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Abstract

When students are working collaboratively and communicating verbally in a technol-

ogy-enhanced environment, the system cannot track what collaboration is happening

outside of the technology, making it difficult to fully assess the collaboration of the

students and adapt accordingly. In this article, we propose using gaze measures as a

proxy for cognitive processes to achieve collaboration awareness. Specifically, we

use Granger causality to analyse the causal relationships between collaborative and

individual gaze measures from students working on a fractions intelligent tutoring

system and the influence that the students' dialogue, prior knowledge, or success has

on these relationships. We found that collaborative gaze patterns drive the individual

focus in the pairs with high posttest scores and when they are engaged in problem-

solving dialogues but the opposite with low performing students. Our work adds to

the literature by extending the correlational relationships between individual and col-

laborative gaze measures to causal relationships and suggests indicators that can be

used within an adaptive system.
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1 | INTRODUCTION

As learning technology and data collection advances, researchers have

been able to produce more accurate models of students' current

states and understandings to provide better learning support. For

example, within intelligent tutoring systems (ITSs), student knowledge

is modelled, and based upon this assessment, cognitive support is pro-

vided in terms of individualized problem selection, hints and error

feedback (VanLehn, 2006). Recently there has been a move to expand

ITS support to students working collaboratively (Baghaei, Mitrovic, &

Irwin, 2007; Harsley, Di Eugenio, Green, Fossati, & Acharya, 2016;

Olsen, Rummel, & Aleven, 2016; Rodríguez & Boyer, 2015; Walker,

Rummel, & Koedinger, 2014), so students can benefit from both the

cognitive support provided by the system as well as the exchange of

ideas and explanations within their group.

However, for the collaboration to be beneficial, like with any skill,

students must learn how to collaborate (Rummel & Spada, 2005),

making it important for learning technologies to provide social support

in addition to the cognitive learning support (Weinberger, Ertl, Fischer,

& Mandl, 2005) that students need to be successful. When students

are collaborating, they do not all start with the same expectations

about collaboration, and adaptive collaborative learning support

(ACLS) may be needed to provide students with the correct support

at the correct time (Magnisalis, Demetriadis, & Karakostas, 2011;

Walker, Rummel, & Koedinger, 2011). ACLS can be used to adapt to

the collaborative learning environment to provide appropriate support

Received: 14 August 2019 Revised: 23 March 2020 Accepted: 25 May 2020

DOI: 10.1111/jcal.12467

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Journal of Computer Assisted Learning published by John Wiley & Sons Ltd.

J Comput Assist Learn. 2020;1–18. wileyonlinelibrary.com/journal/jcal 1

https://orcid.org/0000-0003-3364-637X
mailto:kshitij.sharma@ntnu.no
https://publons.com/publon/10.1111/jcal.12467
https://publons.com/publon/10.1111/jcal.12467
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jcal
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjcal.12467&domain=pdf&date_stamp=2020-06-23


for the students by assessing student interactions, comparing them to

a set of productive interactions and providing interventions that will

guide students closer to a productive interaction (Soller, Martínez,

Jermann, & Muehlenbrock, 2005; Walker et al., 2011).

In the classroom, it remains difficult to provide this adaptive social

support in real-time due to difficulties in assessing the current state of

students' collaborations. When students are in the classroom, they are

often collaborating face-to-face, even when using personal devices,

and communicating verbally. These verbal communications are diffi-

cult to assess in real-time and leave the system with an incomplete

picture of the collaboration due to both the lack of data and possible

long pauses in system interaction as the students discuss a problem.

We are interested in supporting the collaborative interactions that

occur as students work on a collaborative technology where all the

interactions may not be captured through the system, while avoiding

the different problem of fully understanding students' open-ended,

ongoing verbal communications.

In this article, we propose using eye-tracking to assess students' col-

laboration behaviours by investigating the causal relationships between

different process variables to find indicators that can be tracked and mea-

sured in real-time within a collaborative setting. Specifically, we investi-

gate the causal relationships between students' individual and

collaborative cognitive processes, using gaze patterns (i.e. focus and simi-

larity) as a proxy, for primary school students working on a collaborative

fractions ITS and examine how their dialogue plays a role in this relation-

ship. For this analysis, we used time series data from the students work-

ing on the tutor. The points in time where the causal relationship of the

gaze patterns changes may provide indications of a change in the stu-

dents' collaboration and places where the system can intervene.

In this article, we are interested in finding the causal relation

between individual and collaborative cognitive processes as exhibited

through gaze patterns. The direction of causality, that is, whether individ-

ual gaze causes collaborative gaze patterns or the vice versa, is hypothe-

sized to change based on multiple factors. These factors include: prior

knowledge, performance and dialogues. The causal direction would

inform us whether the individual efforts are guiding the collaboration or

the other way around. We hypothesize that this nature of causality is not

consistent throughout the collaboration; and it will change direction

according to what stage of problem solving the students are in.

Specifically, we address the following research questions in this

article:

1. What is the direction of causality between the collaborative and

individual gaze patterns?

2. How do dialogue, prior knowledge and success relate to this

causality?

From our results, we make a contribution to the work on ACLS by

proposing a new metric that can be used to assess student collabora-

tion in real-time even when students are communicating face-to-face.

Additionally, we contribute to the theoretical knowledge of gaze in

educational technology by extending our understanding of the rela-

tions between different gaze measures and how these relations

change as the students' collaborative relationship changes. Moreover,

we analyse the causal relationship between the different cognitive

processes with gaze-based variables (individual and collaborative) as a

proxy in a temporal manner with the dialogues as a covariate in the

analysis. The results give us an opportunity to pinpoint the moments

in the collaboration to provide proactive, actionable feedback.

2 | RELATED WORK

Within the field of educational technology, ITSs have a long track

record of successfully supporting individual student learning (Kulik &

Fletcher, 2016; Ma, Adesope, Nesbit, & Liu, 2014), particularly within

the domain of mathematics (Ritter, Anderson, Koedinger, & Corbett,

2007). ITSs support student learning through both outer loop adapta-

tion, where the problems students work on are adapted to their

knowledge growth (VanLehn, 2006), and inner loop adaptation through

step-by-step guidance for students within problems, both through the

use of immediate feedback on steps and on demand hints. Through

the inner loop adaptation, students know immediately when an error

occurs and they can decide to request help from the system to figure

out how to do any problem-solving step correctly. By providing stu-

dents with this level of support, ITSs have been shown to be nearly as

effective as human tutoring (VanLehn, 2011).

However, learning in the classroom does not only consist of individ-

ual learning moments, and interactions between students have been

shown to be beneficial to the learning process (Chi & Wylie, 2014). To

support these student interactions, more recently, ITSs have been

extended to support students working collaboratively. These collabora-

tive ITSs have been developed with both goals in mind of bringing more

cognitive support to a collaborative task (Baghaei et al., 2007; Harsley

et al., 2016) and bringing more collaboration to a typically individual task

(Olsen et al., 2016; Rummel, Mullins, & Spada, 2012; Walker et al., 2014).

