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Abstract

Spectral Graph Convolutional Networks (GCNs) are generalisations of standard
convolutional for graph-structured data using the Laplacian operator. Recent work
[26] has shown that spectral GCNs have an intrinsic transferability. This work
verifies this by studying the experimental transferability of spectral GCNs for a
particular family of spectral graph networks using Chebyshev polynomials.
This work introduces two contributions. First, numerical experiments exhibit good
performances on two graph benchmarks [13] [19], on tasks involving batches of
graphs, namely graph regression, graph classification and node classification prob-
lems. Secondly we study a form of data augmentation through structural edge
dropout showing performance improvements for GCNs.
This work contributes to open research with public implementations of all experi-
ments, enabling full reproducibility.
Keywords: Graphs, neural networks, deep learning, transferability, data augmen-
tation, benchmarking.
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1 Introduction
The mathematical study of graphs can be traced back to Euler in 1973 when the Swiss mathematician
resolved the seven bridges of the Könignsberg problem and laid the foundation of what became
graph theory and graph topology. In this famous mathematical problem, one can see how the abstract
representation of the world that graphs offer, and how it can be applied on a variety of domains.

Graph neural networks (GNNs) [35] has given a way for using deep learning techniques on graphs.
With a recent surge of interest in this nascent field, the concept of convolutional neural network
(CNN) which has shown great performances on a variety of tasks on Euclidean domains such as
computer vision, has been extended to graphs with graphs convolutional networks (GCNs) with
spacial [21] and spectral [6] [11] inspiration.
GCNs have showed stellar performance in myriads of domains, among others the representation
of social networks to describe communities [21] or fake news detection [32], chemistry [16][12],
knowledge graphs [36] [17], physics [10] , recommendation systems [31] [41] and more generally
abstract representations of spaces. All of these tasks are noticeably different, and one could think
that all relational information can be represented in the form of a graph as they can represent non-
Euclidean spaces. Thus, the ability to make predictions about components of graphs or graphs
themselves leverages the potential to understand a wide variety of problems.

However, as graphs have an awkward nature without orientation or conformation, some problems
remain. Most notably the sparsity of matrices describing graphs is not optimised on most of the
current processing hardware which is fuelling the explosion of the capacity of deep learning with
CNNs. Recent projects have been building infrastructure to remedy this issue [38] [14] and are
enabling the wider use and distribution of GNNs.

In this project we focus on the idea of transferability of spectral GCNs. This is the ability to ac-
curately and consistently predict a feature on a graph domain that is previously unseen by such a
model. It has been shown that spectral filters [27] transfer well between graphs and as a natural
consequence, so does GCNs [26]. Additional evidence of the transferability of spectral GCNs is the
formulation of spectral and spacial GCNs with the message passing paradigm [16]. In spite of that,
experimental evidence of the use of spectral GCNs is scarce in the literature. This work supports
the idea that spectral GCNs have significant transferability capacity by providing a corpus of ex-
perimental evidence showing that the ChebNet [11] performs well across a variety of tasks such as
graph classification, graph regression and node classification.

In this report, we will start by formally introducing the notion of graphs, to be able to link the theory
of graphs to the one of deep Learning, throughout section 2. This will lead us to be able to formulate
a more specific problem statement in section 3. Then, in section 5, we will study the performance
of the ChebNet on a series of tasks on sets of undirected, unweighted graphs from different public
graph neural network benchmarks [13] [19]. We will use these results to show that the ChebNet
has similar, if not better, performances compared to other popular GCNs. Subsequently in section
6, we will look at a novel way of improving the accuracy and the transferability of GCNs by doing
structural edge dropout. This is a form of data augmentation, a technique commonly used in other
subfields of machine learning but seldom used on graph data and graph deep learning.

In order to have all of the results of this research project to be replicable, an important feature of
computational sciences, the code to the majority of the experiments can be found on several open
repositories. Throughout the report these will be specified to be easily accessed.
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2 Review of spectral graph theory and spectral GCNs
In this section we will first introduce the notion of graphs and their spectral decomposition. Then,
we will use these to show how graph signal processing is used for graph deep learning and present
the ChebNet [11], a spectral GCN that serves as an experimental reference throughout the rest of the
report.

Most of the following material in the following two sections can be linked to books on spectral graph
theory [8], seminal papers in the field [5] or courses syllabuses currently used [25].

