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Abstract

"The cost of training machines is becoming a problem". This is the title of an article from The
Economist published in June 2020 that highlights the staggeringly unappreciated the financial
impact of AI [38]. However, these costs on are not limited to monetary concerns but also
accrue a concerning environmental toll. One round of training for some of the most complex
machine learning models can emit millions of kilograms of carbon dioxide due to the electricity
consumed∗. With the growing popularity of ML and the digitization across all sectors, there
should be a growing awareness of the potential impact of these technologies on the environment
and their potential contribution to climate change. Then, their use could be rationalized and
steps can be taken to responsibilize the offset of their impact. We hereby propose CUMULATOR:
an open-source API to quantify and report the carbon footprint of machine learning methods.
As a demonstration, we integrated this API within an ML based medical research platform called
Alg-E, which will be used in a large scale medical research project in Tanzania and Rwanda.
We use CUMULATOR to analyse the trade-off between accuracy and carbon footprint within
Alg-E and extend it with simple visualisations. In parallel, we also propose a Carbon Statement
Protocol to quantify and report the carbon footprint of individual work, which uses this project
as a proof-of-concept. This protocol and CUMULATOR thus comprise a great set of tools to
report the carbon footprint of a large-scale medical research trial and EPFL research projects in
the future.

∗The following syllogism:
First premise: «one round of training for the biggest models can cost “millions of dollars” in
electricity consumption ». This sentence is an excerpt from an article by The Economist that
reports the words of Jerome Pesenti, Facebook head of AI, in June 2020 [38].
Second premise: one million of $US dollars in electricity consumption is roughly equivalent to
the emissions of 4.8 millions kilograms of CO2 along the electricity life cycle. Indeed, on average in
the US, the electricity cost is 10.29 cents/kWh ([42], in 2020) and 494 grams of carbon dioxide is
emitted per kilowatt-hour consumed ([18], in 2018). This makes 4.8 kgCO2/$US by simple unit
conversions.
Conclusion: one round of training for the biggest [machine learning] models can emit millions of
kilograms of carbon dioxide due to the electricity consumed.
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Background

Climate Change is a complex phenomenon that involves global temperatures and sea-level
rise, warming and acidification of oceans, glacial retreat, decreasing snow cover, extreme events
on earth. The Intergovernmental Panel on Climate Change reported that "Scientific evidence
for warming of the climate system is unequivocal" [9]. Its evolution is closely connected with
many factors which influence energy flows in earth atmosphere, including greenhouse gases
(mainly water vapor H2O, carbon dioxide CO2, methane CH4, nitrous oxide N2O, ozone O3).
Those molecules are mostly generated by a static set of sectors (Electricity & Heat production
25%; Agriculture, Forestry and Other Land Use 24%, Industry 21%; Transportation 14%; Buildings
6%; Other 10% [13]) and their emissions is dramatically rising (Figure 1.1). The carbon foot-
print measured in mass of carbone dioxide equivalent (gCO2eq) is indeed a standard indicator
to quantify the amount of greenhouse gas emissions [6] [28]. In a nutshell, the world energy
resources are limited and electricity production has the highest impact on climate change.

Figure 1.1: Evolution of total
greenhouse gas emissions by
human activities (kilotons of
CO2eq), 1970-2012 [41]

Moreover, subdomains such as the IT sector are rapidly
evolving, and avidly consume energy. According to the Shift
Project, a french think-tank about digital sobriety, the energy
consumption of digital technologies will double between 2015
and 2025 ([24], "Full Report"). While images of landfills with
piles of disused computers can help convey the cost of wasteful
hardware manufacture and use, the carbon cost of computing
is much less tangible. Indeed a single Google search consumes
on average 0.2 gCO2eq [17]. As each second 63,000 Google
searches are launched, this has an equivalent footprint of 12.6
kgCO2eq per second on any given day [11].

Perhaps surprisingly, there is currently little research in sus-
tainable AI and only a few tools to monitor the carbon footprint
of computing with no independent benchmarking. Indeed,
most AI papers tend to target accuracy rather than efficiency
[35]. Several research groups called for such a reference tool to estimate carbon footprint of
machine learning (ML) algorithms [23] [37] [16]. The community can be optimistic since frame-
works to compare ML methods have already been successfully implemented. For instance,
MLBench is an attempt to provide a fair benchmarking suite for referencing distributed ML
methods [29]. Also, the expansion of AI is massive. In the US, the share of jobs in AI-related
topics increased from 0.26% of total jobs posted in 2010 to 1.32% in October 2019, with the
highest share in machine learning (0.51% of total jobs). AI labor demand is growing especially in
high-tech services and the manufacturing sector [4]. The number of published AI-related papers
grew from 10k in 2000 to 60k in 2017 [5]. Due to the long time needed to fully deploy a new
technology to industry, one can expect that this increase in AI-related research will have a long
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term impact on the industry job market. Also, complex ML models are heavy energy consumers.
In 2019, researchers at the University of Massachusetts at Amherst released a startling report
estimating that the amount of power required for training and searching a certain neural network
architecture involves the emissions of roughly 284 tons of carbon dioxide, which is equivalent to
177 roundtrip flights between Paris and New York [37] [26].

Hence, from the dependency of machine learning on energy consumption and thus its impact
on climate change, the broader the usage of large scale machine learning methods, the more
critical becomes its optimisation in terms of carbon footprint. We should, therefore, consider
computing as a limited resource, and its use should be optimised and equitably distributed both
in its impact and target population.

AI innovations are going to revolutionise and democratise equitable access to health care
in resource-limited settings, including for diagnosis, patient management, and the rise of con-
tinuous distributed wearable health monitoring. Certainly, this is a worthwhile investment on
which to spend carbon, but optimised methods would nevertheless be able to minimise its
environmental impact. In the wake of genetic testing the size and dimensionality of datasets
are gargantuan (the European Molecular Biology and Bioinformatics Institute Laboratory hosts
14PB of data and the numbers are expected to double every year, GenBank hosts over 120 billion
DNA bases) [25]. They include millions of features as well as large quantity data in the form
of MRI images, microscopy, and text reports. Focusing on healthcare in limited-resource set-
tings, a tool collecting medical data (called e-POCT, for “electronic point of care test”) is being
trialed in several countries in Africa with plans for a larger scale up over the coming years. It
guides clinicians through the entire consultation and recommends treatment based on a few
clinical signs and POCT results [21]. Several aspects of this tool are being improved with ML
models, through the development of the Alg-E website, to provide more accurate and adaptive
symptom-to-treatment support while keeping interpretability and transparency.

This project investigates how to report the carbon footprint of ML methods, with appli-
cation on the Alg-E website and academia. As a proof of concept, we will report the carbon
footprint of this project and present a protocol for future researchers to follow to also derive the
environmental impact of their research.
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Aim and objectives

This project aims to raise awareness about the carbon footprint of ML methods and to encourage
further optimisation and the rationale use of AI-powered tools. For this, the project will focus
on communicating the carbon footprint of two applications 1) in a large scale medical data
analysis platform, and 2) in academia, to build an early awareness among clinicians, students
and researchers about the importance of the environmental impact of digital technologies.