By combining student collaboration with the cognitive support provided

in the ITS, students may be able to more effectively construct knowledge

to both avoid and overcome errors when they occur and effectively use

the support provided through hints. Although ITSs have a strong history

of modelling student learning to provide individualized cognitive support,

much of the collaborative support is still fixed within these systems

(Harsley et al., 2016; Rummel et al., 2012) with a limited number of ITSs

exploiting the data collected to provide adaptive social support (Dowell,

Cade, Tausczik, Pennebaker, & Graesser, 2014; Walker et al., 2014). In

this section, we briefly review how dialogues and gaze data have been

used to aid our understanding of collaborative learning processes and

outcomes. Moreover, we also review in what ways certain causal rela-

tions could be established and which domains have used Granger's defini-

tion (the one used in this article) of causality.

2.1 | Role of students' dialogue in education

When students are collaborating, their dialogue is very important, as it

is the main way that they share and build upon each other's ideas (Chi
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& Wylie, 2014). Because of the role that the dialogue plays within the

collaboration, it is often the target of assessment for understanding

and providing ACLS to students. When analysing students' speech

and chats, the assessment can take place with surface level features

to a more in depth analysis of the dialogue content. Many previous

ACLS systems have used shallow indicators from dialogue to support

student collaborations such as the number of student utterances

(Dowell et al., 2014; Rosatelli & Self, 2004), used sentence openers

(Baker & Lund, 1997; McManus & Aiken, 2016), or tracked particular

sequences of dialogue actions (e.g. use of a question mark or dialogue

talk moves, Adamson & Rosé, 2012). More recently, advances in

machine learning have allowed for the content of chats to be analysed

to provide a model of the student collaboration (Adamson, Dyke, Jang,

& Rosé, 2014; Bergner, Walker, & Ogan, 2017; Walker et al., 2014).

When students are in face-to-face collaborations, they often are com-

municating through speech and surface speech indicators such as talk

time, turn taking, and voice inflextion can be used to assess the collab-

oration (Martinez, Wallace, Kay, & Yacef, 2011; Viswanathan &

VanLehn, 2017, 2018).

With educational technologies, in addition to the student dia-

logue, log data is often collected of the actions that the students have

taken with the system. Together with the dialogue data, some systems

have used both of these data streams to model the student collabora-

tion (Martinez-Maldonado, Kay, & Yacef, 2013; McLaren, Scheuer, &

Mikšátko, 2010; Viswanathan & VanLehn, 2017; 2018; Walker,

Walker, Rummel, & Koedinger, 2010). By including features of the

learning environment in the assessment of the collaboration, often

the intervention can be more impactful. However, it is not always pos-

sible to assess the speech data of students, especially in a loud class-

room. Instead of combining dialogue and log data information, some

research has modelled the student collaboration using only the actions

that the students took within the system (Diziol, Walker, Rummel, &

Koedinger, 2010; Evans, Wobbrock, & Davis, 2016; Rodríguez &

Boyer, 2015). Yet, these logged actions are limited and may not be as

useful in understanding what is happening outside of the system if

there are long pauses between system interactions when students

may be having discussions.

2.2 | Eye-tracking in educational technology
research

Eye-tracking can be used to make this link between the information

provided in the learning technology and the group discussions stu-

dents have while working with them (Cherubini, Nüssli, & Dillenbourg,

2008; Jermann & Nüssli, 2012; Sharma, Jermann, Nüssli, &

Dillenbourg, 2013). Eye-tracking may be a promising method to use to

assess student collaboration as research has shown that gaze is tied

to communication (Meyer, Sleiderink, & Levelt, 1998). Previous

research has shown a link between speech and gaze when people are

working together on a task. There is a coupling of the collaborators'

gaze around a reference (Richardson, Dale, & Kirkham, 2007), meaning

that the collaborators' gaze may fixate at approximately the same

point in time on the object referenced in the dialogue. For example,

just before mentioning it and just after hearing about it people tend to

look at the referenced object. The gaze has a closer coupling when

each of the collaborators has the same initial information and when

collaborators can visually share important objects that they are

referencing in speech (Jermann & Nüssli, 2012; Richardson et al.,

2007), suggesting that concrete references may have more of an

impact on gaze compared to abstract references. However, these

explicit references encompass a small amount of dialogue in a collabo-

rative task. Therefore, in this contribution, we analyse the gaze data

corresponding to other dialogue types as well during the collaborative

sessions.

Over the past few years, eye-tracking has become a key source

of process data in educational research covering a wide range of edu-

cational ecosystems. Eye-tracking has not only been used to under-

stand the learning processes in various contexts (Prieto, Sharma, &

Dillenbourg, 2015; Raca & Dillenbourg, 2013; Sharma, Caballero,

Verma, Jermann, & Dillenbourg, 2015), but it also has been used to

provide students with appropriate, real-time and adaptive feedback

on their learning processes (D'Angelo & Begel, 2017; Sharma, Alavi,

Jermann, & Dillenbourg, 2016). Specifically, with ITSs, eye-tracking

has previously been used to better understand student processes dur-

ing the learning intervention. The use of eye-tracking as an analysis

tool in ITSs has spanned investigating both affective and cognitive

states of students (Jaques, Conati, Harley, & Azevedo, 2014; Rau,

Michaelis, & Fay, 2015). Within affective states, eye-tracking can

be used to gauge student boredom, curiosity and attention or mind-

wandering (Bixler & D'Mello, 2016; Feng, D'Mello, & Graesser, 2013)

that can influence the student learning (Jaques et al., 2014). By identi-

fying these states, interventions can be put in place. For example,

D'Mello, Olney, Williams, and Hays (2012) designed a gaze-reactive

ITS that detects boredom and disengagement to direct students to

pay attention to the tutor using dialogue moves. In addition to track-

ing the affective state of the student, gaze has also been related to

the cognitive state of the student. Rau et al. (2015) found that the

gaze patterns of students were correlated with the types of self-

explanations that students provided. However, the majority of this

research has been conducted on students working individually and

does not extend the analysis of eye-tracking to students working col-

laboratively (Belenky, Ringenberg, Olsen, Aleven, & Rummel, 2014).

When students work collaboratively, they can influence each other's

thought processes that can be expressed through both speech and

gaze patterns.

2.3 | Eye-tracking and collaborative learning

In terms of collaborative learning scenarios, eye-tracking has most

often been used with collaborating partners' dialogues. Research has

shown that there is a time lag between looking at an object and refer-

ring to the same object (eye-voice span, Griffin & Bock, 2000) and a

time lag between a speaker's reference and a listener's gaze on the

referred object (voice-eye span, Allopenna, Magnuson, & Tanenhaus,
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1998). Additionally, in terms of dual gaze, there is a lag in the eye–eye

(speaker's eye listener's eye) span (i.e. the time difference between

the moment a speaker looks at an object and the moment the listener

looks at the same object, Richardson et al., 2007). Most of the dual

eye-tracking studies have shown that the amount of time that the col-

laborating partners spend while looking at the same objects at the

same time (cross-recurrence) is predictive of several collaborative con-

structs (e.g. collaboration quality (Jermann & Nüssli, 2012); misunder-

standings (Cherubini, Nüssli, & Dillenbourg., 2008); learning gains

(Sangin, Molinari, Nüssli, & Dillenbourg, 2011).