2.1 Graphs and graph features

n1

h1 ∈ Rdn

n3

n4 n5

n6

n7

n2

h2 ∈ Rdn

e12
e14

e13 ∈ Rde

e23

g = [g1, g2, ..., gd] ∈ Rdg

Figure 1: Drawing of an example graph with annotations on nodes and edges.

A graph is noted G = {N , E , A}, where N is its set of nodes, E the set of edges and an adjacency
matrix A, also called weight matrix.

The elements of the adjacency matrix A, aij give information on the type of edge that joins two
nodes. In an unweighted graph, aij acts as a boolean signaling existence or absence of edge between
the nodes ni and nj . For an undirected graph, the adjacency matrix is symmetric so that aij =
aji. For weighted graph, aij is a scalar that represents information like distance, connectivity or
probability.

A graph can have features associated with each of its components. Actually, the same relational data
can be represented by different graphs, depending on the chosen convention, thus features on the
graphs holds a significant part of the information of any given graph.

Node features h on the ith node ni is hi = [hi1 , hi2 , ..., hid ] of dimension Rdn . Edge features eij
between two nodes ni and nj , is eij = [eij1 , eij2 , ..., eijd ] of dimension Rde . The neighbourhood
Ni of a node ni is the set of all the connected nodes. Graph features are noted g which are feature
related to the entire graph like molecule energy of dimension Rdg . These notations are illustrated on
a toy graph in Fig.1.

2.2 Spectral graph theory
Introduction to the Graph Laplacian The unnormalised Laplacian matrix ∆u of a graph G is
a symmetric, positive-semidefinite matrix. It is related to the adjacency matrix by the following

formula: ∆u = D −A where D = diag
{∑

j 6=iAi,j

}N
i=1

is the degree matrix.

The normalised Laplacian ∆n, is computed such as:

∆n = In −D−
1
2AD−

1
2 = D−

1
2 ∆uD

− 1
2 (1)

The Laplacian is interpreted, or directly related to the smoothness of the graph. Were the signal to be
smooth, the Laplacian would be small, and vice versa. The Laplacian is also the solution to the heat
equation. The operation of the Laplacian on the feature of a node hi is the difference between itself
and the average of the neighbourhood of the node Ni, such that (∆h)i = hi − 1

di

∑
j∈Ni

Aijhj .
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Spectral decomposition of the Laplacian operator The Laplacian operator, being positive-
semidefinite, admits a spectral decomposition such as:

∆ = ΦTΛΦ

where Φ = [φ1, φ2, ..., φn] are eigenvectors and Λ = diag(λ1, . . . , λn) eigenvalues. This decompo-
sition naturally satisfies ∆Φk = ΦkΛk, k being the kth eigenvalue.

The spectral decomposition of a graph gives an orthogonal basis describing the space of the graph.
A visualisation of the eigenfunctions can be seen in Fig.2. One can observe that higher order eigen-
functions corresponds to higher order frequencies on the graph, just as on an euclidian domain.

Figure 2: Visualisation of the first four Laplacian eigenfunctions φ0, ..., φ3 on a graph representing
the roads of Minnesota. One can see that the eigenfunctions have an orthogonality that is typical of
euclidian domains but are impacted by the geometry of the Graph. Extract of figure from [5].

Spectral filtering of graph signals Now let us introduce the notion of Fourier transform on
graphs. The basis Φ given by the decomposition of the Laplacian can be used similarly as dis-
crete signal processing. Like signal processing on regular euclidian domains, spectral graph signal
processing is dependent of the geometry of the domain.

We can define the Fourier transform F of a signal h:

F(h) = ΦTh = ĥ

and the inverse Fourier transform, F−1:

F−1(ĥ) = Φĥ = ΦΦTh = h

This verifies the condition of permutability F−1 ◦ F = ΦΦT = I .

Using the previous equations, we have the convolution theorem with the operator ? between to
signals g and h over a domain with eigenvectors Φ by using� the Hadaman, or elementwise product:

g ? h = F−1(F(g)�F(h))

= Φ

ΦT g︸︷︷︸
=ĝ

�ΦTh


= Φdiag(ĝ1, ..., ĝn)ΦTh

= Φĝ(Λ)ΦTh

= ĝ(ΦΛΦT )h

= ĝ(∆)h

(2)

Though we have been able to show in Eq.2 that a convolution on a graph domain can be simplified
to a multiplication of ĝ, ∆ and h, the computational cost of the eigendecomposition of a matrix is
O(n2).