G E N E R A L O B J E C T I V E

Objective 1, Perform a landscape analysis of the existing tools for calculating the carbon
footprint of computing and benchmark them

Objective 2, Present CUMULATOR which will be used to assess the carbon footprint of ML
methods in this project

M E D I C A L D A T A A N A L Y S I S

Objective 3, Integrate CUMULATOR to the Alg-E platform, to compute the carbon footprint of
each model under various conditions and communicate the trade-off between accuracy
and carbon footprint on the user interface

Objective 4, Generate a list of features required to calculate the carbon footprint of a large-scale
medical data analysis platform, such as will be used in the DYNAMIC trial

A C A D E M I C D A T A A N A L Y S I S

Objective 5, Create a protocol to help future researchers and students quantify the carbon
footprint of their projects
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Anthropology of the carbon footprint in ML
methods

This chapter provides the relevant material to support the project method, results, and limitations.
As mentioned in the background, the environmental impact of ML methods is directly linked
with its energy consumption. Carbon footprint can be derived by 1) calculating the energy
consumption of ML systems (computations and communication) and 2) converting this energy
consumption into an estimation of the carbon footprint (using the geographical distribution of
carbon footprint per unit of energy produced), see Figure 3.1.

Figure 3.1: Process to report the carbon footprint of ML methods

From an energy-meter perspective, ML methods consume energy by two different means.
The computations which happen locally inside a processor and the communication of data
packets before (dataset generation), during (parameter updates between different nodes of a ML
network) or after (model deployment) the training of the model. The rest of this section presents
the different concepts involved in the evaluation of the carbon footprint.
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3.1 Computational costs

The energy consumption of computations is reported usually either from 1) time of computation,
2) GPU/CPU (i.e. Graphic/Central Processing Unit) utilisation as a percentage, 3) FLOPs (i.e.
floating point operations per second) related metrics, 4) the number of parameters of the model
5) an energy monitoring interfaces, Running Average Power Limit (RAPL) or Application Power
Management (APM) [16]. However, an ongoing study showed that both FLOPs metrics and the
number of parameters of the model correlate poorly with energy consumption ([16] Appendix
B,E). Also, the GPU/CPU utilisation as a percentage refers to the number of busy clock cycles
over the number of clock cycles ran. The difficulty of the task (simple or expensive computations)
is not taken into account, and hence it is difficult to base precise energy consumption on this
criteria alone. The rest of this section describes the two remaining methods (1 and 5).

3.1.1 Time-based energy consumption

The calculation of the energy consumption base on time is straightforward: multiply the duration
of the computations (recorded at run time) by the Thermal Design Power (TDP) of the processor
(which is the power consumption under the maximum theoretical load [39]) and by the number
of processor(s) used. Aside from the wall clock training time, the duration can also be derived
from the time to run one full forward pass (and information on the number of steps before
convergence is needed to compute total time), which enables us to differentiate the computation
and the communication costs. The precision of the energy consumption can be improved by
referencing the right processor’s power consumption.

The main limitation of this method is that it assumes a 100% of GPU utilisation at maximum
load, hereby disregarding the optimisation made by frameworks used at a lower level to simplify
the complexity of computation load [16].

3.1.2 Energy and power monitoring at run time

In physics, power is the amount of energy transferred or converted per unit time. It is indeed
measured in the International System of Units in wattage which is a joule (a measure of energy)
per second (a measure of time).

As large scale ML tasks often require heavy computations and equally heavy energy consump-
tion, the more time and energy-efficient the processors are, the better. Power consumption is
therefore a key indicator of attractiveness for processor manufacturers. However, proving power
efficiency necessarily relies on the ability to perform power measurements at some point. Even
though ammeters are usually used for this, direct access to the component is needed which is
often difficult and not implemented as a base feature in modern complex miniaturised systems.
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To simplify power measurements at a CPU/GPU level, recent processors support software-based
power estimators such as RAPL and APM respectively produced by Intel and Advanced Micro
Devices (AMD) which have a duopoly in CPU shares worldwide, [2].

RAPL (Running Average Power Limit) and APM (Application Power Management) are low-
level interfaces based on a set of hardware performance counters (special-purpose registers built
into modern microprocessors to store the counts of hardware-related activities within computer
systems) which provide energy consumption information. In particular, they use model-specific
registers (MSR - control registers in the x86 instruction set used for debugging, program execution
tracing, computer performance monitoring, and toggling certain CPU features). For a complete
understanding, it is also worth to define here what is a processor register: a quickly accessible
location available to a computer’s central processing unit (CPU). The main purpose of those
models is to provide energy and power monitoring at run-time. This makes them excellent
candidates for carbon footprint estimation.

Even though these models are widely used, they are subject to limitations:

• They remain predictors of energy consumption, and do not provide physical measure-
ments.

• The update criteria for each new measurement on RAPL and APM are implemented differ-
ently. Hence, for studies at time scales lower than a second, one should parametrise those
models carefully to have significant results, [14] section III.D

• Several studies were performed to evaluate the accuracy of RAPL and APM compared to
state of the art power meters. It found that the models have a systematic error [14], and an
accuracy error of up to 22% [33] [22]

• A 2015 study benchmark of RAPL (versus high accuracy power meter) for different Intel
processors micro-architectures revealed an accuracy increase on newer Intel processors.
Indeed the RAPL implementation on the Haswell micro-architecture (2013) was almost
perfectly correlated with the power measurements [15] [22]

Energy monitoring with model-based interfaces is a working solution for environmental
impact calculations.

3.2 Communication costs

In recent years, data centers have emerged as an essential back-end infrastructure of the In-
formation and Communications Technology (ICT) industry [3]. ML becomes heavily used for
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large scale applications in the cloud [20], where the data is spatially distributed and needs to
stay local for privacy and energy preserving reasons. Recent research on optimisation of WAN
communication in geo-distributed ML led to a x1.8 to x53 training speedup with zero side-effects
[19]. This suggests that there is a large margin for the optimisation of communications in state of
the art methods.

In communications, the types of network (wired or wireless, LAN or WAN, etc) and the
number of relay nodes influence the energy consumption to transmit one data packet. Hence, it
is complex to compute the environmental impact. Knowing that large scale ML applications are
mostly cloud-based, we introduce work done by the Shift Project to evaluate the environmental
impact of data traffic in data centers ([24], "Materials", "Forecast Model"). Here the global data
traffic also referred to as data center IP traffic includes communications from 1) data center
to a user, 2) within data centers and 3) between data centers. In order to derive the carbon
footprint of communications, the interesting value is the energy consumption per-byte of data
transferred, as shown in Figure 3.2. We obtained it by dividing the energy consumption of data
centers (which scales in 100TWh) with the global data traffic (which scales in ZB, i.e. zettabytes,
or 1021 bytes). Their 2018 analysis reports those values between 2013 and 2016 and provides
estimates for 2017-2025 based on annual reports of the International Data Corporation, Cisco,
and Gartner [8].
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Figure 3.2: Evolution and prediction of the "1byte model", i.e. energy consumed per-byte of data
traffic in data centers

Data centers are becoming energy efficient with time: in Figure 3.2 the per-byte energy cost
could be divided by two between 2017 and 2025. The carbon footprint due to communication in
ML methods is directly influenced by this trend.
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3.3 Energy to carbon footprint conversion

The last step to derive the carbon footprint is to convert the energy consumption thanks to the
carbon intensity. The latter is defined as the amount of greenhouse gas emissions in grams
carbon dioxide equivalent per unit of energy produced (gCO2eq/kWh). This value depends
mainly on type of energy source (Figure 3.3) used to provide the electricity grid at the location of
the computing machine or data center. To our knowledge, the most complete map of carbon
intensities was created by an open source project called Electricity Map. Energy resources are
unequally distributed on earth, which leads to high variance of carbon intensity depending
on the geographical region (France: 68 gCO2/kWh, UK: 159, the Netherlands: 454, Australia:
492-761 depending on the region [43]) . However, the carbon intensity varies not only on the
source of energy, but also on the losses along the electric pathway. Indeed, the average European
carbon intensity increases by 130% between production and consumption [31]. Thus, the quality
of the electricity distribution infrastructure impacts the carbon intensity at consumption. In
conclusion, the most important variable to report for this energy to carbon footprint conversion
is the geographic location at which the computations are made.

