LaMBERT: Light and Multigranular BERT

Ljupche Milosheski
Ecole Polytechnique Fédérale de Lausanne
ljupche.milosheski@epfl.ch

Abstract

Pre-training complex language models is es-
sential for the success of the recent methods
such as BERT or OpenAl GPT. Their size
makes not only the pre-training phase, but also
consecutive applications to be computationally
expensive. BERT-like models excel at token-
level tasks as they provide reliable token em-
beddings, but they fall short when it comes
to sentence or higher-level structure embed-
dings. The reason is that these models do
not have a built-in mechanism that explicitly
provides such representations. Namely, both
training objectives of BERT, masked language
modeling, and next sentence prediction con-
sider at most two sentences in a single train-
ing instance, which makes it infeasible to learn
higher-level structure representations. We in-
troduce Light and Multigranural BERT that
has similar complexity to BERT in the num-
ber of parameters, but is about 3 times faster
by modifying the input representation, which
consequently introduces changes to the atten-
tion mechanism and at the same time produces
reliable segment embeddings as it is one of
our training objectives. The model we publish
achieves 70.7% on the MNLI task, which is
promising bearing in mind there were two ma-
jor issues with it.

1 Introduction

Many of the NLP tasks have limited training data,
thus it is infeasible to achieve state-of-the-art re-
sults by only using the task-specific training data.
This is the reason why the language models have
benefited from pre-training general models on huge
external datasets (Devlin et al., 2018; Radford et al.,
2019; Howard and Ruder, 2018). Recent work
has shown that large models with hundreds of mil-
lions or even billions of parameters are necessary
for achieving state-of-the-art performance (Devlin
et al., 2018; Radford et al., 2019). The operations

on these models are computationally expensive due
to their complexity. While these models once pre-
trained they can be later easily fine-tuned for down-
stream tasks, the real-world application is question-
able. There has been recent work on distilling large
pre-trained models down to smaller ones (Sun et al.,
2019; Turc et al., 2019).

One can reduce the complexity of a model by
speeding it up. Having a faster model will allow
us to train it on the same data as the old model
faster, or train it on more data for the same amount
of time as the old model. The latter approach is
especially important if our main concern is the per-
formance, as models such OpenAl GPT (Radford
et al., 2019) and RoBERTa (Liu et al., 2019) have
greatly benefited from more data. We introduce
Light and Multigranural BERT (LaMBERT) that
introduces changes that is about 3 times faster than
BERT due to changes to the input representation
and attention mechanism.

LaMBERT has similar complexity than BERT
in the number of parameters, but is faster, thus
its training time is shorter for a similar amount of
data. The reasons for this are two majors modi-
fication: changes in the input representation that
allows us to reduce the maximum number of to-
kens per sentence and a consequent change to the
attention mechanism. Having a fixed length of the
number tokens per sentence has its benefits and
disadvantages. While it is easier to work with fixed
length data structures, having a fixed length cre-
ates a waste of computation due to the padding,
but nonetheless, we must consider them due to the
skewed distribution of the data. It is indeed men-
tioned that BERT was first 90% of the time trained
with at most 128 tokens, and then the last 10% for
at most 512 tokens. This approach, however, only
speeds up the pre-training time, but the complexity
of the final model remains unchanged.

We say that our input, which we call a sentence,

is divided into at most .S segments. A sentence
in this context may not refer to an actual sentence
from the text, but rather a contiguous piece of text.
A segment is a substring of the sentence that con-
sists of M tokens. In the model we publish, we set
S = M = 23. This results in at most 529 tokens
per training instance, which is the closest perfect
square to BERT’s 512.

The general idea of LaMBERT is to reduce the
maximum segment length and in addition, have
partially variable sentence lengths. In general,
this would mean that we could not train sentences
longer than the maximum length, but we will ex-
plain how to mitigate this issue.

The change in the input representation directly
impacts the entities over which the attention mech-
anism is computed. The attention in LaMBERT
is computed in two phases. The first is similar to
BERT as we compute the attention of the tokens
with respect to all tokens, and in addition all seg-
ment embeddings. The second is cross-attention, in
which we manually compute the [CLS] embedding
from the attention of the segment embeddings.

