinearity is called critical if
itis as strong as the linear part of the PDE. In critical setting the dichotomy between blow-up
and scattering is delicate to settle since the linear part, which forces the solution to scatter at
infinity, and the nonlinearity, which push the solution to blow-up, have the same strength.

We focus our analysis on one of the most studied critical dispersive equations: the quintic
focusing semilinear wave equation in R!*3:

Ou=-u® inRM3, -
(u, uy) = (uo, U1),
t=0

where [J = -2 + A is the d’Alembert operator, uy € H! (R%) the initial position and u; € L*([®R?)
the initial velocity. By Strichartz estimates, one can show that problem (7) is locally well posed
in H' x L?. However, the equation is focusing, that is the nonlinearity represents an attracting
force; hence one can construct solutions which blow-up in finite time. One divides such
blow-up solutions into two classes: we say that a solution is type I if

sup |V xu(t,)ll 2 = oo,
tel

where the open interval [ is the maximal interval of existence in the sense of Shatah-Struwe.
On the other hand, u is called a type II solution iff

sup [V, xu(z,)|l 2 < co.
tel .

Radial type II solutions were classified by Duyckaerts-Kenig-Merle [23] as a finite sum of
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traveling waves, called solitons, plus a small radiation term. In parallel, radial one-soliton
solutions have been constructed explicitly by Krieger-Shlag-Tataru [62] using renormalization
and distorted Fourier transform techniques. The construction was improved to all possible
blow-up speeds by the first two authors in the subsequent work [59]. Such blow-up solutions
are formed by a bulk term plus a small high-oscillating radiation term:

uy(t, ) =Wy (r)+n(t,r).

Here W (x) = (1+|x]?/3)~1/2 is a stationary solution of (7), also called Talenti-Aubin functions
from its geometric origins, and 7 is a small error term. We have defined the rescaling of W as
Wiy (r) = M2HOW () r), where A(f) = 17V and v > 0 is a fixed constant representing the
blow-up speed.

The stability properties of type II solutions have been a conundrum due to the presence of
a negative eigenvalue in the spectrum of the linearized operator. In [56] Krieger-Nakanishi-
Schlag show that there exist a co-dimension one Lipschitz manifold X lying in H' (R3) x L?(R3)
such that if we take (ug, 1) € X then the solution of

Ou=-u® in (0, ] xR3

(u» atu)
tzl’o

= (Uy,0ruy) rogy T W0 1) +7($a, 0)

blows up in finite time if y > 0 or scatter towards zero if y < 0. Here the initial time ¢, is positive
and chosen sufficiently small. This leaves the following question open: what are the dynamics
on the manifold X? Since for small enough v the functions u, will approach a stable type
I blow-up, one would expect a positive answer for v in some positive neighborhood of the
origin. Indeed, in [49] Krieger showed there exists a co-dimension 2 Lipschitz hyper surface
YpC Hi/ 2t % Hi/ 2% such that if we take (ug, u1) € 2o small enough in an appropriate topology
then the solution of

Ou=-u® in (0, 7] x R3

(u) atu)
=ty

= (uy, 0s14y)| -+ (1o, 1) +Y(a, 0) + da(y1 (o, 11,7), 2 (140, 11, 7))

=40
is a type II blow-up solution exactly of the type constructed in [62] and [59]. Here |y| <6 is
chosen small enough, and y » are suitable Lipschitz functions.

The aim of the second part of this thesis is to present the joint work with Krieger [7] in which
the extra co-dimension 2 conditions is removed, thus leading to the optimal co-dimension 1
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stability result: set (uo, u1) € HY'** x H/** small enough and |y| < 8, then the solution of

{Du= —u® in (0, fp] x R3

(01| = (00| _ + (o, 1) +¥($,0)
=ty =ty

is a type II blow-up solution of the type constructed in [62] and [59] provided that |y| < § is
chosen small enough.
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1] Low-regularity local well-posedness
theory in flat spacetime

After a brief outline of the energy method in §1.1 for general nonlinearities, we focus the
discussion on one particular class of nonlinearities which is intensively studied in the literature,
namely the ones which involve products of first-order derivatives of the unknown such as

N(u,0u) = g“*"(u)dq, U...00,u

where a; € N and Einstein summation convention is in force. In §1.3 we show that Strichartz
estimates allow us to obtain a local well-posedness theory for which the minimal regularity one
must impose on the initial data is below the one required by the energy method. In addition,
for high-oder nonlinearities (I = 3) Strichartz estimates allow already to reach the sharp result,
this is the subject of §1.4. Furthermore, we carefully analyse quadratic nonlinearities (! = 2)
and its subclasses of null-forms; we introduce in §1.5 and §1.6 more sophisticated spaces
which go under the name of hyperbolic Sobolev spaces. Originally introduced by Bourgain in
the context of Schrodinger equation [4] and Korteweg-de Vries (KdV) equation [5], hyperbolic
Sobolev spaces are associated to a hyperbolic operator in the same way the classical Sobolev
spaces are associated to the Laplacian. Implicitly, these spaces were also present in previous
works by Rauch-Reed [89] and Beals [2]. The extension to wave equation was carried out
subsequently by Klainerman and Machedon in [35]. In the last sections of this chapter, we
shall explain how hyperbolic Sobolev spaces enable us to obtain better local well-posedness
results than the one obtained by Strichartz estimates.

1.1 Energy methods

In this section we prove classical results concerning the existence of a unique local solution
for a wide class of semilinear and quasilinear wave equations via a fixed point argument. The
method used below also goes under the name of energy method since its main ingredients are
the energy inequality and Sobolev embeddings. Notice that the use of Sobolev embeddings
such as H*(R") — L*°(R") imposes the restriction s > /2. As a consequence, energy method
are very powerful techniques because they impose little assumptions on the nonlinearity;

13



Chapter 1. Low-regularity local well-posedness theory in flat spacetime

nevertheless they fail to provide a sharp lower bound on the regularity exponent of the initial
data.

Semilinear problems spit naturally into two major subclasses depending on whether the
nonlinearity depends only on the unknown function or also on its first derivatives, whereas
for quasilinear problems the distinction hinges on the dependence of the metric just on the
unknown function or also on its first derivatives. Therefore we are led naturally to the following
four theorems.

Theorem 1 (Semilinear). Let ug € HS(R"), u; € HS"HR"), and N € C®°(R"Y) such that N(0) =
0. Let s> %, then there exist a T > 0 and an unique u € C([0, T1, H*) n C* ([0, T], H*™') solution
to

Ou=N(u in(0,T) xR"

(u, u)l =g = (uo, u1)

Theorem 2 (D-Semilinear). Let ug € H*(R"), u; € H"1(R"), and N € C®(R"*?) such that
N(0)=0. Let s > 2 +1, then there exist a T > 0 and an unique u € C([0, T], H)n C* ([0, T, H*™1)
solution to

Ou= N(u,0u) in(0,T) xR"

(u, ug)l ;=g = (up, u1)

Theorem 3 (Quasilinear). Let uy € H*(R"), u; € H " '(R"), and N, g € C®°(R"*!) such that
g(0) = N(0) =0. Suppose that }_, g In®P — g@P| < 1/2, wheren is the Minkowski metric, further-
more the matrix (g') is positive definite and g°° < 0. Let s > 5 +1, then thereexista T > 0 and
an unique u € C([0, T1, H*) n C'([0, T], H*™") solution to

Ogqyu= N(u,0u) in(0, T)xR"

(U, up)l =g = (Uo, u1)

Theorem 4 (D-Quasilinear). Let ug € H*(R™), u; € HS"1(R"), and N, g € C®°(R"*") such that
g(0) = N(0) =0. Suppose that ¥ 4 InP — g®P| < 1/2, wheren is the Minkowski metric, further-
more the matrix (g'7) is positive definite and g°° < 0. Let s > 5 +2, then thereexista T >0 and
an unique u € C([0, T], H%) n C*([0, T], H*™!) solution to

Oguowtt = N(u,0u) in(0,T) x RrR”

(u, u)l =g = (uo, u1)

Below we outline the main steps of the proof of these theorems, see [95] for a complete
argument. In general, for initial data lying in an inhomogeneous Sobolev spaces one has to
restrict the time interval to a finite time slice. Thus, for a constant T > 0 that will be fixed later,
we define the space

X3 =C(0, T, H)nC' ([0, T1, H*™ 1)

14



1.1. Energy methods

and endow it with its natural norm

el x5 = 10Ul o0, 1), -1 ey = SUP Y 107 () st
1[0, Tl a<1
In order to avoid cumbersome notation we shall hereafter denote L°H*~!(S7) the space
L0, T), HS"Y(R")), and 8 = 0y« will denote the space-time gradient.

The homogeneous and inhomogeneous solution maps are defined as
Hg(ug,u)) =u <= {Ugu=0, u(0)=ug, 0;u(0) = u1}

Oz'F=u < {Ogu=F u(0)=0, 0,u(0) = 0}

We simply write A = A, and O1l= 4, Lif the metric n is the Minkowski metric. Recall that

e t i - o~
16} D*IF(t,é):fO %ls)mﬂs,f)ds-

sin(¢[¢])
— U

(U, 1) (t,€) = cos(t|E]) o (€) + 7

The solution to the inhomogeneous wave equation with forcing term F and initial data u
and u; is given by the solution map Fgu = #4 (up, u1) + D?F . From the energy inequality we
can deduce the following linear properties of the homogeneous and inhomogeneous solution
operators.

Proposition 5 (Linear estimates, [95]). For any s € R, we have that 7 € L (HS x HS_I,X;),
and D;l € X(X;_I,X§) with || A, IIDé1 | <(T)exp (Ilag(u,au) ||L1LOO(ST)). Precisely we have

t 1 ¢
J0u( -+ 5 0 (10O s+ [ 1Tuo N ds)exp (5 [ 1086 loods)
0 4 Jo

Notice that, when g = 7 the constants in the homogeneous estimate and inhomogeneous
estimate depends only on T, whereas when g # 1 one needs to consider the L1 norm of
the metric as well. Moreover, observe that form the energy inequality one only has (17! €
LA HSYSD, X%), however clearly X%‘l c L' H571(S7). To prove well-posedness results via
energy method it is sufficient to consider Oley (X;‘l, X;). The corresponding nonlinear
estimates needed to prove the fixed point theorem follows from Moser inequality and Sobolev
embeddings.

Proposition 6 (Nonlinear estimates). Lets > n/2+ 1, then there exists a continuous positive
function c_x such that c_4(0) =0 and

IN(u, 0wl 51 = e (luell xs) el x5 -

Moreover, let s > n/2 then there exists a continuous positive function c_y such that c_4(0) =0
and

IN@N xs-1 = o (el xs) el xs -

15



Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Proof. Moser inequality, see [74], implies that there exists a continuous function ¢ : Rt — R*
such that ¢¢(0) =0 and

IN (2, 0w) (D) 1 < Ps(lu(@ Nz + 10Ul zoo) (e () || s + 10D || rs1)

10N (1, 0) (D)l -2 < s (@l oo + 10D 1oo) | (D)l gs-2 + 10U(D) | r-2)

Moreover Sobolev embedding implies || (1) || zeowr) < I t4(8) | grs ) for s > n/2 and |0u(8) || o wry <
lou(O)l gs—1@ny < |l uIIX; for s > n/2+1. Hence we obtain the desired frist estimate || N (u, 0u) ”X%—l <
cy(Jlull X;) [lze]l X3 where c_y is a continuous positive function.

In this case where the nonlinearity depends only on the unknown Moser inequality reduced to
IN (@) ()| s < s (@) | oo ) 1t () | s

10, Nw) ()| g2 < ps () | 2o ) 1w (D) | ps-

But here Sobolev embedding implies || #(#) || rowr) < (Ol rswry < 10Ul foo -1 = |l ullx,;‘. for the
larger range s > n/2. O

To close the fixed-point argument and to complete the proof of Theorems 1 and 2 observe that
theball B(O,R) c X; is mapped via . into the ball B(0, R') ¢ X} where R' = (T) || (ug, u1) || ps x ps-1 +
(TYc_y (R)R. In fact, combining the linear with the nonlinear estimates we obtain

| ulxs

IA

17 (1o, )l s + 107" N (w, 0u0) [ ;.
(D) (o, u) | s s + (T e | N (14, 0u) || s

(D) N (uo, u) ll s =1 + Ty e (Tl xs) el ..

IA

IA

In order to obtain that .# maps the ball of radius R into itself estimates we need to choose the
time interval of local existence I = [0, T'] so that (T || (¢g, u1) | grsx -1 + {TY ¢4 (R)R < R holds
for some R > 0. Under which conditions does . has a fixed-point in B(0, R)? The Mean value
theorem allow us to conclude that for every u, v € B(0, R) we have

L u—Svlxs

107 (N (w,0u) = N(v,00)) I x;
(TYIN(u,0u) = N(v,00) | xs1

(Myealulx, Ivlixs)llu—vixs

IA

IA

where cg is a continuous positive function such that cg(0) = 0. Thus . is a contraction if we
choose T small enough so that (T)c_4 (R) < 1. Therefore a contraction argument implies the
existence of a local solution if the time of existence is chosen sufficiently small. This conclude
the proof of Theorem 1 and Theorem 2.
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1.2. Beyond the energy method

We now turn to the proof of Theorem 4. To bound the norm of the solution map we need to
control [[0g(u,0u) || 11 ~(s,). Here there is no need to invoke Moser inequality, indeed by the
chain rule and Sobolev embedding we obtain:

2
10g(w,0t)lpifeos,y = 110ug(w,0U) |l poopoo(sy) 10Ul L1 o5,y + 10008 (1, OU) || poopoo(5,) 107 Ul 1 po (5
< ||au||LooHs—1(sT) + ||62u||LooHs—2(ST)
<

lullxs

since, by hypothesis, the metric g and its derivatives are bounded. Notice that the two
inequalities obtained in the second line follows form Sobolev embedding, the first one holds
for s > n/2 + 1 while the second holds for s > n/2 + 2. For the sake of completeness, let us
outline the contraction argument here. Recall that solution map for the quasilinear problem is
Fg(W) = Hg (g, w1) + g A (u,0u). Then

% W) llx; St exp (10814, 01 s )10, a1 s st + IN (e, 010 1)

By Moser inequality we can bound the nonlinear term || N (u,0u) IIX;;1 <cu uIIX;), and by
the chain rule and Sobolev embedding theorem we can control [[0g (1, 0u) [l 111 (s,) <rllul X3
Therefore

1Sglxs Srexp (ullxs ) (N0, 11l gz + cop Ul o))

The rest of the argument follows verbatim the one given in the semilinear case. This conclude
the proof of Theorem 4.

In order to prove Theorem 3 we modify slightly the previous argument. Suppose that the
metric g does not depend on derivatives of the unknown, then by the chain rule and Sobolev
embedding we obtain the estimate

10g ()l 11 o5,y < N0ug W)l poopeospy 10Ul 1 o5,y < N0Ull oo prs-1(s,) < ||U||X;

which holds for s > n/2 + 1 instead.

Remark (On global well-posedness). Notice that the arguments presented so far are strictly
tight to the local theory and in general they fail when proving the existence of a global solution
due to the fact that we lose the control over the constant in the contraction estimates. However,
if we consider small enough initial data in homogeneous Sobolev spaces, then a unique global
solution exists, see [95].

1.2 Beyond the energy method

In the rest of the chapter, the main objective will be how to weaken the regularity assumptions
imposed on the initial data by the energy method to ensure the existence of a local solution.
First let us understand that there exists a natural lower bound on such Sobolev exponent which
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

is imposed by scaling considerations. Precisely define u, (¢, x) = A°u(A¢, Ax) where 1,e € R
are constants. The constant § will be chosen to that if u solves a nonlinear wave equation,
then also u, will solves the same nonlinear wave equation (suppose that the nonlinearity is
homogeneous). One then defines the critical Sobolev regularity exponent s. as the unique s € R
such that the homogeneous data space HS(R™) x HS~1(R") remains invariant under scaling.
Klainerman highlights the importance of the critical Sobolev regularity exponent in [37] where
he proposed the following well-posedness conjecture: for all classical field theories the Cauchy
problem is:

i. locally well-posed in the subcritical range s > s,

ii. globally well-posed in the critical case s = s, for smooth initial data with small critical
H5 x H%~! norm,

(iii) ill-posed in the supercritical range s < s;.

To illustrate Klainerman’s conjecture consider for instance the following two homogeneous
nonlinearities:
N (u) = uP, and A (u,0u) = u”|0ul?

Then the solutions of the equations Ou = A (1) and Ou = A (u,0u) are invariant under the
scaling uy (¢, x) = A°u(At, 1x), where respectively

2—-q

2
=——, andc(p,q) = ———
c(p) p1 and c(p, q) prq-1

Therefore the critical Sobolev regularity exponent are respectively

n 2 n 2—
Se=—-— ,andsC:———q
2 p-1 2 pt+tg-1

Below the critical scaling exponent s, the problems are supposed to be ill-posed. Whereas if
§ > s, Where respectively
n n
Se:E’ andse:E+1

then the the local well-posedness follows form the energy method. The question we address
in the subsequent sections is to establish local well-posedness or disprove it in the strip
Sc < s < se. We will argue that, in general, scaling predicts the sharp local well-posedness result
in higher dimensions. However, in low dimensions, namely n = 2, 3,4, we need to impose more
regularity then the one predicted by the critical Sobolev exponent to obtain a local solution.
The phenomenon responsible for this fact is the concentration along light ray, see [67], [68].

1.3 General quadratic nonlinearities

In this section we focus on nonlinearities which are bilinear forms on the space-time gradient
B(0u,0u) = b*Pa, udgu. The prototypical nonlinearity of this type is (3, u)?. Observe that

18



1.3. General quadratic nonlinearities

for such nonlinearities we obtain s. = n/2. The goal of this section is to prove the following
theorem, which is taken from [29].

Theorem 7. Let uy € H*(R"), uy € H"L(R"), and b*F € C®(R) with all derivatives bounded
and b*P(0) = 0. Let

ifn=2

ifn=3 ,

n 1 n+5
s>max{5+§,—4 }:
+

[N SERCNEN]

1
2

then there exist a T > 0 and an unique solution u € C([0, T, H%) n C1([0, T1, H*™!) of

Ou=b*f(wd,udgu  in(0,T) x R" wn
(14, 14,)(0) = (ug, 1) '

The proof relies on Strichartz estimates; the different bounds on s when n =2 or when n =3
are due to smaller range of Strichartz estimates available in low dimensions. Observe that this
result is sharp only in dimensions n = 2,3. In fact, the sharp result

n n+b5
}, n=2

s>max{—,—
2 4

was proved Tataru [113] using hyperbolic Sobolev spaces. In order to prove Theorem 7 we
recall the following four estimates:

i. Energy inequality:

102l oo prs1.(5) ST (2o, U) | prs @y x prs—1 @y + 10000 1 prs1 (5

thatis A€ L(HSxH 1,071 L°H ), and O ' € (L' HS 1,07 L H5"!) where | A & =
Tand |0 Y ~T.

ii. 0-Strichartz inequality: let (p, g, o) a wave admissible triplet ! and s > o + 1 then

||6u||LPL‘i(ST) S Il (uo, ul)”HS(Rn)stfl(Rn) + ||Du||L1HH(sT)

thatmeans # € L(H xH 1,07 1LPL9), and 0! € L(L' H*" 1,671 LPL9) where || #| =
1 and [|[07!|| ¢ = 1. We refer to the Appendix A for a proof.

iii. Calculus inequality: let s = 0 then

Ifgles SNFNrolglles + 1l psligllzee

iv. Moser inequality: suppose that F € C*°(R) with all derivatives bounded and F(0) = 0.

Pl <l o=4 -1 -4 and (p,g,0) #

1Recall that (p, q,0) awave admissible triplet if 2 < p, g < oo, 2, 7

pTTq
(2,00,1).
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Then for any s > 0 there exists a continuous function ¢, : R — R™ such that
IE @) (Ol s < sl o) (O N s
Define the iteration space to be X7 =0 ' L®H*"1(S7) N0~ LP L°(S7), endowed with norm

lull x, = 10ull feo prs-1(s,y + 10Ul Lp Lo,y
Notice that since g = co to have a wave admissible triplet we must choose

=4 ifn=2
py>2 ifn=3

=2 ifn=4
and o = n/2-1/p, then clearly
n 1 n 1 n+b
§>———+1>max{—+-,—}.
2 p 2 2" 4

By energy and Strichartz inequalities we obtain the linear estimates needed to apply a fixed
point argument: # € £ (H® x H1 X7), and O ! € (L' H*"1, X7), where | #] ¢ = T and
|07 & = T. Therefore to close the perturbative argument we need to prove the following
nonlinear estimates.

Proposition 8 (Nonlinear estimates). Let B(0u,0u) = peh (u)0qy uaﬁ u, where b%P satisfies the
hypothesis of Theorem 7. If s > max{3 + L 155y then

274
(i) B has the good mapping properties:
IB@u, 0wl 12 prs-1(s7) S € (luell )l el x;
(ii) B is a contraction:

1BOu,0u) — B(0v,00) |l 11 pgs-1(sp) S co (el xp IVl x ) Nt = vl

where ¢ and cg are positive continuous functions such that c_4 (0) = ¢ (0) = 0.

Proof. From the calculus inequality and the Lebesgue nesting L>(0, T) < LP(0, T) < L' (0, T)
for 1 < p < oo we obtain the estimate

I1BOu, 0wl 11 gs-1(s,)
1b%P (u) 2o roo(57) 10 uOgUll 1 prs-1(5,) + I b*P (u) Iz 157 10a u0p Ul 11 o5

||b“ﬁ(u) ||L°°L°°(ST) ||6au||L1Loo(sT) ||6ﬁu||LooHs—1(sT) + ||baﬁ(u) ||LooHs—1(sT) ||aau||L2Loo(sT) IIGﬁulleLoo(ST)

AN ZANR AN

1D (W)l 1o oo (57) 100 Ull 1 1205 10Ul oo 51 (5, + IDP (W) oo gr5-1 (5,9 10 el o poo (s 10 p Ul Lo 12051
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1.4. General multi-linear nonlinearities

To estimate the terms containing b*? we use Sobolev embedding and Moser inequality:
assume s > n/2 then

6™ ()l po (s SNB™P )l 1o 55y S DsUlull oo roogs ) el o prscs ) S bl x,) el x,

and
15 (u) oo prs1(87) S PsUluell pooreo(sp) N tll oo prs1¢50y S Ps Ul x ) el x,

where ¢; is a continuous positive function such that ¢(0) = 0. Moreover, the norms of terms
involving 0, u and dgu are included in the definition of X7 norm. This proves (i). To prove (ii)
observe that we can write the difference B(0u,0u) — B(0v,dv) as the sum of the three terms:

B(0u,0u) — B(0v,00) = [b*P (1) - b*F (1)10qudpu + b*F ()04 (1 - V) + b*P (V)04 (u - V)V

and each term can be estimated as in (7). O

Remark. Notice that the key point where we used the fact that we are working with quadratic
nonlinearities and not with general higher-order nonlinearities is where we estimated

T
10 udpullpipoois,y S fo 104 u(T) | 110 g u(T) I o dT

0o tll 21005y 10U 121005,

For general higher-order nonlinearities this estimates does not hold. Next section is devoted
to show the existence of a local solution for problem involving general higher-order nonlinear-
ities.

1.4 General multi-linear nonlinearities

In this section we present the result of Ponce and Sideris [86] for the n = 3 case and its
generalisation to any dimensions n = 2 by Fang and Wang [25] and Ye [119]. Let us consider
the following Cauchy problem:

Ou=b%u)(0u)y in (0, T) x R"

(1.2)
(4, 1) (0) = (up, ur) € H'(R™) x H™'(R)
where a € N is a multi-index. Notice that b®(u) (0u)q = g% % (1) Oqy U0, U...0q,u, where
a; €10,...,n}, contains all the possible combinations of /-derivatives. For simplicity we will
consider the nonlinearity to be of the form b*(u)(0u), = b(u)laull but the result extend
easily to general multi-linear nonlinearities considered above. We prove the following local
well-posedness result:

Theorem 9. Let ug € H*(R"), u; € H"Y([R"), and b € C®(R) with all derivatives bounded and
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

such that b(0) = 0. Let

n+5 n
4

)

n -2 .
E‘f’ } lfl’lZZ

1
S>maX{ -, —
2 22 11

then there exist a T > 0 and an unique solution u€ C([0, T1, H) n ciqo, 1, HS of (1.2).

Remark. Notice that we can rewrite the lower bounds for s in the following way:

7
S>Z ifn=2and2<1<5,

2
s>1+—1 ifn=2and =5,

1
s>2+— ifn=3and =2,
2 2
-2
s>2+— ifn=3and ! =3,
2 1-1

Moreover the scaling for equation (1.2) gives s = g + 5:—%, therefore when n=2and /[ =5 or
n =3 and [ = 3 the lower bound on s given in Theorem 9 reach the critical scaling exponent,
thus the result is sharp. Moreover, due to counterexamples by Lindblad [67], and [68] the lower
bound in Theorem 9 is sharp in lower dimensions n = 2 and 7 = 3. On the other hand in higher
dimensions and quadratic nonlinearities (n =4 and [ = 2) we obtain s, = g thus there is still a
1/2 gap to explore.

To prove Theorem 9 we have to rely on Strichartz estimates, see Appendix A. Let us recall here
the generalized Leibniz rule and a Strichartz-type estimates:

(i) Generalized Leibnizrule: let s=0and2 < g; <coand 1/2=1/p; +1/q; then
IIDS(fg) ||L2([Ren) 5 ||Dsf||LP1 Iglza + 11 fllzr ||Dsg||m2
The inhomogeneous counterpart, where we replace D*® by (D)* holds as well.

(ii) DY~14 Strichartz estimate: let u be the solution of a Cauchy problem for wave equation
and (p, q,0), (p, g,0) wave admissible triplets, and y € R then

-1 F+o—1
IDY ™ 0ull rracsy) S (o, wD) l greo s preo-1 + 1DV Ouill 1y 17,
serve that if we choose the energy triplet (7, p, g) = (0, 2,00), we obtain

Ob that if we choose th gy triplet (G, 7, §) = (0,2,00) bt

-1 -1

| DY Oullrrracsy) < W wo, w) || gr+o  grr+o-1 + | DY*? Du”LlLZ(sT)

Moreover if we choose s =y + o then

IDY " oul SIC )l 1+ [[Oull g gys-

LPLI(ST) Up, U1l gsx gs-1 Ul gs 1(S7)
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1.4. General multi-linear nonlinearities

We set the iteration space norm to be
-1
Il x, = 10wl oo prs1(s,) + 10Ul Lo gry-va¢s,y = 10Ull oo -1 (s,y + 1DV 0ull rrracsy) (1.3)

The linear estimates

lull x, ST I (eto, u) |l s x prs-1 + ||Du||L1H5—1(3T)
follows form the energy inequality and DY~ !4 Strichartz estimate. Therefore it suffices to prove
the nonlinear estimates.

Proposition 10 (Nonlinear estimates). Let F(u) = b(u)laull , Where b and s satisfies the hypoth-
esis of Theorem 9. Then

(i) F has the good mapping properties:
IF@ 2 gs1(spy S e Ulullx) i x,
(ii) F isacontraction:
IF ) = FWllpgs1sy) S collulx,, 1vlx)lu—vix,

where c 4 and cg are positive continuous functions such that c_ (0) = ¢ (0) = 0.

Proof. Observe that s the initial regularity, / the strength of the nonlinearity, and n the spatial
dimension, are given. Hence the norm defined in (1.3) depends only on 3 parameters: p, g,
and y. Moreover up to now the only constraint on this parameters is that (p, g,0) is a wave
admissible triplet and y € R satisfies y < s — 0. Recall that o is determined by p, g and n via
o=nl/2-1/p—-nl/q. Let us suppose y > $+ 1and

:min{i,ﬁ} ifn=2
1
; <min{%,ﬁ} ifn=3

11}

:min{z,m ifn=4

and q is determined via the sharp wave admissible condition

2 n-1 n-1

— + =
p q 2
then
n n 1 n n 1
szy+o>—+1+—-———— =——-—+1
q 2 p g 2 p
Furthermore if / = 2 we obtain
n 1 n 1 n+5
§>———+1=max{-+ -, }
2 p 2 2 4

23



Chapter 1. Low-regularity local well-posedness theory in flat spacetime

while if 3 < [ < 4 we obtain

§>———+1=max{— , }
2 1-1 4
and if [ = 5 we have
n [-2
s> ———+1=—+—
p 2 I-1

The reason why we have choose such a special Strichartz triplet will become clear in the
estimates below.

As we already notice, we can’t use the calculus inequality: | fgllgs < | fllzolgllms + 1 fll sl gl oo
since we have no control over the ||(0u)"| ;1 (s, term. However, we can use the generalised
Leibniz rule before applying the calculus inequality. Let 1/2 = 1/p + 1/ p, from the generalized
Leibniz rule we obtain the estimate

IF @l 150 S ND@) oo (s 0wl I 1 ot sp) T I1D |l oo prs—1p (59 oul’ L1 Li(sp)

Now suppose that 1/2—1/n<1/p <1/2, then H* ¢ HS"1'P. Moreoverlet 1/2—(s—1)/n<1/p <
1/2, then H*"! c L. Since s > n/2 we can obtain such a pair (p, p) so that 1/2=1/p +1/p.
Furthermore from the assumption that s > n/2 we obtain

I F@) N 1 51549 D) | 10 55y 1 @1 Il 11 s (S7)

S
-1
S Ib@) e mssp 10Ul oo g1 (s 10U 15 o

Furthermore, by the Lebesgue nesting L*(0, T) < LP(0,T) < L'(0, T) for 1 < p < oo, we can

-1 -1 ; ;
bound ||6u||L,71LOO(ST) < ll0ull;p; s, since p = I - 1. Moreover, since (y —1)q > n from the

Sobolev embedding theorem we have H' ™19 c L™ thus

-1 - -1
10wl (s, < l0ul < loull’;,

1
LPHY=14(Sy)

To estimate the term containing the coefficients b we use Sobolev embedding and Moser
inequality:

1Bt mrs(sp) S Ps Ul poreosp) Nt Lo ms sy < @sUlull x) llul x;

Hence (i) is proved. To prove (ii) observe that we can write the difference F(u) — F(v) as the
sum of the three terms:

F(u) - F(v) = [b(w) - b)) 0w’ +b()du—-v) Y. (©@w@v)’
a+b=I1-1

and each term can be estimated asin i.. O

Remark. Notice that the bounds needed in this proof are (y —1)g > n, s > n/2 for Sobolev
embedding and p = [ — 1 for the Lebesgue nesting. Moreover notice that 1/p=1/2—-(s—1)/n
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1.5. Hyperbolic Sobolev spaces

is equivalent to
1 _S- 1

p n
and 1/2-1/n < (s—1)/n therefore one should include the bound

n
s=—+1
p

However this bound is weaker then s > n/2-1/p +1if

1 n
—=

p 2n+1)

Hence we should add this lower bound on 1/p which is harmless in the computation of the
lowest s possible since such an s is reach by the upper bound of 1/p.

1.5 Hyperbolic Sobolev spaces

The material from this section is based on the works [91] and [29]. The best way to introduce
hyperbolic Sobolev spaces is for first order equations in time; thus before considering wave
equation let us fist study the following Cauchy problem

{atu—i(p(D)uzF

Ul,—g=up € H (R

where u: R x R" — C is a unknown function and u is a given initial data, and ¢(D) is a Fourier
multiplier:

P(D)u= fR et an,ode

and the function ¢ is called dispersion relation of the equation. For the Schrédinger equation
we have ¢(¢) = |¢|? and for the linearized KdV equation we have ¢(¢) = i&3. The solution of the
homogeneous F = 0 equation can be written in term of Fourier transform:

S(Oug = F 7 e 9 11y ()]

Moreover Duhamel’s principle allow us to write the solution to the inhomogeneous problem
as the following sum:

t
u=3Suy +f S(t—9s)F(s)ds
0

We examine the following question: given some integrability and differentiability properties
of the initial data uy and the inhomogeneous force F, can we infer some integrability and
differentiability properties of the solution #? To mesure these integrability and differentiability
properties we introduce the following norm.

Definition. Let s, b € R. Define the space H;;b([R“") to be the closure of the Schwartz func-
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

tions . (R'*") under the norm

2l e = 146" (T = ) BT O 1
where 1 is the space-time Fourier transform of u.
Notice that by the change of variable 7 = 7 — ¢p(¢{) we obtain:

lullgge = IO D AT +GE@, Dl zre = 16D Fle™ PO 0, Ol 1z

146)° ™ O A, )l 2o

We cannot transform the H;’b into a pure H” H ¢ norm because of the factor e~ 1¢C). However
we can use the multiplicative properties of Sobolev spaces: recall that H”(R) is an algebra for

b > 1/2, then we have the following lemma.

Lemma 11. AssumeseR,b>1/2,0< T <1, andy € ¥ (R) then
Iy r(@ul e S TPl o
herewr(t) =w(t/T) is a rescaling of y.

This results holds for function y which depends uniquely on time; for function which depends
also on space multiplicative properties of Hi)’b spaces holds as well, but they are much harder
to prove.

Proof. Use the previous characterization of the H(Z’b norm to obtain

Iy (Ol o = 149 ey (O Ol 2

It is easy to see that this is a product of two time-dependent functions. Then the multiplicative
property of H?(R), which holds since b > 1/2, yield to

Iy (O ul o < IOl 149 e OB Ol gy < T2

Nl gl uIIH;;h
since the scaling for the Sobolev spaces reads |[w(t/T) ”Hf < Tl2-b lw(t) IIH?, and for T <1 we
have (¢/ Ty < T~(t). The lemma then follows form the bound lwll gy < oo. O

The reason why we have introduced H(Z’b spaces is to prove local well-posedness result for
linear and nonlinear evolution equation such as KdV and Schrodinger equations. Therefore
we will need the following embedding property H;’b c C(R, H®). We will see that the previous
embedding holds for b > 1/2, but before let us prove the following proposition which gives a
sufficient condition to obtain an embedding.
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1.5. Hyperbolic Sobolev spaces

Proposition 12 (Transfer Principle). Let Y be a Banach space of space-time functions on R'*"
with the property that, for any 1y € R and for every uy € L?(R") we have

le' oS8 ol Yoo S ol 2y

Assumeb>1/2, then H*P c v.

Proof. We need to show that [|ully < ||zl ;0. for any u € H%?. Observe that the hypothesis can
be written as

”eztrofezxfﬂt(l)(f) 1o (&) dE|| Voo < Mol 2 @y

Furthermore form the inverse Fourier transform theorem and a simple change of variable we
obtain

u(t,x)

ffeimix: ii(r,&) dédr
feitrfeixfﬂtd)(f) G+ &), 6) dédr

Therefore Minkowski inequality and Cauchy-Schwarz yield to

luly,, < f||e"”feix‘f*”‘l’(f)ﬁ(r+¢(€),€)d€||ymdr

s [@ratia g0z

< KDPaT+¢@),llzz
since [(1) ™l 2 < coif b> 1/2. -

Notice that a similar version of the transfer principle hold in the case s # 0. In fact we can show
by a similar argument that the bound le!ToS(£) up|| Yix < llupll gs implies H;)'b cY,forb>1/2.
We are now ready to prove the aforementioned embedding into the solutions space.

Corollary 13. Lets€ R and b > 1/2 then H(Z’b c C(R, HY).

Proof. By the transfer principle it suffices to show that [|e!!To+¢(D) g, lew ms) S lluoll s for
every uy € H*(R") and 7 € R. By the modulation invariance of the Lebesgue norms we obtain

146y T D B () o2 < 146 T2 = Nuto s

O

Next, we prove the energy-type inequality in the context of H:b'b spaces. Notice that since

we have constructed the H(Z’b spaces to solve a first order PDE we do not loose any elliptic
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

regularity exponent for the inhomogeneous estimate. On the other hand, we will see later that
for second order problems, namely for wave equations, we will loose one degree of s in the
inhomogeneous estimate.

Proposition 14. Assume s,beR, andy € ¥ (R).

(i) The following homogeneous estimate hold: let0 < T < 1 then

Iy (OS@uoll 2o S T2 P ug | s

(ii) Letb>1/2 and0< T < 1 then the following inhomogeneous estimate hold:

t
(0 fo (=998l S TP e

Proof. We first show (i), recall that F,[S(£) ug] = e/ /?© iy (&), therefore

Iy (DS uoll 30 = 1T = ) Flyr (M N B ()l 212

However Z, [y ()e!"*©) (1) = 7 (1— (&), thus if we perform the change of variable as before
to eliminate the ¢ dependence from the function ¥ 7, we obtain

Iy r(OSE ol yon = lwrll golluol gs < T2 Pl s
H«ﬁ

For (i), by the definition of H(;’b norm it follows that the left-hand side of (ii) equals to

t X .
w0 [ eSO Fs sz
Thus to prove (i) it suffices to prove that for any g € H*~1(R)

t
IIWT(t)fO g(s)dsIIsz < Tl/z_b”g”Hb—l

To eliminate the integral form 0 to t we apply the Fourier inversion theorem to obtain

fig®ds=[ [l e go)dsdo = [ eitiua_l g(o)do. We split the argument into two parts: sup-
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1.5. Hyperbolic Sobolev spaces

pose that |o| < 1 in do-integral, then from Taylor’s expansion we obtain

Iy oty < Stwro [ Y2 e0rdol
vr lol<1 g Hf - n=1 vr lo|<1 ion! & Hlb
< §|t—an(t)) f (i)' glo)do]
=1 n! H )jg1<1
1
= ‘ |U|<11—i0'g(0) U‘
= TP -i) o) Pl I T g @) e
< Tllz_b”g”Hb—l

We have used Cauchy-Schwarz in the second to last line. Moreover notice that

|

since "y (f) € #(R), and ||(1 - io)~! <0>1—b”L‘2 o < co. Notice that this estimate holds even if
b > 0. Next, we need to control the region where |o| = 1, we split the argument further into

1/2-b+n

T .
= |y @Dl g S TV

tl’l
EV/TU)|

n!

two parts:

eim_lA 3o eitaA
gdoliy =lyr(® | 8 )dUIIH?+|le(t) oy o 8@d0l gy =i I+IT

ol=1

ly (1) |

ol|=1 io olz1 10

For the I term we have by Cauchy-Schwarz inequality

1<y ()l

g(o) _ _ _
f B do] S TV 1gl sl o) P
ol21 IO lol=1

Observe that ||(o) 77| 2, is bounded since b > 1/2. For the I term we have by the multiplica-
tive properties of Sobolev spaces

glo)

io

g(o)
io

= lyrOF; Wiez1 5 < 1w r @l g0 Koz 2Nz S T2 lgl s

The proofis then complete. O

We now adapt the hyperbolic Sobolev spaces introduced previously to a second order in time
(i.e. wave equation) Cauchy problem such as

6[;” —(/)(D)u =F
(u,0:1)],—q = (U, uy) € HS(R™) x H"L(R™)

where u : R x R” — R is a unknown function and uyg, u; are given initial data and ¢(D) is a
Fourier multiplier. We set the dispersion relation of the equation to be ¢(¢) = |£|? so that
¢(D) = A is the Laplacian operator.
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Definition. Define the spacetime Fourier symbols

w(r,8) = L+[tl+Ell=(t|+ 1) =/ 1+12+[¢|2
B % — ¢
w_(1,§) = 1+||T|—|f||~<|T|—|f|>~1+m

and the associated spacetime Fourier multipliers Agu(r,f) = wg (t,8)u(r,¢). To keep the
notation homogeneous we define Ks\u(f) =(&E%ué).

In the literature different variations of hyperbolic Sobolev spaces have been proposed. For
example Klainerman and Selberg in [44] and [45] used the equivalent norms

el o = IASAZ aall 2 + AT AL O ull g2, and ul o = IASTT AL A ull e

The fact that this two norms are equivalent follows from

U

f 2l - 12 a(r, &) 2dé + f O 27— 1618 u(r, &) Pdé

Il o

f OB (102 + &)t - 1EV P (T, )P dE

u

f P 2T+ 1ENHIT = 1D P 1A, P dE = ull o0

On the other hand Geba and Grillakis [29] use a stronger version of hyperbolic Sobolev spaces:

0
il o = IAS A w2

clearly we have | u]| o0 < lull gys0, therefore we obtain the following embedding Hsf'g c st’g =~
2 3

Hf’g. In the context of wave equation we will work with the following definition:

Definition. Let

and we endow it with the natural norm

el oo = IASAZ w2 = 14917 = 16D T(T, ) 22

In the case 6 = 0 the H*? space is simply L2 HS, and if both s = 6 = 0 then H*® = L2R!*").
Moreover we have the trivial nesting H*% < H%% if 5; > s, and 6, = 65, as usual the bigger
the exponent is the smaller the space will be. Notice the similarity with the H;’b space defined
previously, however here we have the absolute value of T which complicate things a bit.
Moreover observe that any u € H%Y has a unique decomposition u = u_ + u, where u_, u, €
H*? and supp 7i; < R* xR”. Such decomposition is obtained by multiplying on the Fourier side
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1.5. Hyperbolic Sobolev spaces

u by a smooth cutoff function in time supported in the desired region: 7. (7,&) = y+r>0U(T,§).
We have the following trivial property of the wave-Sobolev norm: ||zl gse = |+ |l gso + | u—l gso
and

169" F 1D e (7, 212 = 140 0 B (7 2161, Ol 22

14607 s (7 £ 161, )l g = 146 1AL (1, o 2

241l gso

Notice that the decomposition into u_, u allow us to eliminate the absolute value on 7 and to
perform a change of variable in the same spirit as in the previous section.

Remark (Why such spaces are called wave-Sobolev space?). Recall that Sobolev spaces are
well-behaved with respect to the laplacian, precisely if u € H*(R") then Aue H S=2(R™). Fur-
thermore, in a standard Sobolev space H® one can differentiate using the elliptic derivative A*
s-times and still remain square integrable. For the wave-Sobolev space H*Y one can differen-
tiate using s-times the elliptic derivative A® and 6-times the dispersive derivative A? and still
remain square integrable. Furthermore the d’Alembertian operator maps the space H3S’6 into
H; ~10-1 hence we say that the d’Alembertian operator make us loose an elliptic derivative
and an hyperbolic derivative. That is

“1AO0-12 122y ~1,0-1 -~
152l pyg-r0-1 =[IAT AT @ K1l < IAT AT A-AL Tl 2 = el 50

It is not obvious that the inverse of the d’Alembertian maps H*~19~1 into H%Y. We will show
below that this indeed is the case.

There is a remarkably connection between the wave-Sobolev spaces H*? and the space of
solutions of the homogeneous wave equations with initial data in H*. In effect every element of
H*? may be thought of as superposition of half-waves with initial data in H*. Next proposition
clarifies this claim.

Proposition 15 (Integral representation). Let u€ H*Y, then u = u, + u_ where i is supported
inR* x R" and there exist fi, f- € L2(R, HY) such that

it(pxD)
=~ [0

1.4
2 Jr (1+]pl)? a4

Notice that fr: p e R— f(p,-) € H'(R") and ﬁ_r(p,f) = fw e”'x"tfi (p, x)dx. Form the proof will
follow that f, (p,&) = 0 for ||+ p < 0, and f-(p,&) = 0 for |€| + p > 0. Moreover || ull gso @reny <

2 2
Il Te @ sy F N2 py-

Proof. Firstrecall thatany ue H 0 has a unique decomposition © = u_ + u, where u_, u, €
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H*? and supp iy < R* x R". Define the functions f (p,&) = (p)? iy (p £ ], &), that is
felp0= [ e o) (181,00 de

We must prove that f; € L?(R, H®) and the integral representation (1.4) holds. Observe that

146° P (0, )l 212 = 146)°(0) T (0 £ 161, ) 22

146 T F 1D s (7, )l 212 < 1l oo < 00

2
”fi ”LZ(RHS)

here we just have perform the change of variable T = p £ |¢] in the d integral and use the fact
that supp . < R* x R", therefore (1 ¥ I‘fl)ﬁ'ﬁir ={(|tr| - Ifl)gﬂi. Since (1 — |§|)9 i+ has support
in 7 >0, then (1 — |€|>9il+ ={1| - Ifl)HIL. Moreover (T + Ifl)eil_ has support in 7 < 0, thus
(T+ Iél)e u_={—|t|+ Ifl)eﬁ_, hence f. € L%(R, HY). Furthermore notice that

1 eit(Pilfl)f;(p,f) 1
2nJr (L+1p))? T on

_ ife"”ﬁi(r,f)dr=ﬁ(t,€)
21 Jr

feit(pi\fl)gi(pilfl,f)dp
R

by the same change of variable 7 = p + |¢|. Finally notice that

2 2 2 2 2
” u”Hs,H = ” u+ ”HS,H + ” u- ”Hs,e = ||f+ ”LZ(R,HS) + ||f— ||L2(R,H5)

An immediate corollary of the integral representation is that every function in H% can be
seen as superposition of half-waves.

Corollary 16 (Superposition principle, [45]). Letue€ H%®. Then

u= i elptuP
21 Jr (p)?

dp

where {up}per is a one-parameter family of solutions of the Cauchy initial value problem

Oup =0

(1p,0rup)(0) = (fp,0)
andp €eR— f, € H'(R")
Proof. Recall that the solution of an homogeneous wave equation with data (f,,0) is given
by a combination of half waves. Moreover by the integral representation, Proposition 15
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1.5. Hyperbolic Sobolev spaces

we can take (fp,0) = (f+(p),0) as initial data for the homogeneous wave equation. Then

An important tool to prove embedding of wave-Sobolev spaces is the transfer principle. Loosely
speaking the transfer principle state that every multilinear spacetime estimate for solution of
the homogeneous wave equation with initial data (1, 0) with uy € H®, implies a corresponding
embedding for H%Y spaces.

Proposition 17 (Transfer principle). Let Y be a Banach space of functions on R\*" with the
property that, for every To € R and for every uy € H® we have ||e'"™*P yqly, < lluglps. If
0 >1/2, then H*? C Y, that is we have | u| Yoo Sl gso foreveryuey.

Notice that if we define the half wave propagator S, (t)uy = & E_ LiexitlEl gy (&)], then the transfer
principle resembles closely the transfer principle for first order equation, Proposition 12.

Proof. Observe that the hypothesis can be written as

i f e Gy dely,, S 140 Bl 2

Furthermore form the inverse Fourier transform theorem and change of variable we have

u(t, x)

f f e (T (1,6) + - (1,0)) dédT
/eitrfeixf”flflm(ﬂ|6|,£)dfdr+fei”feixf-”'f'a_(r—|€|,€) d¢dr

here we have used the decoupling #i(z,¢) = 14 (1,&) + U_(7,&) = Y720U(T, &) + Y7<0U(7,&). There-
fore Minkowski inequality and Cauchy-Schwarz yield to

luly,, < f O T (T + L, pdr + f OO - (T - LN pdT
< KON T+ 1L O + IO BT =181, 2 2

146" 7 =180 (7, )l 212 + I ST + 1D T (T, ) 22

< MOt =KD AT Ol ez

since || (T)_0||L% <ooforf>1/2. O

Observe that if we take Y = C, (R, H®), and [l ully = supep |u(?) |l zs. Then we have the estimate

- e )
e’ TR o1y = sup <€) e/ D @y (&) | 2@y < SUP I1KEY T ()l 2y = Il tto 115 )
teR teR
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for every 7o € R. Hence Proposition 17 implies H*? c C,(R, H®) for 6 > 1/2. Moreover since
IIuIIHf,a = llull gso + 10 ull ys-10

then we also have the embedding into the solution space Hf’e c Cp(R, H) N C} (R, H*™!) for
0 > 1/2. Furthermore observing that the space L?L; are invariant under modulation, multipli-
cation by phases, one conclude that

it(toxD it =1, itlé]l ~
e =P g oy, = €™ T (e @)y S Nuoll o

for every 7y € R. Therefore we have proved the following:

Corollary 18 (Embedding Properties). If0 > 1/2 then

(i) HY < Cp®R, HY),
(i) HY® c B3 = B} < C,®R H) N CL® H* ™)

(ii) HY9 < L9L", for every wave admissible Strichartz triplet (q, 1, s).

We know that the solution to the homogeneous Cauchy problem for the wave equation is
given by

1

. ; 1 . ;
%(uo, ul) — E(ell'D + e—ltD) uo + T(el[D _ e_ltD)D_lul
l

where D = V- A. Since the Fourier transform of the exponential h(t) = e*'*°, with p € R is
the delta measure (1) = 276(1 F p)dt, we conclude that the space-time Fourier transform of
(U, up) is the measure

F [ (ug, u)](x,€) = 18 (x— €D (8o (&) — i1E1 7 711 () drd + 78 (x+ED) (To () + 1€ 21 (€)) d T dé

Next proposition shows that if one localise in time then one obtains .#(ug, u;) € H%Y, for
(o, th) € H* x H*™1. Define HY’ R'*") = {yru: ue H R'*")}, where y € C°(R) is a smooth
cutoff with compact support and y r(¢) = x(¢/T). Clearly [[ull 50 = | x Tull so-

T

Proposition 19 (Homogeneous H*? estimates). Let f € H*(R"), g € H"\(R"), and 6 > 0 then

1_
| A (uo, u1)||H;9(R1+n) ST 0||(M0y U || s @myx Hs-1 (R

Proof. Recall that the Fourier transform of k(f) = y7(t)e**?, where p € R, is the Schwartz
function k(r) = 27 T71/7(T F p). Therefore the space-time Fourier transform of y 7 (f)e*''P f is
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22T (T F €D (&), thus when p = |€| we obtain

Iy (e P fll gso

U

TIE Tl = D Zrr (T % EDF @22

< T T D (e % 6D F @l 2z
< T @ TT @@z
<

Tlhxvr gl fll s

Notice that [ y1/7ll go = 77270 lxllge S 77279 since 1 € L (R). Therefore clearly || y 7 (£) cos(tD) fll gso S
1
T2700 fll .

Next, we show that || y7(£) D' sin(tD)gl| yso < T30 gl gs-1. We split the argument into two
parts: first assume |[¢| = 1, then (£) = || therefore applying the previous estimate we obtain

iil’DlDl—

lxr(He Yellso < Tlixrllgollgll s

Let consider the remaining case of low frequencies, |¢| < 1; this case is worst then the previous
one because of the factor |¢| in the denominator which makes the symbol explode as ¢ tends
to zero. However one can write the symbols as

1! .
XT([)D_I sin(tD) = Ef tXT(t)e”pD dp
1

and recall that the space-time Fourier transform of yr(¢)e!’?Pg is Ty1,7(t — plE)) 8(&). How-
ever, integrating this with respect to dp will lead to an elliptic integral, thus we first perform
the integrals dt and d¢. Since ¥ € & (R) we obtain

1
IrrOD™ Dl ST [ 160" el= 6 577 - DNz p
S T|s1|1;;II<f>S<ITI—|€I>9m(r—p|5|)g(g)||L%L§
ol
S O Tlxurlgeliglgs

Above we have used the bound (|7| - |¢]) < (T — p|¢]) which holds for p € [-1,1] and |¢| < 1.
Observe that we have perform a change of variable 7 = 7 — p|¢| in the d7 integral killing the p

and ¢ dependence of the norm. Moreover, in this case we trow away a power of (¢) to infer the
desired bound since for |¢| < 1 we have (¢) < 1. This conclude the proof. O

We now turn to the inhomogeneous solution map:
| .
O'F= —,[ ("’ — e ""™PYD7 1 F(s)ds
21 Jo
Notice that the symbol of the wave operator vanishes on the light cone in Fourier space-time
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thus if one naively takes the space-time Fourier transform of [lu = F, one obtain
O TF(,& = (it - EA " Fr,0)

If F is nonzero and continuous on the light cone then O-1Fis evidently not tempered. There-
fore, we will split the inhomogeneity in two parts F; and F, such that F = ¢(A_)F + ¢p(1 —
A_)F =: F1 + F>, where ¢ € Ci°(R) is a smooth cutoff with compact support included in [-1, 1]
and ¢ = 1 on [-1/2,1/2]. Note that by definition F; = ¢(w_)F, and F, = (1 — w_))F. Hence the
support of F is concentrated near the light cone while the support of F is dispersed far from
the light cone. More precisely define the neighborhood of the light cone in the Fourier side as

N ={T,HeR™ ¢ I - €IS 1)

then suppF; € .4 and suppF, < R'*"\ 4. The solution of the inhomogeneous problem is
given by the sum of two function u; and uy, such that

Du1 =F1 in R"” Duz :Fz in R"
(w,00u)| _ = (0,0 (2, 0012)| __ = (0,0)

As the next proposition show, on can easily invert the piece of the wave operator when the
support of F is dispersed far from the light cone.

Proposition 20 (Invertible-inhomogeneous estimates). Let F € H~Y0~L(R™*"), with suppF <
R\ A then
107 E N g0 SN o101

Or equivalently, the operator 171 (1 — p(A_)) : H 1971 — {9 is bounded.

Proof. By straightforward calculations we obtain

IO ' Fligso = ||<6>S<|r|—|£|>9(12—|6|2)‘1P'(r,6)||Lng
< MO T T =KD R, Ol 2
= |IFllgsro

Observe that we don't have to cutoff in a time slice for this term of the solution. The operator
0711 — ¢(A-)) may be though of as the invertible component of the wave operator. What
is remarkable is that a similar result holds for the inhomogeneous part which support is
concentrated near the light cone. However, in this case we must cutoff in a time slice, see [91].

Proposition 21 (Not-invertible-inhomogeneous estimates). Let F € H"Y9~L(R*") with suppF <
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1.5. Hyperbolic Sobolev spaces

N, and 0 > 0 then
_ 1_
(10 1F||H;,e S T2 F|l o0

Or equivalently, the operator Yyt ' ¢p(A_) : HS"10 — HSY s bounded.

Proof. Observe that since the support of F(,¢) is included in the set ||7] - |¢|| < 1, then
w-_(1,¢) = 1, this implies that || F|| gs-10 = || F|| gs-1,0-1. Consider for now large frequencies: |£] = 1,
then (D) = | D], moreover notice that |F(s)| < fIF(U)IdU. Hence

t
2O () f f 21 (D) sin((t - ) D)|F(o)| dsdo
0

fXT(t)<D>_2[1 — cos(tD)]|F(0)ldo

We need to recall that %[y () cos(tD)] =nT[x1/7(t — D) + ¥1,7(7 + D)]. Then we compute
I )(T(t)D_lF | ;7s0, which lead to estimate the follow three terms:

rerrenin = [1© X -6 @V Fo, Ol pdo
+ f 16y 71 = 16D x ~ 15D F (o, )l 2 2 do
b [ IR n =10 1) P, Ol do

To get rid of the do-integral in the second and third terms we multiply and divide by (o) and
apply Cauchy-Schwarz inequality. Moreover we use the bound (|7| - [{]) < (T — [¢]) to control
the Fourier multipliers. This leads us to the estimate

11+ 1116 > @ 2 1607 N @) F (0,8l 2 212

Notice that (o) < (o] —|£[)(&) < (&) since the support of F(o,¢) is inside the set defined via
llo| - ||| < 1. Therefore if we make the change of variable 7 = 7 + |¢| in d7-integral we obtain

H+IITS (6 F(o,§) IILng = Fll gs-10
To control I we proceed as above to obtain
TSI o =1eh ™M)y N Fo, Ol 2z

Suppose 27 > [¢], then if we perform the change of variable 7 = 7 — [{| in d7 integral we get
@O NT+1E) N < (DP2N € L2 since we have 7 > —1/2[¢| which implies (7 +[¢]) = (7). On
the other hand if 27 < |¢| then we use the bound (r — |¢]) > (1) to obtain (r — [£[)/ "N (r)™N <
(1)972N € [2. Therefore

IS I T F @, Ol 2 = 1Fll o
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Let us now study the low frequencies regime |¢| < 1, this case is worst then the previous one
because of the factor |¢| in the denominator which makes the symbol explode as ¢ tends to
zero. However as in the proof of the homogeneous estimate one can rewrite the symbol as

1! .
D! sin((t—$s)D) = Ef (t— S)et(t—s)pD dp
-1

Moreover by the Fourier inversion formula F(s) = % f e's9 F(0)do we infer

1 ¢ ‘ .
yr(O1F(D) = if f(f (t—s)e’s(a_pD)ds))((t)e”pDF(a)dadp
4w J 0

B ifl f(XT(t)eitpD ~ XT(t)eil’U ~ tXT(t)eitpD
 4nJa) Ve-pD)?2 (0-pD)?  i(oc-pD)

)F(a)dadp

Next we compute the Fourier transform. Recall that the time Fourier transform of y r(¢) etitp
is2n TR 7t Fp) Sr(tFp)~, for a sufficiently large N € N. Thus

(t-pD) N @-o)N @-pD)'"N
(c—-pD)? (06-pD)? i(c—-pD)

1
gt[XT(t)D_lF(t)](T),STflf( )F(a)dadp

When we compute || XT(I)D_IF | gs0 we are lead to estimate the follow three terms:
I+1I+111=
f_ 11 f 1§71 = 1607 = pleh ™o = pIEl 2 F (0, 2 2dodp
+f_11f||<f>3<|r|—|é|>9<r—a>‘N|o—p|£||‘2ﬁ<o,f)||LgL§dadp

1 ~
+f1f||<f>5<|r|—|<f|>9<r—p|£|>1‘N|a—p|f||‘1F<a,f)||L;L§dadp

The first and the third terms are similar. The key fact here is that the support of F(o,¢) is
included in the set ||g| — [¢]] < 1, therefore |0 — p|¢|| is bounded. In fact |0 — plé]| < |o| + [¢] <
llo| -1l +21¢] S 1, since |pl < 1 and |¢] < 1. Moreover to estimate the first and the third terms
we need the bound (|7| +|¢]) < (7 — pl¢]) which holds for p € [-1,1] and |¢| < 1. Hence we have
a bound on the multipliers:

(t1=1EN° T = plEy ™ <z —ple—vN

We perform the change of variable T = 7 — p|¢| in the dt integral which is bounded provided
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

that we choose N € N big enough. Therefore we obtain

1
I+111 5 flf||<é>“|a—p|f||*2F(a,a||L§dadp

1 ~
+ flf||<é>“|a—p|<f|r1F(a,f)||L§dadp

Notice that Cauchy-Schwarz inequality in do integral yield to I+111 < || F|l 5-10 since supj¢ < sup, pl<1 [lo—
plél|72do < oo, recall |o — p|é|| is bounded and has enough decay when o is large to assure

the convergence of the integral. This settles I and I11. To bound I1 observe that (|7| - £[)¢ <

(t — pl&1)? which holds for p € [-1,1] and |¢| < 1. Moreover (1 — p|é)? < (1 —0)0 (o - p|&])?,

simply because (a + b) < (a)(b). Hence we have a bound on the multiplier:

(1= 1En° ¢ -0y N <=0 Nio - plény?

Furthermore recall that (o — p|¢|) is bounded since |p| < 1 and |{| < 1. Therefore

1
s flf||<E>S‘1<r—o>9‘N|o—pléll‘zF(o,§)||L§L§dadp

1
f 1 f 146)* " o = pEII™*F(o,§)ll 2 dodp

S
< NF g0

Here we have performed the change of variable 7 = 7 — ¢ in the d7 integral and we have used
the Cauchy-Schwarz inequality in do integral. O

1.6 Littlewood-Paley decomposition of hyperbolic Sobolev spaces

In this section we extend the previous theory of hyperbolic Sobolev spaces to the case 8 = 1/2.
Recall that the embedding of hyperbolic Sobolev spaces into the solution space, namely
Corollary 13, required 6 to be strictly bigger than 1/2. However, as we shall see, to be able to
prove local well-posedness theorem at the scaling critical regality one needs a linear theory up
to 8 = 1/2. The results below are based on Chapter 5 of [118].

Consider the following first order in time Cauchy problem

{atu—i(p(D)u:F) 05

Ul—g=up € H (R
We define H; a dyadic localized H%? type space as

Hi={f e *®"") :suppf c {(r,8) : 2K < |¢] < 2F+13}

39



Chapter 1. Low-regularity local well-posedness theory in flat spacetime

And we endowed it with Besov /! type norm

o0

1l = 3 27210 = @) F T, )l 2

j=0

The space Hj, contains all space-time L? function with support localised in the strip |£| = 2.
Infact denote Iy = [-2,2] and I = [2K71,2%*1] for k € N. Assume (¢y) to be a sequence of
function for the non-homogeneous dyadic decomposition. Then we resemble this space in a
Littlewood-Paley manner: we define the inhomogeneous Besov-type H*'/2 norm as

o0

2 k ~ 2
Nz =Y 2% ler@a Olim)
k=0
It is easy to see that F* is a good substitute for H%/2, since H¥!/2* ¢ F$ < H%Y2, This is a
consequence that in the second dyadic decomposition, or modulation, where we cut at fixed
distances to the characteristic surface and we sum up in I! sense. Then an easy application of

the embedding I' c I? implies

Il = 2 Y (252 10k, g aw Ol )

k=0j=0
= Y (2% ) 2710k Opjr - AT Ollzp2)”

k=0 j=0 ¢
= Y %lee©a,Ollm,)’

k=0

By Cauchy-Schwarz we obtain the second inequality:

lul? = Y (2FY 27219r&; T - o@D, Ol 212)°
k=0 j=0 °
= Y Y T2 Ier©9; - p@aw Olze)” Y @7
k=0j=0 j=0

2
S u||H2,1/2+

Moreover let us define the corresponding H%?~! space, the space where the nonlinear terms
of our Cauchy problem lies, as

1% = Y FIec@T - @) Fr,Oln,)’
k=0
= Y (2% 27219k @¢; @ - pEN F@, Ol 2 12)
k=0 j=0 <
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

Remark (Characterisation of F° norm). Observe that by making the usual change of variable
and using the properties of Fourier transform we can rewrite the F°-norm in the following way

(25 Y 21201 ;@) T +d(),8) ||L$L§)2
j=0

I
18

2
Il 2ell s

T
(=}

I
18

(2553 2120 0r ) (1) Fole™ PO, &) ||L§L§)2
j=0

T
(=}

I
18

» . 2
(28k ”(pk(é‘)e itp(c) ut,é) “L%R?)Béf(mz))

T
o

The previous characterisation allow us to prove a first multiplicative estimate for F* space
when one of the two functions depends only on time.

Lemma22. AssumeseR,0< T <1, andy € L R) then
lyr@ullps St llullps

herey(t) =w(t/T) is a rescaling of v.

Proof. By direct computation we obtain

w .
lyr(ulys = Z(zsk||<pk(f)<pj(r)e"f¢“9w(t)ﬁ(t»é)IILZ(Rg)B;f(m)Z
k=0 '
2 o (osk [ 1(E) 2
S —1 ~
< ||wT(r)||B§',5(R[)k§O(2 Ik @e PO a Ol 2 pyem,)
since ley/lz (R;) is an algebra. O

We are interested in the local well-posedness properties of the Cauchy problem (1.5). Therefore
it is natural to ask that F* < C(R, H®). The purpose of the next Proposition is to prove the
bound || ullzogs < llullps. As in the previous section we rely on the transfer principle which is
analogous to the case b > 1/2.

Proposition 23 (Transfer principle). LetY be a Banach space of space-time functions on R'*"
with the property that, for any 1o € R and for every ug € L*(R"), we have

le" ™ SO uolly,,, S lluoll 2ny
Then for any k € N and u € F° we obtain
IPrully,, S lop@u, O,
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

where Py, is the Littlewood-Paley cutoff at frequencies || = 2F, precisely Pru(t, x) = F; () U(t, §)] =
F op©u(, o).
Corollary 24. LetseR then F° c C(R, HY).

Proof. The result follow easily form the transfer principle since the bound ||’ ™™ 1| ;o 2 <
2491l ;2 holds for every ug € L?(R™) and 7 € R. Indeed Littlewood-Paley theory yield to

[e.o] [e.°]
Nl e = Y CEIPLUl o 2)% < Y- PNl @r© BT, D) = NullFs
k=0 k=0

O

Proof of Proposition 23. The proof follows the argument given in the b > 1/2 case. Observe
that the hypothesis can be written as

”eztrofelxsﬂt(b(s)ﬁo(f)dﬂl Yin < luoll 2 @n

Furthermore form the inverse Fourier transform and change of variable we have

Pru(t, x)

f f oiTHXE o (6)ii(r, &) dedT

[emfeix£+it¢(<f)(pk(g)ﬁ(rﬂb(f),rf) dédr

Therefore Minkowski inequality yield to

1Pely, S [ [ 0O @t + ¢, Oy, dr

S f o) u(T +p(&), &) IILng

To close the argument let us cut the integral in d7 into a sum of dyadic pieces, using the fact
that Z‘]’.‘io ¢ (1) = 1, then by Cauchy-Schwarz inequality we obtain

00 2j+1

> L 2iOIPKOT + 9@, Ol
j=072"

f @ (T + 9, Ol 2

IA

00 2j+1
> 19, M+ 9Ol ([ an)'”

j=0 2

<y gf/2||(pk(§)(pj(r — PN U, Ol 22
j=0 “
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

Next Proposition gives us a complete understanding of the local solution of the linear problem
(1.5).

Proposition 25. Assume seR, andy € #(R), then

(i) The following homogeneous estimate hold

lyr (SO uollps St lluoll prs

(ii) The following inhomogeneous estimate hold

t
||wT(t)f0 S(= 9 f()dsllp <11 f e

Proof. Notice that (i) follows form [|@ (&) F,x[w7(£) S(£) uo] ”Hk SN ug(é) ||L§- By defini-
tion of Hy we get

o0

lpe@F 1w r(OSO uoll g, = Y 272 1 (T = PP () Py x [y T (1) S(E o]l 22
Jj=0 )

We would like to get rid of the L2 integral, we accomplish that by a change of variable. From
the definition of S(¢) and the fact that the time-Fourier transform of e?*Py 1 (¢) is (T — p), we
obtain F; x[w () S(H)ugl = Y1 (t — P(E))Up(&). Therefore if we set T = 7 — p(&) in dt integral we
can split the integral as follows

(T —PpE)Pr(E)Ft x[wr(6)S(£)up) ||L§L§ g (@)W (T) i (E) ||L§L§

lo;@OT @219k () Thp (E) Iz

Summing over j gives the desired bound: [l ({)F (W (1) S(H) uolll g, < IIWTIIBzulz(R)II(Pk(f) uo(€)||L§
since y1 € L (R).

In order to prove (ii) it suffices to show that the corresponding estimate at the level of Hy
holds:

t o~
[ alwro [ sa-9r©as]], $toc-p@n Faoin,
To compute the space-time Fourier transform of v r(¢) fot S(t— ) f(s)ds first apply the space-

Fourier transform to obtain %[y (1) fot el(t=99() f(s, ¢)ds]. Then let us use the Fourier inver-
sion theorem and write f(s, O=Jr eis‘ff(a, ¢)do. Computing the integral in ds yield to

Vr(Tt—0) =T —¢@) <
&d
i(0—¢©) Jo.9)do

t
Foxlyr( fo (=9 (9ds]r. )= |
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Define g (7,&) = @ (&) (T — (/)(é))‘lf(r, £), then it suffices to show that the operator

Vr(T—0)—Pr(r—¢©) ©

Tgi(tr,é) = FTE—TY

- ) gk(o,8)do

is bounded in Hy: this means that || T gkl g, < 118kl 1, holds uniformly for k = 0. By definition
of Hy and a change of variable we have

1Tkl = 3 2710 T8k +$(E), )l 22
j=0

Notice that by a similar change of variable in do integral we have

Tgr(T+¢(&),¢) = (0)8k(o +¢(),$)do

f Yr(t—0)-yr()
R io

It is easy to see that

Vr(Tt—0)-yr(n)

io

@] <a+iEneasir-op™

Since the Hj norm of g; contains the L? norm is the time-frequency variable we need to apply
Cauchy-Schwarz in the do integral, however the term o~ ! will make thinks explode. Therefore
we cut the integral in do into a sum of dyadic pieces, using the fact that .72, ¢;(0) = 1. We
have

ITgr(T+ &), OIS RZCICY T+ A+t —oN gl + ), O do=:1+11
1=0v11

For the term I, we apply Cauchy-Schwarz inequality to obtain

~
N

I+1zh™ 4Zf @1(0)gk(0 +P(3),¢) do =
< A+ 42 f|<pl(a)gk(a+¢(f) &% do) “Zfd )1

< (1+|r|)—4Z2“2||<pz(a—¢(é))gk(o—,f)||L;,
1=0

where I; = [2/71,21*1] is the dyadic interval where ¢ is supported. Hence finally

Z 221z < (Z 21290+ 17D~ 4||Lz)||gk||Hk
j=0 =0

For the term II, the situation is quite different: it doesn’t suffices to multiply only by >5°_ ¢, (o) =
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

1, but one needs to multiply also by .72 /¢;(t — o) = 1. This way we obtain the triple series
[e.°] . o0 .

Y 2P Hlpz= Y zf’2||<pj(r)f<pl(r—a)(1+|r—a|)‘4<pm(o)gk(a+¢(f),f) dol 2y
j=0 ° j,l,m=0

This has some resemblance with paraproduct. In fact if we define f(r) = (1 + I7))~* and
h(7) = gk (T + $(S), &)l 12 then we can write

Cx} . OO .
2 22lpim iz s 3 27210, @if * pmh) @)l
j=0 j,I,m=0

We know form paraproduct estimate that the term ¢ ; (1)@, (0)¢@;(t — 0) is non zero only in
the following three cases:
i m=zjandl<xm
ii. m=land > j
iii. I=jandm«l
Therefore the triple series over j, I, m is reduced to a single serie plus a finite sum. The

argument to prove the bound in the case (1) and (2) are quite similar, while (3) requires extra
care.

i. In this case we first use the trivial bound |¢,,(7)| < 1 and then apply Young’s inequality
for convolution to obtain

oo m-3 oo m-3
> Y 2™ lem@@if xomm @Iz = Y Y 2"l flislemhl
m=0 [=0 m=0 [=0
o0
< Y 2™2lgnhl

0

3
I

since Z;’ge‘ o1 fllze S 1. Notice that by our definition

> 2m/2||<pmh||L% =) 2m/2||(Pm(T)gk(T+¢(5),§)||L3L§ =18kl u,

m=0 m=0

ii. Here again use the trivial bound |¢(7)| < 1 and then apply Young’s inequality for convo-
lution to obtain

oo m-=3 oo m-=3
Y Y 2Plei@@mf xomm @l = Y Y 2P lemflliiel@mhl 2
m=0 j=0 m=0 j=0
(00}
S Y 2" bl

0

3
I
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

. _3 s _3 .
since X712/ 2 g fllre < L2320 S22,

iii. In this case we can’t use directly the trivial bound |¢(7)| < 1 but we first use Holder
inequality and then Young'’s inequality for convolution. We have

oo [-3 ! oo [-3 !
Y Y 2Ploi@@if xomm @l = Y Y 2" Mgl zloif * omble
[=0m=0 [=0m=0

-
> 2o fllzl@mhl 2

m=0

o0
2@+ 17) 2] Y 2™ gl
m=0

w

LA
18

Il
[}

IA
Ef[\?s L

Therefore we obtain

m . (X) .
ITgela, S 3 27 2Nz + 3 272022 < gkl
j=0 j=0

This conclude the study of the linear Cauchy problem (1.5).

Wave-Sobolev spaces

In what follow, we consider a second order in time Cauchy problem, such as the one for a
linear wave equation:

a”u— (/)(D)u =F
(u,0:u)l;—q = (U, u1) € HS(R™) x HS"L(R™)

As before we would like to extend the previous linear theory in hyperbolic Sobolev spaces,
developed in §1.5, to include the case 6 = 1/2. Inspired by the definition of F* space we
define the spaces H ;,’,gq where we exploit different ways to sum over frequency and modulation
localized pieces. Let us define Qg is a space-time multiplier with symbol q4(7,¢) = (7| -1&0),
where ¢ truncates smoothly on a annulus of radii d/2 and 2d. Here d = 2/ is a dyadic number.
Thatis Qg f(t,x) =% : ; [pallTI—1¢ I)f(r, ¢)]. Here we are using inhomogeneous decomposition:
supp ¢; < B(0, 1) the ball of radius 2 entered in the origin, and ¢»; =1 on B(0,1/2).

