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Abstract. Applications of atmospheric pressure plasma jets (APPJs) present
challenging controls problems due to the complexity of the plasma/substrate
interactions. APPJs are particularly sensitive to changes in the electrical and thermal
properties of treated substrates exhibiting large variations in thermal dynamics. The
increasingly popular reinforcement learning (RL) based methods have great potential
to aid regulation of thermal properties of APPJs across di↵erent substrates. Using only
simulated data generated by a simple lumped-parameter energy balance, we train a
robust reinforcement controller to perform temperature setpoint tracking by exposing
it to randomized dynamics that capture the diverse temperature responses of di↵erent
substrates. This approach is an e�cient, safe, and flexible means for training an
e↵ective RL controller which, when transferred to the live environment, is able to
perform e↵ective temperature control over a wide variety of substrates without further
fine-tuning.

1. Introduction

Atmospheric pressure plasma jets (APPJs) are unique tools which permit the treatment

of heat and pressure sensitive substrates [1]. Due to their ability to locally generate and

deliver thermal, chemical, and electrical e↵ects to substrates [2], APPJs have found wide

use in materials processing for polymerization [3], etching, and surface activation [4], as

well as in medicine for the promotion of wound healing, blood coagulation, disinfection

of infected tissue, and tumor shrinking, among others [5–8]. However, APPJs su↵er from

considerable operational variability. APPJ dynamics are sensitive to disturbances such

as changes in jet-tip-to-substrate separation distance [9, 10] and changes in substrate

characteristics [11–13]. Moreover, jet dynamics can change drastically from run to

run, even when the APPJ is operated at practically identical operating conditions

[14]. These variations can result in thermal damage to sensitive substrates [15] and,

in general, complicates the delivery of safe and therapeutically e↵ective treatment. All

these complexities necessitate model-based feedback control methods for reliable APPJ

operation [16–19].

A significant hindrance to the flexible operation of APPJs, even in the presence of

feedback control, is the wide variations in the coupled APPJ-substrate dynamics. For
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example, APPJs tend to spread over dielectric substrates due to charge accumulation on

the surface. On the other hand, so-called “discharge re-strike” phenomena observed on

conductive substrates result in a significantly higher power deposition in the discharge as

well as considerable changes in electric fields and species densities delivered to the targets

[11, 12]. Similarly, the electron emissivity of the treated substrates can significantly

influence the discharge-substrate interactions giving rise to, for example, di↵erent mode

behaviors (e.g., ↵-� transition in RF APPJs [20]). Yet, substrates with heterogeneous

characteristics often arise in materials processing and medical applications. For example,

healthy tissue and wounds generally have di↵erent thermal and electrical properties.

Furthermore, skin electrical conductivity can change from patient to patient or even from

point to point on the same patient. It can be challenging to develop model-based control

strategies to accommodate such a broad range of dynamics. One potential solution to

address this challenge is the use of data-driven machine learning (ML) methods that

rely on universal function approximators called artificial neural networks (ANNs).

Deep Reinforcement learning (RL) is emerging area of research in ML whereby an

ANN is trained to take optimal actions to maximize a reward (or minimize a penalty)

through continuous feedback during training [21]. RL has found remarkable success

in a range of applications including complex gameplay, robotic control, autonomous

navigation, and chemical process control, among others [22–29]. A key practice in RL

is to use simulated data to train an RL agent such that it is capable of performing

the same task in a real environment, otherwise known as sim-to-real transfer learning.

Training the RL agent in a simulated domain has multiple advantages. Firstly, the

RL agent’s exploration during the learning process can raise safety concerns if deployed

in a live environment (i.e. thermal damage to the substrate). Secondly, many deep

RL algorithms have high sample complexity (i.e., require a large amount of training

data), precluding their training with live data collection which may be many orders

of magnitude slower than generating simulated data. Finally, simulations permit the

generation of data under conditions which may be di�cult and/or expensive to probe

experimentally. These concerns make the sim-to-real transfer of RL agents an exciting

prospect provided the model on which the agent is trained can adequately describe the

real system.

However, transferring the simulated performance of RL agents to a real-world

environment can be challenging given the “reality gap”, or the mismatch between

system dynamics in the simulated and real-world environments. Building a high

fidelity model or more complex simulators which can capture every aspect of a real

environment is often prohibitively expensive or ine�cient. Therefore methods that

enrich the data sets on which RL agents are trained, have been proposed to address the

reality gap. These methods can account for uncertain and di�cult-to-model aspects of

the real environments and enable successful sim-to-real transfer of RL agents without

the need for any live data [30–32]. The method we focus on in this work is “dynamics

randomization” which involves training an RL agent using a relatively simple model to

describe the system dynamics [33]. The parameters of the model are randomized during
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the training process in order to account for the mismatch between the simulated and

real environments.

In the present work, we demonstrate the control of thermal e↵ects of a kHz-excited

APPJ in helium across multiple substrates with distinctly di↵erent dynamics using sim-

to-real transfer of an RL agent trained purely in the simulation domain using dynamics

randomization. We train three RL agent using data generated from a simple lumped-

parameter model of the substrate energy balance with multiple parameter realizations.

This both captures the variations in thermal dynamics of di↵erent substrates and the

operational variability of APPJs. Each RL agent is exposed to a di↵erent degree of

dynamics randomization, i.e, to a di↵erent set of model parameter realizations. We

first test the RL agents in a simulation environment to asses their performance in

temperature setpoint tracking across a broad model parameter space. The RL agent

with the highest degree of dynamics randomization (i.e., trained with the most diverse

set of model parameters) outperforms the others. We then experimentally compare

the RL agents’ ability to track temperature setpoints on glass, aluminum and polyimide

substrates. We further demonstrate that the highest performing RL agent is also capable

of rejecting step disturbances in jet-tip-to-substrate separation distance. Thus the sim-

to-real transfer learning using dynamics randomization provides a successful method to

address the challenges of controlling the uncertainties and variability in plasma-substrate

dynamics.

