On the Experimental transferability of Spectral Graph Convolutional Networks

Master's project presentation 6/7/2020

Axel Nilsson

Outline

- 1. Introduction
 - Spectral graph convolutional networks
 - ChebNet
- 2. Benchmarking
 - Benchmarking GNNs
 - OGB
- 3. Structural edge dropout
- 4. Questions (20 minutes)

1. Introduction - Graphs

- G Graph
- N Set of nodes
- E set of edges
- A Adjacency matrix
- **D** Degree matrix
- h Node features
- e Edge features
- g Graph features

Graph Convolutional Networks (GCNs)

Convolutional neural networks do not translate well to graphs:

- No ordering of nodes
- No orientation
- Varying neighbourhood sizes

The Laplacian operator:

$$\Delta_u = D - A$$

$$\Delta_n = I_n - D^{\frac{1}{2}} A D^{\frac{1}{2}}$$

$$\Delta = \Phi^T \Lambda \Phi$$

Spectral decomposition:

n eigenvalues λ and eigenvectors Φ

Vanilla spectral GCN:

$$h^{\ell+1} = \xi \left(\Phi \hat{\theta}(\Lambda) \Phi^{\top} h^{\ell} \right)$$
$$= \xi \left(\hat{\theta}(\Delta) h^{\ell} \right)$$

h - node feature

xi - Non-linear activation functiontheta - matrix of learnable weightsphi - eigenvectors of the laplacian

ChebNet: a fast spectral GCN

Re-normalised Laplacian:

$$\tilde{\Delta} = 2\lambda_{max}^{-1} \Delta_n - I$$

Re-scales the eigenvalues to [-1,1]

Learned filters:

$$g_{\theta}(\tilde{\Delta})h = \sum_{j=0}^{k} \theta_j T_j(\tilde{\Delta})$$

For the corresponding order *k*

Chebyschev Polynoms:

$$\begin{cases} T_0 = h \\ T_1 = \tilde{\Delta}T_0 \\ T_{n>2} = 2\tilde{\Delta}T_{n-1} - T_{n-2} \end{cases}$$

Recursively computes a basis

- O(1) parameter per layer
- Filters are localised
- No eigendecomposition
- Filters are basis dependent

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. page 9. arXiv:1606.09375

A proof of transferability

The work of Levie et al. debunked the prejudices of the vanilla spectral GCNs

"If two graphs discretise the same continuous metric space, then a spectral GCN has approximately the same repercussion on both graphs."

Spectral GCNs should work well on sets of graphs

Objective

Give experimental proof of transferability of spectral GCNs on datasets with sets of graphs

Try to improve the transferability of the spectral GCNs -> Structural Edge Dropout

2. Benchmarking

- Several benchmarks aim at comparing GCNs
- Provides a series of different tasks with large datasets
- Framework giving training hyper parameters which ensures replicability
- None include spectral GCNs!

Graph Classification MNIST & CIFAR10 Superpixels

Dataset	Model	# parameters	Accuracy $\lambda_{\max}=2$	epoch/total
MALICE	L=4	100001	$96.2625 \pm 0.106 \%$	46 s/ 0.81 hrs
MNIST	L=16	387365	$96.3125 \pm 0.338 \%$	95 s/ 1.69 hrs
gra. p 10	L=4	100155	$62.2125 \pm 0.453 \%$	60 s/ 0.95 hrs
CIFAR10	L=16	387519	$64.4075 \pm 0.548 \%$	100 s/ 1.7 hrs
MALICT	GCN	101365	90.7050 ± 0.218 %	
MNIST	GraphSage	104337	$97.3400 \pm 0.143 \%$	
CIFAR10	GraphSage	104517	$65.7670 \pm 0.308 \%$	
	GatedGCN	104357	$67.3120 \pm 0.311~\%$	

Data of the MNIST Superpixel dataset - label: 0

- Task: Graph classification on images to superpixel graphs with the SLIC transform.
- Results: Average performance on MNIST and CIFAR10 compared to similar models

Graph regression - ZINC

- Task: Graph regression, prediction of the solubility of each molecule
- Result: Best performance between models learning isotropic filters. Good performance overall.
- Questionable whether the train/val/test set are representative of any underlying space
- Unlikely that each molecule is a sample of a continuous space

Data of the ZINC, node colours are related to atom type - label: -0.2070

Dataset	Model	# parameters	Accuracy	Accuracy $\lambda_{\text{max}} = 2$	epoch/total
ZINC	L=4 L=4 w rsd L=16 L=16 w rsd	101230 101230 374710 374710	$egin{array}{l} \textbf{0.3304} \pm \textbf{0.0210} \\ 0.4099 \pm 0.0048 \\ \textbf{0.2680} \pm \textbf{0.0184} \\ 0.2834 \pm 0.0066 \\ \end{array}$	0.3408 ± 0.041	135 s/ 3.5 hrs 171 s/ 3.2 hrs 39 s/ 1.24 hrs 38 s/ 1.10 hrs
ZINC	GatedGCN GatedGCN-E-PE	105735 505011	0.4350 ± 0.011 0.2140 ± 0.006		

Node classification - SBM

- Task: Predict the node label between six communities of various sizes with a probability p of being connected to other nodes of the community and q to others
- Result: Very good performance
- All graphs describe a non-euclidian continuous underlying manifold

Data of the SBM Cluster dataset. The colour of the nodes represent their labels.