Definition (g-Besov type H*? Spaces). For any 1 < g < 0o, 5,6 € R, we define the following
space
HY' = {f e XR™") :suppf < {(1,6) : 2K < ¢ <2541y}
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

and we endow it with a g-Besov norm on L? base:

l/q

18

Iflpa = |2 @71Q;f12)7]

~.
Il
(=}

1/q

[
Es

(21 ;71— 1EDFm, Ol 2 oon)

~.
Il

Furthermore, for any 1 < p < oo, define the space H;’Z as a inhomogeneous p-Besov space
with base HZ’q:

) plgillip
ll o = | Y- @*1Pel ) = 3 [2(2k3219||PkQ,u||Lsz)q] |
Pa L =0 k k=0" j=
where P, is the Littlewood-Paley cutoff at frequencies || = A, precisely Py u(t, x) = 1[(p 2O, )] =

33{ ; [pr(&)u(T,&)]. Here again A = 2Fisa dyadic number. It is also useful to define the space

HZ’B'q = 2_kst’q so that

o) p 1/p
lall oo = [ 3 (1Pgtel )
' k=0 k

Observe that, when p = g = 2 we recover the classical H* wave-Sobolev norm:
Il = [ X 3, '’ IPaQaul)
A=1d=1

Therefore when both Besov indices p and g are equal to 2 we write H*Y = = H, > 9 . From the

inclusion of IP* c [P2 when p; < p», we obtain the corresponding inclusion of H q spaces:

s,60 s,0
le q sz q2

for p; < p2 and q; < g». In particular H1 1 HZS (19, Hy > 9 c H%Y. Moreover notice the difference

between the three Littlewood-Paley cutoff type: S, PA, and Q.

supp (Syu) = {(1,8) e R /2 < ||7] + |&]] < 2A}
1+n A
supp (Pru) ={(1,6) R 15 S &l <27}

d
supp (Qqu) = {(1,&) e R S =liTl =Kl <2d)

Moreover notice that supp (PyQqu) = ¢ if d = A/4 , therefore in the second dyadic decomposi-
tion the sum over d can be restricted to the range 0 < d < 1/4.

Why are such spaces relevant? They can be used to prove local well-posedness with initial data
in Besov spaces. In order to extend the linear estimate to this Besov variant spaces, we prove
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

below a transfer principle which resemble the one of the previous section.

Proposition 26 (Transfer Principle). Let Y be a Banach space of space-time functions on R *"

with the property that, for any 1o € R and for every ug € L*(R™) we have

it(To+D
le "= gy, . < Nuoll 2@y

If0>1/2andq =1 orif0 =1/2 and q =1, then we have for any k € N

IPrully,, S IPkull o
k

Proof. Observe that the hypothesis can be written as [ /™ [ e+l g, &)délly, < lluoll r2gn).-
Denote & = Y7>0U + Yr<oll := Uy + U_. Furthermore form the inverse Fourier transform and
change of variable we have

Pju(t, x) ff e T o (&) (14 (1,8) + T (1,8)) ddT

f i f Qe©(e™ TN (7 4161, + e A (r - 161, &) dédr

Therefore Minkowski inequality and the hypothesis yield to

1Peully,, < f||(Pk(f)ﬁ+(‘f+|f|,§)||L§dT+f||(Pk(5)L~t—(T—|f|),5)||L§dT

o
J

Let us cut the integral in d7 into a sum of dyadic pieces, using the fact that 352 ¢ ; (1) = 1. By
Cauchy-Schwarz inequality we obtain

00 2j+1

Y| oi@Ier©is+IE,0zdr
j:0 2]—1 S

fllwk(f)ai(rﬂa,fnugdr

0o 2j+l

2 N0k (D)L (7 £181, )l 22 ( f dr)'?

Jj=0 2/

IA

o0

> 22l (T F 1D (7,9l 212
j=0

< 22 Ner@e; (Tl = 18D aT, Ol 2 2
j=0

N

This prove the Proposition in the case 8 = 1/2 and g = 1. On the other hand if 8 > 1/2 then we
can apply Holder inequality to obtain

S i oo i0 Ugr & i Mg 11/q'
Y 2021 PQiuller: < [Y @IONPQjul o))V Y 200200 |14
j=0 j=0 j=0

48



1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

The second sum converges since 6 > 1/2. O

The transfer principle allow us to easily prove the following embeddings.

Corollary 27. Let0 >1/2andg=10r0=1/2 and q=1, then H;,"Z c Cb([R{,B_g'p(IR”)).

Proof. Littlewood-Paley theory gives

o0
‘ ks 1/p
lulc,w,B;,) = [kZO(Z ||Pku||L<[>°L§C)p]

Therefore it suffices to prove that || Py ul| o2 < 1 Prull o4 for any k € N. However by the
* k

transfer principle the previous inequality holds since ||e//*D) || 1oz S lluoll 2 for any ug €
L2(R™). O

Corollary 28. Let0 > 1/2 or let8 = 1/2 and q = 1, then H;,;;H c LﬁLﬁ, where (p,q,s) is a
Strichartz triplet. Moreover if1 < p <2 then H;',% cLPLA.

Proof. By Littlewood-Paley theory and Holder inequality we obtain

~ 00 ~ 00 i L p1lip 00 kbop 1P
”U”Lﬁ[ﬂ = E ||Pku||LﬁLq = [ 2 (2 ”Pku”LﬁLq) ] [ 2 2 ]
k=0 k=0 k=0

The second integral in convergent. To close we apply the transfer principle: the frequency-
localized Strichartz estimates for the half-wave propagator implies [|e!’™*D) Prug|l ;575 <
2ks) py. ugllz2 for any ug € L2([R™).

Onthe other hand if 1 < p < 2 then one can use Littlewood-Paley inequality and the embedding
IP  I? to avoid using Holder inequality. Precisely one obtains

o0 o0
Nl g S| UPeull o] < [ Y WPl o) ?]”
k=0 k=0

Then by the previous argument it follows that H ;'Z cLPLA, O

We continue our analysis of H;’Z spaces and study the connection with the linear wave

equation. In the next lemma we present a first multiplicative estimate for H ;,lgq when one of
the two functions depend only on time.

Lemma29. AssumeseR,0>1/2andq=1, orassume8 =1/2and q=1, and y € #(R) then
1
o <T270 .
IIXT(t)ulth.'% N IIUIIHP,Z
here y(t) = x(¢t/T) is a rescaling of x.
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Proof. By the definition of H, 59 g space itis sufficient to show the claim at the level of the Hz a
spaces. In fact if we show that IIXT(I)PkullHe S IIPkullHe ¢ holds for every k € N then the

proof is completed. Notice that one can split the Hk as [lull yoq < llu | goa T Ul o.q, where
k k,+ k,—

U* = y+rsoli and

) . " 1/q
Il o = [Z (27l F1EDEE, Ol 2 )]

Then we can perform a change of variable and conclude that || || o= le¥ i1 ace, Ol 2 ®RI)BY, (R

Therefore the Lemma follows form the multiplicative properties of Besov spaces. D

We are now ready to prove the key property of this section.

Proposition 30 (Linear estimates). Letf > 1/2 and q=1 orlet0 =1/2 and g =1, then local
in time solutions to the homogeneous wave equation with initial data in B p X Bg‘pl belong to

5,0 .
Hpg:
1
< 71270 s s
||)(T=7f(uo,u1)||H;:% S T277 ) (uo, ul)”Bz,prg_,} (1.6)

where x € C3°(R) is a bump function. Moreover, the local solution to the inhomogeneous wave
equation with zero initial data and inhomogeneous term in H ;{ql’gfl belong to H ;’Z:

— 1_
lr0 Fllgeo < T2 0NF ] yera- (1.7)

Proof. Recall that the half-wave principle tell us that the homogeneous solution map is a linear
combination of exponentials, therefore to prove (1.6) it suffices to show that | y 7 (£) Pr.e*' P f| 00 S
k

| Prfll 2 for any f € L>(R") and k € N. Recall that &, [yr(D)e*'™Pf] = TR(T(x ¥ Ifl))f((f).
Moreover notice that ¥(T(t F [£])) (T F1ED) N <(T (7] F1ED)~N for a big enough N € N.
Therefore

IXr@Pke P flyos < TLYL @7 Igr@e;(z1 10Tt~ 10N FONz )]
j=0 '

< TIY @Iy ™M) k@ FO 2
j=0 “

< T 0@ ) Iz

Hence (1.6) holds. Now let us turn to the inhomogeneous estimate (1.7), it suffices to show that
the estimate IIPkXTD_lFlng,q < T%_Bz_k”PkF”HH—I,q holds uniformly for k € N. Recall that
k k

the inhomogeneous solution map is defined via Duhamel’s principle by (™! F = fot D~ lsin((¢—
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1.6. Littlewood-Paley decomposition of hyperbolic Sobolev spaces

s)D)F(s)ds, hence by Fourier inversion theorem F(s) = Jw €7 F(0)do we can write

O-TF(t,&) = ff 81n((t|;|s)|€|) e"9F(0,8)dsdo

ltU_ ltlgl eita_e—itlcfl _
— F , d
2i|5|f i(e—1¢h i(o+1&N) ) (0,8)do

Now we have to take the Fourier transform with respect to time, and recall that & [eltP xr(O(T) =
Y17 (T — p). Thus we obtain

Xur@—0)—xur@—1E) Yuyr@—0)-Yur@+IED)
2i|¢] i(lo—1¢D i(o+1¢D)

FxxrO7 FI(1,0) =7 )ﬁ(o,f)do

Therefore performing the usual decomposition and change of variables we obtain

1PkQixrO ™ Fllere = @D FalyrO7 Fla (@ £ 16,0 22

~r 2‘k||<pk(€)<pj(r)f s _UJ_XI/T(T) Fe£1ehddolly,

= 27ka+1Dn
Define Fi(0,{) =¢ (& F (0 +1&1,&) and consider the two terms separately. Notice that

~ 00 X _ 1/q
I Pexr0 lF“Hz"’ = [Z(ZJGHPijXTD 1FIILsz)"]
j=0

<r ¥y ePusiy]"
j=0

The second term can be estimated once we multiply by 352 ¢;(0) = 1. In fact by Cauchy-
Schwarz we have

I1

IA

Z 2_l||(Pj @xuT) f <Pl(0)Fk(0,5)dGIIL§L§

IA

1@ 2 Zz‘“zncpl(a)Fk(a Ollpz 2
=0

Thus

| X @Pun?| " <ixrig Y2 Ploi@Fio, Ol

— 2,q 5 g

]_O 1=0

This proves the case g =1 and 6 = 1/2. In the hypothesis of 8 > 1/2 and q = 1 we apply Holder
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

inequality to obtain

o 1/ ® Uqp & g
[ e?un] ™" < nrly [ X eV le Fe, 7] ] Y 20
j=0 " I=0 1=0

Hence the estimate for 11 holds. To estimate the fist term we need to multiply with }.7°_ ¢,,,(0) =
1 and Z‘l’zo ¢;(t — o) = 1. This way we obtain

x© . 1/ ) ) . 1/
[Yetm] < (L] X @2 em [ - gt -ogno)Fo,odol e |
j=0 j=0"1,m=0
< ) 2f92‘m||<pj(r)f<ﬂz(r—0))?1/T(T—a)tpm(a)Fk(o,é)dalngLg
j,1,m=0 K

since ! c 19 for g = 1. We proceed as above. We know form paraproduct estimate that the
term ¢ (7)., (0) @, (T — 0) is non zero only in the following three cases:
i m=zjandl<m
ii. m=land!>j
iii. I=jand m<|
Therefore the triple series over j, [, m is reduced to a single serie plus a finite sum. The

argument to prove the bound in the case (1) and (2) are quite similar, while (3) requires extra
care.

i. In this case we first use the trivial bound |¢,,(7)| < 1 and then apply Young’s inequality
for convolution to obtain

co m-3 0-1 co m-3 0-1
> Y 2" @ @ity emFO@ Iz < Y Y 2" Vil l@mFell 2
m=0 [=0 ¢ m=0 i=0 ¢

IA
18

2"Vl pmFel 22
0

3
I

since 275)3 loixirlie S1.

ii. Here again use the trivial bound |¢(7)| < 1 and then apply Young’s inequality for convo-
lution to obtain

oo m-3 0 oo m-3 0
> 22 i@ @mEuT * emFO @z < Y Y 27 M lemXurlie lmFill 22
m=0 j=0 ¢ m=0 j=0 ‘

N
018

2" OVl Fill 212

m=0
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1.7. Wave maps equation

since X7 270 M g q1rllre S27m XL 210 <20,

iii. In this case we can’t use directly the trivial bound |@(7)| < 1 but we first use Holder
inequality and then Young’s inequality for convolution. We have

oo -3 oo [-3
393 Zlg_m”(plm((p”?”T*(me’C)(T)”L%LZ s 22 zle_m”(l’l”L% lpiX1/T * @mFill o2
=0 m=0 ¢ =0 m=0 2
23 e
DD I )_m”(Pl)fl/TlngII(mekIILng
[=0m=0 &
<

[e)
-m/2
”WI/T”B;JJ{UZ(R) Z 2-m ”(mek”L%Lg
' m=0

and [|y1/rll BIT2R) < OO since y € & (R). Therefore the proposition holds in the case g =1 and
6 =1/2. In the case 0 > 1/2 and ¢ = 1 proceed as for the II term. First assume 0 = 1/2 in the
above computation, then multiply by 2270 and apply Holder inequality. O

In the last part of this chapter we will outline how the H ;,'0 spaces are used to improve the low

q
regularity theory for a wide class of nonlinear wave equations.

1.7 Wave maps equation

Using a contraction argument in wave-Sobolev spaces, in this section we are able to a prove
sharp local well-posedness result for subcritical wave maps. Consider the Cauchy problem:

Ou=T(u)o%ud,u

(u,0:u)l ;=g = (U, U1)

(1.8)

where i, j,k=1,...,N. Notice that u: R'*" — R" is vector valued and the expression T'()0% ud, u
stands for Fj.k(u)aa u/0%u*, where u' : R'*" — R are the component of the vector u. The fol-
lowing theorem is based on the works [35], [105] and [114].

Theorem 31. Letn =3, p = 1, and s > n/2, then there exist an unique local solution u €
C((0, T1, By ,®")NC ([0, T], By} (R™) to the Cauchy problem (1.8) with initial data in Bj ,(R") x
BZS;} (R™). Moreover ifn =4 and p = 1 one can take s = n/2.

The result is sharp in view of the ill-posedness result of D’Ancona and Georgiev [13]. The proof
given here follows the argument given in [29], extending it to initial data lying in a Besov space.
Notice that we restrict the discussion to n = 3 since the n = 2 case require some modification
of the H;,’,{f7 norm. We list below the key nonlinear estimates that are needed in the proof
Theorem 31. The first one is a Moser-type result:

Theorem 32 ([91]). Assume thatT € C®°(RN) with all derivatives bounded andT(0) = 0. Let
nz2and1/2 <6 <s—"1, then there exists a continuous function g : R* — R* such that
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

g(0)=0and

IT ()0 < g(llulle;e_%,e)llUllH;g
Notice that since s = 72/2 + 0 — 1/2 we have H?(R1*") ¢ H?+0-30 (R1*"), thus
Tl 50 < (u s,)u 5,
TGOl 0 < g1l ) 1200

The proof of Theorem 32 follows from the proof of Theorem 7.7 in [45] and it will not be
presented here. The second result needed in the proof of Theorem 32 is the key estimate for
the Ny null-forms.

Proposition 33 (INy Product Estimate). Let Ny(u, v) = 0qud®v, then the estimate

holds if one of the three assumptions form Table 1.1 below is satisfied.

n=3, p>1, g>1, ands—-(n-1)/2>0>1/2
n=3, p>1, g=1, ands—-(n-1)/2>0=1/2
n=4, p=1, g>1, ands—-(n-1/2=0>1/2

Table 1.1: Assumptions on the exponents

We will see below that the estimate in Proposition 33 is a consequence of the following two

multiplicative properties of H;’Z spaces.

Proposition 34. Suppose that one of three hypothesis from Table 1.1 holds, then the space H ;’Z
is an algebra, that is

UV 0 S Ul pso 0] 2rs0
[ IIH;'qNII IIH;'WII IIH;'q

Proposition 35. Suppose that one of three hypothesis from Table 1.1 holds, then we have the
asymmetric multiplicative estimate

luvll o1 Sllull o VI s-10-1
Hyq"™ ™~ Hyg Hy,

Proof of Proposition 33. Recall the relationship between the Ny null-form and the d’Alembert
operator: Ny(u,v) = %[D(u v) — vu — uldv]. Therefore Propositions 34 and 35 yield to

< .
| No(u, v) IIH;qu,efl < I0(mw) IIH;qu,efl + | vDuIIH;;;,aq + | uDUIIH;qu,H
S Nuvl gse + vl gse 10wl ys-re-1 + 2l so 10V s-10-1
~ Hy g Hy g Hpyy Hyg Hyq
<

2l gyso IVl s
Hyq" " Hpg
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1.7. Wave maps equation

We postpone the proof of Propositions 34 and 35 for the moment, and we show how Theorem
32 and Proposition 33 imply Theorem 31.

Proof of Theorem 31. Define the null-form nonlinearity N(u,0u) = T'(4)0%ud,u. The linear
theory developed in §1.5 can be extended to vector valued functions: if 0 >1/2and g = 1 or

if0 =1/2 and g =1 we have yr# € ff(BZSJ) X Bg,‘pl,H;"%) with ||| ¢ = T%_g, and )(TD‘I €

10— Z16-1, . _ 1 .
$(H;,,ql’9 I,H;,,ql’g Y with |07 & ~ T27?; moreover we have H*Y < Cp(R, By p)- Inview of
these linear results the thesis follows once we prove the following nonlinear estimates:

) IN(u, 101 S s
(@) IN@, 0wl ys-r0-1 S Coy (lul oo )

i) IN(u,0u)— N,00) |l s-1.0-1 < Cp (Ul 1505 |Vl rso ) 2= V| s
(i) IN( ) ( )”H,,_,;‘“N o (|l ”sz I IIan)II ”ana

where C 4 and Cg are positive continuous functions such that C 4 (0) = C5(0) = 0. The
asymmetric multiplicative estimate from Proposition 35, together with Theorem 32, and the
Np null-form estimate of Proposition 33 yield to

N ,a s—,—sr S, Na,a s—,—<C S,
IN (@, 01| ys-r0-1 < WL oo | No (O, Ou) | o101 S Coy (el s

This proves (i). Now let us show (ii), to estimate the difference N(u,0u) — N(v,0v) observe
that we can write

N@Ou)— N@Ov)

%F(u) (O@w®) —2u0u] - %F(v) O -2v0v]
= %[r(u)m(uz)—F(v)D(vz)]+F(v)va—F(u)uDu
= %[Hun—rwnmaﬂynxmmuﬁ_y%

+ (T -Tw)vOv+TwvOw-uw) +T(ww-wlu

Therefore we need to estimate five terms:

I(C@ ~T@)BE gsro1 < IT@ =L@ 10 10
2
< 5,0y S, - Sl S,
< gUlullyon, 1Vl o )lu=vil oo 16 o0
<

Cop(llul 50 101 o)t = v 00

22
”r(l/)l:l(u v )”H;quﬂ*1

IA

2 2
IT @) gyso 10@ = v 51041
Hyq Hyq

I\

vl ysedllue+ vl e lle— vl 50
WV e HyY, H,

IA

Colull yso, 10N ysod)llu—vll 0
Hyg Hyg Hp4
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

||(T(U)—T(u))VDvllH;qu,e—l = ||F(v)—T(u)llH;,zllUDVllH’sz;,e—l
< Ul 150, VN yso) 11— Ul 1ys0 | 0] 2ys0 1TV 4ys-1,0-
gl ”H;,,,’” ||H;‘q)|| ||H;‘q|| ||H;_q|| ||H;‘q 1
<

Colull yso, vl so)llu— vl yso
Hyg Hyyq Hyyg

IT@vB@ =l o100 = AT gso VD@ = )l o101
= gUllull oIl oo 1D = W)l o101
= Collull yso, 1Vl gso)llu= vl yso
IT@) v - wBull gsro-r = AT@ oo (0 = wDull 10
= gUlull o NIDull pro-rllv = ull oo
<

Copllul 30, 101 o)t = vl 00

The constants in the nonlinear estimates do not depend on time. However, since the constants
in the linear estimates do depend on time, the usual fixed point argument apply: by choosing
the time of existence small enough we can assure the existence of a unique local solution. [

In the last part of this section we apply Littlewood-Paley techniques to prove the multiplicative
properties of H;’Z spaces: Propositions 34 and 35. Let us start by derive the corresponding
Strichartz estimate in the context of H;,’,% spaces that will be used in the sequel. Recall from
Appendix A the frequency-localized Strichartz estimates for half-wave propagator: let (p, g, s)

a Strichartz admissible triple, then for every dyadic number A € 27:

1eX ™ Py fllrra SASIPAS I

Lemma 36 (Strichartz inequality for modulation cutoffs). Let (p, q, s) a Strichartz admissible
triple then for every j, k € Z we have

k jl2
1PLQjullrera S 25272 PLQjuli 212

Notice that s = n/2—-1/2—n/q and it is zero only when (p, g) = (2,00) the energy couple, when
(p, q) = (00,00) one loses the maximum in the previous bound since s = n/2. On the other
hand when p =2 and % < g <oo ones loses a factor of s =n/2—-1/2—-n/q. Finally if (p, q)
are sharp, i.e. 2/p+(n—-1)/2=(n-1)/2, oneloses s = (n/2+1/2)(1/2-1/q) for 2 < q < 222

n-3°
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1.7. Wave maps equation

Proof. By definition of frequency and modulation cutoffs we have

PrQju(t, x)

ff eitr+ixf(pk(§)(pj(|-[| —I&Nu(r, &) dédr

ff e T o () [ (T~ 1EN Ts (7,6) + (T + |ED T (7,)] dEdt

feitrfeix'f+it|'f|(pk(f)(pj(T)ﬁ+(‘l'+|5|»€) dédr

+

feitrfeix{—itlfl(pk(f)(pj(T)ZZ_(T—|<f|,f) dédr

fei”(e‘”DPkayj&)(x) dT+fei”(e_”DPka,j,_)(x) dr

where U, (7,¢) = yrr=03 U(7,¢) and ﬁ,j,i(g‘) = @@ u+(r +[¢l,¢). Therefore Minkowski and
Cauchy Schwarz inequalities yield to

. +itD .
1PQulygry S [N PPfy el g dr

N

2ks f Py fr,j,: 2 dT

oks f 19 (v + 18,0l 2T

2513 2 1k @0 (0 s (T £ 11O 22

IZANR AN

ksojl2
2k2072| pQjull 2 2

where $j is such that (ﬁj(pj = ;. O

Corollary 37 (Strichartz inequality for HZ’q spaces). Let(p, q,s) a Strichartz admissible triple
and0>1/2 forq=1o0r0 =1/2 for q = 1. Then for every k € Z we have

IPeuell e S 25 Prull g
k
Moreover, let (p, q, s) a Strichartz admissible triple and 0,0 € R, we have

1PkQjull s < 2557021020 PQiull 004
k

Proof. The proof follow from an application of Holder inequality and Strichartz inequality for
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

modulation cutoffs. We have
o 1/2
1Pulrs S [ 1PeQjul
j=0

ks > o 2 172
S 28| X 21PcQull.
Jj=0

ks oo 6 q /g1 & j1—-20)r 1/r
S 28X @IPQuleT| | Y 270720 ]
j=0 j=0

where 1/2 =1/g + 1/r, the second sum converges since 8 > 1/2. This conclude the proof in
the case @ > 1/2 and g = 1. If g = 1 we can simply used the embedding ! c I? instead for
Cauchy-Schwarz to obtain

ks[ N (02 212 ~ ks N ji2
253 @I PQulep?] T S 25 Y 21 PeQjul o
j=0 j=0

In the proof of the multiplicative properties of H;’Z spaces we shall need the following fact
about the PrQ; multipliers.

Lemma 38. For every ki, ky, ks and j1, j», js we have

Pk3Qj3(Plejlqu2Qj2 v)=0

unless one of the following cases is satisfied:

i. LHH - low modulations: k) < ky = k3, j12 < k.

ii. LHH - med modulations: ky < ky = ks, ji2 = ji2 > ki and js 3 juzy.

12

iii. LHH - high modulations: ki < ky = ks, jim, > max{jl2  ki} and j3 = ji2,.

iv. HLH - low modulations: k, < k; = ks and j1% =< k».

v. HLH - med modulations: k, < k1 = ks, jrlnzin ~ jl2 >k and js 3 jL2..

12

vi. HLH - high modulations: k, < ki = ks, ji%, > max{j}2  k,} and j3 = jiZ,.

vii. HHL - low modulations: ky = k - k3 and j123 =< k12

max ~v Ymin”

viii. HHL - med modulations: k\ = ky 77 ks, j2 = jiza, > kiz, and js 3 ji2..

ix. HHL - high modulations: ki = ky 77 k3, jaz, > max{j'2  k2.} and j3 = ji2,.
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1.7. Wave maps equation

The cases i., iii. and vii. in the literature are sometimes referred to as hyperbolic regime,
while the remaining cases are called to elliptic regime.

Proof. Observe that

Supp grvf(Pkl Q]1 qugQ]g v)
= suppPy, Qj, u +suppPy,Qj, v
=@, O R T =141y, E =81 +E, 28 (& s 28 20 <7y - gyl = 20

Moreover we have [é)2 |- Iélllfinl <[El <2 1+ Ig‘ﬁnl, where 12 = max{¢}, &} and Egin =

min{¢y,&,}. Hence
k2 —1 K2 +1 k2 +1 K2 +1
2%max™+ — 2% min <|£|<2 max™ + 4 2 %min

Suppose there is some separation between the two inputs frequencies: k2 < kl2 -4, then

min
clearl
Y kngx (9=1 _ 93 Kz (93
2fmax (270 —27°) < |€] < 2"max (277 4 2)

which implies k3 ~ k2. On the other hand if there is no separation between the two input

frequencies: k12, -3 <k!? <kl2 then the lower bound on the sum is lost and we obtain:

min

1&| < 2Fmax (273 4 2)

which implies k3 < kllnzaX +0().

Furthermore, let us analyze the sum of the modulations. A similar bound as for ¢ holds for 7,
indeed we have
27 2 il = 1&ill = |7yl = 1€l = 7] = 25+

and
ji+1 ki—1
20 = | + &1 = =Tl + & = =7+ 2%

Hence
Zki—l _2ji+1 < |Tl| < 2ki+l +2j,‘+1

We can control the outer modulation from above by the following argument. If || > |¢| then
11 =111 = 171 = 1] < [Tmax| + [Tmin] = [max| + [§min| < 2/mtT 4 2/mn 1 4 o2,
Moreover, if | 7| < |€] then
171 = 1€l = =171+ 1] < =|Tmax| + [Tmin| + 1€max] + [Emin] < 27ma T 4 2Jmint1 g plnint2,
Therefore by using the previous bounds we obtain
17 = [§1] < 2Jmax*t 4 2Jmin L 4 plomint2
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

To obtain a lower bound on j3 we proceed as follows. If |12, | > |¢12, | observe that

12

Tl [EN =TI [E] = |Tha] = Than ] — 1€ byl — 1€
12 12 12
= 1T max] — 1l = 7o = 1E2
> zjrlnzax_l _zjr1112in+l —2k1£12111+2

On the other hand if |712,,] < |12, | a similar argument yield to the same lower bound:

12

Izl =1l =z -1zl +1¢] = —I vl = 1T + 1€l = 10200
12 12

= Tl — 10 II—ITmmI 1¢ nyin |

2]max_ — 2]min+l — 2krlnzm+2

v

Therefore we have obtained the needed control over the outer modulation:

P12 212 12 . 2 .
zjmax 1 _ 2]m1n+1 —zkmin+2 < ||T| _ |€|| < 2]max+1 + 2]m1n+1 +2kmm+2.

12

From the previous estimate it is easy to see that the lower bound is negative if j}2, < koo +
O(1). This correspond to cases i., i v. and vii. where we only obtain the upper bound on the
output modulation jz < k! +O(1).

Moreover, if we suppose that j12, > kllnzm + O(1), then we shall split further into two sub-cases.
Firstly, if there is no separation between the inputs modulations, that is if j}2 =~ ]mm, then
the two modulations can cancel out and give a much smaller outer modulation. Hence in this
case, which correspond to cases ii., v and viii., we have the bound j3 < j,lnzmC + O(1). Secondly,
if the two inputs modulations are separated, i.e. ]mm « ji2  then we finally obtain a lower

bound on the output modulation:
Jneax + O() < j3 < joz +O(1)

which implies iii., vi.and ix.. O
We are now ready to prove the algebra property of H,; 59 g spaces.

Proof of Proposition 34. Recall that one can view H;,’,% as an [” Besov space with base the

s,0,q9

space H;”" therefore it suffices to prove the following two frequency localized estimates:

(High-output) Let k; < ks, if p>1and @ <0, orif p =1 and a <0, we have

k
I Picy (Prey uPre, V) 0.0 S 25 N Prey el 50,0 | Py VIl s
ks ky ks
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1.7. Wave maps equation

(Low-output) Let ky > ks, >0, and a + B <0, then we have

k k
1Pk, (Pr, uP, )| 5.0 S 25299 Pl oo | Py 01l 00
k3 ky ky

Let us start by proving the low output estimate. By splitting further u = Z‘]’.‘;O Qjuand v =
Z‘]’.‘;O Qjv we obtain three different terms: one in which the three modulations are smaller
then the lowest inner frequency and the other two which the maximum inner modulation is
higher then the lowest inner frequency. By Lemma 38 we obtain

; q
1Pk, (PP )l? ,, = 2959 3 (X % 2P01PgQp (P, QP Qv
k3 Jsski ik josk

+

i q
205y (Y 2B, Q) (P, Q) P, Q) Vo)

Js ~ izmaxiky, js}

’ ) q

+ qujs Z (22]30||Pk3Q]'3(Pk10]'1 qule3 V)”2)
j32k1 jl

HHL;+ HHL;;+ HHLjj;

Observe that in the HHL;; and HHLj; terms we have suppose without loosing generality
that j, = max{j, jo}. The the low modulations term HHL is slightly harder to estimate and
requires the application of Holder and Strichartz inequalities in the following clever way:

1Pk, Qj, (P, Qj uPr, Q2 S 1Pk, Qjy utll 2+ oo | P, Qj, Ul oo g2 1.9
< 2RORRIR2RR 29012 P Q) ull 1Py, Q) vl

Therefore if g =1 and 8 = 1/2 the j; and j» sums decouples and we simply have

k j360 k1 (-2 /2-1/2
HHL; 5 2 38( Z 2J3 )2 1(=2s+n +)||Pklu||Hli,11/2,1 ||Pkll}||H;,11/2,1
J3<k

< 2R C2SHORNIZENZN ) by e || Py v sz
ky ky

Therefore @ = 25+ 60 + n/2—1/2+ and f = s. On the other hand if g > 1 we must use Cauchy-
Schwarz in j; and j, sums and to have convergent reminder we must impose 8 > 1/2. In this
case we obtain

j -2 2—-1/2
HHL; S 2‘77638( Z 2]394)267761( s+n/ /+)”Pk1u”2xﬂ,q|lpk1V”Zs,e,q

Js=k ky ky

S 2qk382qk1 (=2s+0+n/2-1/2+) ”Pkl u”q o0 ”Pkl v”q s
Hk'l' Hk'l'

This conclude the estimate for HHL;, notice that it is sharp in terms of s and 8. Contrary, as
we shall see, the estimates for the high-outer-modulation terms HHLj; and HHLj; are not
sharp: they require just s > n/2. Indeed, to estimate HHL; we put the term Py, Q;, u into L™
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

and the term Py, Q;, v into L2, then Strichartz estimates and Cauchy-Schwarz inequality yield
to:

—¢j P12 q
HHLy S 296s20Rni2y oeha)( 5 202200 by ull| Py, Qj vil)
J 123
3 -2 2 —€J3
< 2dksspqki(=2s+n/ )Z(g 6]3q)|lpk1u”j{;ﬂ,qnpkll}”?{;.ﬂ,q
J3 1 1

Observe that the j3 sum converges and we have controlled 2/1/22/536+€) < 210210 since § > 1/2
and jz < j;. Therefore this estimate holds for just s > n/2. To estimate the HHLj;; term
we proceed in a similar way: we put the lower-inner-modulation term Py, Qj, u into L* and
the higher-inner-modulation term Py, Qj, v into L?, then we apply Strichartz estimates and
Cauchy-Schwarz inequality. This yield to:

. . i q
HHLy S 296520002y 019 Py Q) vllo) (327 211Py, Q) ulo)
Js J1

qkssoqk(=2s+n/2) q q
S 2782 1Pt 4 VP 1

Observe that the j; and j; sums decouples, moreover in the last line if g > 1 we use Cauchy-
Schwarz in j;-sum and the hypothesis 6 > 1/2 to control the reminder, whereas if g = 1 and
0 = 1/2 there is no need to use Cauchy-Schwarz. This conclude the proof of the low-output
case.

Consider now the high output interaction. Thanks to symmetry it suffices to prove the LHH
interaction case. Moreover, Lemma 38 allow us to split the LHH term into three cases:

i q
1P P uPe, o), = 2790 T (X Y 2P1PL Q) Py Q) uP Qi)
k3 j3$k1 j]SkleSkl
i q
+ 2qk352( > 2]36||Pk3Qj3(Pk1Qj1upk3Qj1V)||2)
Js ~ jrzmaxiky, js}
; q
+ 200 3 (3 250 Q) (P, Q) uPk, Q0o

T

LHH;+ LHH;+ LHHypg

Here we cannot suppose that j, = max{j, j»} since the two inner frequencies are not the same
anymore. To estimate the low modulations term LH H; we put the low frequency term Py Q;, u
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1.7. Wave maps equation

into L?* L* and the high frequency term Py, Q j, Vinto L*®1?, then Strichartz estimates yield to

_ . . . q
LHH, S 290 Y (Y 3 2Riesl2nai0phi2oki2yp ; ula| Py, Q) vlls)
jSSkl jlskljgﬁkl

50 k(- /2-1/2
< ( Z 23 q)zq 1(=s+n +) 1Py, u”j{&g'q I Py, U”ZS'M
jaski ky k3

ki (=s+0+n/2-1/2+
< odki-s+0+n NP ull? 1P,
Hk1 Hk3

We have used the ubiquitous Cauchy-Schwarz inequality in j; and j» sums when g > 1. Next,
to control the middle modulations term LH Hj; we place Py, Q;, v into L? and Py, Qj, u into
L*°. We then obtain

O q
LHHy 5 270 % ( 3 202200202y Qj ulla 1 Py, Qy, e

J3  h=j3
ki (= /2 —€J-
< 20k DN mehd) P ull? |, 1P,
J3 Hyy Hy,

Here we have used the fact that 2/1/22/30+€) < 2102119 Next, we prove the estimate for LHHjj;
we split into two cases: firstly suppose that ji2 = j; = j3, then we place the low frequency
term Py, Qj, u into [?L* and use Bernstein inequality. The high frequency term Py, Q j» U gOes

into the energy space L*°L? and here we use Strichartz inequality. This yield to

LHHy S 279% Y (282200202 )P Qulls 1 Pe, Qv
jszki " j2
; ; q
20k520812 Y 219 Py, Qjull2) Y X271y, Qp, vl2)
Js J2

Ky (=s+n/2
< 2dkesnRype ) 1Pl L,
H,Cl Hk3

N

Secondly, if ji2 = j» = j; then we place the low frequency term Py, Q jyuinto L°L™, use
Strichartz and proceed as in the previous case.

We summarize below the different @ and § obtained in the estimates above:

HHL, HHL;; HHL; LHH; LHH;j; LHH;
a| -2s+0+n-1)/2+ =2s+nl2 -s+n/2 -s+mn-1/2+0+ -—-s+n/2 -—-s+nl/2

B s s

Notice that the +¢ in the estimates above comes form the fact that we have used the L2+ L®
Strichartz estimate, hence it can be removed if n = 4 since the pair (2,00) is Strichartz admis-
sible in higher dimensions. To control the HHL; and HHL; terms —s+ (n—1)/2+0+ <0
suffices; however the bounds for LH H;, LHH; and LH Hyjj requires, if p > 1, the strict inequal-
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

ity—-s+(n—-1)/2+60+ <0,and onlyif p=1 (and n = 4) we can relaxitto —s+ (n—1)/2+6 =0.
This is the reason why when n =4 and both p = g =1 we obtain s — (n—-1)/2 =6 = 1/2 which
gives s = n/2. This conclude the proof of the algebra property. O

We now prove the second fundamental asymmetric multiplicative property of the H%? spaces:
Proposition 35. In the argument used in the proof it is necessary, to estimate low modulation
terms, to replace Strichartz estimate by the following weaker Bernstein inequality.

Lemma 39 (Bernstein inequality). Letp,q=2 and j, k€ Z, then

PLO: < J ok3FomkG=Dp o
IPeQjull e S maxi2!, 2552 7» 2" Pl 2

Proof. We shall distinguish between two cases: modulation lower then the frequency, i.e.
j < k, and modulation higher than the frequency, i.e. j = k. Let us introduce the following
cutoffin time T< u(t,x) = 9{1[(p5k(1)9tu(r,x)]. If j < k then PrQ; = T<x12PrQj since

supp PrQju = {(r,&):2F 1 <jg =28 277 <7y - (¢ s 27HY)
c {r,: 2 <je =2k <2k

Therefore Bernstein inequality in time and space yield to the desired estimate
k(3=3)pnk(3=7)
I1PrQjullppra 5272 P27 2 a7 || PrQjull 22
On the other hand if j = k then PxQ; = T<+2PrQ; since
supp PxQju = {(1,&):28 P <jé1 =28t 207 <r) - (¢ s 207
c {@8: 2" =g =28, jrl <27t
Thus we obtain the bound
(11 11
1PQjull e 27270 2" 70 PeQjull 2y

O

The Bernstein inequality proved above is useful when one wants to control a frequency
and modulation localized function in mixed Lebesgue spaces with high (greater then two)
exponents, with the L L? norm. On the other hand, a cleaver combination of Bernstein and
Minkowski inequalities allow one to control the L? L? norm of a modulation localized function
with its LPL? norm, where 1 < p < 2.

Lemma 40 (L2 — LP Bernstein inequality). Let1< p <2 and j € Z, then

ifi_1
1Qjullzzr2 5,2](” 2)||qu||LpL2
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1.7. Wave maps equation

Proof. By Plancherel we can write
1Qjullzzr2 = llg;(Izl— |€|)L7(T,§)||L§E(Rn+1) =gzl 1SN (T, iz IILg

If we define 71 (7,¢) = y+r>0lU(T, ) we have

gzl —IEDu(T, ) 2

IA

(T~ 1EN T (7,1 2 + 0 (T + DT (7,0 12
g (0T (T +1E1, )l 2 + 0 (D E- (T~ (€], )l 2

Define the functions fx (7,&) = i (7 + |¢],€), then Bernstein inequality yield to the bound

(eI - €D Ol z <173 .1z 2767y ol

Therefore if we estimate its Lé norm, by Plancherel and Minkowski inequality we obtain

AL_1 ~ i(L_1 i(L_1
IIquIIL¢L§§2’(” z)nnT]—fi(-,&)an;lugszf(n Z)IIIIquIILgIILi,SZ’(ﬂ 2)||||qu||L§||L¢

Notice that Strichartz inequality implies Bernstein inequality in the low modulation regime
and at high modulation the situation is reversed. In fact we have

2 p a2 ifj<k

; 1_1 1_1
max(2/,2%}27r 2" ) = ke
2 ifj=k

2JG=3) k(G4

and if j < k we have
n_1 ﬁ

2]/22]68 — 2j/22k(§—;—; < Zk(g—g—g'*'%)

while if j = k we obtain

n

2J129ks _ 9jl29k(5=5-0) 5 5i(G=3) ok (5= )

Proof of Proposition 35. Due to lack of symmetry here we must prove following three fre-
quency localized estimates:

(LHH) Letk; < k3, if p>1and a <0, orif p=1and a =0, we have

k
| Py, (P, uPy, v) ”Hs—l,ﬁ—l,q S289 Py, u”Hs,H,q | Py, V||Hs—1,6—1,q
ks ky k3

(HLH) Letk; < k3, if p>1and a <0, orif p=1and a =0, we have

”Pk3 (Pks qu2 V) ||Hs—1,e-1,,,
k3

~

k
<291 Pkyul o0 | Py Ul 51010
3 2
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

(HHL) Let kj > ks, >0, and a + § < 0 then we have

I|Pk3 (Pkl qul U) || H;;I,H—l,q

~

ksBok
280299 P wl oo I Py 01l ps10-14
Ky Ky

Let us begin by proving the high-high-low interaction case.

i. High-high-low interaction: based on the proof of the support property of the P, Q; multiplier
of Lemma 38 we split further into three cases:

ks(s—1 5 (0—1 q
1Py (P uPe I gy = 2959670 3 ( Yy 2kt )||Pkso,-3(PkIQj1quIszv)nz)
k3 J3ski jisk o<k

— j - q
4 k(s 1)2( Yy 2k 1)||Pk3Qj3(Pk1Qj1qu1Qj1V)HZ)

Jjs  jizmaxiky, js}
ks(s—1 j3(0—1 q
+ 20k )Z( Y 2n )||pk3Qj3(Pk1Qj1uplejZV)”z)
j32k1 jélzax:jii

=: HHL;+HHL;+HHL;

To estimate the low modulations term H HL; we have to be careful since the exponent of the
outer modulation j3 is negative we cannot gain some smallness form the sum 3, <1, 2Js60-1
However here we invoke Lemma 40 to obtain a factor 2/3/2 which make the j3 exponent
positive:

1P, Qj, (Pr, Qj, uPr, Qj, Vll2 S 272 P, Qp, (Pr, Qj, Pk, QW) I 112

Now we apply Strichartz inequality mimicking the proof of the algebra property:

1P, Qjy (P, Qj, uPt, Qi )2 S 28"2|1 Py, Qjy ull 2+ 1o Pr, Qj, Ul 1212 (1.10)
S 2A0ERERN 2RI P Qi | P, Qv

We have to place the term Py, Qj,v into H $~16-14 therefore we need the factor 2722 inside

k
the square sum in order to apply Cauchy-Schwarz, since we have the bound j, < k;, we can

obtain it by paying a factor 2%/, We obtain

_ i (0— i _i q
HHL[ 5 2(]’63(5 l)zqkl (n/2+) Z (2(»7]3(0 1/2))( Z 2]] /22 ]2/2”Pk1 Q]l M||2||Pk1 sz v||2)
Js=ki Juj<ki

Hence Cauchy-Schwarz in j; and j, sums yield to

k3 (s—1 k1 (-25s+0+n/2+1/2
HHI; 5 249 3(s )2(7 1(=2s+0+n/2+1/2+) ”Pkl u“j{&g_q ”Pkl Ul|2s71‘971'q
k1 k1

which is exactly the HHL estimate we wanted where a = -2s+0+n/2+1/2+ and f=s—1.
Next, to estimate the middle modulation term H HL;; we shall use a similar procedure as
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above except that we replace Strichartz inequality by Bernstein inequality in (1.10):

I Py, Qj, (Pk, Qj, uPr, Qj, V)l2 272\ Py, Qjy ull 20 I Pry Qjy vl 212

kini2ojs/2
22BN Py Qj ull2 | Pr, Qjy vl

IZANRZA

Therefore

. —ej i (0— q
HHLy § 20000202y (omeha)( 57 phO-V249) b Q; ully || Py, Qj, vl )
s J12Js

N

2 (5— i i (O— q
20k (s akni2('§ 210210V} Py Q ullo |1 Py, Qj, Vo)
n
ks(s—1 k(=2 2
S zq 30 )zq Hmastnl )”Pklunzpﬂ.q "Pkll/”ZIS—LB—Lq
k1 k1

Next, to estimate the high modulations term HHLjj; we first suppose that j; < j» which
implies j» = j3, then we proceed as follows: we place the low inner modulation term Py, Q;, u
into L and the higher inner modulation term Py, Qj, v into L?, then Strichartz estimates yield
to

ks(s=1) o qkin/2 i3 (0—1 /2 q
HHLyy $ 2706 029km2 5 @hO0-D) p Qw9 Y2121 Py, Qj, ula)
j3 jl
-1 —25+1+n/2
S 2‘”63(8 )zqkl( s+ +n/)”Pklu”ZIS.B,q”PklU”;,_Isflﬂfl,q
ky ky

Observe that in the last line if g > 1 we use Cauchy-Schwarz and the hypothesis 6 > 1/2,
whereas if g = 1 and 0 = 1/2 there is no need to use Cauchy-Schwarz. In the case j, < j;, which
implies ji = js, we place Py, Qj,u into L and Py, Qj, v into L?, therefore we obtain

HHLyy 5 2006 0a0hn/2 5 (5 2h0D202 b ) ullp| Py, @, vl
J3=k1  J2
< 2L7k3(8—1)2¢1kln/22‘4(2]'39”Pk1 Qj3unz)ﬁl(Zz—jz/Z”Pk1 Qj, V||2)q
Js J2
5 zqk3(5—1)2qk1 (—=2s+1+n/2) ”Pkl u”q
H

q
5,0,q ”Pkl U” Hs—l,G—l,q
ky ky

We have used the fact that j, < j; = j; to bound the extra 2753’2 term by 27/2/2, Notice that in
the last line we have used Cauchy-Schwarz inequality in j, sum. This conclude the proof of
the low output case.

ii. Low-high-high interaction: let k; < ks. As in the previous interaction, Lemma 38 allow us

67



Chapter 1. Low-regularity local well-posedness theory in flat spacetime

to split further into three cases:

ks(s—1 j5(0—1 q
1Py (P uPe I gy = 2959670 3 ( Yy 2kt )||Pk3Qj3(Pk1Qj1upk3Qj2U)||2)
k3 Jasky jisk jo<k:

— i - q
4+ 2dks(s 1)z( Yy 2k6 “||Pk3Q,~3(Pk1lequ3lev)llz)

js  jizmax{ky, ja}
ks(s—1 i (0—1 q
+ 29k )Z( Yy 2n )||Pk3Qj3(Pk1Qj1qug,ngV)”Z)
Jszky =

=: LHH;+LHH;+LHH]

To estimate the low modulations term LH H; we follow the argument use to bound HHL;.
Lemma 40 and Strichartz inequality yield to

j3/2
1P, Qjy (P, Qj uPr, Q)2 S 2521 Pr Qjy ull 2+ 1o | Piy Qv 1212
S 2A0ERERN 2RI P Q2| P, Q) vl

Moreover, the restriction j» < k; and Cauchy-Schwarz in j; and j, sums give

_ . _ . o q
LHH; < 27kt-hadhinizo § (2%(9 “2))( Y. 202 ]2/2||Pk1Qj1u||2||Pk3ngv||2)
js=k Jui2<k

< qki(—s+0+n/2-1/2+) q q
N 2 ”Pkl u”HZ'lH'q ”Pk3 yllH;;l'e_l'q

Next, we estimate the middle modulation term LH H;;. We shall proceed as in HH Ly, that is
using lemma 40 we shall place Py, Qj, u into L?L* and apply Bernstein inequality. Then we
obtain

_ —ej i (O— q
LHHy 5 2086 0p0hni2 g (p=eha)( 57 2hO-250) e @ ully )| Py, Qj, Vo)
Js h=js
-1 2 -1
S 20k Daakin2( 302100y Py Qj ull | P, Qj, v1l2)
1
< zqkl(—s+n/2) P. u q P v q
IPs 0 VP VI

Next, to estimate the high modulations term LH Hjj; we split further: first suppose that j; < j»
which implies j, = j3, let us place Py, Q;, u into L* and Py, Qj, v into L?, then we obtain

_ i (0=1)n ] q
LHHyy $ 20006 D20kni2 57 (572800202 b Qj ully | Py, Qv
Jszki " i

_ i2(0— i q
S 29k D2y ROV P Q) i) Y21 1Py, Qj ulz)
J 71

ki(—=s+nl/2 q
< 2tk pe ) Pl
Hp Hy,
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On the other hand if j» < j; which implies j; = j3, let us place Py, Q;, u into L*° and Py, Qj,v
into L?, then we obtain

- i (0=1)n ] q
LHHyy 5 2966 0a0hni2 57 (37 2b0 Db /2 py Q) ulla 1Py, Q) e
Jszki  Jja

_ ; i q
S 20k Daahin2y 010 b Qjul) (Y272 P, Qv
J3 J2
ki(—s+n/2 q q
S 27TTEP Ul P VI
ky k3

We have used the fact that j, < j; = j3 to bound the extra 27/3/2 term by 27/2/2, This conclude
the proof of the low-high-high case.

iii. High-low-high interaction: let ky < ks. As in the previous interaction, Lemma 38 allow us
to split further into three cases:

2 (5— i (O— q
1Pk (PruP !y = 299670 Y (8 Y 2B0D)Pg Qp (P Q1P Qv

ks J3<ks " j1=ks jo<ko

i o q
L 2aks(s 1)2( Yy 2B 1)||Pk3Qj3(Pk3Qj1MPk2Qj1V)HZ)

J3  jizmax{ky, j3}

_ i (0— q
+ 20060 3 (5 2O (P, Q) uPk, Q) 1) o)
Jazks jrgax:j3

=: HLH;+ HLH;;+ HLHjj;

To estimate the low modulations term HLH; we follow the arguments use to bound HHL;
and LH Hy: suppose n = 4 then Lemma 40, Strichartz and Bernstein inequality yield to

j3/2
S 2B P, Qj uP, Qj, vl g2
< 2]3/2||P]C3 Qjy ull g2 p2n1-3 | P, Qi Ul 2 p2ms3
<

k3 aky,(n/12—=3/2)nj1/26073/2
2kspkan/2=31209 1121512 b Qj ull2 1| Py, Qj, vl

| P, Qj, (P, Qj, uPr, Qj, ) l2

Observe that the pair (2,2n/(n — 3)) is Strichartz admissible for n = 4. Thus we insert this
bound into V and apply Cauchy-Schwarz in j; and j, sums, we then obtain

_ i (0— i q

j3$k2 leijZSkZ
ka(6+ni2-3/2 q —jal2 q
< 2kl WP ul? (X 2721, Qo)
kg " jo<ks
ko(—s+0+n/2-1/2
S L 1

k3 kp

Thus estimate for HLHj holds for n = 4. Let us consider the case n = 3. Here we modify slightly
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the Strichartz pair used. From Hoélder inequality we have

||Pk3 le quz sz V12 5 ||P]C3 le | 12 00— ||P;C2 sz V|l f2r2+
S Py Qji g2+ poo- | P, Qj, vl 2 12+
1 1

where 537 =3—€ and # := €. Observe that the pair (2+,00-) is Strichartz admissible in

dimension n = 3, therefore
k3(1-2 3k j1/2
1Pk, Qjy uPk,Qj, vl iz $ 200720230202 P Q) 1 121211 Py, Qj, vl 122

Thus if we insert this estimate into HLH; we obtain

_ i (0— i q
HLH; 5 276072920k 5 (pah@UD)( 57 5 2002 P ula| Py, Qo)
j3$k2 jlikz j25k2

k(6 ~jal2 q
2qkz(0+¢) ||Pk3u”2s,9.q( Z 272 ||Pk2Qj2U||2)
ks " jo<ks

ko (—=s+0+1+
200 b |, NPV
Hk’s' sz' ’

A

N

Since in dimension 7 = 3 our hypothesis gives —s+ 0 + 1 + € < 0, the estimate of term HLH is
completed.

Next, we estimate the easier HLH;; and HLHjj; cases. To control the former we proceed
exactly as in HHLy; and LH Hyy, by applying lemma 40 and placing Py, Q;, v into L2L* and
apply Bernstein inequality. Then we obtain

ks(s—1) ko n/2 -€j j3(0-1/2 9
HHLy 5 296l Dpkni2y (omeha)( 37 2h @120 py Q) uls| Py, Q;,v1ls)
IE hizjs
0. q
-1 2 -1
< 2dk(s-Dpqken! (22]1@2]1(9 )||Pk3leu||2||Pk2leU||2)
7
< quz(—s+n/2) P u q P v q
I Pk, IIHzf,_qII k. IIH;;_B,I_[,

The estimate of the high modulations term HLHj; is reminiscent to LH Hjj, let us split in
two sub-cases: j; < j2 and j» < j;. Consider the latter, then j; = j3, let us place Py, Q;, u into
L? and Py, Qj,v into L™, then we obtain

_ i (60— i q
HLHyy 5 27lDaakn/2 57 (3 hODoki2p ) ully| Py, Qj, vll2)
Jszkz " J

A (5— , . -, q
S 20R6Daakn2y 10 P Q) ull) (Y2721 P, Qp vilo)
s J2

ky(—s+n/2
< pak(-stn )||Pk3u||q59,q”szU”qs-lg‘l'“
Hk’3 sz '
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1.8. Maxwell-Klein-Gordon and Yang-Mills equation

since k» < k3. On the other hand if j; < j,, then j» = j3 and we obtain

2 (5— i (60— q
HLHy;; $295070 3 (320070 )1Py, Q) (P, Q) 4Py, Qv
jszky

Here we have to be careful since we shall avoid to raise the power of the high modulation j3
and the high frequency k3. Thus we cannot use Strichartz inequality to both terms as we did
previously, instead we will rely on Bernstein inequality. We obtain

S ||Pk3Qj1u||LooL2||Pk2Qj3V||L2Loo
ko (nl2

< 2202 P Qj ull o2 | P, Qjy vl 122
ko(n/2)oj1/2

< 2002021 Q) ull2 | P, Qjy vl

| P, Qj, (P, Qj, uPr, Qj, v)l2

Therefore

_ . _ . q
HLHyy S 2706 Dpakmd 5 (57 2h0-D20i2)p Q; ulls| Py, Qj vlla)
J3zk:  1=)3

_ . _ . q
20k =Dk 5 1 OD) Py Qi) ( Y 2721 Py, Q) o)
s i

ko(—s+n/2 q
< 20y p ) L PG
HyY H, ™

N

since ky < k3. This conclude the proof of the high-low-high interaction case, and thus the
proof is completed. In the table below we summarize the different & and  obtained in the

previous nine estimates:

HHL; HHL, HHLyp; HLH;, LHH; HLH;, HLHpg
LHH;;, LHH[;
a | -2s+0+n/2+1/2+ —-2s+1+n/2 -s+(n-1/2+60+ —s+n/2
B s—1 s—1

1.8 Maxwell-Klein-Gordon and Yang-Mills equation

This section is devoted to the proof of the following local well-posedness result for Maxwell-
Klein-Gordon and Yang-Mills equation, which is based on [45] and [105]. See also [97] and
[98] for global results in critical Besov spaces.

Theorem 41. Letn =3, p =1, and s > n/2—3/4, then there exist an unique local solution
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ue C([o, T],styp([R{”)) nc(o, T],BZS,"H1 (R™) to the Cauchy problem

Ou= N@u,ou)

(4,0:W)l ;=9 = (g, 1) € By ,(R™) x By | R")

where N(0u,du) is a linear combinations ofN,-j(u, v) = Rjudjv— Rjud;v null-forms. Moreover
ifn=4andp =1 onecan takes=n/2—3/4.

Notice that we can combine the two null-forms D' N; j(0u,0u) and N; ]-(D‘lau, Ou) present
in the Maxwell-Klein-Gordon and Yang-Mills type equations into one by means of the Riesz
transform, in fact

Ni]-(D‘lu, v) = Rijudjv—Rjud;v= Nij(u, V)

and
D_lNij(u, V) :Riuajv—Rjua,-v+ija,-u—Rivaju:Nij(u, U)—Ni]’(l}, u)

Therefore, as far the schematic form of Maxwell-Klein-Gordon and Yang-Mills equation are
concern, it suffices to prove an estimate for N, which is defined as a linear combination with
constant coefficients of N; j null-forms. The only inconvenient is that N is not symmetric
anymore. The result of Theorem 41 is not optimal in the sense that it does not reach the scaling
critical threshold s = n/2 — 1, nonetheless it is the best result available if one doesn’t modify
the H;,’Z norm [46]. Moreover in view of [70], Theorem 41 is optimal in n = 3. The proof of
Theorem 41 follows from a contraction argument. From the linear theory developed in §1.5 it
suffices to prove the following nonlinear estimate.

Proposition 42 (MKG and Y M multiplicative estimate). The multiplicative estimate
N, V) 5101 S Null o0 101 s,
1N ( )Ial‘qw 1 Sl ”H,,f, l ”H,,f,

holds in the following cases:

n=3, p>1, g>1, 1/2<0<1, s—(n-3)/2>0, ands+0>n/2
n=3, p>1, qg=1, 0=1/2, s—(n—-3)/2>0, ands+0>n/2
n=z4, p=1, g>1, 1/2<0<1, s—-(n-3)/2=0, ands+0=n/2

The two conditions s > n/2—-3/2+6 and s+6 > n/2 are both satisfied in the region highlighted
in Figure 1.1. It follows the bound s > n/2 —3/4 for 8 = 3/4.

Before proving Proposition 42 let us consider pure N;; null-forms without Riesz transform.
We have the following:

Proposition 43 (N multiplicative estimate). Let N be a linear combination with constant
coefficients of N; j null-forms, then the multiplicative estimate

N, V) ys-ro-1 S Nutll 0 N0 550
’ Hy4 ~ Hyyg Hyyg
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ST

ST
|
\S][o8)

s> nl2-3/2+6

Figure 1.1: Maxwell-Klein-Gordon and Yang-Mills null-forms

holds in the following cases:

n=3, p>1, g>1, 1/2<0<1, s—(n-1)/2>0,
n=3, p>1, g=1, 0=1/2, s—(n-1)/2>0,
n=4, p=1, g>1, 1/2<60<1, s—-(n-1/2=0,

ands+0>n/2+1
ands+0>n/2+1
ands+0=n/2+1

In Figure 1.2 we highlight the region where both conditions s > n/2-1/2+0 and s+0 > n/2+1
holds. It is clear then that s > 7 + ;11 when 6 = 3/4, which gives an improvement of 1/4 over

Theorem 7.
s
n
RN
R ,s>nl2-1/2+6

A g

n 1 | N |

211 AN
[ N
17 l Nl
e | AN

//\ | [N
, | | AN
, | | | N
// : : : \\\
1 /’ | | | N

g—z | | | \s>n/2+1-0
| | | N
1 1 1
1 3 1 0
2 1

Figure 1.2: N null-form
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

In the proof of Proposition 43 we will need to decompose further the support of the frequency
localizer Py into angular regions. This method has been used in various forms for some time
now, see Bourgain’s appendix [41] and Krieger [48], Tataru [114], and Tao work [103], [104] on
critical wave maps. Precisely consider the Littlewood-Paley frequency cutoff

Pru=F Hmp(©ae))

where m(¢) has support in the annulus «f = {2571 < |¢| < 2k*1}. Let us fix a real positive num-
ber a, called angular scale, and decompose < into a finite number of overlapping spherical
caps of angular size 2¢. Fix w; € $"~!, where i € Q 4 and |Qg| < 2%~ such that the spherical
caps centered at w; with angular size 2%: K ={weS": L(w,w)) < 2% form an partition
of the sphere, S = U;cq K", with the property that K3 N K, #@ only if w; and w; are
relatively close to each other. Now define the sets

K ={EeR": 2 < g <2 S kU= e 25 <18 <25, (5 0) S a)

"¢ 14

which form a partition of «¢. Next define the Littlewood-Paley cutoffs

S u=FH(m (©ae)

where m‘]‘c”a (&) € C3°(R™) such that supp m‘]‘c”cr = ZKII:,/; and m‘;c’,"a =1on K]z”(’x Then, for every

angular size a, one can decompose the operator Py radially:

W
Pk = Z Sk,laf
i€Qq

In the sequel we will need the following Lemma, that is reminiscent to Lemma 38, for a similar
version of this lemma see Lemma 4.1 in [58] or Lemma 2.1 [92].

Lemma 44. For every frequencies ki, k», k3, modulations ji, j», j3, angular scale a, and angular
directions i, w j we have

. w ;
Py, Qj (Sl ,QjuS,) ,Qj,v) =0

unless one of the following cases is satisfied:

123 <
max ~v

ki and a = (j12 - ky)/2.

i. LHH - low modulations: k) < kp = ks, j
ii. LHH - med modulations: ki < kp = ks, j12 = ji2 > ki and j3 3 ji2,.
iii. LHH - high modulations: ki < k = ks, ji&, > max{jl2  ki} and j3 = ji2,.

123 <

iv. HLH - low modulations: k, < k; = k3, ji25 3 123

ko and a = (joox — k2)/2.
v. HLH - med modulations: k, < ki = ks, j12 = jl2 >k, and j3 3 ji2,.
vi. HLH - high modulations: k, < ki = ks, ji%, > max{j}2  k,} and j3 ~ jiZ,.
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1.8. Maxwell-Klein-Gordon and Yang-Mills equation

vii. HHL - low modulations: ky = ky 7= k3, ji23 2 k2 and a = (A2 + ks — ky — k») /2.

max ~ "“min ]max

viii. HHL - med modulations: k = ky 7 ks, jia = ji2 > k% and j3 3 ji%,.

2 12

ix. HHL - high modulations: ki = ky 7 k3, jazy > max{j 2  kiz.} and jz = jaZ,.

Proof. Observe that

W w i _ w; W
supp ff,,f(skhanl uSsz’a Qj,v) =suppS;' Qju+ suppSkz’)an2 v
={(13,83) 1 T3 =11 + 72, &3 =& + &, 207D <) < 22U <17y — &) < 20D,

l(flrwl’) 52“,4(52,(1)]-) Sza}
Define h; = —1; +sign(z;)|¢;|, and notice that ||t;| — |¢;|| = | h;|. We have

hs — hy — hy = sign(z3)|¢3] —sign(r1)[&1] —sign(r2) ¢ |

First consider the case sign(z) = sign(r,), the so called (+, +) or (-, —) cases. If 71, 7 are both
positive we obtain

h3 —hy —hy = &3] = 1¢11 = 1$2]
on the other hand if 71, 7, are both negative we have
hs —hy —hy = =[&3]1 +[¢11 +1¢2]

If we use the following relationship

|E0]+ &2 = &1 + Eal = [ER 125 (&1, E2) (1.11)

which follows form equation (26) in [92], we then obtain that
| i > &85 122 (61, 62)

Furthermore, if we suppose that |75 | > [h}23 | we that obtain a lower bound as well, which

gives
|RL23 | = &2 | /2(E,E9)

In particular j23 < k123 + O(1). Now consider the opposite cases, when sign(t;) # sign(»),

min
the so called (+,-) or (-, +) cases. If 7; > 0 and 7, < 0 we obtain

hs — hy — hy = sign(3)¢3] — &1 ]+ 2]
on the other hand if 7; <0 and 7, > 0 we have
h3 — hy — hy = sign(r3)|¢3] +[&1] = 12|
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

Here we use the fact that

1$111€2]

&3l = [1€1] = 1&2ll = X === 22 (E,62)
to obtain a lower bound on the maximum modulation
1€111S21
23 s leal o ey
€3l
Furthermore, if we suppose that Ih},fg o> Ih123 | we that obtain a lower bound as well, which
gives
[€111¢2]
23y~ eleal o e
13l
In particular ]rlnzfx < krlri*:’l + O(1). Finally, notice that in the HHL case (|3| < [£1] = [£2]), from
(1.11) we obtain £?(¢1, &) = 1, which gives vi. O

Notice that since the multiplier of the N;; null-form do not depend neither on 7, nor on 7, we
can avoid the Fourier transform with respect to the time variable. In fact we can write

Niju,v) = fR TR (6,6) (6,60 D(1,62) dérdE

Consider N to be a linear combination with constant coefficients of N;; null-forms, then
denoting by m its symbol we have the bound

Im($1,82)1 S IS11182118in(£($1,62))]

Therefore if we feed N with frequency and angular localized functions we obtain the following
estimate

. w; . w ;
1P, QNS Q1 S, Qi lla S 28125271 P, Qi (S, QjuSy Qi (1.12)

holds uniformly for any frequencies ki, k2, k3, modulations ji, j», j3, angular scale @ and
angular directions w;,w ;. In the proof of Proposition 43 we will need the following Lemma
which involve some key bilinear L? estimates for null-forms via angular localization.

Lemma 45 (Angular localization improvement). We have the following estimates:

(i) For LHH frequencies (k1 < k2 = k3), low modulations (ji, jo, j3 < k1), and maximum

modulation coupled with low frequency (j, = j125.):

1Pk, Qj N(Pr, Qjy t, P, Q)2 5285 Sokspi i 2]2’2||Pklohu||Lz I1Pe,Qp g2

(ii) For LHH frequencies (k1 < ky =~ k3), low modulations (ji, j2, j3 < k1), and maximum
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1.8. Maxwell-Klein-Gordon and Yang-Mills equation

i

modulation not coupled with low frequency (j, #

ky(n/2 k3o 11202120 j3/2
”Pks QjSN(Pkl le u, P, sz U)”L%‘x 5 hnizigksp iz o215 ”Pk1 Qhu”Lix ”Pk3 sz U”L%J

(iii) For HHL frequencies (k3 < ki = ky), low modulations (ji, j2, j3 < k1)

e (1124+1124) 9 k31201120 0120 s 12
1P, Qs N(Px, Qjy 14, P, Qju )1 2 S 210 12220222 Py Qutll 2 1P Qv 2,

Notice that similar estimates to the LHH case hold in the HLH case, here k; is replaced by k».
Precisely we have if k) < k; = k3, j1, j2, j3s < k2, and maximum modulation coupled with low

frequency j» = j123:

n+3

ko 283 S kg o 1 2L 5 7 /2
||Pk3Qj3N(Pk3Qj1u»szQjZV)”Lix52 277 2817 92 "Pk3Qj1u”Lix”PkZszv”Lix

Moreover in the HLH case k» < k; = k3, low modulations ji, jo, j3 < k2, and maximum

1123 .

modulation not coupled with low frequency j» # joox:

ko (n/2 k3o j1/20j2126j312
1P, Qjy N (P, Qjyty P, Q) 2| S 21220280271 222122 112 Py Qj wll 2 1Py, Qv g2

Proof. In what follows we simplify the notations a bit: let us denote by x a spherical cap of
S~ with angular size 2%, then we simply write

Pr=) Py
K

1123 _ 12

Moreover notice that in the LHH cases the angular separation is controlled by 2Umax—*min)/2,

i. This is the most delicate case since we must place Py, «,Qj, v into L L% to avoid any extra
power of the high frequency k3. This force us to place Py, «, Qj, u into L2, and to recover
the 212 norm we use Bernstein inequality, notice that the support on the Fourier side has
size 2(x1+k)(=Dgk — plkil(n=lgkin Therefore we obtain

1Pk, Qjs N (Pre, Qjy s Py Q) 22
5 Z ||P]C3 Qj3N(Pk1,K1 Q]l u, Pks,Kg Q]g U) ”L?,x

K1=K2
|x|+k + K
< Z 2 ! 3||Pk1,1<1Qj1u“L%L?COHPk&KZQjZV”LgoLi
K1~=K2
Kl+ki+ksolkl(n—1)/2+k1(n/2) o j2l2
S Z olKkl+k+ks okl 1 2J2 ||Pk1,K1Qj1u”L%_x”Pks,Kszzv”Lix
K1~=K2

n+3

I 228 kg i B 502
52 173 2/3917 0J2 ||Pk1Qj1u”L%x”PthzU”fo

ii. Here we split the argument in two parts: if j, = ji23 we use the L2 — L! Bernstein inequality
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

of Lemma 40 to obtain a factor 2/3/2, this yield to the estimate

1Pk, Qs N(Pre, Qjy s Prey Qj ) 2,
5 Z 2j3/2||Pk3 Qj3N(Pk1yK1 le u’Pks,Kz sz V) ”L}Li

K1=K2

K|+k1+ksoj3/2
< Y 2MRERRB Py L Qfull e 1o I Pry e, Qi V2
K1=K2
Kl+ki+ksoki(n/2—1/2+) 0 j1/1246j3/2
5 Z olkl+ki+ks ok 2J1/29]3 ”pkl,Klelu||L§x||Pk3.Ksz2V||L%x
K1=K2 ’ ’

k1(n/2+) ks j1/20j2/124j3/2
S 2Bk 201220 B2 Pr Qw2 1P, Qg2

On the other hand if j3 = j123 we don’t need to use the Lemma 40 since the 2/3/2 comes from

the bound on the size of the spherical cap, we just proceed as usual placing the low frequency

term in L2* LY and the high frequency term in L°L2. Thus we obtain the same estimate as

the j, = j123 case but via a different argument:

||Pk3Qf3N(Pk1 Qfl u, Pk3 sz V) ”Lix
S 2 1Pk Qp NPy, Qjy s Py, Qi V)l 2,

K1=K2
K|+k+k
5 Z 2lkl+k 3||Pk1,K1Qj1u”L%"'L‘f'”Pkg,KngzU”L?"Li
K1=K2
Kl+ki+ks ok (n/2=1/12+4)5j1/25j2/2
Y olKl+ki+ks o ki 20112972 IIPkl,Klelu||L§_x||Pk3,K2Qj2V||L§,x

K1~Ko

k1 (n124) 0 ks j1/20 2126312
S 2Bk 20122 12 Pr Qw2 1P, Qv g2

A

iii. Recall that in the HHL low modulation case the angular separation is smaller then the
corresponding LHH case, in fact it is controlled by 2Uma+ks=2k,1)/2_ First consider the case

js = ji23  then we obtain

1Pk, Qs N(Pie, Qjy s Prey Qj V) 2,
S_, Z ||Pk3Qj3N(Pk1,K1 le u, Pk1,K2Qj2 V) ”L%,x

K1=Ko
|x|+2k X .
,5 Z 2 1Py Q]1u||L%+L§°||Pk1,K2Q]2 U”L}’OLi
K1=K2
K|+2k1 k1 (n/2=1/24) 5 j1/26 212
Z olkl+2k1 5 ky 2111292 ||th,<1Qj1 Lt||L§XIIP161,7<2Q]~2 V”Lix
K1=K2 ’ ’

k1 (n/2+1/24) k3 /26 11202126 j3/2
<2l 12lsl2p 2R 120512 P Qj ull 2 1P, Q2

A

If now the maximum modulation is not couple with the lowest frequency, i.e. jz # ji23, we

rely on the L? — L' Bernstein Lemma 40 to get a factor of 2/3/2, Furthermore we place the

inner lowest modulation term into L L and use Strichartz. For example if j; = j23 then we
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obtain

1Pk, Qjs N (Pr, Qjy s Pry Qpp V) 22
S Z 2j3/2 ”Pks stN(thh le u, PkviZ sz V) ”L}L§

K1=K2
K|+2k1 0 j3/2
Y 2lKI+2k1pJs I1Pgey e, Qjy wll 212 1 Py i, Qi VMl 2 o0
K1~=K2
Kk|+2k1 o k1 (112=1/24) 0 220 j3/2 ) )
Y alkirzhgk 21222 Py, Qg el 2 N1 Py, QY 2,
K1=K2

ky(n/2+41/24) 5 k3/20j1126 2126312
plniz etz gkl2o D 2o 12012 P Qull 2 1P Q0N g2,

N N

A

On the other hand if j, = j%, then we place Py, ,Qj,v into L7 , and Py, 4, Qj, u into L3 LY,

this yield to the same bound.

We are now ready to prove multiplicative estimates involving the N;; null-form.

Proof of Proposition 43. Since the estimate is symmetric it suffices to prove the two frequency
localized estimates:

* (High-output) Let k; < k3, if p>1and a <0, orif p=1and a =0, we have

k
1Py N(Pi, ty Py V)| 51010 S 25 I Py tll 50 I Piy V11 0.0
k3 k1 k3

* (Low-output) Let ky > k3, >0, and a + f < 0 then we have

k k
I P, N(Pr, tt, Py V)| o101 S 25P 25 P wll o P, 01l s
k3 k1 k1

We begin by proving the easier low-output estimate. As in the proof of the algebra property we
split further into low modulations, med modulations, and high modulations:

— i (O— q
1Pe NPk, Pl = 2700 3 (5 3 2R 1P QNP Qi Pry Q) 2)
k3 Jask 1=k o<k

_ - q
+ 20kGDY Sy 28O0V pL QNP Q) u, Py, Qjy V)Ilz)

Js  jizmax{ky, js}

_ (O q
+ 20kD N ( Y 2k 1)||Pk3Qj3N(Pk1Qj1u,qungV)”z)
=k 1S3
=: HHL[+HHLH+HHLH[

Notice that in the second and third terms we have supposed, without loosing generality,
that max{ji, j»} = j». In order to estimate the low modulations term HHL; we use angular
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localization and the Bilinear L2 estimates for null-forms. From Lemma 45 iii. we obtain

_ . _ . . q
Jaski ik jo<ky

qks(s—1/2)oqk) (-2s+n/2+0+) q q
S 2 2 IPa 0P 10

Next, to estimate the middle modulation term H HL; we shall not need the precise structure
of the null-form, hence we don’t need any angular localization. The argument presented below
works for any general bilinear form in space gradients. For such forms we loose a factor of 2251
since both input are frequency localized at 2€. Let us use the standard Bernstein estimate:

31202k
1P Q) NPk, Q1 P Q) S 29722201 P Qo1 P, Qv 2
<

k1(n/2+2)nj3/2
2k 220512 pr Qi ull 221 Pry Qjy vl 22
Then

- —ej i (O— q
HHLy 5 206l Dpth2sd(omeha)( 3 2bO129)p ; uly| Py, Qj, o)

J Jjizmax{ky, j3}

5 2qk3(s—1)2qk1(—2s+n/2+1) ”Pkl u”q o ||Pk1 U”q »
HY H

Here we have used the upper bound on the j3 sum to extract a factor of 27%1: 2/36-1/24) <
2710-1124) < p=k127192/10 Observe that we only need to impose s > 1/2 to obtain convergence.