2. Methods: Experimental setup

2.1. Atmospheric pressure plasma jet

The APPJ device used for experiments is shown in Figure 1. The APPJ consists of a

quartz dielectric tube (ID = 3 mm, OD = 4 mm) and a powered copper ring electrode

placed 1 cm from the tube nozzle. An aluminum plate acts as the ground and doubles

as a conductive substrate. The treated substrates are placed on the aluminum plate

under the plasma plume for treatment. A helium flow of 1.5 slm is maintained in the

tube via a mass flow controller. The APPJ is ignited with AC high voltage, generated

by a custom designed function generator (XR-2206CP) at a frequency of 20 kHz.

The applied discharge power P is maintained by an embedded PI controller,

manipulating the applied voltage based on analog measurements of voltage and current.

The PI controller is implemented with a sampling time of 20 ms, on an Arduino UNO

microcontroller. The spatial distribution of substrate temperature via a radiometric

infra-red thermal camera (Lepton FLIR 3.5) pointed towards to the incident point

of the APPJ. An example temperature measurement is presented in Figure 1c. For

the purposes of this work we focus only the peak value of this distribution. The

measurements and actuation are coordinated via a Wi-Fi enabled single board controller

(Raspberry Pi 3). The sampling time is fixed at 1.3 s. The RL algorithms are

implemented on a remote computer and measurement and actuation information are
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Figure 1: (a) Visual appearance of the APPJ, (b) an example temperature distribution

on the glass substrate, and (c) the diagram of the APPJ setup used for experiments. The

applied voltage Vp2p is manipulated to maintain the desired applied power P , computed

based voltage and current measurement in via an embedded PI control. Data acquisition

and control determines the desired P based on measured substrate temperature Ts

computed by the RL agent.

exchanged via TCP/IP protocol over Wi-Fi.

2.2. Lumped-parameter model of thermal dynamics of substrates

The complexity of APPJ-substrate interactions and disparity of the timescales of

physical phenomena make physics-based models of APPJs challenging to develop and

time-consuming to solve. However, the dynamics of the thermal response of substrates

to APPJs can be reasonably described by lumped-parameter models based on volume

averaged mass and energy balances [17]. Here, we conduct a volume-averaged energy

balance on the substrate in contact with the APPJ to describe the dynamics of the

maximum substrate temperature Ts,

dTs

dt
=

1

⇢cpAcd

�
µ̄2⌘P � µ̄12⇡rdk(Ts,max � T1)

�
. (1)
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Table 1: Fitted lumped model parameters for three di↵erent substrates; borosilicate

glass, aluminum plate, and polyimide tape.

Substrate µ1 µ2

Glass 2.39 0.82

Aluminum 1.17 0.71

Polyimide 3.71 1.92

Here, ⇢, cp and k are the density and heat capacity and thermal conductivity of

borosilicate glass, our nominal substrate. r is the internal radius of the APPJ tube;

Ac = ⇡r2 is the cross-sectional area of the APPJ tube; ⌘ represents the fraction of

power dissipated on the substrate; and T1 is the ambient temperature. µ̄1 and µ̄2 are

the two lumped parameters fitted based on experimental data. We normalize these

two parameters to the order of 1; µ̄1 = 38µ1 and µ̄2 = 0.003µ2 to facilitate analysis.

We consider three substrates with varying dynamics: bare borosilicate glass coverslip,

grounded aluminum plate, and borosilicate glass coverslip with polyimide tape on the

surface. These model parameters µ1 and µ2 values fitted based based on dynamics

observed in each substrate are summarized in Table 1. This lumped-parameter model is

used to generate in silico training data for the reinforcement learning controller which

is detailed in the following section.

3. Methods: Reinforcement Learning controller design

We aim to design an RL agent which dictates the APPJ input power P for achieving

optimal setpoint tracking of substrate temperature under a range of substrate dynamics

and subject to the inherent variability of APPJ operation. We generally refer to an

agent that has been trained for this purpose as a reinforcement learning controller

Figure 2: A simplified block diagram describing the key components of reinforcement

learning
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(RLC). Reinforcement learning generally relies on four key steps, shown in Figure 2, to

train an agent: (i) generating simulated data and/or collecting live data to be used for

training, (ii) evaluating the reward for the generated samples, based on the goal of the

application, (iii) fitting a model to allow evaluation of the agent’s performance, i.e., to

provide reinforcement, and (iv) updating the RL agent to improve its performance based

on the feedback. The following section serves to review basic RL concepts and some

key training specifics that highlight how to train a successful RLC for APPJ operation.

More details on the RLC training can be found in the Appendix and the references

contained within.

3.1. States, actions, and rewards for APPJ operation

Designing an RL agent requires defining the environment in which it will operate. This

necessitates specifying the state of the environment at each time step t, st, the action

available to the agent, at, as well as the reward signal, rt, used to evaluate the RL

agent’s performance. In our application, we choose the state for the RL agent based on

the history of the system as follows,

st = {Ts,t�i � T sp
s , Pt�1�i | i 2 [0 . . m]} . (2)

where T sp
s is the temperature setpoint. Thus, the states for our application (st 2 R2m)

are the deviations from temperature setpoint and applied power for past m time steps.