The second improvement over BERT is that
LaMBERT explicitly produces segment represen-
tations. BERT does not explicitly provide ones,
so using naive techniques such as averaging the
token embeddings of a sentence often does not
work well. Our model is pre-trained on instances
of 2 sentences, each of which is split into a few
segments. The segments are connected via the
attention mechanism to all other segments in the
instance. This should intuitively work as it creates
deeper dependencies between multiple segments in
long paragraphs, compared to BERT where there
are only connections between the tokens.

In summary, the contributions of this work are:

1. we introduce modifications to the input rep-
resentation of BERT results in about 3 times
improvement in speed, and

2. we partially change BERT’s attention mecha-
nism so that LaMBERT has a built-in mecha-
nism for segment embeddings.

The report is organized as follows. In section
2 we compare our approach to recent work about
complexity reduction of language models and learn-
ing and improving segment representations. Sec-
tion 3 discusses the changes we introduced over
BERT in detail. In section 4 we explain the fine-
tuning procedure of LaMBERT on the downstream

tasks and discuss the results when compared to
BERT. The report is concluded with section 5.

2 Related work

2.1 Complexity reduction techniques

The technique of reducing the complexity by low-
ering the number of parameters, and at the same
time speed up the training has already been cov-
ered by Lan et al. (2019). Their approach, however,
is different than ours. They reduce the number of
parameters by factorizing the embedding matrix,
whereas our reduction is focused on changing the
input representation and the attention mechanism.
We believe that their reduction of the embedding
matrix can be included to further reduce the num-
ber of parameters of LaMBERT, but we will not
use it in this work. They use cross-layer parameter
sharing, whereas we use weight sharing between
different segments.

Clark et al. (2020) propose ELECTRA, which
speeds up the pre-training time of BERT-like mod-
els by changing the MLM task to a task called
replaced token detection. They corrupt some of the
input tokens with plausible alternatives sampled
from a small generator network. Instead of training
a model that predicts the corrupted entries, they
train a discriminative model that predicts whether
each token in the corrupted input was replaced by
a generator sample or not. This makes the training
faster because at each step the model learns infor-
mation about every token in the training instance
instead of only the masked tokens in BERT. As
the new task allows the model to learn information
quicker than BERT, the training of ELECTRA is
faster than BERT. At the same time, it removes
the problem that during the pre-training BERT has
[MASK] tokens, but not during the fine-tuning on
downstream tasks.

2.2 Learning segment representations

Prior work used different training objectives to
learn sentence representations. Kiros et al. (2015)
introduce skip-thought vectors in which they build
an encoder-decoder model that tries to reconstruct
the surrounding sentences of an encoded passage.
Hill et al. (2016) compare various methods used to
obtain sentence embeddings, argue that the perfor-
mance of each approach is dependent on the task,
and denoise autoencoder derived objectives to learn
sentence representations. Jernite et al. (2017) use
purely discriminative objective to train the sentence

embeddings, and they obtain them via exploiting
the signals from paragraph-level discourse coher-
ence to train these models to understand text. Their
task is, for given the first three sentences of a para-
graph, choose the next sentence from five sentences
later in the paragraph. Logeswaran and Lee (2018)
propose a framework in which they reformulate
the problem of predicting the context in which a
sentence appears as a classification problem. This
allows their model to learn different types of en-
coding functions, and they rank the candidate next
sentences.

Our training objective to learn the segment rep-
resentations is to predict whether the pair of sen-
tences was swapped. During the training, we did
not include sentences from random paragraphs, but
rather from the same paragraph or similar context.
This is inspired by ALBERT’s (Lan et al., 2019) ar-
gument that replacing sentences randomly chosen
from different documents makes the next sentence
prediction (NSP) task trivial. They go even further
and use a more difficult task which is called sen-
tence ordering prediction, in which the model pre-
dicts the exact ordering of the sentences. Stronger
claims about the unimportance of BERT’s NSP task
have been studied by Liu et al. (2019) where they
remove completely remove it as a training objective
and observe performance gains.

BERT-sentences! have previously tried to obtain
segment embeddings by introducing slight modifi-
cations to BERT’s input representation. They add
a new special token [EOS] denoting the end of
the sentence. The information about one sentence
from another goes through this token, and the other
undesired information flow is blocked via attention
masking, e.g., from tokens of two different sen-
tences. This approach is similar to ours, however,
it has still similar complexity to BERT because
they could not reduce the number of parameters.