It remains to control the high modulations term HHL;;;. Here, as for the previous term,
we wont need to use the special null structure. In this case we place Py, Q;, u in L2 L% and
P, Qjvin L*®I? and use the fact that the j, sum collapse. We proceed as follows

_ L O=1)m it /20 i q
jszki 1

- i i q
S 20RDak 02D ¥ 010 by Qv ( Y2021 P, Qj ulo)
Ja J1

S 2qk3(s—1)2qk1(—23+1+n/2+) ”Pkl u”q o0 ”Pkl U”q w0
HY H

ki/2

Here we have used the high modulation hypothesis to control 2/30-1/2) < 25s63-k1/2 ‘Moreover

notice that f = s—1is positiveand a + f = —s+ n/2+.

Next we prove the more difficult high-output estimate. As usual, due to Lemma 44 we split
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further into low, med and high modulations:

- i (O— q
1P NPk Pl = 200 3 (5 2RO 1P Q) NPy, QP Qo) 2)

ks 3k ik jo<k

_ i (O— q
2W€3(S 1) Z Z 2]3(9 1) ”Pk3 Q]i N(Pkl Q]l u’ka Q]l v) ”2)

Js  jizmax{ky, js}
Ks(s—1 i3 (0-1 q
+ 20RO (S 20Dy py Q) N(P, Q) 1, P, Q) v) 2
=kt

=: LHH;+LHH;+ LHHj]

+

To estimate the most delicate term LH H; term involving low modulations we must invoke the

angular decomposition and use Lemma 45 i. and ii.. Thus we split further into j; = j}2 and

j1# ji23 . cases. When jj = j123 from i. we obtain

ksSo ja@—1) o ki L3 5 jy 2L ) i 12 q
LHH; S Y ( Y Y 2ksphO-Dok 5ot o) IIPlejlu||L§,x”Pstsz"L%,x)

ja<ky js=ji<ky jo<h
n+1

j3(0—1 =0+ gl g o gl (—s+ 252
S Q20RO (Y 29I TR T P ul L 1P VI
J3 ik ky ks
ki(—s—0+n/2+1 q q
<20kl PG Ul g 1P 1Y

ky k3

Notice that the j3 sum converge since 6 < 1. Moreover we need to impose s+6 > n/2+1 to
obtain convergence. On the other hand if j; # j123, then Lemma 45 ii. yield to

k3o j3(0—1/2) 0 ki (RI24) 0 1120 j212 q
LHH; < Z ( Z Z okaso js )oki(n/2+) 91129 ]2 ||Pk1Qj1””L%_x“Pkanzl}”Lix)
j35k1 jISkleSkl

ki (=s+0+n/2-1/2+
S 2akstOrn2=1128 py 4 py g
Hk1 Hk3

Thus in this case —s+ 60 + n/2 —1/2 < 0 suffices. This conclude the proof for the LHH low
modulations case.

Next, we estimate the easier med modulation term LH Hr;. We shall consider a general bilinear

form, and we use the standard Bernstein estimate:

j3/2 k1 ok
2/3lepk1p 3||Pk1leu||L2Loo”Pk3leU”L%x

k3 k1 (n/2+1) 6 j3/2
2ksphi (W21 12 by Qj ull 2121 Py Qjy vl 122

1Pk, Qjs N(Pr, Qjy , Pry Qjy ) 2

/AR ZA

Then

—cj iz (60— q
LHHy 5 2005020 (Fomeha)( 57 2h @129 b Q; ul,| Py, Qj vl

J3 Jjizmaxiky, ja}

Ky (—s+n/2
< 2akesERype ) 1Pl
H,Cl Hk3
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Here we have used the upper bound on js to extract a factor of 2751 253(0=1/2+) < 2j1(0-1/2+4) <
2~k127102719  Observe that we only need to impose s > 12/2 to obtain convergence.

Next, let us estimate the easier high modulation term LHHjy;. As for the bound of HHLjjy
the following argument it is not restricted to the particular type of null-form but holds for
any general type of bilinear term. Thus in what follows we shall not make use of angular
decomposition. Let us follow the argument used to estimate HH L. If jélzax = ji1 let us place
Py, Qj,u in L** L™ and Py, Qj, u in L°L? we obtain

kssoqky (n/2+1/2 j5(0-1/2) 212 q
LHHyyp S 29050t 0/ze/za 5 (3 @22k 12 by Q) ulla 1Py, Q) e
Jszki 2

; ; q
S 20020 S @10 Qjulln) (Y22 1P, Qj, vl
s J2

ki(—s+n/2
< 2B P Ul NP1,
Hk1 ch3

On the other hand if j}2, = j, we place Py, Q juin L% and Py, Qj,uin L2L2. Thus we obtain

CO-T)n i q
LHHyy S 2905000020 57 (3725002072 by Q) ull |1 Py, Qo)
jzki

; ; q
S 20kt S 010 p Q) vl T Y2121 P, Qj ula)
Js I

< qki(=s+n/2) q q
S 2 1P NP 1

This conclude the proof of the high-output modulation estimate. We summarize in the table
below where the different conditions needed to assure convergence were used in the proof.

Cases low modulations med modulations | high modulations
HHL s>nl/2-1/2+0 s>n/2 s>nl2
LHH/HLH | s+0>n/2+1 if j; = jiZ s>n/2 §>n/2
s>n/2-1/2+60 if j; # ji23

From this is clear that all the high modulations cases holds for a larger set of exponent, and the
worst case is the LHH/HLH when the maximum modulation is coupled with the minimum
frequency. O

We conclude this section with the proof of the multiplicative estimate for Maxwell-Klein-
Gordon and Yang-Mills null-forms.

Proof of Proposition 42. We shall prove three frequency localized estimates:
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(LHH) Letk; < k3, if p>1and a <0, orif p=1and a =0, we have

|| Pk3 JA\VI(P]C1 u, Pk3 U) || Hs—l,G—l,q

k3

~

k
< 2R Py ull 0 | P, vl 00
K ks

(HLH) Letk; < k3, ifp>1and a <0, orif p=1and a =0, we have

~

| Pie, N(Pr, 4, P, )] -10-1.

<2k P ull coqllPr, vl so
k3 ’ H’is( 2 H’iz

(HHL) Let ky > ks, >0, and a + 8 < 0 then we have

1Py, N(Pg, 4, P, 0) | ys-10-1.0

k3

~

ksBokia
S 25PN Pl gyl P,

We start by proving the HHL case: let us split further into low, med and high modulations:

~ _ c 0 ~ q
1P, NPy, Pl = 275070 5 (¥ X 280°0)Pg QNP Q) 1, Pr, Qo)
k3 sk jiski o<k
_ C 0 ~ q
+ 20kl vy Y 2730 YIPr, Qs N(Pr, Qj, u, Py, Qj, U)||2)
J3  jizmax{k,js}
_ in(O— ~ q
+ 20RO 3 (3 280Dy P Q) NP, Q) 1, Pr, Qg D)o

jszki =3
=: HHL;+HHL;;+HHLj;

In order to estimate the low modulations term HHL; we use angular localization and the
Bilinear L? estimates for null-forms. From a similar argument of Lemma 45 iii., where N is
replaced by N and thus we gain a k; factor, we obtain

ks(s=1/2) o qky (n/2—1/2 j3(0—1/2) 5 j1 120,212 q
HHL; ,5 24 3(s )zq 1(n +) Z ( Z Z 2]3( )2]1 212 ||Pk1Qj1u||2||Pk1Qj2V||2)
B3k ik j2<k

< 2[]’(73(5—1/2)2qk1(—25+9+}’1/2—1+) ”Pk u”q ”Pk v”q
~ 1 Hz,le,q 1 Hz,le,q

Notice that f=s+0—1ispositiveand a+ f=—s+0+n/2—-3/2+.

Next, we estimate the easier med modulation term LH H;;. We shall consider a general bilinear
form and use the standard Bernstein estimate:

1Pe,Qj NPk, Qjy 1, P, Q)2 < 292502y QP Qv 2

S
5 2k3(}’l/2)2k12j3/2”Pk1 le ull21l Py, le vll2
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Then

- —eij i (O— q
HHLy 5 20kl tn@pdh (Y oeha)( 57 2bO-V29) b Q; ull, || P, Qj, vllo)

s Jjizmaxiky, js}

5 2qk3(s—1+n/2)2qk1(—2s) ||Pk1 u”q " ”Pkl y”q "
Hk'l q Hkv1 q

Here we have used the upper bound on 3 to extract a factor of 2751 2530=1/2+) < 2j1(0-1/2+4) <
27k121192119  Observe that we only need to impose s > n/2 — 1 to obtain convergence.

To control the high modulations term HH L1 we do not need to use the special null structure,
in fact we present the estimate for any general bilinear form. Here the argument is slightly
more involved than the other high-modulation cases since we need to gain some powers of k.
By Bernstein inequality we obtain

||Pk3Q]3N(Pk1Q]1 M!Plejg V)”Z 2k12k3(n/2) ”Ple]lqu]Q]gv”L%L}c

AN A

2k 122k 2 Jwinl2| P Qj uull2 | Pr, Q) vl

by placing the low-modulation term into L*°L? and the high modulation term into L?L2.
Therefore

ks(s—1+n/2) oqk i3(0—1)j12 /2 q
HHLyy S 2700tk 37 (157 2b 00002 by Q) ully | Py Qv
j32k1 jrlnzax:jli
ks (s—1+71/2) o qky (—2 q q
24 3(s n )Zq 1( S)”P’Qu”Hs.B,q”Pklv”Hs,H,q
ky 51

A

since j3(0 — 1) < j30 — k. Notice that this case requires s > n/2 —1 only.

We now focus on the more difficult LHH case. As usual we split further into low, med and high
modulations:

~ _ i (O— ~ q
1P NPy Puol], oy, = 2700 T (3 2P0 NP QNP @, P Q1) )
k3 sk =k 2k

_ c 0 ~ q
+ 20kl DZ( Y 280V p Qi N(Py Q)i u, Pr,Qjy V)llz)

J3  hizmaxiky, js}

_ o - q
+ 20kGD N ( Y 25k6D)pQ; N(Py, Q) U»Pngjzv)”Z)
Jszky i~

=: LHH;+LHH;;+LHH

To estimate the most delicate term LH H; involving low modulations we must invoke the
angular decomposition and use Lemma 45 i. and ii., where again N is replaced by N. Thus
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1123 1123

we split further into j; = j123, and j; # j123, cases. When ji = j}23 from i. we obtain

q
LHHI< Z ( Z Z 2’6352]39 l)zkl 2]1 2]2/2”Pk1Q]1u”L2 ”Pst]Zy”LZ )
=k js=jiski j2<h

1) n+l
<(22‘”30 Y 29RO g D g ) 1Pl

sk kl ks

k 0+n/2)
<2‘71( TP Ul 0 1Pk VI o
kl k3

Notice that the j3 sum converge since 6 < 1. Moreover we need to impose s+ 6 > n/2 to obtain
convergence. On the other hand if j; # j}23, then Lemma 45 ii. yield to

q
LHH; S Y ( Y Y oksph@-U2pkniz-10y 12902 p Quullz I1P6Qp vl )
Jasky " js=ji<ky j2<h
5 zqkl (—s+0+n/2-3/2+) ”Pkl u” q s ||Pk3 l/” q s
K k3
Thus in this case —s+6 + n/2—3/2 < 0 suffices. This conclude the proof for the LH Hy , the low
modulations case.

Next, we estimate the easier med modulation term L H Hy;. We shall consider a general bilinear
form, and we use the standard Bernstein estimate:

”Pks QjSN(Pkl le u’Pks le U)”Lix 2j3/22k3 ”Pkl le ull g ”Pks Qfl V”Lix

k3 ok (n/2)qj3/2
2kl 120512\ . Qj ull 212 1| Py Qjy vl 212

I ZANRZA

Then

—€j i (O— q
LHHy S 270002 (3 omeha)( 3 2bOV20p w1 Py Q) vl

s Jizmax{k, js}
< 2MEEE P ul T, 1Pk VI,
Hkl k3

Here we have used the upper bound on s to extract a factor of 2~ K1 2/s(0=1/2+) < 2/10-1/2+) <
27k12102719  Observe that we only need to impose s > 1/2 — 1 to obtain convergence.

Next let us estimate the easier high modulation term LH Hj;. The following argument it is not
restricted to the particular type of null-form but holds for any general type of bilinear term.
Thus in what follows we do not make use of angular decomposition. If j12. = jj let us place
Py, Qj,uin L** L and Py, Qj,u in L°L? so that

1Pk, QN (Pi, Qjy tty P, Qj, 0) [l S 2K2 k1 (012712905 1a125 212\ by Q1w o1 PR, Q, v 2
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Therefore we obtain

kssoqki(n/2—1/2 j3(0-1/2) 5 j212 q
LHHyy 5 200002120 5 (5 oh @ 2002 b Qj ully 1P, Qj, vl
=k =i

_ ; : q
S 20Rab 2D 3 050 P Qjulla) (Y2221 P, Qj, vlo)
J3 J2

ki(-s+n/2-1
palaCsen2=Dpe w1, 1P l? .,
H]Cl Hk'3’

A

On the other hand if jl2, = j, we place Py, Q jyuin LL% and P, Qj,u in L21? so that
1Pk, Qs N(Pr, Qjy t, Pry Qs )2 $ 25222021 Py Qi |1 Py, Qw2

Thus we obtain

2 -1 2
LHHyy S 270500002 3 (57 2000202 P Qw1 Pk, Q vl )
Jszki 1<)

_ : ; q
S 27b0ah MY 010 P @ ule) T K20 2Py, Q) ule)
J 71

ki(=s+n/2-1) q q
29" | P, ull | P, vl
ky Hli;g'q ks H;.:vq

N

This conclude the proof of the LHH estimate.

It remains to prove the HLH interaction case. As usual we split further into low, med and high
modulations:

| P NPy, P,
k3

_ i (60— ~ q
=2kCD 5 (3 3 2B O D)y Q) NP, Q) 1, P, Q) v) 2
j3Sk2 j]Skz jQSkZ

_ - q
+20ks(s DZ( Yy 280V p Qi B(Pr,Qj 4, P, Qj, V)||2)

Js  jizmax{ky, j3}
ks(s—1 j3(0-1 ~ q
+20ks(s )Z( Y 25 )||Pk3Qj3N(Pk3Qj1U»szQjZV)”Z)
Jszks " jii=js

=:HLH;+ HLH;+ HLH;

To estimate the delicate term HLH| involving low modulations we must invoke the angular
decomposition and use Lemma 45 i. and ii., see Remark after Lemma 45. Thus we split further

into j, = j123 and j, # j123, cases. When j, = j123 from i., where N is replaced by N and
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thus we gain a k3 factor, we obtain

ks(s—1) 0 j3(0-1) ko 3 o 1 221 o 2 q
HLH S Y. ( Y Y 2kbDas@-lokSTon T ok ||Pk3Qj1u“L%Yx”szszU”Lix)

Jssky  i=)2 js=ja<ke
j30-1 i (—0+ 2 "oy (—s+ 151
5 (qu]s(e ))( Z 24 ji( 0+ ))67/61 2qka(=s+55 )||Pk3u||;]_ls,0,q ”szy”ZIsﬂ,q
Js hi=k, k3 kp
< zqkz(—s—9+n/2) | Py u”q | P U”q
~ 5,0, k; $,0,
3 Hk3 q 2 sz q

Notice that the j3 sum converge since 6 < 1. Moreover we need to impose s+ 6 > n/2 to obtain
convergence. On the other hand if j, # j}23. then Lemma 45 ii. (see Remark after Lemma 45)
where N is replaced by N, yield to

ks (5—1) 0 j3(0—1/2) 0 k1 (1/24) 0 J1 120y 212 q
HLH; § Z ( Z Z 2k3(s=1 o j( Joki(n/2+) 9 ji/29 ]2 ”Pst]'lu”L%x”szszV”L%)
B3kt j1=)2 3=k ’ '
ko (—s+0+n/2-3/2+) q q
S Zq 2 ”Pk3 u”Hg,e,q ”sz U”Hs,e,q

k3 ky

Thus in this case —s+ 60 + n/2 —3/2 < 0 suffices. This conclude the proof for the HLH low
modulations case. Notice that this case is easier then the corresponding LHH case since in the
HLH case we gain a factor of the high frequency ks.

Next, we estimate the easier med modulation term HLH ;. We shall consider a general bilinear
form, and we use the standard Bernstein estimate:

- .-
| Pr,Qj, N(Pi,Qj, u, Pi,Qj, U)IIL%x L) 5||Pk3Qj1u||Lix | Pk, Qj, vl 210
<

k3 ok 2)nj3l2
2k (D512 Qi ull p2 1211 Py, Qjy vl 212
Then

—ej i (0— q
LHHy < 20kl (y pmeha)( 57 b2 b ul, | Py, Q) o)

s Jjizmax{ky, j3}

ko(—s+n/2—-1 q q
< 2kt lipe ) L PGl
Hk‘3 sz‘

Here we have used the upper bound on j3 to extract a factor of 27 K2: 2/s(0=1/2+) < 2/10-1/2+) <
27k27102119 Observe that we only need to impose s > n/2 — 1 to obtain convergence.

Next, let us estimate the easier high modulation termm HLHj;. The following argument it is
not restricted to the particular type of null-form but holds for any general type of bilinear term.
Thus in what follows we do not make use of angular decomposition. If j12 = j; let us place
Py,Qj,uin L*°L* and Py, Qj,u in L** L™ so that

1Pk, Qs N(Pr, Qj tt, P, Qj, v) [l S 2K W2+ 2051200212\ pr Q1 llo | Py, Qj, vl
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Therefore we obtain

_ (O ; q
HLH < ks (s=1) o qkz(n/2+1/2+) Z (2213(9 1/2)2]2/2||Pk1Qj3u||2||Pk3Qj2U||2)

Jszks  J2
p— I . q
< 2dksG 1)2qkz(n/2+)Z(glsQHPstjsullz)q(ZZJZ/ZIIPngjzV||2)
Js J2
ki (-s+n/2-1
< pdkiostn )||Pk3ullf_ls,g,,,llszvllzs.e,q
k3 k2

On the other hand if j}2, = j» we place P, Qj, u in L°L? and Py, Qj,u in L** L so that
1P, Qs N (P, Qjy , Pr, Q)12 S 25 21202020172 Py Q| Pr, Qv

Thus we obtain

; ; q
-1 2+1/2 -1/2 2
HLHpy S 2700 Da0h2el2n) 37 (5750122002 b Q; ulls| Py, Qv

j32k2 jl
) ) . q
< 2dks(s 1)2qk1(n/2+)2(2130||Pk2Qj3U||2)q(22h/2”Pk3Qj1uuz)
J h
ky(=s+n/2-1
L LT TR
k3 ky

This conclude the proof of the HLH interaction case. In the table below we summarize the
different conditions needed in the different cases.

low modulations med modulations | high modulations
HHL | s>n/2-3/2+0 s>n/2-1 s>nl2-1
LHH s+0>n/2 if j; = j12 s>nl2-1 s>nl2—-1
s>n/2-3/2+60 if j; # ji23
HLH s+0>n/2 if jp = jl23 s>n/2-1 s>n/2-1
s>n/2-3/2+0 if jo # ji23

1.9 General quadratic nonlinearities (revisited)

In this section we shall prove a multiplicative estimate for general quadratic form without any
null structure of the type we already encountered in §1.3: B(u, v) = b*/d,ud 5 V. What might
be surprising is that we obtain the same lower bound on s, namely s > n/2 + 1/4, as the N;;
null-form estimate of Proposition 43. Here however we are working at n = 4 spatial dimensions
and the lack of null structure is compensated by the higher dimension. Furthermore, Theorem
7 already settled the low dimensional n = 2,3 cases, where the optimal result (s > ”TJ'S) is
reached by Strichartz estimates. The following theorem, based on [113], gives an improvement
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of 1/4 or of 1/2 over the result obtained in Theorem 7 for dimension n = 4, or n = 5 respectively.

Theorem 46. Letn=>4,p =1, and s > max{3 + i, "T+5}, then there exist an unique local solution

ue C((0, 7], B; ,®M) N C'([0, T], By, (R") to the Cauchy problem

Ou=B(u,u)

(,0:1) 129 = (uo, 1) € B3 ,(R™) x By} (R")

Moreover if p = 1 one can take s = max{% + 1, 23},

n+5
4

to highlight the similarities with the Maxwell-Klein-Gordon and Yang-Mills nonlinearities

Notice that for n = 4, we clearly have max{g + 1 = g + i. However we have kept this form

considered in the previous section. The proof of Theorem 46 reduces to the proof of the
following general bilinear estimate.

Proposition 47. The multiplicative estimate
I B(u, v) IIH;;;,H—l Sl ””H;;fj, l V”H;'fj,

holds in the following cases:

n=4 p>1 ¢g>1 1/2<0<1 s—-(n-1/2>0 s+0>n/2+1
n=4 p>1 g=1 0=1/2 s—(n-1)/2>0 s+0>n/2+1
n=4 p=1 g>1 1/2<0<1 s-(n-1/2=0 s+0=n/2+1

Proof. Since the estimate is symmetric it suffices to prove the two frequency localized esti-
mates:

* (High-output)Let k; < ks, if p>1and a <0, orif p=1and a =0, we have

k
1P BP, 14, Pry 0) ] ecvimva S 2590 Py el oo 1Py vl e
k3 ky k3

* (Low-output) Let ky > ks, >0, and a + § < 0 then we have

~

”Pk3B(Pk1 u, Pkl U) ||Hs—1,9—1,q

k k
<28P2R P wll e | Py vl psoa
k3 ky ky

We begin by proving the easier low-output estimate. As in the proof of the algebra property we
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split further into low modulations, med modulations, and high modulations:

_ i (O— q
Il Py, B(Py, u, Py, v)IIZI g, = 27k6TDN ( Y Y 259 p Q1 B(PL Q) u,plejzy)nz)
ks J3<ky ik jo<k

- i (0— q
# 20ROy 20O B(P, Q)4 P Q0

Js jrzmaxtky, js}

_ in(0— q
+ 20800 3 (3 2ROV P Q) B Q). Py Q) )
3=k 1=j3
=: HHL;+HHL;;+HHL;

Notice that in the third term we have supposed, without loosing generality, that max{j;, jo} = jo.
In order to estimate the low modulations term H HL we split the argument into two parts.
First suppose that n = 5, then the L? L* Strichartz pair is admissible hence the L? — L Bernstein
inequality yield to

25| B(Py, Qjyu, P, Qi) 2

j3/202k
253192 "I Pr, Qjy ull 2141l Pr, Qj, Ul 212

k /2+1 j1/260 72120 3/2
2k 2t D 0 2912120 05/2 Py Qj ull 212 1| Pr, Q) vl 212

1Pk, Qjs B(Pk, Qjy y Pr, QW2

I ZANRZANRYAN

Therefore

_ i (0— i i q
HHLI § 26]k3($ 1)26]k1(n/2+1) Z ( Z Z 2]3(9 1/2)2]1/22]2/2”Pk1Q11ul|2||Pk1Q]2U”2)

j35k1 jlikl ngkl
zqu(s—l)zqkl (—2s+0+n/2+1/2) ”Pkl u”ZI

N

q
w0 1P VI o
k1 Hk]

To close this case it suffices that the sum of the two exponents is negative, thatis s > n/2-1/2+
6. On the other hand if 7 = 4 the L2 L* Strichartz pair is not admissible anymore. However one
can find two Strichartz admissible pair (p1, 1), and (p2, g») so that LP1 L9 - [P2[% < [*/3]2,
hence

/4
1Pk, Qs B(Py, Qjy t, P, QW) 2 2PN B (P, Qjy ty Pry Qjy ) s 2
js/402k
2818278 Py, Qj ullrrLa | P, Qj, vl pr2 a2

k1(n/2+5/4) 0 j1/120 2120314
2ki(n Vpn12p 021220 P Q) ull 212 | Pr, Qj, vl 212

AN ZANRYAN

Therefore

HHL; < 29k(s-Doaki(n/2+5/9) y ( D 2j3(6_3/4)2j1/22j2/2||Pk1Qj1u||2||Pk1Qj2V||2)q
J3<kr ik jo<ky

k3(s—1 ki1(-2s+n/2+5/4 k1(0-3/4
S 24 3(s )2q 1(=2s+n )IIlaX{Z 1( ), ”’“Pkl u”ZSﬂ’q ||Pk1 U”Zﬁveﬂ
ky ky

90
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Notice that if 8 > 3/4 we obtain k3(s — 1) k;(-2s+ 60 + n/2+1/2), to gain smallness and close
the argument we must have —s+6 + n/2—1/2 < 0. On the other hand if 1/2 < 0 < 3/4 then we
obtain k3(s—1)k;(—2s+ n/2+5/4), which lead us to the condition s > n/2+1/4.

Next, to estimate the middle modulation term HHL;j, let us use the standard Bernstein
estimate:

1Pk, Qjy B(Py, Qjy u, P, Qjy V)l 2, 2512224 || Py, Qjy ull 2 |1 Py, Qjy vl 2|

ky(n/2+2)qj3/2
2R (222102 P Q) ull 212 | Pr, Qjy vl 22

/AR ZA

Then

_ —€j i (0— q

J3 Jrzmaxiky, ja}

ks(s—D)oqki(—2s+n/2+1
S L R ]
H,Cl Hk1

Here we have used the upper bound on the j3 sum to extract a factor of 27%1; 2/30-1/24) <
2010-1724) < 9=k1p1102119  Observe that we only need to impose s > 72/2 to obtain convergence
and that the lower bound on the dimension is not needed here.

It remains to control the high modulations term HHL ;. Here the argument follow closely
the one used for the N null-form. We place Py, Qj, uin L?L% and P, Qj,vin L®I? and use the
fact that the j, sum collapse. We proceed as follows

_ L O-1)n /20 q
HHLyp 5 2700 Daabizesis) 5 (5705000112252 py.  ula|Pr, Qs o)

J3=ks  J
(S ;. ; q
S 27060k 2D 5 010 by Q) vl (Y2021 Py, Qj ull)
Js Ji
S 2qk3(8—1)2qk1 (=2s+1+n/2) ”Pkl u”q 0 ”Pkl U”q 0
Hk‘l q Hkvl q

Here we have used the high modulation hypothesis to control 2201/ < 2/s63-k1/2 Moreover
notice that to close this estimate we only need s > n/2.

Next we prove the more difficult high-output estimate. As usual, due to Lemma 44 we split
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further into low, med and high modulations:

_ i (O— q
1P Bl P, = 279070 3 (3 3 2PO07V1P QB Q) P Q) )
ks J3<ky ik jo<k
_ O q
+ qus(s I)Z( Z 2]3(6 1)||Pk3Qj3B(Pk1Qj1u’Pk3Qj1 V)||2)
J3  jizmax{ki,js}
_ i (O— q
+ 2006 5[5 2O P Q) B(PY, Q)1 Pk, Q)0 l2)

j32k1 j[lﬂzax:jS

=: LHH;+LHH;+LHH]

To estimate the most delicate term LH H; term involving low modulations we must invoke the
angular decomposition and use Lemma 45 i. and ii.. However, since we are working with a
general bilinear form, we wont get any smallness form the angular separation between the
two inputs. Let us split further into three cases based on the maximum modulation. When

j1=j}23 following i., by Bernstein and Strichartz inequalities, we obtain

I P, Qj; B(Py, Qj, u, P, Qj,v) "L?,x
5 Z ”Pks QfsB(Pklﬂﬂ le u, Pksykz sz V) ”L%,x

K1=Ko

ki+k
S Z 2™ 3”PklyKlelu”L%L‘}"”Pksszszv”L‘;"Li

K1=Ko

K+ ks oK (n=1) /24K (1/2) 0 /2 , ,
,-SKZK 2 ! 2 2 ”Pkl,Kl Q'hu”l‘%,x ”Pks,KzQ]zU”Lix
1~K2

n-l

k1 25 ks o j1 2 o 2 /2 , .
<28 2kl T 2k 2 Py Qg ull 1Pk, Qv
Then

ks S0y js(O0—1) oy 225 o jy 221 oy 12 q
LHI S Y (5 X 20020002k R oh o 2 by Qulys 1P Qv )
j35k1 j]SkljZSkl

j5(0-1 =0+ 20 gl q o gk (—s+ 2
S(quh( ))( Z 24 1(=0+5 ))q q oqki(=s+5 )”Pklu”qm 1Py U”qse
- : )2 et Y & et
I3 =k k1 k3

S20R I maxh O Pl !, 1P I,
ky k3
Notice that the j; sum converge since 8 < 1. Moreover the j; exponent is negative only if n = 4
and 8 > 3/4, in this case we can bound the j; sum without loosing any k; factor. Thus to close
this case we have to impose s > (n+5)/4 when n =4 and 6 > 3/4, and s+ 60 > n/2+1 in the
reminding cases (7 = 4 and 6 < 3/4, or n > 5). On the other hand if j23 = j; we take advantage
that we are working in n = 4 space dimensions so we have access to a larger class of Strichartz
estimates. In this case we still have to place Py, ,, Qj, v into L°L? to avoid any extra power of
the higher frequency ks, thus Py, ., Qj, u is placed into L?L™®. To estimate the latter we use a
combination of Bernstein and Strichartz estimates: first we use Bernstein to reach the Pecher
pair L2LP, where 1/ p = (n—-3)/(2n-2), then we use Strichartz to reach the L21% norm. We
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obtain

-D+kin)/
2(|1<|(n )+kin) P”PkDK1 Qj1u”L2U’
(Ikl(n=1)+k1n)/poki(n/2—1/12—nl/p)oj1/12 .
2 1 Pz 1 Plon ||Pk1,1<1Q]1

| Piy i, Qjy ull 2100

uIILsz

AR AN AN

o & 12
okt g2 0555 ||Pk1K1Q]1u||L2L2

Then we obtain the following estimate for the inner L%, . horm:

”Pk3Q]%B(Pk1Q]1 u’Pk3Qj2 V) ”Lix
Y 1Pk Qj B(Piy i, Qi s Preye, Qe ) 2,

K1~=K2

ki +k
< Z 2" Sllpkl,Klelu”L%L‘;o”Pkg,,KzQ]‘zV”L‘;"Li

K1~K>

kitksoki 2L 51126 ],/2
< Y ohitkpki /22y ) |Pk1,KlQhuan 1Py e, Qo vl 2,

K1=K2

ki B2 ks 01120 212 j3 152
S2fa 2R ep o) 1Pk, Qjyull 2 1Pk, Qjyvlzz
Therefore plugging the previous estimate into LH Hj yield to

L7 nt5 5 q
3<k1 =k jo<k

+5
S 295 max (2R O, 1P ul? 1P vl

5,0, s,0,q9
Hy Hk3

Thenif n=5o0rn=4and0 >3/4 we must have —s+ 0+ n/2-1/2 <0. On the other hand if
n=4and 6 >3/4 then s > 2 suffices. Next, if j» = j}%, then we use a similar argument as
in the previous case, the minor modification is that we use the L?> — L! Bernstein to obtain a
factor of 2/2/? and this allow us to place Py, x,Q;, v into L% ,, thus we obtain

”Pk3Q]3B(Pk1Q]1u Pst]zy)“Lz <2k1 2k32]1/22]2 213/2||Pk1Q]1u”L2 ||Pk3Q]2y”L2
Therefore we obtain

n+5 q
LHH]< Z ( Z Z 2k332]3(9 1/2) 2k1 2]1/22]2 ”Pk1Q]1u”L2 ||Pk3Q]2U”L2 )
Jsski 1=k j3=j.<k

Ky (—s+ 222 0-1/2 0 /
gzq 1(=s+52) Z 2q]3( )( Z 2£1]z( + 222 ))q q ”Pklu”qveqllphynqng
Ja=ki Js=jski Hy Hig

Notice that if 0 < "T_s then

Z 24J3(0- 1/2)( Z 25112( 0+14= ))q/q <2k1
Jaski 3=k
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Chapter 1. Low-regularity local well-posedness theory in flat spacetime

and if @ < 22 we obtain

Y 20ROV d O < Y i
j3$k1 j3$j2$k1 j3Sk1

To close this case we have to impose the bounds s > n/2 for n =5 and s > "T*5 for n =4. This
conclude the proof for the L H Hy, the low modulations case.

Next, we estimate the easier mid modulation term LH H;;. We shall use the standard Bernstein
estimate:

| P, QjuB(Py, Qjy t, Py )z, S 2P%2M25 1 Py Qjy ull oo | Py Qy vl 2,

N N

ksok(n/2+1 j3/2
2Rk M2+ 00512\ by Qi ull 212 | Pr, Q) vl 122
Then

—€j iz (60— q
LHHy S 20ksp0R02eD(Foeha)( 57 2bOV29) @ uly| Py, Qj, vl

A Jizmax{k, js}
Ky (—s+n/2
< 2dkitEsin )||Pk1u||qs.9,q”Pk3v”qsﬂ.q
Hk1 ch3

Here we have used the upper bound on js to extract a factor of 27%1: 2/30-1/24) < 21 (0-1/2+4) <
27k121192719 Observe that we only need to impose s > 12/2 to obtain convergence and that the
lower bound on the dimension is not needed here.

Let us estimate the easier high modulation term LHHjj;. Let us follow the argument used
to estimate I11. If ji2 = ji letus place Py, Qj,uin L*L*, Py, Qj,u in L°L? and use Strichartz
inequalities. We obtain

kssoqki(n/2+1/2 j3(0-1/2) 0 j2/2 q
LHHyy 5 200s0h 02/ 3 (57 oh O U202 b Qj ully 1Py, Qj, vl )
Jszki " je

; ; q
S 20ks0hn 2y 010 Py Qpull) (Y221 P, Qi
s J2
ki(=s+n/2) q q
S 2R 1Pl

ky k3

On the other hand if jélzax = j» we place Py, Qj uin L®L>, Pr,Qj,uin L?I? and use Strichartz
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1.9. General quadratic nonlinearities (revisited)

inequalities. Thus we obtain

O-1)ni q
LHHy § 20500020 5 (52000202 b Qj ulla | Py, Qj vl

3=k f1

. . q
20k a2y 2101 Py Qj,vll) I X212 1Py, Q) il
J3 J

A

qki(-s+n/2) q q
S 2 1P ull? o 1P oI,

ki ks
This conclude the proof of the high-output modulation estimate.

We summarize below where the different conditions needed to assure convergence are used

in the proof. We remark that in the n = 4 dimensional case the worst case is in the LHH case

. _ +123
when ji = jyay

n=4 | lowmodulations med modulations | high modulations
HHL | s>n/2+1/4 if1/2<0<3/4 s>n/2 s>n/2
s>n/2-1/2+0 if3/4<0<1
LHH | s+0>n/2+1 if j1=ji23,1/2<0<3/4 s>nl2 s>nl2
s>nl4+5/4 if j1 = j12,3/4<0<1
s>nl4+5/4 if jo=j123,1/2<0<3/4
s>n/2-1/2+60 ifjo=ji2 3/4<0<1
s>nl4+5/4 if j3=jl23 1/2<0<3/4
s>nl2-1/2+0 if j3=j2 3/4<0<1
n=5 | lowmodulations med modulations | high modulations
HHL | s>n/2-1/2+0 s>n/2 s>n/2
LHH | s+0>n/2+1 if j; = j23 s>n/2 s>n/2
s>n/2—-1/2+0  if jp = jiZ
s>n/2-1/2+60  if j3=ji2
O
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¥4 Global regularity for Yang-Mills equa-

tion below the energy norm in R'*3

This chapter is devoted to the analysis of long-time behavior of solutions to Cauchy initial
value problem for the hyperbolic Yang-Mills equation in R!*3 space-time. In particular, we lay
down the foundations to show that such a Cauchy problem is globally well-posed for small
weighted H3/4* (R%) x H~/4*(R®) initial data, thus matching the regularity in the original work
of Tao [106].

Our technique uses the Penrose compactification of Minkowski space-time, which allows
us to transfer the original Cauchy problem on the flat Minkowski space-time into a Cauchy
problem on a precompact manifold with a curved metric. Such a technique can be traced back
to the pivotal work by Christodoulou [10] where the existence of global solutions quasilinear
systems of hyperbolic partial differential equations was settled. Recently, Dasgupta, Gao, and
Krieger [14] applied a similar argument to the wave map equation. The drawback of such a
procedure is that we are forced to work with a curved version of hyperbolic Sobolev spaces
which was introduced, in the context of the wave equation, by Geba and Tataru [30], see also
[27] for a refinement of such spaces. Despite its non-trivial definition and properties, the
author strongly believes that such spaces will play a central role in the further development of
the field. The main novelty is contained in §2.10 where we provide a proof of a key estimate
involving a null-form in the context of curved hyperbolic Sobolev spaces. The argument
provided here will serve as a guide in the proof the corresponding estimate for the Yang-Mills
null-form which is current work in progress and will be addressed in a subsequent paper.

This work is somewhat in the line with the sequence of works generating from the studies of
Klainerman and Machedon at Princeton during the 90s. In a series of papers, Klainerman
and Machedon studied the optimal local well-posedness problem for a class of quasilinear
problem with quadratic nonlinearities. At this point in time, the subcritical well posedness
theory for the Yang-Mills equation is well established in high dimensions: if n = 4 spatial
dimensions Klainerman and Tataru proved in [46] the optimal local well-posedness result for
s> n/2—1. However, in low dimensions there are still challenging open problems to be solved.
For the n = 3 problem, in [40] Klainerman and Machedon proved a local well-posedness result
for s = 1 in the Coulomb gauge, their result improved the classical one of Eardley and Moncrief
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

[24] which concerned only smooth solutions. Subsequently, by working in the temporal gauge,
Tao was able to prove local existence [106] for initial data with regularity s > 3/4, thus going
below the energy norm. Recently Pecher [85] generalized Tao’s result to the more general
Yang-Mills-Higgs system and to general dimensions n = 3. See also the work of Chrusciel and
Shatah [11] for a global well-posedness result for the Yang-Mills equation on curved manifold
and s = 2. The optimal well-posedness result up to s > 1/2 for the full YM equation is still
open.

We now introduce the Yang-Mills equation. Let G be a semi-simple Lie group and (g, [-]) its
associated Lie algebra. We denote by ad(X)Y = [X, Y] the Lie bracket on g and by (X,Y) =
tr(ad(X)ad(Y)) its associated non-degenerate Killing form. The unknown of the Yang-Mills

R1+3

equation is a connection 1-form A = A, dx® on the Minkowski space-time with value in g.

Let Fup =0q Ag—0pAq + [Ag, Agl be the correspondent curvature 2-form, then the Yang-Mills
equation
DaF*P =0

are obtained as the Euler-Lagrange equations of the Yang-Mills Lagrangian
1 op
LA =—~ | (F* Fup)dtdx.
4 R1+3

Here D, =04 + [Aq, -] is the covariant derivative. To obtain a more familiar formulation from
a partial differential equations perspective we can expand the Yang-Mills equation in term of
the connection 1-form coefficients and obtain the following system of hyperbolic equations

OAp—050% Ag +2[Aq, 0% Al — [Aa, 05 A1 + [0% A, Al + [A%, [Ap, Aal] = 0 2.1)

where (] = 0,0% = =92 + A is the d’Alembertian. To obtain a well-posed problem we need to fix
the gauge. Let us divide the connection A, = (Ap, A) in its temporal and spatial components
where A = (A, A2, A3), then let us impose the connection to lie in the temporal gauge, that
is Ap = 0. Then the Yang-Mills equation simplifies to the following mixed hyperbolic/elliptic
system:

0o (divA) + [A},00A;1 =0
OA; —0;(divA) + 2[A},0; Aj] — [A',0; A;] + [divA, Aj] + [AL, [A;, Aj]] = 0.
Setting the initial data pair (Ag, A1) on the time slice ¢ = 0, we consider the following initial

value problem for the Yang-Mills equation:

8o (divA) + [A,00A;1 =0
OA;—0;(divA) +2[A},0; Aj] — [A',0; A;] + [divA, Aj] + [AL,[A;, Aj]1 =0 (2.2)
A(0,)=Ag,  00A(0,") = Ay,
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2.1. Penrose compactification of Minkowski spacetime

where the initial data must satisfy the compatibility condition

divA; + [Ay', A1 ;1=0. 2.3)

The primary aim of our work is to provide the basis and pave the way to prove a novel global
well-posedness result for the Cauchy problem (2.2) with small initial data lying in the weighted
H34*+(R%) x H~1/4* (R3) space, matching the minimal regularity assumption available for the
local theory [106].

Conjecture 48. Let s > 3/4, then the initial value problem for the Yang-Mills equation in the
temporal gauge (2.2) is globally well-posed for data (Ay, A;) € Cgo(IR3) X Cgo([l%g‘) satisfying the
compatibility condition (2.3) and the smallness condition

125" Al s sy + 12T ALl s sy <€
for some e > 0. Moreover, the global solution satisfies the point wise decay bounds

|A(t, )| < CQL+ 12— 1xID 7 A +11e] + 1]t

The full proof of Conjecture 48 will not be provided here. However, we shall provide a fairly
complete outline of its argument. As already mentioned above, the proof consists of two steps:
first we rely on the Penrose compactification which we briefly introduce in the next section.
Then, the problem has been transferred to the Einstein cylinder a contraction argument is
employed. The proof of the nonlinear estimates used in the contraction argument will be
addressed in a subsequent paper. In this work we shall prove a nonlinear estimate involving a
pure N;; null-form, which will be used as a starting point to prove the nonlinear estimates
required in the fixed point argument which involves a slightly different type of null-form.

2.1 Penrose compactification of Minkowski spacetime

The Penrose map is a conformal map from the (1 + n) Minkowski spacetime to an open
bounded set of the Einstein cylinder "*! = R x §”. We shall give a detailed description below,
for more details the reader should consult [32].

Parameterize R" by spherical coordinates r,0',...,0""!, and use x* = (¢,1,0',...,60"1) as local
coordinates on the Minkowski space-time R1*" Moreover, denote R,®1,...,0" ! the pseudo-
angular coordinates on the n-dimensional unit sphere S”, that is R € (0, ), and (R angular
coordinates of S”~!: observe that we can parameterize S” except the two antipodal points via

(R,0) € (0,7) x S" ! — (cosR,®sinR) € S".

Subsets R equal constant are spheres S”~!, and notice that when R = 0 and R = 7 the subsets re-
duce to a point, called North pole and South pole respectively. We take X* = (T, R,®%,...,0" 1)

99



Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

as local coordinates on X"*!, the Penrose map P is given by

P:®R™ ) — CEUp, (2.4)
(t,r,0',...,0" Y — (T,RO,...,0" Y,

where
T = arctan(t+r) + arctan(t—r), R =arctan(z+r)—arctan(t—r), 0 =

The metrics on the Minkowski spacetime and on the Einstein cylinder are respectively defined
by
n=—-dr?+dr*+r?ds"")? and ¥=-dT?+dR?+sin’R(dS" 12

Notice that the range of the Penrose map is the open bounded set ='*” c £!*" defined by
M= (T,R,0,...,0" ) e |T|+|RI <7, (@) eS"!}

We now show that the Penrose map is a confomorphism, in the sense of the following defini-
tion.

Definition. A diffeomorphism v : (M, g) — (M, & between Lorentzian manifolds is called
a confomoprhismif y* g = Q?g, where the conformal factor Q is a positive scalar function.
Denote by (x#)=o,..,» the local coordinates of U ¢ M, and by () 4=o,...» the local coordinates
of U = w(U) c M. Denote the transformation v as ¥* = X" (x) and its inverse by x* = x"(%).
The conformal relationship in local coordinates is expressed by the formulae

% oxP oxH ox”
2 w =af
Vgu =5 g Bap Q78" =558
or equivalently
0x% dxP oxH %"
2= 2=uv _ af
Bhv = 33 gxv e “oxvoxp®

It is important to notice that for confomoprhism the classical transformation laws of covectors
and contravariant vectors are violated. We have to face a choice: either we allow covectors to
transform as usual and contravariant vectors to be rescaled by the conformal factor, or vice
versa. We employ the former:

3 = — ll: a
Op==r00 =020
ox% oxH ~
- u_ 22" Aa
a“‘a 0, 0M=0700

An important class of confomoprhisms is given by Wey! rescalings which are defined as a simul-
taneous point-wise rescaling of the metric: g, = Q? guv- Notice that under Weyl rescalings
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2.1. Penrose compactification of Minkowski spacetime

covectors transform as identities 0, = 504, on the other hand contravariant vectors are rescaled
0% = 0297,

Proposition 49. The Penrose map P is a confomorphism, form R'*" and Z'*". Moreover, it
holds that P*y = Q%n, with the conformal factor given by Q = cos T + cos R, hence the Penrose
map is a Weyl rescalings.

Observe that the South pole iy = 0,7,0!,...,0" 1) of the sphere {T = 0} x §" is not in-
cluded in X'*” hence it has no pre-image on R!*". On the other hand, the North pole iz, =
(Ty,0,0%,...,0" 1) of the sphere {T = Ty} x S™ has pre-image the point I', = (tan(Ty/2),0,0!,...,0"1)
on the time axis.

To better express the inverse of the Penrose map we may use Cartesian coordinates, x* =
(t,x1,...,X,) on R and ¥ = (T, Xy, X1,..., X;,) on Z"*! instead of using spherical coor-
dinates and pseudo-angular coordinates. We have embedded sphere S” into R!*" in the
canonical way. In Cartesian coordinates the inverse of the Penrose map is given by

P—l . (§1+n,77) - ([Rl"'l’l,n)
(TyXO)Xl’”-)Xn) — (t)xlr-”)xn)

where .
sinT X;

= x=—t
cosT + X ! cosT + X

Observe that with respect to Cartesian coordinates we have SHn— T, X0, X1,..., X)) |TI<

7, cos T + Xy > 0}, the conformal factor is

2 _ 4
A+ (XD A+ (£ |x])2)

and the metrics are ) = —dt*> + d%*, and y = —d T? + d X?.

In the study of partial differential equations, it is useful to consider the composition of the
Penrose map with the classical stereographic projections, in oder to have an Euclidean space

R*" on both sides. Recall that the n-sphere can be seen as an hypersurface embedded in
R1+n:

S" = {(Xo, X1,..., Xp) ERM: X2+ X244 X2 =1).

The stereographic projections St.. from the South pole (=1,0) and from the North pole (1, 0)
are defined respectively as

Sty :S"\(x1,0) — R"
(X()’Xll"'IXn) — (Ylv---»Yl’l)
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

where Y; = % The inverse transformations, for the North projection and the South projec-

tion, are given respectively by:

Proposition 50. The stereographic projections St. are Weyl rescaling from S™ \ (+1,0) to R". In
fact, it holds that St} y, = QZ'}/n+1: whereQ) = ﬁ The metricy, is the euclidean metric on
R™:

Yni1=dX? =dXG+dX: +---+dX: and y,=dY*=dYi+---+dY}

There is an equivalent way to define stereographic projections. Let us consider S$” minus
the North and South poles parametrized by the pseudo-angular coordinates: R, el,.. e
where R € (0,7), and (©%) angular coordinates of S"~1 Moreover, parametrize R” by means of

1 n-1

classical spherical coordinates a,w",...,w" ", where « € R* and ®H angular coordinates of

§"~1. Then an equivalent definition of the stereographic projection from the North pole is

St;:S"\(0,6) — R", (2.5)

(R,0!,....0"H — (q0)..., 0",

where a = cot (g) and 0’ = ©'. Analogously we define the stereographic projection from the
South pole

St_:S"\(1,0) — R" (2.6)

(R,0,...0"H) — (a0'.., 0"

where @ = tan (g) and w’ = ©. To check that these definitions are equivalent to the classical

definitions of the Stereographic projection given above look at Figure 2.1 below and use the
law of sines.

Figure 2.1: Stereographic Projection St.
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2.1. Penrose compactification of Minkowski spacetime

Next, let us analyse the composition of the Penrose transformation (2.4) with the stereographic
projection from the North or South poles defined in (2.5) and (2.6).

Definition. We define the two maps . = (RY*F7 1) — ((—m,m) xR", &) that maps the Minkowski
space-time into a Lorentzian manifold with bounded temporal coordinate:

Yi=fioP: R — ((-m,m)xR",®)

t,r0%....,0"HY — (Ta,w,...,0™ Y

where fi = (Id,Sts) : R x S — R'*" denote the stereographic projection on the sphere and
the identity in the time variable.

Clearly . are conformal maps being the composition of two conformal maps. Moreover, the
inverse function are given by the formulae

(@®+1)sinT 2a

= ) r= , 0 =w'.
(a2+1DcosT+(a2-1) (@2+1)cosT+(a2-1)

If instead of using spherical coordinates we use Cartesian coordinates x* = (t, x,..., x,) on
the domain R'*" and y* = (T, 11,...,Y,) on the codomain R!*". From the composition of
pullbacks of the metrics we find P* (f} g) = Q*n where

Zup = diag( -1, (ﬁ)z(ﬁ)z)

_Ivp .
and Q=cosTF7 +: §:2 . Thus . are Weyl conformal rescalings. Observe that we have compact-
ified the time variable, the price we have to pay is that the flat Minkowski metric is transformed

into a curved diagonal metric ggp.

In order to compute the pushforward of the vector fields in R*" by the inverse of .. we need
to calculate the partial derivatives of the map

licosT% ifu=0,v=0,
oyt 3 —YisinT ifu=i,v=0,
axv(%_ 2V sinT ifu=0,v=i
TTHYP p=0v=1

i L (YP+DcosTF(Y -1 o . .
(1-cosT)Y; Y/ + 14 |+)°°SZ (b )5£ ifu=j,v=i.

From this formula it is not hard to check that the conformal relationship for the metrics in

local coordinates Q%7 v = giy (3-.16/" 8ap holds. Moreover we shall also need the formula

~ 1-Y Y
9,0 = aylha, O- —QsmTHlY|2 ifv=0,
oxv _QCOST1+|Y|2 ifv=i.

Remark. The definition 2.1 is loosely stated because when we compose the Penrose trans-
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

formation with the stereographic projection from the North pole the time axis {x = 0} of
Minkowski spacetime is mapped by the Penrose transformation into the set (-7, 7m) x Py
which has no image through the stereographic projection from the North pole. Therefore we
have to restrict the domain of 1. to the set RI*7\ {x = 0}. Observe that for w_ we do not have
to restrict the domain since (-7, w) x Pg ¢ Si+n,

2.2 A conformal method for hyperbolic equations

In this section we analyse how the Penrose compactification map is used in the context of
Cauchy problems for hyperbolic partial differential equations. Consider a general nonlinear
initial value problem on Minkowski spacetime (R'*",1):

Ou=N(u),
(2.7)
(w, ug)l =9 = (uop, u1).

The Penrose transform P : ([Ri“”,n) — (i“”,?) is well behaved with respect to initial value
problem since it maps the submanifold {z = 0} x R" of R!*" into {T = 0} x S” on the Einstein
side. Therefore we can translate an initial value problem on Minkowski spacetime into an
initial value problem on X'*”. Recall that, if y : (M, g) — (M, g) is any general confomorphism
and 1 + n be the dimension of the manifolds, then the general conformal law between wave
operators with respect to two conformal metrics reads

n— n—
4n 4n

1)g

where i = (Q~""Y/2y) oy, in local coordinates we have u(x) = Q""VY/2(%)7i(%). Observe
R1+I’l

Q—(n+3)/2(Dg_R(g) 1)u= (ﬁg—R(g)

§1+n

that, in our case, the scalar curvatures of ( ,1) and ( ,Y) are respectively R(n) = 0 and

R(g) = —n(n—1), hence we can translate the Cauchy problem (2.7) into the following one
7 n-1 N N
G+ (25) )z= F@
(W, ug)lr=g = (4o, t1)

where i = (Q~"D/2y)o P~ and the nonlinearity is rescaled by a power of the conformal factor:
N(@) = Q-2 N Qn=D/27) - Burthermore, if we consider the case of 1 + 3 dimensional
Minkowski space-time, we recover the initial valued problem on (=13 7):

Oy + = N@
(W, u)lr=g = (Uo, t1)
where u(x) = QX (%) and N(@) = Q3 NQ).

The next step is to reduce the initial value problem on ='*” into two initial value problems on
(—m,m) x R™. For that purpose define an open cover of the sphere S” constitute by two sets U,
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2.3. The Yang-Mills equation in stereographic coordinates

and U_, with U, containing the South pole and U_ containing the North pole. We denote y. a
smooth partition of unity subordinate to the cover {U,, U_}, and we localize the function & to
one of the stereographic coordinate charts, by setting #i, = y+ . Therefore by localizing and
projecting through the stereographic projection we can translate the initial value problem on
i+ 7) into two initial value problems

(Og+ (”T‘l)z)izi = N(ii)

(Us,0us) | p—g = (Uox, U14)

(2.8)

on the Euclidean space ((—n,n) X [R",g'), where 1y = y+up and uy4+ = y+u;. We will refer to
(2.8) as the initial value problem in stereographic coordinates.

The biggest drawback of this procedure is that we end up with a non-flat metric g, that the
nonlinearity is multiplied by a power of the conformal factor depending on the dimension,
and that a mass term is added to the equation. Despite this disadvantages this method has the
enormous advantage to confined the time variable to the finite interval (-, 7).

2.3 The Yang-Mills equation in stereographic coordinates

In the following section, we apply the procedure outline in the previous section to the Yang-
Mills equation. We first translate the original Cauchy problem on Minkowski space-time to a
Cauchy problem on the Lorentzian manifold ((—m, ) x R", g), then we impose the connection
to lie in the temporal gauge, and by means of splitting into divergence free and curl free
components we highlight the null structure present in the quadratic terms.

First, let us show that the Yang-Mills equation on manifold of dimensions 1 + 3 is invariant
under Weyl conformal transformations, here the fact that we are working in 1 + 3 dimensions
is crucial.

Proposition 51. Let v : (M,g) — (M, g) be a general conformism between two Lorentzian
manifolds of dimensions 1+3. If the curvature F*P : (M, g) — g satisfies the Yang-Mills equation
on(M,g), then ﬁaﬁ = Fapo v~ M — g satisfies the analogous Yang-Mills equation on (M, §).

Let (M, g) be a Lorentzian manifold with non-flat metric and let Aq,Fop: M — g be the
connection and the curvature tensors on (M, g) with value in the Lie algebra. We define the
curvature in term of the connection as

Fap=VaAp—VpAq+[Aq, Apl =00 Ap —0pAq + [Aa, Apl
by symmetry of Christoffel symbols. The Yang-Mills equation on (M, g) are
Do FP =V F®P + Ay, F*P1 =0
Notice that we are raising and lowering the indices with respect to the non-flat metric g, hence
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we obtain the identity F*# = V¥ AP VP A%+ [A%, AP = 9% AP~ 0P A%+ (TP —TF%) AT + A%, AP),
where Fﬁﬁ = g“ﬂrﬁy is obtained by raising the indices of the Christoffel symbols. When
expanded the Yang-Mills equation in term of the connection are

Vo VEAP —V VP A% +2[A,, VEAP] — [Ay, VP A% + [V A%, AP] + [Ag, [AY, AP11 =0

which is exactly equation (2.1) where derivative have been replaced by covariant derivative. We
can expand the covariant derivative further to obtain the system of nonlinear wave equations

Og AP —0P0, A +2[Aq,0% AP] — [Ag, 0P A%] + (04 A%, AP + [Aq, 1A%, AP])
+ A7 (T8 TY —T8 TP 40,750 - 0,15%) +T%, (07 AP~ 0P Ay + (T3P 100, A

+ToP —TE%[Aq, A1+ T (A7, AP1 = 0

’)/[

Notice that if the metric g is the Minkowski metric then the latter equation reduces to equa-
tion (2.1) because Christoffel symbols vanish. Moreover, if we come back to the commutative
setting, hence if the Lie bracket vanishes, we recover Maxwell’s equations on a curved man-
ifold. Finally observe that the first line of the equation is exactly the Yang-Mills equation
on Minkowski spacetime where the d’Alembertian [ has been replaced by the curved wave
operator [1g. Loosely speaking, when we study Yang-Mills equation on curved background we
have to add extra lower-order terms which arise from the Christoffel symbols in the covariant
derivative. We can restate Yang-Mills equation on curved background as

OgA=0(0qA%) +IM(A,0A) +M(A, A A) +E(A) +EBA) +E(A A =0 (2.9)

We now turn to the proof of Proposition 51.

Proof. Consider the manifolds M and M to be of dimensions 1 + n. Denote by (x*)u=o,..,n the
local coordinates of U < M, and by (f“)pzo,...,n the local coordinates of U = y(U)c M. Denote
the transformation v as ¥ = ¥*(x) and its inverse by x* = x*(%). Recall that v : (M, g) — (M, &)
is a confomorphism hence in local coordinates we have Q?g,;, = g Hl[j 8ap where we use the
shorthand notation IT§ = gf: . We define Fyy o5 = Vo Ag — VA the Maxwell component of the
Yang-Mills curvature tensor, then clearly Fop = Fpap + [Aa, Apl, and the Yang-Mills equation

could be stated as
DaF = Vol +ValA%, AP+ [Aq, F*P)

Since Fy 4p is a rank-2 covariant tensor it should transform accordingly, thus define F Map =

g 1% Far ap, where 117 is defined as the inverse of I1: 114 = g%: - We will also use I, = 0,117
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2.3. The Yang-Mills equation in stereographic coordinates

and HZ p= 5aHg. Then when raising indices we obtain ﬁ;\xf = Q‘4H2H£F ]‘(j’ . We compute

3 = uso.menlrih)
= 40759, FE + 7' nlo, r o7t P v ot g e Pl

= 40790, FY + Q7'M o,Fl + Q7T 1 TS Y

a

For general conformal transformations the Christoffel symbols are computed to be linked by
the relations

re, =L s Tl 5+ UG, — Q710 QIES] + TT5 8¢ — LTILI; 87 )

In particular we will need that
Ty, =Te, —eTG. + (n+1)Q 70,0 (2.10)

From the transformation of Christoffel symbols formula (2.10) we obtain

re FP = a7fe mnbre

= o™i, FY -l ug e, FiP + (n+ DQ %0, QM) Fb

b ca

Therefore if n = 3 we obtain ?aﬁg{ﬁ = Q_4H§V,1F ﬁf . In fact we have

o pab _ 7 gaBb | ta VP
VoF,;, = 0qF), +F$YFM
= QDO F +T¢,FD) + (n+1-HQ 750,000 FY
= QMY+ (n+1-9Q7%0,QM FP
Notice that the second term vanishes if n + 1 = 4, thus we infer that Maxwell’s equations are

conformally invariant iff n = 3.

Next we examine the non-commutative part of the Yang-Mills equation. Notice that the
tensor [A%, AP] has the same antisymmetry property and transform like F%, that is F*f =
Q‘4HgH§F“b. Thus we obtain the identity ValA, APy = Q‘4H£Va [A%, AP]. Furthermore

[Aq, %) = M2 A, Q7 TCTID O = Q7P [A,, FOP)
Therefore we can conclude
Do FP = Vo el + Vo [A%, AP) + (A, F¥P) = Q7P D, F P

Thus, exactly as Maxwell’s equations, the Yang-Mills equation are conformally invariant in any
1+ 3 dimensional space-time. O
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

We now apply the procedure outlined in §2.2 to the Yang-Mills equation. Consider the Penrose
compactification composed with the stereographic protection: v+ : (R'*3,n) — ((r, ) x R, 8),

where

= g1 (2 ) () o

Recall that if we use Cartesian coordinates x* = (¢, x1,..., X,;) on the domain R'*" and yH* =
(T, Y3,...,Y,) on the codomain R!*”, we have that . are Weyl conformal rescalings since
- _1oy?
wf_rg=Q2nwhereQ=cosT+hmz. posi it
are conformally invariant thus D, F @b — o iff DyF ab = 0, where Fap: (R1+3 ,n) —gand Fag =

Fapo w L ((r,m) xR3,§) — g. Therefore Yangs-Mills equations in term of the connection

From Proposition 51 we know that Yangs-Mills equations

Aq = Agoy i ((m,m) xR3, &) — g in stereographic coordinates are

(g AP —3,0P A% + 2[ A4, 0% AP) - [Ag, 0P A% + [0, A%, AP) + [A,, A%, AP)]
A7 T8 TP T T 4 5,790 5,10

+T @Y AP - 3P ANy + (@F - T3, AY

+(5P ~T0N) Ag, A7) + T2, 14T, AP = 0

From the definition (2.11) of the stereographic metric g, we can compute explicitly every term
of the previous equation. Let us compute the Christoffel symbols of the stereographic metric

2y; ; .
—W ifu=a=iand =7,

Zﬁ= % ff=a=iandu=j#i,
0 ifu=0,ora=00r =0,

Therefore when f = 0 the temporal component of the connection satisfies the equation

D1z Ao — 00 (@o AY) + 2[4, 3; Aol — 1A, 39 Aj] + [0; A7, Aol + [AL, 1A}, Ao]] (2.12)
—ai(’él‘;{o _EOZi + [Zi,;{o]) =0

k_ 2y

where the coefficients are a" = THYE ,and when g = j spatial component of the connection
satisfies the equation
OgA;—0(0aA%) +2[A;,0'Aj) — [A;,0;A] +[0; A", Aj] + [A;, A, A]]] (2.13)

+ak5]~[§k - Ekgkgj + Ejgkgk - Jk[gk,gj] - eﬁj =0

~ 4 2 ~ 4 2_
where the coefficients are b* = %Y", ci=Q0+ IYIZ)Yj, di = %Yk, and e =
20 +1Y1).
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2.4. Preliminary reductions and reformulation of the problem

We then reduce Yang-Mills equation on curved background in schematic form by imposing
the temporal gauge, thus Ay = 0. Let us divide the connection in its temporal and spatial
components A, = (Ag, A) where A = (A, Ay, As), then the Yang-Mills equation (2.12) simplifies
to

0o (divA) + [A!,09A;] + @ 0gA; =0

Then we shall write the Yang-Mills equation in stereographic coordinates and in the temporal
gauge as

(2.14)

9o(divA) + [A1,00A;] + F(0A) =0
DgA; —0;(divA) +9;(A,04) + € (A, A, A) +&;(0A) + &;(A, A) + E;(A) =0

where

M (A,04) =2[A;,0'Aj] - [A;,0; A" + [divA, Aj],
Cj(A A A =4; 4", A},
&j(0A) = a0 A — b0 A; +T;divA,
E;(A A) = _Jk[gkygj],
gj(g) = —eﬁj,
F0A) =a'dpA;.

In the next section we shall show how to simplify the second order term 50 (&R/Z) and how to
extract from the quadratic term 90 (A,04) a corresponding null structure.

2.4 Preliminary reductions and reformulation of the problem

We shall abuse notation a bit and not write the tilde sign to denote quantities which depends on
stereographic coordinates. In order to obtain, from the second equation in (2.14), a hyperbolic
equation and to highlight its subjacent null structure, we apply the Helmholtz decomposition
and we separate A into its divergence-free and curl-free part: A= A%/ + A/ This procedure
was already employed by Tao in [106] in the case of a flat metric. Let us define the Leray
divergence-free and curl-free projections:

A% = P(A) = (=A) Ycurlcurl A),

Af = (I-P)(A) = —(-A) ' (grad divA),

thatis (A%/); = €;jxe*"™RIR; A,y = R¥(R; Ax. — R Aj) and (A); = —R; RV A}, where ¢ . is the
Levi-Civita symbol and R/ = |V|~'4/ is the Riesz transform. We shall see that the interesting
dynamic is concentrated in the divergence-free component, while the curl-free component
contains the elliptic portion of the gauge and can be treated easily. In fact, when we apply the
operator I — P to the first equation in system (2.14) we obtain a nonlinear elliptic equation for
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

the time derivative of the curl-free component
0: AT = (=) 'V (IAL,0,Ail + F (0A)).

Furthermore, when we apply the operator P to the second equation in system (2.14) we find
the following nonlinear hyperbolic equation for the divergence-free component

Og A% +2P[A!,0; A1 - P[AT,VA;] + P[divA, Al + P[A", [A;, All
+P(a*V Ap) — P(b*0;. A) + P(cdivA) — P(dy[A¥, Al) - P(eA) = 0.

To exploit some cancellation in the critical quadratic terms of the latter equation we split
A= A% 1 AT in the quadratic nonlinear terms and we isolate the factors where A%/ interacts
with VA4/, then we obtain

Og A% +2P[ A 9; 4] - PLAYT VA Y 4+ 0 (A, 0 A +9M g (AT, 0AY) + Mo (A, 0 AT
+PE(A, A, A) + PEDA) + PE(A, A) + PE(A) = 0

where

M (AY 04"y = 2P A% E 9; AT — P A4S VAjf] + P[divA®, A%hy,

Mea(AT,04%) = 214 ,0; 4901 - PLali v AT,

Meeo(AT,04%) = Pldival, A1
We have isolated two critical components of the nonlinearity, specifically the two nonlinear
terms which involve the self-interaction of A%/, We shall now show that these terms are
linear combination of null-forms. Let us recall that the IV; j-null-form for g-valued functions
f,g:R3 — gis defined as

Nij(f,8)=10,f,0;81—10;f,0ig].

We have the following key property, see also equation (9) in [85].

Proposition 52. For every scalar g-valued functions f, g :R3 — g, we have

(PIf,VgDi=IVI"'RIN;;(f, ©.

Proof. From the definition of the divergence-free operator and the Riesz transform all we need
prove is that
€ijke* ™7 0,1 f,0mgl = 0/ Ni;(f, 8).

From the classical identity (curl(A x B)); = [A;,divB] — [divA, B;] - [A/,0;B;] + [0 A;, B/] we
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2.4. Preliminary reductions and reformulation of the problem

infer

€ijk€™070,(f,0mgl = €ijk€™70,f,0mg] = (curl(Vf x Vg));
= [0;f, 081 - [Af,0:8)-107£,0:;81+10;;f,0 gl =
= 0/([0;f,0;81-10,f,0ig))
= o/ Ni(f. 9.

It follows directly form the previous proposition that P[A%/1 VA4S ;| = |V|"IN(A4S, A4T),
where N = (N1, N», N3) is a vector such that each component is a linear combination with
constant coefficients of NV; j-null-forms:

Nj(A, A) = R*Njr (A, Ay).
To handle the subsequent quadratic term P[A%/? 3; A%/] we need the following

Proposition 53. For every vector g-valued function A:R3 — g3 and scalar g-valued functions
f:R3 — g such that A is divergence free, we have

(47,0, f1 = Njr(IVI' R AL, f).

Proof. Define ATy =0jAr—0kAj, then LN Tjr = A Ay — 0 (divA), thus from the divergence-
free hypothesis we infer 8/ Tjr = Ax. Moreover notice that T} is antisymmetric and by straight-
forward commutation we obtain

[A7,8, f]

) 1 ) .
10k 74,0511 = 5 (105 T - 0, 17%,0, 1)

1 . .
_ z([akT’W,ajf]—[ajT’W,akf])
1 ; 1 . ;
- ENjk(Tfk,f):ENjk(|V|‘1(RJAk—RkA]),f)

= Nj(IVI"'R/ A%, f).

Hence it follows that P[A%/1 9; A4f1 = N(|V|"1 AS, A4f), where N = (N, N,, N3) is a vector
such that each component is a linear combination with constant coefficients of IV; j-null-
forms:

Ni(IVI A, A) = €1k RIR Ny (V17" R AP, Ay)

In light of these results the Yang-Mills system (2.14) then becomes essentially an hyperbolic
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

system:

0; AT = (=A)TIV([AL 0, A;] + F(0A))
Og A% = |VITIN(AY, A%T) + N(VITLAYS, A4T) + M g (AT, 0 AT ) + DM g (AT, 0 A7)
+Mcc(AT,0AT) + PE(A, A, A) + PEOA) + PE(A, A) + PE(A) =0
(2.15)

Notice that the second equation for the div-free component is hyperbolic and the nonlineari-
ties on the right-hand side are written in decreasing order of harshness: the first two contains
the interactions between div-free components and they possess a null structure, then the next
two terms, 901 and 9.4, contains the interactions between the div-free and one derivative of
the curl-free components. The subsequent term 971, enclose the self-interaction of curl-free
components and it is of the same type as the two previous ones. Note that the three bilinear
terms My, M4 and ;. do not possess any sort of null structure. Finally, we have four
lower-order terms for which the splitting in curl-free and div-free is not emphasized. In order
we encounter a trilinear term, a simple term involving one derivative, a bilinear term involving
no derivatives, and a simple linear term without derivatives.

The proof of Conjecture 48 is then reduced to the proof of the following Conjecture:

Conjecture 54. Let s > 3/4, then the initial value problem for the Yang-Mills equation (2.15)
is globally well-posed on (—, ) x R3 for initial data (Ay, A1) € Cgo(le) X C(‘)’O(Rg) satisfying the
compatibility condition (2.3) and the smallness condition

” AO ” HS(R3) + ”Al ”Hs—l (R?’) <E.
To prove the global well-posedness of system (2.15) we shall employ a contraction argument,
thus it is sufficient to find two Banach spaces X and Y endowed with the norms
lAIx = 1A Nyar + 1A Nixer,  NAlly = 1AY yar + 1A ey

for which the following mapping properties hold:

* Linear estimate for curl-free component

107 A N er SUCAL, A oo s + IF e 2.16)

* Linear estimate for div-free component

d

d
|75 (AL

LAy + O Fligar SNAY A s cres + 1 Fllyar. (2.17)
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2.4. Preliminary reductions and reformulation of the problem

* Nonlinearity for curl-free component

I(=2) "'V (AT, 00 Ail + @' dg Al yer S AN (2.18)

IF @A) lyer SN Allx. (2.19)

* Null-form estimate for div-free component

NVITIN(A1, A2) + N(VITT AL Ao) lyar S VAL gar Il Azl ar (2.20)

* Multiplicative estimate for div-free and curl-free interactions

19 4 (A, 0 A + Mg (A, 0 A | yar SNAY | ar 1A |l e (2.21)

* Multiplicative estimate for curl-free interactions

190 e (AT, 0A) I yar SIAT IS, (2.22)

e Trilinear estimate

IPE(A, A A)llyar S AN (2.23)

 Estimates for lower-order terms

IPE@MAyar < llAllx,
IPEA, Allyar < IAIA,
IPEA) Iyar < NAlx. (2.24)

The Banach spaces used in the contraction argument for the curl-free part are

-1 s+19-3
* and YY=H,'H, *

XCf — H)\?&Hf
where % < 6 < 1. On the other hand, due to the hyperbolic nature of the equation for the
div-free component, the Banach spaces employed are more involved and will be introduced

in the next section, they are the curved-analogue of hyperbolic Sobolev spaces:
X =x%0 and vy =xs1O-1

Furthermore, since we are interested in finding a local solution, we shall consider such spaces
for function in the time slice St by applying a cutoff in time and then use the scaling property
of such spaces to recover a function of T which will be needed to assure smallness in the

113



Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

contraction ar: gument.

We shall outline how to reduce the proof of Conjecture 54 to the proof of the null-form estimate
for the div-free component (2.20). Let us start by analyzing the linear estimates. The linear
estimate for the curl-free component (2.16) is trivial. Let A satisfies

0;A% = F
C

ALt =0)= A7, 8,47 (1=0)= A

then
o7t AT )

< cf 4cf ) 3
bt S 1Ay A7) s s 1+”F”H§+‘1‘Hf7%

sty
X

Let us consider the linear estimate for the div-free component (2.17): suppose that A%/ is the
solution to the Cauchy problem

OgAY =F
(A%,0,4%7)(0) = (AL, A1)

then Corollary 64 and Proposition 66 implies that A%/ verifies

d

d
LAY Il oo S AL, A% s et + 1N yomroe

Notice that the hypothesis on the metric g given in (2.11) are satisfied.

Now let us turn to the more complicated nonlinear estimates. The bounds (2.18), (2.21), (2.22)
and (2.23) in the flat setting are proved in [106], see also [85], and should be easily adapted to
the presence of a curved metric. The proof of estimates (2.19) and (2.24) will not represent a
mayor issue since they can be treated by Strichartz estimates in the same line as in [106]. Thus,
the main obstacle to perform a fixed point argument is the proof of the estimate involving
null-forms (2.20). As previously mentioned, we shall not provide a complete proof of such
a bound here, nevertheless we prove a somewhat easier null-form bound for the pure N;;
null-form. This intermediate step provides guidance on the proof of the more difficult estimate
(2.20) which will be addressed in a subsequent work.

2.5 X*9 spaces for curved metrics

Following [30], [28], and [27], we define wave-Sobolev type-spaces adapted to prove local
well-posedness of Cauchy problems for nonlinear waves equation on curved backgrounds,
i.e. with non-flat metrics. Observe that other variable-coefficient extensions of hyperbolic
Sobolev spaces to treat waves equations on smooth compact non-flat manifolds have been
introduced in [6] via special theory. In what follows we assume that the matrices (g% (f, X)), B
(8ap(t, X)) q,p are uniformly bounded in ¢, x and of signature (1, n). Furthermore, we also
assume, without loss of generality, that g00 =1, thus the surfaces xy = const are space-like
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2.5. X*? spaces for curved metrics

uniformly in x. The following definition is based on Definition 2.1 of [30].