For this work, we choose m = 3. Employing the history of the operation as states allow

the RLC to implicitly build its own process model [34]. The action to take at the current

time step, at 2 R, consists only of the applied power P ,

at = {Pt} . (3)

Note here that P is constrained by the limitations of the experimental setup, and so

actions dictated by the RLC falling outside the bounds of 1.1 W < Pt < 5.0 W are

truncated. Although the model ((1) is linear, the bounds on P introduces a nonlinearity

which should be captured by the RL training process.

The reward function aims to quantify the goal of the operation. In this case, the

reward function is designed to ensure the RLC maintains the temperature at the desired

setpoint, T sp
s ,

rt(st, at) =

(
10 Ts,t+1 � T sp

s  ✏

�|Ts,t+1 � T sp
s | otherwise.

(4)

Here ✏ denotes a tolerance level, which corresponds to a setpoint tracking di↵erence

that we deem to be as good as the optimal value of 0. This reward value is designed

to account for the fact that under realistic (i.e., experimental) conditions, process and

measurement noise prevent perfect setpoint tracking. Therefore, the inclusion of the

tolerance ✏ helps the RL agent learn a policy that tracks the setpoint more e↵ectively.

The value for ✏ is chosen based on the observed noise level in the measurements (set

to 0.1 in this work), but it can be modified based on the scale of acceptable deviations

from T sp
s for di↵erent applications.
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3.2. Reinforcement learning control of APPJ operation

The RLC takes the mathematical form of what is known as a policy. This policy,

⇡(a|s), is a probability distribution over the action space conditioned on the states.

In other words, when querying the policy, i.e. feeding st to the policy, the ANN

outputs the parameters of a conditional distribution, from which the implemented

action at is sampled. While the policy specifies how the RLC takes actions, in general,

a state transition model p(st+1|st, at) specifies a probabilistic description of how the

environment’s state evolves in response to the RLC’s actions. The transition model is

determined by the dynamics of the environment, which for APPJ operation is simply

modeled by the substrate dynamics given by Eqn. 1. Nominally, this model generates

deterministic transitions. Note that this model is simplistic and may deviate significantly

from the true dynamics of the live APPJ environment, p⇤(st+1|st, at).

3.3. Goal of reinforcement learning control

Using the policy and the transition model, we can propagate the APPJ environment

forward in time to generate simulated trajectories or “roll-outs” of time length T ,

denoted by a string of state-action pairs ⌧ = (s0, a0, s1, ..., aT�1, sT ). Therefore, the

probability of generating a given roll-out,

p(⌧ |⇡) = p(s0)
T�1Y

t=0

p(st+1|st, at)⇡(at|st) (5)

depends on both the dynamics of APPJ and our RLC’s policy. The objective during

the learning procedure is to find some optimal policy, ⇡opt that maximizes the expected

return of the agent, J(⇡),

⇡opt = arg max
⇡

J(⇡) (6)

where,

J(⇡) = E⌧⇠p(⌧ |⇡)

"
T�1X

t=0

rt(st, at)

#
(7)

In other words, we seek to maximize the expectation value of the rewards accumulated

across the roll-outs of a given policy, and this quantity can be computed by sampling

trajectories in the APPJ environment by Monte Carlo simulations.

3.4. Actor-critic algorithm

In this work, we use a variant of the policy gradient formulation [35, 36] in reinforcement

learning, and dynamics randomization for sample generation [33] (see next section),

to achieve e↵ective substrate temperature control with the APPJ across a range of

substrate dynamics. Specifically, we use the actor-critic algorithm which relies on using

two ANNs, termed the actor and critic networks (Fig. 3), that are trained in tandem [24,

37]. The actor neural network, parameterized by weights ✓, defines our policy ⇡✓(a|s).
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Figure 3: Generic schematic of an (a) actor policy and (b) a critic network.

The output layer of the actor network is typically a multivariate normal distribution

with diagonal covariance matrix, but since at 2 R in this application, our actor simply

outputs the parameters of a single Gaussian distribution which is then sampled to yield

an action. The second neural network, the critic network parameterized by weights �,

is used to approximate the value function, V̂ ⇡
� (s). This value function is the expected

value of future rewards from being at s under the current policy, or more colloquially,

how valuable it is to be at a given state.

The weights ✓ and � are trained to maximize the reinforcement learning objective

(Eqn. 7) by the actor-critic algorithm, the details of which are presented in the Appendix.

Briefly, the weights of the actor and the critic are both initialized randomly at the

beginning of training. Thus both the actor and critic commence with poor performance

and try to improve in their respective tasks (approximating the optimal decision making

policy and the value function). The actions computed by the actor policy start by

computing sub-optimal actions as it “explores” di↵erent behaviors. During each training

iteration, simulated roll-outs are collected (see next section), rewarded, and a gradient

step is taken to update the actor and critic network weights to improve their performance

in their respective tasks. As the training proceeds, the variance of the predicted action

distributions shrinks as the policy becomes optimized to take actions that accumulate

higher rewards. The deep ANNs for both the actor and the critic have two hidden

layers with 64 nodes per layer. While more advanced variants of model-free RL were

not needed to complete the objectives of this work, an interesting opportunity in the

future is to see if schemes such as Generalized Advantage Estimate [38], Proximal Policy

Optimization [39], or Soft Actor-Critic algorithms [40] may be necessary to succeed in

more complex control problems in APPJs. The implementation of the algorithm and the

plasma model environment are provided at https://github.com/mwitman1/PlasmaRL.