Bai et al. (2020) argue that better contextual rep-
resentations can be generated from the text encoder
with richer positional information. They empiri-
cally show that their SegaBERT outperforms BERT
on several tasks. Inspired by their idea, we use
segment positional embeddings that are dependent
on the two sentences, rather than absolute posi-
tional embedding like them. We also do not use
the paragraph index embeddings as it would not be
appropriate in our case. SegaBERT is not trained
on NSP, which we suppose is because adding too

'The code is available at github.com/epfml/bert-sentences.

many positional embeddings would make the task
trivial. Since we have to use the NSP task to train
segment embeddings, we omit the paragraph index
embeddings.

Iter et al. (2020) propose a new training objec-
tive that improves the coherence and the distance
between sentences. Their training objective is, for
a given anchor sentence, the model is trained to
predict the text k sentences away by using sampled-
softmax to choose among some set of candidate
sentences. The candidates are chosen randomly
from the neighbouring sentences or different docu-
ments from the corpus.

3 LaMBERT

In this section, we introduce LaMBERT, present
the details and differences, and provide a direct
comparison with BERT.

3.1 Model architecture

In order to make a direct comparison with BERT,
we tried to stick as much as possible to BERT’s
implementation in PyTorch from HuggingFace li-
brary 2. We introduced only the LaMBERT specific
differences over BERT as minimal changes to the
overall code. The implementation of LaMBERT is
published on MLO’s GitHub 3.

The model we publish mainly uses the same pa-
rameters as BERTgasg: L = 12, H = 768, A =
12, where L represents the number of layers, H is
the hidden size, A is the number of self-attention
heads. The total number of parameters is 156M.
Input representation: One of the main reasons for
the complexity of BERT is the fixed maximum to-
ken length, which is 512. Many of the downstream
tasks and real-world applications do not require
that many tokens. Indeed, the first 90% of BERT’s
training was only on at most 128 tokens, which al-
lowed them to freeze the weights of the remaining
384 positions and thus train the model faster (De-
vlin et al., 2018). Nonetheless, once the model is
pre-trained, we are required to do computations on
the whole model if we fine-tune it for a downstream
task or a real-world application. While from one
side this sufficiently big length is beneficial as we
do not have to worry about extremely long cases, it
is also computationally expensive because most of

>The implementation of BERT in
is available in the HuggingFace
github.com/huggingface/transformers.
3The LaMBERT implementation is
github.com/epfml/LaMBERT.

PyTorch
library at

available at

the time we are wasting resources. The first major
difference of LaMBERT is that we have partially
variable representation length.

Throughout this report, we refer to an arbitrarily
contiguous span of text as a sentence. Input in-
stances consist of two such sentences. We say that
the sentence is separated into at most .S segments,
each of which has M tokens. These parameters
are S = M = 23 for the model we publish. We
can thus have at most SM = 529 tokens in a sin-
gle instance, which is the closest perfect square to
BERT’s 512.

Separating the input instance into segments al-
lows us to have partially variable input representa-
tion. We can indeed represent every sentence with,
the lowest multiple of M which is higher than the
number of tokens in the sentence, tokens. In other
words, any sentence of length n can be represented
it with [%1 M tokens. This is because there are
L%J complete segments — segments of length M,
and if n is not divisible by M, then we add padding
tokens until it reaches length M. Note that the
loss in computational resources in BERT is that
we have to add padding in order to reach the fixed
number of 512 tokens, whereas in LaMBERT we
need to add at most M — 1 additional padding to-
kens for one sentence. It adds additional overhead
as we have to reconstruct the sentences from the
variable size data structures, but overall it makes
all computations on the model faster.

If we only reduced the number of tokens per seg-
ment without adding multiple segments, it would
be pretty similar to BERT, with a reduced maxi-
mum number of tokens in the input. Or we can
think of BERT as a special case of LaMBERT with
parameters S = 1 and M = 512. They would
not be equivalent as we calculate the [CLS] to-
ken manually, and do not use the [SEP] token, but
theoretically they would be closely similar.

