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Abstract
A major theme of IT in the past decade has been the shift from on-premise hardware to cloud

computing. Running a service in the public cloud is practical, because a large number of

resources can be bought on-demand, but this shift comes with its own set of challenges, e.g.,

customers having less control over their environment. In scale-out deployments of on-line

data-intensive services, each client request typically executes queries on many servers in

parallel, and its final response time is often lower-bounded by the slowest query execution.

There are numerous hard-to-trace reasons why some queries finish later than others.

Latency variability appears at different timescales. To understand its cause and impact we

need to measure it correctly. It is clear that we need hardware support to measure latencies on

the nanosecond-scale, and that software-based tools are good-enough for the millisecond-

scale, but it is not clear whether software-based tools are also reliable at the µs-scale, which is

of growing interest to a large research and industry community.

Measuring is a first step towards understanding the problems that cause latency variability,

but what if some of them are extremely complex, or fixing them is out of reach given a

service provider’s restrictions? Even large companies that own datacenters and build their

own software and hardware stack sometimes suffer from hard-to-understand or hard-to-fix

performance issues. Medium-sized companies that simply use shared public infrastructure,

and do not themselves develop most of the code running on the machines, have limited

capabilities and often cannot rule out each and every source of system interference. This

reality inspired the line of research on what is known as hedging policies. By using redundant

requests we can reduce overall latency at the cost of consuming additional resources.

This dissertation characterizes latency variability of interactive services, shows how to measure

it and how to mitigate its effect on end-to-end latency without sacrificing system capacity.

Concretely, this dissertation makes three contributions: First, it shows how to measure µs-

scale latency variability with both low cost and high precision, with the help of kernel bypass

and hardware timestamps. Second, it empirically derives a lower bound on the tail latency that

any implementable hedging policy might achieve for a given workload. Through evaluating

our lower bound on a large parameter space, we determine when hedging is beneficial. Lastly,

we describe and evaluate a practical policy, LÆDGE, that approximates our theoretical lower

bound and achieves as much as half of its hedging potential. We show the applicability of

our solution to real applications deployed in the public cloud where LÆDGE outperforms the

state-of-the-art scheduling policies by up to 49%, averaged on low to medium load.

Keywords : cloud computing, latency measurement, RPC scheduling, load balancing, hedging
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Résumé
Un thème majeur de l’informatique au cours de la dernière décennie a été la migration vers le

cloud. L’hébergement d’un service informatique dans cloud est pratique, car les ressources

peuvent être allouées à la demande. Cependant, ce changement s’accompagne de ses propres

défis et limitations, notamment la perte de contrôle pour les clients sur leur environnement.

Dans les déploiements scale-out de services en ligne (des services OLDI), chaque requête

de clients est exécutée sur de nombreux serveurs en parallèle, et son temps de réponse final

est souvent limité par l’exécution de la requête la plus lente. Il existe de nombreuses raisons,

difficiles à localiser, pour lesquelles certaines requêtes se terminent plus tard que d’autres.

La variabilité de la latence apparaît à différentes échelles de temps. Pour comprendre sa

cause et son impact, on doit la mesurer correctement. Nous avons clairement besoin d’un

support hardware pour mesurer des nanosecondes ; les logiciels, quant à eux, sont assez bons

pour des mesures à l’échelle des millisecondes, mais sont-ils assez précis pour mesurer des

microsecondes (qui intéressent de plus en plus une grande communauté de chercheurs et

d’industriels) ?

La mesure est la première étape vers la compréhension de la variabilité de la latence, mais

que doit-on faire si l’origine de ces latences est extrêmement complexe, ou impossible à

éliminer? Même les grandes entreprises qui possèdent leurs propres centres de données

et créent leur propre logicielle et hardware souffrent parfois de problèmes de performance

difficiles à comprendre ou à résoudre. Les entreprises qui utilisent une infrastructure publique

partagée sont encore moins à même de résoudre chaque source de variabilité ou de latence.

Cette réalité a inspiré la recherche en direction de ce qu’on appelle “hedging”. En utilisant des

requêtes redondantes, on peut réduire la latence au prix de la consommation de ressources

supplémentaires.

Cette thèse caractérise la variabilité de latence des services interactifs, montre comment la

mesurer et comment atténuer son effet sur la latence de bout en bout sans sacrifier la capacité

du système. Concrètement, cette thèse apporte trois contributions : Tout d’abord, elle montre

comment précisément mesurer la variabilité de la latence à l’échelle des microsecondes à

faible coût. Deuxièmement, elle dérive empiriquement une borne inférieure de la latence que

le hedging en général peut atteindre. En évaluant notre borne inférieure sur un large champ

de paramètres, nous déterminons quand le hedging est bénéfique. Enfin, nous décrivons et

évaluons une politique pratique, LÆDGE, qui se rapproche de notre borne inférieure théorique

et réalise jusqu’à la moitié de son potentiel. Nous montrons l’applicabilité de notre solution

aux applications réelles déployées dans le cloud public. LÆDGE surpasse les politiques de
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planification de pointe de 49% en moyenne, pour une charge du système faible à moyenne.

Mots-clefs : informatique en cloud, mesure de latence, planification RPC, équilibrage de

charge, hedging
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Zusammenfassung
Die breite Einführung von Cloud Computing stellt einen der bedeutendsten IT Trends des

vergangenen Jahrzehnts dar. Unternehmen aller Größen betreiben ihre Softwaredienste zu-

nehmend mit Hilfe von Cloudanbietern, weil diese es erlauben Rechenkapazitäten kurzfristig

und nach Bedarf einzukaufen. Die Migration in die Cloud bringt allerdings eine Reihe von Her-

ausforderungen mit sich – allem voran haben Kunden von Cloudanbietern weniger Kontrolle

über die Umgebung in der ihre Software ausgeführt wird.

In skalierbaren Installationen von datenintensiven Onlinediensten (OLDI Applikationen)

führt jede Userabfrage typischerweise zu weiteren Abfragen die parallel auf vielen Servern

ausgeführt werden. Die langsamste dieser untergeordneten Abfragen bestimmt dabei häufig

die insgesamte Dauer, d.h., die Gesamtlatenz, der Userabfrage. Warum manche dieser Abfra-

gen mehr Zeit in Anspruch nehmen ist oft schwer nachzuvollziehen und wird von zahllosen

Faktoren beeinflusst.

Diese Variabilität in Latenzzeiten tritt in verschiedensten Größenordnungen auf. Um ihre Ur-

sachen und Auswirkungen zu verstehen, braucht es exakte Werkzeuge zur Messung der Latenz.

Es ist klar, dass wir dedizierte Hardware benötigen, um Latenzen im Nanosekundenbereich

zu messen, und dass software-basierte Tools für den Millisekundenbereich ausreichen. Für

Latenzen im Mikrosekundenbereich ist dies eine offene Frage mit der sowohl Forscher als

auch Praktiker zunehmend konfrontiert sind.

Die Messung von Latenzvariabilität ist ein wichtiger erster Schritt um Onlinedienste zu op-

timieren, aber in vielen Situationen nicht ausreichend: Oftmals sind die Applikationen zu

komplex, oder die Störfaktoren liegen außerhalb des Einflusses des Dienstbetreibers. Doch

selbst große Unternehmen, die ihre eigenen Rechenzentren betreiben und volle Kontrolle

über Hardware und Software besitzen, kämpfen damit die Performancecharateristika ihrer

Dienste zu verstehen. Mittelständische Unternehmen, die öffentliche Cloudinfrastruktur

nutzen, und den größten Teil ihres Codes nicht selbst entwickeln, sind davon umso mehr

betroffen. Dieser Umstand bildet den Ausgangspunkt für eine Technik namens Hedging in

Onlinediensten: Mit Hilfe von mehreren redundanten Abfragen (und auf Kosten eines höheren

Ressourcenverbrauchs) kann die Latenz von Userabfragen reduziert werden.

In dieser Dissertation charakterisieren wir die Latenzvariabilität interaktiver Onlinedienste,

zeigen wie sie gemessen werden kann, und schließlich wie ihr negativer Einfluss auf Gesamt-

latenzen mitigiert werden kann ohne die Kapazität des Dienstes wesentlich zu verringern.

Konkret leistet diese Dissertation drei Beiträge: Zunächst zeigen wir, wie sich Latenzvariabilität

im Mikrosekundenbereich messen lässt, im Speziellen ohne kostspielige, spezielle Hardwa-
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Zusammenfassung

re und mit hoher Präzision durch Kernel-Bypass Networking und Hardware-Zeitstempel.

Zweitens leiten wir empirisch eine Untergrenze für die Gesamtlatenz ab, die eine praktische

Hedging-Technik für eine gegebene Auslastung bestenfalls erreichen kann. Dank dieser Unter-

grenze können wir für einen großen Raum an Parametern bestimmen wann und zu welchem

Grad Hedging vorteilhaft ist. Zuletzt beschreiben und evaluieren wir eine konkrete Hedging-

Technik, LÆDGE, die sich unserer theoretischen Untergrenze annähert und deren Potenzial bis

zur Hälfte ausschöpft. Wir zeigen die Anwendbarkeit unserer Lösung auf reale Onlinedienste

in der öffentlichen Cloud. Dabei übertrifft LÆDGE existierende Techniken bei geringer bis

mittlerer Auslastung um bis zu 49%.

Stichwörter: Cloud, Latenzmessung, RPC-Scheduling, Lastverteilung (Load-Balancing), Hed-

ging

viii



Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Measuring Latency Variability . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Dealing with Latency Variability . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 Online Data-Intensive Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Effect of Latency on End-Users . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Sources of Latency Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The Tail-at-Scale Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 How to Schedule RPCs in OLDI Services? . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Replication in OLDI Services . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Overhead of Latency Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Kernel Bypass I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Hardware Timestamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 How to Measure Microsecond-Scale Latency Variability 25

3.1 Overview of Traffic Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



Contents

3.3 Closing the HW/SW gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Measuring Subtle Differences in OS Configurations of Network Functions . . . 32

4 When to Hedge in Interactive Services? 37

4.1 OLDI Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Hedging and Load Balancing: State of the Art . . . . . . . . . . . . . . . . . . . . 39

4.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Two Simple Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 The Design of Idealized Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Idealized Hedge for Two Replicas . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.2 Generalized Idealized Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Idealized Hedge versus State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.1 Beyond One Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Walking the LÆDGE Between Hedging and Load Balancing 55

5.1 Design of Load-Aware Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 LÆDGE versus Idealized Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 To Cancel or Not to Cancel . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Generalized LÆDGE Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Beyond One Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Are Cancellations Worth the Effort? . . . . . . . . . . . . . . . . . . . . . . 64

6 Measuring and Mitigating IQ-jitter in the Cloud 71

6.1 Empirical IQ-jitter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Mitigating Tail Latency in the Public Cloud . . . . . . . . . . . . . . . . . . . . . . 74

7 Related Work 79

7.1 Hardware-Based Techniques for Measuring Latency Variability . . . . . . . . . . 79

7.2 Taming Map-Reduce Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Reducing Latency in OLDI Services . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Optimizing Inter-Query Service Time Variability Through Adaptive Paral-

lelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.2 Early Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.3 Hedging at Low Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.4 Advanced Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.5 Cancellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Infrastructure Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Conclusion 83

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 NIC Timestamps for Latency Measurements . . . . . . . . . . . . . . . . . 85

8.2.2 Scheduling Discipline in the Processing Nodes . . . . . . . . . . . . . . . 85

8.2.3 Scalability of Per-Shard Queuing . . . . . . . . . . . . . . . . . . . . . . . . 85

x



Contents

8.2.4 Fault-Tolerance of Per-Shard Queuing . . . . . . . . . . . . . . . . . . . . . 86

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 89

Curriculum Vitae 101

xi





List of Figures
2.1 Service providers deploy OLDI services in datacenters. Users of OLDI services

have tight latency constraints and a service-level objective (SLO) is a time limit

that tries to capture the users’ expectations a service provider needs to meet

within the datacenter, excluding the network latency required to reach the data-

center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Architecture of an OLDI service without replicated shards. Every root receives

user requests and schedules them onto the leaf servers. The data is split into

shards and each leaf node holds (at least) one shard of the data. . . . . . . . . . 12

2.3 Architecture of an OLDI service with replicated shards. Every root receives user

requests and schedules them onto the leaf servers. Each leaf node holds a part

of the data. The red lines illustrate the minimum amount of communication

when a request arrives to a root node. At least one replica of each shard needs to

be accessed in order to aggregate a correct final response. . . . . . . . . . . . . 16

2.4 Architecture of an OLDI service with per-shard load balancers. The roots forward

user requests to per-shard load balancers that schedule the queries onto the

replicated shards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Different points in hardware and software stack where one can measure latency. 22

3.1 Experimental setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Latency measurements of a hardware switch using different tools. . . . . . . . . 31

3.3 Effect of different OS and application configurations of the software port-forwarding

application, as measured by different client tools. The hardware switch is added

for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 (cont.) Effect of different OS and application configurations of the software

port-forwarding application, as measured by different client tools. The hardware

switch is added for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 99th percentile latency as a function of utilization, in a cluster with 50×2 leaves,

with and without IQ-jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 99th percentile latency as a function of utilization, with hiccup probability 1
1000 ,

and hiccup duration 15×P̄ . The trend in behavior of hedging and load-balancing

policies from Figure 4.1a persists even with larger number of replicas. . . . . . 42

xiii



List of Figures

4.3 The finite-state machine of the Idealized Hedge policy on a single shard with

two replicas. The states show: whether the centralized queue is empty, whether

replicas are running the same or different queries (Q), and whether the execution

on the replicas started at the same time (t ). This state machine also corresponds

to the LÆDGE policy with both CC and PC. . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Demonstration of the behavior of Idealized Hedge for different number of repli-

cas: 99th percentile latency as a function of utilization, with hiccup probability
1

1000 , and hiccup duration 15× P̄ . Idealized Hedge continues to achieve the best

of hedging and load balancing even for larger number of replicas. . . . . . . . . 46

4.5 99th percentile latency as a function of utilization. Idealized Hedge vs. existing

hedging policies and Per-Shard Queuing. Same setup as in Figure 4.1a. . . . . . 49

4.6 99th percentile latency as a function of utilization. Comparison of different

d-Hedge configurations with cleanup cancellations. Same setup as in Figure 4.1a. 50

4.7 Heat maps showing how much Idealized Hedge improves the 99th percentile

latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis is hiccup

probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 The finite-state machines of the LÆDGE and LÆDGE-with-CC policies on a single

shard with two replicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 99th percentile latency as a function of utilization. LÆDGE flavors vs. Idealized

Hedge and the best existing policies. Same setup as in Figure 4.1a. . . . . . . . . 58

5.3 99th percentile latency as a function of utilization. Comparing LÆDGE with

CC+PC vs. other LÆDGE flavors and Idealized Hedge. Same setup as in Figure 4.1a. 60

5.4 Demonstration of the behavior of LÆDGE and LÆDGE with CC for different

number of replicas: 99th percentile latency as a function of utilization, with

hiccup probability 1
1000 , and hiccup duration 15× P̄ . . . . . . . . . . . . . . . . . 62

5.5 Heat maps showing how much various LÆDGE policies improve the 99th per-

centile latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis

is hiccup probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 (cont.) Heat maps showing how much various LÆDGE policies improve the 99th

percentile latency relative to Per-Shard Queuing. x-axis is system utilization;

y-axis is hiccup probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 (cont.) Heat maps showing how much various LÆDGE policies improve the 99th

percentile latency relative to Per-Shard Queuing. x-axis is system utilization;

y-axis is hiccup probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Heat maps showing how much LÆDGE with CC improves the 99th percentile

latency relative to the plain LÆDGE policy. x-axis is system utilization; y-axis is

hiccup probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Heat maps showing how much LÆDGE with CC+PC improves the 99th percentile

latency relative to LÆDGE with CC. x-axis is system utilization; y-axis is hiccup

probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



List of Figures

6.1 Distributions of service-time components measured on two different VM types.

The four query types are shown separately from the aggregate distribution (“all”). 72

6.2 IQ-jitter measurements (the red datapoints) on two different VM types sorted by

the increasing value of P (the blue line) within each query type. The x-axis shows

the order number of the query (not all query types are equally represented),

while the y-axis shows the latency in milliseconds. . . . . . . . . . . . . . . . . . 74

6.3 Original OLDIsim architecture and the architecture with PSLBs. . . . . . . . . . 75

6.4 Mitigating the Lucene hiccups in a system implementation deployed on 2×5

leaves in EC2 VMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv





List of Tables
2.1 Existing hedging and load-balancing policies. . . . . . . . . . . . . . . . . . . . . 15

3.1 Overview of evaluated traffic generators. . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Percentage of the total surface (in Figure 5.5 and Figure 4.7) that has more

than 20%, 30% and 40% reduction in 99th percentile tail latency over Per-Shard

Queuing for the workloads with the hiccup duration of 15× P̄ and 30× P̄ . . . . . 63

6.1 Comparison of the service time components of different configurations of Lucene.

J is the IQ-jitter of the Lucene workload, while P is its service time without the

IQ-jitter. P is measured by executing each query many times and retrieving the

minimum execution time for each query, while J is measured as the difference

between each execution time and the corresponding P . Hiccup probability and

hiccup duration describe J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xvii





1 Introduction

Today’s world is hardly imaginable without the Internet and its multitude of services defin-

ing modern life. Internet services play a large role in our businesses, education, social life

and many other aspects of our lives. Especially since social distancing recently became an

unavoidable part of our lives [99], we rely on Internet services more than ever.

On-line payment, web search, image search, social-networking applications, e-mail services,

video streaming, advertising and recommendation services are just a few examples of Internet

services that have billions of users around the globe. Put together, these applications generate

an exponentially-growing amount of data, traversing the global network infrastructure be-

tween service providers and the devices of users. Service providers typically store the data in

large facilities called datacenters that have vast amounts of storage, compute and networking

resources. To turn this “big data” into a valuable business resource, the information needs to

be adequately organized and promptly accessible.

Not all Internet services have the same performance requirements. This dissertation focuses

on interactive services that need to access large amounts of data and need to do it under

tight latency constraints. These bounds primarily arise from the client-oriented nature of

such applications, also known as Online Data-Intensive (OLDI) services [89]. OLDI services

interactively (“On-Line”) involve interaction with a user, but also require processing large

amounts of data for each user request (“Data-Intensive”). The user can either be an end-user

or a company using the service (a business-user). Some of the most important OLDI services

are web-search, image-search, social-networking and recommendation services [12, 122].

OLDI services typically operate under hard-to-meet service-level objectives (SLOs), often

expressed in terms of tail latency [11, 12, 28, 30, 60, 65, 68]. Each SLO captures a customer

expectation, and failing to meet it has concrete consequences, e.g., a hit to the service provider’s

reputation and a drop in advertising revenue [16, 25, 115, 126].