3.5. Simulated data generation for sim-to-real transfer with dynamics randomization

Each training iteration (or epoch) requires the generation of a new batch of simulated

data from the current policy, after which the gradient of Eqn. 7 can be computed and
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used to update the weights of the actor network (see Appendix for details). Each

training epoch consists of collecting N simulated roll-outs, each of time length T , from

the current policy (Eqn. 5) using MC sampling where the transition dynamics are given

by the lumped parameter model described in Eqn. 1. Here, we use the nominal values of

N = 100 roll-outs and T = 100 time steps per roll-out for generating the training data

at each epoch. Each roll-out consists of the response of the closed-loop (actor policy and

the APPJ model) system to a single setpoint change. At the beginning of each roll-out

a new setpoint is randomly chosen from the uniform distribution, Tsp ⇠ U [34, 46]. Since

the state vector contains previous setpoint deviations, it is recomputed with the new

setpoint temperature at the start of each new roll-out.

The parameters of the lumped-parameter model (µ1, µ2) must also be specified

in order to generate the training roll-outs. These lumped model parameters can

be fit for a particular substrate to experimental data (see Table 1). However, this

model remains a rough approximation (low-fidelity model) of the very complex physical

processes occurring at the plasma/substrate interface. This makes training with

dynamics randomization over (µ1, µ2), critical. With dynamics randomization [33],

the reinforcement learning objective is now to maximize the expected rewards when the

model parameters are no longer constant but sampled from a distribution, ⇢µ,

J(⇡) = Eµ⇠⇢µ

"
E⌧⇠p(⌧ |⇡,µ)

"
T�1X

t=0

rt(st, at)

##
(8)

Now, at the beginning of each training roll-out, we sample µ1 ⇠ ⇢µ1 and µ2 ⇠ ⇢µ2 such

that the transition dynamics, p(⌧ |⇡, µ), are di↵erent in each roll-out. In addition to

the dynamics randomization, sample from a Gaussian white noise �T distribution and

add it to the temperature dynamics to represent some uncertainty in the measurements.

We hypothesize these e↵orts will permit successful sim-to-real transfer despite our low

fidelity model. It will also allow us to create a single RL agent that is capable of

maintaining good thermal control performance for various substrates in an experimental

context since we can choose ⇢µ in a way that is representative of the range of dynamics

expected for di↵erent substrates.

We train 3 RLCs in this work, each with its own ⇢µ as summarized in Table 2. The

Glass RLC (G-RLC) is trained only using a single set of parameters which correspond

to the values fitted for the borosilicate glass substrate (see Table 1) and no model

noise. This is the base case with no dynamics randomization. The Glass Uncertainty

RLC (GU-RLC) is trained drawing from a normally distributed parameter set centered

around the parameters fitted to the borosilicate glass substrate and in the presence of

additive Gaussian white noise, �T , to the model. Finally, the Ensemble RLC (E-RLC)

is trained by discrete uniform sampling from an ensemble of 12 (µ1, µ2) parameter

sets, which are chosen to be a representative selection of possible substrate dynamics,

combined with the additive Gaussian white noise. This type of dynamics randomization

allows us to explicitly define the range of temperature dynamics that we want our RLC

to operate on. Some example temperature responses of the system with the di↵erent
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Table 2: The parameter sampling scheme used to train the G-RLC, the GU-RLC, and

the E-RLC.

µ1 µ2 �T

G-RLC 2.38 0.82 0.0

GU-RLC N (2.38, 0.2) N (0.82, 0.05) 0.11

E-RLC (µ1, µ2) ⇠
{(0.80, 0.40), (0.80, 0.55), (0.80, 0.65),

(1.12, 0.56), (1.12, 0.71), (1.12, 0.86),

(2.39, 0.82), (2.39, 1.02), (2.39, 1.22),

(4.00, 1.50), (4.00, 1.80), (4.00, 2.20)}

0.11

parameters sampled during the training of the E-RLC are shown in Fig. 4.

4. Performance evaluation

To quantitatively evaluate the performance of the three RLCs, we define the mean

absolute error in setpoint tracking as,

MAE = 1/(T � b)
TX

t>b

|Ts,t � T sp
s |, (9)

(a) Cooling dynamics (b) Heating dynamics

Figure 4: Temperature response of the in silico energy balance model to a step input

power of (a) 1.1 W starting from an initial temperature of 46 �C and (b) 5 W starting

from an initial temperature of 34 �C. Each line corresponds to the response for one of

the uniformly sampled (µ1, µ2) parameter sets used to train the E-RLC, and the thick

dashed black and blue lines correspond to the fitted aluminum and glass dynamics,

respectively.
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and the cumulative input change as

CI =
TX

t>b

|Pt � Pt�1|, (10)

which quantifies the control e↵ort. We choose b = 60, neglecting the first 60 time

steps in the trajectory in order to make the quantitative performance comparison

between two di↵erent setpoint tracking experiments independent of the system’s starting

temperature. This helps minimize the e↵ects of unavoidable day-to-day experimental

variations in ambient temperature. High-performance operation corresponds to a low

MAE and low CI. The setpoint tracking experiment upon which we evaluate these

metrics can be seen in the following Results section.

5. Results: In silico control performance

The goal of the sim-to-real transfer learning strategy with dynamics randomization is

to allow the RLC to generalize its control performance to a large variety of treated

substrates it might encounter. Before validating our approach in real-time experiments,

we can quantify its performance by evaluating the three RLC agents in a simulation

environment on the in silico model.

5.1. Setpoint tracking

We first test the G-RLC in silico on the model of the borosilicate glass substrate (with

�T = 0) via the closed-loop setpoint tracking simulation shown in Fig. 5. Since there is

no noise and there is no mismatch between the substrate temperature dynamics and the

data generated to train the G-RLC, the control performance is excellent as expected.