2.4 | Establishing causal relationships

In this article, we go beyond correlational links to explore where there

may be causal links between gaze measures and how they change

during different forms of dialogue. The key idea is to use the ‘cause’

to ‘forecast’ the effect to prepare adaptations in the ITS to student

needs. There are three methods that could be used to show the cau-

sality between different variables: (a) Granger causality (Granger,

1969), (b) Structured Equation Modelling (SEM; Edwards & Bagozzi,

2000), and (c) conducting an intervention experiment where the

hypothesized ‘cause’ is controlled and the hypothesized ‘effect’ is

measured (Shadish, Cook, & Campbell, 2002). All of these methods

allow for establishing the causal (hypothesized or explored) relation-

ship between the variables of interest through different mathematical

formulations. In educational research, the causality is measured mostly

between the variables, such as educational levels and income

(D�an�acic�a, Belaşcu, & Ilie, 2010; Islam, Wadud, & Islam, 2007; Kumar

Narayan & Smyth, 2006), motivation and regulation (Murcia, Coll, &

Garzón, 2009), goal orientation and perceived competence (Goudas,

Biddle, & Fox, 1994) and a given intervention and the learning behav-

iour (Rau, Scheines, Aleven, & Rummel, 2013). In this contribution, we

propose a shift to analyse the process of collaboration, which might

help the learning design of proactive feedback tools.

2.5 | Granger causality

In this article, we used the definition of causality provided by Granger

(1969), which states that a variable ‘X’ Granger causes another vari-

able ‘Y’, if the past values of ‘X’ contain more information to predict

the present value of ‘Y’ than the past values of ‘Y’ itself. Within the

Section 3.3, we provide further detail on how Granger Causality

meets the criteria for causality. Granger causality has been used in a

multitude of domains to understand the relationship between observ-

able variables, such as Neuroscience (Ding, Chen, & Bressler, 2006;

Goebel, Roebroeck, Kim, & Formisano, 2003), user-consumption

(Narayan & Smyth, 2005), stock-market (Hiemstra & Jones, 1994) and

economics (Joerding, 1986; Thornton & Batten, 1985). We chose to

use Granger causality due to the nature of the relationship between

our variables. With the gaze variables, there is not a way to easily

experimentally control and manipulate students' gaze in order to

identify the cause-effect relationship between the two variables in

question (Chambliss & Schutt, 2018). In this case, we must rely on

causality methods that use existing data. In the case of SEM, the

model relies on the causal assumptions of the researcher (Bollen &

Pearl, 2013) based on experiment setup and prior knowledge/studies.

Without theory behind the assumptions, or if there are two compet-

ing theories, the model cannot be credibly specified. However, in the

case of Granger causality, such restrictions are not imposed and

instead the data is used to explore the causal relationships within time

series data. This method extends previous results (Olsen, Sharma,

Aleven, & Rummel, 2018; Sharma et al., 2015), which show correla-

tions between individual and collaborative gaze patterns but do not

give any indication about the causal direction. This prompts the use of

Granger's definition of causality to answer our research questions.

2.6 | Hill's criteria and Granger's definition

In this section, we first explain the general definition, listed as a set of

criteria, for causal relations between two variables (Hill, 1965). Then

we describe the extent to which Granger's definition of causality sat-

isfies the causality criteria.

2.7 | Hill's criteria for causality

Strength: A relationship is more likely to be causal if the correlation

coefficient is large and statistically significant (Hill, 1965).

Consistency: A relationship is more likely to be causal if it can be

replicated.

Specificity: A relationship is more likely to be causal if there is no

other likely explanation.

Temporality: A relationship is more likely to be causal if the effect

always occurs after the cause.

Gradient: A relationship is more likely to be causal if a greater

exposure to the suspected cause leads to a greater effect.

Plausibility: A relationship is more likely to be causal if there is a

plausible mechanism between the cause and the effect.

Coherence: A relationship is more likely to be causal if it is com-

patible with related facts and theories.

Experiment: A relationship is more likely to be causal if it can be

verified experimentally.

Analogy: A relationship is more likely to be causal if there are

proven relationships between similar causes and effects.

Granger causality satisfies a subset of Hill's criteria, such as

strength (selecting the model that is more explainable), consistency,

temporality (modelling the present value of hypothesized effect based

on the lags of the hypothesized cause), plausibility and coherence (the

relations can be backed by the theory and behavioural explanations).

Experiment and Analogy are contextual. For example, in collaborative

learning, a suggested (Granger) causal relation can be tested using an

intervention experiment while testing for Granger causality in analo-

gous contexts is possible based on the temporal data collected.
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Finally, the ‘gradient’ criteria cannot always be satisfied by the

Granger definition for causality since there is no guarantee that

including more lags (a longer history) from the suspected cause will

increase the predictability of the present value of the suspected

effect.

3 | METHODS

3.1 | Experimental design and procedure

The data used for this analysis came from an experimental study (for a

more detailed description, see Olsen, Belenky, Aleven, & Rummel,

2014) where the goal was to investigate the differences between indi-

vidual and collaborative performance when working on conceptually

or procedurally oriented tutor problems. For our analysis, we included

the 14 fourth and 14 fifth grade dyads that worked collaboratively—

excluding the students that worked individually—on either conceptu-

ally or procedurally oriented problem sets.

For the experiment, each teacher paired the students participat-

ing in the study based on students who would work well together and

did not have drastically different mathematics abilities. The dyads

were engaged in a problem-solving activity using a networked collab-

orative ITS, which allowed them to synchronously work in a shared

problem space where they could see each other's actions while sitting

at their own computers.

The morning before working with the tutor and the morning after

working with the tutor, students were given 25 min to complete a

pretest or posttest individually on the computer to assess their learn-

ing. The pretest and posttest used the same software as the tutoring

system but did not provide the students with any feedback on their

answers. During the experiment, each dyad worked with the tutor for

45 min in a pullout study design at their school. The students sat

across the room from each other at a fixed SMI Red 250 Hz infrared

eye-tracker facing away from one another. The students were able to

communicate verbally (no video) through a Skype connection. The

researchers collected dual eye-tracking data, dialogue data, and tutor

log data from the sessions in addition to the pretest and posttest

measures.

3.2 | Intelligent tutoring system

During the study, the dyads engaged with an ITS oriented towards

supporting the acquisition of knowledge about fraction equivalence.

Within each problem, the tutor provided standard ITS support, such

as prompts for steps (i.e. revealing steps sequentially), on demand

hints, and step-level feedback (i.e. correct or incorrect feedback) that

allows the problem to adapt to the student's problem-solving strategy

(VanLehn, 2006).