Since our goal is to make a direct comparison
with BERT, we used the same tokenizer that BERT
uses — WordPiece tokenizer (Wu et al., 2016). It
has a vocabulary of approximately 30,000 tokens.
Each sentence is constructed by tokenizing it with
the WordPiece tokenizer, and then padding it such
that its length is the next multiple of M. LaM-
BERT was trained on input instances each contain-
ing 2 sentences, thus theoretically there are at most
2(M — 1) padding tokens.

Aside from splitting the sentence into segments
of M tokens, LaMBERT also differs in how the

intial embeddings are constructed. The tokens in
LaMBERT, similarly to BERT, come from the to-
ken embedding matrix. The input token embedding
in the model is calculated as sum of the correspond-
ing token embedding, segment embedding of the
token (whether it belongs to the first or second
sentence) and token positional embedding. In ad-
dition to this, we have a segment embedding ma-
trix. The input segment embedding is calculated
as sum of the corresponding segment embedding
and a segment positional embedding. The idea
of adding more positional embeddings has already
been studied by Bai et al. (2020) in SegaBERT. Our
segment positional embeddings are similar to their
sentence index embeddings. However, we do not
use paragraph index embeddings. The reason is
that SegaBERT is not trained on the NSP task, and
we suspect it is because these embeddings would
make the task too trivial.

Weight sharing: LaMBERT uses weight sharing
for every parameter across different segments. In
other words, this means that the first M tokens of
one sentence share the weights with the second
M tokens of the same sentence, and so on. Dif-
ferent segments of one sentence are linked via the
attention mechanism.

A difference with BERT is that we do not use
[SEP] token, but we rather separate the input in-
stances ourselves and get the outputs of the model
separately. This is possible due to the weight shar-
ing of every parameter for both input sentences.

Attention: Since the input representation of LaM-
BERT is quite different than BERT, the self-
attention mechanism is consequently different. As
our aim is to obtain reliable segment embeddings,
we want each segment embeddings to influence
other segment embeddings and the token embed-
dings in itself. Or equivalently, for a fixed segment,
each of its tokens is influenced by other tokens in
that segment as well as the other segments. This
intuitively creates deep connections between differ-
ent parts of the sentences.

This influence is implemented via the attention
mechanism. It is calculated in two phases. The
first phase is similar to the self-attention is BERT.
For every segment, we calculate the attention of
the token embeddings with respect to the token em-
beddings in the segment itself, as well as all other
segments. In addition, we calculate the segment
embedding with respect to the same vectors. The
keys and values are equal, which means that the val-

ues are the same vectors we calculate the attention
with respect to. Note that BERT’s self-attention
computes only the attention of every token with re-
spect to every other token, so there are differences.
The second phase is cross-attention. It is used to
manually compute the [CLS] embedding by calcu-
lating the attention of the [CLS] embedding with
respect to itself, and all segment embeddings. Since
we use the [CLS] embedding for our NSP task, it
directly affects the segment embeddings, which in-
tuitively makes sense and helps the model learn
reliable segment embeddings.

We can define these relations between the repre-
sentations in a more mathematical way. Let:

e M be the number of tokens per segment,

S be the number of segments in the current
training instance,

e w;; be the j-th token in the ¢-th segment,

® uy,; k. denote the k-th layer representation of
the j-th token in the i-th segment,

e v, . be the k-th layer representation of the
i-th segment,

e P;;(vs, 1) be the position dependent k-th layer
representation of the j-th segment with re-
spect to the contents of the i-th segment. P
can be anything from a linear map to a deep
network or adding some positional embed-
dings to bias the sentence, and

e H represent our BERT-like model where Hy,
represent the output of k-th layer.

Using the outputs from the previous layer as inputs
and using the function P, we obtain:

uwil,k+17 e 7uwi]w,k+1) Usi,kJrl =
Hk(“’wilvk? -

3.2 Pre-training LaMBERT

The pre-training procedure of LaMBERT is similar
to BERT’s. We only introduced a few justified
changes.

Pre-training data: LaMBERT is pre-trained only
on the English Wikipedia dataset. We did not use
BooksCorpus (Zhu et al., 2015) because of resource
limitations. The preprocessing of the Wikipedia
dataset is probably slightly different than the one in
BERT. The reason is that the preprocessing code of

Uy dos Pit (Vs k), - - oy Pis(Vsg k))-

BERT is not publicly published, so we did our best
to replicate the steps they describe. The current
model was trained for less than half of an epoch, so
our pre-trained model is undertrained. On the final
pre-training, we aim to train it on approximately
40 epochs, just like BERT.