For this base case, then the performance of G-RLC is quantified by a MAE = 0.16 and

a CI = 69.2.

measured setpoint measured bounds

0 60 120 180 240 300 360
Time

37

39

41

43

T
s

(�
C

)

0 60 120 180 240 300 360
Time

1

2

3

4

5

P
(W

)

Figure 5: Control performance of the G-RLC is tested in silico on the model of the

borosilicate glass substrate with �T = 0.0. The setpoint tracking performance (left)

achieves an MAE = 0.16 and the power input (right) achieves CI = 69.2.
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5.2. Improving controller performance

We use the setpoint profile in Fig. 5 to test the three RLC agents across a range

of parameters and ambient temperatures for the dynamic model of the substrate

temperature. Our goal is to quantify the in silico setpoint tracking performance under

a range of conditions in order to test the extent to which the dynamics of randomization

training improves control performance. Figures 6 and 7, show color surfaces of the MAE

and CI for the three RLCs under di↵erent parameter set realizations (µ1, µ2, T1). Each

point in these plots is obtained by conducting a closed-loop setpoint tracking simulation

with �T = 0.1, where the parameters of the controlled system model are modified

according to the values shown on the axes. In other words, each point represents the

performance of the RLC agent on di↵erent substrate dynamics in in silico. In each plot,

the parameter combinations corresponding to experimentally obtained values for glass,

aluminum, and polyimide substrates are denoted by the light blue, black, and green

stars (see Table 1). Note here, that given the limitations on the input P it is possible to

track the desired setpoint profile in Fig. 5 only for certain combinations of dynamics at

a given ambient temperature T1. The condition for unreachable setpoints corresponds

to a high MAE and a low CI indicating that the input saturates at the bounds, yet

the setpoint in temperature is not achieved. This manifests itself as the triangle-shaped

regions in each of the plots in Figures 6 and 7.

Fig. 6 indicates that The G-RLC provides (perhaps surprisingly) high-performance

in silico when tested against a wide range of parameters. However, as µ1 increases

while the ratio µ2/µ1 is kept constant (i.e., along the plot diagonal), we observe that the

setpoint tracking performance deteriorates with the G-RLC. By training with additive

noise and a small degree of parameter uncertainty, the control performance can be

improved with the GU-RLC. However, the most significant improvement is achieved

with the E-RLC. In other words, the RLC becomes especially more robust to changes in

substrate dynamics that might have extremely fast temperature dynamics and/or large

gains. Note that for µ1/µ2 >> 1 and µ1/µ2 << 1, poor performance (very high MAE)

is observed for all of the RLCs since these parameters correspond to system dynamics in

which the limit to the input power prevents e↵ective tracking of the prescribed setpoints.

Moreover, the reachable setpoints are a function of the ambient temperature T1. For

example, on colder days (i.e., lower T1) it may be di�cult to track high-temperature

setpoints even when maximum P is applied.

To understand the systematic driver of the performance increase of the E-RLC, we

plot in Fig. 7 the CI that corresponds to the same setpoint tracking simulations shown

in Fig. 6. The region of drastic MAE improvement in Fig. 6 is also characterized by

a large reduction in CI in Fig. 7. Even in the parameter space where a low MAE

is observed in Fig. 6, there is a significant reduction in the CI with E-RLC. The E-

RLC appears to have therefore learned a highly desirable control behavior whereby its

setpoint tracking performance is improved while simultaneously decreasing the control

e↵ort across a broad range of dynamics. In order to predict the control performance
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Figure 6: In silico evaluation of the performance of the 3 RLC controllers investigated

in this work. Each subplot shows the MAE in the setpoint tracking experiment

(with �T = 0.1) where the columns correspond to the di↵erent RLC agents and rows

correspond to di↵erent ambient temperatures. Black, blue, and green stars respectively

represent the model parameters fitted for aluminum, borosilicate glass, and polyimide

substrates.

Table 3: Quantitative performance metrics for the G-RLC and E-RLC tested via in

silico simulations on borosilicate glass, aluminum, and polyimide substrates.

MAE CI

Substrate G-RLC E-RLC G-RLC E-RLC

Glass 0.24 0.24 126.1 69.1

Aluminum 0.25 0.23 136.3 72.5

Polyimide 0.56 0.21 415.6 109.2

on the experimentally available substrates, the quantitative performance metrics of the

simulations performed using the corresponding model parameters are shown in Table

1. The time courses for these setpoint tracking simulations are visualized in Appendix

D. Results summarized in Table 1 indicate that the E-RLC can provide a particularly

significant performance increase on the polyimide substrate with a predicted 2.5-fold

decrease in MAE and a 4-fold decrease in CI.
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Figure 7: The cumulative input change, CI, for the control experiments shown in Fig.

6

6. Results: Real-time experiments

6.1. High performance control on di↵erent substrates

We can hypothesize that the high performance of the E-RLC that was demonstrated

in silico indicates that, not only should good control performance be achieved with live

APPJ operation, but improved performance should be achieved with the E-RLC over the

G-RLC. To test this hypothesis, we perform real-time control experiments using both

the G-RLC and E-RLC on APPJ setup described in section 2.1. We test the RLCs on

three di↵erent substrates: borosilicate glass, aluminum, and polyimide. Experimental

results obtained for setpoint experiments are shown in Fig. 8.

The results demonstrate that the control performance of the E-RLC is notably

better than the control performance of the G-RLC over the three investigated substrates.