To access the vast amount of data needed for an OLDI service under these tight latency

constraints, the service needs to keep the data in memory and access it in parallel. OLDI
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services are therefore scaled-out to many servers—each of which contains only a part, a

shard, of the whole dataset. As a consequence, the user request needs to query many servers

in parallel. The root node (also known as a central scheduler or a dispatcher) multiplies

the original user request into as many queries as there are shards and sends them to the

corresponding leaf servers. The leaf servers process the incoming queries according to some

scheduling discipline. The root node can typically send the final aggregated response for the

user only once all the leaf servers have replied to their query. In other words, the final response

time to a user’s request is lower-bounded by the slowest of the leaf servers. In practice, such a

communication pattern causes problems for service providers trying to meet the tight latency

constraints, because a small fraction of slowed-down queries (on a single server) can affect a

large number of user requests. In the literature, this problem is called the tail-at-scale problem,

introduced by Dean et al. [28]. The severity of the tail-at-scale problem is proportional to the

number of servers. When more leaf servers are used in parallel, the same small fraction of

slowdowns on a single server affects more end-to-end user requests.

The general causes of latency variability in large-scale services are well understood: One is

variable queuing delay, e.g., due to load fluctuations [28, 33, 55, 103]. Another one is variable

service time, which, in turn, comes from two distinct sources:

1. Inherent query complexity: Different queries may take different amounts of time to

execute on a given hardware and software stack, because of different complexities [57,

72, 87, 135]. For example, in case of an in-memory key-value database a range query will

typically take longer than a simple lookup.

2. Software and hardware system events: Different instances of the same query may take

significantly different amounts of time to execute on a given system because of sys-

tem events that are unrelated to the service itself: decisions made by an operating-

system scheduler or power-management algorithm, interrupts, garbage collection,

virtualization effects, or simply competing for CPU and/or cache with other applica-

tions [17, 28, 32, 43, 69–71, 76, 78, 80, 88, 92, 98, 119, 128, 134].

Dean et al. focus on large service providers that develop their own infrastructure and entire

software stacks. Such companies spend a lot of engineering time and resources trying to

eliminate the sources of slowdowns as they arise, but latency variability due to unpredictable

software and hardware system events is often non-trivial and hard to trace at scale [17, 28].

Finding and fixing its root causes can take a long time—sometimes even a few months [119].

A wide range of service providers are concerned with latency variability. In this dissertation,

we look at this problem not only from the perspective of a large-scale service provider, but

primarily from the perspective of a service provider that is also a user of a public cloud. Busi-

nesses of all sizes, and from a range of very different domains, are increasingly deploying their

IT services in the cloud instead of hosting their own on-premise IT infrastructure. The massive

shift of company infrastructures to the cloud has been a real game changer in many different

2



industries over the past decade. The advantages of using the public cloud are numerous: it

is easy to elastically scale the service up or down, service providers do not need to buy or

maintain the machines, and the availability requirement is taken care of by the public cloud

providers. However, using a shared infrastructure gives service providers less control over

some of the sources of the slowdowns in query processing, such as obscure operating-system

decisions or a co-located noisy tenant.

This shift to the cloud is happening partly due to more and more companies experiencing the

“big data” problem. Even numerous startups and medium-size companies offer services that

can be considered OLDI services and have similar latency requirements—while running in

the shared public cloud.

Latency variability is causing problems not only for OLDI-service providers, but also for

network-service providers that are trying to deploy software network functions in production.

A network function is a building block of a network implementing a simple function, such

as a firewall or a router. Historically, one network function in a network was one hardware

appliance. In the scope of the Network Function Virtualization (NFV) paradigm [53], network

functions are implemented in software for reasons such as flexibility and ease of innovation.

Implementing network functions in software makes them much more sensitive to slowdowns,

compared to previously-used hardware appliances. At timescales at which these packet-

processing applications operate, every microsecond matters.

In today’s computer systems it is more challenging to mitigate latencies at the microsecond-

scale than at the millisecond-, or even nanosecond-scale, for two main reasons [13]: First,

millisecond-scale latencies can be mitigated with various software techniques, such as context

switching, that are too slow for the microsecond-scale. Second, techniques implemented

in hardware that mitigate nanosecond-scale latencies, such as out-of-order execution and

branch prediction, do not scale well to the microsecond regime.

Measuring microsecond-scale latencies brings up a similar set of problems like mitigating

them: First, as latency mitigation using software techniques is much more challenging at

the microsecond- than at the millisecond-scale, so is latency measurement using software

techniques more challenging at the microsecond than at the millisecond-scale. Second, mea-

surement tools that come in a form of proprietary hardware are designed to measure hardware

appliances at the nanosecond-scale. These tools naturally work well at the microsecond-scale,

but sometimes using them reduces the flexibility of experiments and they can be unjustifiably

expensive when lower precision is sufficient for a certain experiment.

Every microsecond counts and counting them incorrectly can lead to misinterpretation of

benchmarking results, wrong conclusions and the loss of engineer’s time. Having reliable tools

to measure microsecond-scale latency is therefore increasingly important. To make reliable

latency measurement tools accessible to a larger community of researchers and engineers,

they should also be affordable.
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1.1 Problem Definition

1.1.1 Measuring Latency Variability

Correctly measuring latency variability is the key to understanding its source and impact.

The timescale at which a service provider cares about latency variability depends on the

service itself. Network services and microservices operate at microsecond-timescale, while,

for example, a document search operates at millisecond-timescale.

To benchmark low-latency appliances, the industry has traditionally used hardware-based

tools, namely Spirent [121] and Ixia [64], which provide nanosecond-scale accuracy, but neither

flexibility nor low cost. Researchers, on the other hand, typically use software tools, which

provide low cost and flexibility, but their accuracy is unclear, if not downright questionable [19].

Using software tools to measure millisecond-precision latency is sufficient, while using tools

relying on hardware is obligatory to measure nanosecond-precision latency. When we want

to measure microsecond-precision latency, it is not clear what type of tools one should be

using. Kernel bypass, as the means to faster I/O [34, 111, 112], and hardware timestamping,

now increasingly available in commodity Network Interface Cards (NICs), are creating new

opportunities for building better inexpensive traffic generators and measurement tools that

can potentially replace the expensive ones.

1.1.2 Dealing with Latency Variability

Precisely measuring latency variability is a step closer to understanding and eliminating it —

but only when eliminating it turns out to be feasible. Eliminating each and every source of

latency variability is an expensive, unpredictable and never-ending endeavor because of the

extreme complexity of today’s software and hardware, and the fast pace at which they evolve:

Understanding the interactions within the systems to maintain strict latency constraints is

very challenging when, at the same time, new code is being pushed to the systems daily and

weekly, operating system kernels are changing on weekly and monthly bases, new hardware

is added every few quarters etc. When we add to the picture running a service in the public

cloud and sharing resources with unknown tenants, guaranteeing latency performance is even

harder.

An alternative to trying to eliminate each and every source of latency variability is mitigating

(i.e., hiding) latency variability, e.g., via redundancy, which is the main focus of this dissertation.

Redundancy can mitigate various sources of latency variability arising from the queuing delays

in the network [28, 125, 133], as well as the service time in the processing nodes [28, 68, 125].

Redundancy per se cannot reduce latency variability caused by inherent query complexity,

but it can be combined with software or hardware techniques that do address that latency

component (such as adaptive parallelism [57]).

Techniques for mitigating latency variability through redundancy, also called hedging tech-
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niques, usually leverage the existence of multiple replicas of the same shard [28,68,125], or the

existence of multiple equal-length paths between each source-destination pair in datacenter

network architectures [1, 50, 125]. Both of these sources of redundancy (in both network and

computing resources) normally exist in every datacenter deployment of an OLDI service,

typically for load-balancing and fault-tolerance purposes. Hedging techniques redundantly

issue the same query to more than one replica of the same shard, or send the query through

multiple network paths, and wait for the fastest response to arrive. One server replica might

reply to a query faster than the others if, for example, its waiting queue was shorter than

the waiting queues of the other replicas, or if the query processing on the other replicas was

slowed down by a system event or by another concurrently-running application, to name a

few possibilities. The gist of hedging is reducing the probability of a query being slowed down

by running it multiple times or sending it through multiple paths.

A problem with hedging-based techniques is the increased load that they generate in the

system and in the network by redundantly issuing queries. If the additional load is not

appropriately controlled, it can significantly deteriorate the performance of the system. For

instance, if every query is issued twice the system capacity is halved. Trivially reissuing every

incoming query is optimal only when the system load is close to zero [125]. Existing state-of-

the-art hedging techniques are more advanced than the naive technique of simply reissuing

every single query, but they all fall into one of the two categories: either they issue too many

redundant queries and significantly reduce the maximum sustainable throughput of the

system, or they do not issue enough redundant queries and fail to mitigate end-to-end latency.

This is mostly caused by them lacking awareness of the current system load and relying on

sub-optimal push-based load-balancing techniques.

The goal of load balancing is to reduce queuing delays by evenly distributing the load, and,

consequently, improving end-to-end latency. If the service does not exhibit any service-time

variability, and the network paths do not get congested, the optimal thing to do is to deploy

the best load-balancing technique considering the underlying infrastructure properties, such

as network latency. Load-balancing policies come in two main flavors: push- and pull-based

policies. Traditionally, pull-based (single-queue) load balancing, hereafter referred to as Per-

Shard Queuing, has been avoided primarily due to its sensitivity to network overheads, but

also due to limited buffering in the previously deployed load-balancing hardware appliances.

When network latency is negligible, we know from queuing theory that a single-queue yields

minimal queuing delay [74, 103]. Push-based (multi-queue) load balancing mitigates the

network delay, but it can lead to load imbalance in the processing nodes when queries exhibit

service-time variability. A push-based load balancer needs to decide where to process queries

at the time of each request arrival. In cases when it is feasible (given the communication

overhead and other constraints), workstealing can ameliorate the load imbalance caused by a

badly made decision of the push-based load balancer [31, 44, 79, 103].

Per-Shard Queuing and other single-queue policies introduced in this dissertation are logically

centralized only within a shard. The scheduler can therefore seamlessly run either on a single
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machine or on as many machines as there are shards. The degree of shard replication is often

limited due to high costs of DRAM [89], and it typically varies between two and six replicas per

single shard [68, 107].

1.2 Thesis Statement

This dissertation characterizes latency variability of interactive services, shows how to measure

it, and how service providers can mitigate its effect on end-to-end latency with additional

use of idle resources in the cloud, but without sacrificing system capacity. We demonstrate

that µs-scale latency variability can be measured in a reliable and affordable manner using

commodity NICs and servers, with the help of kernel bypass and NIC timestamps. We measure

and define intra-query service time variability as latency variability of the same query executing

on the same software and hardware stack on different machines. By combining hedging and

load-balancing techniques we mitigate intra-query service time variability and set a lower

bound for tail latency that a hedging-based policy can achieve. With the help of our lower

bound we evaluate a large parameter space of workloads and determine when hedging is a

good idea. We design and deploy a practical hedging policy and show, through simulation and

system evaluation, that single-queue load balancing and load-dependent hedging are the key to

achieving a significant portion of our lower bound.

1.3 Summary of Thesis Contributions

This dissertation makes three main contributions in the area of network measurement and

scheduling of datacenter applications. These contributions are especially of interest to service

providers of interactive services, as well as developers and researchers working on software

network functions.

The contributions are the following:

1. How to measure microsecond-scale latency variability at low cost and high precision

The first part of this dissertation answers when one can use software-based latency-

measurement tools, as opposed to reaching out for tools backed up with commodity or

proprietary hardware features. The main focus here is on the microsecond-precision

latency measurement— which is increasingly important for understanding and optimiz-

ing the killer microseconds [13] causing latency variability of latency-critical applications,

e.g., network services [53]. In reality, latency distributions of network functions are in

the µs-scale and can be relatively complex.

Concretely:

• In our setup, we show that we can close the gap between commodity tools and pro-

prietary hardware-based tools with the help of kernel bypass (up to 99th percentile
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latency) and commodity NICs (up to 99.99th percentile latency).

• We answer which traffic generators correctly capture the latency distribution of a

simple network function under subtle operating-system configuration changes

that are commonly found in deployments of network functions.

2. Answering when hedging is a good idea through Idealized Hedge

Unlike previous approaches that try to tackle both queuing delays and service-time

variability through redundancy, this dissertation leverages Per-Shard Queuing to tackle

the queuing delays, and uses redundancy to tackle only the service time variability due

to, what we call, intra-query service-time variability or IQ-jitter (Section 2.3). A system

experiences IQ-jitter when different instances of the same query executing on the same

data take different amounts of time to process. We design a theoretical policy that

hedges only when the current (fast-changing) load allows it and uses a perfect predictor

of query completion times to free-up the resources when they are required to process

pending requests. In that, our theoretical policy, called Idealized Hedge, is a lower

bound. Here are some properties of Idealized Hedge:

• Idealized Hedge can determine the maximum end-to-end latency reduction that

any implementable hedging policy can achieve in our setup.

• The gist of Idealized Hedge is combining hedging and centralized per-shard queu-

ing.

• Idealized Hedge always prioritizes new over reissued work and will only create

redundant work when there are idle resources available.

We experimentally compare Idealized Hedge to Per-Shard Queuing through a discrete-

event simulation. Per-Shard Queuing yields optimal queuing delay and does not hedge.

This allows us to identify regimes where hedging has the potential to improve tail latency,

and to upper-bound the potential improvement. In other words, through a wide range

of synthetic OLDI workloads and cluster sizes, and by using Idealized Hedge as the lower

bound, this dissertation given an answer to the question “When is hedging a good idea?”.

3. Improving the state-of-the-art of latency mitigation techniques with LÆDGE

The second part of this dissertation improves over state-of-the-art scheduling tech-

niques for mitigating latency variability of OLDI services in the presence of IQ-jitter.

Idealized Hedge cannot be implemented in practice, because it relies on a perfect predic-

tor of query completion times. We contribute three realistic approximations of Idealized

Hedge and show on a range of workloads for which OLDI deployments these approxima-

tions make sense. Concretely, this dissertation introduces Load-Aware Hedge (LÆDGE)

(pronounced like “ledge”) and explores its benefits with different types of cancellations.

A cancellation is a remote-procedure call that cancels a query execution on a processing

node. We differentiate two types of cancellations: (1) a cleanup cancellation cancels

a copy of an already finished query, and (2) a pre-emptive cancellation speculatively
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cancels one of concurrently running hedged queries. We explore LÆDGE in the following

three variants:

• LÆDGE without cancellations,

• LÆDGE with cleanup cancellations, and

• LÆDGE with cleanup and pre-emptive cancellations.

LÆDGE has the following properties:

• It approximates Idealized Hedge and, like Idealized Hedge, relies on centralized

queuing.

• It achieves a larger part of the latency reductions of Idealized Hedge than more

complex state-of-the-art policies with learned parameters.

• LÆDGE is simple to use and works in practice: We implemented LÆDGE within

Google’s OLDI framework [49] and deployed it in the public cloud. Our best system

result shows that LÆDGE can reduce tail latency of an enterprise search engine by

49% compared to Per-Shard Queuing, averaged on up to 60% utilization.

1.4 Thesis Roadmap

The rest of the dissertation is organized as follows:

Chapter 2 presents the background on OLDI services and the importance of reducing latency

variability in such services to achieve a better user experience. The chapter then categorizes

different sources of latency variability and discusses prior work in the area of scheduling OLDI

services — with the focus on their ways of handling different sources of latency variability.

Finally, the chapter gives an introduction to different software and hardware techniques for

measuring latency variability.

Chapter 3 evaluates different software and hardware measurement techniques for measuring

latency variability of simple network services (a single network function). Concretely, we

measure the discrepancy between expensive proprietary appliances and tools that leverage

new opportunities in commodity servers.

Chapter 4 explains the motivation behind hedging-based techniques and presents our theo-

retical policy, Idealized Hedge. The chapter then uses Idealized Hedge on different modeled

interactive services and their different deployments to gain insight into the applicability of

hedging, as a general policy, to OLDI services.

Chapter 5 introduces our attempt to approximate Idealized Hedge with a realistic hedging

policy called Load-Aware Hedge (LÆDGE) that adapts to system utilization. The chapter

compares LÆDGE to Idealized Hedge through the same range of workloads from Chapter 4.
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Chapter 6 describes the system implementation of our scheduling techniques in an OLDI

framework and its evaluation in the public cloud.

Chapter 7 gives an overview of the related work in the area of latency-measurement and

latency-reduction techniques.

Finally, Chapter 8 discusses and concludes the dissertation and provides insights for future

research in this area.

1.4.1 Bibliographic notes

Chapter 3 largely consists of material I originally published in ACM SIGCOMM KBNets in

2017 [105] with my advisors, Prof. Edouard Bugnion and Prof. Katerina Argyraki, and for

which we received the Best Paper Award. This work was also invited for publication in ACM

SIGCOMM Computer Communication Review in October 2017 [106].

The work presented in Chapters 4 and 5 is currently under submission.

This dissertation does not include the joint work on energy proportionality and workload

consolidation for latency-critical applications, where I designed the Pareto-optimal frontier

for the control plane of IX dataplane operating system. This was a joint project with Dr. George

Prekas and our advisor Prof. Edouard Bugnion at EPFL, published in ACM Symposium on

Cloud Computing in 2015 [104].

This dissertation also does not include the work I did on Fast and Consistent Controller-

Replication (FCR) scheme for distributed SDN controllers. I contributed to the design and and

implemented the FCR system. This was a joint project with Dr. Maaz Mohiuddin, Dr. Eleni

Stai, and Prof. Jean-Yves Le Boudec at EPFL, published IEEE Access in 2019 [95].
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2 Background

This chapter first provides background on interactive cloud services necessary for Chapter 4

and Chapter 5. In particular, the chapter focuses on On-Line Data-Intensive (OLDI) services,

and the importance of latency variability in such services. OLDI services are particularly

sensitive to latency variability because of their scale-out architecture and fan-out commu-

nication pattern. The chapter gives an overview of typical sources of latency variability and

how their effect translates to the end-to-end performance of OLDI services. We will see which

scheduling techniques service providers have been using and how these techniques address

latency variability.

The chapter then gives an overview of software and hardware techniques that make measuring

latency variability more reliable, providing the necessary background for Chapter 3 that

evaluates them.

2.1 Online Data-Intensive Services

This section introduces Online Data-Intensive (OLDI) services such as web search (searching

through inverted document indices), content-based image similarity search, recommendation

services, advertising services, and social applications. Figure 2.1 shows high-level overview of

users accessing a service deployed in a datacenter. OLDI services are “online” services because

of their client-oriented nature: End-users of such services are typically connected via their

devices and impatiently waiting for the results of the service, while their business-users could

be using the service as a building block for another higher-level service that has tight latency

expectations from its components.