2.3 Standard convolutional neural networks
Convolutional neural networks (CNNs) are best known in the context of deep learning and computer
vision corresponding to a layer with a convolutional kernel/matrix w defined in size, which elements
wi are learned by the network. This kernel is convoluted with the image, meaning translated across
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the image and create feature maps by successively applying the kernel to the pixels. Sharing weights,
reduces the complexity of models and has shown to improve performances on CNNs by enabling
scaling to deeper architectures of CNNs [18].

For graphs, this idea of convolution translates with some difficulty. First of all, in graph there is no
ordering of nodes, which means that the notion of direction that exists in euclidian domains simply
do not exist. Secondly, the size of the neighbourhood can vary for each node, which means that it is
impossible to fix a size of kernel to learn discrete filters.

2.4 Extention to graphs
The original “vanilla” spectral GCN proposed in [6] is as formulated in Eq.3. With dn the number
of features, Φk the kth first eigenvectors of Φ and n the number of nodes in a graph, h is [n × dn]
and hl is the lth feature map.

h`+1
i = ξ

∑
j∈Ni

θi,j ? h
`
i,j


= ξ

∑
j∈Ni

Φkθ
k
i,jΦ

T
k h

`
j

 (3)

Where θi,j is a matrix of (learnable) filters, ξ is a non linear activation function applied element-wise.

This technique has several limitations. First, there is no guarantee of spatial localisation of filters.
Second, the filters are basis dependent, which means that they cannot be applied on other basis
without significant distortion. In terms of transferability, this means that the filters are altogether
theoretically not transferable. In practice it is conceivable that the filter could transfer if there were
some correspondence between the domains. Third, the computational complexity of this method is
O(n2) because of the computation of the eigen-decomposition of the graph Laplacian. Lastly, the
model need to learn O(n) paramaters per layer.

Though the model presented un [6] has significant drawbacks in practice, it is conceptually a sig-
nificant milestone for spectral GCNs. Later spectral GCNs models [11] [15] [22] [28] alleviate the
pain of matrix decomposition and basis dependence to provide models with lower time and space
complexity and higher transferability.

A vanilla ‘spatial’ graph neural network can be found in [21] a GCN is proposed that uses a single
weight matrix θ of size [1× dn] that is multiplied and averaged over all the nodes in the neighbour-
hood Ni of a node ni as in the following equation.

hl+1
i = ξ

 1

di

∑
j∈Ni

Aijθ
lhlj


Note that the GCN layer responds to the problems mentioned in the previous section - no ordering
of node and varying sizes of neighbourhoods - by using one single parameter. The GCN of [21]
performs well on small graphs, the model is too simplistic learning only low pass filters with 1-hop
neighbours to have high accuracy on larger graphs or batches of graphs.

Other spacial models [17] [40] build on the same message-passing paradigm but by adding degrees
of liberty within the model, show better performances on larger graphs and sets of graphs.

The idea of a distinction between spacial and spectral has been disputed. [16] show that spectral
GCNs have valid spacial formulations using the message passing paradigm, [2] come to the con-
clusion that the distinction arises rather from the inspiration that led to the model building than
immutable differences. This has led the spectral methods to typically be wrongly associated with
the shortcomings of the vanilla spectral GCN model [6]. In this work we will call spectral methods
all that use the Laplacian operator as an essential component of the mathematical formulation of the
convolutional layer.
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2.5 The ChebNet
The Chebyshev graph convolutional layer proposed in [11] is of spectral inspiration but uses a com-
puted orthonormal basis based on the Chebyshev polynomials. This adds robustness to small coef-
ficient perturbation.

This is the model that will be used and studied throughout the report. Additionally a pooling method
is presented and used in [11] but it is never used in this report. Though the performance of the
neural network might increase with pooling, not using a pooling layer enables us to better compare
the model to other types of convolutional layers.

Compared to other spectral graph neural network the ChebyNet is computationally efficient as it
computes recursively the basis T of order k with the following formula:

T0 = h

T1 = ∆̃T0
Tk≥2 = 2∆̃Tk−1 − Tk−2

(4)

In order to make the basis orthogonal, a normalisation of the Laplacian is needed. This is done by
defining a normalized Laplacian such as:

∆̃ = 2λ−1max∆− In (5)

So that the eigenvalues Λ = 2λ−1maxΛ− I are in the interval [-1,1], where the Chebyshev polynomes
are orthogonal. The effect of this normalisation will be studied and discussed in the following
section.