Within the design of the tutors, all steps, hints and feedback were

shown to both students on their screens. Because new information

was revealed throughout the problem instead of all at the beginning,

these reveals could help to guide the students' gaze. When a new step

was shown in the problem, the previous information and steps

remained on the screen increasing the amount of information with

which the student could engage. Although there was only one step

for the students to work on at a time, this step could consist of multi-

ple boxes to fill in or multiple buttons with which the students could

interact.

To support students collaborating, the ITS support mentioned

above was combined with embedded collaboration scripts that

guided the students through the actions they could take within the

tutor. The embedded collaboration scripts included three theoreti-

cally proven types of collaboration support: roles, cognitive group

awareness, and individual accountability (see Figure 1a). First, for

many steps, the students were assigned roles (King, 1999). On

steps with roles, one student was responsible for entering the

answer and the other was responsible for asking questions of their

partner and providing help with the answer. The tutor indicated

the current role for the students through the use of icons on the

screen. Both students had a different icon in the same place for

each step forming a symmetry in what they saw on their screen. A

second way the collaboration was supported was by providing stu-

dents with information their partner did not have that they were

responsible for sharing for the problem to be completed causing

individual accountability (Slavin, 1996). Like with the icons, when

one student had text on their screen, the other student had text in

the same place informing them that their partner had something to

share. The final feature was cognitive group awareness, where

knowledge that each student has in the group is made known to

the group (Janssen & Bodemer, 2013). On steps where this feature

was implemented, each student was given an opportunity to

answer a question individually before the students were shown

each other's answers and asked to provide a consensus answer.

3.3 | Data analysis

We used a Granger causality (Granger, 1969) test to examine the cau-

sality between our gaze measures. The basic definition of Granger

causality has two assumptions (Granger, 1969). The first assumption

is that cause occurs before effect and that the cause has information

about the effect that is more important than the history of the effect.

In terms of the nature of the concerned time series, Granger causality

is defined for linear and stationary time-series contexts, but variations

for non-linear (Ancona, Marinazzo, & Stramaglia, 2004; Chen,

Rangarajan, Feng, & Ding, 2004; Freiwald et al., 1999) and non-sta-

tionary (Ding, Bressler, Yang, & Liang, 2000; Hesse, Möller, Arnold, &

Schack, 2003) contexts exist.

We start by creating two models: one that predicts the effect

using the lags of the effect and one that predicts the effect using the

lags of both the cause and the effect. The basic principle of Granger

causality is to compare these two models to test if x causes y. The first

model predicts the value of y at time t using the previous p-values of

y. The second model predicts the value of y at time t using the

SHARMA ET AL. 5



previous p-values of both x and y. Mathematically, following is a bivar-

iate linear autoregressive model for two variables x and y:

y tð Þ=
Xp

j=1

α11jx t− jð Þ+
Xp

j=1

α12jy t− jð Þ+ ε1 tð Þ ð1Þ

y tð Þ=
Xp

21jðÞ+
Xp

j=1

α22jy t− jð Þ+ ε2 tð Þ ð2Þ

where,

p = model order, maximum lag included in the model.

α = coefficients matrix, contribution of each lag value to the

predicted value.

ε = residual, prediction error.

We can conclude that x Granger-causes y if the coefficients in α12

are jointly significantly different from zero. Statistically, this can be

tested using an F-test with the null hypothesis α11 = 0. Also, the value

of p can be decided based on the AIC (Akaike, 1974) or BIC (Schwarz,

1978) model estimation values. The F-values are calculated using a

Wald-test (Kodde & Palm, 1986), which is also called ‘Wald's Chi-

square test’. This is a test to examine if the explanatory variables of a

model (in our case, these are the various lags included in the model)

are significant or not. This test can work both for continuous and cat-

egorical variables. Therefore, using this test, one can establish Granger

causality with both types of the variables. A significant variable in the

model would have a non-zero parameter in the Wald-test. The p-

values in the Wald-test are calculated using a variant of likelihood

optimisation such as AIC or BIC. This is a non-parametric test, so it

can be used without the knowledge of the underlying distributions.

4 | DATA SET

During the experiment, the researchers collected gaze measures,

student dialogue, and test scores. For our analysis, we investigated

how analysing these multiple data streams in relation to each other

provided additional insight into the collaborative learning process.

The main aim of this analysis is to contribute to existing literature

that has mainly analysed the processes from a correlational point

of view.

4.1 | Gaze data

For our gaze measures, we analysed the students' individual focus and

their combined similarity for each dyad. Focus (how concentrated/

scattered the individual gaze is) and similarity (what proportion of time

the peers spent looking at similar set of objects) have been used in

recent research concerning collaborative eye-tracking (Schneider

et al., 2016; Sharma et al., 2013, 2015) to combine and analyse gaze

behaviour at individual and collaborative levels. In our case, we chose

these variables because the use of both individual and collaborative

measures could provide insights into a dyad's collaborative process

F IGURE 1 (a) Example of a fractions interface showing incremental step reveals, feedback and hint requests. Students had roles assigned that
were displayed through their icon. (b) A typical example of stimulus overlaid with a 50-by-50 pixel grid and the gaze data [Colour figure can be
viewed at wileyonlinelibrary.com]

6 SHARMA ET AL.

http://wileyonlinelibrary.com


depending upon if the individual measures were causing the collabo-

rative or vice versa.

For all of our gaze measures we used a grid to divide the screen

into smaller segments opposed to using areas of interest (AOIs) so

that we could capture any interactions with the screen rather than

only the main components of the screen. We divided the screen in a

50-by-50 pixel grid (Figure 1b). We chose this size grid because it was

roughly the size of the individual components within the tutoring sys-

tem. Additionally, we divided the whole problem-solving session into

10-second time windows. The 10-second time windows allowed

enough time for students to look at the same place if there was lag

between references but not so high as to obscure changing gaze

patterns.

4.1.1 | Individual focus

This measures how many objects were looked at in a given time win-

dow. In other words, this is a measure of how concentrated or scattered

the gaze of an individual is. This measure is computed in terms of the

entropy of the gaze. To compute the entropy, we needed to divide

both the area of the screen and the time the students were working

into discrete measurements. We then computed the proportion of the

time spent in each block in the spatial grid for each 10-s time window.

This resulted in a series of two-dimensional proportionality vectors.

Finally, we computed the Shannon Entropy for each of the vectors. A

low entropy value (the minimum possible value is zero) depicts that

the student was looking at only a few elements on the screen, which

we call focused gaze (see Figure 2). On the other hand, a high value of

entropy indicates more elements are being looked at in a given time

window, which we call unfocused gaze. The individual focus indicates

whether the information processing is global (many items looked at in

the given time period) or local (only a few items looked at in the given

time period). This is analogous to the definition provided by Poole and

Ball (2006) to the ratio of global and local information processing

(defined using the fixation durations and saccade lengths). To com-

pute a single measurement of the individual focus, we computed the

probability of both the participants in a pair having a low focus size.