After a user request traverses the Internet and enters a web server inside the datacenter, it is

typically dispatched to a cluster of servers where the relevant data are stored. Figure 2.2 shows

a simplified architecture of an OLDI service, i.e., the cluster where the actual processing of the

application happens. The cluster that serves OLDI applications consists of a tier of root nodes

that serves client requests, while a tier of leaf nodes stores a part of application data sets [12].
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Internet Datacenter

Network latency Datacenter latency < 
SLO

Figure 2.1 – Service providers deploy OLDI services in datacenters. Users of OLDI services have
tight latency constraints and a service-level objective (SLO) is a time limit that tries to capture
the users’ expectations a service provider needs to meet within the datacenter, excluding the
network latency required to reach the datacenter.

Shards

Root Root Root Root

Leaf Leaf Leaf

Figure 2.2 – Architecture of an OLDI service without replicated shards. Every root receives user
requests and schedules them onto the leaf servers. The data is split into shards and each leaf
node holds (at least) one shard of the data.
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Such services involve hundreds or thousands of “leaf” nodes, each holding a part (“shard”)

of the data needed to answer client requests; a tier of “root” nodes receives client requests,

breaks each client request into distinct queries, forwards the queries to different leaves and

waits for their replies. This dissertation assumes that for the accuracy of the final results in

the client response at least one reply needs to be received from each distinct shard (as we will

see in Chapter 7, this assumption can sometimes be relaxed). The root therefore waits for

the slowest query to finish to aggregate the query responses received from all the shards into

the final client response. As a result, distinct queries are often expected to finish within a few

milliseconds [28, 56] or even microseconds in case of microservices [122].

2.2 The Effect of Latency on End-Users

End-users expect OLDI services to respond instantaneously. If something goes wrong and the

end-to-end response is delayed, users leave the page. The loss of users due to their impatience

was directly translated to their reduced engagement (and therefore revenue losses) by Google

and Amazon and the results were striking: additional delays as small as 200 ms can already

impact user satisfaction and double the time-to-click (which measures user engagement) [115].

This study was among the first ones to highlight the importance of (very) low latency for good

quality of service (QoS) experience.

In the context of emerging augmented-reality and virtual-reality applications, the level of

responsiveness needs to be even higher to keep the Quality of Experience (QoE) of users high

through seamless interactivity [28].

To keep the end-users satisfied, service providers typically quantify the targeted service perfor-

mance using service-level objectives (SLOs). SLOs need to adequately match the expectations

of end-users that lead to high-enough QoS user experience. With business-users, unlike with

end-users, service providers establish bounding contracts about the performance of their ser-

vice, called service-level agreements (SLAs). SLAs are binding, unlike the SLOs, and violating

of an SLA leads to financial compensation of the business-user.

SLOs and SLAs are predicates over a set of measurable performance indicators, also known as

service-level indicators (SLIs) [94]. If an SLI is the user-facing 99th percentile latency, its SLO

could be a threshold that the metric should not exceed (e.g., 300 ms). Figure 2.1 highlights the

part of the request path that an SLO is typically referring to. If a service provider violates either

an SLA or an SLO, that (explicitly in the former and implicitly in the latter case) translates to

losses in revenue [16, 25, 115, 126]. This makes end-to-end latency metrics of today’s services

increasingly important. Hereafter we will address the service-provider latency constraints only

by the term SLO.
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2.3 Sources of Latency Variability

Latency is a time delay between two measurement points. Unless stated differently, latency (in

the context of OLDI services) is the delay between the moment when the root node fans-out a

user request in the form of queries and the moment when the root node receives at least one

query reply from each distinct shard of the data.

The causes of latency variability in large-scale services are well understood: One is variable

queuing delay, e.g., due to load fluctuations [28, 33, 55, 103]. Another one is variable service

time, which, in turn, comes from two distinct sources:

1. Different queries may take different amounts of time to execute on a given hardware and

software stack, because of different complexities. An example of this is a range query

versus a simple lookup query in an in-memory database. We call this type of latency

variability inter-query service time variability.

2. Different instances of the same query may take significantly different amounts of time to

execute on a given system, because of system events that are unrelated to the service or

the data itself: decisions made by an operating system scheduler or power-management

algorithm, interrupts, garbage collection, virtualization effects, or simply competition

for CPU and/or cache with other applications [17, 28, 32, 69–71, 76, 78, 80, 88, 92, 119, 128,

134]. We call this type of latency variability intra-query service time variability (IQ-jitter

for short).

Let us accordingly define the service time component. Similarly to Mirhosseini et al. [92], we

express the service time S experienced by a query as the sum of two random variables:

S = P + J ,

where P is the inter-query service time variability determined by query complexity and shard

content/size, while J , the intra-query service time variability, is determined by various system

events that are independent of the query and the service itself—in general, IQ-jitter depends

on the current software and hardware state of the entire leaf node executing the query.

2.4 The Tail-at-Scale Problem

In Section 2.1 we saw that the sheer size of the data that typically needs to be processed by an

OLDI service requires a high degree of parallelization across the leaf nodes to meet strict SLOs.

With the growing number of leaf servers that need to all work in parallel, the probability of

at least one of the leaf servers failing to deliver a query result on-time grows proportionally.

The communication pattern of OLDI services in which the root node needs to aggregate the

responses from all distinct shards amplifies the effect of latency variability within a single

node to end-to-end response times.
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Consider the architecture of an OLDI service in Figure 2.2. If the number of shards, N , grows

and the latency distribution within each leaf server stays the same — the end-to-end latency

of the service measured from the root node will increase. For example, if a leaf node replies

in time 99.9% of the time and the root node fans-out a query to N such leaves, the aggregate

response will finish in time (0.999N ∗100)% of the time: ∼90.48% and ∼36.77% of the time for

N = 100 and N = 1000, respectively. At large scale, typically-rare tail-latency scenarios become

the common case at scale and exacerbate the end-to-end response time of the end-user

request.

This problem is known as the tail-at-scale problem, named after the paper by Dean et al. in

which it was first addressed [28]. The tail-at-scale problem emphasizes the importance of

building latency-tolerant services, because in today’s complex systems the service providers

cannot realistically guarantee that none of the potential sources of latency variability on, for

example, the server-level, will not slow down sending the final response to end-users.

2.5 How to Schedule RPCs in OLDI Services?

Policy Queuing
model

Hedging
probability

Load balancing

a) Naïve
Hedge [28, 125]

push 1 random

b) d-Hedge (with or
without

cancellations) [28,
68]

push Pr (RT T > d) random

c) p-Hedge [68] push q ·Pr (RT T > d) randomization + JSQ

d) Random load
balancing

push 0 none

e) Join-shortest-queue
(JSQ) [51]

push 0 JSQ

f) Join-bounded-
shortest-queue

(JBSQ) [74]

push & pull 0 JBSQ

g) Per-Shard Queuing
(PSQ)

pull 0 per-shard centralized
queue

Table 2.1 – Existing hedging and load-balancing policies.

2.5.1 Replication in OLDI Services

Let us extend the system architecture in Figure 2.2 by shard replicas. The new OLDI architec-

ture we consider is depicted in Figure 2.3 – the main difference is that multiple leaves can serve

the same shard. It is not uncommon that shards are replicated a few times across different leaf
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Replicated
shards

Root Root Root Root

Leaf Leaf Leaf

Figure 2.3 – Architecture of an OLDI service with replicated shards. Every root receives user
requests and schedules them onto the leaf servers. Each leaf node holds a part of the data. The
red lines illustrate the minimum amount of communication when a request arrives to a root
node. At least one replica of each shard needs to be accessed in order to aggregate a correct
final response.

nodes to provide additional throughput capacity and maintain availability in the presence of

failures [28, 89]. In reality, the degree of shard replication is often limited due to the high cost

of DRAM [89], and it rarely goes beyond six replicas per shard [68, 107].

Introducing replication in a distributed system with read and write operations raises concerns

about consistency - if one request writes some data to a shard, and another request subse-

quently reads from a different replica of the same shard the update will not be visible unless

the replicas are in sync. This type of problems are out of the scope of this dissertation. We

focus on read-only workloads that include a wide range of OLDI workloads.

Scheduling requests within the same replicated shard is an interesting problem that re-

searchers have addressed with two main types of techniques: hedging and load balancing.

Table 2.1 shows an overview of hedging and load-balancing policies from the literature. The

rest of this section describes each of them.

2.5.2 Hedging

Since we typically have replicated shards, any query for a distinct shard can be replicated

and sent to at least two nodes that serve that shard. This way, the system hedges its bets, as

it needs to wait only for the fastest response to each query. Hedging was widely adopted in
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combination with performance monitoring, to improve job completion time of map-reduce-

style [29] jobs that may take tens to hundreds of seconds [4–6]. More recently, however, it

is being proposed as a means to reduce tail latency in large-scale services, including OLDI

services [28, 42, 56, 65, 67, 68, 108, 116, 125, 127, 132].

Hedging can mitigate latency variability in the context of interactive services as long as system

noise is independent per leaf, or as long as there is queue imbalance in the leaves. Two or

more leaves hosting the same data shard are unlikely to both suffer a query slowdown while

serving the same query. Hence, by replicating a query across multiple leaves and collecting

the response that arrives first, we reduce the probability of the query being slowed down by a

performance hiccup, or by other requests in the queue.

In this thesis, we consider three representative hedging policies (top three rows in Table 2.1)

and study how they can help OLDI applications:

• Naïve Hedge [125]: The root always sends each query to all the leaves that host the

corresponding shard in a FCFS manner. This is conceptually the simplest hedging policy

as it does not require storing any state at the root. It has been applied in many different

contexts, from map-reduce jobs [4–6, 23, 136] to DNS queries, database servers, and

packet forwarding [125].

• Delayed Hedge (d-Hedge) [28, 68]: For each query, the root randomly picks a leaf that

hosts the relevant shard and sends the query to it; if the reply does not arrive within a

pre-configured, fixed delay d , the root replicates the query to another leaf. The value of

d can be tuned by the system operator to control the number of replicated queries in

the system. In addition, d-Hedge is typically implemented with cleanup cancellations:

whenever a query response arrives, every pending reissued query is cancelled either

by the root/scheduler or by the leaf replica from which the response has arrived. This

is the policy that was proposed by Dean et al. when they introduced the “tail at scale”

problem [28] and was used as a baseline by Kaler et al. [68].

• Probabilistic Hedge (p-Hedge) [68]: This is similar to d-Hedge, but introduces an extra

tuning knob: the probability q of replicating each delayed query; both the probability q

and the delay d are trained based on the workload. This was proposed by Kaler et al. in

their recent study of hedging policies for datacenters [68] and is the most sophisticated

hedging policy that we found in the literature.

2.5.3 Load Balancing

Besides hedging, the standard approach to managing latency is load balancing (LB). Load

balancing aims to evenly distribute network traffic across multiple servers and that can happen
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Per-shard
LB

Root Root Root Root
Replicated
shards

PSLB PSLB PSLB

Figure 2.4 – Architecture of an OLDI service with per-shard load balancers. The roots forward
user requests to per-shard load balancers that schedule the queries onto the replicated shards.

at various layers of the OSI network stack. The most commonly known are Layer 4 and Layer

7 load balancing. Layer-4 load balancers, also known as network load balancers, balance

connections to servers, and they do not take into account the number of requests within each

connection. A Layer-7 load balancer balances requests to servers. In this dissertation we

consider solely Layer 7 load balancing.

Load balancers have traditionally been implemented in hardware, but due to costly upgrades

and limited scalability, a lot of research has been done on reliable and scalable load balancers

implemented in software. Today it is a common practice to deploy software load balancers in

cloud environments [36, 74, 97].

In the context of OLDI applications, service providers deploy load balancers in two main ways:

First, a pre-root load balancer can receive the requests before the root nodes and assign them

to one particular root node according to some scheduling discipline. Second, in addition

to the pre-root load balancer, a service provider can also deploy a per-shard load balancer

that receives the requests for a particular shard and schedules the requests within the shard

onto the leaf nodes. We focus on per-shard load balancing with the focus on its end-to-end

tail-latency behavior. Figure 2.4 depicts an architecture of an OLDI service with per-shard

load balancers deployed after the root nodes.

Note that different logical per-shard load balancers do not have to be located on distinct

physical machines as suggested in Figure 2.4. When the load-balancing decision does not

require any additional state (for example, simply picking one random replica from each
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shard), the load-balancing logic can be implemented within the root nodes themselves. For

implementing stateful load-balancing policies (such as Join-shortest-queue [51]) a per-shard

load balancer is indeed located between the root nodes and the leaf nodes (if there are multiple

root nodes), similarly to the setup in Figure 2.4, but multiple logical load balancers for different

shards may be co-located on the same physical machine.

A per-shard load balancer makes an important decision on how to leverage multiple replicas of

the same shard. The scheduling policy implemented in the load balancer can largely influence

both throughput and latency behavior of the entire service. The load-balancing scheduling

policy can be either push-based (i.e., multi queue) or pull-based (i.e., single queue). A push-

based load-balancing policy speculatively decides where to schedule a query at the moment

of its arrival and sends it to a replica. This means that the queues are not in the load balancer

but in the replicas (i.e., in the leaves). Opposite of a push-based is a pull-based load-balancing

policy that lazily decides where to schedule a query at the moment when a replica becomes

available. The queues in the leaves are in this case very shallow, and requests are buffered in

the per-shard load balancer itself.

In this dissertation, we consider four per-shard load-balancing polices (listed in rows (d) to (g)

in Table 2.1):

• Random: For each query, and for each shard, the per-shard load balancer, randomly

picks a leaf that hosts the relevant shard and sends the query to it.

• Join-shortest-queue (JSQ) [51]: The root tier sends each query to a per-shard load-

balancer, which immediately sends the query to a leaf node; of all the leaves that host

the relevant data shard, the load-balancer picks the one with the smallest number of

pending queries for that shard. JSQ is known to outperform Random but is far from

optimal for FCFS servers with highly-variable job sizes [51, 58, 59]. We picked it because

it is simple to implement and popular in the industry, e.g., it is widely deployed in

reverse-proxies of server farms [51, 97].

• Per-Shard Queuing (PSQ): The root tier sends each query to a per-shard load-balancer,

which stores the query until a leaf that can serve it becomes available. In other words,

the load balancer dispatches a query to a leaf only if the leaf is idle. From a queuing-

theory perspective, Per-Shard Queuing corresponds to a single-queue M/G/k model,

where k is the number of leaves to choose from. This policy in theory outperforms

any LB policy that uses multiple distinct queues (e.g., JSQ) in the presence of non-

deterministic service times [118]. The reason why single-queue solutions have not been

very popular in practice is that they requires synchronization between the per-shard

load balancer and the leaves (so that the load balancer knows when a leaf becomes

idle); this exposes the round-trip latency between the load balancer and the leaves,

hence may significantly impact throughput. On the other hand, in a modern datacenter
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running OLDI services, the round-trip time between the root tier (or the per-shard

load-balancing tier) and the leaves is typically significantly smaller than the service

time of OLDI queries (for example, it takes < 20µs to perform an RPC between two

virtual machines in Microsoft Azure [41]), which makes Per-Shard Queuing an excellent

candidate for load balancing [92, 100].

• Join-bounded-shortest-queue (JBSQ) [74]: This policy combines the advantages of

PSQ and JSQ, by splitting the job of queuing pending queries between a centralized

scheduler and the leaves. It takes a parameter n, which specifies the number of pending

requests that each leaf can hold, e.g., JBSQ(1) is equivalent to PSQ, while JBSQ(∞) is

equivalent to JSQ. The value of n can be configured so as to hide the round-trip latency

between scheduler and leaves and enable full throughput.

Note that both hedging and load-balancing policies can be implemented in the per-shard load

balancer.

In the rest of this dissertation we will come back to the scheduling techniques introduced

above, evaluate them, and challenge them in order to better mitigate latency variability and

achieve lower end-to-end response time.

Let us now focus on one particular server and the process of measuring latency variability of

that server.

2.6 Overhead of Latency Measurements

Measuring latency variability is the first step towards understanding its cause and fixing it

or, alternatively, finding the best technique to mitigate its effect. In this section we will give

an overview of latency measurement techniques, some of which we will evaluate later in

Chapter 3.

Latency can be measured at different levels of the hardware and software stack: on the

wire [139], in the Network Interface Controller (NIC) [38, 73], in the kernel driver [139], in

the in-kernel socket layer [73], in the application implemented on top of a kernel bypass

framework [27], or in the application implemented using a standard POSIX API [96]. Measuring

closer to the wire naturally results in more precise measurements.

Figure 2.5a shows the components of a latency measurement experiment and the path that a

packet goes through on its way from the sender, through a device under test (DUT), before it

reaches the receiver. The sender and receiver can be the same or a different entity. In general,

a DUT can be either a hardware appliance, or a software application running on a commodity

server. Let us take a closer look at 2.5a and the most important moments (marked with T1 to

T8) in a lifetime of a single measurement packet sent with a traditional networking stack:
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• The packet is formed by the sender’s user-space application, which then issues a system

call to the kernel after T1.

• At T2, the kernel queues the packet in the NIC.

• At T3, the first bit of the packet is sent over the network to the DUT.

• T4 and T5 are the moments of receiving the first incoming bit and sending the first

outgoing bit of the packet on the DUT, respectively.

• On the way back the packet enters the NIC at T6.

• After a hardware interrupt, the packet reaches the kernel space at T7.

• When the sender application gets scheduled, the packet reaches the user space once

again at T8.

Software-based latency measuring tools can suffer from the same set of problems as the

software under test related to operating system overheads between two consecutive measure-

ments, interference with co-located applications, etc. Noisy measurements can be misleading

and lead to wrong conclusions and the loss of an engineer’s time.

The standard tools that engineers use, such as netperf [96], use the traditional networking

stack and CPU timestamps in user space, i.e., they measure the packet latencies as T8 −T1 in

2.5a. This exposes the measurements to many overheads.

The overheads of network stacks implemented in the kernel are widely known [15, 54, 61,

66, 82, 111]. POSIX socket operations are typically implemented as system calls and involve

unnecessary data copies, since the application buffers are not explicitly exchanged with the

kernel, the packet processing can experience bad cache locality due to decoupling networking

stack from the application, etc. These are just a few examples of how a measurement could be

distorted due to latency variability of the measurement tool itself.

Kernel bypass, as the means to faster I/O [34, 111], and hardware timestamping, now increas-

ingly available in commodity Network Interface Cards (NICs), create new opportunities for

building better traffic generators and latency measurement tools.

2.6.1 Kernel Bypass I/O

Kernel bypass significantly reduces OS overheads in packet processing by moving protocol

processing to user space. Control of the I/O device is also moved to user space, which is why

kernel bypass solutions are typically hardware dependent. We consider only Ethernet I/O.

Popular kernel bypass frameworks such as Intel’s DPDK (Data Plane Development Kit) [34] and

netmap [111] are widely used to develop packet processing applications with high throughput
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Figure 2.5 – Different points in hardware and software stack where one can measure latency.
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and low latency requirements, such as network functions [137] or servers with microsecond-

scale requirements [74]. DPDK dedicates the entire NIC to an application, while netmap maps

packet queues directly to application address space. Packet processing on top of kernel bypass

is not standardized and it is up to the developer to choose an appropriate protocol stack or

develop her own.