While the G-RLC performs well on the borosilicate glass substrate (Fig. 8a), whose

dynamics are similar to what it was trained on, the E-RLC (Fig. 8b) performs

quantitatively better with a 33% reduction in the MAE (see Table 4). The presence of

unmodeled phenomena in the experimental setup, not captured by the simple lumped-

parameter model, as well as the uncertainty associated with the fitting procedure for µ1

and µ2 parameters, results in deterioration in the performance of the G-RLC compared

to simulation studies. Small amplitude oscillatory input patterns and small setpoint

overshoot behavior are observed when the G-RLC encounters dynamics that are not

exactly what the agent was trained on. Meanwhile, the E-RLC provides excellent
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Figure 8: The setpoint tracking control performance of the G-RLC (a,c,e) and E-RLC

(b,d,f) recorded in real-time experiments treating a borosilicate glass (a,b), aluminum

(c,d), and polyimide (d,f) substrate. The E-RLC’s control performance is significantly

better for each individual substrate compared to the G-RLC as quantified by its setpoint

tracking error (left column) and control e↵ort (right column).

setpoint tracking performance with low control e↵ort, comparable to the base case

in 5. Moving to aluminum and polyimide substrates presents even more di�culty

since the temperature dynamics of both substrates can be characterized by very large

process gains with relatively slow dynamics for aluminum and relatively fast dynamics

for polyimide. For both substrates, the G-RLC (Fig. 8c,e) struggles to maintain

the setpoint, as indicated by large amplitude oscillations in the input profile, while

the E-RLC performs much more robust setpoint tracking (Fig. 8d,f). Quantitative

evaluation of the control performance from Fig. 8 is summarized in Table 4. The E-
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Table 4: Quantitative performance metrics for the G-RLC and E-RLC tested with the

live APPJ on glass, aluminum, and polyimide substrates.

MAE CI

Substrate G-RLC E-RLC G-RLC E-RLC

Glass 0.19 0.12 98.3 48.6

Aluminum 0.64 0.30 240.1 73.0

Polyimide 0.81 0.24 499.6 129.3

RLC demonstrates significant quantitative improvement for setpoint tracking on all

three substrates while also drastically reducing its control e↵ort.

6.2. Disturbance rejection

Lastly, in order to test the capability of the E-RLC for temperature control beyond the

setting on which it was trained (i.e., responding to setpoint changes), we introduce a

disturbance to the APJ operation. Changes in the separation distance (the distance

between the jet tip and substrate) present a relevant disturbance for applications of

APPJs. Changes in substrate topology or variations during hand-held treatment can

impact the separation distance which in turn has a considerable e↵ect on thermal

dynamics [9, 10, 16]. If to be useful in real-world applications, the E-RLC should be

able to e↵ectively maintain constant temperature setpoint tracking when the separation

distance suddenly changes. Fig. 9 shows the performance of E-RLC in regulating

substrate temperature as the separation distance is increased by 2 mm in a step-wise

manner. These results indicate that the E-RLC is able to quickly recover and maintain

e↵ective setpoint tracking after such a disturbance. Note in Figure 9 the scale of the

y-axis only shows ± 1 oC; the excursions of the substrate temperature are indeed are

on the order of only 0.5 oC. At very high separation distances (>10 mm), a fluctuating

response is observed both in temperature and the applied power. This is due to the fact

that at this separation distance, the discharge is on the verge of de-coupling from the

substrate and exhibits unstable behavior. In this region, the available actuation is not

su�cient to e↵ectively regulate thermal behavior.

7. Discussion

In this work, we have demonstrated how dynamics randomization and additive noise in

simulated training data can be used to obtain a high-performing RLC across a variety

of substrates that exhibit greatly di↵erent temperature dynamics. The broad range of

system dynamics is accommodated with a simple model and a range of parameters

allowing for improved control performance. Without using these transfer learning

techniques, we have shown in silico how the RLC is particularly ine↵ective when it
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Figure 9: The E-RLC performs constant temperature setpoint tracking while the

jet/substrate separation distance is perturbed at regular time intervals from 4 mm,

6 mm, 8 mm, to 10 mm.

encounters a substrate which responds much faster than the dynamics the agent was

trained on. The E-RLC also displays more robust control performance on all substrates

we tested both in silico and in real-time experiments. This demonstrates both the power

and the necessity of domain randomization for sim-to-real transfer of an RLC for APPJ

operation. This has allowed us to address two of the main challenges in APPJ control:

operational variability and widely di↵ering dynamics of substrates’ plasma interactions.

Our purely in silico training procedure and subsequent successful transfer to in

vivo operation is important for several reasons. Firstly, the in silico training is orders

of magnitude faster compared to using data collected from real-time experiments. A

maximum return for the RLC policy is achieved after approximately 500 training epochs

with 10,000 time steps per epoch. Since our APPJ sampling frequency is fixed at 1.3

s�1, a purely live data training procedure would take ⇠75 days of non-stop APPJ

operation, whereas the in silico training is completed on the order of 0.075 days. An

interesting future project will be to work with more sample e�cient RL algorithms to

see if the training can be accomplished only with live data; however, using only live

training to create a robust RLC would quickly face another barrier, even if sample

e�ciency were not an issue. In addition to alleviating e�ciency concerns by using

in silico training, the facile selection of an ensemble of model parameters in silico is

not so easily replicated in the live environment. To perform in vivo training with

dynamics randomization, one would need time-consuming manual experimentation to

find a representative set of substrates (or tweak other parameters of the experimental

setup) that su�ciently spans the space of model dynamics one wishes to train over.

In a best-case scenario it will be inconvenient (and in the worst case impossible) to

tweak the in vivo experimental conditions to cover the entire model parameter space

that the RLC may need to operate within during run time. Finally, a key requirement

of APPJ treatment is safety, particularly in a medical context where the substrate is a

patient receiving treatment. Training RL agents with real-time experiments can result

in thermal damage on the treated substrate, especially in early iterations, making this

approach prohibitive. By avoiding any in vivo training, we can ensure stable and high-
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performing in silico performance before applying the RL controller in the real world.