Figure 3.3: Life cycle emissions from electricity generation in gCO2eq/kWh [7]

Since ML is mostly on the cloud, we investigate material to assess the carbon intensities
of data centers. According to Google patent "US20140247537A1", about the Medium Voltage
Power Distribution in Data Centers, data centers are connected to 4160 VAC (which is voltage
delivered in alternative current) on the grid and perform a step-down conversion to 240 VAC
on-site. This may not be the case for all data centers. However, it is reasonable to assume that the
losses during step down from High Voltage (HV) to Low Voltage (LV) will be of the same order of
magnitude when done on the grid or on-site. Since GPUs work on standard voltages (220-240 V)
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we should refer to the carbon intensity consumed at LV. The international standard "IEC 60038"
indeed describes voltages below 1 kV as Low Voltages.
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Method

This chapter presents and justifies the chosen approach for each objective.

4.1 Objective 1, Perform a landscape analysis of the existing tools for
calculating the carbon footprint of computing and benchmark
them

Since little previous work was undertaken at the EPFL Machine Learning and Optimization
Laboratory (MLO) regarding the carbon footprint of ML methods, a preliminary analysis of
the state of the art on the subject was necessary. We used a systematic approach to gather
as much information as possible. The method was to search on the web, on online research
papers agglomerators (sci-hub, google scholar), and on websites for developer community
(GitHub, PyPI) with the keywords linked to the project, namely machine learning, calculation,
computation, carbon footprint, environmental impact, sustainable AI, tracker, API.

4.2 Objective 2, Present CUMULATOR which will be used to assess
the carbon footprint of ML methods in this project

There are two high-level use cases of CUMULATOR. In research, it could be used to bring an
environmental aspect in the optimisation of ML methods at different levels (multi-node ML
algorithms, ML model architecture and parametrisation, etc). In research and real-world applica-
tions, it could be used to report the carbon footprint to raise awareness about the environmental
impact of ML.

Below is a list of the important project requirements on which we based our trade-off be-
tween developing our API, and using or extending an already existing one. The results of the
landscape analysis will then be confronted with those requirements to make the decision.
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1. The API can measure or calculate the energy consumption of computation and communi-
cation of ML models and convert them into carbon footprint. This requirement is related
to the material introduced in 3.

2. High compatibility: the API shall rely on open-source packages and knowledge to be
usable under a large number of circumstances. In the literature one observes a trade-off
between precision of the carbon footprint estimations and compatibility criterion (for
example RAPL and APM introduced in 3.1 requires special GPU specifications). Even
though we choose to place the importance on a wide operating range, the API could also
have restrictive modes that provide more accurate estimations.

3. Simple integration within ML projects: few commands should be necessary to integrate
automatic computation and reporting of the carbon footprint of ML computation and
communication in ML projects, such as inside the Alg-E platform presented in 4.3. (open
source library, python, have a static approach)

4. Open to contributions: the API shall be accessible future students and researchers to
extend it with other features or existing APIs. This is a critical requirement for the perpetuity
of the project.

5. Verifiability: the API shall rely on open-source data and the calculations should be ex-
plained.

4.3 Objective 3, Integrate CUMULATOR to the Alg-E platform, to
compute the carbon footprint of each model under various con-
ditions and communicate the trade-off between accuracy and
carbon footprint on the user interface

Extending Alg-E with CUMULATOR is a small step for knowledge in feature integration but a
substantial step towards raising awareness about the environmental impact of machine learning.
Since Alg-E is still in the development phase, the impact of this analysis can be suggestions to
improve the platform (model accuracy, interpretability, etc). After deployment in the DYNAMIC
trial, Alg-E will display the carbon footprint next to the other performance metrics. This will
inform the clinicians about the carbon footprint of the algorithms they ran. Adding such infor-
mation could impact the behavior of the clinicians. For example, if inequalities in the carbon
cost of the models are observable, the clinicians could adapt their behavior by avoiding to use
a certain model, for better or for worse. The conclusions of this analysis should, therefore, be
carefully considered.

It is also important to mention that Alg-E was developed by one main contributor in full-time
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for six months. It is a remarkably well-finished product. However, the models implemented were
not tested, hence this project also serves to evaluate the performance of the models.

4.3.1 The Alg-E platform

As part of the DYNAMIC trial, a machine learning platform to generate interpretable medically ap-
proved, data-responsive clinical decision algorithms was created in 2020 [1]. The platform allows
clinicians to load tables, run ML models for classification or regression tasks, and analyse and
interpret the results. Since the clinicians might not have a machine learning background, clarity,
and interpretability of the user interface are of predominant importance. The user interface on
Figure 4.1 is described in detail in [1], section 4.2.1.

Figure 4.1: GUI of Alg-E ’s menu to run classification (left) and regression (right) models

4.3.2 Definition of the study

The analysis of Alg-E with CUMULATOR is based on the observation of the performance metrics
to 1) benchmark the models efficiencies and 2) investigate the impacts of the user-defined
parameters (feature selection, oversampling). We summarise this in the four objectives below:

1. Examine if there is a cost difference between the models

2. Evaluate the capability of the models to fit complex datasets

3. Observe the benefit of feature selection methods for regression models

4. Study the impact of oversampling on classification tasks
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4.3.3 Dataset selection and creation

To give a comprehensive overview of how the ML models used in Alg-E behave for the different
sets of inputs and datasets, we decided to select datasets with a high number of samples (over
100k) and high dimensionality datasets (over 100 attributes). Three of the four datasets used in
this study come from the UCI ML Repository and do not contain any missing values.

Dataset: ePOCT

The ePOCT Data Set was derived from a randomised controlled trial on 3’192 pediatric outpa-
tients (aged 2 months to 5 years) which collected a large number of, mostly binary, features
(e.g. presence/absence of a symptom) according to a rule-based decision tree. Thus, there are a
large number of systematically missing values, as groups of questions are asked according to
triage criteria. The dataset used here contains only 41 attributes and is aimed to test the Alg-E
system on a range of classification and regression tasks. This is referred to as the simple dataset
to perform the base tests.

Attributes description Type
1: Age Numerical
2: Unknown Categorical
3-4: Final diagnosis (typhoid or severe anemia) Categorical
5-8: Unknown Categorical
9-25: Laboratory findings Categorical and

numerical
26-37: Signs Numerical
38-47: Symptoms Categorical

Dataset: CT images

The Relative location of CT slices on axial axis Data Set contains 385 attributes and 53’500 data
points split among 96 patients. It is used for regression tasks.