Traffic generators such as TRex [27] and Pktgen [124] leverage kernel bypass to increase the

precision of latency measurements, and achieve higher throughput, but they use only software

timestamps (i.e., CPU timestamps).

Figure 2.5b depicts the path of a measurement packet with the sender’s measuring applica-

tion implemented on top of a kernel-bypass framework. The time it takes between the two

timestamps in this case is T8 −T1 − (T3 −T ′
1)− (T ′

8 −T6).

2.6.2 Hardware Timestamping

The two variants of hardware timestamping that we consider in this dissertation are (1) com-

modity NIC timestamps and (2) FPGA-based timestamps built into proprietary hardware

applicances. In both cases the time it takes between the two timestamps, according to Fig-

ure 2.5, amounts to T6 −T3.

NIC Timestamps

Timestamping a packet directly in the NIC provides highly precise measurements, but the

overhead and the generality of the implementation can vary from hardware to hardware. Many

commodity NICs, such as Intel’s x710 10GbE NIC [63] or 82599 10GbE, support hardware-

based packet timestamping, but their implementation is narrowly tailored to the precise

requirements of IEEE 1588 time synchronization, i.e., the implementation relies on matching

one outstanding PTP timestamping packet with its reply which restricts the type of packets that

can be timestamps and significantly restricts the throughput of timestamped packets. Intel’s

NIC 82580 [62], provides hardware support to timestamp all incoming packets. Unfortunately,

outgoing packets must still be timestamped in software by the application. More recent

Mellanox NICs, such as ConnectX4 [90], offer general-purpose hardware timestamping support

for all incoming and outgoing packets.

Recent traffic generators such as LANCET [73] and MoonGen [38] leverage NIC timestamps of

commodity NICs in order to obtain highly precise latency measurements.

Hardware Appliances

Proprietary hardware-based measuring devices, such as Spirent [121] and IXIA [64], guarantee

nanosecond-precision latency measurements. Their primary purpose is testing hardware

23



Chapter 2. Background

switches and middlebox appliances, and they have been widely adopted in telecommunication

industry. Such devices typically have FPGA devices that can timestamp all outgoing and incom-

ing packets even at high speeds (40 Gbps and beyond). Unfortunately, their programmability

is quite limited as they are tailored to standard RFC benchmarks.
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3 How to Measure Microsecond-Scale
Latency Variability

One accurate measurement is worth a thousand expert opinions.

— Grace Hopper

Many network applications have tight end-to-end latency requirements, including VoIP and

interactive video conferencing, high-frequency trading, high-performance computing [75],

as well as different network services [53, 117]. In these applications, even microsecond-scale

latency variations can be intolerable.

To understand the causes of latency variability in latency-critical applications that have service

times in the order of microseconds, such as microservices or network services, one needs to

measure it correctly. This chapter focuses on network services and serves as a guideline for

network researchers, as well as software developers, that work on reducing latency variability

in such applications.

Network researchers need tools to generate traffic and measure latency and throughput.

The ideal tool would combine low cost, flexibility, and accuracy: it would be inexpensive to

obtain and usable with commodity components; enable the generation of arbitrary traffic

patterns and the testing of arbitrary protocols; and provide latency – including tail-latency –

measurements at the µs-scale. An eager client for such a tool today would be the community

researching network function virtualization (NFV), whose goal is to study the latency and

throughput of network functions [39, 53].

The industry has traditionally used hardware-based tools [64,121], which provide accuracy, but

neither flexibility nor low cost: they are excellent for validating Application Specific Integrated

Circuits (ASICs) using standardized approaches [21], but they cannot test arbitrary protocols,

and they are too expensive for most researchers. For the price of a hardware traffic generator

that is able to saturate a link with tens of Gbps, one can buy tens of commodity servers with

multiple NICs.

Researchers, on the other hand, typically use software tools, which provide low cost and

flexibility, but their accuracy is unclear, if not downright questionable [19]. Many researchers
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have experienced the frustration of using software traffic generation and measurement –

because that is the only option – while worrying about noise and repeatability, especially when

the Linux networking stack and socket-based interface are involved [19]. With datacenter and

cloud operators chasing the killer microsecond [10], researchers increasingly report results in

µs-scale tail latencies [80, 114, 138]; but such results can be trusted only if they are obtained

with a tool that provides accuracy at the same scale.

Kernel bypass, as the means to faster I/O [34, 111], and hardware timestamping, now increas-

ingly available in commodity Network Interface Cards (NICs), are creating new opportunities

for building better traffic generators and measurement tools. For instance, MoonGen – a

scriptable, high-speed packet generator built on top of Intel DPDK (Data Plane Development

Kit) can provide precise latency measurements while executing user-provided Lua scripts per

packet [38]. It relies on many modern NICs having hardware-based packet timestamping,

some of which are tailored to the precise requirements of IEEE 1588 time synchronization.

Recent work shows that precise RTT measurements with hardware timestamps can be highly

beneficial even for datacenter congestion control [22, 77, 93]. However, the precision of the

NIC hardware timestamps has its limits [38, 77] and, to the best of our knowledge, we were the

first to evaluate it against a commercial hardware appliance [106].

We ask the following two questions:

1. How close do state-of-the-art commodity solutions get to bridging the gap between hard-

ware and software and providing accurate µs-scale tail latency measurements?

2. Are the measurements sufficiently accurate to study the latency distribution of software

network functions?

We answer the first question based on a simple observation: the latency of a constant-rate

flow going through an ASIC-based switch is expected to be constant. We first use a proprietary

hardware-based measuring device to confirm that it indeed hardly varies. We then use this

measured latency as the ground truth and determine up to which percentile, different software

tools measure it correctly.

We answer the second question by sending constant-rate flows through a software network

function that simply forward packets. We use different hardware and software tools to observe

the impact of operating system (OS) configurations on the network function’s tail latency up

to the 99.9999th percentile. We quantify the mismatch between the hardware ground truth

and other tools.

We also contribute the following results:

• The use of NIC-based hardware timestamps on commodity NICs, evaluated on Intel’s

X710 10GbE, provides accurate readings up to the 99.99th percentile, but not beyond.
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Tool Characteristics Latency Measurements Measured at
Granularity

Spirent [121] Commercial hardware ap-
pliance, commonly used
for standardized RFC2544
performance tests

FPGA-based or propri-
etary

10ns, 1µs, 5µs

MoonGen [38] Dataplane using DPDK
and Lua

On many NICs deter-
mined by the NIC lever-
aging IEEE 1588 support
(if at all available)

10ns (hardware),
100ns (software)

TRex [27] DPDK dataplane Determined by the CPU 100ns
netperf [96] Socket-based interface Determined by the CPU 100ns

Table 3.1 – Overview of evaluated traffic generators.

• A tuned DPDK solution such as TRex introduces 5µs to 10µs overhead in readings, yet

does allow study of the impact of operating-system configuration changes in network

forwarding devices.

• POSIX-based solutions that rely on blocking I/O introduce almost 20µs overhead at 50th

percentile and have a 50µs long tail, hence should be avoided when measuring µs-scale

latencies.

• Our study suggests that bidirectional hardware support is highly beneficial to accurately

measure µs-scale latencies.

3.1 Overview of Traffic Generators

Table 3.1 lists the traffic generation and measurement tools that we consider in this thesis. Our

goal is not a comparison of all the available tools – we consider only a subset that we deemed

sufficient for understanding where kernel bypass lands between traditional hardware and

software tools when it comes to latency measurements.

Spirent [121] represents state-of-the-art hardware-based tools. It was designed to accurately

measure ns-scale latency, but it is customized for a fixed set of predefined, standardized tests

such as the ones specified in RFC 2544 [21]. It is possible to configure traffic generation to

some extent, through GUI or scripts written in high-level languages, some of which require an

extra license that bears a substantial cost.

MoonGen [38] represents state-of-the-art software tools that leverage kernel bypass and

hardware timestamping at the NIC. It is built on top of DPDK and LuaJIT, and it is fully

scriptable. Its best reported performance result is 178.5 Mpps with 64-byte packets running

on twelve CPU cores at 2 GHz and twelve 10Gbps links while executing user-provided Lua
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scripts per packet.

TRex [27] is a software tool that leverages kernel bypass as well, but it relies on software

timestamps. We use the stateless version, whose best reported performance result is that it

can generate 10-20 Mpps with 64-byte packets while running on one core.

Finally, netperf [96] represents traditional software tools that use blocking POSIX API and

conventional network drivers. Even though it was designed to measure performance and not as

a full-fledged traffic generator, netperf can generate constant-rate UDP traffic of configurable

message size, burst size, and inter-message time. This flexibility is good enough for assessing

the benefit of kernel bypass over traditional I/O for latency measurements.

3.2 Experimental setup

HW switchSpirent SW generator
(1) (2)

(a) Measuring a hardware switch.

NF SW generatorSpirent
(3) (4)

(b) Measuring a network function.

Figure 3.1 – Experimental setups.

We now describe our experimental setup, including the configuration of any hardware and

software tools.

3.2.1 Hardware setup

We use four devices: a Cisco SG500X-48 switch [26] (“HW switch”), an FPGA-based Spirent SPT-

3U chassis [121] (“Spirent”), and two x86 machines, one acting as a software traffic generator

and measurement node (“SW generator”), the other as a network function (“NF”). The nodes

are connected with two meter long 10 GbE cables. The x86 machines are dual socket Intel

Xeon CPU E5-2699 v4 @ 2.20GHz with hyperthreading disabled, each with two Intel x710

10 GbE NICs [63].

We experiment with the four configurations depicted in Figures 3.1a and 3.1b and enumerated

accordingly:
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1. Spirent + HW switch: to measure the true latency of the Cisco switch (Figure 3.1a).

2. SW generator + HW switch: to measure the accuracy of latency measurements achiev-

able with software tools (Figure 3.1a).

3. Spirent + NF: to measure the true latency of our network function (Figure 3.1b).

4. SW generator + NF: to determine whether software tools can accurately measure the

latency of our network function (Figure 3.1b).

In all experiments, we use two distinct physical ports from each device, and each port is both

sending and receiving traffic (so, we have two independent end-to-end flows). In the case of

the x86 machines, the two ports are located in different NICs, but attached to the same CPU

socket’s PCIe root complex.

3.2.2 Software setup

The “NF” machine implements port forwarding. The OS is Fedora Linux 23 with kernel version

4.4.9. The forwarding software uses DPDK version 17.02 and consists of two forwarding

streams in opposite directions, running on two cores that each have a dedicated RX and TX

queue. Unless otherwise stated, we configure the machine to minimize jitter: we disable all the

power-saving options such C-states and P-states, NUMA balancing, transparent huge pages,

kernel audit, and interrupt moderation, and we run all the cores at the nominal frequency

(but not TurboBoost).

The “SW generator” machine has similar configuration, but runs one of the following programs:

• MoonGen with hardware timestamping:

We use the version from GitHub referenced in [37]. Hardware timestamping on Intel

x710 10 GbE was designed for IEEE 1588 [35] time synchronization, and it can only times-

tamp one outstanding single packet at a time due to resynchronization requirements,

therefore can do sampling only of the latency distribution. It uses a separate hardware

queue for the non-timestamped traffic.

• MoonGen with software timestamping:

MoonGen also works with software timestamps. In this case, there is no sampling

limitation – the latency of all packets can be captured. We keep a 100ns-granularity

histogram.

• Netperf:

We use the standard netperf tool, but replaced its histogram implementation with our

own, more fine-grained one (100ns). We use a UDP request-response benchmark with

histograms and inter packet time control enabled.
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• TRex:

We use the stateless version of TRex [27]. We created a control plane experiment to fit

our benchmark requirements. As with netperf, we replaced its original coarse-grain

histogram implementation (10µs granularity) with our own (100ns granularity).

We further isolate the CPUs on which we run the traffic generators, and pin the forwarding

tasks to these CPUs. We also make sure the cores, ports, and allocated memory are on the

same socket.

In all experiments, the (hardware or software) traffic generator produces two independent

UDP flows of 64-byte packets, each one at a rate 1Gbps. We calibrate all the tools to the

same line rate using Spirent as a sink. We report the data from 5 independent runs of each

experiment. Each run executes the benchmark for 120 seconds after a warm-up of 30 seconds.

Measurement granularity depends on the tool. The Spirent chassis has 16 adjustable-size

histogram buckets, which we set after calibration to 10ns in Section 3.3 and between 1µs

and 5µs in Section 3.4. Hardware timestamps in MoonGen have the precision of 10ns. The

software solutions (MoonGen-SW, TRex, netperf) keep a 100ns-granularity histogram of

latencies as measured using the processor’s cycle counter.

3.3 Closing the HW/SW gap

We now answer the following basic question: when measuring µs-scale latency, how far are

state-of-the-art software tools from traditional hardware-based tools?

To answer this first question, we use the testbed configurations in Figure 3.1a to measure the

latency of the HW switch. The idea is that any modern ASIC-based switch is expected to offer

per-packet latency of a couple µs with insignificant jitter; we use testbed configuration (1) to

confirm this, and testbed configuration (2) to test whether the software tools can measure

µs-scale latencies.

Figure 3.2 shows the switch’s latency distribution as reported by the different tools. The

same data is presented in two different ways, akin to [80]: Figure 3.2(a) shows the cumulative

distribution function (CDF) of the latency, while Figure 3.2(b) shows the complementary

cumulative distribution function (CCDF), which provides a more explicit view of tail latency

(shows which fraction of measurements exceed a given latency value). The CCDF is presented

on a log scale to highlight the effects of tail latency. In case the figure is viewed in black

and white, the labels are ordered by ascending accuracy, i.e., the top-most label (netperf)

corresponds to the right-most (least accurate) latency distribution. We report data up to the

99.9999th percentile (1−10−6).

First, we confirm that the HW switch provides stable, if not exceptionally low, latency, as ex-

pected from an ASIC-only datapath: Spirent reports minimum, mean, and maximum latency
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Figure 3.2 – Latency measurements of a hardware switch using different tools.
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of 2.24µs, 2.26µs, and 2.52µs, respectively. The spread across more than 400 million measure-

ments is, therefore, less than 300ns. The reported CCDF (left-most one in Figure 3.2(b)) is

near vertical up to the 99.9999th percentile.

Second, we see that the combination of kernel bypass and hardware timestmaps comes very

close to the ground truth provided by Spirent: MoonGen-HW reports minimum, median,

and 99.99th percentile latency of 2.466 µs, 2.524 µs, and 2.723 µs, respectively. The reported

CCDF (second from the left in Figure 3.2(b)) is less than a µs away from the ground truth up to

the 99.99th percentile. Beyond that, however, the error increases. For instance, the 99.999th

percentile (1−10−5) latency is 4.379 µs, a noticeable increase, most likely due to the imperfect

synchronization between the two different NICs of the SW generator (the one where each

measured packet departs and the one where it arrives) [38].

Third, we see that kernel-bypass alone is not enough, hardware timestamps are necessary

to get this close to the ground truth: MoonGen-SW reports latency between 5.225 µs and

7.1 µs for 60% of the measurements, but significantly higher for the rest. TRex does better,

overlapping with MoonGen-SW for 60% of the measurements, including the median of 6.5

µs, but reporting stable latency up to the 99th percentile of 7.3 µs, only a 28% increase from

the minimum value. Unless hardware timestamps are available, implementing your software

generator in a managed language comes at a high price.

Finally, we see the limits of using the standard POSIX API and conventional network drivers

for latency measurements: Netperf (the right-most curve in both graphs) is at least 17µs off

the ground truth. We attribute the gap to highly variable latency of interrupt dispatching and

thread wakeups on multicore machines. Our conclusions are reproducible even with NIC

ports directly connected. For more details please refer to our repository [86].

3.4 Measuring Subtle Differences in OS Configurations of Network

Functions

We now answer the second question: are software tools accurate enough for measuring the

latency of software network functions?

To answer the second question, we build on the insights of Section 3.3 to measure the latency

distribution of our network function (DPDK port forwarding). For these experiments we use

the testbed configurations in Figure 3.1b.

We want to experiment with scenarios that introduce non-trivial latency and jitter, but are

also realistic and interesting to the networking community. So, instead of introducing artifi-

cial latency and jitter ourselves, we consider four OS-level configurations that have latency

implications:

1. local: a baseline “out-of-the-box” OS configuration, where the network function (CPU
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and memory) runs on the same NUMA socket that has the PCIe root complex of the NIC.

The NIC/memory interactions are therefore all local to the same socket.

2. remote: also a baseline OS configuration, but the network function runs on the remote

NUMA node relative to the PCIe root complex of the NIC. All NIC/memory interactions

must therefore go through the QPI interface between sockets.

3. local+isolset: we augment “local” to further use the isolcpu and taskset features of

the Linux scheduler to explicitly isolate the network function and ensure that no other

application is ever scheduled on the same core.

4. local+isolset+power: we further disable power-saving options including P-states (and

TurboBoost), C-states and PCIe Active State Power Management.

Figure 3.3 shows the latency distribution of the network function, for each of the four OS

configurations, as reported by different tools. Each subfigure shows the latency CCDF of the

network function for the four OS configurations, as well as the latency CCDF of the HW switch,

which is used as a reference. Each subfigure reports data captured by a different tool; we omit

netperf from this evaluation due to its limitations shown in Figure 3.2. The labels are ordered

by ascending accuracy, i.e., the top-most label (remote) corresponds to the right-most (least

accurate) distribution.

First, we establish the ground truth: Figure 3.3a shows the NF’s latency CCDF as reported by

Spirent (testbed configuration (3) in Figure 3.1b), which is the most precise of the considered

tools (Figure 3.2). We see that, while the NF is clearly slower than the HW switch, they can both

deliver relatively low jitter. We also clearly see the impact of OS configuration on latency: when

considering minimum, or even median latency, it is necessary and sufficient to ensure that

the local socket is consistently used; when considering tail latency, however, it is essential to

further control power settings. For instance, at the 99.99th percentile, the appropriate power

settings reduce tail latency by a factor of 2.6, which is consistent with prior observations [80].

The “local+isolset+power” configuration has the lowest latency and jitter, with a minimum

latency of 3.73 µs and a maximum latency of 10.72 µs, and a smooth CCDF near-vertical line

between the two.

Next, we assess how well the software tools can measure the same NF latency: Figures 3.3b-

3.3c-3.3d (testbed configuration (4) in Figure 3.1b) show how MoonGen-HW, TRex, and

MoonGen-SW, respectively, report gradually noisier latency distributions. Still, both MoonGen-

HW and TRex are accurate enough to capture the impact of OS configuration on NF tail latency;

TRex may be off by several µs in absolute terms, but it does capture correctly the relative over-

head introduced by each OS configuration. MoonGen-SW (as well as netperf, not shown), on

the other hand, does not.