Definition. Let n = 3 the space dimension, and let g be a metric such that 6?6% geL?L™,
Moreover let s € R and 6 € (0, 1), we define the X*¢ norm by

oo A oo A
lldo =inf{ 3 Y Nunal®es: u= Y. Y Pruyal (2.25)
A=1d=1 L A=1d=1

—

and
lull%sy =A@ ull} + A2 ~2d? 2| O e ull;
Ad
where Ug 12 = (P<,11/2(Dt,Dx)g“ﬁ)6aOp and we consider Lebesgue norms to be over R'*".
Furthermore for negative value of 6 we define the norm

(0]

oo A A
1N 0 = inf{nfo [P IDY ||fa,d||§q,3 tf=fo+ X 20 e Pm,d} (2.26)
A=ld=1 : A=ld=1

In the definition above we are using inhomogeneous Littlewood-Paley decomposition in the
space variable Pyu = Py (Dy)u = 95‘ LA (&)T(t,§)), where @, is a smooth function supported
in the set {1/2 < || < 21} and 2710:1 ©,(&) =1, here P; incorporates all the low-frequencies
contributions. Notice that only the coefficients of the metric are truncated using space-time
Littlewood-Paley cutoffs: Py (Dy, Dx)g“ﬁ = gr—l (pa(1,8)u(t,<)). Define the spatial multiplier
P, with slightly bigger support, so that P, Py = ’P;L and its Fourier transform is supported in the
annulus {1/8 < |¢] < 81}. Observe that, since Py P, = P;, one can take Upd = Py Uy, q, therefore
we have the equivalent definition

) oo A ) oo A N
lh2p =inf{ > Y 1PrunalZes: u= Y Y PaPrunaf
A=1d=1 Ad A=1d=1
and an analogous formula holds for X*~9~1, This means that we can consider the functions
uy,q and f) 4 to be localized around frequency A.

The first properties that we prove is that variable coefficients wave-Sobolev spaces defined
above are indeed an extension of classical wave-Sobolev spaces. Thus in the case of flat metrics
g =1, the infimum is reach by the classical modulations cutoffs with respect to distance form
the light cone.

Proposition 55. Let g =n the Minkowski metric in the definition of the norm (2.25). Then
” u”XS.B =~ ” u||Hs,9 + |||:|u||L2HS+9—2
where
3o =Y > A*d*IPAQqull;
A=1d=1
Recall that we denote by Q, the Littlewood-Paley type operator defined by Q u = g;} (Wqa(r,O)u(t,$),
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where v 4(7,8) = @4(|T]| - [€]). Here w4 cuts at distance = d from the light cone.

Proof. Observe that if g =1, then the Xi’z norm reduced to

25 120,12 4 425-2 7202 2
lul® oy = A% d??ull3 + A*°~2d*°~2|0ul3

XSH -

since the Fourier transform of a constant tempered distribution is the delta function. Let us
begin by showing the easier part: the X $9 norm is smaller than || u|| gso + 10Ul 2 gs+o—2. Set

ﬁdeu ifd<A

Upd= - ]
Ya=APrQqu ifd=2

then we have the decomposition Y97 | 22:1 Prupa =Y, X5, PAQqu = u and therefore

lull o = Z > ”P/leU”Xm +1) PAQdu”Xw

A=ld<A Ad a=A

For the low modulation term we have the bound

[e.°]
D3 IPAQaullss = 3. 3 A d* 1Py Qaully + A% d* 1 PAQqDul;
A=ld<A A=ld<A

< Z ZAZSdZ"uPAQdunz
A=1d
< ||u||ils,g

On the other hand the high modulation term is controlled by

Z L IP1Qaull S Z A2SH201 By Qqulls + A* 42074 Py QqOlull3

=ld=A

™32 i M8
%[V18 v

2254201 B 2, 225420-4) 5 2
A PyQqull; + A= 41 Py Qa0ull;

N
N
ﬂ‘

<l 9+||Dull

[2Hst0-2

To show the reverse inequality, i.e. [lullgso + 10ullj2psi0-2 S llull xso, we argue as follows.
Suppose that the function u decomposes into u =377 22:1 Pjuy 4, then we must show that

o A
el + 10ul? <Y N A%a?uy qll5 + A 2d* 720wy g3 (2.27)
A=1d=1

[2Hs+0-2
Let us begin to bound the second term on the left-hand-side. Notice that Pyu = 2?1':1 Pyuy ar,
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then by Cauchy-Schwarz inequality we obtain

o0

2 25+20-4 2
”Du”LZstLGfZ ~ Z /1 s ”PA«DMHZ
A=
X osi20-4( o 20-2 (& 220
+ — — —_
S Y AR Y a7 0u 3)( Y @)
A= a=1 d=1

o A
25—2 320-2 2
<O Y AFEAY A 0upall;
A=1d=1

To close we need to bound the first term on the left-hand-side in (2.27). As above Cauchy-

Schwarz inequality yield to

2 <
HS,9 ~

of < 2
A2a( Y IPAQauala)
1 d'=1

18
18

llzell

>~
Il
—
QU
Il

A d29

A
2 20 20-2 ;2 2
> @ v )||Qdu;t,d/n2)(d§1 L )

A
018
18

>~
Il

—_
QU
Il

—_
x

25 1120 2 | 225-2 7120-2 2
A=A up a5+ A7 7d 10up,a ll5

N
™8
M=

>
Il
—_
)
Il
—_

The sum 22/:1 WZZH# is bounded for 0 < 8 < 1 uniformly with respect to A and d. In fact,

let A =2k d’' =27, and d = 2", then

1 o0 9(2-20)(j-h)

k
220h : ___ < :
jX::1 220j 4 2(20-2)jo2h i 22(j-h) 1

and since S
27U+ 1
lim 22720 =~ —2720 <
j—o0 22(j+1-h) 11
by the ratio test we conclude that the series is convergent for every h € N. O

Next, we verify via an analogous argument used in the proof of the previous proposition, that
a similar property holds for the variable-coefficient extension of hyperbolic Sobolev spaces
with negative 0, that is for the norm introduced in (2.26).

Proposition 56. Let g =1 the Minkowski metric in the definition of the norm (2.26). Then for
seR, and 0 € (0,1) we have

”f”XS—LU—l =~ ||f||Hs—1,0—1 + ||f||L2Hs+U—2
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Proof. Notice that in flat space-time we have

oo A oo A
100 =1 folS e+ Y Y I frals s £= for Y Y OPafraf
A=1d=1 Ad A=1d=1
We begin by proving the following: || fll xs-10-1 S | fll gs-16-1 + | £l ;2 gys+0-2. Set fo = 0 and define
O°1P,Quf ifd<A
YazaO7'PiQuf ifd=2

fra=
Then clearly =357, 35" PAQaf = fo+ X5, Xa<aUPrfr,a and

1o S Y Y Aa 107 BrQafII3 + A% 2d* 211 Py Qa 113

A=1d<A
o0
+ YN A0y Quf 113 + A2 Py Qu f I3
A=1d=A
o 252 3202\ D 2 - 25+20-4 . D 2
SN Y AR A EPAQaf 15+ Y. Y AR By QS
A=1d<A A=1d=A

2 2
S./ ”f”Hs—l,H—l + ||f||L2Hx+H—2

To show the reverse inequality, suppose that the function f decomposes into f = fo+¥92, 22: 1UPAfrar
it suffices to prove the bound

oo A
2 2 2 2
L1 rms + 11 e S Mol + Y D I fral o
A=1d=1 rd

Notice that Py f = Py fo + 22:1 0Py fa,4, then by Cauchy-Schwarz inequality and the fact that
0 < 1 we obtain

& 2
11 pne S 2 A2 (IPAfola+ Y I0Ps frallz)
A=1 asA

A

o 425-2 2, Q& 252 20-2 2
Y ATTEUPASfolls+ Y Y ATTEA 20 fall
A=1 A=1d=1

oo A
S M folTeger + 2 2 I fral
A=1d=1 Ad

Next we prove the corresponding bound for H5~19~1, Recall that P, Q, f = P, Qdf0+22,:1 OPAQafr,ar»
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2.6. Basic properties of X*¢ spaces

Cauchy-Schwarz inequality yield to

00 00 A 2
s S L L A% 2a%°2(1P1Qafolla+ Y. I0PAQafr,arlo)
A=1d=1 d'=1
S L ARG Y Y ( Z K d1PAQufrale)
A=1 A=1d=1 =
00 A 00 A
S 1 foll 3z e +/1Z"ldz"l(dzll d°IPAQafy, d’||2) Z Z ( Z AT NOPLQu frarll2
= < = A=1d>A d'=

To control the second term we apply Cauchy-Schwarz inequality

£ 5 (£ vmanaf < £5 5 -

Ad ||P/lef/l,d’||2) S IPAQafrarl’ ( —)
A=1d=A (d’:l A=ld=1d'=1 X\ 2y dr?® 4 a0 2 q2
and analogously we can control the third term by
>y (3 At f<Syy (5t

AT d7N0OPAQa faarllz) S 1PAQa fr,a 1 o

A1dsA d=1 Amldsad=1 Xt d=i 224 a2 + a*0-2q2
Notice that the reminder sum 22':1 szdﬂ‘”gﬂ is bounded for 0 < 8 < 1 uniformly with

respect to A and d by a similar argument used in the previous proposition. The proof is then
completed. O

2.6 Basic properties of X*? spaces

In this section we review some of the properties of the variable coefficients extension of
hyperbolic Sobolev spaces introduced in the previous section. Our presentation is based on
the works [30], [28], and [27]. Let s€ R, 0 < 8 < 1 and [ a finite time interval around the origin,
we shall define the norms X¥9[I] and X5~ 1011 respectively as in (2.25) and (2.26) where we
replace the Lebesgue norms L2(RIT™ by L2(I x R™). Hence we define the associate norm

2 2s 320
Nl o = A2 ),

25s-2 320-2 2
lm +A d ||Dg</11/2 u||L2(1an).

I><[R")

The first goal of this section is to prove the following two embedding properties:

i. Let—1<6<0then X%° c 1259,

ii. Let1/2<0<1then X*[I] c CO(I, H) nC (I, HSY).

Let us decompose the function u into u = Z‘f:l Zg: 1 Paura, then the previous two embed-
dings properties follows from the two estimates
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

: 2 oo A 2

i 0 S T2 Dy M0l

P 2 < y oo A 2
LR PR FRTRNESD 3 o Y LT

where S; = I x R”. The first estimate is easier to establish since for —1 < 8 < 0 we have

(o) A oo A oo A
2 2s+20 2 2s 320 2 2
Nl G pgoo S 22 A*T( X IPAupall2)” S ) Y A% d  1Pruals S ). Y Nuaal’pso

A=1 d=1 A=1d=1 A=1d=1 Ad

In order to establish ii. we use as well Cauchy-Schwarz inequality to obtain

e} A 2
2 25-2
IVertloporsy S 2 A% X IVexPrusalmres))
A=1 d=1
o A 2s—2 320-1 2 A 1-20
< X (X AN Prualeags ) 2 @)
A=1 d=1 d=1

The second sum is controlled by the series Z‘;zl d'~29 which converges due to the fact 6 > 1/2.
Therefore to prove ii. it suffices to establish the following proposition that is taken from [30].

Proposition 57 ([30]). Let 0?6§g € L2L™ for every h+ |a| < 2. Suppose s € R and 6 € (0,1) then
for any dyadic numbers A and d 2 |11~ we have

2

25-2 720-1
A“%d 0
Ad

2
||VZ,XP;LU|IL00L2(SI) ,-S ” U”

Thence in view of the previous discussion from Proposition 57 it easily follows:
Corollary 58 (Embedding into solutions space). Let 6’;6% g € L?L™ for every h + |a| < 2. Sup-
poses€R and € (1/2,1), then X501 < C°(1, H) n C' (1, H*™1)
We split the proof of the Proposition 57 into two parts. First we define a new norm which is
easier to handle in the context of wave equations:
IWllgso = 2571 d? IV evlla + A @0 M 1O pe vl
Xpd ' g
J— ,6 .
In the lemma below we compare Xfl, 4 With Xj‘fl and we shall prove that the two norms are
. .. . . oS0

equivalent. Thus to prove Proposition 57 it suffices to replace the norm Xj’fi with X i d-

Lemma 59 (Norms equivalence, [30]). Let@’;a;‘ g € L L™ for every h+|a| < 2, then the following
estimate holds

_ <
IIPAVIIX;,Z S UIIX;Z (2.28)
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2.6. Basic properties of X*¢ spaces

=s,0 . . . . .
Moreover the norms Xj'(zi and X 4 are equivalent over functions which are localized in frequen-
cies= .

The proof of the norm equivalence Lemma requires the fixed-time commutator estimate below,
that tell us that the commutator between the low-frequencies component of the d’Alembert
operator L1z and the Littlewood-Paley cutoff P) is bounded by the L2 norm of V, , Py u.

Lemma 60. (Commutator estimate) Let v’; g(t,-) € L°(R") then

10 pv2, PALU (Ol p2ny S A FIVEP 12 (Ol 1o @) 1V £, PAV | 2y

Proof. Let us assume without losing generality that g% =1, thus
[Dg<11/2, P,l] = 2[P</11/2g0i, P;L]aoai + [P</11/2gij, P,l]aiaj

Therefore for any function f such that VX f(¢,-) € L°(R") we have the fixed-time estimate

” [P</11/2f,P/1] U(t) “LZ(R”) S ”(P<)(1/2f)(P/’[U)(t) “LZ(R”) + ||P,1((P</11/2f)U)(t)”LZ(Rn)
S P e f(O)lpe@m V(O 12 @y
<

ARIVEP e F (Ol o @y 10 (D] 2 ey

Now we apply the previous bound where f now represents the different components of the
metric. Notice that the commutator is localized around frequency = 1, hence we have

u

I0g<pi2s Py1P (1) | 22 ®ry

I[P p128°, P21000: Pov(6)ll 2 my + I [P p128%, P218:0 Prv () 12 @eny
IVEG () reomy (X110, V2 PAV(D I 2 oy + A~ 2IVEPA v (D)l 12 o)
MRIVEG ()1l 1o (10 PAv () 2y + IV xPA V()] 12 gey)

I [Dg<,11/2, Prlv(® r2wn

IZANRZANRYAN

Next we prove the norm equivalence lemma.

Proof of Lemma 59. First we prove that | Py vl xso S |Pyv IIYS,e. By Littlewood-Paley theory we
have A5d? | Ppvll, = A51d0 |V Prvlla S A1V« Pavllz, thus [ Pavl yse S 1IPA Vligso . Now
A,d Ad

let us turn to the proof of (2.28), notice that, in view of Lemma 60, it suffices to show that
A d0,Pyvliz SATAP vl + A5 T IO pue vl (2.29)
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

In fact, we bound the second term in the || Py v IIYs,e via the following commutator inequality
Ad
”Dg<}L1/2P)LV||2 =| [Dg</l”2’ Pylvl|s + ||P,1Dg</11/2 vllo

We employ Lemma 60 to control the first term on the right-hand side, we place the metric in
L LY and we apply Bernstein inequality to recover the L2L norm since for the metric we
are using space-time Littlewood-Paley operator, hence we obtain

I8g<niz, Palvllz S IVEP 128 (0l oo IV, x Pa v 212

Hence to control this term V2 g € L2 L™ suffices. We now turn to the proof of (2.29). We actually
prove the stronger inequality:

A d (1020l 224 2212) + 106V 21 4212)) S Voo (2.30)
Estimate (2.30) follow form the interpolation inequality
100012 fg1y arzy S UNOF VN 22212y + 012 N0l
and the bound
||0%P/1U||L2(H-2+12L2) S A72||Dg<\/jp/lv||2 + 10t Prvlizz(-14a12) + 1PAV 2 (2.31)

Notice that (2.30) implies (2.29) since A°d? (102 Py vl 2 (-2 1212) +10: PA VI 120514 a12) = A28 102 Py vl 2 +
A571d%116,Py vl. The bound (2.31) follows form the fixed-time estimates
(i.) ||g<\/;0%xpx vl 24212 SN0 PAVO | 14212

(i) g 705 PAv(D gr2spzre SIPL V()| g2

Indeed by (i.) and (ii.) and the fact that g% = 1, we obtain

2 2 2
”atp/ll/llLZ(H—z_HlZLZ) 5 ”|:|g<\/IP/1U”L2(H’2+/12L2) + ||g<\//TatXV||LZ(H—2+/12L2) + ||g<\/iaxPAU||L2(H—2+AZL2)
<

)
A I oz Pavll2 + 10 Pavll 214412 + 1 PAVI2

To conclude we prove (i.) and (ii.) by replacing each space derivative with its frequency. We
have

8. 703 Pav =048 7 PaV) ~20:(0xg. ; PV) + (938 ) PAV

And thebounds|g_ (0| $1,10xg_ (0] S A, and |05, (0] S AP yieldto llg_ 507 Pav(Dl g2 S
10:Prv(t)| -1 and ||g<\/16§xP,1v||Lz S Ald¢Pyvliz2. Thus (i.) holds, the proof of (ii.) is simi-
lar. O

In order to prove Proposition 57 we will need the following version of the energy estimate for
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2.6. Basic properties of X*¢ spaces

the wave equation on curved backgrounds which required more relaxed assumptions on the
metric.

Lemma 61 (Classical energy estimate, [30]). LetV, g€ L'L®(S;) then

2 -1 2
”Vt,xl}”LmoLZ(Sl) SHI ||Vt,xU||Lsz(31) +IVexvllzzrz(sy ||Dg</11/2 Ulizzr2(sy-

Notice that this estimate hold only for functions supported in the time slice I x R” and in
general it fails of unbounded time intervals.

Proof. The standard energy estimate in curved background with metric which satisfies V; yg €
L'L™ reads

IVexv(2) ||L2([Ren) ,S Ve x U(O)”LZ(R") + ||Dg</11/2 V”L‘LZ([O,t]xR”)'

Hence the function h(f) = |V xv(0)|l;2®n is increasing. Let ¢ varying in the interval [0,€2],
then by Cauchy-Schwarz we obtain the bound

ho) = S < lzf h(s)ds < l(f h(s)Pds) .
€ e~ Jo €\Jo

Hence |V xv(0) [l 2 ®n) < %IIVL xVIlz212((0,¢21xrm)- Moreover, Cauchy-Schwarz yield to the follow-
ing bound for the inhomogeneous term

|| Dg</1”2 U”L1L2([0,ez] xR") 5 €”|:|g<11’2 V||L2L2([0,62] xR")-
Therefore we obtain
< 1
”Vt,x U”LOOLZ([O,(:‘Z] xR") > g ”Vt,x U”LZLZ([O,EZ] xR") + €|| Dg<A1/2 V”LZLZ([O,EZ] x[R")-

Covering the time interval I with a finite number of intervals of length ¢? and summing up
over such small intervals gives the desired estimate. O

We are now ready to prove the L? L embedding in the context of X*Y spaces.

Proof of Proposition 57. Let us apply the energy estimate of Lemma 61, we obtain

252 320-1 2 25-2 320-1,11—1 2
A y d ”VI,XPAU”LooLZ(SI) ,S /1 s d |I| ”vt'xP;Lv”LZLZ(SI)

-2 320-1
+ AS d 0 ||thxPAV||L2L2(SI) |||:|g</11/2P)1V||L2L2(Sl)
< Pl

~ X300

. S0 .
Therefore Proposition 57 follows from the equivalence of the X j’z and X fl 4 horms, precisely
from (2.28). O
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Next, consider the Cauchy problem for the linear wave equation on a curved background
metric g:

Ugu=f

(u, u)(0) = (uo, u1)

(2.32)

In the following, we study properties of the homogeneous and inhomogeneous solution
operators defined as

Ug#(uo, u1) =0, A (up, ur)lt=0 = to, 07 (Uo, U1)lr=0 =ty

Og@' N =f Og'flizo=0, 0,0;" fli=o=0

The next lemma, which we will need below, allow us to handle the high frequency component
of the curved d’Alembert operator. Based on Remark 2.14 in [27], we extend Lemma 2.9 in [30]
to a wider range of exponents s by imposing more regularity on the metric coefficients.

Lemma 62 (High-frequencies product estimate). Let k =2,2-k<s<k+1, and V’;g €
L2L®(S)) then
||Dg2/11/2 U”LZHS—I(SI) S ”vl_;g”LzLoo(S[) ”vxl}”LooHs—l(Sl)

Proof. It suffices to prove the following

o0

(e 0)
252 2 2 252 2
A« y ”Pﬂ,(Dgz/ll/Z U) ||L2L2(S]) S ||V§g||L2Loo(sl) Z A s ”VXPA,UHLOOLZ(SI)
A=1 A=1

which follows, by Hélder inequality, form the following fixed-time estimate

0o [e.e]
Y AP PAP 28 V)OI gy S IVED W ny Y AP IPAV(O I g
=1 A=1

Indeed notice that Py (Ogs 1120) = Py (P2 128%P0,04v) and P3d,05v =~ AVPy v, since g =1,
and thus both derivatives can not be two time derivatives. Let us take the Littlewood-Paley
decomposition of both factors of the left-hand-side:

00 (e, o2 o]
Y AP P aveg Dy = XY X ATIPAPYEPL) (D e
=1 A=1p=1ly=A1/2

18
P18

< A2 2 2R POV (O o | Pt (D172 gy

N

L0418 L8

>
Il
—_
=
1}
—
<

However, notice that the sum is nonzero only in the following three regimes:
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2.6. Basic properties of X*¢ spaces

i. v< A= p. Then since v~2F < 1% because of v = 1!/ we obtain

oo A8

(e.9)
Y Y AEERPVEemIZ 1P w3 SIVEEDIZ, Y AR P13
A=1y=1/2 A=1

Because the v sum is finite.

ii. v=A> u.Since s < k+ 1 we obtain

co 81 25-2-2k k 2 2 k 2 8 25s—-2-2k
Y Y AEEEIPVEE ISP @I; S IVEE@IS Y Y Pl
A=1p=1 A=1p=1

(e.9)
< IVEgIE Y @ IPLv(013

p=1
iii. v=pu> A. Since s = 2 — k we obtain
Y X AETATERIVEP g ISPy v (015 S IVEEI5 (X v IPyw@I3)( Y A722)
A=1v=81 v=1 A=1

We prove a corresponding energy-type inequality for the X9 space, which is built on Lemma
2.11in [30].

Proposition 63 (Linear estimate). Let k =2,2—-k<s<k+1,6¢(0,1), V’;g € L21>(S)),
Vg € LYL™®(S). Suppose that u is the solution to the Cauchy problem (2.32), then u verifies

|| u||Xx.9[1] < o, w) | s s prs—1 + ||Dgu||L2HH(s,)

Proof. We exploit the fact that in the definition of the X norm one has to take the infimum
over all possible decompositions, hence we can concentrate all the modulations on the d =1
term. Precisely set

Pyu ifd=1
Up,d = .
0 ifd#1
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Then we obtain

(o]
|u||X36[I] Z ”P/lu”XsH[I]

o0

251D 2 2s=2 D 2
,S Z A S”P/lulleLZ(Sl) +A y ||‘:|g</11/2P/1u”L2L2(Sl)

[e.°]
2 25—2 D 2 D 2
,-S ”u”Lsz(S]) +AZ1A y (” [Dg<ﬂ,1/27P/1]u”L2L2(SI) + ||P/1|:|g</11/2 u”LZLZ(SI))
[e.e]
2 2s-2 D 2 2 2
SVl T i sy + 20 A2 ganirz, PAIUIT o sy + 180z Ul o proor s,y + 150g Ul 3 groor s,)
A=1

The third term is controlled by the high-frequency product estimate (Lemma 62), moreover let
us apply the commutator estimate from Lemma 60 to control the second term, observe that

(0] o0
252 2 2 D 2
‘QASM%QMMuMH Z VRGN T s IV e Prttl oo s ) SVt procr s,

To close we control the remaining terms via the classical energy estimate
IVextllpzgs-1s,) + Ve xthll poo 1)) S (uo, )l gs s gs—1 + ||Dgu||L2fo1(s,)

which holds on a finite in time interval and the constant depends on the length of the time
interval I considered. U

Corollary 64. Let Gha"‘g € L’L™ for every h+|a| < 2 and for h = 0 and |a| = k = 2. Suppose
—k<s<k+1andl/2<80 <1, then the homogeneous operator satisfies

7 (uo, un)ll xsony S S (o, un) I s s
Moreover | A o = |I|.
We conclude this section by analysing the properties of the curved d’Alembert operator

between X*¢ spaces. The following proposition is based on Proposition 3.1 in [28].

Proposition 65 (L] estimate). Let aha“g € [2[>® forevery h+|a| <2 and for h=0 and |a| =
k=2.Suppose2—-k<s<k+1andl/2<0 <1, then we have

”l:lgu”XS—l,H—l [ 5 ” u”XS,H[I]

Proof. Letus decompose u =377, 22:1 Pjuy, 4, and split the curved d’Alembert operator L,
into its low and high frequencies components. We obtain

co A oo A
= Z Z DgZAI/ZPAuA,d + Z Z Dg<AI/ZPAu/1,d
A=1d=1 A=1d=1

126
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The first term will play the role of f; in the definition of X*~6~! space, and f; 4 = uy, 4.
Therefore we obtain

o A 2 oo A
||Dgu||X5 1,0— 1[[] “ Z Z g>l”2P/lu/1rd LZHS_I(SI)_F)Z&; |u/1 d” 1;[1]

To control the first term we apply Lemma 62: observe that the function Ug 312 Py uy, 4 has
support localized around frequency A, thus we have

2

18
18
M=

2
S ||P“(|jg2/11/2p,1u;tyd)||L2L2(SI))

A
252
Z g>/11/2P,1u/1yd U (

||?8

LZHX—I(SI)

RS
Il
—_
~
1}
—
QU
I
—

00 A
2s-2 2
5 Z %8 I Z Dgz/ll/zpﬂ,ul,d “LZHS’l(S[)
A=1 d=1
- 25-2 A 2
S Z A s ” Z vxp/lu/l,d”LooHs—l(Sl)
A=1 d=1
x & 25-2 320-1 2
S Z Z A s d ”vt,xpluﬂ,,d ||L°°L2(S])

>~
Il
—
QU
Il
—

Notice that we have used Cauchy-Schwarz inequality in the modulation sum over d which
requires 6 > 1/2. Thus by Proposition 57 the proof is completed. O

As next Proposition shows, one can prove that the inhomogeneous map is bounded form
Xs710-1 1o X9, The proofis build on the proof of Lemma 2.12 of [30].

Proposition 66 (Inhomogeneous linear estimate). Let 6?6;‘ g € L?L™ forevery h+|a| <2 and
forh=0and|a|=k=2. Suppose2—-k<s<k+1andl/2<0 <1, then the inhomogeneous
operator satisfies

10" fllxsorn S 1Fxsmom

Proof. Let f € X$5~19-111], we shall show that the solution to the inhomogeneous wave
equation with forcing term f and zero initial data belongs to X*¢ for a small interval of
time. Since f € XS~L0-1]] there exists foe L?H1(S)) and faa € X;’,Z[I] such that f =
fo+ X592, 22:1 Ug<avzPafa,a- Letus define the function u =397 | 22:1 Py f1,a which clearly
isin X%9(1]. Furthermore, define v = u — D?f, if we prove that v € X%9(1], then also D;f
will be in X*9[I] and the proposition will follows. Observe that v satisfies the Cauchy problem

(v, v)(0) = (u(0), u; (0)
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Therefore by the linear estimate Proposition 63 we have

Ivllixsory S Wt ug) )| s s + 10g 1= fll 2 gs1(s
A

(o]
SO IWVextlpopsiisy + 1 foll sy + I Z Z UgzpizPafa,all iz ps1(s))
A=1d=1

Notice that form the embedding X9 <1, HSnCl (1, H*1), which holds for 1/2 < 6 < 1, we
have [|Vull feogs-1(s)) < llull gso. Let us define fj = 23:1 f1,4, then we apply Proposition 57 to
handle the last term:

oo A

oo A oo A
2 -2 720-1 2
” Z Z >/'Ll/2P/1f/1 d”LZHs I(S] Z Z $ d ”vl’,xp/lu/l,d”LOOLZ(sI) ,-S Z Z ”f/l d”Xge
A=1d=1 A=1d=1

Observe that we have applied Cauchy-Schwarz inequality in the modulation sum over d, this
requires 6 > 1/2. Therefore the X*?[I] norm of v is bounded. O

2.7 Strichartz estimates for X*’ spaces

In this section we collect Strichartz estimates for X*¢ spaces. Hereafter we suppose 6h6“ dge
L2L%°(S)) for every h+ |a| < 2. Recall that (o, p, q) is a Strichartz triplet if the following condi-
tions are fulfilled:

2< p<oo, and 2<g<o0
2 n-1 n-1
—_— S_
p q 2
n 1 n
2 p q

and when n =3 then (p, g, s) # (2,00,1). The strichartz estimates for the variable coefficient
wave equation have the form

D™V xulizrracs) S I, ) (0) | gz + I0gcprztelliprpzs))

where I is a bounded time interval containing the origin and S; = I x R"”. The preceding
estimate follows form Corollary 1.5 in the previous work by Tataru [115]. The reason why we
include the gradient is to have also a bound for u;. In a flat spacetime this version of Strichartz
estimate is equivalent to the classical one:

” u”Lqu(Sﬂ S./ ”(uv ut) (O)HH‘TXH‘T*1 + ”Du“Lﬁ’LF'(SI)

where (1 -0, p, ) is another Strichartz triplet. By the same argument used in the proof of the
energy estimate, Lemma 61, we obtain the following version of the Strichartz estimates:

IIDI7V, xu”L”L"(S,) ,S [~ 1”vt xu||L2L2 + ”Vtxu”LZLZ(SI) |||:|g<}Ll/2 u”LZLZ(SI) (2.33)
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2.7. Strichartz estimates for X*? spaces

We are now ready to prove the embedding property of the wave-Sobolev spaces into the
Strichartz spaces.

Proposition 67 (Strichartz estimate for X%9 space). Let (0, p, q) a Strichartz triplet, s = o, and
1/2<0 <1, then XS0 [I1 < LPLI(S)). In fact we have the estimate:

lullrracsy S Nl xso
Proof. Letu=%97, Zfl:l Py uy 4 then it suffices to prove the bound

oo A
2 2
”u”LPL‘I(S,) S Z Z l u/l,d”Xs,e
A=1d=1 Ad

Notice that by the decomposition of u and Lemma 68 below we obtain

A
18

A A
( Z A25_2_20-d26_1 ”P)lvt,xu/l,d”%p]ﬁ(s[))( Z A—ZS+20'dl—29)
1 d=1 d=1

A A
( Z Il u/l,dnz 50 )( Z )L—25+20d1_29)
d=1 X" 4o

2
I u”LF’L‘?(SI) ~
A

A
018

A

Il
—

Now use the fact that s = 0 and 0 > 1/2 to obtain the desired estimate. O

All it remains to prove is the following lemma, which is reminiscent of Proposition 57.

Lemma 68 (Strichartz estimate for XX’Z space). Letse Rand@ € (0,1), and (o, p, q) a Strichartz
triplet, then for any dyadic number A and d > |1|* we have

/125—2—20d29—1 2

2
”vt,xP/lV”Lqu(Sl) S [ v”Xs,H i
Ad

Proof. It follows easily form the Strichartz estimate (2.33) that

25-2-20 320-1 2 25-2 320-1 - 2
%8 %d ”vt,xp/lV”Lqu(sl) S A=74d DI th,xp/ll)”Lqu(S])
<

)LZS_nge—ll”—l||vtny,1u||izL2(sf)

+ A?_S—ZdZG—Z ||V[,XP;L u”L2L2(51) ” Dg</11l2P/‘L u”L2L2(51)
. <50 .
From the equivalence of the ij and X ; 4 norms (Lemma 59) allow us to reach the thesis. O

Next we discuss Strichartz estimate for non-admissible triple. Let us define a non-admissible
tripleto be (o, p, q) such that

2<p<=<oo, and 2=<g=<o0
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p 4 2
_nln
2 p q

Notice that we only have reversed the inequality.

Lemma 69 (Strichartz estimate for non-admissible triple). Letse R and0 € (0,1), and (o, p, q)
a non-admissible triple, then for any dyadic number A and d > |I|~* we have

2

220 (242l _nly op_jp(2yncl_ndl
AZS2m20- (GG =) 201 (G gl =25 ;
X4

2
|Vt,xP/’LV||Lqu(SI) 5 vl

Proof. We interpolate between an admissible pair and the L? L? bound
1V0xPavl 225y SA' A vl o

which follows from Lemma 59. To find the right admissible pair simply trace the line between
(1/2,1/2) and (1/p,1/q) and take the first point at the edge of the admissibility region. In
”T_l - ”T_l the distance from
the non admissible pair to the sharp admissible line. Notice that 0 < a < 1. Define the sharp

admissible pair (p, ) such that

Figures 2.2, 2.3, 2.4 below we explain this concept. Define a = % +

Since (p, g) is sharp admissible the Strichartz estimates for the admissible pair tell us that
1-s+G 41-0
||Vt,xP/’LV||LﬁLZi(sI) ,S AT gE| V”XZZ[H

where g =3 - = - 5’3. By interpolation we obtain

~

—5 g— s+ gL —
IVexPavlras) S A7°d ) A 0az= ) ol

1-s+(1-a)F 75-6-%

— a 1 _pg_a
< AL-sto+5 730 2||y||X;yZ[I]

since 1-a)d =0+ %

O

Let us define additional norms that allow us to work with functions concentrated on a smaller
modulation range. Define

2 : 2
N2y =inf{ ¥ Jug . cu= Y uqf
di<d

A<d di=d Ly
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2.7. Strichartz estimates for X*? spaces

1/p

1/2

Figure2.2: n=2

Figure2.3: n=3

Figure2.4: n=4
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

and

Il _mf{ % gl u= 3 tta)

d=A
Notice that || ullxae <| uIIXSg, it suffices to take uy = uifd =1 and u; =0if d # A. In general
if 1; < A, then ||u||Xse < IIuIIXse ,]ust take uy; = uifd =1, and uy; =0if d # A,. The corre-

sponding version for X%7

Py is || uIIXs,e <| uIIX;,;d if d < A;. Another useful property of such

A,<Aq
norms is that they can be used to compute the X*% norm:

2 : 2 vy —
. = mf{; lual o u= ;Pm}

A

In fact, we have

lul%,, = inf 2 Y lupaliey = dnf 3 nf Y fupal? o
u=Y2Xa<aPauira ) g=4 Xia  u=XaPauy T uwp=Yasruna j=y

inf 3 lluall’, o

u=x, Prup 7y

The X s space are useful to study multiplicative properties of X*? spaces. In oder to transfer

estimates form X’ 58 , to X; (i 40T Xy % we need the following lemma.

Lemma 70 (Transfer principle). Suppose that |ully < d?79| ully 50 for somenorm || - | N,
* if0>1/2 thenllully Sllullyso ; moreoverifdy = A, then |ulln S llullyso,
A<d; A

e if0d <1/2 then ||u||N§d1”2_0||u||Xjed ; moreover ifdy = A, then |ul|y < A2 Gllull 56
,<dj

Proof. Itis an application of Cauchy-Schwarz: decompose u =3 ;<4 uq, then

lully < (X @ lualygs)’

d<d1
S (X Mual,, )( Y dt %)
d<d1 ’ldl del
The second serie is bounded if 8 > 1/2, whereas if § < 1/2 we can control it by d11—29‘ O

As an application of the previous lemma we can extend Strichartz estimates of Lemma 68 to

XZ ‘Zd and Xy ¥ spaces.

Corollary 71 (Strichartz estimates for Xj'fi 4 sbace). Suppose s € R and (o, p,q) a Strichartz
triple.
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2.8. Bilinear estimates and wave maps on curved space-times

i. Assumethatl/2<6 <1 then

225420, 112
SATET |

2-2s+20 2 2
Ve xP]LV”LpoI(sI) <A vl , ”Vt,xP/IV”Lqu Sy ~ x50 1
A<d

5,0
X3

ii. Assumethat0<0<1/2 then

A3 —25—20+20 A/Z 2S+20'd1 29”1/”

V¢ xPAU”Lqu(SI) ~> l V” V¢ xP/IV”Lqu(sI) ~

Xs(-) 74!

$,0117?
X A<d

Furthermore as a consequence of the transfer principle and Strichartz estimates for non
admissible pairs we have the following.

Corollary 72 (Strichartz estimates for XZ’Z 4 hon-admissible triple). Supposes e Rand (o, p, q)
a non-admissible Strichartz triple.

Assumethat——%(%+"7‘1—”7‘l) <0 <1 then

n— 1 n 1
</12 23+20+( +22 )

IV xP/lV”LPLq(S,) I U”X”’[I]
IV xPAU”LPLOI(SI) AP G )”U” x50,
ii. Assumethat0<0 < % - %(% + ”7_1 - ”T_l) then
IV PAvIZppas,) SAT2 202 U”x“’m
IV e Pavl2 s,y S A2 2520 G050 1220 G250 2

5,0
X320

2.8 Bilinear estimates and wave maps on curved space-times

The aim of this section is to prove some multiplicative properties of X*¢ spaces, namely the
algebra and the asymmetric estimates. As a byproduct of such bilinear bounds we obtain a
sharp local well-posedness result for subcritical wave maps on curved background:

Theorem 73. Letn =3, n/2 < s < n/2+1, and suppose that the metric coefficients satisfies
aha“g € L2L%°(S;) for every h+|a| < 2 and for h = 0 and |a| = n/2, where I is a bounded time
interval containing the origin and S; = I x R". Then there exist an unique local solution u €
C([0, T1, H) n C([0, T], H*™Y) to the Cauchy problem for wave maps with curved background
metric g:

Dgui = F;k(u)aaufa"‘uk

(u,0:1)] ;= = (uo, u1) € HSR",RN) x H*~1(R",RN)

where the Christoffel symbols l"j. i are smooth functions.
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

This theorem extends the previous work by Geba [28] to dimensions n = 6. Our theorem,
together with the result by Gavrus, Jao and Tataru [27], where the more difficult n = 2 case
is treated, settle the local well-posedness theory for scaling subcritical wave maps equation
on curved backgrounds. Observe that the upper bound s < n/2 + 1 is not restrictive since if
s>n/2+1 then one can run an energy type argument to easily obtain local well-posedness.
On the other hand, the lower bound n/2 < s is dictated by scaling considerations. The proof of
Theorem 73 hinges on a fixed point argument based on the following estimates:

i. Linear estimate: the homogeneous and inhomogeneous solution operator satisfies

-1
76 (uo, ur) +Dg f”XSﬁ[[] S g, ) s prs1 + ||f||Xsfl.971[1]

—
—

i. Embedding into solution space:

IVixullzomses) S Nl xso
iii. Curved d’Alembert operator estimate:
||Dgu||xs—1,9—l[1] N 2l xsoqp

iv. Algebra property:

luvll xsop S lzell xsorpllvll xsop

<

. Asymmetric bilinear estimate:

” ul)”Xs—l,B—l[I] 5 ” u”Xs,Q 1 ” U”XS—I,H—I [

vi. Moser estimate: let f, g positive increasing continuous functions, then

IT@ N xsopy < Ul zoos) g Ulull xsoppy)

We already discuss the first three estimates in §2.6. Notice that on top of the conditions
6?0;’6‘ ge L2L®(S)) for every h+|a| < 2, Theorem 73 requires that up to n/2 spatial derivatives
of the metrics lies in L>L°(S;), that is V Q’ 2 ge L2L®(S)). These latter regularity conditions are
imposed by the linear theory. However, as we shall see for the nonlinear theory the condition
6,’}6? g € L2L>°(S)) for every h +|a| < 2 suffices. Let us assume the previous estimates i v. — vi.
for now, the proof of Theorem 73 follows closely the one for flat space-times.

Proof. Recall the relationship between the null-form Ny(u, v) = 0,ud0%v, here we are raising
and lowering the indices with respect to the metric g, and the curved d’Alembert operator:
No(u,v) = %[Dg(uv) — vUgu - ullgv]. Therefore by estimates i. — vi. we obtain the bound for
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2.8. Bilinear estimates and wave maps on curved space-times

the nonlinearity:

1T (2¢) No (1, v) ||Xsfl.971[1]
S IIF(u) ”XS,H[I] (”Dg(u V) ”Xs—l,H—l[I] + ” U\:‘gu||Xs—1,9—1[I] + || ul:lgl/”XS—l,B—l [I])
S h(“ u”XA,B[I])(” uUllxs,G[H + ” U”XS,H[I] ||Dgu||Xs—l,9—1H] + ” u”Xs,B[I] ”Dg V”XX—I,H—I[I])

S h(”””xs.e[[])”u”)(sﬁ { V||XS,9[1]

Notice that we have applied Moser inequality and Sobolev embedding to obtain the bound
IT () ||Xs.9[1] 5 f(”u”LOO(S]))g(”u”xw[[]) S h(”u”Xx.B[]])- O

The goal of this section is to prove the last three bounds: iv. — vi. Throughout this section
we suppose 6?6% g € L>L™ for every h + |a| < 2. The proof of the algebra property for the X*?
spaces relies strongly on Strichartz estimates. We shall need Strichartz estimates which holds
in any dimension 7z = 3, thus we will rely on the following Strichartz triplets

* (0,p,q)=(0,00,2)

s (0,p,q) = (% -3 +€,2+,00)

* (0,pq = (§,oo,00)

* (0,p,q) = ("7, 4,4)
where we denote 1/(2+) =1/2 —¢ and 0 < € <« 1 is a small constant. We obtain the following
Strichartz estimates

AZS—?_dzg—l + AZS—n—l#—ZGdZ@—l

2 2
”vp/ll/”LcoLZ(Sl) I|VP/1U||L2+L00(SI) ||U||XA9

2s—n—2 320-1 2 2513 201 2
A5T2d ||VP/1U||L°°L°°(S,)+/1 Y2 d ||VP/1U||L4L4(S)N”U”XSH

Notice that when n = 4 we can take € = 0. The following property extendston=3 and n=5
spatial dimensions the corresponding algebra algebra of Proposition 3.7 in [30].

Proposition 74. Suppose thatn=3,1/2<60 <1, and s—0 > (n—1)/2, then X>° (1] is an algebra.

Proof. Let u,v € X*9(1], we have the representations u = G2, Prup and v = 357 Pvy,
where uy =3 g<3 Upr,q and vy =Y 4<1 V3, 4. We also have

'uﬁ'u(P/ll u/llp/lg UAZ)

wey 5

|| MS
|| M8

Therefore using the property of the Xfl’g space we have

o0

luvl?, < Z(

'u:

|| M8

o) _ 2
Zl ||P'u(P,11 u,hPAZ U/lz) ||X;'9[1])
Ao=
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

By Littlewood-Paley trichotomy we infer that the sum in nonzero only in the following three
cases: A1 = Ap > u, A1 < A and A, = g, Ay > A, and 11 = y. Thus by symmetry we split the
proof into two separate parts:

(i) High-high-low interaction: A, = A, > p. For simplicity let us denote A = A, = 1, we must
estimate the following term:

oo 2
)3 ( Z IPAuAPAVAN oo, )

We take a precise decomposition of the product P, uy Py v) where all the modulations are con-
centrated on a single “frequency”: define the decomposition Pyuy Py vy = ¥ g<u(PruaPyvp)a
where we take

PAuAP/ﬂ/;L ifd = U

+

s+0-2 2
> du 18 g <12 (Pata,a, Pava,a,)ll2
1 " As>udisAid,<A

(PrupPprvp)a = td
if d #
Then we obtain

x 2
> ( Y IPyuy P, VA”XW) (2.34)
p=1"A>u

oo
Y (Z T Y P Pivnaly )

u=1 "A>pdi<Ad,<A

oo

Y (T X Y P Prvaale)

p=1 A,>>,ud1</1d2</1

o0

2

Let us begin by estimating the first term on the right-hand side of (2.34). We apply Holder
inequality, Cauchy-Schwarz inequality, and the L*L? Strichartz estimate to get

P18

2
(Z > Y uIPrupg Pavaa, ||z)

u=1"A»udi<Ad,<A
o +6 -2 2
40—
SY(Z X ¥ w5 OA2IVPA U I VPy A, 1)
pu=1 A,>>yd1$/1d25/1
o —s+0+ 151 5 25— 13 2
ST X ¥ w e v g VP )
M= A,>>[J di<A dr<Ay
[e.°] [e.°]
2s=132 291 2 2s=132 291 2
(Z Y AT AT IVP ) Y X AT BN IVPy, v 1)
1=ldi<Ay Ao=1d>r<A,
o0
<Y ¥ 14,0 150 n 2. 2 ||V/12d2||Xse o
M=1ldi<\ A1,dy Ao=1d>r<A,

Notice that to treat the y-sum we have used the fact that s—0 > (n—1)/2, since —2s—2+ ”—+3’ <0
we have transferred this extra high frequency term into low frequency u. Moreover notlce
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2.8. Bilinear estimates and wave maps on curved space-times

that we have used the fact that 8 > 1/2 and Cauchy-Schwarz once more in the sums over
modulations d; and d,. Next, let us turn to the second term on the right-hand side of (2.34).
Here we have to distinguish further into two cases: when both derivatives of the L, 12
operator act on a single term and when the derivatives are spread and act on each term once:

10g <z (Prua,a, Pava,a)llz SN Cgeprz Patia,a ) Pavaa, 2 + 1 Patia,a, Dz Pavaa,) 2
+ ||P<'u1/2gVP/1 Up,d, VP;L VU)rd, ||2

In order to control the last term in the pevious inequality we apply Holder inequality to obtain
the bound

P28V Py UA G VPLVAG, |2 P2 8lloollVPrUA, 14IVPL VA g, 14

N
<y vep VP vP
S o <128l r2reIVPrUA g 14 IVPAVAg, N4

Notice that the Littlewood-Paley cutoff of the metric g is with respect to both space and
time variables, hence we can use Bernstein inequality in the time variable: [|P.28llco S
P gllzre S p¥ VAP gl 2. Therefore one can run the same argument as
above with different powers of ¢ and A:

IJH0_2_3/4 — 'us+9 —2-3/4 ) —25+ 452 23 As—"T“As—"T“ < H—s+6+ﬂ—%As—"—+3As—”—+3
Notice that —2s+ (n+3)/2 < 0 since n = 3 and s > n/2. All it remains to prove, as far as the

HHL interaction is concern, is the bound for the two terms containing two derivatives. We
vary a little the above argument: we use the L°° L Strichartz estimate to get

o0 2
+0-2

Z( MDD ”(Dg<,u2’"pﬂtu/1,d1)P/lV/l,dQ||2)

u=1 A>>;1d15/ld25/1

MS

S+9—21—1 |:| P VP 2
Z oY dwu I0g<rr2Patin,a 12IVPA Vg, lloo
ld=1 /1>>/Jd1<),d2</1

25-3 2 & 2s-n-2 2
23 Y I0gepePyuna ) Y A3 Y IVPL, U, 4, o)

N
18

/11:1 dlﬁﬂ,l /12:1 dZSA'Z

- 25s-2 320-2 2 - 2 2 720-1 2
SO Y AT TN g e P s Y Y A5 Rds T IVP, 0,015
/11:1d1<11 Aa=1dr<A,

[e.°]

S X bnali iy > ¥ Wil |,

/11 1d1<ﬂ.1 Apdy _1d2</lg

To control the u-sum we have used a similar argument as above:

s+0— 211 s+0— —2)-25+5% 5,3 - R —As—f—l —s+9+”7"1/13—%/13—g—1

It =u <p

since A > u, A = d;, and s > n/2. Finally in the d;-sum we have used Cauchy-Schwarz
where @971dl=0 < a%~1al’?=91172, To estimate the term || P, up,a,0geyzn (PAV2,a,) 2 We run
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

the same argument as above. This conclude the proof of the high-high-low interaction case.

(ii) Low-high-high interaction: 11 < 1, and 1, = . We must estimate the following term:

2
(X 1Paun Pavalgey)
A.g 1 /11<<Ag

Here we take the precise decomposition of the product Py uy, Py, v3, asfollows: let Py, uy, Py, vy, =
2 d<a, (Pa, Uy, Pa,va,) g where we define

0 ifd</11
(P/'hu/l]P/lzv/lz)d: stithM”MPAszlz,d ifd=/11

Py up, Py, va,.d ifAi1<d=<A,

Then

2
123, Py vac By = ( 2 WP Prvalice )+ X 1P Purnaliy |,
dry<y 271 M<dr<, Ag.d2

Moreover to get the square inside the 1; sum we use Cauchy-Schwarz inequality: we are lead
to the bound

2 s—0— 2
Z ( Z ||P11u11P12V/12”X’9[1]) 5 Z Z ( Z Z /1 ”P]Llull,dlplzv/bydz”ng [I])
/12 1 /11<<12 Ag 1}.1<</12 d1<ﬂ.1 d2<11

(o]
s—0-15L 2
+ Z Z Z ( Z A/ ”P/llu/ll,dlpﬂ.zv/lg dzllXSG [I])
Ao=1 A< Mi<do<Ay di<\y

Let us split the argument in two parts based on the d, modulation sum: we consider the two
terms separately.
(ii) (a) Low modulation: d> < 1. We need to control

o0

s—6— 2
YA |PAluA1,dlpth2,d2||Xse m) (2.35)
A=l <<y di<A do<)y

) 2
S
S Z Z ( Z Z Az A |P11u11ydlpflzv/12yd2”2)
12:1 /11<<A,2 dl S/l] d2</11

o0 _n+l 2
1,522
+ Z Z ( Z Z /15 /11 ’ ”Dg</1;/2(P11ullydlp/lzyllzydz)llz)
=1 A<y disAdo<Ay

Let us start by estimate the first term on the right-hand side of (2.35). We apply Holder and
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2.8. Bilinear estimates and wave maps on curved space-times

Cauchy-Schwarz inequalities to obtain the bound

o0

_n-l 2
sa%
( 22 At ||PA1uA1,d1PAZVA2,d2“2)
A=1A<y di<A do<Ay

o) _ntl 2
$ s—1
SY Y (X XA ATV a e IV P, U e
/12:12.1<</12 dlﬁﬂ.ldgﬁﬂ.]

00 00
2s—n—1+2¢ 3201 2 25s-2 320-1 2
<Y OY M AP VP g a T2 D D A5y VP, U, a1 oo
M=ld <A Ao=1dr<A,

Thus the L*®L? and the L?>* L™ Strichartz estimates yield to the desired result. Observe that we
have used the fact that we are working on a finite time interval thus the L? norm is controlled
by the L2* norm. In order to estimate the second term on the right-hand side of (2.35) we have
to split the argument further and to consider the three possible scenarios:

I0gpre (Paun,a, Pay Va2 S 1@eePaytin,,a) P,y Vs a, 2 (2.36)
+  [1Paupy 4, (Dg</1;’2P/12 Vhy,dy) ll2
+

1P 7128V Py, UA, a8V P2, V1, 2

Here we have split the [J g<Al operator into a term involving both time derivatives d,;; and a
term involving al least one space derivative, and for the latter we have

(P12 @) (VV Py Uy, a) Py Viydy = M (Ppiiz @ VP U a, Pay Uhydy S (Pep2 @)V P, UAa, VP, Vs a,

since 1; <« A,. Consider the first term on the right-hand side of (2.36), we used Bernstein
inequality to obtain:

-1
10¢¢(Pp,ur,a,)Pr, Vi, ll2 A5 110 Pa, up, ay I 1210 IVPA, VA, a, I foo 2

IZANRAN

12-1
1111 ||6”P11 ull,dlanLz ||VP,12 Vlg,dz ”LooLZ
Next we compute

s=1 455 2
Z A’z Al : ” (a[[P/ll u/ll,dl)P/lz yAg,dz”Z
12:1/11<<ﬂ,2 dli/ll ng/l]

(o] 2
—-1195-3/2
NI ( > Y AT ||attp/llu/11,d1”2||vp/12V/lz,dZHLOOLZ)
Ao=1 A<y di<Ada<Ay

[e.°] (o]
25-2 420-2 2 25-2 320-1 2
S Z Z AT dy 10¢¢Pa, up,,a, Il Z Z Ay>"dy” IV Py, ylzyd2||L°°L2
/11:1(1153.1 ),2:1(125/12

In the previous estimate we have used the following trick in the modulation sum for d;: from

1/2

the beginning we have an extra factor of A, "' and we are missing the factor dll/ 2. Therefore in
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

the d;-sum we use Cauchy-Schwarz to obtain

di<\ di<\y di<\ dis\

Thus the L*®L? Strichartz estimate allow us obtain the correct bound. The estimate for the
second term on the right-hand side of (2.36) is more delicate: here we need to use the fact the
the modulation sum over d; is restricted below A;. We have

- s—1,5 "5 2
Z Z ( Z Z Ay /11 ’ I1PA, r,,d, (Dg</1;’2P/12 vﬂzydz)nz)
/12:111<</12 dliﬂ.l ngAl

0 n+3 2
$= -1
5 Z Z ( Z Z /11 ’ A’g IVPA, up,,a, ||00|||:|g<]té/2p/12 Vhy,dy ”2)
=1 <Ay disAdo<Ay

(] [e.°]
2s—n—2 320-1 2 2s-2 320-2 2
S Z Z Af ay” IIVPy Uy a5 Z Z Ay "dy ”Dg</l§/2P/lz Uhyd, Nl
Alzldli/ll /lgzldziﬂ.z

Here we have used the fact that we can squeeze a factor of /11‘” 2 out of the 1; sum which can
be control by a much needed d; 1’2 term since we are working on the low modulation regime.
Finally to estimate the third term on the right-hand side of (2.36) we apply Cauchy-Schwarz
inequality in d; and d» sums to obtain

o0

1,822 2
Z ﬂ,; /11 ’ ”VP/Mu/lbdlvplzv/lz,dzllz
L=l <<y di<A do<Ay

(o]
2s—n—1+2¢ 320-1 2 25-2 320-1 2
SX XM AP TNVP g oo Y, D AT TNV P, Ve
A disA Ao=1dr<A,

The L*1? and the L?* L* Strichartz estimates allow us to conclude. This prove the desired

estimate for the low modulation case.

(ii) (b) High modulation: A, < d» < A,. For this interaction we have to estimate the two terms
below:

s s—0-2L 2
Z Z Z ( Z /11 ’ ||P/11 Up,,d, PAZ Uy,d, ”XS“9 [I]) (2.37)
Ao=1 << Mi<da<Ay di<\ A2da

(o] -1
s=0-"5 5 g 2
S Z Z Z ( Z Al  Ayd, 1P, u/h,dlplzl}/bydzllz)
12:1/11<<A.2/ll<d2§/12 dlfﬂ.l

[&°] -1
$=0-"5 1 5-1 J0-1 2
+> Y Y (Z AT A ||ng%/n(mlull_dlpb%,dz)llz)
A=l hi <A hi<dr=Ay disAy

Let us start by estimate the first term on the right-hand side of (2.37). Hélder and Cauchy-
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Schwarz inequalities yield to

o0

3—0—"771 s 40 2
> A Aydy | Py, u/h,dlpitzv/lz,dﬂlz)
Lo=1 A1 << M1 <dr<Ay di<)\

& _nt2 2
$ s 70
SY XY (XA T AP, el Pr, 0,012
/12:12.1<</1211<dgﬁﬂ.2 dli/ll

o0 (e.0)
2s—n-2 320-1 2 2s 320 2
rs Z Z /113 " dl ”vp/llu/llvdl ”oo Z Z AZSdZ ||P/12V/12yd2”2
M=ld <A Ao=1dr<A,

We use the L*° L™ Strichartz estimates to conclude. Next we analyse the second term on the
right-hand side of (2.37); we shall split the argument into three parts based on the following
estimate

S N@¢Pp up,,a,) P, Va2 (2.38)
+ ||P/11 U, d, (Dg</1§/2p,12 V/lz,dz)HZ
+

”P<A;/2 gvpﬂ.l uﬂ.lydl gvplg U),z,dg ”2

”Dg@%/z (P/l1 ullyd1P/12 U/lg,dg) [l

Consider the first term on the right-hand side of (2.38). Bernstein inequality yield to

o0

s=0-"3 151 91 2
Y AT A A 0P,y 0P, V0, )
12:1/11<<),2/11<d25/12 dlﬁﬂ,l

[e) _3 2
s -1 460-1/2
SY Y Y (X AT 100 Py, un, 121V Py, U, 4 12
Ao=1 M <Ay M1 <dr<Ay di<A

[e.°] [e.]
25-2 420-2 2 25-2 320-1 2
S Y MTEETP0uP L w3 Y Y AS TR T HIVPL, v, a1 e
/llzldlfﬂ.l Azzldgi/lg

On the first step we have transfer a d, !/? factor into 17!/? by taking advantage of the high
modulation regime. Next the estimate for the second term on the right-hand side of (2.38)
resembles the one in the low modulation case. In fact we have

s=0-"31 051 J0-1 2
( > M Ay dy 1Py, ual,m@gdgzpaz%,dz)llz)
A2:1/11<<),2/11<d25/12 dlﬁﬂ,l

© _nx2 2
S s—1 40-1
SY Y Y (XA A VP ua ol O gy Pay e lz)
Ao=101 << M <dp<A, dis)

[e.°] [e.]
2s—n-2 320-1 2 25—2 320-2 2
S Z Z A dy IVPA, up,,a, s Z Z Ay "d, ”Dg</1§’2p/12 Vhyd, 2
M=ld <A Ao=1d>r<A,

The estimate the third term on the right-hand side of (2.38) hinges on the L*°L* Strichartz es-
timate. As above we transfer a d, !/ factor into A} !/? and we proceed as in the low modulation
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case. We obtain

$=0-"51 1 5-1 401 2
( Z /11 /12 d2 ”vp/ll u/llydlvp/lzv/lzydzllz)
Ao=1 M <Ay M1 <dr<Ay di<\

> _n+l 2

S s—1 40-1/2

5 Z Z Z ( Z A’l ’ AZ d2 ”VP;“ U, d ”L2+L°° ||VP,12 Vs,dy ||L°°L2)
12:1/11<<A.2 ﬂ,l<d2$/lg dliﬂ.l

o0
2s—n-1+2¢ 7201 2 25-2 7201 2
SL XM di’ VP a oo D D AST2ds VP, V4, 1 e
A di<Ay Ao=1d>r<A,

This conclude the proof of the low-high-high interaction case and thus the proof of the algebra
property is completed. O

We summarise in the table below all the different interaction term that we have bounded in
the previous proof and we highlight the Strichartz estimates used for each case.

Type of interaction Strichartz estimates
HHL Ist term L4
0. L®°L®
vV LAL4
-d L[>
LHHa Ist term L2, [°]?
0. L®]?
O L[>
\'AY, L2, [°]?
LHHDb 1st term L°°L®
O- L®[2
-O L[>
vV L2, [°]?

A slightly modification of the previous proof allow one to obtain an analogous algebra property
for 0 < 8 < 1/2 and for an appropriate modification of the s and 0 relationship.

Corollary 75. Suppose thatn=3,0<60 <1/2, and s+80 > (n+1)/2 then X% is an algebra for
functions with compact support in time.

The major difference in working with 6 restricted to the range 0 < 6 < 1/2 is that when using
Cauchy-Schwarz to control the modulation sums we end up with a term of the form

W
dl-
d=1

when 1/2 < 6 < 1 we can bound it by a constant independent from A. On the other hand, if
0 < 0 < 1/2 then we can only control it by A1=2%. This is the reason why we have to require
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that s+ > (n+1)/2. Therefore notice that X¥9(I] is an algebra when the indices s, are in the
range: 1/2<f<lands—-60>(n-1)/2,or0<f<1/2and s+0 > (n+1)/2.

0

1/2f--------m---- <

The next proposition that we need, following the analogy with the constant coefficients case,
is a X*~ 191 multiplicative estimate. As for the algebra property of Proposition 74, we extend
to n =3 and n = 5 spatial dimensions the corresponding X*~ 19! multiplicative estimate of
Proposition 3.8 in [30].

Proposition 76. Letn=3,1/2<0<1,ands—0 > (n—-1)/2, then the following estimate holds

” uf”XS_lv(')_l[]] 5 ” u”XSy(’[[] ”f”Xs—l,H—l[I]

Working with the X s=L0-111] norm is tedious, since for negative modulation exponents we

have to rely on the decomposition f = fy + 2310:122:1 U Py faa.- Therefore we shall

g<Ali2
prove the X5~19~1 multiplicative estimate by a duality argument that allow us to recover

the X'~$179[]] norm. In the proof of Proposition 76 we shall need the following duality
relationship.

Lemma 77 ([30]). LetseRand1/2<6 <1, then

XS—1,9—1 — (Xl—s,l—B +L2H2—S—9)/
Proof. See Lemma 2.13 in [30]. O
Now we are ready to prove the asymmetric multiplicative estimate.

Proof of Proposition 76. It suffices to show the multiplicative bound
XS,G [I] . (Xl—S,l—H [I] + L2H2—S—9 (S[)) c Xl—s,l—B [I] + L2H2—S—9 (SI)
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Indeed, the duality relationship of Lemma 77 yield to

| [ufw dxdt|

sup
w Nwlxi-si-o54 12 p2-5-0(s))

e fll xs-vo-ay =l uf”(lesyl—ﬂ[1]+L2H2—s79(51))/ =
Moreover the previous multiplication inequality implies
|f ufw dxdt| = ||uw||Xl—sy1—0[1]+L2H2—s—0(51)||f||Xs—1y0—1[1] = ”u”X&O[[] [ w”Xl—syl—U[1]+L2H2—S—0(51)||f||Xs—L0—1[1]
Therefore all it remains to prove are the two estimates
@) Xs0n-L2H?7579(8)) « X110 + L2 H?~570(S))

(2) XS,@ [I] ~X1_S’1_0[I] c L2H2—S—9(SI) + Xl—s,l—Q[I]

In fact, assuming (1), (2) by definition we have

IA

” uvllxl—s,l—ﬂ [I]+L2H2—s—0 (SI) UiIlllli-l;-ll/z ” ul/] ”Xl—s,l—B [I]+L2H2—s—0(sl) + ” ul)z ||X1—s,1—0[l]+L2H2—s—9 (SI)

IA

l u”x:ﬂ[[] ugl}llg-lvz(” U1 ”Xl—syl—ﬂ[[] +llv2 ”LZHZ_S_H(S[))

” u”Xs,Q[I] ” UI|X1—5,1—6[I]+L2H2—3—6 (Sp

To prove the estimate (1) we notice that since s > n/2 we have the Sobolev embedding
HS®R"Y) - B2 (R") < L°R") - HZSOR") < H2~5~0 (R")
Therefore Holder inequality gives the space-time estimate
L°H (S -L*H* (S c PH*S70(Sp e X510+ L2 H 70 (S))

Finally the energy inequality of Corollary 58 implies that X9 ¢ L H*. Let us prove (2), sup-
pose u € X*°[I] and v e X$~1971[1], then we have to show that [[uv|l y1-s1-0()4 12 g2-5-0(s,) S
lull xsoppy IVl x1-51-0( - By decomposing the functions u and v into frequencies and modula-
tions we claim that the previous estimate follows form

o0

00 00 _ 2
Z (/lz Zl ”P/J (Pﬂ,l uj, P/lg v/lg) ”X;*S.I*B[I]+M—Z+S+UL2L2 (SI))
1=

=
—

l/lg:

/11 2 o0 /12 2

Y luna i )X Y 1ona )
di=1 Avdr” S Qo=1d,=1 Ag,d2

Because of lack of symmetry we must consider all three types of interactions.

(i) High-high-low interaction: A := A; = A1, > u. We employ the well known facts from
Littlewood-Paley theory: IIﬁuull Hs = p§||Pﬂu|| ps-5 together with the classical multiplication
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estimate |uvll gs S llull s vl + llull =l vl g+ to obtain

”P,u(P/lu/l,dlp/lv/l,dz)I|y*2“*9L2L2(SI)
—s+O+21 5

= z ||Py(Pyuy g, Pyv n=
K 1P (Prvr,a Pava) 1 ooo-n51 g

+0+ 12 4 20—
M) (IIVPA Up,a, | 1125 IVPAVA a, Il 12+ 1o (s)) + IVPAUA g, | 12+ 1005 IV PA VA g, Il 1o 12(5)))

Sk
Therefore Strichartz estimates yield to

VP, Up,d, ||L°°L2(SI) VP, VA,d, ||L2+Loo(s,) + VP, Up,d, ||L2+Loo(5,) VP, V),d, ||LooL2(s,)
1/2+n/2— 41/2-6 3—-1/2+6
SAEE @ as e uy g, ”X;SL'Z || UA,dZIIXﬁ_l—e
,dy Jd

Thus for this term Cauchy-Schwarz inequality and the bound s — 0 > (n —1)/2 implies

~ 2
(Z Z Z ”P,u(leu/'l,le/lV/l,dz)”,LFZHWLZLZ(SI))

018

p=1 A,>>Hd15/1d25/1

. 04251 0 2011— 11/2-60 4—1/2+0 2
SY(X X X ws A a0 g, ||md2||Xme)

yzl /l>>,ud1</ld2<l

- 1/2-6 ;1/2-0 2
5(2 > a0 up g,y 100, y-0)

1d1</ld2<ﬂ.

S Z Z ”uﬂ,l,dl” 5,0 Z Z ”Ijﬂg,dz” 1-5,1-0

M=ldi <A, /11 A Ap=1dr<Ay /12d2

This conclude the high-high-low case.

(ii) Low-high-high interaction: 1, < A, and A, = p. Here the proof follow closely the one of
Property 74. In oder to estimate

2
Z ( Z |P,11u;L1P,12U,12||X1 51 6)
/12 1 ;L1<</12

we take the precise decomposition of the product Py, uy, Py, v,, as follows: let Py, uy, Py, vp, =
X<, (Py up, Py, vy,)qa where

0 ifd <Ay
(PAIL{AIPAZUAZ)dZ de/ll P/llu/llpxbv/lz,d ide)tl
P/llu/llplgvxlz,d ifli<d<A,

Then

2
1P, Payvae oo = ( X 1Pa 0 Prcttsaloyo |+ 3 1P 10, Pavasan oo
dr<\y 271 A<dr<A, A2, d2

Moreover to get the square inside the A; sum we apply Cauchy-Schwarz inequality and take
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advantage of the bound s —6 > (n—1)/2, we obtain

o 2
Z ( Z | Pa, up, Pa,va, ”XI’S'H’)
=1 <A, A2
3 s—0-21
S Z Z ( Z Z A 1Py, u/ll,dlplzv/lz,dz”Xl—s,l—Q)
Ao=1A1<kAy di=A; do<Ay A2,
3 s—0-21 2
+ Z Z Z ( Z M 2 Py, up, a,Pa, V/’Lz'dzlle—s,l—G)
=11 <Ay M1 <dp=Ay di<Ay Ap.do

We split the argument in two parts based on the d, modulation sum: dy < A; and 1; < d» < A,.

(ii) (@) Low modulation: d, < A;. For this interaction we estimate the following two terms
o

1-s S—ZG—? 2
Y AT I Pa, u/ll,dlp)tzv/lz,dznz) (2.39)
/12:1/ll<</12 dlsll szAl

[e.e] —
_sa5—20-21 2
+ Z Z ( Z Z /128/11 ’ ”Dg</1;’2(P/11u/h,dlplzvflz,dz)nz)
A=l A<y di<A do<)y

Let us start by estimate the first term of (2.39). We apply Hélder and Cauchy-Schwarz inequal-
ities to obtain

i 1-s s—20-138 2
2 X ( Y X AA T T ||Palual,dlpazvaz,d2||2)
A=11 <Ay dy<AydoasAy

o0 n 2
_sq,5-0-7
SY X (X X ATV g s VP, Ve, iz
Agzl/ll<<ﬂ.2 dli/lldgilll

(0] [e.0] 2
2s—n—1+2¢ 3260-1 2 -sq1/2-60
S Z Z A di” VP upya 17 oo Z ( Z Ay Ay ”Vplzvxlz,dg”LOOLz)

)Ll:ldls/ll Ao=1 dr<A
o 2 1+2¢ 420-1 2 O 2s 71-20 2
s—n-1+2¢ 720— 25 41—
SY XM dPMVPy up a1 o Y Y APy PNV P, VA, e
M=ld<\ Ao=1dr<A,

Here we have used the fact that the modulation is restricted to the low range thus A1 20 (¥ 5,3 d1/279d9=1/2)2 <
Y d<h, d21_29. The L®I? and the L?>* L™ Strichartz estimates implies the correct bound. In

order to estimate the second term of (2.39) we have to further split the argument to consider

three possible scenarios:

10t Pr,ur,,a,) P, Vayds ll2 (2.40)
”P/h Up,,d (Dg<A§’2Plz U/lz,dz) ll2

1P 7128V PA, UA a0y 8V P2, Uhy a2

I8 g<at2 (P2, Uay,dy Pa, Vas,a,) 12

+ + A
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Consider the first term on the right-hand side of (2.40), we used Bernstein inequality to obtain:

-1
10:¢(Pa,up,,a)Pr,Vaganllz S Ay 10:¢ Pty a, 121 IVPA, VA, a, | oo 2
<

/2-1
M0 Py uya 212 IV PA, U2, a, | oo 2

Thus to bound the first term, Cauchy-Schwarz inequality yield to

g 8—20-21 2
Y AFA 1@5cPa, 11,0, P2, V2,512
Ao=1 <<y disAdo<Ay

[e.°] 2
- -3/291/2-6
S Z Z ( Z Z /12 S/li Al ||attp)l] U, ,d, ”2”VP/12 Vy,d; ||L°°L2)
/12:111<</12 d]S/ll szA.l

00 00
25—2 320-2 2 -2s 71-20 2
fs Z Z /11 dl ”6”P7Ll ullyd1”2 Z Z /12 d2 ||VPAZU/12,d2||LooL2
/llzldliﬂ.l ﬂ.gzldgi/lg

The estimate for the second term on the right-hand side of (2.40) is more delicate since we are
force to put the high frequency term into L?L?. We have

n-1

o §—20-"= 2
Z Z ( Z Z Ay S/ll * 1Py, upa, (Dg</1;/2p/12 Uhy,dy) ”2)
Ao=11 <Ay di=Aydo<)y

o0 2
s—n/2—-19-20+1/2 9—s
SY (X X MR AZ VP, un, ool Ogery Pa, v, )
/12:]./ll<</12 dIS/lldzsﬂ.l

) oo
2s—n-2 320-1 2 -2s 7-20 2
S Z Z A dy ||VP/11”/11.d1”ooZ Z A7 d, ”Dg</lé/2P/12U/12,d2”2
/llzldliﬂ.l Agzldgi/lg

Here we have used the fact that we can squeeze out a factor of )Ll_w*” 2 from the A; sum and
we have used the following trivial bound

A’1_40+1( Z dz_edze)zs Z d2—29
dr<\y dy<\y

Finally to estimate the third term on the right-hand side of (2.40) we place the high frequency
term into L*L? and the low frequency term into L?* L, thus
(o]

—s ‘9—2(9—"7’1 2
(X X A IVPy, p,,a,VPa, Vs, l2
L=1A<y di<A do<Ay

o0 2
s—n/2-1/24+€ 9—-s91/2-60
SY (X A A MO Py, un, a2 1 IV P, 0, o2
/12:111<</12 dlﬁﬂ.ldgﬁﬂ.l

[es)
2s—n—1+2¢ 420-1 2 -2s 71-260 2
SJZ Z /11 dl ||vp)llu/11:dl ”L2+L0° Z Z AZ dZ ”VP/lzl}Azydz”LOOLZ
AL di=Ay Ao=1dr<A,

Hence the proof for the low-high-high and low-modulation interaction is concluded.
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(ii) (b) High modulation: A, < dy < A,. For this case we must estimate the two terms:

5_9_%1 1-s 71-60 2
( >N Ay7d, ||P/11u/11,dlp/12v/12,d2”2) (2.41)
Aa=1 <A M<dashy di=hy

00 n-1 2
s—0- -s 7—0
+ Z Z Z ( Z Al ’ Ay d, ”Dg</1;’2(P/11u/11,d1P12 V/’lz,dz)”Z)
A2:1A1<</12/115d25/12 dli/ll

To estimate the first term of (2.41) we apply Holder and Cauchy-Schwarz inequalities:

s=0-"31 15 J1-6 2
(X A 7 A APy w4, Pa Vs,
/12:1/ll<</12/115d25A2 dli/ll

(e8] 2
s—n/2-191-s 41-0
SY Y Y (X AT d OIVP, ol Pa, v, 1)
Ao=1 A< A M1 <dr<A» di<\

o0 o0
25—n—2 320-1 2 2-2s 32-260 2
S/ Z Z Al dl ”vp/ll Up,,dy ”oo Z Z /12 d2 “P/lz V,,dp ”2
M=ld<\ Ao=1dr<A,

As usual to estimate the second term of (2.41) we split the argument into three parts based on
the following estimate

||Dg<,1;/2 (Pa,un,,a, Pr,Vana) e S 100 (Payun,a,)Pa,Vaya, ll2 (2.42)
+ 1Pa uay g Hgepye (P, Vay,a.) 2
+

||P</1£/2gVP/11 Ur,,d, 8VP1, V1, Il2

Consider the first term on the right-hand side of (2.42). Bernstein inequality applied to the
low frequency term yield to

s=0-"3 s 0 2
(X A7 7 255100 (Pa, 12,00 Pa, 00,0, 2
/12:111<</12115dgﬁﬂ.2 dli/ll

o0 2
-3/24—5 41/2-6
SY XY (X PG00y una 121V Py, a2
Ao=1 << A1 =do<Ay di<Ay

[e.] [e.°]
25-2 320-2 2 -2s 71-260 2
5 Z Z /11 dl ||6”P,11u,11,d1||2 Z Z Az dz ||vpxlzyxlz,dz”L°°L2
Alzldli/ll /lgzldzfﬂ.g

In the first inequality we have transferred a d, /2 factor into 1;/2 by taking advantage of the
high modulation regime. Next, the estimate for the second term on the right-hand side of
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(2.42) resembles the one in the low modulation case. In fact we have

(o]

s—0— s 2
Z Z Z ( Z A T Ay dy ”P/Il Up,, dIDg<)L1/2(P/12v12,d2)“2)
L=1 A1 <A M1 =dr<Ay di<)\

2
/2—-1 0
ST Y (T AL 4 ool Dy P, v )
/12 1).1<</1211<d2<ﬂ.2 d1</11

2s—-n-2 320-1 2s 3—-260
Z Z /1 d ”vp/ll Upy,dy ” Z Z /,l d2 |||:]g</'l“2 P/lz V2s,d; ”2
/11 ldi<\ Ao=1dr<A,

The estimate the third term on the right-hand side of (2.42) hinges on the L°°L* Strichartz
estimate:

s—0-21 ¢ g 2
(X A AP NPy a0, VP 1 )
L=1 A1 <A A1 =dr<Ay di<)\

o0 2
s—n/2-191-s 41-0
SY X X ( > A Ay d, ”vp/hu/h,dl||oo||P/12V/12,d2||2)
/12:111<</1211$dgﬁﬂ.2 dli/ll

[

2s—n-2 320-1 2 2-2s 32-260 2
§ Z Z /11 dl VP, up,a, o Z Z A’Z d2 P2, VA, ,d, Il
AL di<sAy Ao=1dr<A,

here we moved a factor d, Linto /lfl. Therefore the estimate for the low-high-high interaction
holds.