Attributes description Type
1: Patient ID Numerical
2 - 241: Histogram describing bone structures Numerical
242 - 385: Histogram describing air inclusions Numerical
386 reference: Relative location of the image on the axial axis (class
value). Values are in the range [0; 180] where 0 denotes the top of the
head and 180 the soles of the feet.

Numerical
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Dataset: Standing Postures

The Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set con-
tains 561 attributes and 10’929 data points, which are records from accelerometer and gyroscope
while the patient was performing 1 in 12 tested activities (e.g. walking, laying, standing, sitting
and transitions between them).

Attributes description Type
1: Patient ID Numerical
2 - 560: Filtered values from 3-axis accelerometer and gyroscope ac-
quired at 50 Hz, in time and frequency domains (using a Fast Fourier
Transform)

Numerical

561: Related activity label (1-12) Categorical

We use this dataset to test the efficiency of oversampling on a binary classification problem.
We separated the activities between Standing and Non-standing. The activity Standing was
chosen since it has the highest value counts (1929 in 10’929 samples), thus leading to a heavily
unbalanced dataset as shown in Figure 4.2.

Figure 4.2: Distribution of Standing activities (label 1) versus Others (label 0) in the Standing
Posture dataset

Dataset: Fonts

The Character Font Images Data Set consists of images from 153 character fonts with 411 at-
tributes. The total number of images is 745’000.

Attributes description Type
1: Font family Categorical
2-12: Attributes about the format of the character Categorical and

Numerical
12-411: Pixel color from 0 to 255 Numerical

From this dataset, we created a classification problem by selecting the two fonts with the
highest number of samples. The total number of samples is raised to 173’583, with 400 attributes
(patient ID is not taken into account).
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Font name # samples
OCR-B (developed in 1968 for Monotype to facilitate Optical Character
Recognition operations financial applications)

93’688

Segoe (the base font family used by Microsoft, also created by Mono-
type)

79’895

4.4 Objective 4, Generate a list of features required to calculate the
carbon footprint of a large-scale medical data analysis platform,
such as will be used in the DYNAMIC trial

The DYNAMIC trial aims to implement adaptable decision trees to guide the clinical manage-
ment of pediatric patients in resource-limited settings. A "static" rule-based version of this tool
was previously implemented in Tanzania in 2016-18, where it was able to reduce unnecessary
antibiotic prescription and clinical failure. While these rule-based algorithms have had great
success, their genericism blunts their accuracy in dynamic environments. For instance, the
prevalence of many diseases varies over time (examples: flu generally occur in winter, poliovirus
has been almost eradicated from Africa since 2016 [40]) and location (example: in 2018, 96 new
disease outbreaks were reported across 36 of the 47 African Member States [27]). One goal of
DYNAMIC is to use machine learning to adapt these generic, outdated decision tree depending
on local updatable data that is relevant to surrounding epidemiology and available resources.

Looking at the data workflow of DYNAMIC in Figure 4.3, we can provide the required features
to calculate the carbon footprint at each step of the data workflow during operations.

4.5 Objective 5, Create a protocol to help future researchers and stu-
dents quantify the carbon footprint of their projects

For most of us, greenhouse gas emissions is a concept. We know that it is a significant issue,
however, when it comes to numbers, it is difficult to quantify the seriousness of the situation
without a reference value on which to base a comparison. This report aims to create some
reference values. Being aware of your carbon footprint is a step towards is a step toward being
able to make environmentally conscious choices. We suggest to standardise the reporting of
carbon dioxide equivalent emissions of research projects by making a Carbon Impact Statement
at the end of reports. Within CUMULATOR we will provide a script to determine the carbon
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Figure 4.3: Workflow data of DYNAMIC

footprint for EPFL projects. Finally, we will use this project as an experiment to set up the most
effective protocol to reduce the reporting-time overhead while ensuring that the reported value
has a physical sense.
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Results

5.1 Objective 1, Perform a landscape analysis of the existing tools for
calculating the carbon footprint of computing and benchmark
them

We made a comprehensive overview of the different tools available to analyse the environmental
impacts of digital technologies. It is worth noting that most of the open-source so-called car-
bon trackers lack high-quality content, or focus on the costs linked to transportation, energy
infrastructure, and concern individual or industry applications. Only a few tools, listed below,
were created within an in-depth study around the topic of energy and carbon footprint of digital
technologies:

• The Shift Project created Carbonalyser in 2018: it is a powerful add-on which analyses all
the data traffic through your Internet browser (Google search query, webpage or image
display, videos watched, files downloaded, etc). It accumulates all data automatically and
reports it in real-time 1) the browsing time, 2) the amount of data downloaded, 3) the
amount of electricity consumed 4) the carbon footprint. It is available for Chrome and
Firefox web browsers, and there is a mobile version on Google Play.

• ECOFEN for Energy Consumption mOdel For End-to-end Network was created in 2011.
ECOFEN allows us to analyse the energy profile of wired network equipment over time
on top of the NS-3 network simulation software. It provides a precision of the order of
milliwatts for the power and milliseconds for the time. This is however achieved at the price
of intensive computations: for a large network topology (over 1000 nodes in 9 data centers)
a 5 hour simulation is needed to capture one minute of network activity [10]. Decision.
Even though this tool could provide very precise communication costs, we decided that
it was not attractive enough to use in our study. Indeed, we would lose the simplicity of
integration and would also require a large amount of effort to learn how to use it. However,
it could be valuable to study some typical communication patterns associated with ML
models to provide better cost estimates than the per-byte energy model from the Shift
Project which we use in CUMULATOR.

• The ML Emissions Calculator is a time-based tracker (see 3.1) which was created in 2019
[23]. The carbon footprint is evaluated after the computations by entering parameters in
their webpage. The parameters required are: the hardware type, hours used, cloud provider,
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and region of compute. This calculator uses publicly available data for 4 main variables
which impact the carbon footprint: 1) the energy consumption of hardware, 2) the location
of providers’ region of computation – which was assumed to be connected to their local grid,
3) the region’s CO2eq emissions per kWh and 4) potential offsets bought by the provider.

• The Experiment Impact Tracker is a simple drop-in method to track energy usage, carbon
emissions, and compute utilisation of computing systems [16] created in 2019. Currently,
on Linux systems with Intel chips (that support the RAPL power cap interface) and NVIDIA
GPUs, it records: power draw from CPU and GPU, hardware information, python package
versions, estimated carbon emission information, etc. To our knowledge, this is the most
advanced tool which can be used by researchers to track their environmental impact.

From the four tools presented, only the ML Emissions Calculator and the Experiment Tracker
can be used to monitor the carbon footprint of ML computations, they are summarised in Table
5.1.