Measuring is a first step towards understanding the problems that cause latency variability,

but when they are extremely complex or fixing them is out of reach given a service provider’s
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restrictions, latency-mitigating techniques are the next logical step. The next chapter describes

how can we know whether latency mitigation can pay off and up to how much—before we

deploy our service and implement latency-mitigation techniques.
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(a) client: Spirent
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Figure 3.3 – Effect of different OS and application configurations of the software port-
forwarding application, as measured by different client tools. The hardware switch is added
for comparison.
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Figure 3.3 – (cont.) Effect of different OS and application configurations of the software port-
forwarding application, as measured by different client tools. The hardware switch is added
for comparison.
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4 When to Hedge in Interactive Ser-
vices?

In large-scale deployments of on-line data-intensive (OLDI) services, each client request

typically executes on many servers in parallel. As a result, system slowdowns (“hiccups”),

although rare within a single server, can interfere with a large number of client requests and

cause revenue losses. Service providers have long been fighting this “tail at scale” problem by

hedging, i.e., issuing redundant requests to mitigate the service-time overheads of hiccups.

But what if the queuing overheads introduced by hedging are actually hurting tail latency

more than the rare “hiccups”?

This chapter challenges the state-of-the-art in analyzing and developing hedging and load-

balancing techniques. We contribute a new metric, intra-query jitter, in the absence of which

hedging never makes sense. We suggest integrating hedging into the best load-balancing

policy—pull-based load balancing with a single queue per shard—whereas existing hedging

techniques are push-based and use multiple processing queues. Based on this approach, we

design an ideal hedging policy and use it to gain insight into the applicability of hedging, as a

general technique for OLDI services.

OLDI services, as Section 2.1 describes, involve hundreds or thousands of “leaf” nodes, each

holding a part (“shard”) of the data needed to answer client requests; a tier of “root” nodes

receives client requests, breaks each client request into distinct queries, forwards the queries

to different leaves, and waits for the slowest query to finish in order to create the final client

response. This results in the tail-at-scale problem—latency variability within a single server

gets amplified at scale.

Even though a lot can and has been done to reduce latency variability, completely eliminat-

ing its causes has proved elusive. In a modern cloud environment where different services

unavoidably share resources, there always exist some unexpected performance “hiccups”.

Debugging these hiccups is notoriously difficult. For instance, there is the case of an appli-

cation suffering random 12ms scheduling delays, because a kernel feature caused the jitter

of interrupt requests to be significantly higher than the timer interval [17]; or the case of

non-work-conserving scheduling, in which the kernel was throttling programs that exceeded
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a misconfigured purchase quota [119]. But even when performance hiccups are easy to debug,

fixing them is often beyond the control of the interested parties: most service providers do not

own a datacenter and do not develop their own operating systems and entire software stacks

that they can easily control—yet they still offer interactive services that need to meet strict

tail-latency SLOs.

Hedging masks service-time variability at the cost of extra system load (caused by the repli-

cated queries), hence an extra queuing delay. So, if we take any standard hedging policy

and any standard load-balancing policy (that tries to minimize latency without hedging),

and we measure latency as a function of system load, we expect to see a tipping point: at

first, hedging will outperform plain load balancing; however, for some offered system load,

the cost of replicating queries will start to outweigh the benefit and the situation will be re-

versed. The challenge, then, is knowing when to hedge so as to operate before the tipping

point. When a service involves coarse-grained jobs that may take tens to hundreds of sec-

onds, it can make informed decisions about when to hedge by monitoring the progress of

job execution [4–6]. These techniques, however, would not make sense in OLDI services with

(sub)millisecond-timescales.

The rest of this Chapter studies when hedging makes sense: when does it have the potential to

improve tail latency relative to plain load balancing and by how much? To answer this question,

we define Idealized Hedge, an idealized hedging policy that outperforms, by construction,

any implementable hedging policy. We experimentally compare Idealized Hedge to Per-Shard

Queuing, which is the load balancing policy that, given our setup, yields optimal queuing time

and does not hedge. This allows us to identify regimes where hedging has the potential to

improve tail latency and to bound the potential improvement.

4.1 OLDI Setup

The OLDI architecture we consider is depicted in Figure 2.4. We assume that all scheduling

disciplines that we explore are implemented within per-shard load balancers.

A client request typically requires accessing multiple data shards. When a root node receives

a client request, it creates at least one query per distinct shard that needs to be accessed

to answer the request and sends the query to a leaf node that holds that shard. Each leaf

is equipped with a queue and processes queries first-come, first-served (FCFS), which is

optimal for light-tailed service-time distributions [130] and used in many of today’s low-

latency frameworks [15, 34, 68]. Prior work shows that FCFS is the best non-preemptive

scheduling policy when tail latency is the most important metric [15, 68, 80, 92, 130]. To

compute the final client response, the root needs one response per distinct shard.

The end-to-end latency of a client request is the amount of time that elapses between the

moment a root node fans-out the original request into multiple queries and the moment when

the root has received the first response from each distinct shard. It is equal to the service
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time plus queuing delay experienced by the slowest query mandatory for aggregating the final

response (the last of the first queries that finish on a yet-unprocessed shard).

4.2 Hedging and Load Balancing: State of the Art

In this dissertation, we consider three representative hedging policies, previously introduced

in Section 2.5.2 and listed in the top three rows of Table 2.1, namely:

• Naïve Hedge [125],

• Delayed Hedge with cleanups (d-Hedge w/ CC) [28, 68], and

• Probabilistic Hedge (p-Hedge) [68].

Ideally, a hedging policy must walk the fine line between (a) reissuing too many queries and

adding too much system load (hence queuing delay), and (b) not reissuing enough queries

and failing to mitigate the effect of IQ-jitter on tail latency. Naïve Hedge errs toward the former

(it always reissues as much as possible); Vulimiri et al. [125] have showed that this policy helps

reduce tail latency, but only when system load is below 30% [125]. d-Hedge and p-Hedge

provide knobs for controlling the added load; however, as we will see, they still do not enable a

proper balance between (a) and (b), i.e., they can still unnecessarily overload the system or fail

to mitigate the effect of IQ-jitter, even if their knobs are properly tuned (Section 4.6).

Outside hedging, the standard approach to managing latency is load balancing (LB); hence, it

makes sense to compare hedging policies against standard load-balancing policies. Here we

consider four such policies, previously described in Section 2.5.3 and listed in the bottom four

rows of Table 2.1, namely:

• Random,

• Join-shortest-queue (JSQ) [51],

• Per-Shard Queuing (PSQ), and

• Join-bounded-shortest-queue (JBSQ) [74].

4.3 Simulation Setup

In the results in the rest of this section we rely on discrete event simulation to compare hedging

against the best of standard load-balancing policies across a large parameter space. The goal

is not to evaluate precisely how these policies perform in real systems (we use different

experiments for that in Chapter 5), but to understand some of their fundamental properties,
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e.g., how does hedging compare to Per-Shard Queuing in an idealized setting (where PSQ is

the optimal load-balancing policy)?

Our simulation setup mimics a simple OLDI application deployed in a medium-sized cluster:

(a) There are 100 leaves processing queries, all with the same hardware and software con-

figuration. There are 5–500 distinct data shards, each replicated in 2, 3 or 6 leaves

(depending on the experiment). Similarly to Kaler et al. [68], each leaf processes queries

FCFS. Leaves never drop queries (in policies where the leaves store pending queries,

e.g., JSQ, the queue is always large enough).

(b) The root tier sends queries to each per-shard load balancer, which fans out queries to

leaves according to the simulated (hedging or load-balancing) policy. Network latency

(from the root to each per-shard load balancer, and vice versa) is zero.

(c) Client requests arrive at the root tier following an open-loop Poisson arrival process.

(d) We model query service time S experienced by a query as the sum of two components, P

and J , as per Section 2.3. Unless otherwise noted, P follows an exponential distribution

(motivated by Mirhosseini et al. [92] as well as our system results in Chapter 5), while

J (IQ-jitter) follows a bimodal distribution. This means that, in any single experiment,

an instance of a query executing at a leaf node experiences a performance hiccup with

some probability (e.g., 10−3 in our running example in the following Section 4.4), while

performance hiccups have the same duration (e.g., 15× P̄ in our running example).

Across experiments, we vary hiccup probability and duration to approximate a range

of real problematic system events reported in the literature: 15× P̄ has occurred as the

result of badly configured timer intervals [17], 30× P̄ as a result of non-conserving job-

to-core allocation [119], and 100× P̄ due to the operating system throttling a user-space

application after it exceeded its CPU quota [119]. This particular distribution and the

choice of parameters also reflects our observations from our system implementation

described in Chapter 5.

We report tail latency as a multiple of P̄ (the average service time without IQ-jitter introduced

in Section 2.3). For example, when 99th percentile latency totals 20, 1% of client requests

experience end-to-end latency higher than 20×P̄ . This provides more insight than an absolute

number, especially since (in these particular experiments) we are measuring a simulated,

idealized setup. In reality, P̄ is in the order of milliseconds for OLDI applications and in the

order of microseconds for microservices [122].

4.4 Two Simple Observations

We start by comparing all the load-balancing policies and Naïve Hedge on our running exam-

ple: Figure 4.1 shows 99th percentile latency as a function of system utilization in a cluster
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(a) IQ-jitter with hiccup probability 1
1000 , hiccup duration 15× P̄ .
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(b) No IQ-jitter.

Figure 4.1 – 99th percentile latency as a function of utilization, in a cluster with 50×2 leaves,
with and without IQ-jitter.
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(a) 50×3 leaves (3 replicas per shard)
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(b) 50×6 leaves (6 replicas per shard)

Figure 4.2 – 99th percentile latency as a function of utilization, with hiccup probability 1
1000 ,

and hiccup duration 15× P̄ . The trend in behavior of hedging and load-balancing policies
from Figure 4.1a persists even with larger number of replicas.
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with 50 shards, each replicated in 2 leaves, first with IQ-jitter of hiccup probability 10−3 and

hiccup duration 15× P̄ (Figure 4.1a), then without IQ-jitter (Figure 4.1b). The utilization of

0.0 naturally corresponds to zero queries per time unit, while the utilization 1.0 (or 100%)

corresponds to 1
P̄

queries per time unit, for each replica. For example, if the mean service time

without IQ-jitter equals to P̄ = 1 ms, 1000 queries and 2000 queries per second correspond to

100% utilization with one and two replicas per shard, respectively. Note that the maximum

utilization does not depend on the number of shards, because all shards are queried in parallel,

but solely on the number of replicas per shard and P̄ .

We derive two simple, yet important observations:

First, Per-Shard Queuing outperforms all the other load-balancing policies in all situations.

This is expected from queuing theory (given our idealized simulation setup). The performance

difference is greater in the presence of IQ-jitter (Figure 4.1a), which makes sense given that

system noise increases the dispersion of the service-time distribution—and more service-time

dispersion creates a bigger challenge for non-centralized load-balancing policies.

Second, in the presence of IQ-jitter (Figure 4.1a), there is a clear “turning point”: At low

utilization, Naïve Hedge (despite its naïveté) delivers significantly lower tail latency than any

load-balancing policy. For instance, in an unloaded system, tail latency is 8× P̄ with Naïve

Hedge and 17× P̄ with PSQ—close to a 2× improvement. However, when utilization exceeds

25%, the load-balancing policies deliver lower tail latency (as well as higher throughput).

As a side note, in the absence of IQ-jitter (Figure 4.1b), hedging does not improve tail latency

relative to load balancing, for any system utilization. This makes sense given that, in the

absence of IQ-jitter, the same query always takes the same amount of time to execute on two

identical leaves.

These observations persist with the larger number of replicas, as Figure 4.2 demonstrates: The

main property of the graphs that changes with the growing number of replicas is the location

of the “knee” of the latency curve, especially for more advanced load-balancing policies, i.e.,

the saturation point of the system before tail latency spikes is shifted to the right in case of

JSQ, JBSQ and PSQ policies. It is not surprising that load-balancing policies can do better

load-balancing with the growing number of replicas, however their behavior at low loads

did not drastically change comparing to the basic two-replica case, and, when compared to

hedging, hedging still offers significant latency improvement in the presence of IQ-jitter. Note

that we keep the number of reissued requests of Naïve Hedge to two, regardless of the total

number of replicas, which still “only” halves the system capacity.

Our observations suggest that a policy that combines hedging and Per-Shard Queuing and

adapts the fraction of hedged queries to system utilization, might achieve lower tail latency

than either hedging or load balancing alone.
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4.5 The Design of Idealized Hedge

Idealized Hedge is an idealized policy that, by construction, achieves lower latency than any

implementable hedging or load-balancing policy. It has the following properties:

1. A leaf is never idle when it can serve any pending query, whether that query is currently

being served by another leaf or not.

2. A leaf serves a hedged (replicated) query only when it cannot serve a non-hedged

(yet-unserved) one.

The second property ensures that hedged queries never increase the queuing delay experi-

enced by non-hedged queries. The two properties together ensure what we might call work

conservation in the presence of hedging: no resources are idle when they could be doing useful

work, and no resources are dedicated to hedging when they could be used for other work.

Idealized Hedge is not implementable because it requires perfect prediction of the completion

times of all the currently executing queries: To ensure that the two properties stated above

always hold, the system may need to cancel one copy of a hedged query currently executing

on a leaf (so that the leaf can serve a new, non-hedged query that just arrived). To ensure that

no actual policy could outperform Idealized Hedge, the system must always cancel the copy

that will take longer to complete, hence the need for perfect completion-time prediction.

We simulated Idealized Hedge as follows: A per-shard load balancer maintains a queue with

all the pending queries in order of arrival, and it knows the status of each leaf and which

query it is processing (if busy). Moreover, if two copies of a hedged query are executing on

different leaves and a new query arrives (that can be served by the same leaves), the scheduler

(within the load balancer) perfectly predicts which copy will finish executing first. With this

knowledge, the per-shard load balancer performs the following operations:

• Dispatches queries to the leaves in an FCFS manner using a centralized queuing disci-

pline within each shard.

• Hedges a query as soon as a leaf that can serve it becomes idle.

• Cancels any copy of a hedged query if another copy finishes first (we call this a cleanup

cancellation or CC for brevity).

• Cancels one copy of a hedged query upon arrival of a new query that can be served by

the same leaf (we call this a pre-emptive cancellation or PC).

4.5.1 Idealized Hedge for Two Replicas

Figure 4.3 shows the finite-state machine of Idealized Hedge for a given shard that is replicated

in two leaves:
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Figure 4.3 – The finite-state machine of the Idealized Hedge policy on a single shard with
two replicas. The states show: whether the centralized queue is empty, whether replicas are
running the same or different queries (Q), and whether the execution on the replicas started
at the same time (t ). This state machine also corresponds to the LÆDGE policy with both CC
and PC.

S0 Both leaves are idle. There are no pending queries.

S1 (Initial hedging) Both leaves are serving the same query Q A , which they started to serve

simultaneously; there are no other pending queries. This state occurs on a transition

from S0, following the arrival of query Q A .

S2 (No hedging) The two leaves are serving different queries, Q A and QB , and there are

no additional pending queries. This state occurs on a transition from S1, following the

arrival of query QB , at which point one copy of Q A (the one that would have finished

later) was pre-emptively cancelled.

S3 (Load balancing with a single queue) The two leaves are serving different queries, Q A

and QB , and there are additional pending queries. In this state, when a leaf finishes

serving its query, it pulls the next one from the head of the queue (without hedging),

exactly as in the PSQ policy.

S4 (Delayed hedging) Both leaves are serving the same query Q A , which they started to

serve at different times; there are no other pending queries. This state occurs on a

transition from S2, following the completion of one query, at which point the other

query (Q A) is reissued to the otherwise idle leaf.

4.5.2 Generalized Idealized Hedge

Two design choices are required to extend the design of Idealized Hedge from two to any

number of replicas:

First, we need to decide on how many replicas can a query be running concurrently. We
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(a) 50×2 leaves (2 replicas per shard)
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(b) 50×3 leaves (3 replicas per shard)
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(c) 50×6 leaves (6 replicas per shard)

Figure 4.4 – Demonstration of the behavior of Idealized Hedge for different number of replicas:
99th percentile latency as a function of utilization, with hiccup probability 1

1000 , and hiccup
duration 15× P̄ . Idealized Hedge continues to achieve the best of hedging and load balancing
even for larger number of replicas.
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Algorithm 1: Generalized Idealized Hedge Algorithm: Request Arrival

1 SQ[i ] ← [ ], i ∈ [1, . . . ,nshar d s ] ; // Initialize a shard queue (SQ) per shard
2 on new request r arrival
3 for each shard s do
4 if available replicas of shard s ≥ 2 then
5 send r and r ′ to 2 random replicas of shard s ; // Replication on arrival
6 else if available replicas of shard s == 1 then
7 send r to the only available replica of s ; // No replication
8 else
9 if ∃ (concurrently running identical requests on s) then

10 r equest_to_cancel ←−1 ; // Req. that would save most time
11 max_t i me_saved ←−1 ; // Time saved by r equest_to_cancel
12 // end(r ) is a function that perfectly predicts query completion times
13 for each hedged request-pair r1 and r2 on s s.t. end(r2) ≥ end(r1) do
14 t i me_saved ← end(r2)−end(r1) ; // end(r ) is the finishing time of r
15 if t i me_saved > max_ti me_saved then
16 max_t i me_saved ← t i me_saved ;
17 r equest_to_cancel ← r2 ;

18 end
19 replace r equest_to_cancel with r ; // Prioritization of new requests

20 else
21 enqueue r to SQ[s] ; // Enqueue to the shard queue
22 end
23 end
24 end
25 end;

decided to limit the number of concurrently run replicas to two replicas, similarly to Kaler et

al. [68]. Since the probability of a system slowdown is low, running on more than two replicas

concurrently rarely yields better results than simply limiting the policy to use just two replicas.

Second, if in total we have more than two replicas per shard, we need to decide which request

to reissue with delay. This corresponds to the state transition S2 → S4 in the finite state

machine in Figure 4.3. Among all the single requests, we choose one that started the longest

ago since it most-probably got delayed.