(iii) High-low-high interaction: A, > A, and 1; = . We proceed as in the low-high-high
interaction case swapping the role of the high and low frequencies: we split the argument in
two parts based on the d; modulation sum: d; < A, and 1, < d; < 1;. Moreover to get the

square inside the A, sum we use Cauchy-Schwarz inequality. After this initial reductions, it
suffices to estimate

2
Z( Y ||P/11u/11P/12V}L2||X1s19)
Al 1 /11>>;Lg
o0

s—0—- 2
fs Z Z ( Z Z A‘ ”Pﬂluﬂhthp/lz Vlzydznxl “ 9)
/11:111>>/12 dlﬁﬂ.g dg<ﬂ.2

+ Z Z Z ( Z /15 ||PA1uAl,d1P,12U,12yd2||X1 s1 5)

M=1 41> Lo<di<A; dr<A;

(iii) (a) Low modulation: d; < A,. Let us first consider when d; is restricted to the low modula-
tion, here we need to bound the following two terms:

o0

E Al SA/S ”P Uy, d Py v d ”2 (2 43)
MULL,d P A V,,ds .
Al—l/‘h»ﬂ.g dli/lg d2</12

o) 2
5520
+ Z Z ( Z Z Ay A T ||Dg</1”2(P11ullydlpﬂzvﬂz,dz)”z)
M=1A1>Ay disAydr<A,
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For the first term of (2.43) we have

& 1-s s—20-13 2
Z Z ( Z Z /11 /12 ’ I1PA, tp,,a, P, Vhs,dy ”2)
/11:]./11>>/12 d]SAg dZSAZ

(e

—2s+2+1 -1l 25 0-2  —s5—0+1 2

SY Y (X X AT AT AT IR, e e VP, U o2
A1:1/11>>A.2 dli/lgdgﬁ/lg

00 00 2
25—n—1+2¢ 3260-1 2 —s—0+1/2
S_, Z Z A’ls n edl ||VP;L1 L{Alydl ||L2+Loo Z ( Z AZS ||VP/12 l}/lzydanooLZ)

M=ld<\ Ao=1 "dr<A,

[es) 00
2s—n—1+2¢ 320-1 2 -2s 71-20 2
5 Z Z /11 dl ”VPAI Up,dy ||L2+L°° Z Z /12 d2 ||VP,12 Vs,dy ||L°OL2
11:1 dli/ll /12:1 szAg

since
—2s+2+1/2 ,25-0-2 _g_n
AT < (Ag/ap)?S O

and2s—0— g > s—1/2 = 0. To estimate the second term of (2.43) we proceed as in (i), we split

the argument into three parts based on which term is being hit by the d’Alembert operator.
The estimate of the first term goes as follows

_gq820-21 2
( Z Z /11 /12 I (Dg</1i’2P/11 Up,,d, ) Pr, Vs,d, ”2)
M=1 1>y di<Aydr<A,

) _s——nz1 2

—1,-1/24—5-0 25-1

SY Y (XX AT M/ I g e Py, a, 121V P, v, o)
11:1/11>>A.2 dli/lgdgﬁ/lg

00 00
2s-2 320-2 2 —25—n 41-20 2
5 Z Z Al dl ”Dg</1{/2P/11 Upy,dy ”2 Z Z /12 d2 ||vp/12v/12.d2||oo
M=1ld <\ Aa=1dr<A,

The estimate for the second term is given below.

_5q520-21 2
YooY ATA, |Pa, ur,,d, (0t¢P2,Va,,a,)ll2
M=1 41> disArdr<A»

[e.] _n_ 2

s L)_5,-6 25s—nl2

SY Y (XX AT a0 RV, 4, ol O Pay va, )
11:1/11>>A.2 dli/lgdzﬁ/lz

o0 [e.°]
2s—-n-2 3260-1 2 -2s 7-260 2
SY X M T IVPLua e X Y AT dy I qye Py Vs I
M=ld<\ Ao=1dr<A,

Finally for the third term we obtain:
_gq5—20-21 2
( Y 2 A0, IVPy, up, a4, VPA, V1,4, ||2)
M=1A1>A disArdr<A»

[e.] 2
—n/2-1/2+€ 3 —s—0+1/2 25-0-n/2
SY T (X X ameteass 2, a2 0 ) g, gl oIV Py, U, 12
11:1/11>>A.2 dli/lgdgillz

[e) 00
2s—n—1+2¢ 3260-1 2 -2s5 31-20 2
S Z Z AY dy” VP upy a2 oo Z Z A= dy NIV Py, Va0 2
M=1ldi<\ Ao=1dr<A,
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(iii) (b) High modulation: A, < d; < 1;. Now we estimate the terms where the sum over d; is
restricted to the high terms. We need to control

A=A 0 oo :
Z 1 2 1 ”Pﬂ,l uﬂ,l,dlpllz U/lz,dz)llz
A1:1;Ll>>ﬂ.2/12<d15/11 szA.g

s s—0—n=1 _9 2
Z A’l 2“2 ’ dl ”Dg</1}’2(P/11u/11.d1P/12 VUhy,dy) ll2 (2.44)
M=1 A1 Lo<di<Ay  do<Ay

For the first term of (2.44) which does not involve the d’Alembert operator we have

= 1-s 5_9_%1 1-6 2
DD ( > A, dy 1Py, up,,a, Pa, V}Lz,dz)llz)
11:1/",1>>/12/12<d15/1] dZSAZ

oo n_1 1 2
$S=5=5 0-1/2 4 —S—0+ 2s—n/2-1
SX X X ( 2A P Ay, A/ ADT T TIVP, ug, ||L2+L°°||VPA2VA2,d2||L°°L2)
/11:111>>/12/’Lg<dlfﬂ.1 ng/lz
o0 o0

2s—n—1+2¢ 3260-1 2 -2s 71-260 2
S Z Z /11 d1 ”Vp/ll Upr,,d, ||L2+Loo Z Z /12 dz ”Vp/lg Uly,d, ”LooLZ
=1 dlfﬂ.l 12:1 dr,<A,

In the first line we have used the fact that dl 0 = @9~1/2g3/2-20 < q9-1/231/2 o estimate the
second term of (2.44) we split the argument as usual into three parts. The estimate of the term
where the d’Alembert operator hits the high frequency term goes as follows

_sa8-0-21 o 2
( Y AT A Qe P, ual,dl)mub,dzuz)
M=1A1> A Lo<di<Ay dr<Ay

oo _e_g_n=l 2
-1 46-1,—5-0 25-1
SY Y0¥ (XA Qe P 0 e Py, 21V P, Vi, o)
/11:111>>/1212<dlﬁﬂ.1 sz/lg

0 0

25—=2 320-2 2 —2s—n 71-20 2

,S Z Z /11 dl |||:|g</’l}/zp/11 Upy,dy "2 Z Z AZ d2 ”VP/IZ V/12yd2”oo
Alzldliﬂq /lzzldzilz

The estimate of the term where the d’Alembert operator hits the low frequency term is given
below:

s S—H—"?*1 -0 2
Y AT a0 1Pt g, OucPa, a0l
M=1A1> A Lo<di<A) dr<Ay

[e.°] _n_ 2
s=371 10-1/2 4 -s-0 2s—n/2
N > > AL 2 d] T A T AR/ AT TR IV P, uay ay oo 101 Pa, Uay a2
/11:12,1>>/1212<dlﬁﬂ.1 ng/lg

o0 (e.0)
2s—n-2 320-1 2 -2s 3-20 2
S X MU TIVPL Ul X Y Ap iy 18 a2 Pay Uns el
/11:1d1SA1 Azzldzillz
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Finally when the d’Alembert operator distributes one derivative on each term we obtain:

o) _gas—0-21 g 2
> A Ay 2 d"IIVPy up, q,VPy, U/lz,dznz)
M=1 1> La<di<Ay  dr<Ay

< X s—2-14e 0-1,-s—0+1 25—0—1 2
SY Y Y (XA AT A A B ORIV, g, gz 1 IV P, U g2
11:1/11>>A.2A,2<d15/11 ngA.g

o)
2s—n—1+2¢ 320-1 2 -2s 71-26 2
SJZ Z Al dl ”VP/M u/llrdl ||L2+L°° Z Z /12 dZ ”vp/lzv/lz:dz”LOOLZ
A disA Ao=1dr<A,

This conclude the proof of the high-low-high interaction case. O

We end this section by stating the following Moser type estimate corresponding to the estimate
of Proposition 3.9 in [30], see also Proposition 8.1 in [27].

Proposition 78 ([30],[27]). Letn=3,1/2<60<1,5s—60 > (n—1)/2, andT a smooth function
vanishing at the origin, then the following estimate holds

IT () ”Xs,f?[[] ,S f(”u”LOO(S,))g(”u”XSﬂ[]])

where f, g are positive increasing continuous functions.

2.9 Half-waves and angular localization operators

Let us introduce an equivalent definition of X;’Z norms in terms of half-waves norms. For each
dyadic number a < 1, consider the symbol for the principal part of the space-time mollified
curved d’Alembert operator Ug o1 = (P<g-1(Dy, D) g*) (8, X)0,,0y = gi‘;,l (t,x)0,,0y:

O (0TE =gl (608

Peq1(t,%,7,8) = 7% - 28
Since Ug.q-1 is hyperbolic we know that we can decompose its symbol into

Peat(6%,7,8) = (T +a., . (6, x,)) T +a_,.(t,x,8),

where

0i B 57 —
at, (1,x,8 = g% 1,087/ (082 + g (1, 08¢;. (2.45)
Notice that afa,l is an homogeneous function or order one with respect to ¢. Let us intro-

duce the operators AJ;' _, (t, x, D) defined as the pseudo-differential operators with symbols
a
az,.(t,x,¢), thatis

(A2, DY) (1,0 = @ " [ a2, (1%, 00 d.
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2.9. Half-waves and angular localization operators

Moreover we define the half-waves operators associated to the mollified curved d’Alembert
operator Lg,-1 as:

(De+ AZ, (1,2, D))ult,x) = @m) " f

() (1 4 az, . (t,x,8)) Uu(r,&) dédr.
Rn+1

The terminology make sense since we can decompose Dg<a-1 = (D;+ A:a,l (t,x,D)(D; +
A~ (t,x,D)).

<a7!
Remark. Notice that if g is replaced by the Minkowski metric, then the symbol of the flat
d’Alembert operator is

Pea-1(t,X,7,8) = (T* = |&1%) = (x — |EN (T + [E])

and it does not depend on t, x, nor on @ moreover A* (¢, x, D) = +|D| since a;—'a_l (t,x,8) = x[¢].

Definition. (Classical Symbol class) Let m € R, denote S™ as the set of functions a € C*°(R” x
R™) such that for every multi-indices a, § € N

1020% a(x, &)1 < ™.

We have the following results from [27].

Lemma 79 ([27] Lemma 2.17). In the definition of XZ’Z norm, we may replace the term

. - + + -
||Dg<\/1PAu||2 with ||(Dr+A<ﬂ)(Dt+A<\//T)PAM||2 OT||(Dt+A<\//T)(Dr+A<\/7L)P,1u||2.Inother

words the following norms are equivalents:

i. A2d*lupall + A1 a0, quaalle,
ii. A2d% |upqlla + A1 A7 I(De+ AT D(Dr+ AT Dupalla.
Proposition 80 ([27] Lemma 2.17). Suppose u satisfies u = Py (D) u, and write
U=Ps_pea(D)upr+Pe_pea(D)up:=u’ +u”,

then
IVetllo+ D+ A% il + 10, gl S IVaxullo + 10, gzl

In view of this proposition let us introduce the norm

lullx, , = lullz + 1(Dg + AZ (8, x, D) ul 2.

Observe that from Proposition 80 it follows immediately that:

Corollary 81. Suppose u satisfies u = Py (Dy)u, then we have

+
T <
(D + A<\/I)u||2 Sdllull X090
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Angular localization operators

Consider the Hamilton equations for the operators Aia-l (t,x,D), defined as

Xt (0 =Veat L (txZ (0,85 (1),

éiml(t} = —an;—'a,l (t, x;—’a,l(t),fiwl (1), (2.46)
xja_l 0) = x, fia_l 0) =¢.

+

a1’5<a1
Let us introduce the Hamilton flow as the following map on the phase space:

The two curves x;—' :R* — R" are called bicharacteristics, here x,¢ € R" are initial data.

PR xR" — R"xR",

8 — . (0,EL,.0).

From the theory of Hamilton-Jacobi equations we know that for small time the Hamilton
equations admit a classical solution, thus the Hamilton flow is well defined (again for small
time). Moreover observe that the Hamilton flow is 1-homogeneous in the second variable.

Remark (Flat Metric). Notice that if g is replaced by the Minkowski metric, then Hamilton
equations read

PN S )

(=0,
xF0)=x, &X0)=¢.

Hence (D?'i (x,8) = (% t% + x, ) the Hamilton flow is constant in the frequency variable.

Remark (A toy-model). Consider the following equation on R*1: 2, u + ¢?(x)d4, u = 0. The

(-1 0
§=10 2 (%)
and the half-waves multipliers are constant in time and a*(t,x,&) = £1/c2(x)&2 = £|c(x)|[€].

Take the space-dependent speed of light to be c?(x) = 1+ x?, then the Hamilton flow is
described by the system

metric is simply given by the matrix

ot 12y EE()
a;*(t) =21+ (")) =
EE(D) = F2xE(0)|EE (D)),

x0)=x, ¢(0)=¢.

We solve the first ODE by the separation of variable technique and obtain

N L EE(s)
()=t +
(0 = tan( fo o]

ds+arctan x).
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2.9. Half-waves and angular localization operators

The second ODE has a solution given by £* () = £ exp ( F2sgn(¢) fot x*(s)ds), hence the explicit
solution for the curve in the physical space is

Sin(% 1)+ xcos(% )

xi(t) = tan(iit+arctanx) = .
1] cos(% t)—xsin(% )

Plugging it back to the formula we had for £(¢) we obtain the explicit solution for the curve on
the frequencies side:

3 . 6 \+2

EE(D) = &(cos(— ) — xsin(—1))™".

( Iy <] )

Extending these explicit solutions to the high dimensional case is problematic due to the
present of the absolute value in the second ODE.

Following [30] we define the metric g, on the phase space by

ly-E7 Aynél? In-&”  InAél?
atlél?  a?|E? |E4 a?|ér

8a,(x,) (1) =

Here we have used the following decomposition. Let £, € R” two vectors and let us denote
{An=¢en—-ne¢, thatis ¢ AnisaR" x R"” matrix with components ({ An);j =&in;j—&n;.
Then we can decompose the vector 7 into two components, one parallel and the respectively
perpendicular to & by the formula

1=+ W ADE,
In fact [(nA¢)S]-¢=MAE)ij¢i¢;=0.
We shall need the following:
Lemma 82 ([27] Lemma 5.1). The components of the flow @?’i are Lipschitz and g, -smooth.

Letf € S*~! a given direction at time = 0, we introduce the angular opening § € 27N (a dyadic
number less then 1), the cone of angular opening f centered at 8 as

Cs0)=1{Ce R": £(&,0) < B,
and the intersection of two of such cones as
Cp0) = {£ €eR": CH < £(£,0) < 2Cp}

for some constant C > 0. Denote by xg = C5(6) N S$"~! the spherical cap which generates the
angular sector Cg(0). The image of the sets R” x Cg(0) and R" x 65(9) along the Hamilton flow
®P* are denoted Hi Cg(0) and HZ Cy(0), that is

HyCp0) = {(y,m) €R" x R": (y,1m) = D (x, ), where & € Cp(6)}.
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

We define cfg’i (t,x) as the second component of the Hamilton flow defined via (2.46) with
initial data
(x4 (0),¢3,(0) = (x,0)

a
at time ¢, hence it can be seen as the second component of the Hamilton flow <I>‘;"i (x,0) and
it represent the evolution along the flow of the initial direction 8 at x. Notice the the initial
spherical cone Cg(0) at initial time ¢ = 0 is transformed by the Hamilton flow into the cone
Cp(&g™ (1,x)) centered ;" (1, x) and with angular opening .

Observe that in the flat case, since the flow is constant in the second variable we have
H;—' Cgp 0)=R" x Cp (8). However, for a general metric, the initial localization of the frequency
in the cone C Ji (6) will not be preserved by the Hamilton flow.

Define Qg as the finite collection of spherical caps on $"~! of size f € 27N with finite overlap-
ping property and such that the union of all such caps cover all the sphere $”~!: Q p= {(Ké)} jeJ-
Consider a partition of unity at initial time ¢ = 0, given by

Z XKﬂ(xyé) = ]-)

KﬁGQﬁ

where X« are 0-homogeneous symbols with support contained in R” x Cgp @), here Kp =
Cgp (0)NS™ L. Recall that in general a m-homogeneous symbol is a function a € C*°(R" xR"\{0})
which satisfies the following condition: for every p, g € N" there exists constant Cp, ; > 0 such
that
PAad -
10507 a(x,8)| < Cp,glg|™ 9P

To define an appropriate time-dependent symbols we transport yy, along the Hamilton flow,
thus we set

X (6,5, = Yoy (@7 (%,)).

Clearly we have a time-dependent partition of unity

Y xEEexd=1.

K/}EQﬂ

Moreover, for each A € 2% we localize the symbols )(,?pi to frequencies less than A1/8. Define
the symbols

Xeya (%8 = Paag (D" (6,5, pa (@)

Furthermore if @ = v/A in the definition of )(:fl’i, we shall simply write )(f;ﬁ 1(8,x,8). We use

xf{'ﬁl(t, x, &) to split a frequency localized wave into directionally localized pieces:

Pyu= Y x&* (t,x,D)Pyu.
KﬁEQﬁ A

Remark. Observe that the final cutoff P.y,g(D;) it is necessary to obtain the correct frequency
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2.9. Half-waves and angular localization operators

output. Precisely let us consider the Fourier support of the function X“’— (t,x, D) Py u: we have

supply, 5y (£, x,6) * Pyu)

suppg[)(“’— (t,x,D)Pyul

c Supp{x“’— (t,x,0)} +Supp{P/1u}
= {Iéls/l/s}Jrua~
c {{I=

The drawback of applying the cutoff P.j,3(D,) is that the symbol X“’— (t,x,¢) is no longer
sharply localized to the sector Cg (&% 0'_ (t, x)), where BKﬁ is the center dlrectlon of the spherical

cap kg at the initial time. In fact, we can write x“’— as the sum of a symbol which sharply
localizes into the set {|¢| = A, £L(&,¢ GK’;) < AB} plus an error which has better regularity proper-
ties:

Xyt %,8) = ,A(t,x,f)XSAﬁ(lf—fg;j(t,x)l) +1e (6,%,0).

The first symbol on the right-hand side has the same regularity properties as the original one

)(“"/1 and the second symbol is much more regular r“/;— = O(A™®°). In what follows, we shall

ignore the error r“ﬁ;—/l and make the harmless assumption that )(“’— sharply localize into the

corresponding angular sector.

Remark. Observe that x,‘f/’f (¢, x,&) depends on the initial spherical cap ¥ B with center direction
0 and cap size B, the truncation cutoff on the half-wave operators a. Whereas )(Z;A(t, x,¢&)
depends on all the above parameters plus the frequency cutoff A.

+
“'— . Con-

Remark. Let us analyze here the phase space localization of the symbol )(“’— and X,
sider the Hamilton flow with initial data given by (xg, ), the solution after fy-time is glven by
the vector q)‘t)f)'i (x9,0), denote its second component by ég’i (%o, x9). Hence, for each space-
time point (#y, Xp), and any initial direction 6, we obtain a corresponding center direction
6g’i(to, Xo) € R"™. As for the symbols we drop the subscript « if @ = VA and we simply write
& g (o, X0). Observe that in the flat case E % (1, %0) = 0 is constant for every spacetime point
(f0, xp). The symbol X,(ﬂ (to, Xo,-) localize frequencies in a cone sector of angle § centered

at E 9'— (to, x0) and x“’— (o, X0, ) localize frequencies in a cone sector of angle 8 centered at

Eg’ (to, xp) that intersects with an annulus around || ~ A. The hat here denotes the renor-
malized vector of norm one. Let us denote this second set by Ag, A(fg’i) c R", we have
|Ag, ,1(59 —)I ~ /1”,6”_1. What is crucial here is that the size of Aﬁ,,l(ég'i) does not depend on
the center direction fg’i(xo, fp), thus nor on the space-time location (xy, fp) nor on the ini-
tial direction 8 and the truncation ¢. However the region where Xﬁf and )(Z;A localize in

frequency depends on the center direction ¢ g’i, thus where we are on space-time.

In view of the previous Remark we have the corresponding Bernstein type inequality:
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Lemma83. Letl <r <gqg<oo, then

a,x npn-1yi-1
”Xxﬁ_/l(t’x’D)u”L’;Lis(A pr ) q”u”[‘i’L;-

Therefore one can combine Bernstein inequality with Strichartz estimate to obtain better
2n-2
’ n-3

bounds. In fact in dimension n > 3 the Pecher pair (2 ) is admissible hence we have the

Strichartz estimate

n-3
thx

a,+ < n_1_n?-3n 1 n+l 1
Hicpa (X DIUN |, oncy S A2 22 d ull oo = A2z d [l oo

Combine this with Bernstein to obtain

a,+ nan-1\2% a,+
5 Dl S A B IS (L x Dl

21 n-3
thx

< An;lﬁn;Sdl” ”
2 2 2| U]l y00.
XA,d

If you compare this with the pure Strichartz bound

a,+ nl ol
X2 (6% DIull 210 S A2 A ull goo.

We see that we have gain a factor of ,3%3 (recall 8 < 1). Moreover in dimension n = 3 when the
Pecher pair is not available one directly apply Bernstein inequality to obtain

a,t 2ol
1Xiep 2 (2% DY utll 210 S A2 B2 lull oo (2.47)

We end this section with the following Proposition that give us an almost orthogonal decom-
position with respect to the X, ; and Xg’od norms:

12 then we have the

Proposition 84 ([30] Proposition 4.5). Fix a frequency A and let a > A~
12 -decomposition

+ 2 2
> Ixe A6 xDuly, , = lulk, -

Ka€Qq

Corollary 85. Fix a frequency A and a modulation d and let a > A~''? then we have the I?-
decomposition
+ 2 2
K(;Z‘l ||XKa’/1(t; x,D) u”X)oL:(; = u”Xg:g-

Angular bilinear and trilinear decompositions

In the last part of this section we shall show how to perform an angular decomposition in
terms of the angular localization operators defined previously. Precisely, a Whitney-type
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2.9. Half-waves and angular localization operators

decomposition with respect to the smallest localization threshold a gives:

Pyu(t,x)Pyw(t,x) = > )(iw(t,x,D)PAux,fg_A(t,X,D)PAW

Ko K2€Qq:dist(+xL,x2)<a

1
+ ) > X (X, D)Pruy, (¢, D)Pyw.
B=a 15’ ﬁEQﬁ dlst(+1<ﬁ, b) =p s p

In the first term is denoted parallel interaction since the two spherical caps k), and x2 have
opening a and are separated by an angle up to «, that is the angular separation is zero. On
the other hand, the second term is denoted perpendicular interaction since here the caps Ké
and K% have opening 8 and are separated by an angle proportional to . To simplify notation
we shall write x, =, % if two spherical caps k}, k% € Qa are such that dist(+x.,x%) <y and
p ﬁ € Qp are such that dlSt(-FKﬁ, ﬁ) =

Here dist denote the angular distance between two subset of $”~!. Therefore we obtain the

we shall denote K; Ly K?B if the two spherical caps «

handy formula

Pyu(t,x)Pyw(t, x)

Yo 1/1(t X, D)P,lu)( 2 (X, D)Pyw

1o
Ke=aKs

+

Z Yoox ll(t X, D)Pruy’ 2 (% D)Pyw.
B= aKﬁJ_/jKﬁ

Notice that in the first line the two high frequency terms have supports on a spherical cap
of angular size a2 around the sphere {|{| = 1} and of length A in the perpendicular direction,
that are separated by an angle of at most a. On the other hand in the term on the second line
the supports have sizes (1)" ! 1 and have an angular separation proportional to S.

We shall use the short hand notation u:f 1= )(;f A(t, X, D)Pj u. The full trilinear decomposition
with respect to the smallest localization angle a has the form (recall that p < A):

ﬁAu ﬁ,lwﬁﬂv

1
— + i + + +
=L maaMeatautr X Maa%eatou
KaSaKa~aKa p=a Ka:aKaJ-ﬁKﬁ
1 1

+Z > ”:f;,a Ve +Z > Zu:f,g,a +2/1 :m’”
5

T B T
1 1
)X W WU (2.48)
ﬁ:aY:% KpLpkgLyxy P P !

The previous trilinear decomposition will be needed in the following section to exploit the
null structure of the non linearity.
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

2.10 null-form estimate
In this section we prove a multiplicative estimate involving pure N;; null-forms. The proposi-

tion below is the extension of Proposition 43 to curved metrics for n = 3 spatial dimensions.

Proposition 86. Assumen =3 and3/4 <60 < s— 1, then we have the multiplicative estimate
N (u, V)| gs-10-1 S Nl gso vl xse,

where N be a linear combination with constant coefficients of N; j null-forms.

In the previous proposition and throughout this section we shall made the implicit assumption
that s < 2 since we shall need that 3/4 < 8 < 1. By duality this estimate is equivalent to

| f N, v)w dxdt| < ullxso 0l oo |0l x1s1-0, g2 ppo-s-o-

We apply the Littlewood-Paley trilinear decomposition, due to symmetry we just need to
consider two interaction cases: high-low-high and high-high-low.

High-low-high interaction

Suppose i < A, we have to control the quantity | [ N(Pjuy, Puv)Pywy dxdt|. We start to
dispense the cases that can be treated by Strichartz estimate and do not require the null-form
structure nor the 7 = 3 hypothesis, thus in this first part relax the assumption to n = 3. Suppose
that w) € L2 H2579 then we have

)fN(P/luAyPyUy)P/lW/l dxdt| S IVPrupllpeor2 IVPuvyll o+ poo [Py wall 2

0-1,1-s+n/2-1/2+
S A 1% s “u]L”X;()||Vp”X;ﬂ||P/lw/1||L2H2—s—0-

Since the exponent of the high frequency is negative, we can transfer all the high frequencies to
low frequency and close since —s+68+n/2—1/2 < 0. Next, let us consider the case w) € X i_s’l_g,
we split into high and low modulations

A Iz A
Up = Z Ura = Z Up,a+ Z Upd = U<yt UL>SY
d=1 d=1 d=2u

and we observe that for the high modulation term we have the improved bound:

A
1- -0 9s-1 40 1-s,,—0
IVPyup sl SATS Y d AT d° IVPAupall 2 SA u lueall yso-
d=2u
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2.10. null-form estimate

Therefore we can control the high modulation part of u, via Strichartz inequality as follows:

~

|fN(PAuA,>yPpr)PAwA dxdt| 3 ||VP7Lu/1,>/J”L2 ”vp,uVy”Loo [Prwall 2

—s—0+n/2+1
S op ||uA||Xiy9||Vp”XZ.B”P]Lw/l”Xi*s.lfﬂ-

~

Recall that by Cauchy-Schwarz we have |Pywy |z < APy w/'L”X/{—s,l—G. Thus the high fre-
quency exponent vanishes. Notice that the y exponent is negative since s > n/2 +1/4 and
0 > 3/4. Analogously we split w, into low modulations w) <, and high modulations w; -,
then we bound the high modulation term using Strichartz inequality:

-1,,60-1
||Vp,1w/1y>ﬂ||L2 5/15 |2 ||I/U}L||X1—s,l—e.
y)

Thus, even without the null-form gain we obtain:

~

|\/VN(PAHAP“V“)PAWAY># dxdx < ||Vp/1u/1”L°°L2”vaVMHLZ*L‘”||p7lw/1,>#”L2

—s+6+n/2—1/2+|

< |l oo 10l gl 31 1500

Hence, we have reduced the proof of the high-low-high interaction to the boundedness of the
low modulations term:
‘ f N(Prup <y Puvp)Ppwy <, dxdx)|.

This term can not be controlled by Strichartz estimate, thus to bound it we need to decompose
it further into angular sectors. However, before performing such decomposition we shall
simplify further to 1-modulations. First observe that, in view of the previous discussion, the
proof of the high-low-high interaction follows from the following:

Proposition 87. Letn =3 and3/4 <0 < s—(n—-1)/2. Assume that we have the following
bounds:

i. ifdy < dmay, where dpq = max{dy, d», ds}, then

n 1 1 1

ny _
IN(Pyu,a, PuVp,a,) Prwpas | S w27 Ady dy dgllup,a,llxoo N0p,a,ll oo lwi,a,llxo0 5
»dl Hd2 a3

neg o ntl 1
IN(Prup,a, Puvpa)Prwralpp S Ady* dl uﬂdl“Xﬁ;Zl ”U“vdZHX,‘ZIZZ lwpa, “ng?is;

where d,;, = min{d, d», d3}.
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Then we have
)fN(P/'luA,SN PH V,u)P/l Wa,<u dxdt 5 u“ I u/’LHXi,e II UH”Xﬁ'g I LUA”X/{—S,I—B,

where a <0, thus the high-low-high interaction term is controlled.

Proof. Itis an easy application of Cauchy-Schwarz inequality. Suppose i. holds, then

I
IN(Prup<u Puv)Pawn<pllpnp S Y. IN(Paup,g, Puvya,)Pawpa,
dy,dy,d3=1

£ sy A0 1-9 g-1
S OY WA dy T dy Pllupallgse 1vga,llyso Twa,gll gi-si-o
dy,dy,d3=1 by i Aods

—s+0+n/2-1/2+
S e, oo Il o Nl y1-ca-o.

On the other hand if ii. holds, suppose without loosing generality that d,;,;;, = d;, then

u
IN(Prur <y Puvp)Pawp<pllppn S ) IN(Paup,g, Puvya) Pawaa,
dy,dy,d3=1

| 1 n+1

_g4nt3 5—0 =0 0-1

5 Z I"l 4 d12 d2 ! d3 ” uﬂ.,dl ”Xi'f; ” y,u,dg ”XS'Z ” w)[,ds ||Xi*d5'1*9
dy,dy,d3=1 “ mez 3

-s—0+n/2+1
SpmrrEE| up, Nxso N0l ol wallgisaco.

Here we have use the fact that the d; and d3 exponents are negative, while for d, we obtain,
after having applied Cauchy-Schwarz inequality a positive exponent that is controlled by

n+l_

uT O

The next technical lemma allow us to reduce the proof of Proposition 87 further to one
modulation.

Lemma 88. Let n = 3 and suppose that the following bounds hold:

1
n 5 .
M2 +Ad12 || u||X0,0 || U||X0,0 || w||X0,0 lfdl = dmax,
. Ady wl A1
(XIS ;
INGL VWi ST Ady" llulgoollvlgoo lwlyoo  if do = dimax, (2.49)
, wdy ,
1
n 3 .
prtAdZ ul ool vl goolwllyoo i ds = dimay,
A1 w1 Ads

then the estimates i. and ii. in Proposition 87 hold.

Proof. Let (x ;) a smooth partition of unity of the time interval [0, 1] so that I; = suppy ; and
|I;| = 6. Notice that for 1 <6 ~1 < d we have the [?>-summability property

lul®o = Y I (0ul?

5,0 *
Ad  jeN Xd

162



2.10. null-form estimate

Moreover define 1% (¢, x) = u(5t,6x) then if 5d = 1 we have the scaling law

_n+l
:5s+9 2 ”u”X;

5
(7 ”ngw [0,1] ’10,61"

See Proposition 2.6 on [27] for a proof of these properties. Moreover let (y ;) a similar family
such that y; =1in I;.

Now suppose d» = dmax, and without loosing generality d; = d,i,,. We carry out a two steps
argument: first we reduce the estimate ii. in Proposition 87 to the case d;;;, = 1, that is
suppose that such a estimate holds. Notice that by a change of variable we obtain

”N(u, U)w”L%YX(IXRn) S Z ”X](I)N(u) U)w”L%x([x[R”)
jeN '

S L INGw XX Wi o xmn
JeN
< O L NN TT w0y -
JeN |

We now apply our hypothesis, estimate ii. in Proposition 87 where d; = 1, and use the scaling
law to obtain

IN(u, v) w”L},xUXR")

<Y 6" 6w T sA0dy)
JjeN

n+
4

L~ o ~ o ~ 1)
iU , iV \ 2% )
” (X] ) ”ngl [ ” (X] ) ”Xg;.?.z?dg 0] ” (X] ) ||X§f,5d3 [

1y oms o L ~ ~
Sy 672 e Ady Iy jullyoo (1T Ul g0 (1T Wl o0 (-
jeN 1,671 () Ad3

To close we use the [>-summability property and the fact that /2 c [3, then we obtain

n+l
4

_l, n3
||N(LL, U) w”L%YX(IXRn) SJ 6 2 I,t 4 A«dz ” u”Xg‘g—l [I] “ v||x2:(;2 [I] ” w”Xg:g’ﬁ[[]'

Choosing 6! = din conclude the reduction of estimate ii. in Proposition 87 to dj = 1.

Next, in the second reduction step, we reduce estimate ii. with d; = 1 further to estimate ii.
with d; = d3 = 1, yielding to the second line in (2.49), i.e. suppose that

+3)/4 n+1)/4
IN@, vywlp S p34 a8 D4 ull yoollvll oo 1wl oo,
Lx A1 wdy A1

then

(n+3)/4/1dén+1)/4|

Nu,Vw|n < Ul 00| V|l y00 [[W] 00 .
INw vwly Sp [ull ool vl xon 1wl o,

We proceed by following a similar argument as in the previous step but at the end we set a

163



Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

different value for 6. We have

1y oms, o md 7. 7.
||N(L£, U)LUllL}‘x(IXRn)SJ;N(S 2 44 AdZ “X]u”X;::g—l[H”X]U”Xz:gz[l]”X]w”X,[l):g—l[I]'

Set §~! = d3 and notice that the term involving u we apply the following simple bound (see
Proposition 2.6 on [27]) |} j ull yoo 1 < 52 I ullxg,o for 6 < 1, to recover the d; = 1 exponent. Then
A6~ )1

by Holder inequality and the sqilare summability property of the terms involving v and w we
obtain the desired bound
n+l
4

n+3
||N(Lt, V)w”L;x([xR") ,S,/J 4 Adz ”u”Xg:‘l)[]]”V”xz:gz[]]”w”Xg:(;s[I]-

This conclude the proof for the d, = dj;, 4 since a similar argument holds in the case ds = dpin,
where the role of d; and d3 are swapped.

Now suppose that d» < d,4x, then we apply a similar two steps reduction algorithm. Suppose
without loosing generality that d; = d;;4x and d» = d i, and assume that

IN@, vwllp <S> Ady?dy? ul yoo 101l goollwl oo (2.50)
X Ady w1 Ad3
holds. Then we obtain

—14 By 172 4172

Setting 6 ~1 = d, we obtain estimate i. in Proposition 87. Next to reduce (2.50) further to the
first line in (2.49) we carry out a similar argument: suppose that

1

ny >
IN@, v)wlpp S w27 Ady Tl xoo l1vllgoollwilxoo
a1 [ )

holds. Then we have

-1+, 2+ 9 q1/2) >~ ~ ~
”N(u’l’)w”L}‘xeR”) 5 %‘6 uz Adl ||Xju||X2:2hm||le}||X,(L),gilm||ij||X2,gilm
i : :

< =172+ 5+ 1/2
~ 6 M Ad] ”u”X%glU]”v”XEj?U]”w”X;):g_l[I]'

Set 57! = d; to obtain (2.50). The other cases, d; = dpayx and ds = dpin, Or ds = dpmayx, are
treated in a similar way. O

The previous Lemma allow us to reduce the proof of Proposition 87 to the proof of the following
key Proposition. Here we have to impose the condition 7 = 3 on the space dimensions.

Proposition 89 (High-low-high interaction). Letn=3,3/4<0<s-1,and1<dy,dz,ds<pu <
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2.10. null-form estimate

A, then following bounds hold:

3, .3 .
Ap2tdr ullxggl [ Ullxgzg lwll oo ifdy = dmax,
3 .
IN(Pru, Puv)Prwlpp S 4 Apzdzll uIIX;nl) I U||X0,g I wIIXX? if dr = dmax,
, do ,

3, .3 .
Ap2*ds ull oo [ vll oo llwll goo  if ds = dmax.
A1 wl Ads

In the proof of the previous proposition we shall need the following lemma:

Lemma 90 (Angular gain). Letx:—gl (&x, D)Pyu and 7(:;'2 'u(t, x, D)P, v two inputs of the null-
ar ﬁ)

form N such that the angular caps at time t = 0 are separated by a constanty : dist(K}Z, K%) =Y.
Then for0 < t <1 we have
dist{® 35 kL), @R (2) = y

where @g’i is the second component of the Hamilton flow defined via (2.46).

The previous lemma highlights the reason why the null-form IV;; in this is particularly well
suited with respect to angular localization. Recall that

Nij(u,v) = ff eV [_gim j +n ;&0 ED(1,m) dndé

and |-¢;nj+n;é;l < |&lInll£ (&, m]. Therefore the previous lemma allow us to conclude that
diSt(K}x, K%) = 7, then for small time we have

IN(x;, (& x, D)Pyu, Xig,u”’ X, D)Pyv)l <@+ B+Y)Auly , (4, D)Paullx%,u(t, x, D) Py vl
Proof of Lemma 90. Let 6, and 64 be respectively the two centers of the caps k. and K%.

Define the corresponding centers at time ¢, denoted E{;—“ (t,x) and g‘gﬂ(t, x), as the second
component of the Hamilton flow with initial data (x,6,) and (x, 6g) respectively. That is

; v + + r
xi:VEa:ﬂ(t,xi,é_ga), X _v5a<\/ﬁ(tyx )é‘gﬂ)’
o + + r+ rt + + r+
66(1 - _an<\//T(t’x ,59{1), 6613 - an<\/ﬁ(t’x )Egﬁ)’
(x*,¢5 ) i=0 = (x,0a), (x*, &5 )0 = (x,6p).

Notice that the lemma is proved if we show that diSt(fg (t,x), f;—’ﬁ (t,x)) = y. Furthermore, by
localizing the coefficients of the metric to a fixed smaller space-time scale and rescaling back
to the unit scale, we can ensure that the coefficients satisfies

ap
IV8_ sllcionizmon =€

thus the don’t vary too much inside a ball of radius 1. Then, thanks to (2.45) the half-wave
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

symbols a inherit the bounds on the metric, that is for bounded ¢ we have

IVa(t, x,¢) ”L}(O,I)L?(B(O,l)) =E€.

Hence we obtain that the second component of the Hamilton flow is a O(e)-perturbation of
the constant map: E; = 65 + O(et). O

We now turn to the proof of Proposition 89.

Proof. Hereafter we shall denote u:—; 1= )(;f A(t, X, D)P3 u. In order to prove Proposition 89 we
apply the trilinear angular decomposition (2.48) from §2.9 which yield us to the following five
terms:

N(Pyu, Pyv)Pyw
1

+ + + + +
y Zz N p Ve dWent 2 Zz N Vg Wiz 5
Ka=aKa=aKg p=a KazakalﬁKﬁ
1 1
+ Z Z N(U:I PR V:3 M)W:Z A+ Z Z N(u:1 2 V,fs #) wiz 1
f=a KblﬂKkJ_pK% p B ™ p=a K%J :ﬂkbi;ﬁ(; ﬁ’ By p
T F T
11
+Y > Y. NG v Jwe = T+I1+111+1V+V.
Pt y—B! 1L} proten e

Motivated by the analysis in the constant coefficients case we set the angular separation
threshold to be a = u~'/2d}/2.. In what follows we shall carefully estimate each of the five

terms.

Estimate for I - Small angle interactions

1
First, suppose that d;;4x = do, thus a = u_%dzz. Then we use Strichartz for high frequency
term and Bernstein for the low-frequency one. Since the sum over spherical caps is diagonal

we obtain:

+ + + < + + +
X INGg s Jws S Y Apalug el lee vy e
Ka=aKg=aKy Ka=aKa=aKy

3
< Auau?allut oo || w* 00|l vE 0,0
S Y auapdalud el vy e
Ka=aKa=aKy

3
< a2 Adallulyooll vl oo Nwyllyoo.
A1 wdy A1

Notice that the L2L* norm of the low-frequency term is estimated via the Bernstein type
inequality (2.47). Moreover the summation with respect to fo is achieved via the I?> decompo-
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2.10. null-form estimate

sition property from Corollary 85: let & = A~1/2, then

2 2
l u: 1500 = lupllo0-
K%a 4 Xha Xia

Clearly a similar /> summation property holds as well for the low frequency term vu. Next,

1
suppose without loosing generality that d,; 4, = di, thus a = ,u‘%df. Strichartz estimates
yields to

+ + +
. Zz 5 ”N(uk},,/'l’ ng,,u) wké,ﬂ”l‘%,x
Kq=RaKg=aKy

+ + +
5 E Aua”uK},,AHLZI‘Z”leZI,A”LOOLZHvKE‘,,/JHLZJrLOO
Ko Rgk2 =K
a~arta~ara

< Aua 1+ ui 0,0 wi 0,0 l}i 0,0
S L Awaplug s lwg o lxelvg e
Ka~aKa=aKy

3 1
<uztAdi|u 00 ||V 00|l w 00.
SHE AL Nl oo N0l gaglwal oo

Notice that if the maximum modulation is coupled with the other high frequency term, i.e
dmax = ds, then we simply permute the [?I? and the L*L? norms in the second line of the
previous estimate.

Estimate for II - Non resonant interactions

This is the most difficult term to estimate. Given a spherical cap kg € Qg, define its cen-
ter direction by HKﬂ, and its evolution along the Hamilton flows by f; (t,x), where (x, HKﬂ)
*p

are taken as initial data. Let us denote ﬁ<“1/2(t, x, &) the linearization of a<”u2(t, x, &) with
respect to ¢ around the vector 6;—' (z,x). Recall that, by definition, the symbol a. 2 (t,x,¢) is
p

homogeneous of order 1, hence
ﬁ<#1/2 (t,x,§)=¢- V§a<u1/2(t, x,Hﬁﬁ (t,x)).
We define the symbols e(t, x,¢) = ﬁ<u1/2(t, x, &) — a<u1/z(t, x,&), we can estimate

le(t,x, Ol = 18112685, (60)F

which, in the support of the symbol )(;j W has angular size | Z(¢, 55’ (¢,x))| = B and frequency
'Kﬁ! Kﬁ

has size |¢| = p. Let us define its local inverse lKﬁ,ﬂ(t, x,&) = j(“;fbyﬂ(t, x,&e (¢, x,&). Further-
more, we localize the local inverse back to frequency p by introducing the operator:

Ly u(t, X) = Py(D ) bicy (2, X, D).

Remark. Recall that in the flat case we have a. i (t,x,&) =& and HKﬂ (t,x) = Gp is constant,
hence ﬁ<'u1/2 (t,x,8) =

167



Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

The properties of the Ly s,u Operator are analyzed in [30]. We restated them here for complete-
ness.

Lemma 91 ([30] Lemma 5.2). The operator L satisfies the following estimates:

(a) fixed-time LP mapping properties:

7 2 -1
I Lagpvllpe S B0 vl 1<p<oo;

(b) fixed-time approximate inverse of e:

~ ~ _1 2 _
1Az = Ag) gy = Dol pp S ™2 + 2 Dllwvlp,  1<p<oo.

In order to take advantage of the previous lemma we split the proof of the II term into five
parts based on the following decomposition:

N(u,v)w

N(u, = (A = Acy2) Ly = D) w + N(u, (A e = Agyie) Ly yv) w
= N(u,—((Acpr = Ae) Ly — D) w + N((Dy + Acyp2)t, Ly yv) w

+ N(u, Ly uv) Dy + Acyr2) w+ N(u, (D + Ayri) Ly uv) w — E(u, v, w)
Il.a+1l.b+1l.c+1l.d+1l.e

where
E(u, v, w) = N((Ds+A )ty Ly ) w+N(u, Ly 0) (D e+ Ao gpi2) w+N(u, (Di+ A ypie) Ly i v) w.
Below we shall carefully estimate each of the following five terms.
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2.10. null-form estimate

Estimate for Il.a

Let us consider the case d;,4x = dy first. We apply Lemma 91 and Strichartz inequality for the
low frequency term to obtain:

1
2o X IN(u - (Aem= Ayl =Dvs Jwe 4l

—a wl~ 22 3
=a Ka~aKaLﬁKﬁ

=

N

1
-1 B2, -1yt + +
Z Z AuBu=2+p"p )“uK}IJL”L"OLZ”wKﬁ,A”LzLZHVK%,HHLZ*L‘X’

= 1o o2 3
=a Ka~qKaJ_ﬁKﬁ

=

A
MP—‘

-1 —2 1y, 14 g3y + +
L AU B A g el wg sl e

1. 32 3 dy
a Ka~aKaJ_ﬁKﬁ

=
I}

A
MP—‘

3 1 1
Apztdz + Apttdz (BaH la Y ut ool w ool v 0,0
L wrtdi At dg Ba D a Dl e lwg, esllvg e

a K}xzaK(Z,J_ﬁK% 2

=
Il

AN

3 1 3
3+ 3+
(Au2"dy + A2 )Ilu/lllxg.?llvullxg,gz IIWAIIX%?.

Recall that > @ = u~2d}'? and in the § sum we have applied Cauchy-Schwarz to obtain an
12-series. Now consider the case d,qx # do, then we apply the same argument and we make
sure to place the high modulation term into L?L?, to avoid loosing powers of the modulation.
This procedure will lead to a better constant due to the better bound for Strichartz inequality

for the low frequency term, i.e. u!'*.

Estimate for II.b

For the case d;;4x = d» we proceed as the corresponding case in Il.a. by using Bernstein
inequality in the low frequency term. Therefore by Corollary 81, which allow us to control the
term ||(D; + A* )ull, with |||l o0, we obtain

<ﬂ A1

—

=+ T =+ =+

Y IN(D:+ Ay o Lepuvia Jwi (o
p=a K},:akﬁj_ﬁk% p

! 2 1

- + + +

SY X MBI A s leplwg leelvg e

B=a KamaKgLpKy

1 3

PETIES + +

SY Y ARl e llw®, lyeollvE oo

— 1 ) 3 Ka» A1 Ka» Al Kﬁ’ﬂ H,dy

f=a KooK LpKy
< A g ll oo oyl ool wy |

2|(u 00|V 0,0 || W 0,0 .

~ A A Xpn ! HEX A Xyd
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

For this term as well we have an extra room for a d» factor. Next consider d, 4 = d;, we replace
Bernstein inequality by Strichartz estimate in the previous bound to obtain

YOS INDe A Tt i,

xS,
B=a x}~ax3 LK f

1
2 11 + + +
SY X B TND A el el v s
1
< —1y=14 1+ -1 + + +
SLox o (BarT el s les lw s laelvg e

3 1
34
SApTdi | W”ngl l VyIIX&?IIwAIIXg»?~

Recall that Corollary 81 tell us that ||(D; + Ai’ \/,T) ullz S dillull yoo . Finally if dyqx = d3 we apply
Adq

the same procedure as above except that the d, factor is replaced by the weaker d3” 2 coming
from Strichartz estimate for the w term.

Estimate for Il.c

This is similar to IL.b since the half-wave operator D + A, s hits the high frequency term. As
for the previous cases we start estimating the d,,,x = dy case. We use Bernstein and Lemma
91 the estimate the low frequency term, this yields to

1
+ 7 + +
> X IN(ug ) Lpuvgs JDe+ Apws, i
p=a K},[::QK%,J_;;K% ! b “

1
2 —1y,,% + +
S Z Z Aup (6w ||uK‘1p,1||L°°L2”(Dt+A\/I)wKza,AHLZLZ"VK%,u”LZLw
p=a K}l:aK?IJ_ﬁK%
S A Nuall oo vl goollwy |
2u 00|V 0,0 || W 0,0 .
~ A A Xy UREX N Xya

The case d;;,4x = ds is similar to the corresponding one for II.b, we write it below for complete-
ness. Here we place the high frequency term involving the half-wave operator D; + A, /3 into
L2172 in order to avoid loosing extra powers the modulation. Recall that for such interaction
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2.10. null-form estimate

we have a = p~'/2d}/?, hence
1

+ 7o +
)3 1 2 IN(ug 3 Les ng,y)(Dt FAD W )l

=a Ka:axﬁj_ﬁkz

=

1
Y X BB Mg (il (De+ Apw el v:%,unmm

p=a K}Jt:akalpkz

AN

N

1

“1y-19 1+, -1 + + +

> X Bah e dslug lyellwg g 0% oo

ﬁ:a Kl’“ KZJ_ K3 ar A1 ar Ad3 B’ H
a~aKag-Lp B

3 1
<A §+d2 u 0,0 ||V 0,0 || W 00 .
S A A ual ool vl onll walxao,

To estimate the case d,4x = d; we use the same Holder pairs and we obtain dl” 2 instead of ds,
thus yielding to a better estimate then needed.

Estimate for I1.d

Consider d,qy = d». We place the low frequency term into L?L*® and use Bernstein, then we
apply Corollary 81 which yield to a factor of d». Therefore we obtain the sharp estimate

1
+ T + +
YooY ING D+ AR L Jwg

—a xl~ 22 3
=a KaNaKaJ_ﬁKﬁ

=

AN

X BBy e lw Il D+ Aypug i

1
p=a K}J::aK(Z,J_pKZ
1

AN

3 + + +

3 it + +
ﬁ}, 1 Eﬂ A dznuxg,/l”X;’j‘l’”wxg,A”X;’;‘f”sz,p”Xﬁj‘;z
= Kok LKy

3
<A 2ds|lu 0,0 ||V 00 [|W 0,0.
S Ak dallunlgoo vl oo 1wl oo

Notice that when d,;, 4 # d» then we place the maximum modulation term into L2172 and use
Bernstein and Corollary 81 for the low frequency term. This yields to a better factor since we
do not loose a power of the high modulation when we apply Corollary 81:

AuBBP W) =< Aut.

Estimate for Il1.e

To estimate the E term we first dispense the time derivatives. Observe that E(u, v, w) =
Eo(u, v, w) + E1(u, w, v), where

Eo(u, v, w) = N(A“uz u, L(p,u v)w+ N(u,z,(ﬁ,u U)A’uuz w+ N(u, AHI/ZIKW v)w,
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and
Ey(u, v,w) = N(Dsu, Ly i v)w+ N(u, Ly ) Dyw + N(u, Dy Ly ) w.

We first treat the easier E; term, suppose dqx = d2 then when computing the L}’ . horm of
the E; term we can apply the fundamental Theorem of calculus to obtain

=1
+ +
”El(uk}l,/l' VK%,/J

+ + T + +
we Do, S IN(wg L v Jwee yln,

Kipolh
+
2

+ T +
5} //ll’tﬁ” uK}l,/l”L(;oLi ”LKIS,[.LUK%,NHL?OL?(O ” wKﬁ’

llerz-

By Lemma 91 the L, , operator produces (5211) ! and we apply Bernstein inequality for the
low modulation term to reduce it to L L2 yielding to factor of u3'2 B and Strichartz inequality
to reach the Xﬁ’gz space at the price of an extra d2” 2 factor. Therefore we obtain

Ey(u* v
” 1( K(lxyA’

1
+ 3 oo, E + +
w v <Apzd?|uT o0 |lw 00|V 00 .
KZr/J, K%,A)”LZ,xN H 2” K},,A”XM” Kﬁ,A“XM” K%,,U”XMdZ

1
The same argument can be applied to the case dmax # d2 case, yielding to a factor of A,u% ..,

which is acceptable.
To estimate the Ej term, let us define
Eo(u, v, w) = (Acyrzt) Ly q V) W+ ULy ) (A iz w) + u(A iz Ly v) e

We shall refer to the bound for E, provided in [30].

Lemma 92 ([30] Lemma 5.3). Let1 < u < A. Assume that Eg 1 (t,x) is a Lipschitz function
of x with Iéé—' (X)) = 0,11 < 1 and suppose that the symbol is C! with respect to time and

homogeneous or order one, that is a€ C} S;l . Then the trilinear form E, satisfies the fixed-
om
time estimate:

H

oot + < * 7 + +
1Botasgy s o i S Nty 3l Wty Ny 103 41

- w

-1 + + + T + +
+ AN ADDUE el € ADD Lt s lws
@ a p p
-1 + + T + + +
£ A i) €, ADD et el @, ADIW
a a

-2 + + T + + +
+ ,Ll/l ”(69’(1 /\Dx) uK}x,A”L? ”LKﬂ’“UK%,/,L”LZS ” (E@KI /\Dx) wKé,A”L?

forallindices1/p;+1/q;+1/rj=1.

We shall now show how Lemma 92 yield to the right bound for the II.e term. Consider the case
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dmax = d2, then choosing the triplet (2,00, 2) in Lemma 92 yields to

+ + + + +
”EO(”K;,A’”K;,u'wxg,a)”L},x S AuplEo(u; Vi, oW o
+ + +
S Auﬁ(”uK}”A”LOOLZ”LKAB"UVK%,MHLZLOO”wKa,A”LzLZ
—Ly st + + 7 + +
+ A ”(69,([11ADX)MK},,A”LWLZ”(EGK}IADX)LK/J’I‘UK%,N”L”L“’”wkg,)L”LZLZ

-1 + + T + + +
+ A ”uké,/lllLooLZ”(é@K‘lxADx)LKﬁ’“UK%,y”LZJrLDO”(59,(111ADx)wK(ZI,]L”LZLZ

+

-2 + + T + + +
HATINGG , MDD, Nz WLty Niers D€, A D)W ) llzege).
a a

Notice that the operator (g A D) when applied to u— 12

when applied to v;l y lead to a loss of up. Moreover in the first and fourth term we apply

or w;—'z 1 yield to a factor of Aa, and

Bernstein inequality while in the second we employ Strichartz estimate to avoid loosing a 8
factor. Thus we obtain

+ +
”EO(u IA’V ,U,wK(ZI,A)”L},x

o

1 1
3 2+ 73 2+ 33 302 * + +
5/1#.3@(#2.3"‘“.3# d; +afu~"d; +p Ba )| ta llxoolwe ;oo VK%,#IIXO,O .

1/2 4172
d2

Therefore, since a = u~ we obtain

LoX MR v ow )i,

3/2 +
,SZ Y A +p*do + do)llu* llnxoouw”nxoonv% I o0

= aKaJ_ﬁKﬁ %

3
24
<A dallunl ool vgllgoo 1wl goo-

Notice the the loss of u* is still acceptable. On the other hand if d,,,4x = d1, to avoid loosing a
power of d;, we place the term 1,1 ; into L2I? and the term Wy ; into the energy space L®I2,
This implies that the low frequency term v,s , when placed in the Strichartz space L2F >
does not looses a d2” 2 factor, i.e. it contributes only with u'*. Moreover to bound the fourth
term we shall place v,s , into L**L* and use Strichartz, this will allow to compensate the a®
factor. Then a similar argument as in the d;;, 4 = d> case yields to

+ +
”E()(u;l A UV

5 )l
Kﬁ,p’ ®2, ALy

SAuf——

3 2+ 1+ 2 + + +
,32 (Hzﬁ"‘“ﬁﬂ +C¥ﬁ/.l tua H)”uk}l,/l“Xg:gl ”wK%u/l”Xg:?”vkz,u”XEﬁ
1 1
< 1,302 + 2 ~1y-1 3yt + +
ST +ptdy + (Ba) dﬂ””@,ﬂ'xﬁ;gl [ wkg,allngllVKZ'ﬂIIX&?-

This concludes the estimate for the II term.
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Estimate for III - Non resonant interactions

The argument to estimate the III term follows closely the one employed for the previous II

term with the following differences. Since the angle between the support of the high frequency

input term u and the low frequency input term v is of order SA/u we shall employ an operator

Ly ol instead of L, » used for II. Therefore from the fixed-time L§ estimate in Lemma 91 we
[z

obtain the extra gain p/ A% 8. However, the angular separation of the supports of u and v is
BA/u which is larger then what we had in II. Moreover the size of the low frequency support is
also lager then before: (18)u. To clarify things we have highlighted the differences in Table
2.1 below.

II I1I
_ _ ) _
L ||pr,uv||L§§m||V||Lg ”LK%,MU”L}’ZSAZL’BZ”U”LJIZ
Nullform Aup BA?
3 1
Low freq. Bernstein v 2100 < 2 BllvE 00 v 2100 S 2 AB|vE 00
q [ Kz,u”LL Spzpll K?i’u”Xllvdz Il KS,M,NHLL SuzABI K?;}Avll”Xu.dQ
T T
1 1
Low freq. Strichartz lvE Nrzereo <pttd2Z 0% |l poo lvy  leegeo Spltdzlvy |00
q ey e S H 4y K X, Kol e S M o Xoo
I I
Low freq. perp. ( ADVY 22 < vt 272 ( ADVE 22 < v 272
q. perp IG6,y A Dx K;’””LL S uBll Ker”L iz @, ADx KZMWIILL S kbl sz’H”L L
T T
. + + + -1 +
High freq. perp. 1o, ADu®, ez SAallu®, ez 1Eg , ADYUS, e SAu  allu®, | 22
) KA KA ) Kﬁ,ﬂt Kp,A

Table 2.1: Gains/losses comparison

With the help of this table it is then easy to compute, based on the procedure employed for
11, the constants for the I1l.a-e terms. Indeed for I1l.a, case d,,4x = d2 we apply the null-form
bound, the L bound and the low frequency Bernstein to obtain

Nlw

g1

which is far than acceptable, since we still have room for d,. In the case I11.a dj, 45 # d2 We
replace the low frequency Bernstein by the low frequency Strichartz, that leads us to the
allowed constant

§+d—1/2

ﬁ/lz ”H— = A2 d g

u
222
since B> a=pu"2dl2 .

The case I1L.b for d;,4x = dy is treated as the corresponding I11.a d,;, 4 = d» case. Furthermore
the case d; = d 4 yield to an extra d; factor from the half-wave operator, thus we obtain the
strict bound

2 H 1+ 3 _ 9,34 51/2
BA /12/32“ di=Au2"d;"”.

On the other hand the case ds = d;;,4 is analogous to the previous I1l.a ds = dj;4x.
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2.10. null-form estimate

In the III.c term when d,,,4x = d> we obtain the same constant as in the IIl.a d,, 4 = d> case.
Moreover as for the two d;,4x # d2 cases, they are similar to the Ill.a d,4x # d» cases but with
the cases dy = d;qx and ds = dj,q SWapped since here the half-wave operator hits the term
involving the d3z modulation.

As for the bound for II1.d, here the half-wave operator hits the low frequency term, thus in the
dmax = do case we obtain an extra d, factor yielding to

u 1 3
BA? pErs w2 ABds = Ay d,.
On the other hand the cases d;,,x # d2 are analogous to the I1l.a dy,qx # do.

There is a slight difference between the estimates of Il.e and IIl.e, in particular in the bound
for Ey, since E; is estimated in the same way. We shall take advantage of the following bound
which is a consequence of Lemma 92:

E ui l/i LUi 1 < ui 272 Z l)i 2 LUi 2
” O( K;i’;“ Ksﬂr#’ K%,/l)”l’t.x ~ ” K;;,A”L L ” K%,# K?;i/l’/“t”L L°°|| K%,A”LOOL
o

(2.51)

1z + + 7 + +
+ A ||(5g1 ADX)uKl /l”Lsz”(éel ADX)LKM,/JVK3 u||L2+L°°”w1<2 A”LOOLZ
Ka B’ Ka [z %’ B’

-1y, + T +
+ A u 272|[(E5 ADy)L V-
Iy a 220665, ADL o

+ +
||L2+Loo I (éexh ADy) wK%,A ”LOOLZ

-2 + + T + + +
+ pAT (éekb ADX)uK}s'/l“LZLZ”LK%’MUKSM “u”Lz"LOO”(égka A Dy) wK%,A”LOOLZ
T

Thus when d;,, . = d> we use Bernstein for the first term and Strichartz for the second, third
and fourth, then we obtain:

) wiz )”Ll
Y Kﬁyll Lx

1 1 1 1
< /12 K 2AB+a 1+d2+a 1+d2+0,’2 +d2 I,ti 0,0 I,Ui 0,0 I/i 0,0
SB Azﬁz(“ B+afud; +aputd; +atutd;)l aalxgelwe ylxeelvg oo

[

3 3 3
<(Auz + TLd + -1 +dz Lti 0,0 wi 0,0 Ui 0,0 .
S (s iy By Donllws s onllv, oo

I

-1/2 41/2
d2

Therefore, since f>a=p , we have the acceptable constant for the third factor:

3
ﬁ—llu-i-dzz — (ﬁa_l)_lﬂl/2+d2.

On the other hand if dpax # d» we place the maximum modulation term into [2I? and the
second high frequency term into the energy space L*L?. Hence we have to place the low
frequency term into L2 L* or L?>* L. Then we proceed as above, but in this case we don’t loose
a dzl/ 2 factor when applying Strichartz, thus we obtain the bound with an acceptable constant.
This proves the bound for III.
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Estimate for IV

The argument employed to bound this term follows the corresponding IV term in [30]. Recall
that

This term, as the following one, is better behaved since it is supported at distance A from
the diagonal set D = {(¢,n,{) : { + n +{ = 0}. In fact, let us denote the Fourier variable of u, v, w
respectively with &,{,n, that is

u,f;}'i(t,x) =x,f}sﬂ(t,x,D)Pau=fe”x"’{x,féy,t(t,x,f)ﬁ(t,é)dé

and analogous formulas for w Aand v, #hold Let us denote @ 1 A(t x,&) = )( ! A(t x, &)Ut ).
K-

I
Then since

El= A IEAEE ISBA,  Inl=A InAEE I=BA,  KKIxp IEAEE 1S BA,
p p “p

we obtain [({+n+{) A E;—' || = BA. We take advantage of this fact in the following way: define
“p

the spatial elliptic operator F(t,x, Dy) = (Dx A&y (¢, x))?N, where N > 0, that is
“p

F(t,x,Dx)u =fe"'x'€(€/\5§ @0 ac, §)de.
“p
Then since the Fourier transform of the complex exponential is the delta function we obtain

Py (& (& 2N
E(t,x, D e 0 = X ET O+ O A GG (1,0)
“p

where we think of e!*'©¢+1*0) a5 a function of the space variable x with parameters (¢,7,().
Moreover notice that we can write

+ + +
”N(ukb,/l’ UKE;M,/,L) wK%,ﬂ ”L}

= ﬁ/lzfeix'(5+’7+() L (6%,8) iz (t,x, n)v e x,{) dédnd{dtdx
ﬁ KpaH
I3

2 [_F(6,x, D)0y
= | 3 : dédndidtd
pA f((&mm% R (bR OB A(txn)v% (&%) dgdndidedx.
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2.10. null-form estimate

Therefore if we integrate by parts the above formula and introduce the adjoint operator
F*(t,x,Dx) = (Dx A&} (8, x)) 2N, we obtain
“p

PCELCEL ALY

priwh
dédnd(drd
€ +n+ONE ()2 Jacdnacaax
“p

=ﬁ/12/eix-(é+ﬂ+()F*(t, X, Dx)( ﬂ

< BA2(BA)2N feix.(mm F* (4, Dx)(ﬁ;f;i’}t(t, OB (XM x,0))dédndidtdx
§

since on the support of ﬁ:l A(t,x,f)w 2 /l(t X, n)v— (t,x,{) we have that |(rf+17+()/\€(;—“1 | =
B KprpH xg

BA. Now each elliptic derivative (D x/\cf g, (LX)" 1, when hits one of the three terms ui’l 46X, &),
Kb p

(t x,m), or v; u(t’ x,({), contributes with a factor of (,6/1)_1. Hence we finally obtain
BAI
the arbltrary large gafn

INGE v W ~mz(m)—4N||uK AvK u Wi Al (2.52)

Finally Strichartz estimates allow us to conclude

+ + + 2 —-4N + + +
ING v JWe i, = BBV el v, sl

T

2—4N pl-4N , 1+ +
< APENBIENy dznu%nxoonwZAuXoonvm Ion -

o

1+ 41/2
d2

Then choosing N = 1/4 yields to the constant Au , which is acceptable.

Estimate for V

To estimate this last term we apply a similar argument as in IV. First recall that
V:Z Z Z N(u_li)v_ )w2/l’

thus the Fourier variables satisfies:
El= A, 1EAEG 1SPA, Inl=A InAgy I=BA,  [Ll=p IEAS, |=yp
“p “p *p

we then obtain |(§ +n+{) A& 0 | = BA. Therefore we can applied the same argument used in

IV which yield to a gain of arbltrary powers of ByA. O
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High-high-low interaction

The high-high-low interaction case consists in proving the following estimate:

(oo}

Z Z IN(Pypuy, Py vA) Py w,u”L}x S el xso ll vl xeso llwll xi-s1-04 2 pa-s-o.

A=1pu<A
As for the previously studied high-low-high interaction we shall first dispense the easier cases
which do not require the use of the specific null-form structure, and thus hold true for any
general bilinear form. For such cases we also can relax the hypothesis on the space dimension
ton=3.

First suppose that P, w,, € L2 H?>~579 then we can easily close the bound by means of Holder
and Strichartz inequalities:

IN(Ppup PAvA) Ppwyllpp IVPAupll oo 2 IV PAVAN 2+ poo | Pp iyl 2

<
~Y
2-2s+n/2-1/2+ , s+0-2
< AT u’ I M/1||Xi.9 I VA||X;,0 I Puwyll 2 po-s-o.

Since the exponent of the high frequency is negative for n = 3 and s > n/2, we shall transfer
all the high frequencies to low frequency to obtain the negative exponent —s+ 6+ n/2—-1/2.
Hence the case P wy, € %> H?~579 is settled. Next, let us consider the case wy € X}[S'l_g. We
split the high frequency term into high and low modulations as follows:

A u A
uy= Z Upr,d = Z Up,d T Z UN,d = Upl<ut UL>p
d=1 d=1 d=2u

and we observe that for the high modulation term we have the improved bound:

A
1- -0 4s5-1 1-s,,—
IVPAuAsullz SAT Y a4 a1V P alle S AT 1l oo
d=2u

Therefore we can control the high modulation part of u; via Strichartz inequality as follows:

IN(Prup,>u PAvA) Ppwyll 1 IVPAUA > ull 2 IVPAUAN poop2 | Putwpll 2+ oo

AZ—Zs —0,1/2-2+s+0+n/2-1/2+

S
< u 1l oo NUAl o0l Pyl r-s1-0-

The high frequency exponent, being negative, can be estimated in term of the low frequency

—-s+n/2+

1, we obtain u which is negative. Notice that we cannot apply a similar argument for

the low modulation term since we are missing the improved bound, precisely the factor u ¢,

—s+n/2+0+

thus an analogous argument will lead to the exponent u which can be positive. We

shall see later that to overcome this difficulty we will need to analyse in more detail the null

178



2.10. null-form estimate

structure present in the nonlinearity. First notice that if we split the other high frequency term
vy into low modulations v, <, and high modulations wj -, then a similar argument lead to
an acceptable bound for the high modulation component:

IN(Prup Prva,s>p) Puwyllpp IVPAupll oo 2 IVPAVA > ull 2 g2 1 Pyl g2+ oo

<

2-2s,,—60,,1/2-2+s+0+n/2-1/2+
R S T T el o0 1Al o0 I Pyutwpll y1-si-0
S

22728 s+n/2—2”u | vsoll vl vso | Pywyll vi-si-o.
u /lX; AXi LD i

Hence, we have reduced the proof of the high-high-low interaction to the boundedness of the
low modulations term:
IN(Prup,<p Prvp,<p) Puwpllpipe.

This term in the current form can not be controlled by Strichartz estimates. In order to bound
it we need to decompose it further into angular sectors. However, following the argument as
in the high-low-high case, before performing such decomposition we shall simplify further to
1-modulations. We have the analogous of Proposition 87 in the high-low-high case:

Proposition 93. Letn =3 and3/4 <0 < s—(n—1)/2. Assume that we have the following bound:

ny1,01 L1l
IN(Prua, Pava,a) Puwpall i SA2 2 p2dl dj ds llup g, ||th):31 lva,q, IIX%Z2 lwy,a, ”X3133 ;
(2.53)
Then we have the corresponding high-high-low estimate for low modulations:

INPaU, = Prva,s) Putwlln S ATRPHun, oo lval oo Nl i-saco,

where the exponents a <0 and a + f < 0.

Proof. The proofis a straightforward application of Cauchy-Schwarz inequality. In fact we

have:
u
IN(Prup<p Pava<)Puwullppn S ), INPruaa, PAvaag) Puwy,a,llpp
dy,dy,d3=1
osynqly o1 19 19 g-1
SO ATERRRYSTiar A2 U d, 2||”A,d1||Xj,Zl ||V/1,d2||Xi.Z2 ||Wp,d3||X‘11:glf9

dy,dy,d3=1

—2s+24+14 s16-1
SA Sto%3 /JS ||u/1y||Xi,e||U/IHXi,e”wu”XIll—s,l—H.

Thena = —23+%+%+ is negative for n = 3 and s > n/2. Moreover a+f = —s+0+n/2-1/2+ <0,
hence the proof is completed. O

By means of a similar scaling and /2-summation argument already employed in the high-low-
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

high case (see Lemma 88) we shall reduce the proof of the high-high-low interaction further to
1-modulation spaces.

Lemma 94. Let n = 3 and suppose that the following bounds hold:

ﬂ+l+ 1 1
ING, v wlip SA2T27 g2 dpaxllullgoo [vllyoo wlixoo ,  where dmin = dmea =1 (2.54)
,dy ,a H.az

then (2.53) holds.

Proof. Let (x ;) a smooth partition of unity of the time interval [0, 1] as in the proof of Lemma
88: I; =suppy; and |I;| = 6. Notice that for 1 <4 ~1 < d we have the [2-summability property

2 2
lulZss = 3 IOl -
Ad  jeN Ad

Moreover define 1 (¢, x) = u(8t,6x) then if 6d = 1 we have the scaling law

§ s+6—1tl
" |l yso =0 z || ull s,
Xg/l,é'd[o’l] X/{,

% 10,61°
Moreover let (¥ ;) a similar family such that y; =11in I;.