Table 5.1: Existing tools to calculate the carbon footprint ML methods
Experiment Impact Tracker ML Emissions Calculator

Variables Power consumed during run
time, location with the IP ad-
dress of the machine

Time, hardware type, cloud
provider, location

Computational costs Good performance thanks to the
RAPL power monitoring inter-
face

time-based tracker (see 3.1)

Communication costs N/A N/A
Precision of con-
version into carbon
footprint

Rough estimation except in
California (California Indepen-
dent System Operator’s website)
which displays real-time power
grid conditions and greenhouse
gas emissions)

Same rough estimation but pro-
vides raw and offsetted carbon
emissions

Format PyPI package Webpage
High compatibility Compatible with Linux systems

running NVIDIA GPU’s and In-
tel processors (which support
RAPL)

Compatible with the provided
list of hardware types, cloud
providers and region of compute

Simple integration
within ML projects

Can be installed using pip
package-management system,
see their documentation

All calculations need to be sys-
tematically performed manually
and cannot be automated

Open to contribution Yes (GitHub) Yes (GitHub)
Release 2019 2019
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The need for CUMULATOR

Both tools presented in Table 5.1 lack the availability to compute the carbon footprint of com-
munications performed in the cloud, which we would like to implement. The ML Emissions
Calculator was not designed to be integrated with other projects, but rather to provide an effort-
less way for every research group to roughly assess the environmental impact of their work. The
Experiment Impact Tracker answers this integration need, but it requires a RAPL-compatible
GPU, which in resource-limited settings may not the case. We would like to build a tool which
can be RAPL or APM agnostic. Hence it could have been possible to extend their tools, but within
this project, we decided to act fast, build and test our own one: CUMULATOR. It is presented in
the next section.

5.2 Objective 2, Present CUMULATOR which will be used to assess
the carbon footprint of ML methods in this project

We decided to build CUMULATOR to best answer the project requirements. To our knowledge,
it is the second existing open-source tool available as a package to assess the environmental
impact of ML methods.

5.2.1 Design choices

The design choices are summarised with respect to the requirements in Table 5.2.

Operational range and accessibility: the choice of the programming language. CUMULA-
TOR could be coded in many different programming languages. We chose Python because it
best suits the requirements of accessibility and operating range. Python can be defined as a
high-level, interpreted, and general-purpose dynamic programming language that focuses on
code readability. This makes it accessible even to a public with little programming knowledge
such as students who will use it in their research at EPFL. Also, Python is by far the most popular
programming language (31% of shares in 2020) and is on a rising trend according to the PYPL
Index [34]. Hence, the probability that an ML framework is compatible with Python is maximised.
It also benefits from extensive library support which enables the integration of CUMULATOR in
many environments (Experiment Impact Tracker, ML Emissions Calculator are mainly coded in
Python). Besides, it is interesting to add that Java was historically the most popular program-
ming language (28% of shares in 2010), but its usage is decaying to the benefit of Python. The
singularity point, where Python became more popular than Java, happened in mid-2018.

Looking at high compatibility, you need only the Python Standard Library to start doing
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carbon footprint calculations.

Available for open usage: CUMULATOR is a package stored on PyPI and publicly available
here.

Open to contributions: CUMULATOR source code is stored on GitHub inside the EPFL
organisation called iGH (intelligent Global Health). Contributing to it is simple. As soon as
you have the access rights, you can create your branch in the repository and work with your
additional feature. The procedure to upload a new version online is the following:

1. Change version number in the setup file setup.py

2. Commit and push the changes to GitHub

3. Make a pull request on the master branch

4. Once the pull request is accepted, the host will push the changes to PyPI (or add you as a
contributor to do it)

Table 5.2: Design choices for CUMULATOR
CUMULATOR

Variables Time (optional: reference values
for hardware type, per-byte en-
ergy model, carbon intensity)

Computational costs time-based tracker (see 3.1)
Communication costs 1byte energy model of the Shift

Project
Precision of con-
version into carbon
footprint

Rough estimation

Format PyPI package
High compatibility Need only the Python Standard

Library
Simple integration
within ML projects

Can be installed using pip
package-management system

Open to contribution Yes (GitHub: iGH (intelligent
Global Health))

Release 2020

5.2.2 List of assumptions

Preliminary remark: any change in those assumptions should be indicated by modifying the first
digit of the version number. The last version used within this project is 0.0.5.
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The goal of the project was to have an early-stage working version of CUMULATOR to in-
tegrate into Alg-E before the deployment of the platform in 2020-2021. As it relies on rough
assumptions, the current version of CUMULATOR is best suited to benchmark ML methods. We
do not aim to provide carbon footprint calculations with the state of the art accuracy. A couple of
solutions presented in the last chapter would however rapidly improve this accuracy, and could
be integrated later on.

Concerning the cost of computations, it is a time-based tracker. Hence, it assumes that 1)
time is a good estimator of the energy efficiency and 2) that the TDP is a good estimator of the
GPU’s power consumption 3) the GPU is constantly under maximal theoretical load. To compute
the energy consumption we take Nvidia GeForce GTX Titan X as GPU reference because it is
used in the IC cluster of the EPFL Machine Learning and Optimization Laboratory (MLO). Its
TDP is 250 W [12].

The cost of communication relies the "1byte model" of the Shift Project presented in section
3.2. From data showed on Figure 3.2 the most recent value is indeed, 6.894 · 10−11 kWh/byte, and
is from 2017. Hence we confirm that the "1byte model" (corresponding to 7 · 10−11 kWh/byte,
[24], "Materials") is based on data from 2017.

Following the material presented in 3.3, the average carbon intensity of electricity consumed
at LV in Europe is chosen as reference value for the carbon intensity: 447 gCO2eq/kWh [31].

5.2.3 How CUMULATOR works: concrete numbers

The following information is given according to the assumptions above of CUMULATOR. We shall
precise that the calculation of the computation and communication costs is totally independent.
One can perfectly use CUMULATOR to report one or the other type of cost only.

Concrete numbers:

• One hour of GPU load is equivalent to 112 gCO2eq

• 1 GB of data traffic is equivalent to 31 gCO2eq

• One hour of GPU load is equivalent in emissions to communicate a file of 3.6 GB using
data center network

Calculation of the computation costs

As explained hereafter, each instance of the CUMUALTOR class automatically records and ag-
glomerates the time whenever the function off() is used. The equation below shows how the
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carbon footprint of computations is calculated.

Computation_costs = Time(s) · GPUload(0.250kW ) · Carbon_intensity(447gCO2eq/kWh)

3600s/h
(5.1)

Calculation of the communication costs

Similarly, each instance of the CUMUALTOR class automatically records and agglomerates the
file sizes whenever the function data_transferred(file_size) is used. The equation below
shows how the carbon footprint of communications is calculated.

Communication_costs = File_size(bytes) · 1byte_energy_model(6.894 · 10−11kWh/byte)

·Carbon_intensity(447gCO2eq/kWh)
(5.2)

5.2.4 How to use CUMULATOR

Instead of making a documentation, we commented the source code and present how to use
CUMULATOR in this section. The entire source code is embedded in src/base.py. CUMULATOR
consists of one class in which a set of members and methods activate, deactivate a chronometer,
record time and size of files communicated, and finally compute and display the relevant carbon
footprints based on the assumptions (see 5.2.2). Computation and communication costs are
independently derived to let the user look at only one aspect if the other is not applicable. The
most important features of CUMULATOR are explained below:

Install it using pip install cumulator. Import the script with from cumulator import base.
Create class a instance with cumulator = base.Cumulator(). If you run your work in parallel on
n GPUs, the carbon footprint should be multiplied by the number of GPUs. You can modify this
number with cumulator.n_processors = <number of GPUs>.

Cost of computations. Activate or deactivate chronometer by using cumulator.on(),
cumulator.off() whenever you perform ML computations (typically within each interation).
It will automatically record each time duration in cumulator.time_list and accumulate it
in cumulator.cumulated_time. Then return carbon footprint due to all computations using
cumulator.computation_costs().