Dataset		# parameters	Accuracy	Accuracy $\lambda_{\max}=2$	epoch/total
CLUSTER	L=4 L=4 w rsd L=16 w rsd	102745 102745 399055	72.8968 ± 0.197 72.7414 ± 0.211 74.5450 ± 0.306	72.4338 ± 0.213 73.0887 ± 0.295	103 s/ 2.1 hrs 103 s/ 2.1 hrs 115 s/ 1.7 hrs
Gated-GCN	L = 4 L= 16	104355 502615	60.404 ± 0.419 73.840 ± 0.326		

OGB: Result Summary

- Task: Graph regression, prediction of the proprieties of each molecule
- Result: Above average performance overall. Good performances with regard to classical models GCN and GIN on both tasks
- Splitting in Test/train/val is more equitable than ZINC
- Relatively better performance for the larger dataset
- New models have been added to the leaderboard since the report that show greater performance

Detect	Д 1	Matria	Accuracy (%)		
Dataset	# graphs	Metric	Best Train	Val	Test
MOL-HIV	41'127	ROC-AUC	0.9992	0.8490	0.7631 ± 0.0127
MOL-PCBA	437'929	PRC-AUC	0.5417	0.2387	0.2317 ± 0.0036

link: https://ogb.stanford.edu/docs/leader_graphprop/

3. Structural Edge Dropout

MNIST image on a 4 - NN Lattice

MNIST image on a 4 - NN with structural edge dropout

Structural augmentation are particular to graphs

Cut a random set of edges at a variable rate between 0 and r % of all the edges for every graph during the training

Structural edge dropout

- The node features are not changed, only the graph is
- · Shows improvement on transferability outside the region of training

Structural edge dropout - on the benchmarking tasks

Dataset \ Edge rm. rate	0% (reference)	15%	30%
MNIST SUPERPIXEL CIFAR 10 SUPERPIXEL SBM CLUSTER	96.2625 ± 0.1056 62.2125 ± 0.4526 72.7414 ± 0.2110	96.6050 ± 0.1933 65.9650 ± 0.6810 73.1050 ± 0.1369	$egin{array}{c} 96.6475 \pm 0.1466 \\ 66.3875 \pm 0.8126 \\ 72.5186 \pm 0.3642 \end{array}$

- The performance of the ChebNet is improved in every case.
- Most significantly in the case of the CIFAR dataset
- Does not work for ZINC -> limitation of the technique

Conclusion

- The ChebNet provide state of the art performance on ZINC and CLUSTER of the 'benchmarking-GNNs' and good performances for two of OGB's datasets
- Supports experimentally the argument that spectral GCNs have good performance and transferability
- Structural edge dropout can not only increase the performance of a spectral GCN but also its transferability

4. Questions &

Benchmarking-GNNs: Result Summary

Dataset		# parameters	Accuracy	Acc. $\lambda_{\text{max}} = 2$	epoch/total
	L=4	100001		96.2625 ± 0.106 %	46 s/ 0.81 hrs
MNIST	L=16	387365		$96.3125 \pm 0.338~\%$	95 s/ 1.69 hrs
CIEAD 10	L=4	100155		$62.2125 \pm 0.453~\%$	60 s/ 0.95 hrs
CIFAR 10	L=16	387519		$64.4075 \pm 0.548~\%$	100 s/ 1.7 hrs
ZINC	L=4	101230	0.3304 ± 0.0210	0.3408 ± 0.041	135 s/ 3.5 hrs
	L=4 w rsd	101230	0.4099 ± 0.0048		171 s/ 3.2 hrs
	L=16	374710	0.2680 ± 0.0184		39 s/ 1.24 hrs
	L=16 w rsd	374710	0.2834 ± 0.0066		38 s/ 1.10 hrs
CLUSTER	L=4	102745	72.8968 ± 0.197	72.4338 ± 0.213	103 s/ 2.1 hrs
	L=4 w rsd	102745	72.7414 ± 0.211	73.0887 ± 0.295	103 s/ 2.1 hrs
	L=16 w rsd	399055	74.5450 ± 0.306		115 s/ 1.7 hrs