Now suppose without loosing generality that d; = dy,i, and ds = dj,qx. We carry out a two
step argument: first we reduce the estimate (2.53) to the case d; = 1. Notice that by a change
of variable we obtain

INw VWL gy S 2 X ON@WIWIL g

JjeN
S L INTw X 0T Wiy, ;e
jeN Y
< Y NG T w0 e,

JeN
We now apply our hypothesis, (2.53) where d; = 1, and use the scaling law to obtain

IN(u, wlp (rxprm

< n-1 2414 1 1 TRy ~ . \0 ~. 30
N];N5 (O6A)272 (5”)2(5d2)2(6d3)2”()(]u) ”ngl[””()(fv) ”X((S);lo,ﬁdz[l]”(le/l}) ”Xgﬁﬁdsll]

D WP U R S S . ~
Sy oA e dR R IR ull oo I%jvlxo0 11X jwlxoo -
JjeN A6 2 ds
To close we use the />-summability property and the fact that /% c [3, then we obtain
<ol bz as
INGO WL 1y S 0727 AR 2y dy oo i 1V0es, ilwhes -
Choose 67! = dpin to conclude the reduction of estimate (2.53) to the case d; = 1.
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2.10. null-form estimate

Next, in the second reduction step, we reduce estimate (2.53) with d; = 1 further to estimate
(2.53) with d; = d» = 1, yielding to (2.54). Therefore suppose that

< AEi g2
IN@wlp < p2d, IIMIIX%?IIUIIX%Z2 IIWIIX&(IM

then
< qiele 1303
IN, wlp SA2Y2 2 d} d ullgoollvll oo 1wl yoo .
tx Al Ady wds

We proceed by following a similar argument as in the previous step but at the end we set a
different value for 6. We have

ST IS U R ~ ~
IN@W VWl gy S Y 87T AZ 2 p2dg T jull oo IXjvlixoo plIXjwliyoo ()
’ jEN A6 a2 w0

Set 5~! = ds and notice that the term involving u we apply the simple bound (see Proposition
2.6 on [27])
1
~ <5t
”XfullX2§_1 SOullxee, <1,

to recover the d; = 1 exponent. Then by Hélder inequality and the square summability
property of the terms involving v and w we obtain the desired bound. O

Hereafter we shall impose the 7 = 3 condition on the space dimensions. Notice that, due the
symmetry of the N;; null-form we shall show how to reduce the proof of estimate (2.54) in the
case dpqx # ds to the previously studied high-low-high interaction case. In fact, recall that N
is a linear combination with constant coefficients of pure N;; null-form:

N(u,v) = cij(aiuajv—aivaju)
and notice that we can isolate a derivative in the following sense:
N(u,v) = cifa,-(ua,- V) — cifaj(ua,- V)

This formulation has the advantage of having one derivative outside hence we can perform an
integration by parts to obtain the following:

IN(PAuPyv)Puwlipip I/ 0;(Ppud;Pyv)Pyw — ¢ (Pruy < 0:Pava,<u) Puwyll i
||c"jP,1u6,-PAv6quw— cijPAuajPAva,-P,tLUIIuLl

= |IN(Pyv, Pyw)Ppullpipr.

Then, when the maximum modulation is not coupled with the minimum frequency, Lemma
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88 yield to the bound

3 1
3+
IN(Prup,a, PAvAa) Puwpalpp S p2 ﬂdfllullxg,gl IIVIIX‘g,tl)IIwIIXg,?
,dp ) ,

1 1
< A%t utd?|u 00 || V]l yoo |l W] yo0
uEd oo 1l on 10l oo

Here we have suppose without loosing generality that d,;;4x = d1, the other case d;,4x = d»
yielding to a similar bound. Notice that the previous estimate is exactly (2.54), therefore
Lemma 94 and the previous discussion allow us to reduce the proof of Proposition 93 to the
proof of the following key Proposition which cannot be reconnected to the high-low-high case.

Proposition 95 (High-high-low interaction). Letn=3,3/4<0<s-1,and1<d<u <A, then
following bound holds:

2+ 1.1
INCPau, Pr) Pl s S A2 iEd ul onllvl ol wil oo,

The remaining part of the section we shall prove Proposition 95.

Proof. We denote u:f 3= xi 2(t,x,D)Pyu. In order to prove Proposition 95 we apply the
trilinear angular decomposition (2.48) from §2.9 which yield us to the following five terms:

N(Pv,l u,ﬁ,l v)ﬁuw

K}xzaKaNakz K}xzakglﬁki
1 1
+ + + + + +
+ Z s Zl ZN(uKbv/l, UK;vA)wK?’ﬁA,M-'- Z , Zl 2N(uK1 /1’ UKZ /l)wKsﬁA,,U
p=a KﬁAL%KﬁLﬁKﬁ &= B=a Kﬁlz%KﬁlﬂKﬁ &
I3

o
1 1
+ + + .
+y ) > N(uK}S’A,UK%'A)W@#_.I+II+IH+IV+V.

We shall considered two different scales for the angular separation threshold a based on the

following cases:
i. if & Par > 1~Y2 then motivated by the analysis in the constant coefficients case we set
a=pul2ql2) 1,
ii. ifinstead p~ "2 > % then we simply set

a=ul2

182



2.10. null-form estimate

This choice is enforced by the condition in Corollary 85 (a = u~'/?) to have an /?> decom-
position property we must have the cap size bigger then the negative square root of the
frequency. In what follows we shall carefully estimate each of the five terms in the above
trilinear decomposition.

Estimate for I - Small angle interactions

First suppose that i. holds. Then we use Strichartz for high frequency term, since the sum over
spherical caps is diagonal we obtain:

+ + + < 2 0 0% + +
1 Zz NG e Dw I S0 ZZ Aallug ) lieplvg jlizp=lw iz
Ka=aKa=aKg KaRaKg=aKy
< 3+ 1t + t
S X Al v alaeleg

1o 2 o 3
Kq=RaKg=aKy

3+
SO AT allugll yoollvall yoo llwpll oo
A1 A1 wd

Notice that the L>* L norm of the high-frequency term is estimated via Strichrtz type inequal-
ity. The summation with respect to k', is achieved via the 1> decomposition property from
Corollary 85: let a = A~12 then

2 2
g A 1500 = Ul o0
K§2a A Xya Xrd
Clearly a similar /2 summation property holds for the low frequency term wy. Thenin case i.

we obtain
A3+a — /12+I.11/2d1/2

On the other hand for the second case ii. the argument needs to be modified slightly. Precisely
we place the two high frequency components into L?>L? and L*L? to avoid any high frequency
loss, and we place the low frequency component in L>* L. Strichartz estimates yield to a
factor of u'*d'/? which is added to the factor coming from the null-form A2a, thus we obtain

Azaul+dl/2 — /lzul/2+d1/2.

Therefore the estimate for the term I holds.

Estimate for II - Small angle interactions

Observe that in term II the angle between the two high frequency inputs is still bounded by a
thus we can apply exactly the same argument as for the previous term. The only difference is
that when performing a Cauchy-Schwarz inequality in the f sum we loose a small power of «
which is harmless.
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Estimate for III - Non resonant interactions

This is the most difficult term to estimate and the argument adopted below follows the
one used to estimate the term III in the high-low-high interaction. Recall that the opera-
tor z,( " w8, %) = Py (Dy) Ik . (2, x, D) has the following properties:

" "

(a) fixed-time L” mapping properties:

" 2/12
”LK/M,}lU”Lp S (R(ﬁ 5
" * H

-1
W lvlle,  1<p<oo;

(b) fixed-time approximate inverse of e:

IBZAZ

~ ~ _1 —
||((A<”m—A<u1/2)LKﬁA,#—1)u||L§5(;; ) 1)||u||L§, 1<p<oo.
T

In order to take advantage of such bounds we split further the proof of the II term into five
parts based on the following decomposition:

Nuw,vw = N@u,v)(-(Acpe— A )Ly gy u+ 1) w+ N, v)(Acpn — Agie) Ly, yw

e i

= N, v)(- (A — A ) La gy o+ 1) w+N((Ds + A pi2)t, v) Ly 5, g
3 "

+ N(u,(Dy+Agp2)v) Ly sy yw+ N(w, v)(Dy + A2 L 5, w0 — E(u, v, )

i "
= Ila+1l.b+Il.c+Il.d+1l.e
where

E(u, v, w) = N((Ds+A ), V) Ly g o w+N(1, (D+Apn2) V) L g, o w+N(w, 0)(Dy+A o) L 5, 0.
a a T

Below we shall carefully estimate each of the following five terms.
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2.10. null-form estimate

Estimate for II1.a

Let us consider the case i. first. We apply Lemma 91 and Strichartz inequality for the low
frequency term to obtain:

1
+
> 3 Y ZIIN(uK 2 K,A)(—(Awm— m)LK,MH) %MIIL}X
B=a Kﬂi%KﬁlpKﬁ T
I3
1 212
2 L BAT +
Sy ¥ epluieEE el L e L B O L S T
B=a K‘gﬁ/llﬂka_ﬁké H
" u
1
20, 14 41 2+ ;1 -1 *
<Y Y (APBurtdr+pPtd:(a )||uIAnXoonv”nXoonwg alxoe
f=a K?’llﬂK}SLﬁK% ﬁu

Recall that > a = u!/2d}'?1~! and in the f sum we have applied Cauchy-Schwarz to obtain
an [*-series. Now let us consider the case ii., we apply the same strategy as in the estimate of
term I, thus we obtain a factor

ﬁZ /12

Azﬁ(u—% +(7p)—1)u1+d% < A2uttdz+ptdr (Ba ) la Tl < A2urtdi +pitdr (2.55)

which is still acceptable.

Estimate for II1.b

We proceed as the corresponding case in Ill.a.ii. by using Strichartz inequality in the low
frequency term. Therefore by Corollary 81, which allow us to control the term ||(D+ Ai’ \/1) ull2
with || u|| x00, We obtain

)1

1
+

X L 2||N((Dt+A<f)uwv”)L,5T ut o,
p=a K‘%L%Kﬁiﬁxﬁ T

1 2 2
<y ) Azﬁ(ﬁ WD+ AUt el lpeplw? e
~ s ) ) t NS 1/1 L°L 21 L L 3ﬁ L=*L

p=a K%l%KﬁLﬁKﬁ I

1

2+ 71 -1, +

<y prdz (Bah ||u11||Xoo||v”||Xoo||w3 allxos-

ﬁ:ﬂf K?;%J_%K;Llﬂ(% M

For the case i. we then obtain the not sharp bound ,u2+d% al< /l,u%Jr, and for case ii. we
. 1o 54 41 . .
obtain y?*d2a~! < u2*dz. Thus this case is closed.
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

Estimate for IIl.c

This case is symmetric to IILb since the half-wave operator D; + A, 7 hits the high frequency
term. As for the previous cases we use Strichartz and Lemma 91 to obtain the bound

1
+ £ \T +
Z Z ||N(uK;3y;L,(Dt+A\//T)UK;,A)LKM'IJLUK?M,IJ”L}'X
p=a K?;}JJ_%KﬁJ_ﬂK% [0 o
o
1 ) ﬁZAZ 1
—1y,,* + +
<Y ) Zl 2/1 'B(FH) “uk;j,)t”LmLZ”(Dt_'_A\/Z)UK%,A”BLZ” wK%A#“LhLm
f=a KﬂL%KﬂlpKﬂ T
I
1
<> Y 2@z (Ba Dy a M uE,  loollv, llgoollw®, oo
~ H KLATXT T TR AN XY (ST Sl
ﬁ:a 31 L] %2 p’ Al p’ Al pr’ wd
Kﬁi %Kﬁ ﬁKﬁ o
M

1 3, . . . 5. .1 ..
Therefore u?*dza™! < Au2* in case i. and py?>*d2a~! < u2*d:2 in case ii., and both factors
are aceptables.

Estimate for IT1.d

To estimate this term we are forced to place the low frequency term into L?L? and to apply
Lemma 91 and Corollary 81, thus the high frequencies terms are estimated via Strichartz
inequalities. We then compute the bound :

YooY N :

+ ~
— X . ) Kﬁ,/l’ Uké,A)L‘K%'IJ(D[+A\/ﬁ)wK5ﬁA,u”L;x
B=a K‘IML%KﬁLﬁKﬁ o

1 ZAZ
<y ¥ 2%/3([37#)—1” eI e 1Dt Ay, s

3
A

=2

1
1+ -1y-1,-1p,,+ + +
S AT pd(Bah ™ a g g xnllvgs ylxeslwg oo,
ﬁ:a K:}ML%K;J_;;K% ! ! o ’

1

In case i. we have A" ua~'d < Az+u%d22 and in case ii. we obtain A'* uda~! < /l“u% d. This
latter constant seems a priori too big, however in case ii. we have imposed the bound d 2 pu=A,
therefore we obtain A" i3 d < A2+ 2 dz which is acceptable.

Estimate for IIl.e

We proceed as for the case Il.e in the high-low-high interaction case. Let us split the error term
by isolating the factors which contains time derivatives, we write E(u, v, w) = Ey(u, v, w) +
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E;(u, v, w), where

Eo(u, v, w) = N(A<ﬂ1/2 u, U)Lxﬂ”uw+N(u, A v)LKm uw+N(u, v)A<ﬂ1/zLKﬂ'”w,
g 0 g

and
Ey(u,v,w) = N(Dyu, v) Ly 5, yw+ N(14, D1 v) Ly 5 yw + N (14, V) Dy Ly, 0.
w w °

We estimate the E; term by means of the fundamental theorem of calculus:

=1

+

= <
”El(uK /1, K /1) wK AV,U)”L;X ~ ”N( 1A’U 2 /'L)LKﬁ;[ Nw ”L =0

7

2
5 A ,BHU ”L°°L2 ||V 2 /,l||LooL2 ||L1<M,pw % ||L°°L°°
y

~ 212
By Lemma 91 the Ly, operator produces (% w)~! and we apply Bernstein inequality for the
low modulation term to reduce it to LS°L2 yielding to factor of Au!'? B and Strichartz inequality
to reach the X 4 Sbace at the price of an extra d 1/2 factor. Therefore we obtain
1BV v 0w I, S SApEdEu? Lalenlvg el s,

I

Thus the same argument holds in the two cases i. and ii. yielding to an acceptable constant.

To estimate the Ej term, let us define

Eo(u, v, w) = (Ac e ) (L gy W) + u(Ac iz 0) L gy q W) + Uv(A o L gy ).
T T T

We shall refer to Lemma 5.3 of [30] see also (2.51) and Lemma 92 to obtain a bound for EO. We
have :

+ + +
”EO(uKlﬁ,ﬂ,’ UK%,A’ wKsﬂA ,ﬂ) ”L%,x
T

< 92 © + + +
SABIE(uf, 05 o0 ﬂw)”L?x

2
S/l ,B(”u 1 /1||L00L2||V 2 )L”LZLZHLKM pw 3 ||L2L<>O
ﬁu
+pA” ”(63 ADy)u 1/1||L°°L2”(69 /\Dx)v 2 A”I}LZ”LKM,”W 3 ”L2+L°°
BA
I

-1 + + + + T +
ST el @€ ADIVE el @€ ADO Ly uw?y s
p’ Ka p’ Kg [ BA?
0

1y st + + + 7 +
+A ||(€t6;1 ADyu, /1||L°°L2 I Vo ;L||L2L2||(€rg1 /\Dx)LKﬁ,[JwK3 M||L2Loc>)-
Kq p’ B’ Ko o %'

Notice that the operator (g A Dy) when applied to u— 1A or v;—'z 1 yield to a factor of Au~'a,
5
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Chapter 2. Global regularity for Yang-Mills equation below the energy norm in R'*3

and when applied to w— " lead to a loss of yf. Moreover in the first and fourth term we
ﬁ

apply Bernstein inequahty while in the second we employ Strichartz estimate to avoid loosing
a f factor. Thus we obtain

”E()( 1 A U_ A wi )”L}‘x

‘K @'“
0
2 1+ 1+ 2+
SAB— Z(Ap B+apfu dz +afu dz +a utdz )Ilu 1/1||X00||U 2/1||X00||w 5 ullxoo.
A ﬂ ud
p
Therefore in case i., since a = p'/?d}’> 171, we obtain
1
Z Z ”EO( A,’ V_ Arw 3 #)”Ll
p=a K?’ﬁAJ_ﬂK‘ISJ_pK% H
Tr
! 3/2 2 1
+ - + +
<> > A + ap?td + (Ba ) Tau'td? )||u1/1||X00||V 21||X00||w3 ||X0O
B=a iy, L paxcLpxsy ﬁ”
o B
§
,S,/luz 2llu 1]L”X00”U z /1”X00”w s ”XOO

;1

where the constant

/1,u3/2+au2+d+ (ﬁa—l)—lau1+d% Sﬂﬂ3/2+1_lﬂg+d% +)L_1u%+d
is small enough to close the argument. A similar augment can be applied in the ii. case
yielding to a constant

3
3/2 3+

A

&
+
B
+
3

+ap?td+ Ba ) tapttdr < A+

which is still acceptable. This concludes the estimate for the III term.

Estimate for IVand V

These two terms are better behaved since they are supported away from the diagonal set
D ={(,n,{): ¢ +n+{ =0}. Therefore we employ the same integration by parts procedure used
to estimate IV in the high-low-high interaction to gain an arbitrary power of high frequencies.
To control IV we then apply the bound (2.52) to obtain

+ ~ 2 —4N +
”N(u IA’U 2 ﬂ)w 3;5)[ “”Ll ﬁA (ﬁA) k’lvkz/l ”L},x'
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Finally Strichartz estimates allow us to conclude

+ + +
IN( Ve Jwes

2 —4N + i + , + ,
Klﬂ,/l' o ,3/1 (,3/1) ”uK;j,/l”L‘x’L‘”Vxé,/’L”LZLZHwxm,y”L“L"o
T

I

1
< P2ANGL-AN I g2y E ool vE o0 || w™. 00.
S R TN N R e g

[

Then choosing N = 1/4 yields to the constant Ap“dzl/ 2 which is acceptable in both cases i.
and ii..

To estimate the term V we apply the same argument as for the previous term. In this case the
integration by parts procedure yield to a gain of arbitrary powers of yA. Therefore we can
run the same argument used in IV. This conclude the proof of the high-high-low interaction
and thus Proposition 86 holds. O
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8] Construction and stability of type II
blow-up solutions

In this chapter we outline the recent advances on the stability issues of certain finite time
type II blow-up solutions for the energy critical focusing wave equation Ou = —u° in R3*!,
Hereafter we use the convention [J = -2 + A. The objective of this article is twofold: firstly
we describe the construction of singular solutions contained in [62] and [59], and secondly we
undertake a detailed analysis of its stability properties enclosed in [49] and [7].

3.1 Introduction

Despite its naive appearance, the semilinear wave equation
Ou=-u’, u:R%}gﬁR (3.1)

is an excellent simplistic model since its main features are shared with multiple geometric and
physical equations such as critical Wave-Maps and Yang-Mills equation. However, as we shall
see, the price to pay to avoid many technical issues is the ubiquity of type I blow-up solutions
which constitute the generic blow-up scenario.

Local well-posedness up to the optimal regularity class H! (R3) x L?(R3) of the Cauchy problem
for equation (3.1) coupled with initial data was proved by Lindblad and Sogge [69] and it relies
on the celebrated Strichartz estimates, see also [95] for a detailed description. Moreover, as a
typical trademark for focusing equations, the conserved energy

1 1
E(u)(r)=f — |V cul? = =lul®dx
R3 2 6

is not positive definite, making the extensions of local solutions to global one a highly non-
trivial question.

In fact, several obstructions to long-time existence of solution of (3.1) have been uncovered.
For instance, Levine [66] demonstrated via a convexity argument that break down in finite
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Chapter 3. Construction and stability of type II blow-up solutions

time occur for initial data with negative energy. Nonetheless, Levine’s argument is indirect,
and it does not provide much information about the exact nature of the blow-up. More
primitive blow-up solutions can be explicitly constructed by the ODE technique: let ¢p € Cgo(lR3)
such that ¢(x) = 1 if |x| = 27T, set the initial data 1((0, x) = (%)”4T—1/2(,b(x), and u;(0,x) =
(%) 1/4 -3/ 2c,l)(x). Then the solution of (3.1) behaves like the so called fundamental self-similar
solution

u(t,x) = (Z)”“(T— n1? (3.2)

for0 <t < T and |x| < T — t. As this example shows, singularities can arise in finite time even
for smooth compactly supported initial data. Observe that for these solutions the critical
Sobolev norm diverges as time approaches the maximum time of existence:

limsup [V xu(t, ) || 2®s) — +oo. (3.3)
t—T

Motivated by such blow-up mechanism it is common to define a blow-up solution u with
maximum forward time of existence T < +oo of type I if (3.3) holds, and of type II otherwise,
thatisif |V, xu(t,) ;2 remains bounded up to the break down time. The dichotomy between
type I and type II blow-up solutions is well understood at this point in time.

Another explicit solution of (3.1) is the Aubin-Talenti function

W(x) = (1 + %)_”2

which is the unique (up to symmetries) positive solution to the associated elliptic equation
AW = —-W? and it is the minimizer of the Sobolev embedding H' (R®) — L°(R3), see [1] and
[102]. Through a remarkable series of works Duyckaerts, Kenig, and Merle [20, 22, 21, 23]
provided a complete abstract classification of all possible type II blow-up solutions in finite
time in terms of a finite number of rescaled W plus a small radiation term.

Theorem 96 ([23]). Let u be a radial type Il solution of (3.1) which breaks down in finite time T .
Then there exist finitely many continuous functions Aj(t), j = 1,..., k, withlim;_.p(T—)A;(t) =
+00, and

s i

such that

k
u(t,x) = ) +Wy, (5 (x) +n(t, %)
=1

and where (1,0,m) € C([0, T1, H' x L?) and W) (x) = AM?>W (Ax).

The extent of the previous result is essential in the progress of understanding type II blow-up
solutions. However, due to the nature of the arguments, namely the famous concentration
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compactness method, the Duyckaerts, Kenig, and Merle program does not demonstrate the
existence of all such possible blow-up dynamics. In fact, at the best of author’s knowledge
it emerges that only finite time blow-up solutions with one bulk term W are known to exist.
Moreover, the precise blow-up dynamics is unknown and it does not appear to give any
information on the stability of such solutions.

Complementary, an explicit finite time type II blow-up was constructed by Krieger, Schlag and
Tataru [62]. The breakthrough [62] consists in establishing the existence of a family of rough
blow-up solutions displaying a continuum of blow-up rates slower then the one provided by
the self-similar blow-up. In addition, all previously known blow-up solutions become singular
along a hypersurface, vice-versa the ones furnished in [62] exhibit a one-point blow-up. In a
subsequent work [59], the first two authors extended the range of allowed blow-up speeds up
to reach arbitrary close the self-similar blow-up speed.

Other concrete realizations for finite-time type I dynamics where established: Hillairet and
Raphaél [31] constructed type II smooth solution for the energy critical semilinear wave

R4+1

equation Lu = — udin , with the fixed scaling law

A(t) = tLeVIlogd ast— 0.

The set of initial data leading to such type II blow-up is given by a co-dimension one Lipschitz
manifold. Another constructive approach was given in Krieger, Donninger, Huang, and Schlag
[50], where the authors provided a finite time blow-up solution of type Il with oscillating scaling
law, that is of the form u(z, x) = Wy (x) + n(¢, x) where A(f) = VO andv(r) = v+ eo%gotgt),
with v > 3 and |eg| < 1 be arbitrary and n a small error.

A deeper study of the stability of such blow-up scenarios has been the subject of a number of
recent works. Persuaded by numerical evidence provided by Bizon et al. [3], which suggested
that finite time blow-up for (3.1) are generically of type I, in a sequence of pioneering works
Donninger and Schorkhuber [18] and Donninger [16] settled the asymptotic stability of the
ODE blow-up solution (3.2) in the energy norm. On the other hand, Krieger, Nakanishi, and
Schlag [56] elucidated that type II solutions are unstable in the energy norm in the following
precise sense.

Theorem 97 ([56]). Let A(t) —» +ooast— T, and
u(t, x) = Wy (x) +n(t, x)
be a type II blow-up solution on I x R® for (3.1), such that

sup IVexn(t, )z =6 <1
tel

for some sufficiently small § > 0, where I = [0, T denotes the maximal life span of the Shatah-
Struwe solution u. Also, assume that ty € I. Then there exists a co-dimension one Lipschitz
manifold £ in a small neighborhood of the data (u(to,), u;(ty,")) € X in the energy topology
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H'(R3) x L2(R3), such that initial data (f, g) € T result in a type II solution, while initial data

(£.8) € Bs\2,

where Bs < H'(R%) x L*(R3) is a sufficiently small ball centered at (u(to, ), u;(o,")), either lead
to blow-up in finite time, or solutions scattering to zero, depending on the side of ¥’ these data
are chosen from.

In spite of the universality of type I blow-up for equation (3.1), with the purpose of study
more sophisticated equations at the critical regime where only type II dynamic is present,
it is fundamental to investigate further type II blow-up solutions and its stability properties.
The stability of solutions constructed in [59] and [62] was analyzed by Krieger [49] where a
conditional result requiring two extra co-dimensions was obtained for solutions which blow-
up at a rate sufficiently close to the self-similar one. The optimal stability result was achieved
by the author and Krieger in [7]. In the second part of this article we outline the proof of the
latter results.

To place these results in a proper context, some more discussion on similar results for different
equations is in order. As a matter of fact, the work [62] is an occurrence in a triplets of
works [62, 60, 61], dedicated to the explicit construction of rough type II singular solutions
respectively for semilinear wave equations, for the co-rotational critical wave maps from
R2+! — §2, and for the critical Yangs-Mills equations in 4 + 1 dimensions under the spherically
symmetric ansatz. A parallel construction of a smooth finite time type II singular solution
with fixed blow-up speed was carried out by Raphaél and Rodnianski [87] for the co-rotational
critical wave maps in 2 + 1 dimensions with S2 target, and for the critical SO(4) Yangs-Mills
equations in 4+1 dimensions. Concerning the stability issue, the method employed by Raphaél
and Rodnianski implies that their solutions are stable. Furthermore, in a recent breakthrough
Krieger and Miao [52] were able to show that the solutions constructed in [60] for the co-
rotational critical wave maps are stable in a suitable topology. The corresponding result for
the Yang-Mills problem is still open.

3.2 The construction of slow blow-up solutions

In this section we describe the construction of explicit finite time type II blow-up solutions
contained in the works [59] and [62]. We shall be interested exclusively in the case of radial
solutions, thus the energy critical focusing semilinear wave equation under radial symmetry
can be written as:

2 5

—Up+ Upp+—Ur=—U". (3.4)
r
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The goal is to construct a solution u € C((0, ], H'*) x C((0, to], H") of (3.4) which blows-up
at the space-time origin, and the blow-up is of type II, hence its space-time gradient remains
bounded on the interval of existence: sup (o, 1) IV, xu(2, )|l 2wy < oo. Notice that, due to the
time reversibility of the wave equation, we start evolving the dynamics from initial data at
time #p > 0 and solve the wave equation backwards in time until the blow-up time ¢ = 0. Here
fp is a small positive constant that will be defined later.

We state here the results of [62] and [59]. The main difference between them is the lower
bound for v. In [62] the restriction v > 1/2 was imposed, and in [59] the result was extended to
include v > 0.

Theorem 98. (/62], [59]) Letv >0 and A(t) = ™'~V the scaling parameter. There exists a class
of solutions to equation (3.4) of the form

uy(t, 1) =Wypn(r)+n(t,r) =:up(t,r) +n(t,r)

inside the truncated light cone K = {(t,1) € (0, ty) x R* : t > r}. The term uy is called bulk term
or non-oscillatory elliptic term and it is given by the rescaling of W. The second term 1 is called
oscillatory radiation part and it is composed by two distinct functions: 1 =n° + €. Heren® is an
non-oscillatory term satisfyingn® € C*(K) and &,.m°) (1) < (tA(1))~2|logt|? as t — 0, hence
its local energy vanishes as time t — 0. The local energy relative to the origin is defined as

1 1
é@zOc(u)(n=[ WVl = < lul’dx

lxl<t 2
On the other hand € is rougher, that is ((t,-),€(t,) € (Hz*1~ ([R3) x Hz~ (R®)) and &}oc(€) (1) — 0
as t — 0. Moreover, outside the light cone we have the bound

1 1
f _|Vt,xuv|2_—|uv|6dx5C<OO.
x|z 2 6

Notice that the bulk term 1y € C*°(R* x R*) blows-up at the space-time origin. However
uo(t,-) ¢ L?(R3), since it does not decay sufficiently fast at space infinity. To obtain a solution
in H'* it suffices to multiply uy by a bump function y € Cy°(R) which equals one on the
ball of radius #y. In this way, on every fixed positive time slice we clearly have ug(¢,-)x(¢) €
H™ (®R3) and 8, (uo(t,) x (1)) € HT (R). Notice that u(t,-) (t,-) isin Cgo([F\?3) therefore clearly is
type II. The rougher part of the solution which gives the overall regularity C((0, fp], H %“_) X
cl(o, tol, H %_) is the term n°. In fact, although it is smooth inside the light cone, namely
n°® € C*(K), it reveals a cusp singularity along the boundary 9K of the light cone, implying
that n°(t,) € Hy -2~ (R%) and 0,n°(t,) € H2_ ().

Before outlining the proof of Theorem 98, a final remark on the blow-up speed of u, is in order.
Clearly, the L*®(R3) norm of the ODE blow-up solution (3.2) concentrates, as time approaches
the break-down time, at a rate which is proportional to ¢~1/2. Diversely, the blow-up of speed
of u, solutions is proportional to ~!/27¥/2_ Hence type II solutions blow-up faster that type
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I and, as v approaches 0, the different blow-up speeds become comparables. Moreover, by
varying the parameter v > 0, which it is not a priori fixed, we obtain a blow-up solution with
prescribed blow-up speed, i.e. a continuum of blow-up speeds.

The proof of Theorem 98 is based on a two steps procedure mimicking the strategy of others
constructions of type II dynamics contained in [31, 87, 71]. Firstly, one constructs a sequence
of approximate solutions which solve (3.4) up to a small error. This approximation method will
not lead to an exact solution by passing to the limit due to the divergence of the coefficients.
Hence one needs to terminate the process after finitely many steps. Secondly, one completes
the approximate solution to an exact solution via a fixed point argument. In regard to the
second step, the argument used to prove Theorem 98 differs drastically from the strategy
employed in [31, 87, 71]. In the latter pioneering works the remaining error is controlled
via Morawetz and viral type identities, whereas the present proof hinges on a constructive
parametrix approach.

3.2.1 The renormalization step

The aim of this step is to iteratively construct a very accurate approximate solution near the
singularity depending on two parameters k and v which has the form

Ur(t,r) =Wy (r) +77?C(t; r)

where the k-th non-oscillatory term n{.(¢,7) = Zj?:l vj(t,r) is a sum of small corrections and
A(t) = t717V. The bulk term ug(t, r) = W), (r) is very far from being an approximate solution
of (3.4), indeed it produces an error eg = Cuyg + (10)° which blows up like t2ast—0.In[62]
the authors adopt the strategy of adding successive corrections functions v; so that the the
error ey = Quy + uz generated by the approximate solution u; can be made arbitrary small
in a suitable sense by picking k suitable large. More precisely, the corrections v; are chosen
in order to force ey to go to zero like tV as t — 0 in the energy norm restricted to a light cone,
where N can be made arbitrarily large by taking k large.

The construction consists in a delicate bookkeeping procedure to iteratively reduce the size
of the generated error by alternating between amelioration near the spatial origin and im-
provements near the light cone. The finite sequence of approximate solution u is defined
recursively. Set uy = Wy (), then for k = 1 the k-th approximation uy is given in terms of

the previous one via the following algorithm: let u;_; be the approximate solution which
5

k-1’
Up = Ug_1 + Vg = Uy + V1 + -+ + Vg, thereby the error ey produced by the improved approxima-

generates the error e_; = Oug_1 + u then one updates uy_; by adding a correction, i.e.

tion uy is smaller than ex_; in a suitable sense. To define the appropriate correction vy we
distinguish between k even or k odd. The odd corrections are the solutions of the following
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inhomogeneous second order ODEs:

(07 + 20, +5uy (£, ") var1 (1,1) = e 2(t,1)  inRf, 5.5)
Uzk_l(t, 0)= Gr l/gk_l(t,O) =0.

The heuristic which leads to such formulation is that when r < ¢ we expect the term involving
the time derivative in (3.4) to be negligible. On the other hand, for even corrections we improve
the approximate solution near the light cone r = t, thus we can roughly estimate u by zero
and we are led to the 1+ 1-inhomogeneous hyperbolic equation

(05 +0%+20,) var(t,1) = ex1(£,7)  inR} xRy,

Vo (t,0) = 0, v (£,0) = 0.

(3.6)

The Cauchy problem (3.5) is a standard Sturm-Liouville problem and it is solved via the
variation of parameter method. Whereas the hyperbolic character of (3.6) is controlled by
using self-similar coordinate a = r/t and a brillant ansatz on the form of the solution.

3.2.2 Completion to an exact solution

The main point of this second part of the argument is to perturb around the approximate
solution constructed in the previous step, and thus to look for an exact solution of (3.4) of the
form u, = uy_; + €. Notice that we stop the approximation algorithm after an odd number of
cycles. By imposing that u, to be an exact solution we force an equation for &:

2 _
(07 -0% - ;a,)e 522 () WH(A()r)e = exp_1 + N(Upp—1,€) (3.7)

where N(u,¢) = (e + u)® — u® — 5eug. To avoid treating a nonlinear hyperbolic equation with
time-dependent potential one removes the time dependency of the potential by introducing
new coordinates (¢, r) — (7, R), where

lo

()= A@ds+vieg"=v't™, Rt =A0Dr
t

The price to pay is that the time derivative 0 is transformed into the operator A(7)0; + ’X((TT)) ROR.

Let us set v(t,R) = ¢(t(1), A" (1) R) and B(t) = A'(1)/A(1), then equation (3.7) is transformed
into

2 2
[(a,+ﬂ(r)RaR) —ﬂ(r)(aﬁﬁ(r)RaR)—aﬁ—EaR v(r,R)~5WA(R)v(1, R) =

A7%(T)eop_1 (T, R) + A" 2(T) N(ugg_1, V) (7, R).
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Subsequently, in order to get rid of the first derivative in the R variable, we consider the
function €(t, R) = Rv(1, R), this new function satisfies the equation

@2+ B(0)2 + LIET,R) = fIEl(T,R),  inR} xR} (3.8)

where @ = 0; + (1) (ROg — 1), £ = —0% - 5W*(R), and

fIE)(T, R) = A2(r) (Reak 1 + N(tiz1,9)

and

~ &€ 5 ~
N(upp-1,8)(1,R) = 5£(u‘21k_1 - ug) + R(E + qu_l) - Rug’k_1 - 5u‘21k_1£.

To look for a solution of equation (3.8) a prototypical Fourier transform, namely the distorted
Fourier transform associated to the operator £, is applied imitating the procedure to convert
to the frequencies sides the free wave equation. The spectral properties of the operator £ play
a pivotal role and are analyzed in details in [62]. This operator, when restricted to functions on
[0,00) with Dirichlet condition at R = 0, has a simple negative eigenvalue ¢ ; < 0 (the subscript
d referring to discrete spectrum), and a corresponding L?-normalized positive ground state
bg € L2(0,00) N C*([0,00)) decaying exponentially and vanishing at the origin R = 0. This
mode will cause exponential growth for the linearized evolution ell ‘/"@. However, in [62] and
[59] the authors avoid this problem by imposing vanishing initial data at ¢ = 0 for the function
€, which is equivalent to impose zero data at 7 = oo for the function €. In the subsequent
works [49] and [7], where no such freedom of imposing zero initial data is acceptable, only a
co-dimension one condition will ensure that the forward flow will remains bounded.

Let us present below the pivotal result which summarize the main properties of the distorted
Fourier transform.

Proposition 99. ([62]) There exists a generalized Fourier basis ¢(R,{), ¢ = 0, a eigenstate p4(R),
and a spectral measure p(&) € C*((0,00)) with the asymptotic behaviors

o(E) ~ {5?, z:f0<f<< 1,
&2, ifi>1,

as well as symbol behaviour with respect to differentiation, and such that by defining

=R b
FP@©=F© = lim [ groswar

fep = fo ®a(R f(R) dR,
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3.2. The construction of slow blow-up solutions

the map f — f is an isometry from L%, to L*({{ 4} UR™, p), and we have

F(R) = FEa)palR) + lim fo "o OF©p© e,

the limits being in the suitable L?-sense.

The mayor issue in applying the distorted Fourier transform to equation (3.8) is the term
involving ROg contained in the & operator since & (R0R) # §0:%. Therefore one defines the
error operator % via the equation

F[(ROg - Du(r, M) = L U(r,$) + £ Ul1,8)

where

0 0 K, K,
of = , H = dd dc
0 .sz¢c szcd Jcc

and of = —2¢0; — (% + %). We add the second term in <7, because later on we shall need

the relation (SM)~'6; SM = 2, where 2, = d; + B(t)<.. In other words % is defined as the
solution to the system

((ROp— 1)u(T,R),(Pd)L3R = deW(T»R)»(/’d)L;R + Kol
FI(ROR - Dult, R = ol + Hog (T, R), pad s, + Hocl

and we have

Haa==3, Heal®) = ka(®),
oo N7 _ ooF(f,n) d
Hacf) = - fo fOka©p@as,  Hecl[IG)= |1 == fptmdn.

where k;(£) is a smooth and rapidly decaying function at £ = +oo and the function F is of
regularity at least C? on (0,00) x (0,00), and satisfies further smoothness and decay properties
listed in Theorem 5.1 in [62].

We now proceed to transpose equation (3.8) to the Fourier side. Notice that the time variable
remain invariant since we are dealing with Fourier transform in space only. Let us denote the
distorted Fourier transform of the unknown function in (3.8) by (x4(1), x(7,¢)) = Z (€)(7,¢),
that is: o o

x(1,6) = fo PR, OET,R) AR,  x4(1)= fo ¢a(R)E(T,R)dR.

Notice that once the Fourier representation (xd (1), x(1,¢é )) is known one can easily recover the
original function € via
o0

E(0,R) = xg(D)pa(R) + fo (1, (R, )p (&) dE. (3.9)
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Chapter 3. Construction and stability of type II blow-up solutions

Applying the distorted Fourier transform to equation (3.8) yields to the following system
involving one equation for the discrete spectral part and a second equation for the continuous
spectral part:

(@2 + B()D: + O X(1,8) = RX(T,O) + [ (1,0 (3.10)
where (7,&) e RY xRY, X(1,¢) = (xd(r),x(r,é))T, and

@+ )P+ = (a% HP@Or+ e ° )

0 D2+ (0D, +&|

The inhomogeneous terms on the right-hand-side of (3.10) are composed of a linear source

term
G Raa Rdc
%cd %cc
where
- 2 2 B (1)
Raa = —2pT) K340 — (1) (‘de + HacHKea+ Kaa+ B )ded)
e = <20 HacDr = O Haa K+ Hac Ko = Hacolt Hac + 5.5 Hoe),
Rea =—2PT)Hca0r - P (T)( cddd + KacHKcd + AeKea+ Kea+ gz((r)) cd)»
_ 2 2 B (1)
Ree = _zﬂ(T)J(cc@r ﬁ (T)( HKedKac +‘]J/cc + [y Keel + Koo + ,32( )ch) (3.11)

plus the nonlinear term (observe that € depends on the unknown functions x4 (1), x(7,¢) via
(3.9)):

fa(@) ):( A_Z(TK(deRezk—l+N(u2k—1,a>L§R )

f(,6) =
e ( f@,8) A_Z(T)Q(Rezk—l+N(u2k—1,a)(T,f)

We coupled system (3.10) with initial conditions lim;_.o, x;4(7) = 07 x4(7) =0, and lim; o, x(7,&) =
9:x(1,§) =0

The advantage of system (3.10) is the crucial observation that it can be solved completely
explicitly. In fact, define (Sf)(7,¢) = f(T,/l_z(T)é) and (M f)(7,¢6) = /1_5/2(T)p1/2(£)f(r,6), then
we have the essential identity

(D% + B(1)D; + &) = (SM)TH((07 + B(1)0; + A2(1)¢)1SM
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3.2. The construction of slow blow-up solutions

which provides the following parametrix

xq(1) = f Lol m0 g (o) - B(0)0y xa(0)) o,

) 20E4172
o 1312(7) 12 (L) sin[m).f“szrl(u)du] A2(0) (3.12)
x(1,8) = g(a, €)d0,
/13/2(0) pl/Z(é) 61/2 /12(0)

where g = (g4, )" represent respectively the right-hand-side of (3.10).

A contraction argument allow us to conclude the proof by finding an appropriate solution
to (3.10). The fix point iteration is carried out in a weighted Sobolev type spaces defined by
means of the following norms. Let a € R*, and a function #(¢) = (ud, u(f)) T, then define the
norm

180220 = lual® + 1l = lual® + fo U@ p©)de.

dp dp

a
R

function f(z,&) = (fd(r),f(r,é))T let us define the norm IIfIILz,a,N = Sup,s, ™ f(,) I za.
o p

Defining X via the explicit formulas (3.12), we obtain the linear estimate

Notice that & is an isometry from Hfi (R") to LZ’:([R%*). Moreover for every 7-dependent

- |
” (x, @Tx) ||LZZ+%,N—2XLZ‘;['N,1 S N ”g”L‘Ziy:)I,N
The small factor N~ is crucial for the fixed point argument to work. A similar estimate holds
for the inhomogeneous terms on the right-hand-side of (3.10). More precisely the map g
satisfies the bound

||§||LiygyN 5 ”(567 @T%)”Lz,gﬁ.%,]\/-zx (3.13)

2,a,N-1
dp dp

Z’Z“/Z’N_Z to LZ’;"N. Here the smallness of the

constant is a consequences of the smallness of the error generated by the approximate solution

and it is locally Lipschitz as a map from L

built in the first part of the argument and the smallness of the time interval (0, fy] where the
construction holds. The lack of smoothness of the approximate solution limits the decay in
frequencies, hence the nonlinear estimate (3.13) holds only for v/4 > a.

In [62], to control the nonlinear factors enclosed in the f(7,¢) term, precisely to obtain the
quintilinear bound

H2a+1([R3) . H2(X+1(R3) . H2a+l(R3) . H2a+1(R3) . H2(X+1(R3) c HZa(R3),

the authors relies on a standard application of the Leibniz rule and Sobolev embedding, which
holds for a = 1/8, leading to the lower bound on the blow-up speed: v > 1/2. The latter
restriction was removed in [59] by a more detailed analysis of the first iterate of the exact
solution, thus yielding to the full expected range v > 0.
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Chapter 3. Construction and stability of type II blow-up solutions

3.3 The stability of slow blow-up solutions

In what follows we outline the stability results of type II blow-up solutions u, constructed
in [62] and [59]. The continuum of blow-up rates proper to u, and their limited regularity
seem to indicate that these solutions are less stable than their smooth analogs built in [31].
Moreover, taking into consideration the parallel results in the parabolic setting [88], [117] it
was commonly assumed that imposing a stability condition will single out a quantized set
of allowed blow-up speeds. Although these observations had solid foundations, they were
disproved in [49] and [7], making the stability of a family of rough solutions with varying
concentration rates a unique feature of hyperbolic equations. In fact, the results [49] and [7]
demonstrate that rough solutions u, are stable along a co-dimension one Lipschitz manifold
of data perturbations in a suitable topology, provided that the blow-up speed is sufficiently
close to the self-similar ones, i. e. v > 0 is sufficiently small. The result is optimal in view of
[56], since any type II solution with data close enough to the ground state W can be at best
stable for perturbations of the data along a co-dimension one hypersurface in energy space.

The main improvement of [7] over [49] is essentially in the number of co-dimensions imposed
on the perturbations. In [49] Krieger showed that type II solutions u, are stable under an
appropriate co-dimension three condition. Precisely, there exists a co-dimension three Lips-
chitz hypersurface £y c H 32+ (R3)x HY2+ (R3) such that if we take the perturbation of the

rad,loc rad,loc
initial data (gg, €1) € Xy small enough, then the solution of the perturbed problem

Ou=-u® in(0,f] xR3
(3.14)
ultol = uy[to] + (€0, €1)

is a type II blow-up solution of exactly of same type as u,. In the subsequent work [7] the
extra co-dimensions two condition was removed yielding to the optimal result. The precise
statement is given below.

To properly enunciate the co-dimension conditions imposed in [49] we have to closely analyse
the initial value problem on the Fourier side. We shall seek to construct a solution of (3.14) by
perturbing around the exact solution u,, thus we make the following ansatz:

u(t,r) =uy(t,r)+e(t,r)

where (¢,0;¢) matches the initial data at time ¢ = fo: (¢,0:€)|,~,, = (€0,€1). In analogy with
the argument of the previous section we introduce the renormalized coordinates (7, R) =
(v='t7V,A(1)r), we set € = Re, and we apply the distorted Fourier transform to the equation
satisfied by €. Thus we obtain the following equation in terms of the Fourier variable X(z,¢) =
F(@)(1,6):

(@2 + B0)Dy + HE(T,8) = Rx(T,E) + FIE(T,0) (3.15)

where (1, R) € [1g,00) x R" and the linear source terms R are as in (3.11) and the nonlinear
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3.3. The stability of slow blow-up solutions

terms are defined by

7 | @@ [ ATP@pa Ny, D)2,
f[a(T'a_( FIEI,¢) )_( A2 F (N, d)@,0) |

Instead of coupling the system (3.15) with vanishing initial data at T = +oco we shall impose
initial data at the corresponding initial time 7 = 7¢:

Xq(To) = Xo4, 0:x4(t0) = X14,
x(10,8) =x0(E),  Drx(10,&) = x1(S).

(3.16)

One can compute the initial data on the physical side (€, €;) in terms of the initial data on the
Fourier side (X, X1), and vice-versa, via the formulas:

£
Z(€p) = X0, —f}“(%) =X+ ﬁV(TO)ZCC'xO + ﬁv(TO)chxod»
- (3.17)

£ = £
(P B0)ri, =50 (g, ) = ¥1a+ BulT0) Haaoa + Bu(T0) KacKo.

We now present the Theorem contained in [7] which states that the blow-up phenomenon de-
scribed in Theorem 98 is stable under a suitable co-dimension one class of data perturbations.

Theorem 100. (/7]) Assume0 <v < 1, and assume ty = to(v) > 0 is sufficiently small, so that
the solutions u, constructed in [59] and [62] exist on (0, ty] x R3. Let 8, = 6;(v) > 0 be small
enough, and let Bs, < S xR be the 01 -vicinity of((O, 0),0) € Sx R, where S is the Banach space
defined as the completion of Cgo (0,00) x C(‘)’O(O, oo) with respect to the norm

14260 .- 1 0-1:1-6 11260 -6
Il (X0, x1) 1l 5 = 1<€)2 7 *° min{rg0&2,1} 7 &2 °x0||L§5+||(f>2+ 0 °x1||LZf'

Then there is a Lipschitz function y : B, — R, such that for any triple ((xo, X1), Xoq) € Bs,, the
quadruple

((x0, x1), (X0, X14)), X14 = Y1 (X0, X1, X04)

3426 1426
determines a data perturbation pair (€9, €1) € Hrzgd lgc (R3) x Hf;d lgc (R3) via (3.17), and such
that the perturbed initial data
uy[to] + (€9,€1) (3.18)

lead to a solution (¢, x) on (0, ty] x R3 admitting the description

L, ) = Wy () +€(6, ), (€08, ), €0(1,) € HYve o < HE

rad,loc rad,loc
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Chapter 3. Construction and stability of type II blow-up solutions

where the parameter A(t) equals A(t) asymptotically

1m@ =
—0A(f)

The proof of Theorem 108 builds on the previous work [49] thence let us describe below the
main ingredients contained in the latter breakthrough.

3.3.1 Conditional stability result

The strategy of [49] consists in solving system (3.15) coupled with (3.16) iteratively: define the
following sequence ¥/ (z,&) = X0 (7,&) + X1 _, AP (1,8), where the zero-th iterate solves the
homogeneous system:

(*©,2: 30|, _,, = (o, 1)

{ (92 + B0 P +§ 70 (1,8) =0

(k)

and the the k-th increment AX" satisfies the inhomogeneous equation:

=) =2k

(22 + B(1)D; + &) AF 0 (1,8) = ZAFE D (1,8 + AfE V(7,8
(AxH0, 2, AZR)| _ = (A%, A% )

where Af© = f[z®) and Af*D = Flg®-D) - FE®2) for j = 2.

As expected from the presence of a resonance of the operator £, an accurate analysis of the
zero-th iterate reveals that this term is fast growing toward 1 = +oo. The growth of its discrete
spectral part is easily controlled by imposing a vanishing condition on xy4 and x; 4. However,
the growth of the continuous spectral part is more fundamental and it can be investigated via
the explicit homogeneous parametrix:

9,8 = Slxg,x11(1,8)
AS2(7) p”z(/{lzz((rro)) ) 2 7 a1 A (@)
= /15/2(1-0) ,01/2(5) cos [/1(‘[)5 fm A (u)du]xo(mé)

23/2(7) p”z(%{) sin [/1(1)5”2 I A‘l(u)du]

/13/2(-,;0) p”z(f) 51/2

/12
xl(AZ((rTo)) )

Since A(r) = 7'V, hence x© grows polynomially in 7. To control such a growth, the following
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3.3. The stability of slow blow-up solutions

natural co-dimensions two condition on the initial data (xo, x;) is imposed:

f pz(e)xo(rf) cos[A(zg)Eb f AN ) dstdé =0,

(3.19)

f pz(cf)x1(f) 'n[ﬂ(To)f%f AN (s)ds|dé=0.

Albeit such vanishing relations do not eliminate completely the growth of x at infinity but
only reduces it to linear growth, it is sufficient to run the iteration scheme. In fact, by choosing
v < 1/3 and thanks to the decaying factor A~2(t) appearing in the nonlinear terms A f (k1)
one can control them in a relatively straightforward way.

Let us briefly discuss the role of the corrections (A%(()k), Aic'(lk)) which a priori should be both

set to zero. At each iterative step, the continuous spectral part of the k-th increments are
computed via the two explicit parametrices:

Ax® = 1@ Ax* D 4 A fED] 4 SIARY, AR

where I[g] is the Duhamel parametrix for the inhomogeneous problem with source g and
vanishing initial data at T = 7¢:

T 1312 1/2 ’12(75 sin [A(0)EY2 2 A" Y wdu 2
I[]:/}L () P (A() [ ] ( A(T)g‘)da.

%o 13/2(0) 1/2(6) 51/2 ’ /12(0)

To control the S norm of the low-frequencies component of the k-th increment (Ax®®, 2, Ax®)
one splits I[ZAx*D + A f*=D] the inhomogeneous parametrix with vanishing initial data

at T =71, into Is; [%Ax(k_l) +Af (k_l)], an inhomogeneous parametrix with vanishing initial

dataat T = +o0, plus S [ﬁf(()k), ﬁ?cik)], a homogeneous solutions with non-vanishing initial data

at 7 = 7. Therefore we obtain

Ax® = [ (ALY 4 AFED) L SIATD + AF AR + AT,

The corrections A%&? ensure that the small error introduced in the initial data will preserve
the vanishing conditions (3.19), leading to an approximation £/ on the physical side with
controlled growth. Therefore to guarantee that the vanishing conditions holds throughout
each step one needs to adjust the initial data by adding a small correction.

The final portion of [49] consists in proving that such iteration scheme converges by picking
7o sufficiently large. This is achieved via a re-iteration argument of the inhomogeneous
parametrix which allows to gain enough smallness and to obtain a convergent series. A similar
procedure was employed in [61] and [50]. Once the convergence is established, we obtain a
solution of system (3.15) that fulfills the initial data requirements where (X, X;) have been
replaced by (Xp + AXg, X1 + AX;). The corrections AXy; are obtained by summing up all the k-
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=(k) ~
th step corrections AX, ;. Moreover, they are small with respect to the S norm when compared

to the original initial data (X, X1) and they depend in Lipschitz continuous fashion on X ; .

3.3.2 Optimal stability result

The elimination of the extra-vanishing conditions (3.19) imposed on the perturbation accom-
plished in [7] is attained in a four steps argument. Firstly, notice that one cannot time translate
the solution u, without introducing an error of regularity H'*"/2~ (R%) on each time-slice, that

rad,loc
is too weak since the tollerate regularity of the perturbations is H 312+ d. lo (R3). Therefore a subtle
is required. Pre(:1sely, one needs to work with a

modulation of the scaling law A(¢) = ¢~ 1-v
more flexible scaling law depending on two additional parameters y; and y,. We stipulate the

following ansatz:

N N

(6] r —1-v
AV (p) = (1+7/1<N>+y21 <tN>)t , (3.20)

here N > 1 is sufficiently large. Notice that (") asymptotically equals to A as t — 0, and
such alteration implies a corresponding adjustment of renormalized coordinates (7, R): let us
introduce

Io
T(Y)(t):f Wyds+v'”Y,  RPw,n=A"wr.
t

A similar iterative procedure that gave rise to the approximate solutions in [62] and [59] can
be applied for the more general scaling law (3.20) to build approximate solutions of the form

2k-1
;Y;p(t 1 =Wy + Y vilt,n)+ Y Vsmoothalt,) + v(E,T)
=1 a=1,2

m (u;Y;p)E’ = e%p and where the error satisfies

which solves Uug),),

1/2
e%p = (ly1l+1y2D [@’(logt( D 1+1- a)1/2+v/2))
1/2R_1 1/2+v/2
@(logtm(l-}-(l—a) ))]

The main novelty is that we perturb around W)y as opposed to W, which when inserted
into the equation (3.4), generates additional error terms. We isolate the terms of the error
which depend on v » from the part which do not depend on vy, ». The former error terms are
treated by adding a finite number of corrections v; following the iterative scheme in [62] and
[59]. On the other hand, the latter error terms are decimated by the two corrections Vs;o0th,4
which have better regularity property than the previous corrections. The final correction v is
introduced to further improve the overall regularity to the error term.
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3.3. The stability of slow blow-up solutions

Next, in the modulation step, one shows how to tune the parameters y; and y, such that
a comparable procedure from [49] can be applied. Precisely, our point of departure is a
singular type II solution constructed in the previous papers [62] and [59] which has the form
Uy = Ugy—1+€. Denote the associated initial data on the ¢ = fy time slice by (e1, £2) and consider
(X9, X1) the corresponding initial data at T = 7 on the distorted Fourier side (with respect to R)
computed via the relations (3.17). The point is that the initial data (X, X¥;) do not satisfy the
vanishing conditions (3.19) with respect to scaling law A anymore, thence we can not directly

apply the argument of [49] as outlined in the previous section. To circumvent this impasse,

2
app

wave equation (3.4) by introducing the function €:

we shall seek to complete the approximation u,,,, to an exact solution to the critical focusing

u=ug,+€ (3.21)

Denote (g1, €2) = €[1p] the associated initial data of the new perturbation on the t = #; time
slice and consider (55(()7 ,?ciy)) the corresponding initial data at T = 7o on the distorted Fourier

side with respect to R"Y). We impose the following relations on the ¢ = , time slice
€0 = Xr<t [WA(1) = Wi (1) = Usimooth,1,2 — V] + €0,

as well as
E1= Xr<to [0:[WA(1) = Wain ()] = 01 Vsmoorn,1,2 — 01 V] + £1.

Then one proves that there exists a unique choice of the parameters y; » such that the corre-
sponding vanishing conditions (3.19) for (x(()y) m) with respect to the scaling law (3.20) are

satisfied.

Subsequently, we plug the ansatz (3.21) into (3.4) to find a corresponding equation for the
perturbation €. Proceeding as in the previous section we solve such equation by passing to the
distorted Fourier side with respect to R". Let us denote the distorted Fourier transform of €
by ¥, then we obtain the corresponding transport equation on the distorted Fourier side:

(2% + B0)D: + OV (1,8 = %FV (1,8 + fEV)(7,8) (3.22)
where the linear source terms % are as in (3.11) and the nonlinear terms are defined by

JaET@) )=( A 2@ ba R ey + N (”;Y;P'E(Y)DLZR )

_”"(Y) = ‘
fIEY1(z, 0 (f[E(Y)](T,f) 1_2(‘[)97( eg’;p+N(uapp’ Y)))(T,f)

The system (3.22) is coupled with initial data ()'E(()Y) , 55?/ ) which satisfy the vanishing relations

(3.19) with respect to the scaling law (3.20). Thus we can apply a similar iterative scheme as in
[49] to show that there exist corrections AJ?(()YI) such that a solution ¥ to (3.22) with perturbed

initial data (x o, A"W "m + A "(Y)) exists.
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The last step consists to estimate the error induced by the small correction terms A?c(()?/l) which
have been introduced in the iterative scheme in terms of the original variable R. Hence we
analyse Asgg the inverse distorted Fourier transform of A?c((),yi, with respect to the variable
R, and we prove that such errors are small when compared to the initial data perturbation.
To show smallness one needs to compute the Fourier transform of Aséﬁ with respect to the
original variable R yielding to corrections denoted A Xy 1, and prove that the latter corrections

are small in the S norm when compared to the original initial data X .

Finally, the investigation of the Lipschitz dependence of the corrections A?c(()yf with respect to
the original data ?c(()yl) is carried out in details in [7] by carefully analyzing the dependence of

the error e(y) from the parameters yq ».
app p 71,
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Type II blow-up solutions with opti-
mal stability properties

In this chapter we show that the finite time type II blow-up solutions for the energy critical
nonlinear wave equation

Ou=-u’

on R3*! constructed in [62], [61] are stable along a co-dimension one Lipschitz manifold
of data perturbations in a suitable topology, provided the scaling parameter A(¢) = t~!7V
is sufficiently close to the self-similar rate, i. e. v > 0 is sufficiently small. This result is
qualitatively optimal in light of the result of [56]. The paper builds on the analysis of [49] and
it is joint work with my thesis advisor Prof. J. Krieger.

4.1 Introduction
The critical focussing nonlinear wave equation on R3*! given by
Ou=-u’,0=-0’+A, (4.1)

has received a lot of attention recently as a key model for a critical nonlinear wave equation
displaying interesting type II dynamics, the latter referring to energy class Shatah-Struwe type
solutions u(t, x) (see [94]) which have a priori bounded H' norm on their life-span I, i. e. with
the property

sup |V, xu(t, ')”Li < o0. (4.2)
tel

Throughout the paper, we shall be interested exclusively in the case of radial solutions. In
that case, a rather complete abstract classification theory for type II dynamics in terms of the
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ground state'

W(x) = il
(1+55)2

has been developed in [23], see the discussion in [49]. On the other hand, the first 'non-trivial’
type II dynamics, were constructed explicitly in [57], [62], [59], [17], [50]. As far as finite
time type II blow-up solutions are concerned, the issue of their stability properties has been
shrouded in some mystery. The fact that there is a continuum of blow-up rates in the works
[62], [59], seemed to suggest that these solutions, and maybe also their analogues for critical
Wave Maps and other models, such as in [61], [60], [26], [8], are intrinsically less stable than
‘generic type II blow-ups’, and that the requirement of optimal stability of some sort may in
fact single out a more or less unique blow-up dynamics for type II solutions, for example in the
parabolic context see the deep work [88]. Two instances of 'optimally stable’ type II blow-up
were exhibited in the context of the 4 + 1-dimensional critical NLW in the work [31], and in
the context of critical co-rotational wave maps and equivariant Yang-Mills in [87], see also
the brief historical comments in [49]. Note that the linearisation of (4.1) around the ground
state W has a unique unstable eigenmode ¢, and in accordance with this, [31] exhibits a
co-dimensional one manifold of data perturbations of W (in the 4 + 1-dimensional context)
resulting in the stable blow-up.

In this article we show that the solutions constructed in [62], [59], corresponding to A(f) =
t~17V and with v > 0 small enough are also optimally stable in a suitable sense. However, due
to the fact that these solutions are only of finite regularity, and in effect experience a shock
along the light cone centered at the singularity, an appreciation of our result requires carefully
reviewing the nature of them.

4.1.1 The type II blow-up solutions of [62], [59]

Solutions of (4.1) are divided into those of type II, satisfying (4.2), as well as solutions of type
I which violate this condition. The celebrated result in [23], (see also [20], [21]) provides a
general criterion characterising abstract radial type II solutions in terms of the ground states
+W (x). In particular, assuming that u(z, x) is a type II solution of (4.1) which is radial and
develops a singularity at time ¢ = T, then near T, we can write

N 1
ult,x) = ) kjWy, () +e(t, x), Wa(x) = 12 W (Ax), 4.3)
j=1

where €(¢, x) can be extended continuously as an energy class solutions past the singularity
t=T,x;=%1,1lim;7(T - 1)A;(#) = +oo, and limt_,Tllog(%)l = 400, provided j # k.

We note here that this appears the only result for a non-integrable PDE where this kind of a
continuous in time soliton resolution has been proved. We also observe that the solutions in

1 Also known as Aubin-Talenti solution (see [1], [102]) from its geometric origins.
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[62], [59], [50], appear to be the only known finite time type II blow-up solutions for (4.1), all
with N =1, and that in fact solutions of the form (4.3) with N = 2 are not known at this time
(and might not exist).

We now detail briefly these specific blow-up solutions. Let v > 0, but otherwise arbitrary, and
denote A() = 17,

Theorem 101. (/62], [59]) Thereis ty > 0 and a radial solution u,(t, x) of the form
Uy (t, x) = Wy (x) +1(t, x),

where the term? 1(t,-) € H”%‘,nt(t, )€ HI™ for any t € (0, t], and we have the asymptotic
vanishing relation

1
lim vV, n*+-n%1dx=0.
am |x|<t[| £x71 677 ]

The correction term 1 satisfies nl|x<: € C°°, while it is only of regularity H 143~ across the light
cone. In fact, there is a splitting n(t, x) = n.(t, x) + €(t, x), with (here N may be picked arbitrarily
large, depending on the number of steps used to construct1,)

le(t, I ey +lee(t, )y < £V,

and such that using the new variables R = A(f)r, r =|x|,a= %, there is an expansion near a = 1
of the form

A ¢i(a, )(logR)*R'!, 4.4
g

Ne(t,x) =
e AD? So<k=ty

and such that

oo ) ,
cila,t) =g\ (t,a) + i:Zl(l L ]Z:Oql(? (t,a)(log(1 - a))’. (4.5)

Here the coefficients q(()l) (t,a), ql(.? (t,a) are of class C*°, while the exponents (i) are of the form

3 1 1 1
pi) = Ck-=)v-2))+ Qk-=)v-2)
kGZKi( 2 2 ) kEXI:(l’( 2 2 )

for suitable finite sets of positive integers K;, K;. In particular, B(i) = VT_I The sums in (4.4),
(4.5) are absolutely convergent, and the most singular terms in (4.5) are of the form

a- a)vT+1 log(1—a).

We observe that a similar asymptotic expansion as in (4.4), (4.5) near a = 1 may also be inferred

. — . /
2The notation H5~ means in any H® , s’ < s.
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Chapter 4. Type II blow-up solutions with optimal stability properties

for the error e(t, x), and thus the singularity of (¢, x) is indeed confined exactly to the forward
light cone |x| = t centered in the singularity, see [59]. However, the methods for determining
ne(t, x) and e(t, x) differ importantly. The first is in fact obtained by approximating the wave
equation by a finite number of elliptic equations approximating the wave equation in a suitable
sense, while the second quantity is obtained as solution of a wave equation via a suitable
parametrix method. Both of these techniques will play an important role in this paper. We
shall see next that the limited regularity and more precisely the shock across the light cone
(see Figure 4.1) entails a certain rigidity for such solutions, which will be reflected in terms of
the stability properties of this kind of blow-up.

4.1.2 The effect of symmetries on the solutions of Theorem 101

In the sequel, we shall assume 0 < v « 1. Restricting to the radial setting, the symmetry group
acting on solutions of (4.1) is restricted to time translations u(t, x) — u(t — T, x), as well as
scaling transformations u(t, x) — Az u() t,Ax), and it is then natural to subject the special
solutions u, (t, x) to such transformations. Let us consider the effect on the principal singular
term, which is of the schematic form

Az (D)

- - . 2y . (1 — %‘*‘% _ :z — — —-1-v
D12 Rlog(1+R%)-(1—a) log(1-a), a t’R MO A =t .

Calling this term 7, (¢, x), we find by simple inspection that for 7' # 0
1+X—
Np(t,) =np(t=T,) € H,, 2

and this is in effect optimal, i. e. the preceding difference is inno H; forany s>1+ 3. Thisis
of course simply due to the fact that time translating u, will shift the forward light cone on
which the solution experiences a shock, and so the difference will be no smoother than u,,.
The same phenomenon occurs for the difference

16, %) = A2, (At Ax), L £ 1.

What we shall intend in this article is to consider smooth perturbations of the solutions u, (¢, x),
i. e. consider the evolution corresponding to the initial data

uylto] + (€0, €1), uv o] = (uy(to,-), 0; 1y (1p,)),

where (eg,€1) € H 2*(R%) x H2*(R®), in a way made more precise in the sequel. In particular,
we see that the differences

uV[tO_ T] - uV[to]r uV,A[tO]r_uV[tO]v T # 0; A/# 1)

are not of this form, since 1+ 3 < %+ for v « 1. In Figure 4.1 below we have plotted the leading
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behavior of the function u, (¢, x) for ¢ > 0, the shock along the forward light cone generated
from the origin is evident. Moreover, in Figure 4.2 one can indubitably see that the difference
uylto — T1 — uy[tp] manifest cusp type singularities at |x| = fp and |x| = o — T.

Figure 4.1: Graph of u, (t,x) for t >0 and v =0.1.

This reveals that the role of the symmetries in describing the evolutions of the initial data
uy[to] + (€0,€1), (€0,€1) € H2* (R®) x H* ®Y), (4.6)

is not a priori clear, and in fact, we shall show that the blow-up corresponding to (a certain
subclass of) such initial data perturbations takes place in the same space-time location and
with the same scaling law, which may sound paradoxical at first, but is explained by the role of
the topology of the data.

In fact, what our main result shall reveal, and what is also borne out by the result [57], while
the abstract general classification theory by Duyckaerts-Kenig-Merle ([20], [22], [21], [23])
takes place in the largest possible space H'! in which the problem (4.1) is well-posed, an
understanding of the precise possible dynamics (involving blow-up speeds and stability
properties) rely crucially on finer topological properties of the data in spaces more restrictive
than H'. It is conceivable that such considerations have much broader applicability for certain
nonlinear hyperbolic problems.
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— uyltp, X)
ullp— T, x)
8 — wllo—T,x) —uulto, x)

Figure 4.2: Graphs of initial data with v=0.1, #p =2,and T = 1.

4.1.3 Conditional stability of type II solutions

Before stating the main theorem of this paper about stability properties of the solutions in
Theorem 101 with v <« 1, we place it briefly into a broader context. It is intuitively clear
that when analysing the stability of any of the type II solutions in (4.3) with N =1, say, the
linearisation of the equation (4.1) around W, and thence the operator®

% =-0%-5W*R), W(R) := 4.7)

R2\17
1+ ?) 2
will play a pivotal role. This operator, when restricted to functions on [0, c0) with Dirichlet
condition at R = 0, has a simple negative eigenvalue ¢{; < 0 (the subscript d referring to

discrete spectrum’), and a corresponding L?-normalized positive ground state ¢4 with

Lba=EaPa,

see [57], [62]. Thus, ¢4 € L?(0,00) N C*([0,00)), decaying exponentially and with ¢4 (R) > 0 for
R >0, but ¢p4(0) = 0. This mode will cause exponential growth for the linearised flow elt \/g’
and only a co-dimension one condition will ensure that the forward flow will remain bounded.
That a corresponding center-stable manifold may be constructed for perturbations of type II
solutions for the nonlinear problem (4.1) was first shown in the context of the special solution

u(t, x) = W(x) and perturbations in a topology which is significantly stronger than H Lin [57],

31t arises by passing from radial u(x) = v(R) to Rv(R), R = |x|
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and later in vastly larger generality (for perturbations of only regularity H') in [56]. Here we let
u(t, x) be a general solution of regularity H', which may be obtained as limit of a sequence of
smooth solutions. We shall refer to such solutions as 'Shatah-Struwe solutions’ (see [94]) .

Theorem 102. ([56]) Let
u(t,x) = Wy (x) + v(t, x)

be a type II blow-up solution on I x R® for (4.1), such that

sup |V, xv(t,") ”Li <di«x1

tel
for some sufficiently small § > 0, where as usual I denotes the maximal life span of the Shatah-
Struwe solution u. Also, assume that ty € I. Then there exists a co-dimension one Lipschitz
manifold £ in a small neighborhood of the data (u(ty,-), u;(ty,")) € X in the energy topology
H'(R3) x L2(R3) and such that initial data (uo, u1) € T result in a type Il solution, while initial
data

(uo, u1) € B5\Z,

where Bs < H'(R%) x L2(R3) is a sufficiently small ball centered at (u(fy,), u;(to,")), either lead
to blow-up in finite time, or solutions scattering to zero, depending on the side of Z’ these data
are chosen from.

Note that by contrast to the result in [57] which precisely describes the dynamics of the
perturbed solutions but at the expense of a much more restrictive class of perturbations, there
is no description of the perturbed solutions in the preceding theorem other than the assertion
that the solutions are of type II.

The question we shall now address is whether the specific dynamics of the solutions in Theo-
rem 101 are preserved for a suitable class of perturbations, essentially as in (4.6). Note that
such perturbations only constitute a very small subset of the surface X in the preceding theo-
rem, as evidenced by the fact that if %7 denotes re-scaling by A and time-tranlsation by T,
thenif (T, 1) # (0,1), any two data pairs

uylto] + (€0, €1), (Frauv)to] + (€p,€7)

with (eg,€1) € H2* x H2*, (€}, €]) € H2* x H2* will be distinct. We aim now to understand the
evolution of a certain class of data u.,, [f] + (60, 61), with ty as in Theorem 101, backward in time.
Precisely stating the conditions on the perturbation (o, €1) requires certain technical prelimi-
naries involving the spectral theory and representation associated to £, mostly developed in
[62].
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Chapter 4. Type II blow-up solutions with optimal stability properties

4.1.4 Spectral theory associated with the linearisation £

Here we quote from [62], specifically Lemma 4.2 as well as Proposition 4.3 in loc. cit. Let £ be
given by (4.7), restricted to L?((0,00), with domain

Dom(%) = {f € L*((0,00) : f, f € AC([0,RDVR >0, f(0) =0, f" € L((0,00)}
Then £ is self-adjoint with this domain, and its spectrum consists of
spec(Z) ={{4} U [0,00),

with &4 < 0 the unique negative eigenvalue of £ and associated L?>-normalized and positive
ground state ¢4 (R). There is a resonance at zero given by the function

2 RZ
¢o(R) =R(1 - ?)(1 + ?)_5, Lo =0.

The latter is simply a reflection of the scaling invariance of the problem.

Importantly, the operator £ induces a 'distorted Fourier transform’ & (f) = f, which allows for
anice Fourier representation in terms of generalised eigenfunctions ¢(R, ). For a qualitative
behavior of the functions ¢(R,¢) in the small and high frequencies regime see respectively
Figure 4.5 and 4.6 at the end of the chapter. We have

Proposition 103. (/62]) For each z € C, one can define a basis of generalised eigenfunctions
w .
PR, 2)=po(R)+ R Y (R*2)! p;(R*)
j=1

given by an absolutely convergent sum, with ¢ j(u) holomorphic on the complex numbers with
Reu > —1/2, and satisfying bounds

lul(uy 2.

()l <

G-

!
Denoting the Jost solutions f.(R,) which satisfy £ f. = ¢ f+ as well as f+(R,¢) ~ etiREZ g
R — +o00, there is a representation

PR,E =) ar (@) f:(RE),

with a+() = 1asé — 0 aswell as|a. (&) < 6‘% as £ — oco. Further, there is a function p({) €
C*((0,00)) with the asymptotic behaviour

p() ~€‘%,0<€<< L, p@) ~€%,€>> 1,
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as well as symbol behaviour with respect to differentiation, and such that defining

R b
9‘(f)(f):=f(€):=bgrf fo PR, O f(R)AR,§ =0,

f&p = fo ba(R f(R) dR,

the map f — f is an isometry from L2, to L* ({4} UR*, p), and we have

-~ H ~
1w =Feagaw+ im [ orof©p@dc,

the limits being in the suitable L?-sense.

The precise structure of the Jost solutions shall sometimes be important, and the following
result, which we cite verbatim from [62], gives a precise asymptotic expansion:

Proposition 104. For any¢ > 0, the Jost solution f. (-, &) satisfying

L) =8f06), fr (R ~ ¢!VoR a5 R — oo,

is of the form

el 1

fr(R&) =™ a(RE2,R),

where o admits the asymptotic series approximation

S5 .

— ot
o(q, R~} qyiR),

j=0

in the sense that for all integers jo = 0, and all indices a, 3, we have

Jo . .
sup(RY*|(ROR)*(q0)P[a(q, ) = ). q Ty F (Rl < capjyq ™"
R>0 j=0

forall g > 1. Here

iccR?+iO(R*asR— oo
icoR+iO(R®) asR—0

wgzl,wf(R)z{

with some real constants c1, c;. More generally, 1//;? (R) are smooth symbols of order =2 for j = 1,
i.e forallk=0

sup(RY?|((R)IR) v (R)] < co.
R>0

Finally, y’} (R) = O(R/) as R — 0.