Cost of communications. Each time your models sends a data file to an-
other node of the network, record the size of the file which is communicated
using cumulator.data_transferred(file_size). The amount of data transferred
is automatically recorded in cumulator.file_size_list and accumulated in
cumulator.cumulated_data_traffic. Then return carbon footprint due to all communi-
cations using cumulator.communication_costs()
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Return the total carbon footprint using cumulator.total_carbon_footprint(). You can
also display the carbon footprint in terminal using display_carbon_footprint()

5.3 Objective 3, Integrate CUMULATOR to the Alg-E platform

Alge-E is the first platform where CUMULATOR was integrated. Since all computations are
made locally, Alg-E reports the carbon footprint linked to computations. It does not perform any
communication. Hence, the validation of CUMULATOR concerns only the computational costs.
In this section, we present our analysis, describe the results, and then present the extensions
added to Alg-E.

5.3.1 Compute the carbon footprint of each model under various conditions

All the data present below was extracted from the Alg-E platform after training the models. Each
time we compare the different models to investigate the objectives presented in 4.3.2. We plot
the time-based carbon footprint (in gCO2) and the accuracy (in percentage) on a different axis. It
is important to note that the scale of the carbon footprint varies from one graph to another, this
is why we display the label values directly in or next to the bars. We wrote self-explicit captions
to ease the understanding during the analysis in the next section.

Results of classifications

The results are presented in Figures 5.1, 5.2 and 5.3. To examine the accuracy and the time-based
carbon footprint trade-offs, the Table 5.3 shows the averaged values of those metrics for the three
classification tasks.

Table 5.3: Average values of accuracy and time based carbon footprint per model for the three
classification tasks (without oversampling where applicable)

Model Accuracy Time-based carbon
footprint in gCO2eq

Random Forest 97.76% 0.21
Neural Network 97.71% 2.9
Logistic Regression 93.06% 0.83
BernoulliNB 71.63% 0.14
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Figure 5.1: Severe anemia binary classification diagnosis on the ePOCT dataset, with and without
oversampling (3’192 patients and 41 features)
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Figure 5.2: Binary classification of standing or non-standing activity on the Standing Posture
dataset, with and without oversampling (10’929 activities and 561 features)

Results of regressions

We investigated the evolution of the carbon footprint with the number of features for the dataset
with CT images (Figure 5.5). The regression was performed to predict the axial location of the
image based on the histograms values of bone structure and air inclusions.

5.3.2 Analysis of Alg-E results

One should observe the plots while keeping in mind that the ideal model would have the highest
accuracy (or lowest MSE) while minimising the carbon footprint. We derive general conclusions
from the observation of the results and to answer the objectives of the analysis presented in
4.3.2.

Cost differences between the classification models:
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Figure 5.3: Classification of fonts (OCR-B or Segoe) using pixel data of characters (173’583 images
and 400 features)

• Neural Network seems to be systematically the most costly model in terms of carbon
footprint (Table 5.3)

• The implementation of the Naive Bayes model seems to have poor performances (Table
5.3. It constantly has the worse accuracy, ranging from 46% to 89% (Figures 5.1, 5.2, 5.3)

• Random Forest and Neural Network seem to be the most accurate models with an average
accuracy over 97% (Table 5.3)

• Random Forest clearly has the best accuracy vs carbon footprint trade-off. It is in average
10 times less costly than Neural Network with similar accuracy (Table 5.3)

Cost differences between regression models looking at Figure 5.4:

• Random Forest largely outperforms all the model implementations (the MSE is minimum
20 times lower) but at the cost of high carbon footprint (between 10 and 20 times higher
costs)

• Linear Regression model does not perform well as we obtain MSE of the order of 1021

superior to the values of the other models. This is most probably because the data is
nonlinear whereas the model can only perform a linear fit.

Benefit of feature selection methods. Figure 5.4 is a good example of the drawback of using
feature selection. In this case, the feature selection provides worsened results. We decided to
investigate the evolution of the carbon footprint with the number of features for this regression
case using the best matching model (Random Forest). We ran the same dataset again twice by
deleting one feature every two and then one every three. An even better approach would have
been to randomly select a portion of the features many times and average the results. Figure 5.5
shows a linear fit, meaning that each additional feature adds approximately 0.0045 of gCO2eq
during training.
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Figure 5.4: Prediction of the location of the image, based on histograms of the bone structure
and air inclusions of human patients
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Figure 5.5: Evolution of the time-based carbon footprint and accuracy with the number of
features for a regression task with 53’500 data points using Random Forest

The benefit of oversampling is not clear. Depending on the models on Figures5.1 and 5.2,
it leads to an increase and decrease of the accuracy and carbon footprint. More investigations
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would be necessary to provide clear statements.

General conclusions:

• We provide relevant examples of accuracy vs carbon footprint trade-offs. Figure 5.4 shows
that Random Forest is the best model for the regression task on the CT images dataset.
However, looking at Table 5.3, the model which has the highest accuracy shouldn’t system-
atically be chosen. Random Forest and Neural Network have close accuracy but divergent
carbon footprints

• The Alg-E platform seem to be polyvalent and able to fit linear and non-linear datasets
with high dimensionality and high number of features (up to 170k data points and 500
attributes)

5.3.3 Alg-E extensions: communicate the trade-off between accuracy and carbon
footprint on the user interface

Figure 5.6: Example of the updated table within the Models menu of Alg-E with the (time based)
carbon footprint for a regression (up) and a classification (below) task

Upon the integration of CUMULATOR, we did two main changes on the Alg-E user-interface:

32



1. We decided to display the carbon footprint in the Models and Runs tabs in the menu. The
Figure 5.6 shows how the updated table looks like for regression and classification tasks
and the procedure to plot it.

2. We improved the visualisation of the accuracy/MSE and carbon footprint trade-off by
displaying a bar chart in a new menu called Benchmark as shown in Figure 5.7. We defined
the best matching unit as the model which has the highest accuracy (or lowest MSE)
between all runs. We plot this performance metric along with the corresponding carbon
footprint in a horizontal bar chart and we give 1) the set of hyperparameters related to this
best matching unit, and 2) a hyperlink redirecting to the model for deeper investigation.
By the way, this extension also lets the user know what is the set of hyperparameters
(oversampling, feature selection) which led to the best accuracy/MSE. Before this extension,
there was no simple way to know which model was the best while looking at a specific
dataset and target label.

Figure 5.7: Chart displaying the highest accuracy within all runs of each model and the related
carbon footprint and the steps to plot it
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5.4 Objective 4, Generate a list of features required to calculate the
carbon footprint of a large-scale medical data analysis platform,
such as will be used in the DYNAMIC trial

We have extracted five generic actions from the analysis of DYNAMIC ’s workflow in Figure 4.3.
Table 5.4 lists the features required to calculate the carbon footprint for each generic action. The
column "Ref." links each activity to a number in the worklow diagram.