Algorithm 1 and Algorithm 2 give the details of Idealized Hedge in case of a request and

response arrival, respectively. Prioritization of new requests as well as work conservation with

redundancy is visible in Algorithm 1. Note that our first multi-replica assumption of keeping

the number of hedged requests to two, is not fully compatible with work conservation in the

presence of hedging, i.e., we can have idle resources in Idealized Hedge when in total we have

more than two shard replicas. For example, when a request arrives to a fully idle system, it will

occupy at most two replicas, while the others will remain idle. Therefore, when we have more

than two replicas, to maintain the property that no resources are idle when they could be doing

useful work, we define simultaneously serving more than two copies of the same query not to

be useful.
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Algorithm 2: Generalized Idealized Hedge Algorithm: Response Arrival

1 on response q arrival after request r finished on node n and shard s
2 if ∃ (replica of r , r ′, still running on node n′ and shard s) then
3 // 2 slots on shard s available, both nodes n and n′
4 if size(SQ[s]) == 0 then
5 // Delayed replication
6 if number of running non-replicated requests on replicas of shard s ≥ 2 then
7 replicate the 2 oldest non-replicated requests on shard s to n and n′, respectively ;
8 else if number of running non-replicated requests on replicas of shard s == 1 then
9 replicate the only non-replicated request on shard s to n ;

10 free-up shard s on n′ ;

11 else
12 free-up shard s on n and n′ ;
13 end
14 else if size(SQ[s]) == 1 then
15 // Delayed replication and queuing mode
16 pop a pending request p from SQ[s] ;
17 if number of running non-replicated requests on replicas of shard s ≥ 1 then
18 replicate the the oldest non-replicated request on shard s to n ;
19 replace r ′ with p on shard s, node n′ ;

20 else
21 replicate p to both n and n′ (cancel r ′ on n′) ;
22 end
23 else
24 // Queuing mode
25 pop 2 pending requests, p1 and p2 from SQ[s] ;
26 send p1 and p2 to shard s on node n and n′, respectively (cancel r ′ on n′) ;

27 end
28 else
29 // 1 slot on shard s available, only node n
30 if size(SQ[s]) > 0 then
31 // Queuing mode
32 pop a pending request p from SQ[s] and send it to shard s on node n ;

33 else
34 // Delayed replication
35 replicate the the oldest non-replicated request on shard s to n ;

36 end
37 end
38 end;

4.6 Idealized Hedge versus State of the Art

Figure 4.5 compares Idealized Hedge against the three hedging policies (Naïve Hedge, d-Hedge,

p-Hedge), as well as Per-Shard Queuing (the best load-balancing policy). The experimental

setup matches that of Figure 4.1a (50×2 leaves and IQ-jitter with hiccup probability of 10−3

and hiccup duration 15× P̄ ).

As expected, Idealized Hedge outperforms the real policies, and exhibits the following behavior:

at low utilization (until around 5%), when the leaves are mostly in states S0 and S1, it behaves

like Naïve Hedge; at high utilization (from around 60%), when the leaves are mostly in state S3,

it converges to PSQ; in between, it clearly outperforms (by up to 8× P̄ ) all the real policies.
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Figure 4.5 – 99th percentile latency as a function of utilization. Idealized Hedge vs. existing
hedging policies and Per-Shard Queuing. Same setup as in Figure 4.1a.

The most interesting comparison is between Idealized Hedge (black dotted line) and Per-Shard

Queuing (green solid line with vertical lines), because it provides an upper bound on the tail-

latency reduction that can be expected from any form of hedging. This comparison indicates

two points:

• There exists a significant utilization range (from ∼60% and up, in our setup) where no

real hedging policy may bring any significant benefit relative to Per-Shard Queuing.

• Outside this range, hedging may bring significant benefit, but the two state-of-the-art

hedging policies cannot fulfill this potential. Only Naïve Hedge (blue solid line with

squares) achieves all the benefit that hedging could achieve, but only at low utilization

(until around 5%, in our setup). d-Hedge (gray solid line) slightly outperforms the

other real policies for a short utilization range (20-30%), but it remains far from Ideal-

ized Hedge. p-Hedge (purple solid line with pentagons) is outperformed by Per-Shard

Queuing in all situations.

Of course, the behavior of d-Hedge and p-Hedge depends dramatically on how their configu-

ration parameters are tuned; we followed all the instructions in the relevant literature, and we

did our best to maximize their performance.

In p-Hedge, we trained the parameters d and q , using the most successful of the methods

explored in [68]: for each level of system utilization, we computed a “reissue budget” (the

percentage of hedged queries in the system) using their iterative algorithm; then, for each

level of system utilization, we trained d and q on a sample of latency measurements using
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Figure 4.6 – 99th percentile latency as a function of utilization. Comparison of different
d-Hedge configurations with cleanup cancellations. Same setup as in Figure 4.1a.

their proposed training algorithm that accounts for queuing delays for a fixed reissue budget.

We tried sampling rates up to 80%; the results we show are for a sampling rate of 60%, because

increasing the sampling rate further did not significantly change the results.

In d-Hedge we implemented cleanup-cancellations, following the advice of Dean et al. [28]:

Whenever a query response arrives, and its reissued query is still pending, the reissued query

is cancelled. We experimented with a range of parameters for the delay parameter d , and

the best trade-off between achieving low latency and achieving the maximal throughput is

achieved for d = 5× P̄ , and is shown as best d-Hedge in Figure 4.5. We experimentally found

that further increasing the delay d does not fully mitigate latency at lower loads, while further

reducing the delay d reduces the system capacity even more. To illustrate that, Figure 4.6

demonstrates what happens when the delay is increased to d = 10×P̄ or decreased to d = 3×P̄ .

The light blue in Figure 4.6 line corresponds to the former case (d = 10× P̄ ) and it illustrates

that increasing the delay can achieve higher system utilization before the latency spikes, but

at the cost of higher latency at low loads. Further increasing the delay results in latency

mitigation insignificant to the tail latency.

The dark blue line in Figure 4.6 shows what happens in the latter case, when the delay d is set

to 3× P̄ . We see that the more aggressive hedging does not achieve lower latency than the best

d-Hedge, but it pays the price in lower system utilization before the latency spikes.

d-Hedge with clean-up cancellations is still far from Per-Shard Queuing and Idealized Hedge

in terms of throughput, and it is still far from Idealized Hedge in terms of tail latency. Removing

the clean-up cancellations further reduces the throughput of d-Hedge by roughly 40%.
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All this may not prove that d-Hedge and p-Hedge could not perform any better, but it illustrates

the difficulty of tuning them so as to achieve a desired balance between too little and too much

hedging.

4.6.1 Beyond One Example

We now extend our observations beyond the specific setup of Figure 4.5: how much potential

does hedging have to improve tail latency as the cluster size and nature of IQ-jitter vary?

We consider the following scenarios: clusters of 5×2, 50×2 and 500×2 leaves, i.e., small,

medium, and large; hiccup probability ranging from 10−1 to 10−5; and hiccup duration 15× P̄ ,

30×P̄ , and 100×P̄ . Regarding the latter, our choice of parameters is motivated by the literature,

as described in Section 4.3. We maintain the same reporting methodology which focuses

on the 99th percentile tail latency as a function of the utilization on the leaf servers, for an

open-loop Poisson arrival process.

We summarize our results in Figure 4.7 in three sets of heat maps: (1) for hiccup duration

15× P̄ (Figure 4.7a), (2) for 30× P̄ (Figure 4.7b), and (3) for 100× P̄ (Figure 4.7c). Each heat

map illustrates the relative improvement in 99th percentile latency that Idealized Hedge brings

relative to Per-Shard Queuing: the x-axis is system utilization, the y-axis is hiccup probability

(on a logarithmic scale), and the intensity of each data point is the relative improvement in

the 99th percentile latency (so, a darker data point indicates higher potential for hedging to

improve tail latency). We show improvement only if greater than 20% to focus on scenarios

with significant improvement potential. Each column corresponds to a different cluster size:

5×2, 50×2 and 500×2 leaves, from left to right. The dashed horizontal line in Figure 4.7a,

middle heat map (so, 50×2 leaves) corresponds to the setup of Figure 4.1a and Figure 4.5.

First, we observe that hedging cannot significantly improve tail latency when system utiliza-

tion exceeds ∼60% (the heat maps are mostly empty beyond ∼60% utilization). Beyond this

point, hedging improves latency by at most 20%, especially in Figures 4.7a and 4.7b, indepen-

dently from cluster size and hiccup probability or duration (in Figure 4.7c the improvement

above 60% utilization can occasionally reach ∼40%).

The intuition is simple: as system utilization increases and leaves become busier, opportunities

for hedging disappear; as a result, Idealized Hedge eventually converges to Per-Shard Queuing.

The point of diminishing returns corresponds to medium-heavy utilization, where queues

are starting to form, and below the point where the well-known heavy-traffic approximation

determines behavior irrespective of service-time distribution [52]. In the former two scenarios

(Figures 4.7a and 4.7b), between ∼60% and ∼80% utilization hedging provides at most 10%

improvement (not visible in the heat maps), and beyond ∼80% utilization, it provides no

improvement at all. In the third scenario (Figure 4.7c), when the hiccup duration is by two

orders of magnitude longer than P̄ , the improvement is a bit more significant, but only for

very rare and very frequent hiccups.
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Second, hiccup duration mostly affects the amount of potential improvement (the heat-

map intensity), rather than the existence of potential improvement (the heat-map shape).

Compare any two heat maps for the same cluster size in Figures 4.7a and 4.7b: they shade

mostly the same (x, y) surface, but the heat map on the right (longer hiccup duration) is darker

than the one on the left. The intuition is that, for any given cluster size, hedging can be useful

only within a given hiccup probability range; outside this range, performance hiccups are

either too rare or too frequent for hedging to make any difference, and this is independent

of hiccup duration. The third heat map looks slightly different due to the extreme difference

between P̄ and the hiccup duration (100× P̄ ), compared to the first two scenarios. We can see

that for longer hiccup durations hedging can bring much more improvement, regardless of

the cluster size, but still within the limits.

Third, the larger the cluster size, the smaller the hiccup probability for which hedging may

be useful. For example, when the hiccup probability is between 10−4 and 10−5, hedging may

be useful only in the 1000-leaf cluster (and would be useful in larger clusters as well); in the

two smaller clusters, each request needs access to fewer distinct shards, and the probability

of IQ-jitter slowing down the serving of one or more of these shards becomes insignificant.

Conversely, the higher the hiccup probability, the smaller the cluster size for which hedging

may be useful. For example, when hiccup probability exceeds 10−2, hedging may be helpful in

all three clusters (but less so in the 1000-leaf cluster, where it may improve tail latency by at

most 35%).

In order to apply this methodology beyond simulations we need to create a policy that can

be implementable in practice. The next chapter describes how we approximate Idealized

Hedge with a realistic hedging policy that can achieve a significant part of the improvements

promised by the Idealized Hedge theoretical policy.
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(a) Idealized Hedge, hiccup duration 15× P̄
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(b) Idealized Hedge, hiccup duration 30× P̄
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(c) Idealized Hedge, hiccup duration 100× P̄

Figure 4.7 – Heat maps showing how much Idealized Hedge improves the 99th percentile
latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis is hiccup probability.
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5 Walking the LÆDGE Between Hedging
and Load Balancing

So far we have motivated the need for our lower bound, Idealized Hedge, using which we

can determine whether it pays off to implement hedging-based scheduling for a particular

workload through simulation and workload modeling. As we saw in Chapter 4, our Idealized

Hedge relies on a perfect predictor of query completion times in order to pre-empt duplicated

requests; replacing such a predictor with a good-enough heuristic, or altogether removing the

need for it, brings us to a solution that can be implemented in practice.

This chapter goes beyond estimating the theoretical benefits of hedging-based policies and

introduces an implementable policy, LÆDGE, that can reach as much as half of the hedging

potential that we quantified in the previous chapter. In this chapter we evaluate LÆDGE in our

discrete-event simulator using the same range of workloads from Chapter 4 (later in Chapter 6

we show that our approach also works in a real system).

5.1 Design of Load-Aware Hedge

We propose Load-Aware Hedge (LÆDGE), which has the following properties:

• A leaf is never idle when it can serve a pending query currently being served by at most

one other leaf.

• A leaf starts to serve a hedged query when it cannot serve a non-hedged (yet-unserved)

one.

Unlike Idealized Hedge, the plain variant of LÆDGE does not guarantee that a leaf serving a

hedged query could not be serving a non-hedged one at all times. This would require both

cleanup cancellation (CC), which corresponds to cancelling the replicated query after the

original one finishes, and pre-emptive cancellation (PC), which corresponds to speculatively

cancelling one of the hedged queries while both of them are running in parallel. LÆDGE only

guarantees that when a leaf starts to serve a hedged query it could not be serving a non-hedged

one – this only requires knowledge of all pending queries in the system.
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We implemented three variants of LÆDGE, which differ mostly in the type of query cancellation

that they require:
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(b) LÆDGE with cleanup cancellation

Figure 5.1 – The finite-state machines of the LÆDGE and LÆDGE-with-CC policies on a single
shard with two replicas.

1. Plain LÆDGE (no cancellations):

Similar to Per-Shard Queuing, a per-shard load balancers dispatches queries to leaves

from a per-shard queue; similar to Idealized Hedge, a leaf serves both non-hedged

and hedged queries, prioritizing the former. There are no query cancellations. An

efficient implementation of this policy (as well as other LÆDGE policies and Per-Shard

Queuing) requires a single queue per shard with µs-scale round-trip latency to the
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leaves, which is commonly found in datacenter environments [41,74]. Figure 5.1a shows

the corresponding state machine.

2. LÆDGE with CC :

This policy augments plain LÆDGE with cleanup cancellations (CCs), i.e., all copies of

a hedged query are cancelled when another copy finishes executing first. An efficient

implementation of this policy requires a low-overhead mechanism for interrupting a

query and cleaning up its side effects. Whether such a mechanism exists or not depends

on the application itself (for instance, Boucher et al. [20] enabled efficient µs-scale

cancellations for microservices [2, 47, 91] written in Rust). Figure 5.1b shows the state

machine of LÆDGE with CC.

3. LÆDGE with CC+PC :

This policy adds pre-emptive cancellations (PCs), i.e., one copy of a hedged query is

cancelled when a new query arrives that can be served by the same leaves. The state

machine is similar to that of Idealized Hedge, shown in Figure 4.3. The only difference is

the lack of perfect completion-time prediction; instead, this policy cancels the copy that

started executing most recently. One can imagine a more sophisticated heuristic that

leverages prior knowledge of the service-time distribution, but we do not explore this.

Like in Idealized Hedge, all cancellations in our discrete-event simulator are zero cost, in the

sense that they introduce no extra processing delay and no extra communication between the

centralized scheduler and the leaves. While this is not a realistic assumption, it allows us to

analyze the upper bound on the potential gains of cancellations. In other words, if zero-cost

cancellations do not yield notable benefits, neither will the realistic ones.

5.2 LÆDGE versus Idealized Hedge

Let us compare LÆDGE with the best performing policies that we have analyzed so far. Fig-

ure 5.2 shows utilization on the x-axis, and 99th percentile end-to-end latency on the y-axis,

normalized by mean service time P̄ . The experimental setup matches that of Figures 4.1a

and 4.5. The new lines in Figure 5.2 are the pink starred line, that represents plain LÆDGE, and

the purple line with crosses, that represents LÆDGE with cleanup cancellations. Figure 5.2

compares the two LÆDGE variants against Idealized Hedge, as well as the best existing real

policies (among the simulated ones): d-Hedge was the best so far up to ∼40% utilization, and

Per-Shard Queuing beyond that.

First, we observe that plain LÆDGE reduces the gap to Idealized Hedge from at most 7.5× P̄ , to

at most 3.8× P̄ (while hiccup duration is 15× P̄ , in this setup). At low utilization (up to 15%),

it behaves like the best existing real alternative (which happens to be d-Hedge). From some

point on (∼50%), it converges to Per-Shard Queuing. In between 5% and 50% utilization, it

outperforms the best of the existing policies, closing the average gap to Idealized Hedge from

4.94× P̄ to only 2.16× P̄ .
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Second, we observe that adding cleanup cancellations to LÆDGE improves tail latency only

marginally (given our assumption of zero-cost cancellations, it could not increase it). Note

that the best hedging policy, d-Hedge with cleanup cancellations, performs significantly worse

without cleanup cancellations. Since d-Hedge is a push-based policy, it needs to decide where

to run the original query at the time of its arrival. Also, it needs to decide where to run the

replicated query after the delay d has expired. In both cases, queries need to first queue in the

leaf nodes for an unknown amount of time. Queuing delays of d-Hedge are therefore higher

than that of pull-based policies. The intuition with cancellations is that cleanup cancellations

mitigate this by reducing the processing time added with hedging and they shorten the queues

in the leaves. LÆDGE is a pull-based policy designed to hedge queries only when the current

load allows it, thus the lack of cancellations does not affect it as much. At lower utilizations,

CCs are not crucial for LÆDGE because there is always sufficient capacity in the system, while

at higher utilizations, CCs are less important because there are fewer hedged queries executing

in the system, since LÆDGE adapts to the system load.

Interestingly, adding pre-emptive cancellations to LÆDGE-with-CC increases tail latency at

some utilization levels. The next section dives in deeper into this problem.
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Figure 5.2 – 99th percentile latency as a function of utilization. LÆDGE flavors vs. Idealized
Hedge and the best existing policies. Same setup as in Figure 4.1a.

5.2.1 To Cancel or Not to Cancel

Surprisingly, we observe that cancellations do not significantly help LÆDGE, and may actually

hinder it.

We demonstrate that in Figure 5.3, which uses the same experimental setup as Figure 5.2 and

shows all three variants of LÆDGE and Idealized Hedge. The golden line with hexagons shows
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the result for LÆDGE with both cleanup and pre-emptive cancellations. We have already seen

that cleanup cancellations improve the tail latency of LÆDGE only marginally but, interestingly,

Figure 5.3 shows that adding PCs to LÆDGE-with-CC increases tail latency at some utilization

levels, starting from ∼30%. It turns out that cancelling the wrong copy of a hedged query

(the one that would have finished first) is an expensive mistake; without any sophisticated

completion-time predictors one is better off not cancelling at all.

To better understand these results, we completed a careful analysis of PCs and their effect

on tail latency. We define the “accuracy” of our LÆDGE policy with both CC and PC as the

proportion of PCs that correctly cancel the copy that would finish later. Overall, our policy

achieves > 99% accuracy—this is unsurprising given the rarity of IQ-jitter events. However,

once we consider only the PCs where at least one copy of the cancelled query experiences

IQ-jitter, our policy performs notably worse. For instance, at 40% system utilization, when

transitioning from S1 to S2 (i.e., from the state with hedged queries that started at the same

time to the state with no hedging) in the presence of IQ-jitter, our policy achieves ∼50%

accuracy. In this case the queries started at the same time and we have no extra knowledge

about them—so we randomly cancel one of them with 50% probability of it being the right one

(50% out of the total number of times when IQ-jitter stalled one of the queries while in state

S1). When transitioning from S4 to S2 (i.e., from the state with hedged queries that started at

different times to the state with no hedging), also at 40% system utilization, accuracy drops to

∼19% (out of the total number of times when IQ-jitter occurred in S4). Our policy does not

attempt to predict whether an IQ-jitter event is likely to have occurred and simply picks the

most-recently started copy. In the common case this is the right thing to do because the query

that started later would likely finish later (since the same queries running on replicas of the

same shard typically finish after a similar amount of time). In rare cases when a query that

stated first experiences IQ-jitter, our policy makes the wrong decision. We tried a number

of different heuristics including reverting the decision and cancelling the older query when

transitioning from S4 to S2: the heuristic that we chose yields better results than the other

ones we tried since it makes the right decision in the common case without IQ-jitter.