The learned filters, gθ explicited in Eq.6 are localised in space. The filters are isotropic, limit their
capacity of the network to specify, leading for instance to lower performance than a traditional
convolutional network (CNNs), which are anisotropic, on MNIST as showed in [11] [23].

gθ(∆̃)h =

k∑
i=0

θiTi(∆̃)h (6)

As one can note GCN [21] is a simplification of the ChebNet with the parameters k = 2 and
λmax = 2 It is interesting that the ChebNet [11] and GCN [21] are sometimes compared as one
being spectral and the other being spacial, showing once again that the distinction between spacial
and spectral are mostly inspirational.

2.5.1 Considerations on the effect of fixing the largest eigenvalue on the ChebNet
The ChebNet is presented in [11] as a fast GCN with low time and space complexity. In practice,
the estimation of λmax, needed for the re-scaling of the Laplacian detailed in Eq.5, for each graph,
can be tricky and computationally expensive (O(n2)). Though it is true that this operation needs to
be done once for every graph and can be stored with the data as a constant propriety of each graph,
it is sometimes impractical to do so without changing the data pipeline, forcing the computation of
this value for each graph at each occurrence.

Some [22][23] have found a ‘fix’ to this problem by fixing the value of λmax = 2 for all graphs in
all of their experimentation. This is justifiable as it ensures that for any graph, the eigenvalues are
within the range of [-1,1] and prevents for a ‘worst case’. Experimentally, it reduces computation
time. But actually, doing that removes the orthogonality of the Chebyshev basis. Also, the learned
filters of the ChebNet described in Eq.6 have a direct relationship to this largest eigenvalue. Thus,
fixing an arbitrary number should be somewhat deteriorating the performances of the ChebNet.

2.5.2 Graph embedding layer
To be able to compare the performance of a neural network across graphs of different sizes, the MLP
needs to be independent of the number of nodes on a graph. Thus there needs to be an aggregation
of the features so that they become independent of the number of nodes. A typical model of that
can be seen in Table.11 in appendix A.4. By summing, averaging or taking the maximum value a
feature over all nodes, one reduces the dimensions of the featuremaps outputted by convolutional
layers gθ(∆̃)h [n× out] to hθ [1× out].
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Aggregating all of the feature maps results in significantly less information for the MLP. Several
functions such as max, mean or sum can be used for the aggregation of the feature maps over all
nodes. In [40] it is showed that summing is the most expressive function of the ones mentioned
previously and therefore the one that degrades the least information from the featuremaps.
In practice, having aggregation functions that combine the information in a surjective way can be
a powerful way to improve transferability. Also, the most commonly used aggregation function is
“mean” and so to be able to compare models, it will be the default option in this work. Some tin-
kering with the aggregation function on several of the experimentation in this project never showed
superior performance when using the ‘sum’ instead of ‘mean’ aggregation function.
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3 Problem statement
Transferability for GCNs is a type of generalisation capability. Usually, it designates that if two
graphs represent the same underlying phenomenon and the two signals given on the two graphs are
similar in some sense, the output of the GCN on both signals should be similar as well. Therefore it
is directly related to the capacity of one GCN to learn on one (or set of) graph and make predictions
with similar accuracy on unseen graphs of the same kind with consistency.

The innate transferability of spectral GCNs have long been underestimated as they usually were
attributed the drawbacks of the vanilla spectral GCN [6]. This has lead to less interest in those
compared spacial GCNs, leading to less experimental evidence of their workings in the literature.
The work of Levie et al. [26] [27] debunked the prejudices on spectral GCNs by showing that if two
graphs describe the same phenomenon, then a single GCN should have similar repercussions on both
graphs. Moreover it emphasises the importance of the underlying manifold that graph discretise,
showing that if two graphs discretise the same continuous metric space, then a spectral GCN has
approximately the same repercussion on both graphs. These strong claims provides a new way of
understanding the performance of spectral GCNs that has not been experimentally assessed before
this work. In section 5 we will test a spectral GCN on various datasets and discuss its performance
in the scope of the aforementioned claims.