Table 5.4: List of the features required to calculate the carbon footprint of DYNAMIC during
operations

Type of ac-
tivity

Ref. (Fig.
4.3)

Features to report Method for carbon foot-
print assessment

Healthcare 1 1) Time and location of the consult 2)
Number of consults 3) Hardware type
(smartphone, laptop, or desktop com-
puter)

Screening time is calcu-
lated

Communic-
ation

2, 5, 6, 7 1) Amount of data 2) Type of network
(Wired network, WIFI network, Mobile
network, Data center network) 3) Lo-
cation of emitting and receiving point
4) Name of the cloud provider (if appli-
cable)

Using the per-byte en-
ergy model from the Shift
Project (see [24], "Materi-
als", "1byte model")

ML use
(Alg-E)

1 Computations and communication
during training of ML models

Using CUMULATOR

ML re-
search

8 Computations and communication
during training of ML models

Using CUMULATOR

Personal
work

all Data traffic when using your browser Carbon Impact Statement
(see protocol in 5.5.2)

5.5 Objective 5, Create a protocol to help future researchers and stu-
dents quantify the carbon footprint of their projects

A protocol for systematic reporting of carbon footprints in scientific research has been set up by
the Experiment Impact Tracker team ([16]). This script accumulates the carbon footprint related
to the values recorded with the Experiment Impact Tracker. We suggest creating a protocol that
incorporates carbon emissions of projects as a whole. It shall not only track the cost of the ML
computations but also the cost of web browsing activity, virtual meetings, screening time, etc.
This will allow us to raise awareness of the environmental costs of day-to-day activities. The
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protocol could also be extended to non-ML-related projects later on.

5.5.1 Variables influencing the carbon footprint of a research project

The carbon footprint of your research project mainly depends on: your mean of communication
(virtual meeting), your activities on your computer (screening time, online searches, size of
downloads), your ML simulations (GPU cluster load). We justify the numbers which we will use:

• ML simulations: the carbon footprint can be estimated with CUMULATOR, see 5.2.4.

• Data downloaded while browsing: use the Carbonalyser add-on presented in 5.1.

• Screening time: Carbonalyser records the number of minutes of browsing. We assume that
the power consumption of a laptop is 40W (as a comparison, the one of a desktop PC is
150W) [32] to derive the energy consumption.

• Virtual meetings: a study from 2014 analysed the life cycle of network and video-
conferencing terminal equipment [32]. The total power consumption is 187.6 W for the
following equipment: laptop, entry-level CODEC, camera, sound system, microphone,
home/office LAN. We take a default value of 45 minutes per weekly meeting.

• The energy to carbon footprint conversions will be done with the average carbon intensity
of electricity consumed at LV in Europe: 447 gCO2eq/kWh [31] (see 3.3 for explanation).

To provide tangible information, this scripts also computes the number of kilometers a car
would have run to produce an equivalent amount of greenhouse gas emissions. We base this
calculation on the average carbon dioxide emissions from new passenger cars registered in the
European Union in 2018: 148.1 gCO2eq/km [30]. A report from 2011 suggests that such values
are indeed a measure of the carbon footprint equivalent for the greenhouse gas emissions of a
typical car (and do not represent only carbon dioxide emissions) [36].

5.5.2 The Carbon Impact Statement Protocol

For this protocol, you will need to use a dedicated browser only for the activities related to your
project. We built bonus.py, a script inside CUMULATOR, to easily compute the carbon footprint
of your research in one-shot at the end of your project. Here’s the protocol to we came up with:

1. At the beginning of your project:

(a) Prepare your project web browser: 1) select either Chrome or Firefox dedicated to the
project, 2) make sure you clear your history, and 3) install Carbonalyser .
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(b) Install CUMULATOR (explained in 5.2.4). Note that at no point will any of your search
history be communicated to the lab. This project respects privacy and all reporting is
entirely user-controlled.

2. During the project: use CUMULATOR to record the carbon footprint of ML models (if
applicable)

3. At project end:

(a) Recover data from your web browser by running Carbonalyser (can take several min-
utes)

(b) Estimate your weekly screening time. Carbonalyser records the time when activated,
but that time does not impact the carbon footprint. In other words, it only looks at
data traffic, not at the power drained to run your laptop.

(c) Import the script with from cumulator import bonus

(d) Run bonus.project_carbon_footprint(carbonalyser, ml_simulations,
screening_time, n_weeks=14, meeting_duration=45, hardware_consumption=40)
with the required function arguments. Put zero where not applicable. Explanation of
the function argument:

• carbonalyser is the data from 3.(a)

• ml_simulations is the total carbon impact recorded using CUMULATOR

• screening_time is the estimated work time on your laptop (or other hardware)
per week in seconds

• n_weeks is the number of weeks of the project

• meeting_duration is the average duration of a weekly meeting

• hardware_consumption is the power consumption of your laptop (or other hard-
ware you work on) in watts

(e) Screenshot the output and insert it in your report

5.5.3 Carbon Impact Statement of this project

This project was used as an experiment to create the protocol. We tested different tools and
used the presented protocol since the fourth week after the beginning of the project. This work
consumed the equivalent of 7.31 kg of CO2 emissions equivalent to driving a car over 49 km, see
Figure 5.8.

Looking at our results, the internet data traffic was the biggest source of carbon emissions
equivalent. This is certainly because of the low amount of time used to run ML models (the Alg-E
platform was designed to run all models under 5 seconds). From 5.2.3, the internet data traffic
consumed during this project would be equivalent to roughly 60 hours of GPU load.
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Figure 5.8: Carbon footprint of this project

According to Martin students usually accumulate 100 hours of GPU load during their ML
semester projects at the MLO, which is equivalent to 11 kilograms of carbon dioxide emissions.
As a conclusion, in terms of carbon footprint, the internet data traffic during a semester project
usually scales roughly with one-half of the ML simulations.

5.5.4 Tips to become an environmentally conscious digital citizen

The principle of digital sobriety was elaborated by the Shift Project to raise awareness about
the possibility to not use energy-intensive digital technologies where possible and to use your
devices with parsimony. Many practices can be found online, but most of them are very restrictive
(e.g. smaller screens consume much less power). Let’s start simple, here are two practices to
become an environmentally conscious digital citizen:

1. Eliminate vampire power: when electronic devices are put in stand by mode or even
switched off, some electricity is drained from the grid (called vampire power) only because
they are connected to it.

2. Choose a sustainable web browser. Ecosia is an exemplar of this model. Their philosophy
is "we plant thanks to your searches". They planted 50 million trees in five years. In February
2020 they made 2.5 million and invested 71% of their incomes into tree planting or other
projects such as electricity production from solar power. They make money through ads
which appear above and below the research results and by selling products (1 T-shirt plants
20 trees!). Their success led them to diversification. They now fight climate change by
removing CO2 from the atmosphere and accelerate the energy transition away from fossil
fuels by adding solar energy to the electricity grid.

3. Use Carbonalyser presented in section 5.1.
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5.6 The logo: an allegory of this project’s aim

Images are the best vector to raise awareness. Hence, we decided to design a logo for CUMULA-
TOR that personifies the aim of this project (see Figure 5.9). The origin of the environmental
impact of machine learning applications is the GPU load needed to train the model. This is why
we choose a drawing of a processor as the main icon. Now, the electricity used to run those GPUs
is produced with a certain carbon footprint, which equivalent to releasing pollutant greenhouse
gases in the atmosphere, hereby represented by the smoke. The name of CUMULATOR comes
in: this API can assess the carbon footprint of ML computations and communication. We can,
therefore: 1) raise awareness about the carbon footprint of digital technologies, and 2) optimise
ML methods to mitigate the amount of greenhouse gases generated. Finally, the earth, the plant,
and the green atmosphere denotes the commitment of this work for sustainable-AI, which is a
digital key-word for fighting climate change.