Although focus and attention are related concepts, focus, as we

define it here, does not contain the idea of processing the stimulus, as

is required in the definition of attention (Hoffman, 1998). Attentive

gaze indicates a certain level of processing of the sensory input.

Focused gaze simply indicates a small number of elements looked

over a fixed time period. For example, when a student is daydreaming,

their gaze is often very focused but they are not being attentive to

that stimulus.

4.1.2 | Collaborative gaze

This is a measure of how similar the two individual gaze patterns are. In

order to compute the similarity between the gaze patterns of the col-

laborating students, we divided the screen space and the interaction

time in the same manner as we did for the focus computation. We

computed the similarity between the two proportionality vectors by

using the reverse function (1/[1 + x]) of the correlation matrix of the

two vectors. A similarity value of one will show no similarity between

the two gaze patterns during a given time window (see Figure 3). On

the other hand, a lower value of similarity will show that the two par-

ticipants spent time looking at a similar set of objects on the screen

during the same time window. Gaze similarity is an alternative mea-

sure of gaze convergence (Jermann & Nüssli, 2012; Richardson &

Dale, 2005), the only difference between gaze similarity and gaze con-

vergence comes from the mathematical formulation. Gaze conver-

gence uses cross-recurrence (a concept borrowed from dynamical

systems) measures to measure how much time the peers spent

looking at the same objects (usually coded through Areas of Interest)

at the same time (with some lag). This requires an additional step of

defining the areas of interest (which might be too context dependent)

as an additional preprocessing step. Gaze similarity, as gaze cross-

recurrence, is a measurement of joint-attention which might be the

result of pointing gesture or verbal references during the collaborative

problem-solving (Jermann & Nüssli, 2012; Richardson & Dale, 2005).

Therefore, increased gaze similarity might indicate an improved com-

mon ground (Sharma et al., 2013, 2015).

4.2 | Dialogue data

For our analysis, we used student dialogues as an indicator of the pro-

cesses that the students were engaged in during problem-solving. To

understand the cognitive processes that students engaged in while

F IGURE 2 Individual focus [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Collaborative similarity [Colour figure can be viewed at
wileyonlinelibrary.com]
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learning, a widely used method is verbal reporting (Van Gog, Kester,

Nievelstein, Giesbers, & Paas, 2009). When students engage in con-

current reporting, such as when students vocalize their thoughts while

performing the task, they provide information on their actions and

outcomes that can be used to assess the cognitive processes that the

students are using (Taylor & Dionne, 2000). However, students may

decrease their vocalization as the task gets longer or they become

absorbed, and, additionally, the vocalization may influence their cogni-

tive processing (Ericsson & Simon, 1984; Schooler, Ohlsson, & Brooks,

1993). When students are working in a collaborative environment, the

students naturally vocalize as they work with their partner with less

risk of a reduction in the vocalization. Additionally, because the dia-

logue is part of the collaborative task, we are not asking the students

to engage in outside tasks that could change their process. Therefore,

the collaborative dialogue allows us to assess student processes

through vocalizations without the limitations that arise when students

are working individually.

Each of the student dialogues were transcribed and coded for the

type of problem-solving process the students were engaged in. For

our coding, we did not intend to infer all mental processes, but to fully

depend on what occurs in the dialogue. Within our transcripts, we

coded for the problem-solving process at the utterance level (Table 1

shows the definitions and examples for the different codes). This

allowed us to have a fine-grained coding for each second of the dia-

logue without losing the context of the words. Our codes consisted of

five different activities: acknowledgement, read out loud, interface,

problem-solving, and metacognitive. For the coding, all statements

that were off-task or were discussions with a researcher were marked

as ‘not applicable’ and were discarded from the analysis. An inter-rater

reliability analysis was performed to determine consistency among

raters (Kappa = 0.78).

4.3 | Test data

Finally, to measure students' learning of equivalent fractions, the stu-

dents took pretests and posttests. The pretest and posttest scores

allowed us to understand the relation of the causality to student

knowledge. The tests were computer-based and developed to closely

align with the target knowledge covered in the tutors. The tests con-

sisted of five procedural and six conceptual test items. Two isomor-

phic sets of questions were developed, and there were no differences

in performance on the test forms across all participants in the original

study, (t[79] = 0.96, p = .34). The presentation of these forms as pre-

tests and posttests was counterbalanced.

5 | RESULTS

In this section, we provide the analyses to arrive at a causal relation-

ship between the gaze focus and similarity mentioned in section Vari-

ables. To answer the first research question (What is the direction of

causality between the collaborative and individual gaze patterns?), we

provide an example for how to determine the Granger causality

between two variables using the method explained in section Ana-

lyses. This example uses the results from the overall causality analyses

between the focus and similarity (descriptive values are shown in

Table 2). Next, to answer the second research question (How do dia-

logue, prior knowledge and success relate to this causality?), we pre-

sent the causality analyses with prior knowledge, success and

dialogues (distribution of the different dialogue codes is shown in

Table 3) as covariates. Finally, to analyse the effect of prior

TABLE 1 Dialogue coding scheme with examples

Code Definition Example

NA The student engages in off-

task behaviour, converses

with the experimenter, or

vocalizations without any

context

‘Just refresh it?’ (speaking
with the experimenter)

ACK

N = 321

The student acknowledges

their partner, or they

request

acknowledgement or a

repeat of what the

partner has said

‘Oh’

ROL

N = 843

The student is reading

information provided

within the problem and

presented on the screen

‘OK, is 3/4 in its most

reduced form?’ (reading
from screen)

INTF

N = 433

The student discusses

actions that can be taken

in the interface or engage

in work coordination

‘Do we click the up or down

arrow?’

PRO

N = 2,473

The student is providing an

answer to the problem or

showing evidence of think

aloud as they solve the

problem

‘OK, uh, by 3, okay, it's 9…’

META

N = 167

The student verbally

expresses their

understanding of their

current knowledge/

problem-solving state

‘I'm so, wait, wait, I'm so

confused now’

Note: Codes were applied at the utterance level.

Abbreviations: ACK, Acknowledgement; INTF, Interface; META, Meta-

cognitive; NA, Not applicable; PRO, Problem-solving; ROL, Read out loud.

TABLE 2 Descriptive statistics for the variables used in the
article

Mean SD Min Max

Similarity 0.04 0.06 0 1 (baseline < 0.0001)

Focus 0.07 0.06 0 1 (baseline = 0.003)

Individual posttest 2.84 2.20 0 10 (theoretical)

Average posttest 2.84 1.80 0 10 (theoretical)

Individual pretest 2.87 2.23 0 10 (theoretical)

Average pretest 2.79 1.80 0 10 (theoretical)
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knowledge, performance and dialogue on the nature of causality in

time, we present the temporal causal analysis for the pairs with high/

low average posttest scores.