As transferability is a known boundary for some applications of GCNs, some have tried to improve
their built-in transferability. One approach is to modify the Laplacian in order to diminish the differ-
ence between two domains, making the filters more relevant to the unseen domain. Some state of the
art results of domain transfer has been done in [34] by aligning the eigenvalue of the Hamiltonians,
or [9] with isospectralization or deforming a shape so that the Laplacian spectrum of each graphs
match each other.
In other fields of deep learning, improving generalisation capability is generally done by data aug-
mentation. On graphs however this uncommon though some attempts of trying to predict edge
weights to improve the prediction performance have been presented [20], adding new conformations
of the same set of nodes [22], which can be understood as specific forms of attention mechanisms
[37]. In section 6 we will propose and test experimentally structural edge dropout, a form of data
augmentation done by randomly removing edges of graphs during the training phase.

4 Contribution to ChebNet DGL implementation
A significant part of the project was setting up a code-base to do experimentation with the Cheb-
Net. In order to do graph deep learning, an implementation of the ChebNet was done with the Deep
Graph Library (DGL)1 [38]. DGL used in combination with Pytorch [33], leverages high perfor-
mance by being faster and more memory-friendly than PyTorch Geometric, another graph neural
network library.
Though there was initially an implementation of the ChebNet in DGL2 in the library. This imple-
mentation was found to be incorrect. Firstly because the layer was lacking a rectified linear unit
(ReLu), which caused the convolutional layer not to perform better when stacked. Secondly be-
cause though it was released by the DGL team, it did not use some of the functions optimised for
the library.
Other implementations were prior to the use of deep learning frameworks optimised for graphs and
used only Tensorflow3 or Pytorch4 while others [23] used Pytorch Geometric5.

A revised implementation for the ChebNet6 has been proposed and is currently being reviewed
to be integrated7 in the DGL library. This implementation uses the message passing paradigm to
leverage the functionalities of DGL and give the fastest implementation of the ChebNet. By using
the message-passing functions, DGL optimises in the backend the operations for the sparse matrices
that graphs can be represented as.

1http://dgl.ai/
2docs.dgl.ai/en/latest/modules/dgl/nn/pytorch/conv/chebconv
3github.com/mdeff/cnn graph
4github.com/xbresson/CE7454 2019/tree/master/codes/labs lecture14/lab01 ChebGCNs
5github.com/bknyaz/graph nn
6github.com/Axeln78/dgl/tree/ChebConv
7github.com/dmlc/dgl/pull/1460
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5 Benchmarking the ChebNet
The benchmark [13] aims to compare the performance of GCN layers on datasets composed of
batches of graphs. This is done by comparing the performance of several models, the most common
are: GCN [21], GraphSage [17], MoNet [30], Gated-GCN [4], GAT [37] and GIN [40].

There are several advantages of using the material of the benchmark presented in [13]. Firstly, the
datasets are public and were design by the authors to reflect a wide series of tasks. Some, like the
SBMs and SuperPixels are generated e.g. are not natural. Therefore, unlimited amounts of sets of
graphs can be generated. Secondly, the performance results become comparable to the performance
of the other aforementioned models given in the publication.

In practice it is difficult to compare models as the tweaking of some hyper-parameters and changes
in architecture can strike a significant difference in performance. By fixing a budget of 100, 000
parameters per model, the authors try to introduce a sense of fairness that compares graph con-
volutional layers by their design. The graph convolutional layers are put in similar GCNs with a
maximum of four convolutional layers (L=4) and three layers of MLP after that.

The benchmark also constraints the learning hyper-parameters for the training of the GCNs. There
is batch normalisation with batches of 128 graphs. The learning follows a scheduler with an initial
learning rate of lr = 0.001, with a reduce factor of 0.5 and a learning rate scheduler patience of 5
epochs. The minimum learning rate is 1 ∗ 10−5.

For the ChebNet, the number of parameters vary with the order of the Chebyshev polynomial k.
We will chose k accordingly to best performance of the model for each task, which is found to be
proportional to the mean number of nodes per graph for each dataset.

Implementation All of the experiments are replicable with the code found on the repository8. For
a given task (ZINC in this example), the files that were added or changed are as follows:

benchmarking gnns/

configs/

molecules graph regression Cheb ZINC.json

Layers/

Cheb layer.py

nets/

molecules graph regression/

ChebNet.py

load net.py

script main molecules graph regression ZINC.sh

All of the additional code needed to add the ChebNet to the ‘benchmarking gnn’ repository of [13]
will proposed as a contribution to the project.