An attractive feature of our presented approach is the use of a low-fidelity model

of the substrate temperature dynamics in conjunction with dynamics randomization.

While the speed-up in training allowed with a low-fidelity model is appreciable and

dynamics randomization, in our case, allows accommodating a range of experimentally

observed dynamics, there may be limitations to using low-fidelity models. Particularly,

we restricted our model structure to be linear, whereas APPJs can exhibit a range

nonlinear behaviors. Indeed, mildly nonlinear temperature dynamics are observed on

the aluminum substrate, which resulted in a somewhat oscillatory temperature response

even with E-RLC strategy. Thus future work may involve using more complex APPJ

models to generate training data. The methods we present in this paper can readily

generalize to models of arbitrary complexity. However, the trade-o↵ between model

complexity and training time must be taken into account. It may be challenging to

train RL agents using data generated with models with a large number of uncertain

parameters as the required training time grows with parameter space that is sampled

during training.

There remain many interesting extensions and improvements of this project to

explore the potential role of RL in the control and dose delivery of plasma medicine.

For example, one task that is highly important to the plasma medicine community is

that of optimal dose delivery. In this problem, one wishes to administer a predetermined

dose as accurately as possible over a two-dimensional surface in a fixed period of time.

The E-RLC agent developed in this work can be useful in this context as lower level

controllers for fast disturbance rejection and allowing e↵ective regulation of across

substrates with varying thermal dynamics. Moreover, RL methods can be useful in

analyzing and integrating more complex sensory information such as optical emission

spectra and current waveforms for diagnostics applications [41], and incorporate further

manipulated inputs for control problems. The comparatively simple demonstration in

this work indicates the vast potential of RL strategies in complementing and, in some

instances, replacing classical and advanced control strategies for e↵ective treatment

delivery with APPJs.
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Appendix A. Details of the actor-critic algorithm

The mathematical details of the actor-critic algorithm are presented in this section;

however, it is assumed the reader has read the methods in the main manuscript. Several

actor-critic variants of policy gradient exist [21, 35], which commonly seek to estimate

the gradient of the expected rewards with respect to the policy. The form of the gradient

common to these methods is as follows [38],

r✓J(✓) = E
"
T�1X

t=0

Rtr✓ log ⇡✓(at|st)
#

(A.1)

where the form of Rt varies between the di↵erent methods. For example, for the

most basic version of policy gradient, Rt =
PT�1

t=0 rt. The problem is that sampling

this quantity produces a very high variance rewards signal. Many policy gradient

methods seek to reduce this variance, and Ref. [38] provides an excellent summary. The

aforementioned references provide relevant derivations; in this work, we use the gamma-

discounted TD-residual, Rt = rt + �V ⇡(st+1) � V ⇡(st), which reduces the variance in

the rewards signal (the discount factor, � 2 [0, 1.0], is introduced to discount future

rewards). Specifically, it uses the value function, defined as the expected future rewards

under the current policy from being in st.

V ⇡(st) = Est+1:1,at:T�1

"
T�1X

�=0

rt+�

#
(A.2)

Now, combining Eqn. A.1 with the TD-residual and estimating the expectation value

over N di↵erent MC roll-outs, we can rewrite the gradient as follows:

r✓J(✓) ⇡ 1

N

NX

i=1

T�1X

t=1

r✓ log ⇡✓(ai,t|si,t) (ri,t + �V ⇡(si,t+1)� V ⇡(si,t)) (A.3)

Once Eqn. A.3 has been computed, we can maximize the expected rewards by taking a

gradient step in ✓. This equation also provides the link between computing the policy

gradient and the two network actor-critic structure summarized in the main text. In

the two ANN design, the policy is specified by the outputs of the actor network, ⇡✓(a|s),
and the value function is approximated by the critic network, V̂ ⇡

� (st). The actor and

critic can now be trained in tandem via Algorithm 1 where the corresponding block

diagram shown in Fig. A1. Note that Fig. A1 is the actor-critic specific realization of

the more general reinforcement block flow diagram shown in Fig. 2.

1. Monte Carlo roll-outs:

The details of roll-out collection using domain randomization were discussed in the

main text. Briefly, we collect N = 100 simulated roll-outs of T = 100 time steps.

At the beginning of each roll-out a new setpoint is randomly chosen from the uniform



REFERENCES 22

Algorithm 1 Online, two network actor-critic
1: for each actor training iteration do

2: policy roll-outs: collect (st, at, st+1, rt) for all N ⇥ T time steps

3: for number of critic target updates do

4: compute critic targets: zt = rt + �V̂ ⇡
� (st+1)

5: for gradient steps per target updates do

6: compute critic loss: L(�)

7: update critic: � � + ↵r�L(�)

8: estimate TD residual: R̂t = rt + �V̂ ⇡
� (st+1)� V̂ ⇡

� (st)

9: compute cost gradient: r✓J(✓) ⇡ r✓ log ⇡✓(at|st)R̂t

10: update actor: ✓  ✓ + ↵r✓J(✓)

distribution, Tsp ⇠ U [34, 46] and trajectories are propagated forward in time based on

the transition model and actor policy. This can be expressed succinctly as collecting

N ⇥ T tuples of (st, at, st+1, r) where the model transitions p(st+1|st, at, µ) depend on

the model parameters chosen to be sampled, µ ⇠ ⇢µ, in a given roll-out.