5.1 | Example

In this analysis, we are checking the Granger causality in both directions

without a strong hypothesis for either direction to be more likely.

1. Whether the concentrated/scattered gaze of an individual predicts

the chances of looking at the same thing. Or,

2. Looking at similar things makes the degree of ‘being concentrated/

scattered’ similar.

Let us take the case of ‘focus’ (the probability that both the partici-

pants have low gaze entropy, that is, low focus values) and ‘similarity’

(the extent to which the peers looked at a similar set of objects in a

given time window). Table 4, comparison 1 shows the Granger causality

results for the overall data. The order of the model (Table 4, column 2)

denotes how much lag was used to compute the causal relationship (p

in Equations (1) and (2)). In other words, how much prior information

from the ‘cause’ we need to reliably predict the ‘effect’.

In the case of Table 4, comparison 1, the lags used are four time

windows (each time window corresponds to 10 s). To check if similar-

ity Granger causes focus, we create two models given by Equations

(1) and (2) and compare them using an F-test. The F- and p-values

denote the test statistic and significance of the model (Table 4, col-

umns 3 and 4, respectively). We repeat the same process for checking

if focus Granger causes similarity. We can see in Table 4, comparison

1 that ‘similarity Granger causes focus’ has a higher F(2.51) and lower

(and significant) p-value (.03) than ‘similarity Granger causes focus’ (F

= 2.04, p = .09). This shows that the history of similarity values pre-

dicts the current value of the focus in a more reliable manner than the

history values of focus predict the current value of similarity. Thus,

we can conclude that ‘similarity Granger causes focus’.

5.2 | The direction of causality between the
collaborative and individual gaze patterns

Continuing from the example above, we can see in Table 4, comparison 1

that ‘similarity Granger causes focus’ has a higher F(2.51) and lower (and

significant) p-value (.03) than ‘similarity Granger causes focus’ (F = 2.04, p

= .09). Thus, we can conclude that ‘similarity Granger causes focus’.

5.3 | Causal relation between individual focus and
collaborative similarity considering covariates
(dialogue, prior knowledge and success)

The previous set of results is based on the overall time series values

of individual focus and collaborative similarity. The causal relation

TABLE 3 Distribution of the different dialogue codes across two
different groups of collaborative successes

Dialogue proportions

ACK PRO ROL META INTF

Mean low posttest 7.64 54.69 19.57 5.76 12.33

SD low postest 4.55 39.46 12.93 7.67 7.95

Mean low pretest 8.26 58.03 22.19 2.17 9.23

SD low pretest 7.92 31.32 17.12 3.81 10.15

Abbreviations: ACK, Acknowledgement; INTF, Interface; META, Meta-

cognitive; PRO, Problem-solving; ROL, Read out loud.

TABLE 4 The Granger causality model, across different data
types, for collaborative similarity and probability that both
participants have high focus

Model Order F-value P-value

Overall data (1)

Similarity ! focus 4 2.51 .03*

Focus ! similarity 4 2.04 .09

Participants engaged in dialogues (2)

Similarity ! focus 8 2.12 .03*

Focus ! similarity 8 0.93 .47

Participants engaged in dialogues with INTF dialogue (3)

Similarity ! focus 6 2.83 .009*

Focus ! similarity 6 1.01 .41

Participants engaged in dialogues with PRO dialogue (4)

Similarity ! focus 5 0.21 .95

Focus ! similarity 5 2.52 .02*

Dyads with high average posttest score (5)

Similarity ! focus 2 3.91 .02*

Focus ! similarity 2 1.70 .18

Dyads with low average posttest score (6)

Similarity ! focus 3 7.04 .00001*

Focus ! similarity 3 2.04 .11

Dyads with high average posttest score with PRO dialogues (7)

Similarity ! focus 2 2.81 .05*

Focus ! similarity 2 1.01 .31

Dyads with low average posttest score with PRO dialogues (8)

Similarity ! focus 3 0.54 .44

Focus ! similarity 3 2.74 .05*

Dyads with high average pretest score (9)

Similarity ! focus 3 6.49 .0002*

Focus ! similarity 3 0.04 .98

Dyads with low average pretest score (10)

Similarity ! focus 3 0.11 .95

Focus ! similarity 3 4.42 .004*

Note: The direction of causality is denoted with an asterisks (*).

Abbreviations: INTF, Interface; PRO, Problem-solving.
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might be misleading without considering covariates in the analysis

since the causal direction may be affected by the prior knowledge,

dialogues and/or the success of the pair. Therefore, we present the

analysis using these factors as covariates in our analysis.

We observe that similarity Granger causes focus during the whole

interaction (Table 4, Comparison 1). This causality also remains when

the dyads are engaged in dialogue (Table 4, Comparison 2). Consider-

ing the data from the individual dialogue categories, the same causal-

ity holds when the peers are talking about interface issues (INTF,

Table 4, Comparison 3). However, the causality changes polarity (that

is focus Granger causes similarity) while the peers are talking about

problem-solving (Table 4, Comparison 4). Additionally, there is no con-

clusive causality for ACK and META.

However, when we divide the data into pairs with high and low

average posttest scores, we observe a few different relations. For the

pairs with high posttest averages, similarity Granger causes focus (Table

4, Comparison 5). This polarity does not change for ‘PRO’ abstraction

(Table 4, Comparison 7). For the pairs with low posttest averages,

focus Granger causes similarity (Table 4, Comparison 6) and the polarity

changes for ‘PRO’ abstraction (Table 4, Comparison 8).This result

shows that there is an interaction between the focus, similarity and

performance in addition to an interaction between the focus, similar-

ity and dialogue.

Finally, we considered the relation between the pretest and

posttest scores. There is a positive significant correlation between

the average pretest and the posttest scores for the pairs (r[27] =

0.57, p = .001), indicating that prior knowledge also contributes to

the success. Therefore, we divided the data set into dyads with

low and high average pretest scores and found that similarity

Granger causes focus for the pairs with high average pretest scores

(Table 4, Comparison 9); whereas, focus Granger causes similarity

for the pairs with low average pretest scores (Table 4, Compari-

son 10).

5.4 | Temporal causalities

We chose to divide students by their posttest scores since it is an

indicator of the students' target knowledge at the end of the interven-

tion. Figure 4 shows the temporal direction of the Granger causality

between focus and similarity for pairs with high average posttest

scores. We can see that for students with high posttest scores, for a

major part of the collaboration (63.33%), the similarity is causing

focus, followed by periods of time (episodes) with no clear causality

between focus and similarity (33.33%). We observe that there are a

few episodes where the causality changes the direction, and focus

seems to cause the similarity. However, the percentage of such epi-

sodes is low (4.33%).

Figure 5 shows the temporal direction of the Granger causality

between focus and similarity for pairs with low average posttest

scores. We can see that for a major part of the collaboration (46.67%)

the focus is causing similarity, followed by episodes where the causal-

ity changes direction and similarity causes the focus (33.33%). Finally,

the episodes with no clear causality between focus and similarity

(23.33%) are the lowest for the pairs with low average posttest

scores.

