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Molecules

. Introduction - Graphs
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G - Graph
N - Set of nodes
E - set of edges

A - Adjacency matrix
D - Degree matrix

h - Node features
e - Edge features
g - Graph features



Graph Convolutional Networks
(GCNSs)

Convolutional neural networks do O\
not translate well to graphs: C/

* No ordering of nodes
e No orientation

* Varying neighbourhood sizes
Vanilla spectral GCN:

The Laplacian operator: Rt =¢ (CI)@A(A)CI)TM)
A,=D—-A ) .
A =1 —D2AD> 25(9(A)h)

2T h - node feature

A=20 AD xi - Non-linear activation function
Spectral decomposition: theta - matrix of learnable weights

n eigenvalues A and eigenvectors © phi - eigenvectors of the laplacian



ChebNet: a fast spectral GCN

Re-normalised Laplacian: Chebyschev Polynoms:

A= 2>\;1]de” — 1 To = h
Re-scales the eigenvalues to [-1,1] 17 = ATO

Tn22 — QATn—l — 15—

Learned filters: Recursively computes a basis

k
1=0

O(1) parameter per layer
Filters are localised

e No eigendecomposition
Filters are basis dependent

For the corresponding order k

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. page 9. arXiv:1606.09375



A proof of transferability

The work of Levie et al. debunked the prejudices of the vanilla
spectral GCNs

“If two graphs discretise the same continuous metric space,

then a spectral GCN has approximately the same repercussion
on both graphs.”

Spectral GCNs should work well on sets of graphs

Levie et al. - 2019 - Transferability of Spectral Graph Convolutional Networks
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Objective

Give experimental proof of transferability
of spectral GCNs on datasets with sets of
graphs

Try to improve the transferability of the
spectral GCNs -> Structural Edge Dropout



2. Benchmarking

Several benchmarks aim at comparing GCNs
Provides a series of different tasks with large datasets

Framework giving training hyper parameters which
ensures replicability

None include spectral GCNs!



Graph Classification
MNIST & CIFAR10 Superpixels

Dataset Model # parameters Accuracy Anax = 2 epoch/total
MNIST L=4 100001 96.2625 +0.106 % 46 s/ 0.81 hrs
L=16 387365 96.3125 £ 0.338 % 95 s/ 1.69 hrs
CIFAR 10 L=4 100155 62.2125 +£0.453 % 60 s/ 0.95 hrs
L=16 387519 64.4075 = 0.548 % 100 s/ 1.7 hrs
MNIST GCN 101365 90.7050 £ 0.218 %
GraphSage 104337 97.3400 = 0.143 %
CIFAR10 GraphSage 104517 65.7670 £ 0.308 %
GatedGCN 104357 67.3120 = 0.311 %

Data of the MNIST Superpixel
dataset - label: O

- Task: Graph classification on images to superpixel graphs with the
SLIC transform.
- Results: Average performance on MNIST and CIFAR10 compared to

similar

models



Graph regression - ZINC

- Task: Graph regression, prediction of the
solubility of each molecule

@
/
* Result: Best performance between models \o\.
learning isotropic filters. Good performance
overall.

« Questionable whether the train/val/test set are
rep_resentatlve of any underlylng space Data of the ZINC, node colours are
 Unlikely that each molecule is a sample of a related to atom type - label: -0.2070
continuous space

Dataset Model # parameters Accuracy Accuracy Apax = 2 epoch/total
=4 101230 0.3304 £ 0.0210 0.3408 £ 0.041 135 s/ 3.5 hrs
ZINC L=4 w rsd 101230 0.4099 + 0.0048 171 s/ 3.2 hrs
=16 374710 0.2680 £ 0.0184 39 s/ 1.24 hrs
=16 w rsd 374710 0.2834 + 0.0066 38 s/ 1.10 hrs
ZINC GatedGCN 105735 0.4350 £+ 0.011

GatedGCN-E-PE 505011 0.2140 £ 0.006
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Node classification - SBM

« Task: Predict the node label between six
communities of various sizes with a
probability p of being connected to other
nodes of the community and g to others

- Result: Very good performance

» All graphs describe a non-euclidian

continuous underlying manifold Data of the SBM Cluster dataset. The
colour of the nodes represent their labels.