Figure A1: A block diagram representation of the actor-critic algorithm for training the

RLC
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2. Critic training:

The goal of the critic network is to approximate the value function with weights �,

V̂ ⇡
� (st). Once a batch of simulated data has been collected and the rewards computed

under the current iteration of the policy, the value function must be approximated, i.e.

fit to the data that has been collected. When using the TD-residual, this must be done

in an iterative manner. The di↵erence between the critic network’s predictions for each

state, V̂ ⇡
� (st), and its target values, zt as shown in Algorithm 1, are formulated as the

critic network’s loss and minimized by optimizing the weights of the critic network:

L(�) =
1

N

X

i

||zi � V̂ ⇡
� (si)||2 (A.4)

However, once this loss has been minimized, the critic’s predictions are no longer self-

consistent with the new values of �. Hence the target values must be recomputed and

the minimization process repeated. Within each actor training step, we update the critic

target values ten times, and we update the critic network with ten gradient steps per

target update.

3. Actor update

Once the critic network has been optimized for the current policy data, the policy

gradient can be computed via Eqn. A.3 and a gradient step computed in ✓ (with learning

rate ↵) to improve the policy for the next iteration of data collection.

Appendix B. Learning curves

The learning curves for the G-RLC with a learning rate of 0.005 and the E-RLC with

both a learning rate of 0.005 and 0.003 are shown in Fig. B1. The average return per MC

roll-out is plotted versus actor training iteration. The G-RLC quickly learns a policy

that practically achieves the maximum possible return based on the rewards structure

described in the manuscript (rmax(st, at) = 10 for T = 100 time steps per MC roll-

out). The G-RLC training takes longer to plateau and achieves a lower average return

than the E-RLC, but this should not be interpreted as a shortcoming. The E-RLC

training incorporates noise, which inherently makes the setpoint tracking more di�cult.

The E-RLC must also operate on a wide range of di↵erent model dynamics. In each

training iteration, some fraction of the E-RLC roll-outs are performed with very slow

dynamics (see manuscript), and the limitations of these slow dynamics combined with a

bounded action space reduce the minimum setpoint tracking error that can theoretically

be achieved. This is also visually demonstrated in the next section. We also highlight

the sensitivity of the training to the learning rate, as demonstrated by the more stable

E-RLC training when a learning rate of 0.003 is used.
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Figure B1: Training curves for the G-RLC with a learning rate of 0.005 and the E-RLC

with both a learning rate 0.005 and 0.003.

Table C1: Parameters of the lumped-parameter model of the thermal dynamic of the

substrate

Parameter Value

⇢ 2.8⇥103 kgm�3

cp 795 Jkg�1K�1

d 0.2 mm

r 1.5 mm

⌘ 0.4

k 1.43 Wm�2K�1

Appendix C. Lumped-parameter model predictions versus experiment

Fig. C1 shows the predicted temperature at the next time step from the lumped-

parameter model, Tm
t+1, with glass fitted parameters versus the actual temperature at

the next time step, Tt+1, for the set point tracking experiment from Fig. C1a (the real-

time glass control experiment). Fig. C1a plots the error in the model predictions versus

the jet power at every time step with the color code corresponding to the change in

power from the previous time step. This demonstrates that the largest errors in model

prediction typically correspond when the jet is operating at large input changes. Fig.

C1b shows the error in model predictions in histogram form with �T = 0.17 for this

particular experiment.
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Appendix D. Visualization of in silico set point tracking experiments

In silico setpoint tracking simulations of the 3 RLC controllers are shown in Fig.

D1, whose quantitative performance metrics were presented in Table 3. The largest

performance gain with the E-RLC occurs on the polyimide substrate model (Fig.

D1f). Notably from Fig. 7, the CI is also significantly reduced with the E-RLC in

the vicinity of borosilicate glass and aluminum parameters. The setpoint tracking

performance on an aluminum substrate is plotted in Fig. D1c-d, which show how the

E-RLC demonstrates better control performance than the G-RLC. Not only does the

E-RLC achieve slightly lower MAE, the CI is also significantly reduced as the E-RLC

becomes better at controlling the temperature without exhibiting the more oscillatory

input profiles obtained under the G-RLC. Regardless, it is important to note that the

G-RLC performs surprisingly well across a range of model parameters, given the large

di↵erence in temperature dynamics between borosilicate glass and aluminum substrates.

However, this moderate transferability of the G-RLC only applies to in silico results as

will be demonstrated in the next section.

Appendix E. Implementation availability

The code used to train and execute the RLC’s shown in this work are provided at https:

//github.com/mwitman1/PlasmaRL which extends the code provided by the instructors

of CS294-112 at UC Berkeley (http://rail.eecs.berkeley.edu/deeprlcourse/). To

train the E-RLC, use the command:

python train_ac_f18_plasma.py PlasmaModel -ep 100 -epext 1 --discount

0.99 -n 3000 -e 1 -l 2 -s 64 -b 10000 -lr 0.005 --exp_name anyname -ntu 10

Figure C1: (Left) Deviations of the lumped-parameter model prediction from the actual

temperature for the real time glass temperature control experiment from Fig. 6a.

Deviations are plotted as a function of the jet power at each time step, and the color-

coding corresponds to the change in the applied input.
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Figure D1: The setpoint tracking control performance of the G-RLC (a,c,e) and E-RLC

(b,d,f) are tested on the in silico model for the parameters fitted to borosilicate glass

(a,b), aluminum (c,d), and polyimide (e,f) substrates. The E-RLC’s MAE is reduced

for the set point tracking experiments (left column) and the corresponding power inputs

(right column) have a reduced CI compared to the G-RLC (drastically so for polyimide).
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