Our pre-training also used BERT’s trick to re-

duce the training time. The trick is that for the first
90% of the pre-training, the model is trained only
on with pairs of sentences such that their combined
length is less than or equal to 6 segments. It results
in at most 138 tokens per instance, which is close
to BERT’s 128 tokens during the first 90% of the
pre-training.
Training objectives: We stick to the same objec-
tives that BERT uses in order to make minimal
changes for direct comparison. This also gives us
the chance to, at least some degree, compare our
loss to BERT’s.

Our first training objective is masked language
modeling, which is identical to BERT’s training ob-
jective. During the data preprocessing, we replace
some of the tokens with [MASK] tag. The ob-
jective of the model is to predict the hidden token.
This intuitively helps the model learn reliable token
embeddings as it fuses information from the left
and right contexts. We used the same parameters
as BERT: randomly chose 15% of the tokens. Then
80% of them were effectively replaced with the
[MASK] token, 10% were replaced with the orig-
inal token, and the remaining 10% were replaced
with a random token.

Our second training objective is NSP. For given
two sentences, the task is to predict whether the
second sentence comes just after the first sentence
in the original data. A sentence in this sense may
not represent an actual linguistic sentence, but a
contiguous span of text. This is an important ob-
jective to help the model learn about cohesion and
coherence of the language. It directly affects the
model’s [CLS] embedding as the model’s predic-
tion solely depends on that token. The change in
the [CLS] embedding is then directly propagated
to the segment embeddings as it is directly calcu-
lated from them via the cross-attention mechanism.
We introduce a small change over BERT’s NSP
objective. Inspired by ALBERT’s (Lan et al., 2019)
analysis on the NSP task, we believe that replac-
ing the second sentence with a randomly chosen
sentence from a different document makes the task
too trivial. This is why, if we choose to replace

the sentence, we replace it with another sentence
from the same paragraph or the same context. This
makes the model learn more deeply about cohesion
and coherence.

3.3 Fine-tuning LaMBERT

Fine-tuning is relatively simple as the attention
mechanism in the Transformer allows us to com-
pletely use the information the model has learned
during the pre-training phase. It does not matter
which specific task we will fine-tune the model
for. If we have textual entailment information such
as the Multi-Genre Natural Language Inference
(MNLI) task (Williams et al., 2017), we put the
first sentence of the dataset as the first sentence in
the model, and it is followed up by the second sen-
tence from the dataset. Even if we have a multiple-
choice question answering task, we do similarly by
placing the question as the first sentence followed
by a concatenation of the answers.

Once the model is pre-trained, the fine-tuning
phase is relatively simple. The fine-tuning time
depends on the amount of data for the specific task,
but for many downstream tasks, it takes at most
a few hours on a single GPU. The pre-training
phase, however, according to our estimations, will
take between a week and a half to two weeks on 4
GPUs.

4 Evaluation

We did our experiments for the MNLI
task (Williams et al., 2017), which is part of the
General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018).

The MNLI dataset consists of approximately
392,000 human-annotated crowd-sourced pairs of
sentences. The task is to predict the relation be-
tween the pair of the sentences, among the three
possibilities: entailment, neutral and contradiction.
The testing dataset consists of matched and mis-
matcehd datasets, each of which has 10,000 testing
instances. The matched dataset contains instances
similar to the ones seen during the training. The
examples in the mismatched dataset do not closely
resemble any of those seen at training time.

The fine-tuning procedure is pretty straightfor-
ward. We prepare the input in the same way as
described in the previous section. The first sen-
tence in the dataset is put as the first sentence in
the model, which is followed by the second sen-
tence. We add a top-level classifier on top of the

[CLS] embedding. This embedding has initially as
many dimensions as the hidden size of the model
is, which is H = 768 in our case. Since the MNLI
task has 3 classes, we add a trainable linear map-
ping that maps this embedding to an embedding
of dimension 3. We then use softmax on the three
values to predict the final class.