The bottom line is that cancellations pay off only if we can assume a good predictor of per-

formance hiccups due to system events—while this may sometimes be possible according to

Hao et al. [56], LÆDGE was designed in the absence of such assumptions.

5.3 Generalized LÆDGE Design

Extending the design of LÆDGE to an arbitrary number of replicas (i.e., more than two replicas)

is relatively straightforward: We follow the design principles from Idealized Hedge in Subsec-

tion 4.5.2 and (a) limit the number of simultaneously running hedged requests to two, and (b)

prioritize replication of the requests that have been running for a longer time, when there are

multiple choices available.

Algorithm 3 presents the design of the plain LÆDGE policy, i.e., LÆDGE without cancellations,
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Figure 5.3 – 99th percentile latency as a function of utilization. Comparing LÆDGE with CC+PC
vs. other LÆDGE flavors and Idealized Hedge. Same setup as in Figure 4.1a.

in the event of both request and response arrivals. Algorithm 3 is much simpler than the

corresponding Algorithm 1 and Algorithm 2, because it does not include preemption of

already running requests. The other elements of Idealized Hedge design are present in LÆDGE

as well: replication on arrival only when resources are available, queuing-up requests per

shard, prioritizing pending enqueued requests over the replicated ones (to the extent possible

without implementing the cancellations), and, finally, delayed replication of already running

requests once the resources become available.

Generalized LÆDGE with cleanup cancellations behaves like LÆDGE in Algorithm 3 on re-

quest arrival, and like Idealized Hedge in Algorithm 2 on response arrival. Furthermore, the

generalized algorithm of LÆDGE with cleanup and pre-emptive cancellations is identical to

that of Idealized Hedge, with the main difference being the implementation of the function

end(r equest); in case of Idealized Hedge this function is the implementation of the non-

existent perfect predictor of query completion times, while in case of LÆDGE with CC+PC this

is the implementation of our simple and rather accurate heuristic.

Figure 5.4 shows that LÆDGE continues to achieve a significant part of the tail latency reduction

of Idealized Hedge, even for the larger number of replicas. The simulation behind the Figure 5.4

is set up the same way as that in Figure 4.4 in the previous chapter. As we increase the number

of replicas from 2 to 6 we notice the following:

First, adding cleanup cancellations brings around 3× more tail latency reduction with 6

compared to 2 replicas, but only for a very narrow range of utilization.

Second, as in Idealized Hedge, the tail latency curves of all the LÆDGE policies are shifted
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Algorithm 3: Generalized LÆDGE

1 SQ[i ] ← [ ], i ∈ [1, . . . ,nshar d s ] ; // Initialize a shard queue (SQ) per shard
2 on request r arrival
3 for each shard s do
4 if available replicas of shard s ≥ 2 then
5 send r and r ′ to 2 random replicas of shard s ; // Replication on arrival
6 else if available replicas of shard s == 1 then
7 send r to the available replica ; // No replication
8 else
9 enqueue r to SQ[s] ; // Enqueue to the shard queue

10 end
11 end
12 end;
13 on response q arrival from node n serving shard s
14 if size(SQ[s]) > 0 then
15 pop a pending request p from SQ[s] ;
16 send p to n ; // No replication

17 else
18 if ∃ a non-replicated unfinished request ri on shard s then
19 replicate the oldest ri to node n ; // Delayed replication
20 end
21 end
22 end;

to the right; that is, in the case of a larger number of replicas, LÆDGE also achieves higher

utilization before the latency spikes. For example, in Figure 5.4c the tail latency stays the same

as the minimal latency of Naïve Hedge and the latency of Idealized Hedge, all the way up to

60% system utilization.

Third, with the larger number of replicas we can see that the gap between Idealized Hedge

and the LÆDGE policies gets a bit wider, before LÆDGE quickly converges back to Idealized

Hedge and Per-Shard Queuing. This is due to the lack of pre-emptive cancellations in the

shown LÆDGE policies (we omit LÆDGE with CC+PC due to the negative result analyzed in

Section 5.2.1).

5.4 Beyond One Example

We now extend our observations beyond the specific setup of Figures 5.2 and 5.3: how well

does LÆDGE fulfill the hedging potential as the cluster size and nature of IQ-jitter vary?

We consider the same scenarios as in Section 4.6.1 and summarize our results in a similar

set of heat maps (Figure 5.5). To assess how well LÆDGE approximates Idealized Hedge, we

have to compare the heat maps. To simplify the comparison, we introduce Table 5.1, which

summarizes the comparison of figures where hiccup duration is 15× P̄ (Figures 4.7a, 5.5a,

5.5c, and 5.5e), and 30× P̄ (Figures 4.7b, 5.5b, 5.5d, and 5.5f).

Table 5.1 shows the percentage of the “surface” of each heat map that indicates improvement
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(a) 50×2 leaves (2 replicas per shard)
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(b) 50×3 leaves (3 replicas per shard)
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Figure 5.4 – Demonstration of the behavior of LÆDGE and LÆDGE with CC for different number
of replicas: 99th percentile latency as a function of utilization, with hiccup probability 1

1000 ,
and hiccup duration 15× P̄ .
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above a certain threshold (20%, 30% and 40%). For instance, consider the row that corresponds

to hiccup duration 30× P̄ and cluster size 50×2 leaves, and the two columns that correspond

to Idealized Hedge and LÆDGE, with > 30% latency improvement; the two cells where this row

and columns intersect indicate that Idealized Hedge achieves such improvement for 29.7 % of

the data points, while LÆDGE does for 12.6 % of data points.

To summarize, LÆDGE fulfills as much as half of the hedging potential, depending on the

setup. Consider again the columns that correspond to Idealized Hedge and LÆDGE with > 30%

latency improvement, and compare the values of these two columns that are in the same row;

LÆDGE improves from 23% to 56% of the data points that are improved by Idealized Hedge (i.e.,

that could possibly be improved through hedging). In general, LÆDGE is closer to Idealized

Hedge for the medium and large clusters and the longer hiccup duration.

On a side note, LÆDGE does not deteriorate lower latency percentiles compared to Per-Shard

Queuing (including the median), but, as we saw, it improves the tail. The rare hiccups that we

analyzed, however, only influence the tail — not, for example, the 50th percentile latency.

Finally, we should note that, out of curiosity, we experimented with two more types of

application-independent noise (other than bimodal): exponential and bimodal+exponential.

For the former, not even Idealized Hedge can improve tail latency, Per-Shard Queuing is the

best policy, and LÆDGE performs almost the same as Per-Shard Queuing; this is not surprising,

given that hedging was invented to deal with noise due to unpredictable system events, which

is better modeled with a bimodal distribution. For the latter, the results were almost identical

to the ones we got for bimodal noise.

Next, we examine the impact of cancellations—do they, in general, improve tail latency enough

to be worth the effort?

5.4.1 Are Cancellations Worth the Effort?

First, our sensitivity analysis confirms that cleanup cancellations (CCs) improve LÆDGE only

marginally. At lower utilizations, CCs are not needed because there is always sufficient capacity

in the system, while at higher utilizations CCs are less important because there are fewer

hedged queries executing anyway due to the load-awareness of LÆDGE. While Figure 5.2 made

this clear for one specific setup, Figure 5.6 demonstrates it for the full parameter space. The

intensity of each data point in Figure 5.6 shows the improvement in 99th percentile latency

that LÆDGE with CC brings relative to LÆDGE without any cancellations; the darker the area

the bigger the improvement of the tail latency. To quantify this improvement consider the

columns of Table 5.1 that correspond to LÆDGE and LÆDGE with CC; on average, LÆDGE with

CC offers the same improvement to 2.3% more data points than LÆDGE when hiccup duration

is 15× P̄ , and to 5.6% more data points than LÆDGE when hiccup duration is 30× P̄ .

Second, our sensitivity analysis confirms that pre-emptive cancellations (PCs) have a marginal

impact on LÆDGE, which is sometimes positive and sometimes negative. Similarly to Fig-
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ure 5.6 that evaluates the cleanup cancellations. Figure 5.7 shows the impact of pre-emptive

cancellations on the full parameter space (beyond our running example from Figure 5.2). The

intensity of each data point in Figure 5.7 shows the improvement in 99th percentile latency

that LÆDGE with CC+PC brings relative to LÆDGE with CC; areas where the improvement is

positive are grey, while areas where it is negative (i.e., PCs increase tail latency) are red. While

the impact is mostly marginally positive, there exist a few areas of highly negative impact. We

have already discussed the intuition in Section 5.2; this graph indicates that the effect persists

across the parameter space.

In a way, the non-effectiveness of cancellations is good news for application developers: Can-

cellations can be complicated and expensive to implement, requiring additional interaction

between the centralized scheduler and the leaves. The fact that our simulated zero-cost

cancellations bring no significant improvement to tail latency over plain LÆDGE without

cancellations, suggests that real-life cancellations are not worth the effort in our context.
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(a) LÆDGE, hiccup duration 15× P̄
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Figure 5.5 – Heat maps showing how much various LÆDGE policies improve the 99th percentile
latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis is hiccup probability.
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(c) LÆDGE with CC, hiccup duration 15× P̄

0 1
Utilization

(5 x 2 leaves)

10−5

10−4

10−3

10−2

10−1

Hi
cc
up

 p
ro
ba

bi
lit
 

0 1
Utilization

(50 x 2 leaves)

0 1
Utilization

(500 x 2 leaves)

20

30

40

50

60

70

80

90

%
 im

provem
ent

(d) LÆDGE with CC, hiccup duration 30× P̄

Figure 5.5 – (cont.) Heat maps showing how much various LÆDGE policies improve the 99th

percentile latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis is hiccup
probability.
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(e) LÆDGE with CC+PC, hiccup duration 15× P̄
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(f) LÆDGE with CC+PC, hiccup duration 30× P̄

Figure 5.5 – (cont.) Heat maps showing how much various LÆDGE policies improve the 99th

percentile latency relative to Per-Shard Queuing. x-axis is system utilization; y-axis is hiccup
probability.
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(a) Latency reductions through Cleanup Cancellations; hiccup duration: 15× P̄
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(b) Latency reductions through Cleanup Cancellations; hiccup duration: 30× P̄

Figure 5.6 – Heat maps showing how much LÆDGE with CC improves the 99th percentile
latency relative to the plain LÆDGE policy. x-axis is system utilization; y-axis is hiccup proba-
bility.
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(a) Latency reductions through Pre-emptive Cancellations; hiccup duration: 15× P̄
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(b) Latency reductions through Pre-emptive Cancellations; hiccup duration: 30× P̄

Figure 5.7 – Heat maps showing how much LÆDGE with CC+PC improves the 99th percentile
latency relative to LÆDGE with CC. x-axis is system utilization; y-axis is hiccup probability.
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6 Measuring and Mitigating IQ-jitter in
the Cloud

This chapter goes beyond the synthetic workloads and simulations from the previous two

chapters:

We first show how to measure the distribution of IQ-jitter of a real-world application, which

can then be used to estimate the potential benefits of hedging for different deployments like

we have seen in the previous two chapters.

A real system includes different overheads that we did not account for in our simulations, for

example the networking delay. Could that perhaps change our conclusions and render pull-

based policies useless? We then show, in Section 6.2, that this is not the case by implementing

the main push and pull-based policies within an existing OLDI framework [48, 49] and by

using it to schedule a real-world application in a public cloud.

6.1 Empirical IQ-jitter Measurement

Config. AVG(P + J) (ms) AVG(P) (ms) AVG(J) (ms)
Hiccup
prob.

Hiccup
duration
(ms)

Compute-
optimized
VM

0.834 0.637 0.198 0.0027 10.162

General-
purpose
VM

1.367 0.926 0.444 0.0109 10.249

Table 6.1 – Comparison of the service time components of different configurations of Lucene.
J is the IQ-jitter of the Lucene workload, while P is its service time without the IQ-jitter. P is
measured by executing each query many times and retrieving the minimum execution time
for each query, while J is measured as the difference between each execution time and the
corresponding P . Hiccup probability and hiccup duration describe J .
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Figure 6.1 – Distributions of service-time components measured on two different VM types.
The four query types are shown separately from the aggregate distribution (“all”).

The distribution of IQ-jitter varies based on the workload, the underlying hardware, co-located

applications, the initial state of the system, to name a few reasons. While we cannot know the

precise distribution of IQ-jitter in the deployment cluster in the public cloud before we run

our workload at full scale, we can estimate it by running our application on a single machine

in the public cloud using a sample workload.

As an example of a real-world application we use Lucene, which is a popular open-source,

enterprise search engine. It is representative of OLDI services because (1) it involves sharding,

and (2) client requests are interactive, with expected latency in the millisecond-scale.

Our workload is Lucene’s standard nightly regression test, which consists of ∼10,000 search

queries belonging to four different types: phrase, term, multiterm and boolean [84]. The data

consists of an inverted index of 18 million Wikipedia English web pages [131] split into 16 sub-
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indices (for parallel execution in 16 threads). Lucene comes in C++ and Java implementations;

we used the former [85].

So, what is the IQ-jitter experienced by our Lucene workload? To answer this question, we

executed the 10,000 queries of our workload 1000 times each, in a random order, always on the

same server type. Consider a specific query Q. For each execution of this query, Qi , i = 1...1000,

we measured the service time Si (which does not include any queuing or network delay). We

approximated the application-dependent component of the service time experienced by Q as

the minimum service time across executions: P (Q) = mini=1...1000 Si . Then we approximated

the IQ-jitter experienced by each query execution Qi as Ji = Si −P (Q). By putting together all

the IQ-jitter values for a given query type, we obtained the IQ-jitter distribution for this query

type.

Figure 6.1 shows (in the form of CCDFs) the empirical distributions of P , J , and P + J , for the

four query types of our workload and for the two different server types. The curves differ in

length as P ’s distribution size depends on the number of queries (∼10,000), whereas the two

other distribution sizes depend on the duration of the measurement experiment. Table 6.1

states the mean values of service time and its P and J components, as well as J ’s hiccup

probability and duration, for each server type.

We observe that IQ-jitter is substantial in both server types and that the empirical distributions

are consistent with our simulation setup: the application-dependent component (P ) can be

well approximated with an exponential distribution (a straight line on a log-based CCDF),

while the IQ-jitter component (J ) has a clear bimodal nature. This holds across the four query

types that vary significantly in complexity (with “multiterm” queries being the most complex

ones).

We also observe that the compute-optimized VMs experience IQ-jitter of lower hiccup proba-

bility (but similar hiccup duration) than the general-purpose VMs (compare the right-most

CCDF in each of Figures 6.1a and 6.1b). We investigated the reason and found that a signifi-

cant part of IQ-jitter is due to involuntary rescheduling of Lucene threads, which occurs less

frequently in the compute-optimized VMs.

Figure 6.2 shows the same data as that in Figure 6.1, but from a different perspective. Once

again we show the data for the two VM types in separate figures, and in each figure we show

the individual measurements of J for each of the four query types. On the x-axis we show the

order number of the query. We can see that different query types are differently represented in

the nightly benchmark. One red dot in each of the four subplots in Figures 6.2a and 6.2b is a

result of a single latency measurement for that query, minus the smallest-ever measurement

obtained for that query (which is the value of the blue line, P , for that query). Note that the

IQ-jitter samples are ordered by their corresponding values of P in the ascending order.

Of course, different Lucene deployments may experience less IQ-jitter: If the same workload

runs on fully-controlled physical machines, e.g., in a dedicated datacenter, IQ-jitter can be
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reduced by tweaking the OS or the application itself to mitigate the impact of involuntary

thread rescheduling on tail latency. We consider our experimental setup as a representative

example of a noisy realistic environment for running interactive services in the public cloud.

(a) Compute-optimized VM

(b) General-purpose VM

Figure 6.2 – IQ-jitter measurements (the red datapoints) on two different VM types sorted by
the increasing value of P (the blue line) within each query type. The x-axis shows the order
number of the query (not all query types are equally represented), while the y-axis shows the
latency in milliseconds.

6.2 Mitigating Tail Latency in the Public Cloud

We implemented two load-balancing policies (Random and Per-Shard Queuing) and two

hedging policies (Naïve Hedge and LÆDGE) in OLDIsim, Google’s open-source OLDI cloud

benchmarking framework [49].

The I/O part of the framework stayed unchanged: it uses the event-based libevent API [81]
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on top of vanilla Linux and TCP. We extended the framework with request generation following

a Poisson inter-arrival distribution. We changed its architecture to include the notion of shard

replication and a per-shard load balancer, i.e., from its original architecture in Figure 6.3a, we

changed it so that it fits that in Figure 6.3b. Finally, we implemented our load-balancing and

hedging policies.

Shards

Root Root Root Root

Leaf Leaf Leaf

(a) Original OLDIsim architecture.

Per-shard
LB

Root Root Root Root

Replicated
shards

PSLB PSLB PSLB

(b) OLDI architecure with per-shard load balancers

(PSLBs).

Figure 6.3 – Original OLDIsim architecture and the architecture with PSLBs.

We ran the Lucene workload on AWS EC2 virtual machines (VMs), organized in a “cluster”

placement group [3]. We used two VM types: (1) compute-optimized instances with 16 vCPUs

@3.0 G H z and 32 GB of memory (c5.4xl ar g e), and (2) general-purpose instances with 16

vCPUs @2.2 G H z and 64 GB of memory (m5a.4xl ar g e). All VMs were running the default

Ubuntu 16.04.6 image, kernel version 4.4.0-1092-aws. The round-trip time between any two

VMs in our setup amounts to 90 µs, on average. This corresponds to 10.8% of the mean service

time of the compute-optimized workload (which is the one with shorter service time).

We deployed 5×2 leaf servers, i.e., 5 distinct shards, each replicated in 2 leaves. When a leaf

executes a query, it uses 16 parallel threads (one per vCPU). To avoid the introduction of

data-driven bias in our results, we replicated the same reversed index on all 5 shards (though,

from the point of view of the application, they are still distinct shards served by different

leaves). This decision simplifies the comparison with the simulation results in Chapter 5,

without fundamentally changing the conclusions.

We deployed a single root node and ran 5 distinct per-shard load balancers. We chose to co-

locate the per-shard load balancers with the root node. Note that deploying more root nodes

is possible when a single one cannot keep-up with the load. In that case one needs to also

deploy a pre-root load balancer “before” the root nodes that will assign each request to one of

them (see Section 2.5.3). Such a load-balancer was already available in the OLDI framework

that we extended, and we did not change its behavior. Note that in our case, additional root

nodes were not needed due to the relatively high service time of our chosen application.