Figure 6 shows the temporal Granger causality between focus

and similarity for the episodes where the peers were engaged in dia-

logue. The top panel of the Figure 6 shows similar information as Fig-

ure 4, while the bottom panel (inverted bar chart) shows the

percentage of the most frequent dialogue code during the given time

window of 200 s. We observe that when we consider the episodes

with the dialogue, pairs with high average posttest show similar

behaviour as in Figure 4. When the pairs with high average posttest

score are engaged in ‘PRO’ dialogues, similarity causes focus for most

of the episodes (71.42%), while for 21.42% episodes do not exhibit

any causal relations. We also observe that the first dialogue episode is

‘ROL’ (read out loud) where the peers' focus is causing their similarity.

F IGURE 4 High posttest temporal causality [Colour figure can be viewed at wileyonlinelibrary.com]
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We observe a dissimilar behaviour for the pairs with a low aver-

age posttest score. Figure 7 shows the temporal Granger causality

between focus and similarity for the episodes where the peers were

engaged in dialogue. The top panel of Figure 7 shows similar informa-

tion as Figure 5, while the bottom panel (inverted bar chart) shows

the percentage of the most frequent dialogue code during the given

time window of 200 s. We observe that when we consider the epi-

sodes with the dialogue considered, pairs with low average posttest

show similar behaviour as in Figure 5. When the pairs with low aver-

age posttest score engaged in ‘PRO’ dialogues, either focus causes

F IGURE 5 Low posttest temporal causality [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 High posttest temporal causality with most frequently occurring abstraction codes [Colour figure can be viewed at
wileyonlinelibrary.com]
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similarity (42.85%) or there is no causality exhibited (42.85%) for most

of the episodes (42.85%) while only for 14.28% episodes similarity

causes focus. We found that the first dialogue episode is ‘ROL’ during

which the peers' similarity is causing their individual focus.

5.5 | Pair success, causality direction and dialogues

Finally, we compare the proportion of the different dialogue codes

for the two causality directions (focus causing similarity and

similarity causing focus) and the success levels (high and low). We

observe that there is a significant interaction effect (Table 5) of

the causality direction and a pair's success on the proportions of

PRO (F[1,26] = 11.75, p = .001) INTF (F[1,26] = 3.89, p = .05) and

ROL (F[1,26] = 9.01, p = .004). The successful pairs have signifi-

cantly more PRO dialogues in the episodes where the similarity is

causing the focus than the unsuccessful pairs (Figure 8). Success-

ful pairs also have significantly less ROL and INTF dialogues in the

episodes where focus is causing similarity than the unsuccessful

pairs (Figure 8).

F IGURE 7 Low posttest temporal causality with most frequently occurring abstraction codes [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 5 Comparing the proportions of different dialogue codes in the different causal episodes for the two pair success levels

Dialogue code

ACK PRO INTF META ROL

F P F P F P F P F p

Pair success 0.51 .47 1.43 .23 0.01 .99 4.81 .03 0.21 .64

Causality direction 1.25 .26 23.64 .0001 7.56 .008 1.78 .18 4.53 .03

Interaction (success direction) 8.57 .005 11.75 .001 3.89 .05 0.33 .56 9.01 .004

Abbreviations: ACK, Acknowledgement; INTF, Interface; META, Meta-cognitive; PRO, Problem-solving; ROL, Read out loud.
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6 | DISCUSSION

In this article, we propose using eye-tracking to assess student collab-

oration behaviours by investigating the causal relationships between

different process variables as proxies for cognitive processes to find

indicators that can be tracked and measured in real-time within a col-

laborative setting. Specifically, we investigate the causal relationships

between students' individual and collaborative cognitive processes,

using gaze patterns (i.e. focus and similarity) as a proxy, for elementary

school students working on a collaborative fractions ITS and examine

how their dialogue plays a role in this relationship over time. From our

results, we contribute to the work on ACLS by proposing a new metric

that can be used to identify moments for intervention during real-time

student collaboration, even when students are communicating face-

to-face.

We found that, depending on the context, individual focus some-

times caused collaborative similarity while at other times, collabora-

tive similarity caused individual focus. What this means in terms of

our data is that when the individual focus is causing the collaborative

similarity, the higher focus in students leads to students looking at a

similar place on the screen as their partner. This could be analogous to

the emergent coordination as defined by van Ulzen, Lamoth,

Daffertshofer, Semin, and Beek (2008) and Chartrand and Bargh

(1999) as the coordination between two individuals having no plan to

work together. Emergent coordination has shown to not influence

goal achievement (Semin & Smith, 2008). On the other hand, when

the collaborative similarity is causing the individual focus, then when

the students in a dyad are looking at similar parts of the problem, they

are more likely to then focus on a part of the problem. This is analo-

gous to the planned coordination, where the peers use the context

(dialogues) and knowledge to achieve a common goal with others

(Vesper, Soutschek, & Schubö, 2009). The key difference between the

two causalities, ‘looking at the same place hence focused’ and

‘focused hence looking at the same place’, might explain whether col-

laborative processes are driving the individual processes or the other

way around.

Although, overall, we found that similarity caused focus, when we

included covariates into our models, the nature of the causal relation-

ship changed. These changes in relationship indicate that not all gaze

patterns are the same and when we only analyse the correlations, we

lose some information. By analysing the causal relationship between

the focus and similarity, we may be able to provide some insight into

the cognitive process of the students as they are working collabora-

tively based upon how the nature of the causal relationship changes.

Richardson, Dale and Kirikham (2007) have also shown that the social

context (in our case the dialogues and performance) can influence the

gaze and memory processes. Richardson et al. (2012) argue that the

different relations (causality direction in our case) between the indi-

vidual and joint/collaborative gaze can stimulate behavioural and cog-

nitive performance.

Specifically, when analysing the causal relationship in relation to

the students' dialogue, we found that collaborative similarity caused

the individual focus for overall dialogue and interface dialogue, but

the nature of the causality switched when the pairs were discussing

F IGURE 8 Proportions of different dialogue codes in the different causal episodes for the two pair success levels [Colour figure can be
viewed at wileyonlinelibrary.com]

SHARMA ET AL. 13

http://wileyonlinelibrary.com


‘how to solve the problem’ (i.e. problem-solving dialogue). One plausi-

ble explanation for the change in causality is that when two peers are

solving a problem, they start to focus on the step they should solve,

which leads to them looking at the same part of the screen and having

a higher similarity. Additionally, we did not find any conclusive causal-

ity during the episodes when the peers were using acknowledgements

or metacognitive dialogue. These findings may be explained by the

fact that there is no need for the stimulus support (no specific require-

ment to look at a particular part of the screen) when acknowledging a

partner's dialogue or a requirement to reflect upon a peer's own state

of understanding.