Dataset # parameters Accuracy Accuracy Apx =2 epoch/total
L=4 102745 72.8968 £ 0.197  72.4338 + (0.213 103 s/ 2.1 hrs
CLUSTER L=4 w rsd 102745 72.7414 £ 0.211  73.0887 = 0.295 103 s/ 2.1 hrs
L=16 w rsd 399055 74.5450 £ 0.306 115 s/ 1.7 hrs
Gated-GCN L=4 104355 60.404 + 0.419

L=16 502615 73.840 £ 0.326
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OGB: Result Summary
B

OPEN GRAPH BENCHMARK

- Task: Graph regression, prediction of the proprieties of each molecule

- Result: Above average performance overall. Good performances with
regard to classical models GCN and GIN on both tasks

 Splitting in Test/train/val is more equitable than ZINC
* Relatively better performance for the larger dataset

- New models have been added to the leaderboard since the report that
show greater performance

Accuracy (%)
Best Train Val Test

MOL-HIV 41’127 ROC-AUC 0.9992 0.8490 0.7631+ 0.0127
MOL-PCBA 437’929 PRC-AUC 0.5417 0.2387 0.2317 4+ 0.0036

Dataset # graphs Metric

link : https://ogb.stanford.edu/docs/leader_graphprop/
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3. Structural Edge Dropout
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MNIST image on a 4 - NN Lattice

structural edge dropout

Structural augmentation are particular to graphs

Cut a random set of edges at a variable rate
between 0 and r % of all the edges for every graph

during the training
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Structural edge dropout
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Model ChebNet learned on fixed 4 NN lattice

—— ChebNet learned on randomly sub-sampled edges of 4NN lattice graph

The node features are not changed, only the graph is
improvement on transferability outside the region of training
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Structural edge dropout - on
the benchmarking tasks

Dataset \ Edge rm. rate 0% (reference) 15% 30%

MNIST SUPERPIXEL 96.2625 + 0.1056 96.6050 £ 0.1933 96.6475 + 0.1466
CIFAR10 SUPERPIXEL 62.2125 4+ 0.4526 65.9650 + 0.6810 66.3875 + 0.8126
SBM CLUSTER 727414 &= 0.2110 73.1050 + 0.1369 72.5186 + 0.3642

e The performance of the ChebNet is improved in every case.
e Most significantly in the case of the CIFAR dataset

e Does not work for ZINC -> limitation of the technique
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Conclusion

e The ChebNet provide state of the art performance on
ZINC and CLUSTER of the ‘benchmarking-GNNs’ and
good performances for two of OGB’s datasets

e Supports experimentally the argument that spectral GCNs
have good performance and transferabillity

e Structural edge dropout can not only increase the
performance of a spectral GCN but also its transferability
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Benchmarking-GNNs:
Result Summary

Dataset # parameters Accuracy Acc. Apax = 2 epoch/total
MNIST L=4 100001 96.2625 £ 0.106 % 46 s/ 0.81 hrs
L=16 387365 96.3125 £0.338 % 95 s/ 1.69 hrs
CIFAR10 L=4 100155 62.2125 +0.453 % 60 s/ 0.95 hrs
L=16 387519 64.4075 = 0.948 % 100 s/ 1.7 hrs
L=4 101230 0.3304 + 0.0210 0.3408 4 0.041 135 s/ 3.5 hrs
ZINC L=4 w rsd 101230 0.4099 £ 0.0048 171 s/ 3.2 hrs
L=16 374710 0.2680 £ 0.0184 39 s/ 1.24 hrs
L=16 wrsd 374710 0.2834 £ 0.0066 38 s/ 1.10 hrs
L=4 102745 72.8968 + 0.197  72.4338 + 0.213 103 s/ 2.1 hrs
CLUSTER L=4 wrsd 102745 72.7414 + 0.211  73.0887 £ 0.295 103 s/ 2.1 hrs
L=16 wrsd 399055 74.5450 £ 0.306 115 s/ 1.7 hrs
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