We use a batch size of 32, and fine-tuned the
model for 3 epochs over the whole MNLI data.
The learning rate was selected as the best in the
training dataset among 2e-5, 3e-5, 4e-5 and Se-5.
We carried out an experiment with weight decay
rate among 5e-4, 5e-5, Se-6, and no weight decay
at all. We noticed that the higher the weight decay
was, the worse the model performed. So in the
end we chose not to use any weight decay. We
used Adam (Kingma and Ba, 2014) as optimization
algorithm with warmup parameter 0.1, and default
values for 8 (51 = 0.9, B2 = 0.999).

We obtained accuracy of 70.7%, combined on
both, matched and mismatched datasets. This is
less than BERTgasg’s accuracy of 84.6% and
83.4% on matched and mismatched datasets respec-
tively (Devlin et al., 2018). There are two major
reasons for this. First, we noticed an error in the
attention masking. More precisely, at some parts
the masking was omitted, so the information flow
was not blocked, thus the pre-trained model was
not working as intended. Second, the model was
trained only for the purpose to check if we will get
somewhat good results. The total pre-training time
was a few hours on a single GPU, and it was trained
for less than half of an epoch over the dataset.

During one of the fine-tuning evaluations, by
mistake we used different tokenizer, and thus the
input representation was different than the pre-
training phase. The fine-tuned model’s loss, in
this case, could not converge to any point and
performed poorly with accuracy of about 30%,
which is even less than what a majority classifier
would achieve. This suggests that even with the
attention masking error that there was, and despite
the severely undertrained pre-trained model, LaM-
BERT achieved promising results. Moreover, a
simple Continuous Bag of Words model achieves
accuracy of 64.7% as reported by Williams et al.
(2017). We get better results than it, even though
our model has two issues. It additionally suggests
promising results once both problems are fixed.

Figure 1 shows how the loss changes over
batches in different epochs. We can observe that the

Training loss values on MNLI

Loss

05

!
o S000

I 1 I 1 1 I
10000 15000 20000 25000 30000 35000
[teration

Figure 1: Training loss for three epochs with batch size 32 on MNLI with 25 moving average. The blue, orange
and green colors represent the losses for the three epochs respectively.

loss fluctuates, but in general it steadily decreases
over time. A similar thing has been reported in
BERT (Devlin et al., 2018). The reason for this
is that we use a relatively low batch size. In gen-
eral, the lower the batch size is, the more the loss
fluctuates. If we think of the extreme cases when
the batch size is only 1 instance, compared to the
whole dataset being only 1 batch, there should defi-
nitely be many fluctuations in the first case as one
training instance may update parameters that have
been already updated, and the following instance
updates the weights for the first time.

5 Conclusion

We propose modifications over BERT’s input repre-
sentation and consequently changes to the entities
for which the attention mechanism is computed.
Our approach significantly is faster than BERT
by about 3 times, which not only makes the pre-
training faster, but also the fine-tuning, and every
other consequent application. While there was a
major problem with the attention masking for the
model we pre-trained, and the model was not even
trained for half an epoch, our conclusions about the
experiments give promising results.

References

He Bai, Peng Shi, Jimmy Lin, Luchen Tan, Kun Xiong,
Wen Gao, and Ming Li. 2020. SegaBERT: Pre-
training of Segment-aware BERT for Language Un-
derstanding.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning Distributed Representations of Sentences
from Unlabelled Data.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky.
2020. Pretraining with Contrastive Sentence Objec-
tives Improves Discourse Performance of Language
Models.

Yacine Jernite, Samuel R. Bowman, and David Sontag.
2017. Discourse-Based Objectives for Fast Unsuper-
vised Sentence Representation Learning.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-Thought Vectors.

http://arxiv.org/abs/2004.14996
http://arxiv.org/abs/2004.14996
http://arxiv.org/abs/2004.14996
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1602.03483
http://arxiv.org/abs/1602.03483
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/2005.10389
http://arxiv.org/abs/2005.10389
http://arxiv.org/abs/2005.10389
http://arxiv.org/abs/1705.00557
http://arxiv.org/abs/1705.00557
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.06726

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient Knowledge Distillation for BERT Model
Compression.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.

GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A Broad-Coverage Challenge Corpus
for Sentence Understanding through Inference.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
CIliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s Neural Machine
Translation System: Bridging the Gap between Hu-
man and Machine Translation.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning Books and Movies:
Towards Story-like Visual Explanations by Watch-
ing Movies and Reading Books.

http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724