We also observe the following estimate describing classical H ,-norms in terms of the dis-
torted Fourier transform, and which follows by a simple interpolation argument:
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Lemma 105. Assume s =0. Then we have

IF R sy S <é>%f(£)||dep +1¢al,

When passing from the standard coordinates r = | x|, ¢ to the new ones R = A(£)r,7 = [~ A(s) ds,
the time derivative will be replaced by a dilation type operator of essentially the form 0, + %RO R
and translation to the Fourier variables will require expressing the operator RO in terms of
the distorted Fourier transform. Specifically, we need to understand how Rdg acts on x4, x(¢)
for a function

E(R) = xada(R) + fo 2GR, E)p(&) dE.

The precise result here comes also from [62]:

Theorem 106. (/62]) We have the identity

(@}Lf(fd) T+ ) fA(fd) ,
(ROR) (&) f@

where the matrix operators &/, X on the right are given by

— 0 0 Kid Kic
‘d: _ a_§_P'(f)f “Z,/: Z LZ 4
0 2¢ ) FI6) cd cc

and the individual components of % are given by X ;4 = —%, cd(&) = K4(&) a smooth function
rapidly decaying toward ¢ = 400,

Hacf = —foooKd(f)f(f)P(f) dg,

and finally, % is a Calderon-Zygmund type operator given by a kernel

pm)
K(,):—F(,),
0&,n = &n

where the function F(-,-) is of regularity at least C> on (0,00) x (0,00), and satisfies the bounds

¢+, fé+n=1,

IFEmIS -
{(€+n)‘1(1+|€2—n2|)‘N, if+n=1

1, ifé+n<1,

|65F(6,T])|+|6 F(g’n)l S 3 1 1
! {(€+n)‘2(1+|€2—nzl)‘N, ife+n=1
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. E+m72, ife+n<1,
Y. 10105 FE&mI+10,FE,mI S e 2l 1 _fé !
jtk=2 E+m (A +[E2-n2)7Y, ifé+n=1

Here N can be chosen arbitrarily (with the implicit constant depending on N).

4.1.5 Description of the data perturbation in terms of the distorted Fourier trans-
form

In the sequel, we shall mainly describe functions f(R) in terms of their distorted Fourier
transform f(gr ), f(€ 4)- In particular, we shall describe the precise class of data perturbations
(€0, €1) via properties of their distorted Fourier transforms: for a pair of functions (xo &), x1(& )),
which will represent the continuous spectral part* of Reg, and in a more roundabout way the
continuous spectral part of Re; (R), we introduce the following norm:

e, x5 2= ol + a1,

1 ) 1 g1l
= (&) 2" 2% minfrgpé2, 1} 712 50x0”szz (4.8)

14260 -6
+ ()2 00 OxlllLﬁf'

Here 1 > 6 > 0 is a small constant held fixed throughout, and the constant 7 ¢ is defined via

<
T0y02=f s Vds.
[4)

This norm is in fact exactly the same as the one used in [49]. We easily observe that
l (f)lw"xolngjf +1 (€>%+6°X1IIL§E St 100, X115,

as well as
1§72 X0l 2 0<g<t) Sron (X0, X1 I5,

and so we find, se‘[‘[ing5 (P.€p)(R) = f(;’o G(R,E)xp(&)p(&) d&, we have

||XR5CTO,0 (Pc€o) (Rl H%Jrz&o

dR

1
SWtrscrs | OROR@PQO D s .
dR

#ltrscrs [ PRORWDPRDEN ;o

dR

S (CT002 10 T x0©P©l 11 en + 1O T 502 e51)-

4Recall that R = A()r, where for now A(#) = =177,
5The notation P, means projection onto continuous spectral part, i. e. projecting away the discrete spectral
part which is the multiple of ¢ ;.
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We have used here that ¢(R,¢) us uniformly bounded, which follows from the preceding
proposition. Then we have

1495 x0(OP©l 1y ecny S 1E %0l 2, <y

346 1+6
1 30l 2, 651y S 1O P Kol 2 e

where we have used the asymptotic for p from Proposition 103, and so we in fact have

1% R=Cro0 (Pe€O) RN 3105y St %01l - (4.9)
HdR
Thus the "physical data’ corresponding to the distorted Fourier variable in S, is actually of

3
regularity H IZOJ;. To reconstruct the full perturbation €y, we also need to prescribe the discrete
spectral part xp 4, and then set

o0

eo(r) =R™'&(R) =R~ [x,apa(R) +f0 x0(S)P(R, &) p(8) dl, R = Alto)r, (4.10)

where A(¢) = 717V

The relation of the second Fourier variable x; ({) and €; is a bit more complicated, see [49],
due to the fact that here all of xo, xg 4, X1, X1, 4 are involved. This is due to the fact that the
description of the perturbed solution u(t, x) shall actually be in terms of the new variables®
R=Ar, 1= f t°° A(s) ds, which mix time and space. Specifically, consider a function

&1, R) = xq(1) + f (@, E)BR,E)p(&) dE, & = Re.

0

Then we obtain the relation

Re A ~ a
_Tt = (6, + Z(ROR_ 1))67 A=A

X
d ) and passing to the Fourier variables by using Theo-

Introducing the notation x := (
X

rem 106, we find

ZF(Be i
_( <¢;,]L§£3> )zg’ﬁ(r"”ﬁv(”«l (T, ), fulr) = 2 (1),

where we have introduced the important dilation type operator

9,:=0 iaf o 0 0
= + — , = ’
) 0 —2565—3——";(?;5

6 Actually, we shall be more specific later, and in fact introduce slightly perturbed Ay1y2) Tyw,y. to get the right
description.
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More explicitly, we have

R
_g(iet)hzto = X1+ Pv(T0,0)HccXo + By (T0,0) A cd Xod (4.11)
R
—{ba, 1€z>|;:t0 = X14 + Pv(T0,0) & daXoa + Pv(T0,0)£acXo (4.12)
where we have set x; = (6, - %(2565 + g + pp((—?)gc))x(‘[,cf)“:mo, aswell as x4 = Orxd(r)lrzmo,

and as before we use

oo 1
70,0 Zf s _VdS,
15}

which thus corresponds to the new time variable with respect to the scaling law A(f) = 1
evaluated at initial time ¢ = 1.

For future reference, we note that we shall sometimes use the notation 2; = 0; — %(25 O¢ +
% + £ p((}))"r) when this operator acts on scalar functions x(t,¢), while it acts on vector valued

functions x via the above formula.

Finally, the relations (4.10) in conjunction with (4.11), (4.12) give the translation from the
data quadruple (xp, x1) € S, (Xo0d, X14) € R? to a data pair (e,€4)l=4, = (€p,€1). An argument
l"'260

analogous to the one used to establish (4.9) implies then thate; € H foc

4.1.6 Outline of the main result from [49]

Now that the technical preliminaries involving the representation associated to the operator £
have been introduced, we give a clear description of the conditional stability result contained
in [49].

Theorem 107 ([49]). Thereis avy > 0 sufficiently small, such that the following holds: let u,,
0 < v < vy be one of the solutions constructed in [62], [59], on a time slice (0, tp] x R3, with
0 < ty < 1 sufficiently small. Then there exists a co-dimension two Lipschitz hyper surface Z in
a Hilbert space S xR where S is essentially (Hr%;d,loc(R3) n {<pd}i) X (Hr%;d,loc(Rg) N {(/)d}L), and a
positive 01 < 1, such that for any (ug, u1,y) € ZoN (B5h§(0) X (—61,61)) and a suitable Lipschitz
functions

Y1,2:ZoN (Bg, 5(0) x (=61,61)) — R,

the solution of (4.1) with data

ulto] := uy[tol + (uo, u1) + (ya +y1(uo, U1, Y)ba, y2(uo, u1,Y)ba)
€(H,®)x H (R*)NZ
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exists on I = (0, ty] and can be written in the form
u(t, x) = W (0) +v1(5,2), A)) = 717"

with (v1,v1,1) € H'“2~ x H2™ on each time slice t = t1 € I, and furthermore

1
(Eroe ) (1) := f Vi1 Pdx—0

|x|<t

ast—0.

The preceding theorem reveals that for small enough v > 0, the solutions constructed in [62],
[59] are stable under perturbations along a co-dimension three manifold in a suitable topology,
and a clear description of the dynamics of the perturbed solutions is provided. However, as
already noticed in Section 4.1.4, since the operator £ has a unique negative eigenvalue and a
corresponding positive ground state ¢»; causing exponential growth for the linearised flow
e”@, a co-dimension one condition suffices to ensure that the forward flow will remain
bounded. Moreover, in light of Theorem 102, the optimal stability result should require only a
co-dimension one condition on the space of initial perturbations. In order to highlight the
enforced extra two conditions in Theorem 107 consider the perturbed initial data

uv[to] + (€0v€1)7
where the perturbation
(€0,€1) = (g, ur) + (yPa +y1(uo, U1, Y)Pa,y2(uo, t1,Y)Ppa)

is associated with a data quadruple (x,, x;) as in (4.10), (4.11), (4.12). In [49], to prevent
the growth of the linear approximation oft the perturbed solution, the following vanishing
relations producing X, are imposed:

f pz(alO(E)cos[wo&%]d& Of p2(5)x1(5) (f) 1(6)

sin[vrof 1dé=0.

4

The goal of this paper is to remove these extra two conditions responsible for the loss of two co-
dimensions, and thus to obtain a qualitatively optimal result. To gain two co-dimensions, we
work with a more flexible blow-up scaling law A(f), depending on two additional parameters.

224



4.1. Introduction

4.1.7 Figures
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Figure 4.3: The ground state ¢4 (R).
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Figure 4.4: The resonance ¢ (R).
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Figure 4.5: The generalized Fourier basis ¢(¢, R) for ¢ small
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Figure 4.6: The generalized Fourier basis ¢(¢, R) for € large

4.2 The main theorem and outline of the proof

4.2.1 The main theorem

We shall now consider what happens to the evolution of the perturbed initial data u, (],
with u, as in Theorem 101. In light of Theorem 102, we only expect such perturbations to
yield a type II dynamics (backwards in time, i. e. for ¢ < #), provided we impose a suitable
co-dimension one condition on the perturbation imposed. That this is indeed all that is

required follows from:

Theorem 108. Assume0 <v <« 1, and assume ty = to(v) > 0 is sufficiently small, so that the
solutions u,(t,x) in Theorem 101 exist on (0, ty] x R3. Let 51 = 81 (v) > 0 be small enough, and
let %5, < S x R be the &, -vicinity of ((0,0),0) € S xR, where S is the Banach space defined as
the completion of Ci°(0,00) x C;°(0,00) with respect to the norm (4.8). Then there is a Lipschitz
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4.2. The main theorem and outline of the proof

functiony, : Bs, — R, such that for any triple ((xo, x1), Xoq) € Bs,, the quadruple

((x0, x1), (Xoq, X14)), X14 = Y1 (X0, X1, X04)

. . . 3426 1126 .
determines a data perturbation pair (€o,€1) € Hr‘;dylgc(ﬂ%s) x H;;d,lgc(ﬂ%e’) via (4.10), (4.11),
(4.12), and such that the perturbed initial data
uyltol + (€o,€1) (4.13)

lead to a solution ii(t, x) on (0, ty] x R3 admitting the description

~ 1+¥— v_
u(tv x) = Wz(t)(x) +€(t)x)v (e(t) '))el(t) )) € HlOCZ X HIZOC

where the parameter A(t) equals A(t) asymptotically

i) -
lim— =1, A0 =t"""".
tlil(lJ A1) )
In particular, the blow-up phenomenon described in Theorem 101 is stable under a suitable

co-dimension one class of data perturbations.

Remark. Notice that this result is qualitatively optimal in light of the result of [56], for the
construction of a center-stable manifold see also [53], [54], [55].

Remark. We could have replaced A by A in the preceding theorem and included the arising
modification in the error term €(¢, x). The formulation of the theorem emphasises part of
the proof strategy, which shall indeed consist in a (very slight) modification of the scaling
law A(£) = 17" to force two important vanishing conditions. It is this part which is indeed
analogous to the usual 'modulation method’.

4.2.2 Outline of the proof

The proof will consist of two stages, the first replacing the blow-up solution u,(t, x) by a two
parameter family u%gﬁ;x of approximate blow-up solutions, where the parameters y1,>
will depend on the perturbation (eg, €1) and thus on the original data set (xo, X1, Xo4), and the
second stage will involve completing the approximate solution uf},;gfg  to an exact one of the
form

(Y1,72)
uay;;pyrzox +e(t,x),

whose data at time t = ty will coincide with u, [#] + (€9, €1) at time t = 1y, provided we restrict
the data to a suitable dilate of the light cone r < Cty. In fact, we do not care about what
happens outside of the light cone, as our solutions will remain regular there for simple a priori

non-concentration of energy reasons, exactly as in [62].
Explaining the reason for introducing u%g,zg . hecessitates outlining the strategy for control-

ling the error term €(t, x), which will be done via Fourier methods, exactly as was done in

227



Chapter 4. Type II blow-up solutions with optimal stability properties

[49].

The method of [49].

Assume we intend to construct a solution of the form u(t, x) = u, (t, x) + €(¢, x), with u, asin
Theorem 101. Recall that u, consists of a bulk part Wy (x) with A(¢) = t"1"¥ and an error
part. Passing to the new variables R = A(1)r,7 = [;° A(s) ds, one derives the following equation
for the variable €(7, R) := Re(t, r), see also [62], [59]:

(0r + AAYROR)?E— By (1) (0 + AA'ROR)E + LE
= A72(1)RN(e) + 0; AL HE; B, (1) = A(m)A~1 (1), (4.14)

where the operator . is given by
% =-0%-5W*R)

and we have

Az (1)

RN(e) =5ty — tg)E + RN (uy,8), g = Wy (X) = ————,
(1+ AWty

g
RN(u,, &) = R(u, + E)S —Rud —5ULE

To solve this equation inside the forward light cone centered at the origin, one translates it to
the Fourier side, i. e. one writes

£, R) = x4 (M pa(R) + fo X1, (R, Ep(&) dé, (4.15)

see Proposition 103. Taking advantage of Theorem 106, and using simple algebraic manip-
ulations, see (2.3) in [49], one derives the following equation system in terms of the Fourier

coefficients
| xa(@ .
X(1,¢) = ( (T,6) ) :
(2% + By (12, +&)x(7,) = R(1,0) + [ (1,), (4.16)
where we have
R, 1)) = (- 4By (A Drx - FLO( K+ [, K| + K + BB, 2H)x) ©) (4.17)
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4.2. The main theorem and outline of the proof

with B, (7) = AD and we set f = ( ];‘j where

- A’

f@,8=F(A7@)[5uy — ug)g + RN (uy, D)) (€)

(4.18)
fa() = A2 [5(uy — ug)E+ RN (uy, )], pa(R)).

Also the key operator

0 O
@Tzar"'ﬁv(f)d, d:(o dc)

and we have

oo=-atoc- (G )

while £ is as in Theorem 106.

As initial data for the problem (4.16), we shall of course use

Xod X1d
= 7@‘[ =
(o) (xo(f)) (o) (xl(é))

where the components xy, (¢), Xo4 shall be freely described (within the constraints of Theo-
rem 108), while the last component x; 4 shall be determined via a suitable Lipschitz function
in terms of the first three components. This is again due to the exponential growth of the
component x4(7) due to the unstable mode. The method of solution of (4.16) uses an iterative
scheme, beginning with the zeroth iterate solving

2 _ _ | Xoa | *14d
(27 + Bv(1)2: +&)x(1,8) =0, z(ro)—( (&) ),@Tz(ro)—( () ) (4.19)

This can be solved explicitly as in Lemma 2.1 in [49], which we quote here:

Lemma 109. The equation (4.19) is solved for the continuous spectral part x(t,¢) via the
following parametrix:

1 A
A3 (1) P2(ze0) LT A2(1)
x(1,6) =— 207 cos [A(T)fz f 2w du]Xo(z—f)
Ai(rg)  p2(E) 70 A%(To) 1.20)
A2 (1) p% (/{122((;0)) ¢) sin [Mﬂ‘f% fTTo A~ w) du] A% (1) )
+ X
ATo)  pi@) & DA ()
M . _| *od _| *a o . .
oreover, writing x,, = y X = and picking to > 1 sufficiently large, there is
x0(&) x1(8)
cg=1+ O(Tal) aswellasyg = —Ide% + O(ral) such that if we impose the co-dimension one
condition
X1d =YdXod (4.21)
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Chapter 4. Type II blow-up solutions with optimal stability properties

then the discrete spectral part of x(z, ) admits for any x > 0 the representation
1
xq(1) = (1 + O (.,/-—1eK(T—‘l’())))e—|fai|2 (T—T())Cdxod
One also has fori =1

. i 1 _
(=00) xq (1) = (1 + O (171X T7T0)) £ g2 7 10al* T=To) ¢

This co-dimension one condition will have to be slightly modified in nonlinear ways for the
higher iterates, but to leading order remains the same throughout and is responsible for the
co-dimension one condition of Theorem 108.

Extra vanishing conditions.

There are, however, two additional vanishing conditions in the work [49], imposed on the
continuous spectral parts xg1(¢), and which arise due to the need to bound the nonlinear
terms in N(uy,£) in (4.64). These conditions arise when bounding 5(7 R)
£(1,R) asin (4.15) and inserting the parametrix (4.20) for the continuous spectral parts. This is

upon expressing

the content of Propostion 3.1 in [49]:

Proposition 110. Assume the initial data
“1- _1_
(X0, x1) € ()T 700g 0O LT x ()72

Furthermore, assume that we have the vanishing relations

sin[vToé?] dé = 0. (4.22)

f Pz(s‘)xo(ff)cos VroEdE =0,

f°° P2 ()x1()
0 5

at timet = 1. Assume that x(t,§) is given by (4.20). Then the function7 P€(t, R) represented
by the Fourier coefficients x(t,&) via

PE(T,R) = fo SR, Ex(1, (&) dé
satisfies
PCE(TI R) = El (T) R) + 52 (T) R);
where we have ~
€1(t,R)
R

~ 1 1_ 1 —
1E2(7, Rl o S TG 200820000, ()2 72006 ™20y 2

1 1_ 1 —
i SIEEYE200E2 %000, ()T 2000 xy) 2

Here 6 > 0 is the small constant used to define Sin4.8).

"Here P denotes the projection onto the continuous spectral part
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4.2. The main theorem and outline of the proof

We note here that the growth of €, (7, R) is precisely due to the growth of the resonant part’
of €, i. e. amultiple of the resonance ¢y (R), see the discussion preceding Prop. 103. We also
observe that the expressions cos[vToé > 1, sin[vtoé %] can alternatively be written as

cos[A(To)é? fooxl‘l(S)ds], sin[A(t¢)¢? foo/l‘l(S) dsl,

upon noting that in terms of the variable 7 € [1y,00), we have (abuse of notation) A(r) =

c(v)r‘l_v_l. As the parametrix in (4.20) is valid for arbitrary A, we see that the generalisation
of the vanishing conditions (4.22) to more general A(¢) ~ 17V as t — oo becomes (again upon

passing to the new time variable 7 = f t°° A(s)ds)

f pz(é) o(f)cos Ao f A7\ (s) ds] dé =0,

f Msin A(To)f[ A~ (S)dsldf 0.

The road map

The key for proving Theorem 108 shall be to get rid of these two conditions on the continuous
spectral part of the data, and thence reduce things to the unique condition involving the
discrete spectral part. To achieve this, we shall pass from the splitting u(z, x) = u, (t, x) +€(¢, x)
to a slightly modified one

u(t, x) = ug i (¢, %) +&(t,x), (4.23)

where
Ui (£,0) = Wy, () +7(£, %)

will be an approximate solution built analogously to u, (¢, x) (as in Theorem 101), but where
the bulk part W, (%) is now scaled according to

k()V t»k()’V

(ilory YR8 s

Ay () 1= (1 7 )t‘l‘v, ko =[NV, (4.24)

for some N >> 1, and this is clearly asymptotically equal to A(#): lim;_¢ Yjuyi)(t) = 1. As we shall
want to match the data (4.13) at time ¢ = £y, at least in the forward light cone, we impose for
some C > 1 the condition

Xr=CrUvIto] + (€0,€1) = Xr=cty uéy,;pyﬁéx[to] + (€0, €1) (4.25)

on the data (€y,€1) = €[ty] of the 'new perturbation’ € at t = f,.
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Chapter 4. Type II blow-up solutions with optimal stability properties

We note that the proper re-scaled variables to describe € are now given by
o0
Ty1ys :=f Ayy>(8)ds, Ry, y, = Ay, 4, (DT, (4.26)
t

In analogy to (4.10), (4.11), (4.12), we can then determine (x(()YI’YZ), xih’yz ) as well as (Xoq Y"m (Ysz))’
such that

Bor(Ry, ) = B xRy )+ f KT B(Ry, 0 E)p(E) dE] (4.27)

R
mez— (y1,72) (Y1,72) (Y1,72)
_f}( )|t Ty _xly1 " +:BVY1 e (Tafwz)|t=to‘}“/ccxoy1 "
Y1, Y2 (4.28)

(y1,y2)
+ﬁvl 2 (TY1 Yz)lt to cdx0d

Y Y2 — (y1 ) (Y1,72) (y1,72)
_<(/7d, 1 2 >|t 0= xYl Y2 ﬁ Y1,Y2 (T%yyz)l[ tojzfddx Y1,Y2
Y1,Y2 (4.29)

) (r1,
+,3Y1 g6 (Ty1,y2) =1y K dc Xy & YZ

and we use the notation ,B(VY“YZ) = 72, where the 1y, ,, indicates differentiation with respect
Y1r2

to the new time variable 7y, y,.

At this stage, we can succinctly formulate the key technical steps required to complete the
proof of Theorem 108.

* Show that given xo, X1, Xoq as in the statement of Theorem 108, there are unique choices
ofY1,Y2, X14 Such that the Fourier variables

x(()YIvYZ)’xiYIyYZ),x(YIyYZ) x(ym/z)

0d *1d

satisfy the vanishing relations

f p2 (X (&)

4

—————cos[Ay, 1) (T0)¢2 f Am ) (8)dsldc =0,

(4.30)
f p? (f)xm'“) ©)

4

sm[/l(),1 ¥2) (tg)é2 f )L(Yl 72) (s)ds)dé=0.

as well as condition (4.21).

» Using the splitting

01,72) _
U(t, X) = Ugyrox (£,X) +E(1, ),
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pass to the Fourier representation

o0
Ry, 7,€ = x0T Ga(Ry, y,) + fo X0 (@ OG(Ry,y,, O dE,
and use the analog of (4.16) to construct a solution

(Y1,72)
X1 @) )

(Y,y2) =
E (T) 5) - ( x(}’l’ﬂ) (T) é_)

‘closely matching’ the initial conditions x((,),/l1 'YZ),x&IgZ). In fact, the method from [49]

furnishes such a solution with data

(Y1,Y72) (Y1,72)
Xog =t Axo )

x @ + AT ©

x(ymfz) +Axi1;l1,yz) )

£(Ym’z) (T}’],Yz’f)ll’:to = (

1d

Dex MY (1, )y, = )
Y1Y2 0 xi’]/erZ (é‘) +Ax§’ylv}/2) (é‘)

* Translating things back to the original perturbation in terms of the old Fourier variables
X0(&), x1(&), X904, X14, Show that we have found an initial data pair corresponding to
Fourier variables

X0($) + Axo (&), x1() + Ax1(8), Xoa + AXog, X14 + AX14,

where the corrections Axy(€) etc are small and depend in Lipschitz continuous fashion
on the original data x etc, with small Lipschitz constant.

4.3 Construction of a two parameter family of approximate blow-
up solutions

Here we construct the approximate blow-up solutions ug’;gﬁéx which replace the previous

uy(t, x), see the decomposition (4.23). The idea behind the construction is to closely mimic
the steps in section 2 of [59], which in turn follows closely the steps in section 2 of [62]. In
particular, to describe the successive corrections in the construction, we shall rely on the same
algebras of functions as in [59].

In the sequel, we shall work mostly with respect to the scaling parameter A, ,(f) given by
(4.24). To simplify the notation, we shall henceforth set

M) == Ay, (8), R:= Ay, 1y, (0T, Roo := Ao o (D)1 (4.31)
Theorem 111. Letv >0, ty = ty(v) > 0 sufficiently small, and y1» < 1. Also, let N > 1, ko =
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INV7Y, Ky = [%Nv‘l]. Then there exists an approximate solution ugpprox = ug;;,)ox forOu =
—u® of the form (putting A(t) := Ay, (1) for simplicity)

[

(M)sz(l +R%)77+0((A0 2log RR%(1+ RA™2)],

1
ugia = A2 ([ WR) +
such that the corresponding error

5
Capprox = O Uapprox T Ugpprox

is of the form
t2 eapprox
AZR 1,7
=[IYlI+|Yz|][0(10gtW(1+(1—61)2+2))
Az 1 1y
+O(logtWR 1+ -a)2*2))]

and such that the above expansions may be formally differentiated, where we use the notation

a = %. Furthermore, writing ué?ifr)ox = uéﬁ};ﬁox(t, 1,Y1,2,V) we have they-dependence

(r12)  _ kov 9 L R
Oy, Ugpprox = O™ AZW),

with symbol type behaviour with respect to the 0, , derivatives up to order two, and similarly for

R
(A1)

1
Oy, Ugpiox = OV og 112 —3),

Remark. The key point here is the last part, which ensures that the y-dependent part of the
solutions u%ll‘,zr)ox is smoother than the solutions themselves (they are only of class H 3=
regularity).

Remark. Observe from the preceding construction that egpprox = 0 provided y; = y2 = 0.
Thus in that case the function uﬁlolg,%ox(t, X) = uy(t, x) reproduces an exact solution as in

Theorem 101.

The rest of the chapter is devoted to the proof of Theorem 111. We shall obtain the functions
u;ﬁ‘fr)ox by adding corrections v; to the bulk part uy := W) (r), the latter as in the paragraph
following (4.14). The precise description of these corrections is a bit cumbersome, but in
principle elementary, as they arise by solving certain explicit ordinary differential equations.

The following definitions come directly from [59]:

Definition. We define 2 to be the algebra of continuous functions g : [0,1] — R with the
following properties:

i. gisanalyticin [0,1) with an even expansion at 0 and with g(0) = 0.
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ii. Near a =1 we have an expansion of the form
&8} . (S8 .
q@ = qo(@+ Y (1-a)P"' Y g;j(a)log - a))/
i=1 j=0

with analytic coefficients qo, g;;; if v is irrational, then g;; = 0if j > 0. The (i) are of
the form

Y (@k=3/12v=1/2)+ ) (2k-1/2)v-1/2)
keK keK'

where K, K’ are finite sets of positive integers. Moreover, only finitely many of the g;;

are nonzero.

We remark that the exponents of 1 — a in the above series all exceed % because of v > 0. For the

errors ej we introduce

Definition. 2’ is the space of continuous functions g : [0,1) — R with the following properties:

i. gisanalyticin [0,1) with an even expansion at 0.

ii. Near a =1 we have an expansion of the form

g@=q@+Y 1-aP?Y gj(@logll - a)’
i=1 j=0

with analytic coefficients gy, g;, of which only finitely many are nonzero. The (i) are

as above.

By construction, 2 c 2’. The family 2’ is obtained by applying a~'d, to the algebra 2.
The exact number of log(1 — a) factors can of course be determined, but is irrelevant for our
purposes. We will also need the following definition:

Definition. Denote by 2;,,,,,¢1, the algebra of continuous functions g : [0,1] — R with the
following properties:
(i) gisanalyticin [0,1) with an even expansion at 0 and with g(0) = 0.

(ii) Near a =1 we have an expansion of the form

q@=qo@+Y. 01—y gi(@(log( - @)’
i=1 j=0

with analytic coefficients gy, g; ;. The (i) are of the form

1 1
ak((k— E)V— E)
keK, k=[Nv~1]
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where K consist of finite sets of natural numbers and ay € N. Only finitely many of the
qij(a) are non-zero.

The next definition is also taken from [59], except that we formulate it in terms of the variable

Ro,0, which is independent of y1,y2. This shall be important in clarifying which of the correc-

tions are independent of y; », and which indeed depend on these variables. Introduce the
logt _  logt

variables b(t) = ,u()yo(t)_l, Ho,0(8) = Ap,0(1) - £, as well as by, which will represent Too(D = Tog®"
Then

Definition. Let us define the following class of analytic functions:

(@) S’”(R(’i 0(logRO,o)l ,2) is the class of analytic functions
v:[0,00) x [0,1] x [0, bo] x [0, bo] — R

such that

(i) visanalytic as a function of Ry, b, b1 and v : [0,00) x [0, bo] x [0, bg] — 2.
(ii) v vanishes of order m relative to R, and R~ v has an even Taylor expansion at
Ro,0 =0.

(iii) v has a convergent expansion at Ry = +oo.

oo [+i

v(Roo,a,b,b1) = Y. Y cij(a,b,bi)Ryy' (logRo)
i=0 j=0
where the coefficients ¢;; (-, b) € £ and c;j(a, b, b1) are analytic in b, b € [0, by] for
all0<sac<l.

(b) I Sm(R(’{ 0 (logRolo)l ,2) is the class of analytic functions w on the cone Cy which can be
represented as
w(r, t) = v(Ro,, a, b, by)

by = 8¢ Ho,0(t) =1t-Ago(D).

k ! —
where v e §™ (R (log Ro,0)", 2), b= = (@’

1
Hoo(8)’

(c) Define S™(R§ (108 Ro,0), 2smoorn), IS™ (R 4108 Ro,0)', 2smoorn) as in (a), (b) above. We
shall also use the notation I S’”(R(’)C 0(logRo,o)l) to denote functions analytic in b, by, Ry o
with the indicated vanishing and decay properties.

Observe that functions in ;,,0:5 are at least of regularity CN*:3~ ata= 1, and we can
extend them past the light cone a = 1 by replacing (1 — a) by |1 — a| in the logarithmic terms.

The proof now proceeds by first building a solution u;i, by solving suitable elliptic prob-
lems approximating the wave equation (4.1), and finally adding a further correction to produce
the ugpprox, by solving a suitable wave equation via the parametrix method of [62], [59]. The
method here in particular makes it clear that when y; = v, = 0 we simply reproduce the
solutions if [62], [59]. To construct the preliminary approximate solution, we use
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Lemma 112. For any k. := [%Nv‘l] = k = 1 there exist corrections voy, Vs—1 Such that the
approximations us_, = U + Z?’;l Vj, Upk = U + Z?’i L Vj generate errors exy._1, ey as below:

12
Vak-1 € %Is2 (Ro,0 (log Ro,0)™, 2) (4.32)
1
2
eyt € ( )Zk 1S°(Ro,0 (log Ry 0)"*, 2) (4.33)
Ho,0
Ao
Vok € WISZ(ROO(logRO 075, 2) (4.34)
A%
e € m [18°(Ry g (log Ro,0) %, 2) + b*IS°(Ro 0 (log Ry 0) 7, 2")] (4.35)
0,0

Here the functions vsk-1, Vo are independent of y1,2, but not the errors esy_1, ex.. Furthermore,
we may pick two more corrections Vsmoorh,1, Vsmooth,2, SUCh that

1
2
Ao
o o (1) ko+2

1
2

0,0
0( )k 0+2

2
a)q Usmooth,1 € IS (RO,O’ Qsmooth)v

2
67/2 Usmooth,1 € log t IS (RO 0, smooth)r

1
2
Ao
oo (1) ko+4
1
3
Ao
Moo (1) kot4

2 p3
6)/1 Usmooth,2 € IS (RO,()» Qsmooth)r

3
ayg Usmooth,2 € logt (RO,Q» Dsmooth)

2k* 1

such that the final error generated by Uppelim := Uo + Z Vj+ X a=12 Vsmooth,a Satisfies

t Cprelim = t (] Uprelim + uprellm)

[1S°(Ry g, 2) + b*IS° (Ro,0,2)]

[18°(Ry 5, 2) + b* IS (Ro0,2)] + 1 Epretim

where the remaining error t* €prelim does not depend on y1 > and resides in

1

2

tzéprenme ( )Zk 15°(Ro,0 (log Ro,0)", 2")
0,0

Proof. We follow closely the procedure in [59], section 2. The only novelty is that we perturb
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around ug = A2 (W (A(r)r) as opposed to /10%,0(” W (Ao,0(8)7r), which will generate additional
error terms during the construction of the v}, 1 < j <2k, — 1. We relegate these to the end of
the procedure, and use the final two corrections vgp01h,4 to decimate this remaining error,
leaving only eprelim.

Step 0: the bulk term

We put uy(t,7) = A%(I)W(R), R=A()r, A(t) = Ay, y,(t). Then (with @ = %+R63)

1 A2 Ay
em=ﬁw=Aﬂnuzwﬁ@%mmﬂ{xﬁﬂ@wmm]
1 1-R?./3 9-30R? .+ R}
ey =1 A2 ()| 01— + 007 D01 16 (4.36)
(1+R0’0/3)2 (1+R0,0/3)2
=: tzeg +€p
where we have 1 1
80 /130
€0 €Y1 ————IS°(Ry}) + yo————1log tIS°(R;})
0€Y1 /,t()'o(l') ko 0,0 Y2 Noyo(t) %o g 0,0

Further, importantly the constants w; » do not depend on y;. We shall then treat ¢j as a
lower-order error which can be neglected in the first kj stages of the iteration process.

Step 1: choice of the first correction v,

Introduce the operator
2 2 4
L()ZZGR +—6R00+5W (Ro.0)
0,0 RO,O 2 ’

Then we solve the ordinary differential equation

L o(DLovy =€), v1(0)=v}(0)=0

-1

Introducing the conjugated operator Ly := Ro0LoRy ¢

which has fundamental system

- Roo(1-R2,/3)
Pr(Rog) 1=
(1+R3,/3)2

Pr(Rog) = 1-2R3 +R{ /9

3
(+R3,/3)2
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we find the following expression for v;:
2 —-1(~ Roo ~ ! I 2 0pl !
:UO,O(t) v1(t, Ro0) = RO,O ((pl (Ro,0) L P2 (Ro_o)R()'o I"e, (RO,O) dRO,O
~ Roo ~ ! /
— 2 (RO,O)f P1 (RO,O)R t eO (RO 0) dRO 0)
0
Then using (4.36), we infer
1 1
vi(t,1) = Ad o (D) g5 (D) (@1 fi (Ro0) + w2 fo(Ro,0)) =: A o (D) g 5() f (Ro,0) (4.37)

where further

fi(Ro0) = Roo(bj+bjRyg+RyplogRoo ¢1j(Rog) + Rogpzj(Ryp))
=1 Roo(Fj(p)+p°G;(p*)logp)

where 1,92 and Fj, G; are analytic around zero, with p := R; (1). Moreover, the coefficients
of these analytic functions do not depend on y1 2.

Step 2: the e; error

Here we analyse the error e; generated by the approximate solution u; = uy + v;, which equals

er = 0v- 10u0v1 101303 —5upvf — 17
212
+ 505001 2D s gy - W*(Ro o)1 + €.

/12 oD
Using the (4.37), we can write t?e; as a sum as follows

tel ZA]+€0,
j=1

where up to sign, the terms are given by

Agomu (r)z( )uo(fkmw5 *(Ro,0) f¥((Ro,0),

Ao = 120(0) (194 + 2,0 (DAGH(DD)” = (10: + 1A} 0 (DA56(D2)) (g5 (1) f (Ro0)),
”“( 2
b (0

1 4[5
Ag,o(t)kz( . ),uooZk(l‘)fk(Roo)[WS kR 2wk Ry ),
=1
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Chapter 4. Type II blow-up solutions with optimal stability properties

with @ = 3 + Ro 00, Also, € is as in Step 0. Then we can write

Ay = A2 (Dpp (D[ @v -1 +v)2)* - 2v— (1 +V)D)] f (Ro0)

1
1 A¢ o (Do 6 (D (Ro0),

where the last term on the right admits an expansion like for v; in (4.37), with coefficients that
are independent of y; . On the other hand, the term Aj is dependent on v 2, and can in fact
be placed in the space

1 1
2 2

AOO AOO
——" 1SR H +y,————1logtIS°(R; )
n Ho,0(8)%o (o) Yz#o,o(l‘)’CO & (o,

We shall deal with it when we define vg;,00¢1,4. At any rate, the error e; satisfies (4.33) for k = 1.

Step 3: choice of second correction v,

Choice of second correction v,. It is in this step where the shock along the light cone, as

evidenced by the expansion (4.5), as well as the definition of 2, is introduced into u%llfr)ox

(whence also into ug%g)mx = u,, the solutions being described in Theorem 101). The key in this
step shall be to ensure that the singular part of v, will be independent of y; ». This we can
achieve since by our preceding construction the principal part of the error e; is independent
of y1,2. Write

e = 3(1) + t_zel, €1:= Az +e€g.

Then as in [59], equation (2.32), we infer the leading behaviour of the term e(l) (where we
change the notation with respect to [59]), as follows:

1
e (1, r) = ﬂé,o(t),ua_é(t)(cla +cob)

where we have a = %, b=D>b(t) = m, and as remarked before the coefficients c¢; do not
depend on ¥ 2. Also, recall

Ho,0(8) = (Ao,o(2) - 1).

The second correction will then be obtained by neglecting the effect of the potential term
5W*(R), and setting

2
2 _ 2 00
r (VZ,tt_VZ,rr_;VZ,r)—_t e

To solve this we make the ansatz

va(6,1) = A0 (1) (kg b (D 1 (@) + 1 3 (1) G2(@))
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4.3. Construction of a two parameter family

In fact, proceeding exactly as in [59], section 2.5, we then infer the equations
Lo q=aa L g2=c

where we set
Lg:=(1-a*d5+@2(B-Da+2a")d.— p*+p.

In fact, our Ay, to,0 are exactly the A,y in [59]. To uniquely determine ¢ 2, we impose the
vanishing conditions
q;0) = 6]}(0) =0,j=1,2.

As in [59], equation (2.45), one can then write (using a = ﬂfgft) where Ry :=r¢,0(%))
Aoo(D)?
V2 = = ——(Ro0 1 () + q2(a)),
Ko 0(0)

where now 41, g2 both have even power expansions around a = 0. In order to ensure the
necessary parity of exponents in the power series expansions around Ry = 0 imposed by
the definition of 2, we sacrifice some accuracy in the approximation, relabel the preceding
expression vg (t,r) (asin [59]), and then use for the true correction v, the formula

_ Ao,0(1)?

TR0

(R§ o(Ro,0) ' G1(a) + g2(a)), (Ro,0) = \/ﬂ'

Again by construction ¢, g, and thence v, do not depend on vy .

Step 4: the e; error

Here we analyse the error generated by the approximate solution u, = ug + v; + v2, which is
given by the expression

er=e;— 6(1)0 —5u‘11v2 - IOu:f vg - IOufvg' -5 vg - vg

2
+ @ =0y =207 (V2= V)
Then according to the preceding we have

tz(el —e(l)o) —€9
Az (1) Az

-1 1 2 0 2 0
€ O(R; gAo,0(1)2 g 5(1) +Y1m15 (Ro,0) +Y2W10g t15" (Ro0),

where the first term O(R;; 0Ao,0(0) 2 Ho 2(1)) is independent of y1 ». The sum of the last two terms
on the right will then be deferred until the last stage, when we define v;001,4. Next, consider
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Chapter 4. Type II blow-up solutions with optimal stability properties

the term

2
2] = 5ufvo — 10U3 V3 — 10U V3 —5u U5 — U + (O — Orp — —0;) (V2 — 19)]
r

Here the interaction terms ui’fj vg , j <4, are only of the smoothness implied by 2, but do
depend on y; 2 on account of u; = uy + v and the y-dependence of uy. However, writing

1 1
uy = [ug —Ag s WAool + [v1+ A5 ,W(Ao0r)],
and expanding out ufﬁj , we can place any term of the form

1 1
1 [ug — ASYOW(/\O,Or)]ll [v1+2A5oW(Ao,01)] L Vé3, Y lj=5,

and with [; =1,/3 = 1 into

1
2
AO,O

0 p-1 2710
W[IS (Ro.0»2) + b7 IS”(Ro0,2)|

Y1
1

2
/10,0

0,p—1 2710
W[Is (Ro0»2) + b IS’ (Ro 0, 2)],

+7v2logt

and so this can be placed into > eprelim- Finally, the preceding also implies (4.35) for k = 1.

Step 5: inductive step

The inductive step. Here we again follow [59], section 2.7, closely, but need to carefully keep
track of various parts of ey First consider the case of even indices, i. e. assume ey;_», 2 < k < k,,
satisfies (4.35) with k replaced by k — 1, and more precisely, that we can decompose

_ 1 2 3
€2k-2= €y ot ot €5 o, (4.38)

where we have

1
AZ
el , € ——0 _[1S°(Ry}) (logRo0) T, 2) + B*IS°(Ry o (log Ro,0) 71, 2")],
Ho,0(1)2k~2 '
3 /1%
2 2 0,0 0,p—1 0,0 0,p—1
‘e ey;—————IS"(R +vo————1ogtIS (R, ),
2k—2 Ylﬂo,o(l‘)k" (Ro0) quo,o(l‘)k" g (Ro0)
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4.3. Construction of a two parameter family

the term e _, being independent of y1 », while for the third term we have
2.3 /10 0 0 2 0
1?e5_, €N ———=[IS°(Ry,2) + B’ IS (Ro 0, 2)]

[18°(Rg 5, 2) + B*IS° (Ro 0, 2)].

We have verified such a structure for the case k = 2 in the preceding step. Then we introduce

the correction v,4_; in order to improve the error e; -1’

as it can be moved into the final error epyelim,

exactly mirroring Step 1 in section

2.7 of [59]. We completely forget about e2 k2

while we shall deal with the intermediate term eg k2

to vyr—1, and proceeding just as in Step 1, we see that v, will satisfy (4.32), and moreover

when introducing vg,00:h,4- Returning

be independent of ¥, . The error e»;_; generated by the approximation ug + 22’“ | vj will be

mostly independent of Y12, and satisfy (4.33), except for the cross interaction terms of vop_1

—Jji

and uy, of the form uo Vy_1» 1 = j = 4. However, splitting

Ug = [t = A s W (Ao, ()] + A5 s W (Ao, (D7),

1
we may replace uy by ug — /13 OW()LO,O(t)r), and then the corresponding cross interactions,
multiplied by #?, can again be seen to be in

1
2

71 W[ISO(ROO,Q)+bZIS°(R00,Q)]
0,0

+7Y2logt [1S°(Ry 5, 2) + b*IS° (Ro0,2)],
Ho,0

whence these error terms may be placed into epyelim and discarded.
The case of odd indices, i. e. departing from e,j_1, k < k., is handled just the same.

Repeating this procedure leads to the v}, 1 < j < 2k, —1. Moreover, each of the errors generated
satisfies a decomposition analogous to (4.38), replacing (4.35) by (4.33) for odd indices.

Step 6: choice of v,001h,00 a=1,2

Here we depart from the approximation upy,—; = up + Z?i *171 vj, which generates an error
ex, -1 satisfying (4.33) for k = k., as well as a decomposition

ek, -1 = Z e, | (4.39)
]_
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Chapter 4. Type II blow-up solutions with optimal stability properties

analogous to (4.38). Importantly, the first error

1
2
/100

tze;k*—l € ————15"(Ro, (log Ry 0)P*+, 2"

Ho,0(1)2k

is independent of y; 2, and the last error eg’ ko1

may be placed into epelim, and so it remains to

deal with the middle error which for technical reasons is still too large. Recall that the middle

error satisfies

1 1
2 2

Az Az
2 ey1—2IS°(Ry ) + quo—(’:),mlogtlso(Raé),

O

and in particular is C*°-smooth. Then set

2 2,2
Ho,0() LoVsmooth,1 =t €k, -1

leading to
1

1
2 2
AO

2
oDk +215 (Ro,0) + 7’2

Usmooth,1 € 71

()k+2

log (18> (Ro,0)

Then all errors generated by vs00:h,1 by interaction with the bulk part u,, —; can be placed

into eprelim- On the other hand, the error tZO% Usmooth,1 1S of the same form as vgyp0:h,1. We

next construct Vs,e0rh,2, proceeding in analogy to Step 3, to improve the error generated by

6% Usmoorh,1- The key here is that on the account of the rapid temporal decay of this term, the

method of [59] applied to it results in a term of sufficient smoothness, to be acceptable for a

correction depending on vy, ». Specifically, we write the leading order term of tzaf Vsmooth,1 IN

the form 1

E

(c1+c3logt) Ro,0+ (c2 + cslogi)

o0 (t )k 0+2

and then set (where the coefficients c; » depend on y; )

2(A2 2
r (az Usmooth,2 — 0, Usmooth,2 — ;6r Vsmooth,Z)

1

A2 /12
m 0()+(02+C410gl') 0.0
0,0

=(cy1+c3logt .
(a1 3log1) ﬂO,O(t)k0+2

Making the correct ansatz as in [59] this is solved by
1
2
A6,0
0,0()ko+4

1
2
AO,O

Usmooth,2 € ISZ (ng()y Dsmooth) + log t/J
0
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1
2
0,0

oo (1) ko2’
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4.3. Construction of a two parameter family

The effect of this correction is that we replace the middle term in (4.39) by one in epyejim, i. €.
our final approximate solution

2k.—1
Uprelim -= Up + Z v+ Z Usmooth,a
j=1 a=1,2

generates an erTor epelim as claimed in the lemma.

In order to complete the proof of the Theorem 111, we need to improve the approximate
solution obtained in the preceding lemma a bit in order to replace the generated error epyelim
by one which is smoother. More precisely, we need to get rid of the rough part of the error
€prelim- FOr this, we replace uprelim by

Uapprox *= Uprelim T V)
where v solves the equation
Quesdt . v+ Y [Pl/d®) =z
prelim . prelim — prelim»
2=<j<5 J

where

- 1 1 2
Uprelim = Uprelim — Vsmooth T Aé,o W(AO,O(U r) = A2W(ADT), Vsmoorh = Z Usmooth,a
a=1
is the y-independent part of pelim- Also, we shall impose vanishing of v at # = 0. Then it is
clear that v will not depend on 7y ». The fact that such a v can be computed with the required
smoothness and bounds, provided N is chosen large enough, follows exactly as in [62], see the
discussion there after equation (3.1). Also, we have for any ¢ € (0, £]

IV vy SeV3

Then we arrive at the error

5
Uuapprox +u

approx
= Dtlprelim + 12 i+ D i
- prelim prelim . relim
2<j<5 J P
~4

+00+ 505 i V

~4 4
+5(= Uprelim + uprelim) v
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It follows that
e S sl i
€approx = €prelim ~ €prelim + Z v [uprelim_uprelim]
2<j<5 J

ut v (4.40)

4
+5(— Uprelim T U

prelim

This remaining error is easily seen to satisfy the claimed properties of Theorem 111.

4.4 Modulation theory; determination of the parameters 7y, ,.

4.4.1 Re-scalings and the distorted Fourier transform

The discussion following (4.26) shows that we intend to pass to a slightly altered coordinate
system, depending on the parameters y1 2, and given by

TerYZ ’ RYl Y2

differing from the old one which corresponded to 7,0, Ro,0 (and which served as the basis for
the discussion following (4.14)). We then have to reinterpret functions given in terms of Ry o
as functions in terms of Ry, ,,, and understand the effect of such a change of scale on the
distorted Fourier transform. Infinitesimally, this is explained in terms of Theorem 106, and we
state here a simple variation on this theme:

Lemma 113. Assume€ has the Fourier representation given above. Then we have the formula
F (€ R)(© = x(e™ &)+ Hoex + Ojy 5 (| xal)

where %, can be written as

Fx(é,n)p(n)x

(Hx)(©) = I (§) x(eE) + fo o

(ndn

where Fy satisfies the same bounds as the function F(-,-) in Theorem 106, and the function hy
is of class C*°(0,00) and uniformly bounded (both in ¢ as well as k), and satisfies symbol type
bounds with respect to €.

In particular, we have
IF (EER))II5, Sro UIxlg, +IxaD).

and more precisely, we have
1% (E(e*R)) - (F@®) (€™ O3, Srp kx5, + 1 xal).

as well as
||3F(E(e"R)) ||§1 S (A +710K) ||9(E(R)) ||§1 +x1xg4l.
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4.4. Modulation theory; determination of the parameters y ».

Proof. This is entirely analogous to the proof of Theorem 5.1 in [62]; in effect the latter deals
with the 'infinitesimal version’ of the current situation. Consider the expression

(Exx) (1) = <fo x(&)p(e R, E)p(&) dE, p(R,m)),

where x € C;°(0,00). Under the latter restriction the integral converges absolutely. Then
proceeding as in [62], see in particular Lemma 4.6 and the proof of Theorem 5.1, we get

2K 00
(Z¢0) () =Re [a;L(;)]x(é) + fo fe(&mxm) dn,
+

where a, is the function occurring in Prop. 103. Here in order to determine the kernel f; of
the ’off-diagonal’ operator at the end, we use

(n - {)fk(é-rn)
= fo x(&)5[e > W*(e ™ R) — W*(R)lp(e ¥R, e** &) p(&) di, (R, 1))

Then by following the argument of [62], proof of Theorem 5.1, one infers that

PFE(E

fK(é‘)n):K 5

with Fi having the same asymptotic and vanishing properties as the kernel F(¢,7n) in Theo-
rem 106, uniformly in « € [0, 1], say. It remains to translate the properties of =, to those of the
re-scaling operator. Let W be the operator which satisfies

—21<p(e€7) ‘f

F(YE))=e x(—==)
(r@)e p) e
and leaves the discrete spectral part invariant, while S,-« (€) (R) = E(QEK) is the scaling operator.
Then we have
Ex X)) = F(Se~¥(©) (). + Oy 15, (Kl xal).
We conclude that

F(Sex€)©€) = Ex(F (Y71 @)) + Op.y5, (kIxal)-

It follows that we can write

2K 2K
gseﬂ('v — 2K 2KR a+(e 6) .p(e 6)_1 2%
(Sex€)(&) =x(e*¢) + [e™ Re | . | G |x(e°¢)
+ fo Fe@mxm) dn+ Oy (klxal),
where we put
7 o n., epm
Fe@m = fiel&, ) o)
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Chapter 4. Type II blow-up solutions with optimal stability properties

This implies the claims of the lemma.

4.4.2 The effect of scaling the bulk part

Here we investigate how changing the bulk part from AE‘OW(AO,O r) to Az W (Ar) affects the
distorted Fourier transform of the new perturbation term. Specifically, recall (4.25), which
defines a new data pair (€p,€;), which in turn uniquely define a new quadruple of Fourier
components (x(()yl’m, x&“w xiyl’m (Q'YZ)), via (4.27), (4.28), (4.29). We can then derive the
analogue of (4.16), and try to repeat the iterative process in [49], but for this we shall have to
ensure the two key vanishing conditions (4.30), as well as the condition (4.21). That this is
indeed possible is the content of the following

Proposition 114. Given a fixed v € (0,vql, to € (0,1], thereisad, = 01(v, ty) > 0 small enough
such that the following holds. Given a triple of data

(x0(&), x1(&), X0q) € Sx R

and with
Il (x0, x1) I3 + 1 %041 < 671,

there is a unique pairy, » with |y1|+1y2| Sy, t I (X0, X1) Il 5 and a unique parameter x,4 satisfying
[x14] Sv |X0q] such that determining (€, €1) via (4.10), (4.11), (4.12), and from there (€y,€1) via
(4.25) which in turn defines the quadruple of Fourier data (x(()y"w (()7;%), xiyl’w 0 YZ)), we

have

o pz (&)1 (§)
A(ymfz)::f pf— ym(ro)ff )L%yz(s)ds]df=0

)

Pz (Q)xy " (©)

B(y1,72) = f 5—1 cos[Ay, y, (T0)¢? f Ayl (s)dsldé =0,
4

and the discrete spectral part (x(y' ) m YZ)) satisfies the vanishing property of Lemma 109,

(4.21), with respect to the scaling law )L /171.7@ We have the precise bound

1 1
Y144, té““”l +1y24¢0log o téc"vl < TologTo(ll (x0, x1) I 5+ [X0al). (4.41)
Finally, we have the bound

(2 _ Moo
=28 xollg, + a7 - = Si, s,

AZ 12

SlogTo- 10t - (1 (xo, x1) 5+ | x0al)-

”x (Yu,y2) _
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4.4. Modulation theory; determination of the parameters y ».

where S 2, Xi &= xl( é) is the scaling operator.
e

Proof. The strategy shall be to first fix the discrete spectral part to (xy4, X14) while choosing
Y1,2, and at the end finalising the choice of x4 to satisfy the required co-dimension one
condition.

Observe that from our definition and the structure of uayp1 py rz;x, in particular Lemma 112, and

the end of the proof of Theorem 111, we can write

1
Eo=xr5Cto[/lg’OW(/lo,0r) " YZW(AYI y2T) = Vsmooth| + €0, (4.42)
as well as
1
€ = er(;to[at[agyowmo,or)— MZW(AY1 721 =0t Vsmoorn] +€1, (4.43)

where we have introduced the notation vg,00¢h = X 4=1,2 Usmooth,a» the latter as in the state-
ment of Lemma 112. Also, it is implied that the expressions gets evaluated at ¢ = f.

We shall think of €y, €1 as functions of R = Ay, 4, (fo)r, and we shall keep the latter definition of
R for the rest of the paper, as this is the correct variable to use for the sequel.

Observe that setting

FREIE f ¢ (R, &)Reg(Roo(R) dR, T 177 = fo ®a(R)Reo(Roo(R)) dR

e A/ 1, /2 ~
BO == Ak, f $(R,&)Re1(Roo(R) dR %Z : =ty e Ty ) E)
1Lr2

A N
AYI Yo I, . (ch (r1, YZ))(f),
Y1,Y2

and finally (recall (4.29))

) A

~( ) _ Y1,Y ~(r1,72)

B = Al fo ¢a(R) Re1(Roo(R) dR ~ Ml ;lf:ml’ddxoﬁ "
1,)2

A
Y1,Y2 (Ym/z)
— —/1 [, o chxo

Y1,Y2

then using Lemma 113, we have
2

~(Y1 )Y2)
&) - 0,0 /12

k
—— g, <o Y115 +y2logto - to* Il xoll5, +1x0all,
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while we directly infer the bound

~( ) ki k
%0 = x0al SIy1t,"" +y2logte- 1y 1(Tollxollg, +1x0a)-

Similarly, we obtain

)L
ERREIGE Z-9llg
’1‘)'0 /1% 0 >

kov -1
Shntg® +y2logto -t 1l llg, + I xollg, +1x1al + 74 1x0all,

as well as

~( ) ki k
%07 = x4l Shyi " +y2log to - 1" |(Toll xo I5, + I x0al)-

taking advantage of the structure of %, £, as detailed in Theorem 106. Recall the quantities
in (4.22)

s[vrgg’ 1dé, A:=

f p2 (6)xo(€) [vroé2] dé,

f Pz(f)x1(f)

and thus formulated in terms of the original data xp ; ({), and independent of y; ». Then denot-

ing by A(y1,72), resp. B(y1,72) the quantity defined like A(y1,72), B(y1,72) in the statement

(Yu,72) ~(r1,72)

of the proposition, but with X; replaced by X , ] = 1,0, we infer after a change of

variables that

Alr1,y2) = A+O(ly15" +y2logto- 15 Tollx1llg, + 7o xollg, +|x1al + 7o 1Xoall), (4.44)

B(y1,y2) = B+ O(ly18,*" +y2logto- 3" 1ol xoll5, + 75" Ix0all), (4.45)

Finally, in light of (4.42), (4.43), introduce the Fourier transforms of the 'bulk part differences’

" 00 1
J?é%'m(f)zfo DR, E)RYr<cry[A50W (Ao,or) = YleWMher) Usmootn| R,

~ oo 1
Frg =2l fo SR, ERY r=cy [04[A2 W (Aoo7)

/’{,2

71 YzW(/lYl,}’z I‘)] —6[ Vsmooth] dR,
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and label their contributions to the expressions A(y1,Y2), B(y1,Y2), by

= OF )
Aly1,y2) = | pé— n[MIyz(To)ff Ayl (9)dsldé=0

2O (©)
B(ymfz) —f pf—lcos[ yiy2 (T0)S 2 f MI . (8)dsldé =0.

Then the first two vanishing conditions of the proposition can be formulated as

0= A(y1,72) = Aly1,72) + A(y1,72), 0 = B(y1,2) = By1,y2) + B(y1,72),
and so, in light of (4.44), (4.45), we find

Aly1,y2) = —A+ Oy fg°V+Y2108 f0'l‘é€°V|T0[||x1 Is, +T61||xo||§1 +T61|X0d| +|x1411), (4.46)

By1,y2) = =B+ O0(Iy15°" +y2log - té“"”lro[llxollg1 +74 " x0all)- (4.47)

It remains to compute ﬁ(}/l,)fz), E(yl,yz) in terms of y; 2, which we now do: we can write

1

1 1
Aé,O W(Aoor) — y] 72 W(/l}’l Y2 r) =0y tgov +7y2logto- tgovl)/lé,o('b(R’ 0) (4.48)
+ O(h/l téc()v +72 IOg o - [écﬂv|2),

Further, we find after writing {¢p(R, &) = £ (R, ¢) and performing integration by parts

S 1 1 Ctg
| f BB, E)reci AL (B(R,0)dR| Sy AZ —220 (4.49)
0 r ty 0,0 0,0 <CT0€§>N

whence we infer

oo 1
| fo PR O Yr=cioR[AZ W Aoor) — A3, 1, WAy, , 1) dR|
Crtyg b (4.50)
SN/I ﬁlylto +72log o - t° |+|)f1t°v+y210gto 1,0 7.
T() 2

We also have the important non-degeneracy property

W(/lh Y2 r)]

1
}?im R™ yr<cr RIAG oW (Aoor) = A7, 4,

(4.51)
= 0[y1t koY 4y, log o - A kovy +o( olrity KoV 4 yalog fo - koV]Z)

’

in the sense that the principal term on the depends linearly on y; » with non-vanishing factor.
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Chapter 4. Type II blow-up solutions with optimal stability properties

This is to be contrasted with the vanishing property
lim R™ Y r=Cro RVsmoorn(R) =0, (4.52)

which follows from Lemma 112, and finally, by another integration by parts argument similar
to the one for the bulk term to get (4.50), and exploiting the fine structure of vg,00¢, from
Lemma 112, we get

0o 1 Ct
f P (R, ) RYR<Cro Vsmooth (Rl 1=ty AR = |11 técov + 721081 thV|ON(/15’0 —Ol) (4.53)
0 (Cto¢2)N

Finally, using the precise asymptotic relation limg_o ¢ 2 p(&) = c where in fact one has ¢ =

E)

see Lemma 3.4 in [17], we infer that

=(y1,72) 1
= X ©)p2(<S)
B(Yl,)fg):fo 05—1 0s[vTyé? ]dE+Oto(|ylt Y+ yslogty-t, kOVI )
4
= lim cR" f BR,OF (0)p(¢) dE

(4.54)

+ fo ?58“’“)(6)[%5@—cp(f)]cos[vrofildf

+ Cf() ZID () p (&) (cosvToé?] - 1) dé

+ 04 (IV1 18 +y210g 1 - 15V 1).

Observe that the extra term Oy, (1y1£3°" +7¥2log o - £,°"|?) arises from replacing

Ayry, (T0)E2 f /17,1 r(8)ds
by vto. The last term on the right in the above identity is essentially quadratic and negligible
in the sequel. The second and third terms are also negligible on account of the bounds (4.50),

(4.53) from before for the Fourier transform of the bulk part as well as vg;,005: for the second
term, we get (for suitable ¢ > 0)

= ()
|f ol Y”(é)[p(S 9 _ cp©)]cosvioe?] dé| S AO oTo Y1 ts” +y2log totl],
while the third term becomes small upon choosing C sufficiently large:

| f 72 () p(@) (coslvroé ] - 1) dé|
< C_l/léyolyl t(])c‘)v +72logty téc"vl

Finally, for the first term above, we have according to the earlier limiting relations (4.51), (4.52)
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4.4. Modulation theory; determination of the parameters y ».

the key relation

lim R~ f B(R,OTI (0)p(¢) dE

2 00[')/1[00 +’}/210gt0 t OV]+O( [Ylt kov +')/210gt() kOV] )

Combining the preceding bounds and identities for the various terms in the above identity for
B(y1,72) and also recalling (4.47), we have obtained the first relation determining y1 », given

by
c 1 _ 1
B=- 5/15’0 Y1 téc"v +72logty- té“ov] +0(C lxlgvolyl tg‘w +72logty t(lfovl)

+0(Iy1 182" +y2log to - 15" 7oLl xo s, + 75" 1x0al]) (4.55)

kov k() V] )

+ Oto(/lo oly15"" + 721081 1,

’

where the first term on the right dominates all the remaining error terms, provided the data
are chosen small enough.

To derive the second equation determining y 2, we recall the formula (4.28) for x(y1 V2 , which
hinges on €;. Then by combining (4.43) with (4.48), we have (using the notation A := E + ROR)

RE) = RO,[(t"Vy, +logt- tk”yz)itéo}?‘l(p(}?,o) Vsmooth|—q, + RE1
+o(/12 18V M og to(Y_ Iy D18V y1 +log fo - 18V y1)
= c1 15 (15" +log 1o - t0°”y2)A§'O(p(R,0)
+ ety Lty +log o - té“”yz))téomz W)(R)
+ Y2tV 12z 2 o®(R,0) + o(aéyorgov‘l log to(Y_ Iy iDI£8y1 +1og to - £ y21))

- Rat Usmooth T Req.

Using (4.28) which gives
> A’ 1, /2
O = ALl || OURORE R AR~ Ty, et 0

A
/17’1 Y2 I, N (chx()/l ?’2))(5),
Y1,Y2

and also keeping in mind the corresponding relations (4.11), (4.12), we deduce in light of
Lemma 113 the identity

4 3
0@ =) Aj+ Y B+C
i= i=1
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Chapter 4. Type II blow-up solutions with optimal stability properties

where the A; are the terms coming from the 'bulk term’ and are given by

1 co 1
A= —Cl(toﬂyl,yz)_l/léyo(tgw)’l +logty- l‘(fov}/z)fo G(R,E) X r=CryAg (R, 0)dR
1 i kov kov o i 2
As = =Colohyy ) AL (51 +log - 11 y2) fo B(R, )Y pecryAi o (A2 W)(R,0) dR,
Ay 1Y2f PR O Y recroAd o b(R, 0) AR

yl y2f $(R, é)XR<C1:0Ratvsmooth dR,

while the terms B; arising from the perturbation are given by

A A AYI Y2 ( )
B =— B, = Heexy 1)),
1 /10,() (AZ 5) 2 — Ayl " |t to( ccx )(6)

A
By = _AerYz |t to(Jv/cdx(Yl Yz))(a
Y1,Y2

Finally, C is the error, which is given crudely by

1
2 kov kov -1 -1
C=0(Aoly1ty"" +y2logto- " ITolll x1ll5, + 7o I Xoll5, + 1x1al + 74" |X0all)

+ Oto((z |Y]|)|Y1 t(;cov +72 log to- l'(])COVD,
I

Inserting the preceding into the expression for A(y1,7y2) (asin the statement of the proposition)
and proceeding as for the derivation for (4.55), as well as observing that

. foo p7 () Heex ) (©)
0

64
—D(xo,de)+Dmoomt Y+ yalogty - 1) + Oy (Iy1 82 +y2log to -

sin[Ay, y, (T0)¢? f /lyl 7, (8) dsldé

kovl )

where D(xy, xo4) is independent of y; » and is bounded by | D(xo, xo4)| < [l X0 II§1 + | x04|, while
D, = Dy (v) is a suitable absolute constant, we infer the following identity:

z(f)x(YI Y2) ©
f ! B sin[Ay, y,(T0)¢? f Ayl () dsldé

Gt (4.56)
=A+ Y Ej+D(xg,Xoq) +F.
j=1,2

Here the first term on the right arises on account of (4.44), the two terms Ej » arise via the
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4.4. Modulation theory; determination of the parameters y ».

contribution of the bulk terms A; — A4 (taking advantage of estimates like (4.49)), and are of
the form

1 1
Ey=eid;on fécov +7v2logto- técw), Ep = e 72 féc"v, ex 70,
and finally, the error term F is of the form

F=04,(lyiDly1 5 +y2log o £5V1)
j

1
3 K k -1 -1
O(Agolr1 85" +72logto- 5" 170l llx1llg, + 7o Ixollg, +1x1al + 74 1X0all)

Equating the expression on the left of (4.56) with 0, we infer the second equation, analogous
to (4.55):

1 1
5 K K Yok
A=—e1Ag (11, +y2logty- 1,°") — ea g yy21y"" — D(xo, Xoa)

+ 0, (L lyiDIy1 5 +72log to - 151
i

1
2 kov kov -1 -1
O(Agoly1ty®" +y2logty- 15" ITolll x1ll5, + 7¢I X0ll5, +1X1al + 74" | X0all)

On account of the easily verified bounds
< . < ~
[AI'S Tollxallg,, IBI S Tollxollg, »
we then infer
1 kov i kov
IY1Agoto" |+ 1v2A45log oty 1 < (logTo) - To(ll (xo, x1) Il 5 + 1X0al)-

Recall that throughout the preceding discussion we kept the discrete spectral parts (xo4, X14)
of the initial perturbation (€1, €») fixed. If instead we allow x; 4 to vary, we can think of y; » as
functions of x;4, and moreover one easily checks that

%(Y} )Y2)

2
1w =%1a+OUlxollg, +lx1llg, +lxoal + 1x14117).

with a corresponding Lipschitz bound. It follows that there is a unique choice of x;4 such that

. < ~rny2) ~(r1y2)
(for given xo, x1, Xoq) the pair (xozl ’ ’x1):;ll &

with respect to the scaling parameter A = Ay, y,.

) satisfies the linear compatibility relation (4.21)

The last bound of the proposition follows from the preceding formulas for x , as well as

(y1,72)
X9

(Y1,72)
1

in terms of x, xp. Specifically, one uses the fact that for the Fourier transform of the
bulk term® in (4.42), we have the asymptotics (4.48), (4.49) as well as (4.53), and we get

CT()

|———
(Ctoé2)N

l5, St (4.57)

8This means the sum of the first three terms on the right.
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Chapter 4. Type II blow-up solutions with optimal stability properties

For later purposes, we also mention the following important Lipschitz continuity properties,
which follow easily from the preceding proof:

Lemma 115. Let (y1,Y2) the parameters associated with a data quadruple (X, X,) € S. Then
using the notation from before and putting

A= A3 7))
we have

1
[(y1— 1)/12 [ kov) 4 [(y2—7Y2)A5 4 log fol‘écovl S 1ologTolll (x0 — Xo, x1 — X1) Il

+ 1 (x0, x1) | 51 X0 — Xoall-

)~ Moo 0
||xY1 Y2 xOYle _(TSAZ Xo——=S2 Xo)llg
A2 12
(ruirs) _ 57 _ Ao, B
+1lx; (/1 S/lgoxl _/1 SA(Z)O 1)”52
2z 2
Slogto 7ot - [l (xo — Fo, X1 — 1)l 5+ Il (%0, X1) 151 %04 — Foall.
Finally, we have the bound
(r1, Y2) |~
e 7 = ) = T = Kl
< [l (xo = Xo, X1 = X1) 15 + | x0a — Xoall - [Il (X0, x1) I3 + | x0al].

4.5 Iterative construction of blow-up solution almost matching the
perturbed initial data

Here we carry out the actual construction of the solution, as explained in the paragraph
following (4.30). Thus departing from perturbed initial data

Uyl + (€0,€1),

where the perturbation (o, €1) is associated with a data quadruple (x,, x,) as in (4.10), (4.11),
(4.12), where x4, as well as parameters v » have been computed according to Proposition 114,
in terms of the Fourier data (x((¢), x1(£), Xo4), we then pass to a different representation of the
data which coincides with the preceding data in a dilate of the light cone at time ¢ = 1y, i. e. we
have

0,0 (Y1,72) =
XrSCto u;pgrox[t()] + (61762) = r<Ct0 uay’;p};?ox[t()] + @1;62)-
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4.5. Iterative construction of blow-up solution

Then, according to Proposition 114, the Fourier data associated to (€1, €>) in reference to the
coordinate R := Ay, y, (fo)r, satisfy the key vanishing relations

A(y1,72) = B(y1,72) =0,
these quantities being defined as in Proposition 114. We shall now strive to evolve the data
udnT? o] + @1,82)

backwards in time from ¢ = #y, and thereby build another blow-up solution with bulk part

u%g’rz;x(t, x) on the time slice (0, 7] x R.

4.5.1 Formulation of the perturbation problem on Fourier side

Re-iterating that we shall work with the coordinates

7= f Nyoys()ds, R= Ay, y, (00T, (4.58)
t

we shall write the desired solution in the form

u(t, x) = ugp V2 (1, %) + (1, x), elto] = €1,€2), (4.59)

and passing to the variable €(z, R) := Re, we derive the following equation completely analo-
gous to (4.14): using from now on A(7) = Ay, 4, (1),

(07 + AL "YROR)?E - B(1) (0 + AV ROR)E + L&

_ e . Y (4.60)
= A " (M) R[Napprox(€) + eapprox] + 0: (AL )E; B(1) = M)A (1),

where we use the notation

4 4\~
RNapprox(€) = 5(uappr0x — Ug)E+ RN(uapprox»ay
— € 5 5 4 ~
RN(Uapprox,€) = R(Uapprox + E) - Ruapprox - 5uapprox£’

and ugpprox = u;y,;f,)mx. The source term egpprox is precisely the one in Theorem 111. Also,
observe that we may and shall include cutoffs to the right-hand source terms of the form
XYR=<cCr, Since we are only interested in the behavior of the solution inside the forward light
cone emanating from the origin. Ideally we will want to match

elto] = (€1,€2),
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Chapter 4. Type II blow-up solutions with optimal stability properties

but we shall have to deviate from this by a small error. In order to solve (4.60), we pass to the

distorted Fourier transform of €, by using the representation

21, R) = x4 (D) pa(R) + fo X1, (R, Ep(E) dE.

| *a(® _[¢a
o= 20, e[,

Writing

we infer

(@$+ﬂ(r)@r+§)£(r,€)==%’(T,§)+/_’(T,§),Z=( j;f )

combined with the initial data (which in turn obey (4.27), (4.28), (4.29))

(Y1,72) X(Yl'h)
x(to, )= "0 |, Zex(mo,)=| M., | To=70).
X9 X1
where we have

R, 1)) = (4B Drx - F @)K + [, K] + K + B F2H)x)(©)

with (1) = %, and

f@,8)= g(A_Z(T)XRST [5(u2ppr0x - ué)g+ RN(Uapprox,€) + Reapprox])(f)

fa(®) = </1_2 (M Xr<e [S(M?zpprox - u3)5+ RN(uapprox, €) + Reupprox]y ¢a(R)).

Also the key operator

0 0
D=0+ p(1)A, gf—(o ﬁfa)

and we have

-0 ()

The operator £ is described in Theorem 106.

(4.61)

(4.62)

(4.63)

(4.64)

The main technical result of this article then furnishes a solution of (4.61), (4.62) as follows:

Theorem 116. Let (x(()yl’yz), xiyl’m) €S, x%l'h), 1=0,1, be as in Proposition 114, and assume t,

is sufficiently small, or analogously, 1 is sufficiently large. Then there exist corrections

(Y1,72) (Y1,72) (Y1,72) (Y1,72)
(Ax, yAX, ), (Axy, " Ax )

satisfying
ruys) A L1Y2)
lAax™ ", 2% ") s < 1 (xo, x) 15 + 1 X0al,
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4.5. Iterative construction of blow-up solution

(y1,y2) (y1,72)
|Ax T+ 1A < Nl (o, x0) 5+ |xoal,
and such that the (Ax(()h'YZ),AXYI’YE)), (Ax(()};’m

fashion on (xo, X1, Xoq) with respect to || - |5+ | - | with Lipschitz constant < 1, and such that the

,Axg;’n)) depend in Lipschitz continuous

equation (4.61) with data

(x(70,8), (D) (70,8)) = (g + A7, 57+ Ax1?)

(Y1,72) (yvy2) _(y1,72) (Y1,72)
(xa(T0), 0rxa(T0)) = (x,) " + Ax T, £+ Ax T
admits a solution x(t,&) fort = 1 satisfying

(x(7,), D x(T, ) g+ 1xq (D) +10: x4 ()| S 11 (X0, X1) | 5+ 1 %0al,

3
. ~ S+
corresponding to€(t,R) e H foc where

€T, R) =xd(T)<Pd(R)+f0 x(7,8) (R, ¢)p(&) ds.