We measured the end-to-end latency experienced by our Lucene workload under varying
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system load. Figures 6.4a and 6.4b show the 99th percentile latency as a function of system

utilization, for the two server types, respectively. The x-axis is capped at 100% utilization which

is computed from the average service time without the IQ-jitter (P̄ ), as in our discrete-event

simulations in the previous chapters (see Section 4.4).
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Figure 6.4 – Mitigating the Lucene hiccups in a system implementation deployed on 2×5
leaves in EC2 VMs.
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LÆDGE behaves as expected: it matches Naïve Hedge at low utilization, converges to Per-Shard

Queuing at some point, and outperforms the best alternative in between. The exact behavior

depends on server type: On the compute-optimized VMs, LÆDGE converges to Per-Shard

Queuing at about 60% utilization; before that, it improves tail latency by 49%, or 5.3 ms,

on average, relative to Per-Shard Queuing. On the general-purpose VMs, convergence to

Per-Shard Queuing happens quite earlier—at about 27% utilization—and the improvement

of tail latency before that point is somewhat smaller (40%, or 4.7 ms, on average). This

is due to our workload experiencing more frequent hiccups on the general-purpose VMs.

General-purpose VMs are recommended for application development and testing, unlike

the compute-optimized ones that are recommended for high-performance web and gaming

servers [9], which is much closer to our OLDI scenario.

Our LÆDGE implementation (deployed in a public cloud with real system noise and non-zero

network latencies) behaved as our simulation predicted: When we use compute-optimized

VMs, our experimental setup consists of 5×2 leaves with IQ-jitter of hiccup probability 0.0027

and hiccup duration 15.95× P̄ (Table 6.1). The closest simulated setup is a cluster of the same

size with IQ-jitter of the same hiccup probability and hiccup duration 15×P̄ . This corresponds

to the leftmost heat map in Figure 5.5a, y-axis value 0.0027 (which is close to the base of

the triangular shape of the heat map). If we observe this heat map at the given y-axis value,

we can see that our simulated LÆDGE policy significantly outperforms PSQ until utilization

∼40% and then converges to PSQ at utilization ∼60%—exactly the behavior of our LÆDGE

implementation.
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7 Related Work

7.1 Hardware-Based Techniques for Measuring Latency Variability

In Chapter 3, we study the latency measurement features of one of the most expensive pieces

of hardware that engineers use to measure latency, namely a proprietary load generator from

Spirent [121]. We also study a commodity NIC that has only the NIC timestamps tailored to the

precise requirements of IEEE 1588 time synchronization—which is still the most commonly

found type of timestamps in the NICs available today. There is a large spectrum of devices

available in between these two extremes that are studied in the literature.

Weber et al. [129] re-purposed a programmable P4 switch [8] and implemented a hardware-

based traffic generator with similar timestamping and throughput capabilities as the propri-

etary hardware devices, but with much more programmability regarding e.g., packet inter-

arrival times. The price of a P4 switch is significantly lower than that of a high-end specialized

hardware appliance with advanced features such as the Poisson inter-arrival times, but still

higher than the price of a commodity server. In our analysis in Chapter 3, we expect this tool

to perform as well as Spirent.

Caliper [45] and OFLOPS [113] are FPGA-based tools built on top of the NetFPGA platform [46];

we used Spirent instead.

Zilberman et al. [139] focused on dissecting one-way latency from the wire to the application

up to the ns-scale latency. Their methodology relies on Data Aggregation and Generation

(DAG) cards that have precision comparable to Spirent’s. They used a latency-optimized

NIC that relies on a proprietary driver and a proprietary kernel-bypass framework [40] and

a Solarflare NIC [120]. While they focused on the best possible case in terms of hardware

and software setup on the measured side, in Chapter 3 of this dissertation, we evaluated

commonly-used techniques in academia and industry on the measuring side. Both sets of

results show that kernel-bypass improves tail latency by 20−40µs.

Kogias et al. [73] leverage NIC-based hardware timestamping to measure RPC end-to-end
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latency. They use a new Mellanox NIC (ConnectX-4 [90] or newer) that costs more than the NIC

we used in our study in Chapter 3, but that in exchange offers general-purpose timestamping

for all incoming and outgoing packets. Therefore, unlike the NIC that we used, ConnectX-4

can timestamp even the TCP packets at line rate. This type of hardware feature enables them

to measure RPC latency. This is not possible using the NIC timestamps tailored to the precise

requirements of IEEE 1588 time synchronization—which are still the most commonly found

timestamps in today’s commodity NICs.

7.2 Taming Map-Reduce Latency

Early attempts to reduce tail latency studied long-running map-reduce jobs with execution

times measured in seconds or minutes [29]. This timescale allows for “observe-then-predict”

type of algorithms, with sophisticated execution profiling based on which a decision can be

made about when it pays off to hedge [5, 6, 101, 136]. Map-reduce systems such as LATE [136],

Mantri [6] and Dolly [5] leveraged the idea of hedging to mitigate the stragglers that would

delay the entire phase. Our work focuses on interactive services which lack some pre-requisite

metrics (e.g., the number of bytes left to read from the input) and do not lend themselves to

heavy-weight profiling.

7.3 Reducing Latency in OLDI Services

The timescales at which OLDI services operate are much smaller than the timescales of map-

reduce type of applications. Therefore, many of the techniques discussed in Section 7.2 are

not applicable to OLDI services, or applying them is extremely challenging. In this section we

give an overview of studies that are also concerned with optimizing latency in OLDI services.

7.3.1 Optimizing Inter-Query Service Time Variability Through Adaptive Paral-
lelism

Many researchers have tried to predict the service time of interactive services and accordingly

adjust the level of parallelism in the processing nodes or prioritize short-running queries over

long-running ones [57, 72, 87, 122].

Haque et al. [57] noticed that blindly parallelizing all queries quickly saturates hardware

resources without yielding significant benefit for tail latency of short requests. Through

exhaustive offline profiling phase, they extract the policy that adds parallelism based on

dynamic system load and execution time progress. The intuition is that parallelism should be

added only for long running requests and when the load allows it.

Kim et al. [72] do not just follow a fixed policy to incrementally add parallelism, but they run

a prediction algorithm on a number of static and dynamic features retrieved from a query
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and its execution to estimate its duration. The key insight to increase the accuracy of the

predictions is to wait a certain amount of time D before running the predictor because short

queries are likely to simply finish during that time.

Sriraman et al. [122] developed an interesting load adaptation system that curtails microservice

tail latency by exploiting inherent latency trade-offs revealed in their taxonomy and use it to

transition among threading models.

These type of techniques actually reduces only the predictable component of the service time,

P , and therefore reduces inter-query service time variability. This is orthogonal to the topic of

this dissertation that focuses on the unpredictable intra-query service time variability, in the

context of OLDI services.

7.3.2 Early Stop

In some cases it is possible to reply to a user’s request before all the query replies have arrived.

In the literature, there are two main scenarios in which this is acceptable:

First, in some OLDI setups it is acceptable that the accuracy of OLDI results is sacrificed to

achieve lower latency. He et al. [60] introduced a scheduling model for interactive services

where lower result quality can be traded for shorter execution time. Ravindranath et al. [110]

implemented a deadline-aware system that enables a server to adapt its processing time to

control the end-to-end delay for the request.

Second, in systems with scheduling techniques based on erasure coding the final result can

be decoded when a part of queries finish. Rashmi et al. [109] divide each object into k splits

and store them in a (k +r ) erasure-coded form. Their encoding is such that any k of the (k +r )

splits are sufficient to read an object. Kosaian et al. [76] apply a similar technique with the

help of machine learning and target it for machine learning workloads to reconstruct failed or

missing predictions.

Such approaches are orthogonal to scheduling techniques proposed in this dissertation, and

they can be integrated in our LÆDGE policy to further reduce the response times.

7.3.3 Hedging at Low Latencies

Dean et al. [28] were the first to demonstrate that policies such as Naïve Hedge and d-Hedge

can be applied to mitigate latency variability of interactive services and their Bigtable work-

load [24]. State-of-the-art reissue policies such as p-Hedge [68] address the throughput

limitations of Naïve Hedge and d-Hedge. Mirhosseini et al. [92], advocate single-queue solu-

tions (equivalent to Per-Shard Queuing in our work) as a plausible means to reduce tail latency

in the presence of jitter. We show in Section 4.6 that approaches based on Per-Shard Queuing

outperform carefully-designed hedging approaches that do not use a single queue per shard.
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7.3.4 Advanced Load Balancing

Lu et al. [83] decouple discovery of lightly-loaded servers from job assignment that works with

multiple root nodes. Since it offers no redundancy, this technique is prone to increased tail

latency in the presence of IQ-jitter. “Snitching” is another interesting LB technique in which

the application (e.g., document aggregator in the root node) monitors request latency and

picks the fastest replica [7, 123]. This technique also offers no redundancy and is ineffective in

case of bursty noise [56].

7.3.5 Cancellations

Ananthanarayanan et al. [5] previously observed that cancellations do not improve tail latency

of map-reduce workloads. While recent advances have shown that the future of canceling

microsecond-scale RPCs is promising [20], cancellation mechanisms often require non-trivial

application changes and language-specific mechanisms to avoid memory leaks and inconsis-

tent application state (e.g., even in [20] memory leaks remain a problem). Bashir et al. [14]

heavily rely on the use of cancellation and suggest their implementation at multiple points

in the software stack. Bashir et al. also rely on prioritization of new over duplicated requests,

similarly to our policies. Dean et al. [28] suggest “tied requests”, in the context of cluster-level

distributed file system [28], which correspond to Naïve Hedge with CCs. Some state-of-the-art

hedging policies rely on application-specific or operating-system-level instrumentation to

increase the accuracy of scheduling and cancellation decisions [56]. Our own LÆDGE with PC

currently uses a trivial policy which can be deployed everywhere, including in the cloud. We

leave the study of the combination with profiling for future work.

7.4 Infrastructure Jitter

Section 2.3 includes numerous examples of system events that cause jitter. Hao et al. [56]

provide operating system support to cut millisecond-level tail latencies by adding the SLO

information to the operating system and up front rejecting the requests that cannot meet the

deadline, relying on the scheduler to send the request elsewhere. They observe and quantify

noise in EC2 with a focus on disk read and write jitter. Our work focuses on in-memory,

CPU-bound applications, which also observe a varying amount of jitter determined in part by

the underlying cloud VM.
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8 Conclusion

This dissertation advanced the area of latency measurements and latency mitigation of Inter-

net services. We showed how to measure microsecond-scale latency variability both cheaply

and reliably. Latency-variability is a indeed a real problem for service providers that try to

operate under tight service-level objectives. Even for those running Internet services in the

public cloud, there is a large potential in mitigating their latency variability by combining

pull-based load balancing with load-aware request-reissuing techniques.

First, in Chapter 3 we addressed the problem of unreliable latency measurements of commod-

ity measurement tools that many researchers and engineers use on a daily basis. We focused

on µs- instead of ns-scale measurements for comparing software- and hardware-based tools,

because the former is a “gray area” where optimized software techniques might still stand a

chance. We compared some commonly used tools and techniques to a high-end hardware

appliance to determine how (un)reliable they are. During the “calibration” phase we used a

hardware switch that has predictable and constant service times at microsecond granularity

under our traffic pattern. This gave us the baseline of the overheads coming from the tools

themselves. We then benchmarked subtle differences in the latency distribution of a soft-

ware function with different operating-system configurations. A good tool should be able to

measure and tell apart those configurations that often give a headache to engineers (ideally

the measurements should be offset solely by a constant overhead that we retrieved from the

calibration phase).

Our results clearly show the benefit of measuring latency of packet requests and responses,

and more generally, of remote procedure calls within the NIC as opposed to CPU. We found

that kernel bypass and NIC timestamps can be used to measure microsecond-scale latency up

to 99th and 99.99th percentile, respectively.

Having reliable tools and knowing their overheads is important to measure latency variability.

Latency variability comes from many sources and having the right tools helps guide engineers

in the right direction. However, some sources of latency variability are both hard to predict

and impossible to eliminate in practice. In this case, one needs to resort to a higher-level
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technique such as request reissuing. Chapters 4 to 6 address the challenge of mitigating latency

variability through redundantly-issued requests. In this well-studied area we noticed that

existing techniques reissue either too many or too few requests, mostly because they reissue in

a way that does not adapt to the current system load. Our take on hedging therefore includes

load awareness and load balancing, i.e., our insight is that one should reissue a request only if

there are enough resources available.

In Chapter 4 we motivated the need for combining load balancing and hedging into a load-

aware policy. For that purpose we defined Idealized Hedge, our lower bound that perfectly

optimizes queuing delays due to Per-Shard Queuing, and hedges as much as possible without

delaying the new incoming requests. A part of the latency reductions of Idealized Hedge is due

to a perfect predictor of query-completion times that the policy uses to pre-empt the hedged

request that would have finished later in the future. In a realistic setting, such a policy is not

possible to implement. We use Idealized Hedge to define an upper bound on the gains that a

realistic hedging policy could implement.

Having an upper bound on the gains of hedging can help us understand what types of work-

loads benefit from this general technique, but in order to achieve these benefits we need a

policy that can be implemented in a real system. Our attempt to approach Idealized Hedge is

called Load-Aware Hedge (LÆDGE), presented in Chapter 5. LÆDGE comes in three different

flavors: without cancellation, with cleanup cancellations, and with both cleanup and pre-

emptive cancellations. We showed that combining single-queue load balancing with hedging

results in a policy that can outperform the state of the art and closely approach our lower

bound even without cancellations.

One of our observations from Chapter 4 is that hedging only makes sense in the presence of

intra-query jitter (IQ-jitter), which is our metric that formalizes system hiccups. In Chapter 6

we showed how to extract IQ-jitter of a real application. We then validated the benefits of

LÆDGE experimentally with a cloud-based deployment of an interactive web search applica-

tion. We achieved significant reductions in tail latency in a real system, and confirmed that

our system results closely match what our simulation predicted.

8.1 Future Work

Some remarks from our work on hedging in Chapter 4, Chapter 5, and Chapter 6 are (i) hedging

yields latency reductions only when latency variability is significant, (ii) pull-based scheduling

policies are less effective as networking delay increases, (iii) cancellations help significantly

only for a particular range of utilization and some hiccup distributions. When an interactive

service is deployed in the Cloud, its properties, such as service time variability or network

delay between the nodes, might change dynamically. This means that in practice there is no

single optimal scheduling policy across the entire execution. Implementing an RPC framework

that would dynamically decide on the optimal scheduling policy (push or pull based, with or

without hedging and cancellations etc.) could be a beneficial future research direction for all
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kinds of distributed applications, and especially for interactive services.

In this dissertation, we focused on read-only workloads. Removing the read-only constraint

for the type of workloads to which our work can be applied is also an interesting direction for

future research.

8.2 Discussion

8.2.1 NIC Timestamps for Latency Measurements

The results we presented in Chapter 3 are specific to the type of hardware we had at our disposal

at the time this study was conducted. One of our main takeaways were that NIC timestamps

are highly beneficial, and enabling them at high throughput, and for arbitrary protocols, is

a worthwhile goal for future NICs. Fortunately, this hardware feature is already becoming

more widely available, for instance in the a new series of Mellaox NICs [90]. Meanwhile, kernel

bypass networking has become more widely used and remains the best software-only solution

for a latency-measurement tool that does not require changing the kernel.

8.2.2 Scheduling Discipline in the Processing Nodes

In Chapters 4, 5, and 6, we considered only a particular scheduling discipline in the processing

nodes, namely FCFS (see Section 4.3). Prior work shows that FCFS is the best non-preemptive

scheduling policy when optimizing for tail latency [80, 92, 130]. Note that regardless of the

scheduling discipline in the processing nodes, our insights are still applicable (after applying

the corresponding changes due to the change in the setup from Section 4.3). The sources

of IQ-jitter do not include the inherent complexity of a query; instead, the hiccups from the

system and the environment itself is what forms the distribution of IQ-jitter. Therefore, even

in the case of, for example, processor-sharing implemented in the leaf nodes, IQ-jitter still

causes increases in tail latency. Thus, the need for both hedging and load balancing remains.

8.2.3 Scalability of Per-Shard Queuing

Scheduling techniques based on Per-Shard Queuing naturally scale with more leaf processing

nodes as the queues are centralized only within a shard, and the degree of shard replication is

often small due to high costs of DRAM [89]. Each (logical) per-shard load balancer is in charge

of scheduling the requests for its shard. As the dataset grows and more shards are needed, this

design scales horizontally by simply adding more machines for per-shard load balancers (see

Figure 2.4).
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8.2.4 Fault-Tolerance of Per-Shard Queuing

Building fault-tolerant Internet services is a well-researched area for which we claim no novelty.

Our system design in Figure 2.4 is resilient to the failure of all of its components. The state in

per-shard load balancers is soft and can easily be reconstructed by querying the leaf nodes,

but simply starting from a clean slate is not a problem. The worst thing that can happen if

a part of the state of a per-shard load balancer gets lost is that short queues can build up in

the leaf nodes. The shards hosted by the leaf nodes are replicated across different leaf nodes.

Finally, since we also have multiple root nodes, if a root node fails another root node can

take over. For example, leaf nodes can have a list of backup root nodes for each particular

failed one. In most cases, a request can be fully reconstructed if there is at least one leaf node

still processing it. However, for most low-latency services the typical solution is to contain

the failure and return an appropriate error message, rather than trying to fully recover user

requests.

8.3 Conclusion

In this dissertation we emphasized the importance of latency variability for various applica-

tions, from network services to OLDI applications. Understanding the precision of the tools

we use to measure them helps us identify the underlying problems. For microsecond-scale

latency variability, one should use either hardware-based solutions, or software-based ones,

enhanced with kernel-bypass networking.

It is time to integrate pull-based solutions and centralized queuing within OLDI frameworks.

We claim that such solutions are now feasible using modern data-center technologies such

as kernel-bypass, data-plane operating systems, programmable switches, and RPC-aware

protocols [18, 74, 102–104]. While pulling may be inappropriate in the context of µs-scale

service times (e.g., in key-value stores), its overhead becomes negligible when the service

time is in the 100µs to 100ms range, as is the case with most OLDI applications (e.g., web

search [57]). Even when using a commodity vanilla Linux networking stack, we showed in

Chapter 6 that latency can still be mitigated.

One can quantify when redundancy (i.e., hedging), as a general technique to reduce latency,

can bring latency reductions in a certain service deployment, before the deployment takes

place. The key to achieving this is modeling the workload and designing a lower bound that

hedges as much as possible and perfectly undoes its wrong decisions with the help of perfect

predictor of query completion times.

When hedging makes sense, the decision to hedge must depend on the state of the queues (as

in our LÆDGE policy) and be tuned for the amount of resources available. Hedging should not

be tied to a (randomized) delay metric (as in d-Hedge or p-Hedge).

Hedging does not solve the general tail-at-scale problem: it can help only when there exists
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8.3. Conclusion

IQ-jitter, and—our results suggest—only under specific operating conditions, determined

by different characteristics of the workload and deployment including system utilization,

IQ-jitter distribution, and fan-out. Even though our community has long studied service-time

variability on an end-to-end basis, we now need to study and understand IQ-jitter separately

from overall service-time variability, as otherwise we cannot design proper hedging policies

and understand their benefit.
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