Figure 5.9: Logo of CUMULATOR
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Discussion

The work in this project was multi-disciplinary. We explained and presented the key material
needed to calculate the carbon footprint of ML methods. After analysing the existing tools to
calculate the carbon footprint, we decided to create CUMULATOR as the best fit for the project
requirements. The benefit of integrating this new API into Alg-E is that it forced us to go rapidly
from design to implementation, and open-source deployment, and it ensured to produce a
working API.

Concerning academia, we decided to use this project as an experiment to build a protocol
to systematise the report of carbon footprint. We implemented the Carbon Impact Statement
Protocol as a "bonus" script within CUMULATOR. It hereby benefited from the fact that CU-
MULATOR had to be open source for more important reasons linked to the DYNAMIC trial. We
should point out that at the beginning of the project we were not sure about the feasibility of
this protocol. It is now a scalable tool that can simply be installed and used by every student and
researcher at EPFL and even in the world.

The main disadvantage of the outcome of the project is due to the high amount of different
tasks performed. A lot of work can be done to improve CUMULATOR and to study in-depth the
efficiency of the Alg-E platform. Eventually listing the features to calculate the carbon footprint
of the DYNAMIC trial is a first step that will be useful only if further work is performed. We will
discuss this in the next and final chapter.

39



Limitations and future work

The continuity of the project has two clear aspects. Firstly, the accuracy of the carbon footprint
estimations can be improved and the interface can be adapted upon request of future users.
Secondly, CUMULATOR and the Carbon Impact Statement Protocol where created to be deployed
in-the-field. The purpose of CUMULATOR is to fill the gap between the acknowledgment of
greenhouse gas emissions and the dedication to take the environmental impact into account
while designing the next generation of ML systems. The Carbon Impact Statement Protocol
was designed to make students and researchers realise the carbon footprint of their work, thus
bringing climate change considerations into individual academic projects.

7.1 Next improvements for CUMULATOR

The main limitation of CUMULATOR lies in the fact that any evaluation of the carbon footprint
is a rough estimation. This is due in particular to the lack of data about carbon intensity (in
gCO2eq/kWh), which is a critical step in the determination of the carbon footprint (see 3). The
electricity map (selected by the two tools in 5.1) provides carbon intensity estimations at a
country or regional scale and in less than 50 countries in the world (none in Africa). Observing
that the dispersion of the carbon intensity values in the world ranges from 13 to 820 gCO2 eq,
makes this data even more crucial (Figure 3.3). The absolute value of any carbon footprint
estimation in ML is biased. Hence, the best comparisons of the environmental impact of ML
methods are done within the same geographic location.

However to derive estimates of the carbon footprint with maximal precision, CUMULATOR
can be extended with 5 action items listed below. Generally, we should follow the evolution of
the research in the carbon footprint of ML.

Action 1: integrate the Experiment Impact Tracker.
Expected impact: provide better energy consumption estimates at run time whenever the
hardware is compatible thanks to the RAPL interface.

Action 2: add a database of the energy consumption of commonly used processors to
improve the accuracy of the time-based calculation of carbon footprint. The study from ML
Emissions Calculator can be used as a model. [23]
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Expected impact: improve the time-based energy tracking

Action 3: add the geographical distribution of carbon intensity of electricity drained 1)
from grids and 2) within data centers for each cloud providers 3.3, [23]
Expected impact: improve the precision of the energy to carbon footprint conversions.

Action 4: regularly update all heuristics of CUMULATOR to stay as realistic as possible.
For example, since data centers are becoming energy efficient with time, the 1byte energy
model could be halved between 2017 and 2025 see Figure 3.2, the values used to compute the
communication cost of ML should be periodically updated. the Shift Project indeed announced
in March 2020 that their analysis is going to be updated within a couple of months.
Expected impact: maintain realistic carbon footprint estimations.

Action 5: closely follow up the future publications about methods to calculate and tools
to efficiently communicate the carbon footprint in ML. The Experiment Impact Tracker is part
of a "working paper" published on 14th February 2020 [16]. This suggests that it is a hot topic
subject to many contributions in the upcoming years.
Expected impact: make the right choices for CUMULATOR and let it be updatable.

7.2 Towards environmentally conscious research projects at MLO or
EPFL

This project gave birth to a new tool to compute the carbon footprint of ML methods and a
protocol to report it in academia. We identified the 3 next steps to empower those fresh creations:

Use-case 1 of CUMULATOR: optimise the efficiency of communications in various multi-node
ML models.

Use-case 2 of CUMULATOR: add the carbon footprint in the list of the performance pa-
rameters on MLBench projects. At the moment the computational costs are time-based.
Since time is already recorded in the framework, the carbon impact of computations will be
proportional to it. However, observing the difference of carbon footprint between computation
and communications is a new interesting information available with CUMULATOR

Deploy the Carbon Impact Statement Protocol: to assess the carbon footprint of research
projects within EPFL. We suggest to start with projects from the MLO to confirm if other students
are satisfied with it. The protocol could be extended later on to all projects at EPFL.
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7.3 Next steps to systematise the carbon footprint recordings and re-
porting during the DYNAMIC trial

Here is a proposition for the next steps of the DYNAMIC team to manage the environmental
impact of the trial:

1. Look at the results of Objective 4 (see 5.4)

2. Investigate the feasibility to report each activity’s features

3. Discuss the adaptations or solutions that can be provided, and update the Table 5.4.

4. Select the activities that we wish to implement and integrate them into the trial

Update on 17.06.2020: we presented (Annie and Tristan) the results to the IT manager of
DYNAMIC (Alan). Recording the carbon footprint seems to be feasible for the following activities:
Healthcare, Communication, ML use (Alge-E), and ML research. We agreed that their task will be
to accumulate the data (except for ML research) and send it to us (the iGH team in the MLO).
Our responsibility will be to 1) add the carbon footprint linked to ML research (sum the Carbon
Statements of the related projects including this one) and 2) compute the total carbon footprint
of the DYNAMIC trial.

This will be implemented as a "before and after" study to assess the impact of communicating
the carbon footprint to researchers. Here, carbon footprint will be calculated but not shared
in the first half of the study and then calculated and shared live in the second half. Structured
questionaires of knowledge, attitudes and practices (KAP) will be performed on researchers in
both sessions.

7.4 Limitations of Alg-E

The main limitations of our analysis in section 5.3, is that we only looked at accuracy/MSE and
carbon footprint. In reality, depending on the objective of the medical analysis, observing the
trade-offs between all the performance parameters including the ROC curve, precision, recall,
and F1 score is crucial.

We reported several bugs and remarks on Alg-E :

• In the New Models tab, if someone changes their mind and de-selects a label (label1) to
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re-selects another label (label2), the menus Models and Metric provides the choices linked
to label1 and label2. Hence, one can run a regression model on a classification dataset.

• My local implementation of Alg-E was shutting down after several minutes of computations
when I tried to upload tables over 300 MB.

• The report [1] states that all models should run under 5 seconds. During my tests, Neural
Network ran for 38 seconds.

• Sometimes the differentiation between categorical and numerical data is blurry. If an
attribute has 2 different integers, it will be considered as categorical data, however, an
attribute with 100 different integers is considered as numerical data. Where’s the limit?

Thank you for reading this report!
May you have any feedback or remarks, I am pleased to discuss with you (tristan.trebaol@epfl.ch).
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