Finally, we have energy decay within the light cone:

1
lim — |V, c€lPdx=0
t—0J|x|<¢ 2
where we recalle = R€.
Remark. In fact, the Fourier coefficients (Axéyl'yZ),Axiyl’YZ)) will have a very specific form,

which makes them well-behaved with respect to re-scalings (which hence don’t entail smooth-
ness loss when passing to differences). This shall be important when reverting to the original
coordinates Ry at time ¢ = fy, which were used to specify the perturbation (xy, x1) to begin
with.

4.5.2 The proof of Theorem 116

It is divided into two parts: the existence part for the solution, which follows essentially
verbatim the scheme in [49], and the more delicate verification of Lipschitz dependence
of the solution on the data (xy, x1, Xo4). Here the issue is the fact that there are re-scalings
involved, and the very parametrix used to solve (4.61), as well as the source terms there,
depend implicitly on vy, 2, which in turn depend on (xg, X1, Xo4)-

Setup of the iteration scheme; the zeroth iterate

Proceeding in close analogy to [49], we shall obtain the final solution x(7,¢) of (4.61) as the
limit of a sequence of iterates x'/) (r, ). To begin with, we introduce the zeroth iterate in the
following proposition. The only difference compared to [49] is the presence of the error term
eapprox, Whose dependence on y1 > needs to be taken carefully into account.
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Chapter 4. Type II blow-up solutions with optimal stability properties

To formulate the bounds on the successive iterates, we introduce a number of notations. First,
we recall (4.8), which is used to control data sets, and we also introduce the slightly stronger
norm

G0, x0)lls 2= ol + Ixallg, = 146 2000 xol 2 T (g2 +20og- Pz, (4.65)

Denote the homogeneous propagator (4.20) by S(t) (xp, x1), and further introduce the inho-
mogeneous propagator solving the problem with source (this only involves the continuous
spectral part)

(22 + B(1)D; + &) x(1,8) = h(T,8), (x(T0,E) =0, D x(10,E) =0

by
x(7,8) = f U(tr,o0)h(o Q) ——&8do
’ Az( ) ’
4.66
2 o} (AJ” o sin[ A0 117w dul (4.6
U(T,O') 1
12 (0) ,02 ) ¢z
Further, denote the evolution of the spectral part with inhomogeneous data
(0% +p(T)0; + fd)xd(T) =hgy(1), x4(19) =0,0;x4(19) =0
and without exponential decay at infinity (for bounded #,; for example) by
T
x4(1) = f H(t,0)hy(0)do, (4.67)
To

where we have (see Lemma 109) the bound |H(7,0)| < e~ I"=%1 for some ¢ > 0. Following [49],
we also introduce the somewhat complicated square-sum norms over dyadic time intervals

and given by
—— A1) 46 %
1y @ )ligqr = ( N; sup( o )™lly(e ,)||Lz) : (4.68)
Nd;adlc

and we shall also use || y(7,&)lls4r¢<1) 177, &)l s47¢>1) Where sz will be refined to Lzé(f <
1), 12 2¢¢ > 1). To define the zeroth iterate x© we replace the source functions in (4.64) by

g(/l_ZXRSTReapprox)’ </1_2XR§TReapproxy Pa(R)).

Proposition 117. Assume the same setup as in Theorem 116. In particular, as before, everything

depends on a basic data triple (xy(¢), x1(£), Xxoq) from which the fourth component x,4 and

(Yl )Y2)

further the new Fourier components Xy are derived. There is a pair (Ax(o),Ax(O)) €S,
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4.5. Iterative construction of blow-up solution

satisfying the bounds
IAXEY, AX) 5 <154 1 (xo, x1) 15+ 1 x0al),
and such that if we set for the continuous spectral part

x(O)(T f) ::;EE)(T §)+S(T)(X(Y1,Y2)+A§(0) X(YI’YZ)-FAX(O))
A%(1)

7o)

X0)(7,6) = f Ut,0)F (A2 per Reapprox) (@,
then the following conclusions obtain: for high frequencies £ > 1, we have
sup(—) “lles1 X0z, Olis, +sup(—) Ixes12:x0 (x, Ols,
T=Tp T=Tg
+ ||éz+5°@ X0 @, sgriesn S 7o 1l Gxo, x0) M5 + 1041l
For low frequencies ¢ < 1, there is a decomposition

x0(7,6) + S@)(AFY, AF9) = A5 xO(1,8) + S(@) (AxO (), AxD); (8))

where the data (Amo(f), Aml (&) satisfy the vanishing conditions

1 o) | [
f P(mx 2@ cosiA(ro)et f A~ du dé =0, (4.69)
To
00 o} OV ALD | oo
PZOATHE) G A roret f A7 w) dul dé =0, (4.70)
& o

and such that we have the bound

I(Ax@ (@), Ax(o)l(é))llsﬂup(—) Mlpec1 Do xO (2, ) Is,

T=Tp

+ ||€_60@TA>TX(O) (7,8 ”Sqr(5<1) S Ta [||(x0;x1)||§+ [Xoall.

Furthermore, letting A%;O),Ai;o), Jj =1,2, be the corrections corresponding to two initial per-
turbation quadruples (where the component x, 4 is determined in terms of the other three ones
via Proposition 114)

(X, X1)s (X, X)),

we have we have

=(0 =20 =0 =0 —(1- — — —
IAXY - A%, AFY - AT 15 S 75" 7 (o — %o, X1 — %) 15+ 1 X0a — Foall.
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For the discrete spectral part, setting
0 * 2
Ax; (1) := f Hy(t,0){A"“(0)Reapprox, Pa(R)) do,
To
we have the bound
AxY @) +10: AxD N S 1l Gxo, x1) g+ | Xoal.
We also have the difference bound

21axD @) - 2xY @)1 +10: 420 (@) -0, 4% (1)]]

S (o = %o, X1 = X1 g+ 1X0q — Xoal-

We shall then set
xg)) (1) := xg/l'w (0 + Ax((io) (1),

(y1,72)

where x (1) is the 'free evolution’ of the discrete spectral part constructed as in Lemma 109

with data (x(Ym’z) x;);ilv?’z)).

Remark. Observe that the formula for the continuous spectral part x (z,¢) arises by adding
the term S(7)(AX,”, AX”) to the Duhamel type parametrix coming from Lemma 109. The
reason for such a correction term, which is already present in [49], comes from poor low
frequency bounds for the term

A2(T)

o )5)030,

fU(T 0)F (A7 r<rReapprox) (@,

and more generally, for any such term occurring in the iterative scheme. The idea then is to
write this bad term (for small ) in the form

£srx0(7,8) + S (Ax00(©), Ax0, ©)),
by replacing the integral fTTO by one over [;°. Since term components

AxO (), AxD); (©)

don't necessarily satisfy the vanishing conditions (4.87), (4.70), we need to add the corrections
A?c(()o) , A%ﬁo). Importantly, these can be chosen to be much smaller than the initial data xp 1, Xo4.
This procedure is explained in greater detail in [49].

Proof. We follow the same outline of steps as for example in the proof of Proposition 8.1 in
[49].
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4.5. Iterative construction of blow-up solution

Step 1: Proof of the high frequency bound

Recall (4.40). Correspondingly, we shall write & (/1‘2 x RSTReappmx) as the sum of several
terms. We shall prove the somewhat more delicate square-sum type bound, the remaining
bounds being more of the same.

The contribution of eprelim — €prelim

Write

A2(1)

,mf) do

T
EI(T;& 32[ Ul(r, U)Q(A_ZXRSTR(eprelim - 5prelim))(0'
To

We need to bound II€%+5°@TEI (T, Ollsgre>1)- Observe that

A%(1)
A12(0)

A2(1)

120 ¢da, 4.71)

T
@T[f U(r,0)g(0, §do| =f V(r,0)8(0, ——

where we set

3 2@ .
V(r,0):=— : COS[/I(T)f%f A‘l(u)du].
A2(0)  p2(E) o

In light of Prop. 103, we infer the inequality

A%(T)P%(Az(a)f) A2 (@)
A20)  p2() S o)

,6>1,

and this implies

1 _
||£2+@r:‘1(7 ¢) ”Lfi &>1)

T 22%(1)
To /12( )

A2(1)

< A0
A%(0)

<2 +6°g( _Z(U)XRSTR(eprelim—5prelim))(‘7’ f)”Lis(bD do

Referring to the same proposition for the isometry properties of the distorted Fourier trans-
form, as well as Lemma 105, we obtain

A1) _ B 2@

2©) 162490 97 (A72(0) ¥ r<r R(Eprelim — Eprelim)) (0 o )€)||L .
@) s 1,1 ) )

5(/12(0)) So };||€§+6097(/1 Z(U)XRitR(eprelim_eprelim))(G,-)IlLép
@) gy1o- ~

5 (/12 (0.)) bo—3 ||/’l Z(U)XRSTR(epreﬁm - eprelim) ||H;;250 .

263



Chapter 4. Type II blow-up solutions with optimal stability properties

Referring to the end of Lemma 112, as well as Definition 4.3 preceding that lemma, for the
structure of eprelim — €prelim, and finally also using the key bound (4.41), we infer the estimate

”/1_2 (U)XRﬁrR(eprelim - é'vprelim) ||H1+25o
a (4.72)

- 1 1o — ko+1-1(1+v -
50_ 2'0.2(1+v )—ko 2+-10gT0T00 2 .

1
0z -[ll(x0, x1) Il + |x0al1.
Finally integrating this over o € [, 7], we get

- 231

1 —_ - _5n—1
162402 B (1,2 1) STo " yEENY 00~ - Il (o, x1) Il + 1 %0all.

In turn inserting this bound into the definition (4.68), we find

1 _ _3_
||£2+9T':'1 (va) ||Sqr(f>1) S, TO Z . [” (x()r xl) ”§+ |x0d|]v

which is indeed better than what we need.

The contribution of the expression:

5 .

— J _

G(,R):= , E 5( )v [uprellm prellm] +5(— uprehm + uprehm) v,
<j<

where we recall v, Uprelim, Uprelim, is described in the last part of the proof of Theorem 111. In

particular, we have the bound

1 -1y_
10 Bl ez S 72@V -2k

with k. defined as in Theorem 111. Then setting

A2(T)

Ea(1,8) —f U(r,0)g(0, o)

——¢)do,

where we set
g(1,8) = F(A (M xr<: RG(, R)) (),

we infer by a similar argument as for the preceding contribution the bound

1 _ TA2(1) 1 A% (1)
1677, 251,92 651 S f o ||€;+§°g(0,Az—w)a”@é(bl)da
TART) s, o
S Gy " I ORGE R ey, o

On the other hand, the proof of Theorem 111 easily implies the crude bound

IV @RG@, Rl oot ey S 0N Gk, 20l + 1 X0all, N >> 1,
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4.5. Iterative construction of blow-up solution

and so we obtain

A2(1) 1
A% (1)

1 _ 1
”624—60@1:2(%5)”[‘2 (5>1)§ 0 ( )4 +5°[||(XO,X1)||S+|)C()QZ|]

This in turn furnishes the bound

1
162 2rE2 (1, )l sgrie>ny S 7o - G0, x5+ 1x0all,
qr(¢>1)

which is much better than what we need.

Step 2: Choice of the corrections (Ax(o) AX (0))

In analogy to [49], we shall pick these corrections in the specific form

AXV () = aF (Krecrp(R,0))(©), AXV () = BF (xr=crd(R,0) (&), (4.73)

and we need to determine the parameters a, §§ in order to force the required vanishing condi-
tions (4.87), (4.70) for Ax©@ (&), Ax@(&). The latter quantities are given by

A% (1)
A2(0)
A2 (10)
" A2(0)

A;(O/)o(f):f U(r0,0)F (A Y r<i Reapprox) (0, S5 —8) do + A% ),

AxO, (&) = f V(10,0)F (A Xr<s Reapprox) (@ §do+ A% (@),

where we recall (4.71). Thus writing ﬁﬁj(f) = A;@j(é) - Aazcﬁ.o) (&), j =0,1, we need the
following simple

Lemma 118. We have the bounds

2 A (0 1 [ ol
f PERATT0() (‘() X0@ Cosiarere [ A7 o duias 70 e, xl + xoal

3 A +©
f pERIAXE) (‘() X116 A(ro)ff AN w) dud dé) S 707 1 e ) s+ Lxoal,

Proof. We again refer to (4.40) to split this into a number of bounds. We consider here the
contribution of

€prelim — Eprelim;

the remaining terms being treated similarly. We distinguish between three frequency regimes:
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Chapter 4. Type II blow-up solutions with optimal stability properties

(i): £ < 1. Here we get

|Ax@ ()]
_1 © A(To) _ ~ A2(1)
S; 2 +T8+ W A0) |,9'(/1 Z(U)XRgrR(eprelim - eprelim)) (o, _/12 @) Oldo

Referring to Lemma 112, we have (using the point wise bounds on ¢ (R, ¢) in Proposition 103)

A2(T)

20) 9]

|9()L‘2 (O')XRirR(eprelim - gprelim)) (o,
S ”/1_2 (U)XRSTR(eprelim - gprelim)) ”Ll (4.74)

) 1 gy = fy—2 k0+1 la+vhH-
o2 g2V )7kt e, 2 -0 - [ll(xo, X1 llg + 1 x0all.

Inserting this in the preceding o-integral for Ax© 0(&), we find
1AxO O] S E 2 75 - [l (xg, x0) 5 + %0l
In turn recalling the asymptotics for the spectral density p () from Proposition 103, we obtain

Lo AT .
MCOSM(TO)@] AN w) du) dé|
51 To
1
’S’Ta(l_)[”(xnyl)Hg"'|x0d|] fo 5—(1—) df
<75 Mo, x0) 15+ 104 l)-

(ii):1=<sé< /{12 ((‘7)) Call the contribution to Ax 0)0 under this restriction Ax© ;. Again referring

to the p-asymptotics from Proposition 103 an recalling (4.66), we infer

|Ax© ]

A2(T)

IR A(To)
S¢ lﬁ X{ A2) 0 |g( (U)XR<TR(eprehm eprehm)) " A2(0)
0

22(rg) Alo)

-3 (-
S E 27Nl (xo, x0) g+ %04,

2 ~oldo

where we have used the same asymptotics for | %(...)| as in (i). In turn, this implies

: A x© 1 [ _(1—
f presr ar) (‘f) o) sM(ro)&f A7 dul dél S 7" 1o, x0) 5+ Xoall.

(iii): § > § ") . Here we use that for the corresponding contribution to Ax®;, which we call
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4.5. Iterative construction of blow-up solution

Ax©g,, we have

1EAx 00Ol 2,

A2(T)

/12( )'S)”LZ - ;((Tg))dO'

g [ ”é-%g(}t_z (U)XRgrR(eprelim - gprelim)) (0,9) ||L§1p do
To

1 A2
g[ g2 AZ((TO))g( (U)XR<1R(eprellm eprehm))

o0
S f I (/1_2 (U)XRgrR(eprelim - gprelim)) (0,7 ”H;“R do
To
_3
S TO z [” (X(), xl) ”§+ |x0d|];
where we have used (4.72). We conclude by Cauchy-Schwarz that

A x© o
|f P2 AxO05(8) (5) x©02() sm(ro)&f A7 () du) dé|

_3
< IIrfo(O)oz(ff) ||L§1§ ST % o, x1) 5+ | x0all.

The contributions of the remaining terms forming e,y prox are handled similarly, as is the
second estimate of the lemma involving Ax© . O

We next use the same argument as in (4.54) to infer the asymptotic relations (for C > 1,79 > 1)

/ pZ(f)g XRr<Cr®(R,0)) (&)
¢

Z

sM(ro)ﬁf AW dul dé| ~ 1,

| foo % (OF (Yr=crd(R,0))(©) .
0

- niArot [ AN dul gl ~ o

The preceding lemma in conjunction with these asymptotics implies that the vanishing
relations (4.87), (4.70) will be satisfied for a, § in (4.73) satisfying

1- —-(2—-
lal <7y 1l o, ) g + 1x0all, 181 S Ty 7 1l (xo, x0) g + %041

Then Step 2 is concluded by observing the bounds (4.49), (4.57), as well as the analogous
bound (recalling (4.65))

CTO S,
I———l5, <73,
(Crpéz)N

whence

=(0) =(0) —(2-
IAZ g + 1A% g S 7“7 o, x5+ 1x0al)-
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Chapter 4. Type II blow-up solutions with optimal stability properties

Step 3: Proof of the low frequency bounds

Here we control A>T}6 (7,¢) in the low frequency regime ¢ < 1. The choice of Ax© 0, Ax©® 1
at the beginning of Step 2 imply that

A2(T)

A>Tx(0) (1,8 = _fr U(,o) 'g:(/l_z (U)XRSUR(eapprox))(U, m

$do,
and in light of the asserted bounds of the proposition, we need to control
T _ —_— _ —_—
() Irea 5O @ Olls,, 1€ 20D A5 X0 (1,8l ¢<1)-
0

We show here how to bound the first quantity, the second being more of the same. We use that

i A7)
5, oo, M\
10U @ s e ST 75
which then implies
||§_50A>‘[/XF)5(T’6) ||LZ§(§<1)
) ) A2(1)
- [)‘0 AlT) 9 /1 2 R y Ao, < =5} d
< . T )l(o') ” ( (O-)XRSU (eapprox))((f AZ (U) é) “Ld{ o

Then as usual we distinguish between the different parts of e;pprox. For example, for the
contribution of the principal part eprelim — €prelim, We get by arguing as in (i) of the proof of the
preceding lemma

A2(T)
" A2(0)

o+ [ AQ) -2 ~
m ”‘g.(/1 (U)XRSUR(eprelim - eprelim)) (o
T
Lov 7o logTo (% A@)

Alo)

SI)HL;% do

1
- o738 (@) do- (g, x1) 15+ 1 %04l
/’Léyo(TO) '

—_ 1_
S o, x0) 15 + [0l

This is even better than what we need, since we have omitted the weight (TT—O) ~X. The remaining
terms in e4pprox lead to similar contributions.

Step 4: Control over the data (A;(\(S o(f),A;(\@l (&) for the free part in the low frequency
regime

In light of the low frequency bound established in the preceding step, it suffices to establish
the high-frequency bound, i. e. restrict to ¢ > 1. Thus in light of (4.8) we need to bound

— 1 0
1€+ A0 (&) Iz @>n + 1E2+90 Ax O (&) [ENTSSIE
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4.5. Iterative construction of blow-up solution

where (Ax© 0(&), Ax© 1(£)) are defined as at the beginning of Step 2. We shall establish the
desired estimate for Ax©® o and the contribution of eprelim — €prelim, the remaining contribu-
tions as well as the term A)fc@ being more of the same. Note that on account of the final
bound of Step 2, the correction terms Ax (©) Ax(O) satisfy the required bounds. The norm
1E Ax© (&) ||L§£(5>1) can be bounded by

oo 3 _ /12(.[ )
||€1+50f Ur,o)- g(/l 2(O-)%RgaR(eprelim - eprelim))(o'y /12—(00)5) d0'||L[215(5>1)
AT | 15y g 42 _ A%(1o)
,S - Ao) ”6 og( (U)XRSUR(epr(BIim - eprelim))(g; AZ—U.')f)HLég(1<£< ;2(:)))) do (4.75)
© 22 (1p) s _ . A2(10)
+ - /12( ) Iz 2t og( Z(U)XRSUR(eprelim_eprelim))(a; 120 )E)”Lz . /{122((;)))610'

Then recalling parameter x = 2(1 +v~ 18, the first term on the right (intermediate frequencies)
is bounded by

©AT0) | 5 gy (-2 Rlo 5 A2 (0) a
0 /1( ) — ¢ J’( (U)XRia (eprellm - eprehm))( YLZ( ) f)”Lz 1<§<A2( . g
o _ _ A%(T9)
S ﬁo (T_O)K”g(/l Z(U)XRgaR(eprelim - eprelim))(a; )Lz—w')é)”LZ% d
and further recalling (4.74), this is bounded by
1
(0)
Slogtg Tk°+ [l (x0, x1) Il 5 + [x04l1 - (—) 00 o k3 gg
0 T0 AS'O (TO)
S 15"l o, x0) M5 + %04 1]
The second term on the right of (4.75) (large frequencies) is bounded by
CANT0) | 1isy g g2 _ A2 (7o) J
0 /12( ) - l¢2 g( (O_)XRgaR(eprelim_eprelim))(o’ A12(0 )§)||Lz (£>AA2 (Ta) J

,S f (—)K|M«_2(0')XR<UR(eprelim - gprelim) (0,7) ||H1+250 do
o TO ~ dR

< —G9

STo o Hxo, x5+ 1xoall,

where we have taken advantage of (4.72).

Step 5: Lipschitz continuity of the corrections (Ax(O) 6), A% (O) (£)) with respect to the origi-
nal perturbations (xo, x1, Xo4)

Here we prove the final assertion of the proposition. We note that on account of our construc-
tion of (Ax0 )(f) Axlo) (£)) in Step 2, their dependence on (xp, x1) comes solely through the
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Chapter 4. Type II blow-up solutions with optimal stability properties

coefficients a, 5. We consider the first of these, the second being treated similarly. Then recall
that we have

201()’1,7/2)
crn,y2)’
where we have introduced the functions
Pz(f)Ax(O)o(f) I e
ity == | T EE costame! f A7) dul de,
1 Tg

) p%((f)ﬁg(XRSCT(p(R’O))(f)
CZ(YI’YZ) :/(;

&

and we also recall the notation, introduced shortly before Lemma 118

cos{/l(rok’%f AN w) du) dé,

A2(10)

Ty 40 (4.76)

AxO(6) = f U(r0,0)F (A2t p<o Reapprox) @, oo
Observe that there is dependence on y1 2 via A(7) = Ay, 4, (7), To = J ;;o A(s)ds, as well as

€approx = €approx(70,0,R0,0,Y1,2),

with Ry defined as in (4.31), and 10 = J; t°° s 17V ds, and we interpret Ro,0 as a function of
7,R,71,2, and 19 ¢ as a function of 7,y; ». Then writing

gapprox (T,R,y1,2) = eapprox(TO,O (7,71,2), Ro,o(R,T,71,2),71,2)»
one derives after some algebraic manipulations a relation of the form
ayj Eapprox = Aj (T,YI,Z)RaR’éapprox + Bj (, Y1,2)Tar’éapprox + ayj Capprox, (4.77)

where the coefficients are given in terms of

Ao,0 - Aoo
dy,T0,0(d Lo,
. ) =0y,70,0(0:70,0) " oo (5 1 %) (4.78)

Bj(1,y12) =7 -0y,T0,0(0:T00) "

Ao =7 Lo, (oo

In light of the definition (4.24) as well as (4.41), we infer the bounds

|Aj (T, 7121 S 1 logr + 77" log T Of, (Il (20, 1) 5+ 1x0al),

|Bj(T,y1,2)] < T M logrT.
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4.5. Iterative construction of blow-up solution

As for the integration kernel U(z, 0), recalling (4.66), we find

10y, U (79, 0)|

_,%Az (ro) P2 (228 « +|sinWro)<f% Jid A—l(u)du]|
To

Slogrot 1
A (@) pE(E) ¢z

Finally, we can bound 67/1 c1(y1,72). Observe the crude bounds

&G0 752 (11 Gxo, x5 + 1%0al), if E<1,

5(3”% (1o, X Mg +1%0al),  if &>1,

|Ax©@4(&)| é{

which follow from (4.76), (4.66), as well as Theorem 111 and the bound (4.41). Again taking
advantage of the p-asymptotics from Proposition 103, we infer
* p2 (©)Ax0(¢) L
If —————0y,(cos[A(t)¢? f A (w) dul) dé|
To

&1

(4.79)

—(1-
<1587 (11, X0 M5+ 1x0al).-

The preceding point wise bound for dy; U (7o, 0) easily reveals that a similar bound is obtained

when ﬁ;@o(f) in the preceding is replaced by

A2(10)

o )é) do.

f 67, U(""O’U)'g.(}L XR<UReapprox)(0',
It then remains to consider the case when the operator dy, falls on the Fourier transform

A2(10)

o) ¢)

g(/l_zXRgaReappmx) (o,
in (4.76), which we handle schematically as follows. Note that when 0y, falls on A(7), we obtain
a function bounded by a < 7% log7 - A(1), in light of (4.24). Further, recall (4.77) as well as
(4.78) and the bounds following it, as well as Theorem 106 which gives a translation of ROr to
the Fourier side. In all, we infer a schematic relation of the form

A2(10)
A% (o)

5
al=> 4

j=1

Oy, [9(/1_2 (U)XRgaReapprox) (o,

with the following terms on the right: writing G(o, R) = 1™2(0) ¥ r<oReapprox,

A%(10)
P "

M O)f) A _kOMU)[(Ua )9(G)](0 M (ro)
A2y MO 12(0)

As = ‘9(/1_2 (U)XRSURa)q eapprox);

A2(10)

— ko
A1 =0 A0)F (G) (o, 12(0)

&), Ay = 0 A(0) (€09 [F (G) (o,

Az =0 A(0) X F (D)0, &)
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with a similar relation for dy, but with o~ % replaced by o % logo.
But then performing integration by parts with respect to ¢ or o as needed, and recalling the
point wise bounds on Ax© (&), we infer

oo 4
| f Utro,0)( . Aj)dol <r, G0, x0) 15 +10al (4.80)
To j=1
Finally also recalling the structure of egpprox from Theorem 111, we get the bound
o ko+2-) 13
| f Uro,0) 451 S 13872702 (7o) (4.81)
To

It is this last term which is dominant, of course. Combining (4.79) and the remark following it
with (4.80), (4.81), we finally obtain the bound (for j =1,2)

1
10y, c1l Sy A2 1 (@0) + Ogy (I Cxo, x0) 15+ 1%0a]) (4.82)

A simple variation of the preceding arguments also implies the much easier bound

0y, 2l < Ta(k"_l) logTo - A0,0(T0)- (4.83)

Combining (4.82), (4.83), and also recalling c; ~ 1 from the end if Step 2, we finally obtain the
desired estimate

1
10y, 0l S 7o R FAE ((T0) + Oy, (Il G0, XDl 5+ %01 (4.84)

Finally, comparing the corrections

AT () = aF (Xrecrp(R,0))(O), AXY (§) = @F (Yr<cr P(R,0))(E),

corresponding to different data quadruples x j,z jwe find

(0 = — 5
1A% - 2% 15, Sla—al-7°

S(X19y,al-lyj=7;1)-7g",
J

where we have used a bound at the end of Step 2 for the first inequality, and the preceding can
be bounded by

<[t + 04 (110, x1) 15+ 1%0a1) ] - (11 (0 = X0, X1 = X1) 15 + | X0q — Foal),

in light of (4.84) as well as Lemma 115. This is the desired Lipschitz dependence of A%f)o) (&) on
the data, provided the latter are chosen small enough (depending on 7y), and that of Afio) &
is similar.
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4.5. Iterative construction of blow-up solution

This concluded the proof of the proposition for the continuous spectral part, and we omit the
much simpler routine estimates for the discrete spectral part. O
Setup of the iteration scheme; the higher iterates

We next add a sequence of corrections Ax") (t,¢) to the zeroth iterate in order to arrive at a
solution of (4.61), but with data differing slightly from (4.62). Specifically, we set for the first
iterate

0 = O L A,

where
(22 + B0 2: + &) 2xV (1,6 = 21, x0) + AfO 7,0,
and we recall (4.63) and further use the notation

AFO@,6 = F (A2 [5 W prox — UOE + RN (tapprox E)])(8),
ALY @) = A @) [5Ugpprox = U)E” + RN (Uapproxn E”), ¢a(R)).

and further, we naturally set
£ 1) = XY @pa R+ [ GO0 T PR

For the higher corrections Ax"), j = 2, defining the higher iterates, we set correspondingly
(27 + )2y +&) AxV (1,6 = R, AxXT D)+ AfUV (1,8, (4.85)
and we use the definitions

AU @8 = F(A 2@ xr<r [5Wapprox — U AV ™D + RN (Uapprox, ATV )] (€),

Af;jfl) (1)

= f A2 @) xr<e [5Wpprox — U AEY ™V + RN (Uapprox, AEI™)pa(R) dR
0
where we set
AV, R) = fo GR,OAxIV(@,8)p@ dé+ax] T Wpa(R), j=2.

The fact that upon using suitable initial conditions these equations yield in fact iterates which
rapidly converge to zero in a suitable sense follows exactly as in [49], and so we formulate
the corresponding result, which is a summary of Propositions 9.1 - 9.6 and most importantly
Corollary 12.2, Corollary 12.3 in [49]:

Proposition 119. Foreach j = 1, there exists a pair (A%éj ) A%ij "Y€ §, and such that if we set
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up the inductive scheme (recall (4.66))

AxD (1,8 =
A2(T)

T . .
f UT,0)Z, Ax" )+ AfI (1,00,
. S
+S@ (%), aF7)
for the continuous spectral part, while we set (recall (4.67))

Agx P () = f " Ha(r,0)- 191, 52070 + Ag UV 1, Hl(o)do,

then we obtain control over the iterates in the following precise sense: there is a splitting
AP (3,8 = A xD(1,6) + S@) (AT, ATV
in which A~(] ) A~(] ) satisfy the vanishing conditions

~(J)
2 AX
f P (6) (f)co [A(To)f A Y wduldé=0 (4.87)

3 A~(]) oo
f prOAN € sin[A(7g) f AN w duldé =0, (4.88)
and such that if we set
5 ! G-1 G-1 @)
Ax(f)(r,cf)zf Ur,0)- [T, Ax" )+ AfY (T,g)](a,mf)da

and introduce the quantities (withx = 2(1 + v 1)

AA;j: = sup(L2)lyesr XV, Olls, + 1627202, AxD (1,8l 5651,

=T

+SuP(—) Ixec1 Ase AXD (@, 8)lls, + 160D Ase AXV (1,6 54y <)

=Ty

+1a5), Az 5+ 1%, aZ N I5+sup A2 1axY @)1 +16: 27 @),

T=Tp
where we recall (4.68) for the definition of || - || Sqrs then we have exponential decay
AA; S5 87111 (o, x1)ll 5+ 1 X0al]

for any given 6 > 0, provided 1 is sufficiently large (or equivalently, t, is sufficiently small). In
particular, the series

10,9 =x97,9+ Y ax (1,9,
j=z1
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4.5. Iterative construction of blow-up solution

converges with
sup (=2)¥ |00 x(z, Ol z (5>1)+suP(—)_KII€2+6°@ 2@z 6>
T=Tp

S I xo, x1) 5+ | x4l
Also, for low frequencies, i. e. £ < 1, there is a decomposition
x(7,8) = X5 (1,8) + S(7) (X0, 1)
such that Xy, X satisfy the natural analogues of (4.87), (4.88), and we have the bounds

sup( T) 1E%x(@, Oz (5<1)+SUp(—)_ 16722 2T, )l 2 ey

T=2To

+ 1 (Xo, XI5 S 1 (x0, x1) I 5 + [ X0al.
Finally, we also have

sup 7' 1xq(1) = x2 ()| < Nl (%o, x1) 15 + |04l
T=Tg
The function
u(t,R) = uapprox(T, R)+€(7,R)

with o
€(1,R):= Xd(r)¢d(R)+f0 PR, Ox(1,)p ) d¢

is then the desired solution of (4.60), satisfying the properties in terms of its Fourier transform
specified in Theorem 116. In fact, we set

Ax’({’yerZ) = Z Aj(i,((] y Ax Yl YZ) Z a?Axfi])l'r:TU, K= 0, 1.
j=1 j=1

In fact, all of the assertions in the preceding long proposition follow exactly from the argu-
ments in [49] (the only difference being the slightly different scaling law A(7)), and this will
easily establish almost all of Theorem 116, except its last statement concerning the Lipschitz
continuous dependence of the initial data perturbation with respect to the initial perturbation
(x0, x1). This is a somewhat delicate point which requires a special argument, analogous to the
one given for the corresponding assertion in Proposition 117. We formulate this as a separate
proposition at the level of the iterative corrections:

Proposition 120. If (AEC'(()]), ~(])) (Ax(]) Ax(] ), j = 1, are as in the preceding proposition
and with respect to perturbations specified in terms of data quadruples (x,,, x,) respectively
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(X X)) € S, then for any given & > 0 we have the Lipschitz bound

=(j) =) A=) =)
A% - ax)’, ax” - 235

—(19) of — — —
So 7000 [l (x0 = Fo, 11 = X0 5+ 1%0a — Toall,
provided 1 is sufficiently large compared to 6, and
I (x0, x1) I3+ | (X0, X1) | 5 + | X0al + [Xo0al

is sufficiently small depending on 1.

To begin the sketch of the proof, we observe from the proofs of Proposition 7.1, 8.1, 9.1 in [49]
that the profiles of the corrections A%,((] ), x =0, 1, are fixed up to a multiplication parameter,

and more precisely we set

=0) ' =) _ a(j

AX) = aPF (yrecr,d(R,0)), AT = BV F (yrecr, p(R, 0),
whence the only dependence of the corrections Af,((] ) on the data Xp,1 reside in the coef-
ficients a'), 00, The latter, however, depend in a complex manner on the iterative func-
tions Ax),A;x, and so we cannot get around analysing the (Lipschitz)-dependence of

the latter on xp,;. This latter task is rendered somewhat cumbersome by the fact that in
A2(x)

AZ (O') ))
which depend on y; > whence on xy,1, and so differentiating with respect to y; will result

each iterative step we use a parametrix which re-scales the ingredients (via the factors

in a loss of smoothness. What saves things here is the fact that the coefficients a'/), ) are
given by certain integrals, which are well-behaved with respect to inputs with lesser regular-
ity, as already seen in Step 5 of the proof of Proposition 117: there differentiating the term

2
F(A7%(0)Reapprox) (0, ’}12((2")) &) with respect to y; results in a term (see the term A in the list

of terms preceding (4.80))

A2(Tp)

ko _
T, (0 [F (A Z(U)Reapprox)(a,m

3]

which is of lesser regularity with respect to ¢, but the corresponding contribution to 9y, AxO4(&)
and thence to the integral

. o
% p2(£)dy; AxDy(&) o0
f PN 2T 0 cosiatro)e? f AN w du) dé
0 é1 To
is then handled by integration by parts with respect to ¢.
The exact same type of observation applies to the higher order corrections Ax'(z,¢) as well.

To render this intuition precise, we first need to exhibit a functional framework which will
be preserved by the iterative steps and which adequately describes the y; differentiated
corrections Ax"). To begin with, we introduce two types of norms:
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4.5. Iterative construction of blow-up solution

Definition. Call a pair of functions (A y(7,¢), Ay, (1)) strongly bounded, provided there exist
(AJo(©), AT (©) € S, as well as (AFy (), A () € S, the latter satisfying the vanishing condi-
tions (4.87), (4.88), such that if we set

Ay(T,8) = Asry(T,8) + S (AT (), AF1(E)),
AY(T,8) = Ay(T,8) + S@) (A0 (&), AT (D))

then we have (recall (4.68))

+o0> [[(Ay(T,8), Aya()lg

strong

—SUp(—) Ites1 2y (@, Olls, + 18270 D Ay, )l sgreesy

T=Tp

+SuP(—) Ixec1 Ase AYT, O, + 160D Asr AY(T, O g gre<y

T=Ty

+1(ATo, ATD 5+ 1(AT0, ATDII5 + sup 717 (1 Aya ()] +10; Aya (D).

T=Tp

We call a pair of functions (A z(t, &), Azy (1)) weakly bounded, provided there exist (AZy(&), AZ1 (&) €

Sas well as (AZy(&), AZ1 (&) € S not necessarily satisfying any vanishing conditions, such that if
we set

Az(1,8) = Asr2(1,8) + S(1)(AZ(E), AZ (©)),
Az(1,8) = Az(1,8) + (1) (AZ0(6), AZ1 (§))

then we have

+00 > [[(Az(1,8), Azg(D)g,,,,, =

7' [sup(——— Aro) 200t | e Az(T, ) + 1D 21, 5761

21, AT) @1k
+75 [sup (5= A(( ")))250“” Xe1 Dot AZT ), + 162D Ay AZ(T, )l g7 )
T=Tg
Lo~ D =~ =~ TA(T
FIUE) ™2 AZ, () TE AT 5+ (A%, AZ) |5+ sup }(L( ;|<a,>Azd(r)|
7279 10

Here the norm | - || Sar is defined just like in (4.68), except that the power 44 is replaced by
-2+ 460.

. _1,
Observe that by comparison to | - || Sstrong’ , the norm | - || Sweak loses {72 in terms of decay for

large ¢, and we lose a factor 7 /{1((1 in terms of temporal decay.

Using the preceding terminology, we can now introduce the proper norm to measure the
expressions arising upon applying 0y, to the corrections AxY(1,§). Note that the dependence
on the y; results on the one hand from the parametrices

U(r,0),5(),
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Chapter 4. Type II blow-up solutions with optimal stability properties

as well as from the expressions eapprox, Uapprox, Uo and A(7) in (4.64). To emphasise that we
want to measure the differences of functions, we introduce the symbol AS for the relevant
space:

Definition. We define AS as the space of pairs of functions (Ax(z,¢), Ax;(7)) which admit a
decomposition

Ax(1,8) = ((0)Ay(1,8) + Az(T,8), Axq(T) = Aya(T) + Azyg(T)
such that Ay is strongly bounded and Az is weakly bounded, and we then set
I(Ax(T,8), Axg(@)ll p5:= inf(I(AY(T,8), Aya(ls,,,,,, + 1(L2(7,), Aza(D)ls,,,,,)

where the infimum is over all decompositions into differentiated strongly bounded and weakly
bounded functions.

We use the norm || - || , 5 to measure the pair quantities (OYKAx(j) (z, f),@YKAx;j) (T)), where
x = 1,2. To achieve this for all the corrections, we need an inductive step which infers the
required bound for the next iterate, as well as rapid decay of these quantities. Correspondingly
we have the following two lemmas:

Lemma 121. Provided the (AxY), Axg)) are constructed as in Proposition 119, and assuming
the bounds there, we have

10y, £x9(7,8),0y, 53T (D)l 25
- i -1 i -1
ST ax, Ax] g, 410y, XYV @,8),0,, A0 (@)l As

xk=1,2.

Lemma 122. Foranyd >0, there is T = 1. (0) large enough such that if t¢ = 7., then we have

10y, A (1,6), 0y, AL @)l 55 S5 7 ¥ 27 A2 (10)67 11+ Oy (1000, x0) 15+ 1 %04

Observe that the principal contribution here arises when the operator d,, gets passed from
one correction to the earlier one, until it arrives on the source term e, prox. All other terms
arising can be bounded by

Or, (I (X0, x1) 15+ | x04l)

The proofs of these lemmas follow very closely the arguments in [49], and we shall only indicate
the outlines:
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4.5. Iterative construction of blow-up solution

Outline of proof of Lemma 121. One may assume a decomposition

0y, 2x9 7V (7,8),0y, 850" (@)
= (€0 Ay V(1,8 + 22V 0 (1,8), Ay V() + A2d TV ()

with, say,

i—1 (-1 i—1 (-1
1AV, Ay sy + 100620, A2 g,

<10y, 2x970(1,8),8y, AxT V@)1l o5

Now let the operator d,, fall on the expression for AxY(1,§) in Proposition 119, given by the
parametrix (4.86). Then if 0y, acts on the scaling factor in

A2(1)

Az (0_) f)y

[%(z, 59"+ AUV (7, 0)](0,
as well as in
S@(aZ), ax7),

defined as in (109), then one can incorporate the corresponding term into ({0¢) Ay y(j )(1,8).
On the other hand, if dy, falls on the parametrix factors

U(r,0), V(1,70), U(7,70),

where we recall (4.71), or on one of the y,-dependent factors uqpprox—Uo, uéppmx in Napprox eU—1y—
Napprox eV=2) (recalling (4.85)), we place the corresponding contribution into Az, The
required bounds follow essentially directly from the proofs of Proposition 7.1, 8.1, 9.1, 9.6 in

[49].

On the other hand, if 9,, falls on AxY~V in (7, AxY~V), and we assume that
6YKAx(j_1) = (fag)Ay(j_D, Ay(j_l) € Sstrong;

one notices that one can "essentially’ move the operator ({d;¢) past the non-local operator
2 modulo better errors which can be placed into Az, and further to the outside of the
parametrix. The situation is slightly more delicate provided dy, falls on a factor AED in
AfU=Y again recalling (4.85) and the definition of A £~V Then writing

o0
AED (1, R) = AxP (@) pa(R) + fo PR, HAXD (7,8)p() dé,
we exploit the spatial localisation forced by the cutoff y <, in order to perform an integration

by parts, provided
6YKAX(I) — (éaf)Ay(l)
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Chapter 4. Type II blow-up solutions with optimal stability properties

Thus write

XR<Ct fo " R OE0) Ay (1, Op() dé

= —XR<Cr fo 0 OIBR Op@1 Ay (1,8 de,
and then use the bound

sup7 IR yrecr fo 0O PROpEONAY @, & dell = SN2y P,

T=To

Indeed, such a bound follows easily from the asymptotic expansions for ¢(R,¢) given by
Prop. 103. If we assume
GYKAx(” =nz¥e Sweak:

we have the weaker estimate

sup MT) VR ypec f ¢R,EpOAZD (1,8 dell e SNAZ"s,,,,

Using these and arguing just as in the proof of Proposition 9.6 in [49] yields the desired bound
for the corresponding contribution of 0, A fU~1 to Ax!)(,¢), which is placed in Sy eqx-

Next, consider the effect of d,, on the free term, when it falls on the source term (Aa%éj ) A):céj ).
In light of the choice of these terms, see the paragraph after the statement of Proposition 120,
we have

3y AXY = 8y, aF (yrecry (R, 0)), 0y, AT = 3y, BO)VF (Y Recry H(R, 0)),

and we have

2 A 1 [o©
oy a'l ~oy, f M 0s[A(10)¢? f AN (w) du) dé,
fZ To

where

A?(1p)

~(
i@ = f Ulro,0)H(0, %5

———¢)do,

and
H(o,&) =12, 65 )+ AfUV(1,0](0,6).

Then performing integration by parts with respect to ¢ if necessary, one checks that

2(6)0 A“”() | (oo
f PE0y Ay @) Ao f A~ W) dul dé|

_ 1) 1
<1%[r; kII(AxU D Aax g, + 10y, Ax97D,0, AxTTV) 5.
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4.5. Iterative construction of blow-up solution

This implies the required bound for 9, A%éj ) and the bound for OYKAﬁj ' is similar. One then
places
S@)(9y, 03,0y, 037)

into Syeak- O

Outline of proof of Lemma 122. This follows in analogy to the arguments in sections 11 and
12 in [49], a key being re-iterating the iterative step leading from 6YKAx§] Vo Oy, Axgj - by
differentiating (4.86). O

Completion of proof of Proposition 120. Recalling Lemma 115 and also invoking Lemma 122,
we find

I (AX] =) A—(]) A~(]) —(1)) Is
rho+lg
— g0 _ 9,1
S [l (xo = Xo, x1 =X g+ | X0 — Xoal] - 5][1— (k()+2 YA2 (1)
O(TO)
+7,%7)
Observe that the final 7, ) arises when keeping A fixed and varying the initial data satisfying

the vanishing condltlons, just as in [49], while the more complicated expression preceding

T, @) reflects the effect of changing y; 2. and so we finally get

1AFY - AZY, AFY - AZ) 5 <5 6775 1711 (o — o, 31 — ) g+ X0a — Foal]
This implies Proposition 120. O
Proof of Theorem 116

This is a consequence of Proposition 120. Recalling Proposition 117, Proposition 119, it suffices
to set

(Ax(()yerZ)’ AxiyerZ Z (A~(]) ~(])

B, A507) = 3 (A (r0), 0,850 (7o)
Jj=0

Then the correction (7, R) is given by its Fourier coefficients

x1,8=xY0,8+ f AxPD(z,9)

j=1
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Chapter 4. Type II blow-up solutions with optimal stability properties

The decaying bounds over || (Ax"), Ax;j)) 151r0ng = AA;j imply that (recalling (4.9))

6 ) = xaOpa(R)+ [~ PR OPRIAEE Hyp

for any 7 = 19, as desired. The fact that the local energy (restricted to |x| < |¢[) vanishes
asymptotically follows from

_3, - _3. €
||7'€r||Lfir(r5,f)5/1 2||€R||L§R(RST)+A 2”E”L121R(R§T)’

and invoking the Fourier representation to bound the L2-norms on the right, resulting in

S_3(14y 1
”rer”Lfir(rst)S'” 5 (A+v )’

and similarly for re;.

4.5.3 Translation to original coordinate system

In the preceding sections, we have obtained a singular solution of the form (the sum of the

first four terms on the right representing u;y;gfg . given by Theorem 111)

2k,—1
u@, R =AE@WMR+ Y. vj@, R+ Y. Vsmootna(® R)+v(1,R) + R €1, R),
j=1 a=1,2

with the error term €(7, R) given by the Fourier expansion
e o] .
€t,R) = fo PROxV @O+ Y AxV(T,8)]p©) dé.
j=1

At initial time T = 7, setting x(7,¢) := x© (7,&) + 2 AxY(1,&), we have from our construc-
tion
(¥(70,8), 22 x(0,0) = (g + Axg™ ", T+ AT,

xq(T0) = xg’ Ty Axfjly1 )

where we recall

o ) [e.°] .
j= =

The fact that we have added on the correction terms Axﬁyl'w (¢) means that the data
(R™'&(z0,R), 0,R""€(79, )

will no longer match the original data (€1, €), and we need to precisely quantify this correction
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4.5. Iterative construction of blow-up solution

at the level of the Fourier variables associated with the old radial variable Ry o. Doing so requires
recalling (4.27) - (4.29) as well as Lemma 113. Assume that our construction has replaced the
data (€1, €2) in (4.59) by (€1 + A€y, €2 + A€y), we have the relations

RAe(R) = f PR, LX) ©)pE) dE+ AxY T pa(R),
AxT (@ = 27 () fo (R, &) RAer dR - %Jcch(()Yl’m - %chdmgm),
where we recall that A = Ay, ,,. Recalling the relation
(r1,72)

0,0 - —
XVSCI’O u(aplgrox[t()] + (61)62) Xr<Ct0 uapprox[to] + (61)62)

for the initial data, we see that the initial data perturbation (e, €2) in (4.13) has been replaced
by

(e1+ A€, €2+ Ae2) + (1= Kr=ci) - (UQ) o t0] = Uapyirslto)), (4.89)
Here we may suppress the term
(1= Kr=cry) - (UDD)o to] = ugnpioxto])

since this will not affect the evolution in the backward light cone. In light of the fact that the
corresponding Fourier variables (xg, x;) were computed from (€;,€) via (4.27) - (4.29) with
71,2 =0, we infer that the perturbed data (4.89) with the second part suppressed correspond to
Fourier variables (with respect to the physical radial variable Ry o) given by (xp + Axg, X1 + Ax1)
for the continuous part and x; + Ax, for the discrete part, where we have

Axp(<) =f0 ¢(Ro,0,¢)Ro,0A€1(R(Ro,0)) dRo,
AXogq = fo ®a(Ro,0)Ro,02€1(R(Ro,0)) dRoo,

-1 o Ao, /.10 0
Axi(§) = —ﬁo,o(To)fO ¢(Ro,0,¢)Ro0 A2 dRy o — TJCCAXO T cdAXg,
0,0

-1 > Ao,0 Ao
Ax1g=—A5pT0) | $a(Ro0)Ro0le2dRoo— ~—— HecAXg — —— KacAXo,
0 Ao, 20,0
Then using Lemma 113 we easily infer
1A% @5, SHAx T lg, + 1A% < 151 (o, x5+ 1x0all,
and similarly

laxi@lg, S 7o" 7 o, x5 + |x041]
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Chapter 4. Type II blow-up solutions with optimal stability properties

For the discrete part of the correction, we get

o0
|AXxoal = Ifo ¢ a(Ro,0)Ro,02€1(R(Ro,0)) dRool

—(1-
N To( | x0q] + [l (xo, x1) 15+ | %0al1°.

Finally, we observe that the discrete spectral part of €, + A€, with respect to the radial variable
Ro,0 is completely determined in terms of (xp, x1), X4 and in fact a Lipschitz function of
these. To conclude this discussion, we note that our precise choice of Ae;, [ =1,2, as well as
Theorem 116 imply that the mapping

(x()r X1, xod) - (AXO, Axlr Axod)

is Lipschitz with respect to the norm ||(-,-) |5+ | - |, with Lipschitz constant < 1.

4.6 Proofof Theorem 108

This is immediate from the preceding discussion: the implicit function theorem guarantees
that the mapping
(x0, X1, X0a) — (X0 + AxXo, X1 + AX1, X0 + AXoq)

is invertible on a sufficiently small open neighbourhood of the origin in S x R. Moreover, the
second discrete spectral component x;4 + Ax; 4 is then uniquely determined as a Lipschitz
function of

(x0 + Axo, X1 + AxX1, Xog + AXog).

4.7 Outlook

While Theorem 108 explains the behaviour of radial perturbations of the special solutions
uy(t, x) from Theorem 101, it is just as natural to consider non-radial perturbations. We con-
jecture that for sufficiently small and smooth such perturbations, the same result obtains, and
the position of the blow-up is still unperturbed. Observe that passing to the general context
enlarges the symmetry group, to include spatial translations as well as Lorentz transforms.
Still, in analogy to the discussion preceding (4.6), the effect of these on the rough part 77, (¢, x)
in the solutions u, implies that the difference (with ¥ # I a Lorentz transform or spatial
translation)
LUy — Uy

is of smoothness at most H'*z~, whence again incompatible with sufficiently smooth pertur-
bations of the data. It appears that stability under non-radial perturbations for type II blow-up
solutions is for the most part an open issue for any of the nonlinear Hamiltonian wave equa-
tions, including the energy critical wave equation on R**!, the critical Wave Maps as well as the
critical Yang-Mills equation. In fact, in the context of the focussing nonlinear wave equation
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4.7. Outlook

Ou = —|u|”~'u in dimension greater than one, the only results pertaining to the stability of
explicit blow-up solutions without symmetry restrictions appear to be those in the works [72],
[73] in the sub-conformal context, and the works by [18], [19], [9] in a super-conformal context.

A further important issue appears the applicability of the methods developed in this paper
and [49] to smoother solutions, such as those in [31]. In particular, the question arises whether
there is a way to construct solutions of the latter type via an approach as in [62], with the
stability analysis supplied by methods as in the present paper.

Another issue concerns more general type II solutions, including such blowing up at time
T = +oo. The paper [17] constructs such solutions, and specifically establishes the following:

Theorem 123. (/17]) Letey > 0 sufficiently small and || < €g. Then for any§ >0, thereisth =1,
and an energy class solution of (4.1) of the form

u(t,x) = t2W(thx) +n(t, x)
ont=ty, where
”0tu(t, ‘) ”LZ(BI) + ||vu(t")”L2(B,) <9,
lom(t,-) ”Lz(B,) +IVn(t, ')“LZ(B,) <96,

forallt = ty, where By = {x € R3||x| < t}.

The preceding theorem does not furnish any information concerning either additional smooth-
ness or stability of these solutions, but the methods of the present paper might be applicable
here as well to furnish a co-dimension one stability result of this type of dynamics (under
suitably smooth perturbations). We observe here that in analogy to (4.3), the remarkable
classification theorem of [23] implies that any radial solution of (4.1) which exists globally in
forward time is automatically type II (forward in time) and can be written as
N 1
u(t,x) = Z KjWh, 0 (x) +€(t, x), Wy (x) = 12 W(Ax), (4.90)
j=1

where lim;_. ., £1;(f) = +o0, and we also have the asymptotic decoupling property

lim |1 (Aj(t )=
—_— —_— + .
lim |log e 00
At this point in time, the only global solutions for (4.1) with the behaviour in (4.90) have N =1

and either A1 (¢) — 1 + 6 for some small constant § ([57]), or else are like in Theorem 123.

We further note that similar solutions as those in the preceding theorem have been constructed

285



Chapter 4. Type II blow-up solutions with optimal stability properties

in the work [84] for the critical nonlinear Schrodinger equation
iug=Au+ |u|4u

on R3*!1, and this equation as expected to also have solutions analogous to the u, from
Theorem 101. It is to be noted that the corresponding construction is more involved due
to the infinite propagation speed, which does not allow localisation to a region bounded by
characteristics.

Very recently, a result of somewhat similar flavour as Theorem 123 but using a completely
different technique was obtained for the parabolic equation

u=Au+ u’

on R3*! in the work [15]. There a co-dimension one stability result for these solutions was
also established. Remarkably, these solutions display a continuum of possible grow-up rates,
analogous to Theorem 123, which may suggest that in fact the solutions in the latter theorem
may be chosen of regularity C*°.
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.\ Dispersive and Strichartz estimates

for the wave equation

The solution of the wave equation with smooth compactly supported initial data cannot
remain concentrated for a long period of time since waves will spread out along the character-
istic cone and decay at a rate of t~*~1/2, This process is usually referred to as the dispersive
phenomenon. Dispersion estimates still works when the initial data have some decay at spatial
infinity, that is when they lie in some Lebesgue space L”, with 1 < p < 2. However if we take
initial data in some Sobolev space H® the best way to measure dispersion is through Strichartz
estimates. Strichartz estimates originated in the seminal work by Strichartz, an harmonic
analyst, in the 70s. This tradition of cross fertilization between harmonic analysis and PDEs
has continued ever since. Recently there has been an explosion of work in this area.

We present below the original Strichartz estimate proved in [101]. This inequality tell us that if
we take rough initial data and an integrable inhomogeneous term of a Cauchy problem, then
the mixed L* norm in both time and space of the solution reamains bounded.

Proposition 124 (Original Strichartz inequality). Let u be a solution of

Ou=F inR*3
(uratu) =0 = (f»g)

Suppose further that f € H'>(R3), g € HV2(R3), and F € L*3(R'*3), then

[ u||L4(R3+1) 5 ||(f, g) ||H1’2><H*1/2 + ||F||L4’3([R23“)

In general dimension n = 2 Strichartz’s inequality generalize to the conformal Strichartz
estimate:

”u”ﬁ%% (R1+m) S ” (f’ g)“Hl/ZXH_UZ + ”F"LZ%(RH—@

Notice that the Lebesgue exponents 2241 and 22—“ are conjugate. As we shall see the confor-

n-1 +3
mal Strichartz pairs is the only sharp admissible pair with the same Lebesgue norm in time

and in space.
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Appendix A. Dispersive and Strichartz estimates for the wave equation

One can interpret Strichartz inequality in term of boundedness of solution maps. The
Strichartz inequality splits natural into two parts: the homogeneous and inhomogeneous
estimates

e LHEx V2 1Y

O 'e (3, 14

and the norm of the solution map measured in these spaces do not depend on the length of
the time interval considered. This means that we can consider either Lebesgue spaces over
R"™*1 oder St in the conformal Strichartz inequality.

The original Strichartz estimate stated in Proposition 124 is just the beginning of a long
interplay between harmonic analysis and PDEs. In 1998, almost 20 years after the publication
of Strichartz, Keel and Tao [33] generalize the estimate to the R" case and to a brother class of
exponent including spacetime-mixed-norms. In this chapter we restrict our analysis to the
wave equation, however the result of Keel and Tao includes other types of dispersive equations
such as Schrodinger and KdV.

Proposition 125 ([33]). Suppose u be a solution of the inhomogeneous wave equation.

Ou=0
(uyal’u) =0 = (f)g)

Let n =2, and let the triplets (q, 1, s) and (4, 7,1 — s) be Strichartz wave admissible, this means
that

2<q,q <00, and 2<r7F<oo
2 n-1 -1 n-— n—1
4 =—, and —+-——=<
r 2 r 2
1 n n 1 n n
—+—===5 and —+—--2=—-35
qg r 2 qg 7 2

Moreover suppose further that when n = 3 we have (q, 1, s) # (2,00,1). Then

”u”L?L;(X) + ”6u”L°°HX'1(X) S ||f,g||stHs—1 + ”Du”L[zIL?(X)

where X =R*" or X = St forany T € R.

The Strichartz board for the wave equation is visualized in Figures A.1, A.2, and A.3 below. We

have highlighted the admissibility region for (g, r). Observe that the pair (g,c0) is not a wave

2n-2
=
maps, the Strichartz estimates of Keel and Tao can be naturally decoupled into four estimates:

admissible one. Whereas the pair (gq,r) = (2

) is called end-point. In terms of solution

i. #eP(HxHLXS),
ii. #eP(HSxHLILY),
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A.1. Dispersive estimate

1/q

1/2f------m-m--n

1/4¢ 1

¢ ——

FigureA.l: n=2

Figure A2: n=3

iii. O e (L7 L7,17L")

iv. 0le (L9717, x3)

Notice that we can take a finite time interval or T = co since the constant does not depend on
the length of the time interval considered. We know by the energy inequality that estimate
1. holds. We call estimate 2. the homogeneous Strichartz estimate and estimates 3. and 4. the
inhomogeneous Strichartz estimates.

A.1 Dispersive estimate

In this section we show that if we assume some integrability of the initial data, then we obtain
that the L* norm of the solution decay polynomially in time with rate depending on the
dimension; whereas the L2 norm remains bounded. An interpolation argument between this
two results yield to the so called dispersion estimate. In the proof of Strichartz estimates we
shall need the following frequency-localized-dispersive estimates for half-wave propagator,
see [75].
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1/q

1/2

Figure A3: n=4

Proposition 126. Let P, the Littlewood-Paley decomposition at dyadic frequency ~ A, and

=v-A, then

(@) 1€X1PP) flloo < ADY™"T APy Sy
(i1) 1e* PPy flla SIPASIl
(iii) If2 <r < oo, then we have

1e52p, 11, < any~ 2 G- =1 b, i

Notice that the L? norm do not have to be frequency localized. Moreover, estimates (i) and
(iii) implies the weaker estimates
_n-1 n-1 n+l
1657 PP flloo S (877 AT IPAfIL = (™7 ID"F Paflly

and by interpolation
—ml(1 1) me(1_1 i1 1) omel(1 1
1= Ppy f1, < o~ 7 G GDipy pi = (077 G- Dip s G- g,
Proof. As every pseudo-differential operator, we can write the half-wave propagator as a
convolution with a kernel, that is
e''PPyf=e""PP_yyPyf =PopioKi % Py f

where P-j,2K; = F (e ™y ,,(&)). The dispersive estimate (i) follows from Young inequal-
ity and Lemma 127 below since

152 P flloo = I P<ps2Ks * P2 flloo < IP<ps2Killool Pl S (A5 AP fIy
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A.1. Dispersive estimate

The energy type estimate (i) is a straightforward application of Plancherel’s theorem

1P fllz = 1" F Ol < 1 Fll2 = 1 £112

To obtain estimate (ii7) just interpolate between estimates (i) and (i{) O

We now compete the proof of the Proposition 126 with the following lemma, see [75].

Lemma 127 (Kernel estimate). Let P<y,2K;(x) = [e/* Dy, 1, (&)d¢, then

_n-1
IP<ps2Killpoommy SADT 2 A"

Proof. Recall that ¢, ({) = w({/A). Let us make a change of variable in polar coordinates
& =282 p, where we write the dyadic number A as 2¥, we then obtain

P_)oKi(x)

< Anfo +t/1pt n— lw(p)[ l/lpxwda(w)dp
1
I ‘o z1

< (Ax)"z A fo el Ty (p)dp

We have used the fact that the Fourier transform of the sphere surface measure has some
decay, precisely |do(x)] < (x)~"2". One can prove this with the method of stationary phase.

Let us now spit the proof into two cases. Far form the light cone, |f| < | x|, and inside the light
cone, |f| = |x|. In the region far from the light cone, |z| < | x|, we obtain easily that

[P<ps2Ki (0] S (Ax)_nT_l)L” < (At)‘"T_l/ln

Since the integral in p is bounded. Inside the light cone, that is for |f| = |x|, we can use
integration by parts m-times to obtain

An
Py 2K < =
[P<ps2Ke(X)] S 7

B (At)mu AR TOIEN

eiMpta (p”T’lw(p))dp|

AN

Wr’”}t”fo p"T Mdp

Observe that we have use the trivial inequality (Ax)~"7" =1 and the fact that the boundary
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terms vanish due to the cutoff function ¥. The integral is bounded only if m < (n—1)/2, thus
the best possible m to obtain the fastest decay in time is m = (n —1)/2, which gives

IK(t, 0] < (A~ "7 A"

Thus we obtain the same decay as in the region far away from the light cone. O

A.2 Proof of homogeneous Strichartz inequality

Recall that the homogeneous solution maps can be written as a linear combination of half
waves

LJf(‘f,g) = %(eil’D+ e—itD)f+ %(el'l’D _e—itD)D—lg
1

Thus the Strichartz estimate are reduced to the question of boundedness of the half-wave
propagator. We proceed in analogy with for the proof of the dispersive estimates, first we prove
a frequency localized version then we sum over dyadic blocks to obtain the full estimate.

Proposition 128 (Frequency-localized Strichartz estimates for half-wave propagator). Let
(q,1,8) a Strichartz admissible triple, then

(D) 1e*"PP) fllparr SASIPAS

(i) ”fe?istF(s)dsH2 SASIPAFl gy

iid) | [ eI P F@ds| | S AIPAFI

In the proof of Proposition 128 we shall need the so called TT* principle, see [75]. Let
T: SR — LR an operator form Schwartz functions in R” to Schwartz functions in
R"*1. We define the formal adjoint of T as the operator T* : #(R""!) — .%(R" determined by
the relation

<Tf, F)LZ(RnH) - <f, T*F>L2(IR”)

for any f € #(R") and F € & (R").

Lemma 129 (TT*). The following statement are equivalent:
G) T:L*R") — LIR"™Y) is bounded.
Gi) T*:L9 (R"Y) — [2(R™) is bounded.
Gi) TT*:19 (R"') — L9I@R"Y) is bounded.

We shall not prove this elementary lemma, we rather turn to the proof of Proposition 128.
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A.2. Proof of homogeneous Strichartz inequality

Proof. Bythe TT* Lemma i, ii, and iii are equivalent. Indeed let T f = e*!*P f then
T*F:fe“sDF(s)ds and TT*F:fei”(H)DF(s)ds

Therefore it suffices to prove estimate (iii) Observe that via the frequency-localized dispersive
estimate (7ii) of Proposition 126 we obtain the following bound

T PPl 5 ||

+i(t—s)D
oo, ],

< /1’1_27”Hf(/l(t—S))_nT_lJrnT_l||P/1F(s)"L"ds“Lq

In the non-sharp wave admissible case we can use Young’s inequality to conclude that

2n

* _2n _n-l_ n-l _2n_2
ITT*PpFllparr SA™ 7 1A 2 "7 I I PAFI SATTTAPyF

ey L'ry
Using the fact that (£) "% € LIZ (R) iff a B > 1, we obtain that the integral in time is bounded since
(g, r) is a non-sharp wave admissible pair.

In the sharp wave admissible case we cannot close by Young’s inequality since the integral
in time will be unbounded. However we can apply its weak version, the Hardy-Littlewood
inequality which state thatif 1< p<g<oo,0<a<1,and1+1/g=1/p+ a then

oo

Sk
L‘I(R)N” lzr @)

In our case we have a = nT—l -

that a = 2/q, hence we recover the sharp wave admissible condition. Notice that Hardy-

"T_l and to obtain the desired bound we set p = ¢/, this implies

Littlewood-Sobolev fractional inequality requires that the exponent of the kernel « is strictly

between zero and one, hence 2 < r < (2n—2)/(n—3) when n > 3. The proof of the end-point
2n-2
=
we refer to [33]. Notice that when 7 = 3 the end-point Strichartz estimate fail. Finally observe

Strichartz estimate (g, r) = (2, ) for n > 3, require more effort and it is not presented here,

that when (g, r) is a sharp wave admissible pair then (n+1)/2—-(n+1)/r =2s O
We now combine the previous frequency localized estimates to obtain a Strichartz estimates
for the half-wave propagator.

Corollary 130. Let(q,r,s) a Strichartz admissible triple, then

+itD
1= fllarr SN £l s

Proof. Notice that if we prove that

]1/2

lellparr S NPAulqpr (A.1)
p)
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Then by the frequency-localized Strichartz estimate Proposition 128 we can conclude
1/2 1/2
Mo S [ NPaulZap ] S AZIFIE] " SIS
A A

Observe that for wave admissible pairs for which g, r # oo estimate (A.1) follow form Littlewood-
Paley inequality. On the other hand if g = oo and r # oo we use Littlewood-Paley inequality for
the space variable and just the triangle inequality, which holds for any value of g, for the time
variable:

2 1/2 2 1/2
el zoorr = Ml zzllzge S IPAulfe e S [ IPrull7oy]
A A

Recall that the pairs (g,00) are not wave admissible. Therefore (A.1) holds for any wave
admissible pairs. O

As a trivial consequence we obtain the Strichartz estimates for homogeneous wave equation.
Corollary 131. Let(q,r,s) a Strichartz admissible triple, then
JOHS x H V- 1917

Notice again that the norm of the homogeneous map measured in such spaces does not
depend on the time interval, thus we can take the Lebesgue space norm over R"*! or over St.

A.3 Proof of inhomogeneous Strichartz inequality
Recall that the inhomogeneous maps can be written as a linear combination of half waves

1 [t 1 [t .
D‘1F=—,f e’“—s)DD—IF(s)ds——,f e {=IP -1 p(g)ds
2i Jo 21 Jo

Thus the Strichartz estimate are reduced to the question of boundedness of the half-wave
propagator. We proceed as above, first we prove a frequency localized version then we sum over

the frequencies to obtain the full estimate. Let us start by the following frequency-localized
Strichartz estimates for inhomogeneous half-wave propagator.

Proposition 132. Let (q,r1,s) and (q,7,1—s) be two Strichartz admissible triple, then
() |fe P D pyF@as),, | SIPAFI e

(@) | [ e PP F©)ds| ., S AT IPAFI

Proof. Using the homogeneous frequency-localized Strichartz estimates for the half-wave
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propagator, Proposition 128 i and ii, we obtain

|

ii(t—S)DD—IP F ”
”fe WF(s)ds L

eiltD\/‘eilSDD_lpﬂ,F(s)dSH
LiL"

LA
~

feil'S’DD‘lpw(s)cls”2

< AT DT P Fl
S IPAFl
Notice that the scaling condition we obtain that n — % -2 % — 2 = 1. Therefore (i) holds. In
similar fashion we prove (i)
||feil(t_S)DD_IPAF(S)dS” ] — ‘ eil[DfeilSDD_IP;LF(S)dS” (
LoL2 L2
< “ f eiiSDD‘lmF(s)als“2
1 n
< AT DT PAF
S ATNIPAFl g
. . s . _ 1
Again by the scaling condition we obtain that 1 —s= 5 — 7 2. O

The previous proposition and Christ-Kiselevlemma, see [95], implies the following Strichartz
estimates for inhomogeneous wave equation.

Corollary 133. Let(q,r1,s) and (q,7,1—s) be two Strichartz admissible triple, then
(1) O7L: 707 -9’
(i) O L7 L7 - COHSnC !

Again observe that the constants in the latter inequalities do not depend on time.

Proof. If we sum over frequency-localized blocks, by Proposition 132 and Littlewood-Paley
inequality, we obtain the estimates

+i(t—$s)D -1
e D Fsds” <NEN o1
” f 9ds| ,  SIFl,

i(t—$)D ~—1
” f GEI=9D F(s)ds” . <IFl
Lo Fs
Moreover notice that when we derive with respect to time we get another D factor in front,
precisely we have the following estimate

|o: f 9P D F(s)ds f ie* 9P E(s)ds S IFl

[ofst H Lo Hs1 ™
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Now we apply Christ-Kiselev lemma we get the truncated in time estimates

¢
+i(f-5)D < o
”fo ¢ F(s)dS”LqU S IFl

t .
|[ 9P ptras],_,, SIFLy
0 e

and .
”atf eii(t—s)DD—lF(S)dsHL SIEN g
0

oo frs=1 ™~

Finally observe that the inhomogeneous map operator is a linear combination of truncated in
time maps. O

A.4 Some improvements of Strichartz estimates

In the previous section we proved the classical Strichartz inequality

el g r oy + 10Ul oo ror o) S5 8l s st + ”D””L?L;’(X)

where the triplets (g, 1, s) and (¢, 7,1 — s) are Strichartz admissible. This estimate is the result
of four different ones: the two homogeneous estimates

.76 (o, uryll papr xy S ko, Ul s o st 107 (o, Ur) |l foo 1) S ko, Ul s s
LI X)
and two inhomogeneous estimates

-1 -1
O™ 2l g ) S Nl 100" ull feo prs-1xy S Nl

Gl = al o~
LI Y xy L L7 (X

notice that the second one does not follow form the energy inequality. All the four mentioned
inequalities are a consequence of the following

1™ Py fllparr SASIPAf Il

If now instead we derive with respect to time or space and apply the elliptic derivative —s
times we obtain
10D™e* PPy fllarr S AIPAS 2

Thus form the same argument as above [|0D~%e*!*P f||1arr < | £ > which yield to

10D ° 7 (uo, ur) oz x) Slluo, urll gp s
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We can run a similar argument for the inhomogeneous estimates. Set (¢, 7) = (00,2) then

”6D_8feil(t_S)DD_IPAF(S)dS“ - ||6D_SeiltheilSDD_lP/lF(S)dS”
LaL" LaLr
< A”fei”DD_lPAF(s)ds”Z
< MD'PyFlipge
S IPAFlye

Therefore we obtain the improved Strichartz bound

ID™*0ullparro < 158l gz + 10wl 2 x)

Proposition 134 (0 Strichartz). Let u be a solution of the inhomogeneous wave equation.
Furthermore let n = 2, the triplets (q, 1, s) and (q,7,3) be Strichartz admissible, (q,q) # (2,2),
and sy > sand sy > s+ 5. Then

S:
10ull 91705 SIS 8tz + 1$D) Dt g

where X =R or X = St forany T € R.

Proof. Suppose u = #(f, g) then since d and [l commute we have 0u = A (0. f,0x8). This

means v = 0u solves
Ov=0

(u,0¢v)| _ = (0xf,0x8)
Therefore Strichartz estimates, Proposition 125 yield to
” U”L?L;(X) 5 ||axf, axg”HSxHS*1 = ”f; g”HSHxHS

Hence the homogeneous estimate follows once we notice that s; > simplies | fllgs < | fl g1 -
Furthermore the inhomogeneous estimates is slightly more involve since we have introduced
s, and p and ¢ are not directly liked to s anymore. To prove the inhomogeneous Strichartz
estimate observe that for the frequency localised version we obtain

”af eii(t_s)DD_lPAF(s)ds” ~ )
LaLr

LIL"

< A° fei"“:’P/lF(s)ds||2
< ASSIPAF N e
< AZ|PAFl

If we sum over frequency localised blocks we obtain the inhomogeneous Strichartz estimate.
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O

Proposition 135 (D°0 Strichartz). Let u be a solution of the inhomogeneous wave equation.
Suppose n = 2, the triplets (q,1,0), and (q,7,0) are Strichartz admissible, and s € R. Then

”DS@UHL?L;(X) S I f5 gl grs+os1 y frsvo + ”DU+0+SDU||L:7’LF'
where X =R or X = St forany T € R.

Proof. As before notice D* and [J commute, then Strichartz estimates from Proposition 125
yield to the homogeneous estimate

||DSJ6’(f,g)||L;7L;(X) ,S ”Dsf,Dsg”HaXHa—l =~ ”fy g”Hs+u><Hs+u—1

In order to establish the frequency localised inhomogeneous estimate observe that

|

A,O-

U

HDSfeii(t_s)DD_lP,lF(s)ds||
LaL"

eii[DfeiiSDDS_IP,lF(S)dS”
LaL"

N

feiisDDs‘lmF(s)ds“2

o+0+s-1
S A IPAF N a7

A.5 Knapp Counterexample

The following question is in oder: are the conditions on wave admissible pair sharp? The
following proposition tell us that the answer is positive: the conditions are indeed sharp.

Proposition 136 (Knapp Counterexample). Letn=2,2 < g < oo, and2 < r < oo such that

>
q r 2

Then there exist at least one function f such that ||e''™? fl| oz = || fll2.

Proof. Consider a function f such that f(f) = xB.(£), where B¢ is a block of dimensions
1xe1x---xe L. For example take —1/2 < ¢, <1/2,and —1/(2¢) < ¢; < 1/(2¢) for2 < i < n.
Then clearly

2 1/2 _ 2L
Ifllz=1fll2=IBel"“=¢€" 2

and

¢t f =fei(t|€|+x~f)f(€)d€ ~ (D)
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A.5. Knapp Counterexample

Moreover for the Heisenberg principle f has support on the physical side on a box of size
1xex---xe. Let the ¢ variable be restricted to a size €? interval, then e’*P f has support on the
spacetime region S where —€?/2 < t < €?/2, -2 < x; <2 and —2¢ < x; < 2¢. Therefore

itD ~(n-1 —(n-1+24+21
"™ fllparr =" Vlixs, oz =€ a T

Thus 7 + 7+ > 24 implies that | fll oz = || fl2. O
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