When we take into consideration how students performed on

their tests, we find contrasting causality relations. In the case of stu-

dents that had high scores on their posttests and are discussing the

problem-solving, we found that the collaborative similarity seems to

drive the individual focus, while in the case of students that scored

low on their posttests and are discussing the problem-solving, the

relationship seems to be reversed. We found similar results for stu-

dents with high and low prior knowledge. When students are engaged

in an effective collaboration, they are more likely to ground their dis-

cussion (Laughlin, Hatch, Silver, & Boh, 2006), which can lead to a

greater focus on an area of the problem (Richardson et al., 2007). This

collaboration can result in a successful individual performance (Nokes,

2009). For students with a high posttest score (high performance), we

saw that the collaboration was driving the focus during problem-solv-

ing, which could be explained by the students grounding their discus-

sion more, leading to focus and higher performance. However, when

students are not in an effective collaboration, they may only share

information when they are focused. Previous studies have reported

worse group performance than individual performance (Weldon &

Bellinger, 1997) when there is a lack of coordination (Steiner, 1972) or

a disruption of individual contribution (Diehl & Stroebe, 1987). This

may be the case for the low performing students who may have strug-

gled to collaborate well when they were not already focused, as seen

through their gaze.

Additionally, the different causal relations for students with high/

low prior knowledge or success show that collaborative gaze causing

the individual gaze is indicative of a ‘top-down’ approach while indi-

vidual gaze causing the collaborative gaze points to a ‘bottom-up’

approach. Having coordinated gaze is a result of deeper

sociocognitive mechanisms (Jermann & Nüssli, 2012; Richardson

et al., 2007; Sangin et al., 2011; Schneider et al., 2016; Sharma et al.,

2015) than just looking at a few elements on the screen (high focused

gaze). In this case, for the high performing students to have their simi-

larity cause their focus, the students would need to have a shared

knowledge space. Similar gaze may be cognition-driven (referential

gestures, familiarity with the interface, or prior knowledge), which is

top-down behaviour (Connor, Egeth, & Yantis, 2004). On the other

hand, one can hypothesize that individual focus may be caused by the

student reacting to a stimulus (on the screen or in their partner's dia-

logue), which is bottom-up behaviour (Connor, Egeth, 7 Yantis, 2004).

The low performing students may have been reacting to a stimulus on

the screen, leading to focus and similarity. This similarity could then

allow them to share information and collaborate to overcome their

difficulties. Our results show that examining the causality between

collaborative and individual gaze patterns may unveil intriguing cogni-

tive mechanisms underlying the collaborative learning with tutoring

systems.

To develop collaboration interventions, it is not enough to under-

stand the overall trends within a learning session. The temporal cau-

salities also need to be analysed to be able to pinpoint moments

where an intervention would be beneficial. Like with the overall

trends, the pairs with high posttest score show a ‘top-down’ gaze

behaviour for most of the collaborative session, whereas ‘bottom-up’

gaze behaviour takes precedence for the pairs with low posttest

scores after a small period of ‘top-down’ gaze behaviour. The

moments when the causality changes its direction are the key

moments to intervene. For example, in their study of macro-cognition

in teams, Fiore, Smith-Jentsch, Salas, Warner, and Letsky (2010) pro-

posed interventions/feedback to be at both the individual and team

levels to increase the team knowledge similarity. By focusing our

intervention on moments when the individual focus is driving the sim-

ilarity, we can put interventions in place to support the collaboration.

However, it is not enough to only identify moments when an

intervention may be beneficial. From this work, it is still an open ques-

tion of what that intervention should entail, which must be based on

more than a proxy measure and instead align with the underlying cog-

nitive processes that the students are engaged in. What the specific

intervention should be depends upon how the students are struggling.

To intervene you need to know what actions you expect to see of the

students and at this point in time, which ones they are not displaying

so you can prompt for those specifically. Otherwise, the intervention

may not be beneficial as you will be providing scaffolding for an indi-

cator of collaboration, such as gaze, rather than the underlying issue.

Our results showed that students with lower test scores had more

moments of individual focus causing similarity, indicating that these

moments may not have been beneficial to the students. Moreover,

the interaction effect of pairs' success and the causal direction on the

dialogue types also indicates different collaborative behaviour by the

pairs in similar causality episodes. Such episodes might serve as the

key episodes for the intervention. To provide an effective interven-

tion, it is important to understand what the underlying learning pro-

cesses are so that an intervention can be put into place to address

these processes rather than trying to address a symptom. In future

work, we aim to explore what the causal patterns may be indicative of

in the students' learning to be able to put into place productive inter-

ventions that go beyond gaze. We can then combine the analysis

presented in this article to find moments for interventions with the

designed interventions to investigate their impact on learning.

One limitation of our work is the small student sample size that

we used for analysis. With a total of 28 dyads, the results may not be

indicative of what we would find with more students participating and

should be addressed in future work. Additionally, our sample was

gathered in a lab setting and the interactions of the students may dif-

fer from how they would act within a classroom with less supervision.

However, a limitation of eye-tracking is that it is not necessarily very
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feasible to use in a classroom setting yet. To expand this work and

address the feasibility of using gaze data in the classroom, we propose

that the causal relationship between other student actions can also be

explored. For example, in addition to the two students, the ITS also

provides feedback and could be a driving force for different student

cognitive processes.

Despite these limitations, by using the nature of the causal rela-

tionship between the gaze measures, we are able to provide adapta-

tion for collaborative moments that are not necessarily captured in

the system. While the students are problem-solving, they are not nec-

essarily interacting with the system, meaning that there may be gaps

in the log data. However, the speech can be hard to parse to provide

an intervention and gaze data can then help to fill in these gaps by

providing a continuous data stream. In this article, we have shown

that the gaze of the student can be used to assess the collaboration.

In future work, we aim to apply our findings to provide an interven-

tion to support student collaborative learning based upon their gaze.

7 | CONCLUSION

In this article, we investigated the causal relationship between individ-

ual and collaborative cognitive processes with gaze measures as a

proxy to provide more insight into the collaborative learning process.

Our work contributes to the use of eye-tracking to enhance our

understanding of computer-supported collaborative learning. Much of

the previous work in dual eye-tracking has only investigated the cor-

relational relationships involving eye-tracking in a collaborative learn-

ing environment (Belenky et al., 2014; Jermann & Nüssli, 2012;

Sangin et al., 2011; Sharma et al., 2013). Our work adds to this field

by investigating the causal relationship between individual and collab-

orative gaze measures. Specifically, our finding that the nature of the

causal relationship changes depending upon the context of the learn-

ing provides insight into the use of eye-tracking in future research.

Additionally, by understanding the causality, we can better use

these measures to assess the collaborative state of students as they

work with an ITS and develop interventions to guide the collaborative

process. This work contributes to adaptive learning by revealing tem-

poral causality relations between individual and collaborative gaze

measures that can be used to assess the collaboration of a group so

that interventions can be applied at the correct moments. The analysis

in this article brings us closer to providing collaboration support to

students between interactions with the system without having to

parse student speech allowing students to collaborate more

effectively.
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