Results summary In order to be able to easily compare the performance of the ChebNet on the
tasks of the benchmark of [13], the accuracies of all of the tasks are summarised in Table.7 in ap-
pendix.A.4. We will review the tasks of graph classification with MNIST and CIFAR, graph regression
with ZINC and node classification with SBM CLUSTER .

5.1 Graph classification with the SuperPixel datasets
Super-pixels represent small regions of homogeneous intensity in images, and can be extracted with
the SLIC technique presented in [1] and used in similar settings in relevant literature [23][24]. The
SuperPixel datasets are made by doing just that on the images of the MNIST and CIFAR datasets to
turn them into graphs. The resulting graphs vary in sizes, thus the models used for graph classifica-
tion have a graph embedding layer. Fig.3 shows graphs of the MNIST SuperPixel dataset. For both
graph classification tasks, the same model configuration is used with k = 4, both can be seen in
Table.10 in appendix A.4.

5.1.1 MNIST SuperPixel
Unlike the original MNIST dataset which has only one signal channel corresponding to greyscale
intensity, the SuperPixel MNIST uses three channels: mean greyscale intensity and the center of

8github/Axeln78/benchmarking-gnns/tree/ChebNet
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Dataset Model # parameters Accuracy λmax = 2 epoch/total

MNIST
L=4 100001 96.2625± 0.106 % 46 s/ 0.81 hrs
L=16 387365 96.3125± 0.338 % 95 s/ 1.69 hrs

CIFAR10 L=4 100155 62.2125± 0.453 % 60 s/ 0.95 hrs
L=16 387519 64.4075± 0.548 % 100 s/ 1.7 hrs

MNIST
GCN 101365 90.7050± 0.218 %
GraphSage 104337 97.3400± 0.143 %

CIFAR10 GraphSage 104517 65.7670± 0.308 %
GatedGCN 104357 67.3120± 0.311 %

Table 1: Summary of the performance of the ChebNet on the SuperPixel datasets. The accuracy is
the mean and standard deviation of the classification score of four models trained with four random
initialisation. L is the number of convolutional layers for a given model. Additionally two models
for each dataset have been added from [13] as elements of comparison

(a) 4 (b) 1 (c) 7

Figure 3: Three sample graphs from the SuperPixel MNIST dataset with their corresponding labels.

mass (x,y) of the the pixels. This gives an information of orientation of the graph to the neural
network. The number of nodes per graph varies between 40 to 75.

Results The testing accuracy is 96.2625 ± 0.1056% which, comparatively to the benchmark cor-
responds to a top-tier performance and would rank fourth compared to all the other models. The
training accuracy is 100% for all four trained models, which shows that the model is capable of
overfitting the data.

5.1.2 CIFAR10 SuperPixel

This classification task is more difficult than classifying the MNIST dataset. Because the classes like
‘plane’ or ‘dog’ are more abstract, and thus harder to represent in a SuperPixel graph. Contrary to
the MNIST SuperPixel dataset, a human could not label correctly these SuperPixel graphs with high
accuracy. The features on each node is 5-dimensional with RGB information as well as the center
of mass of each node on the original image, giving information on the orientation of the graph to
the model. There are on average 100 nodes per graph. The used model is represented in Table.10 in
appendix A.4.

Results The accuracy being 62.2125± 0.4526%, the network lands in the middle compared with
the other models of the benchmark and would be ranked fourth. The training accuracy being con-
sistently above 90% and the MNIST graph classification having high accuracy leads to think that this
result is linked to the difficulty of the task rather than inability to learn of the model.

For the original CIFAR10 dataset, it is well known that additional data augmentation is necessary to
reach performances beyond about 60%. Though the performances are not comparable because of the
constraints given by the benchmark, [23] obtains higher accuracy (68,92%) by using the ChebNet in
a setting of batches of graphs with different coarsening of the images to graphs.
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(a) -0.2070 (b) 0.5230 (c) 0.8350

Figure 4: Three graphs from the ZINC dataset, in caption are the labels or values to predict from the
graph. The node colours corresponds to a categorical label for each kind of atom.

5.2 Graph regression with molecular dataset - ZINC
The ZINC dataset is a set of graph representing molecules of varying sizes and connectivity as rep-
resented in Fig.4.

This is a graph regression task as the graph neural network has to predict the constrained solubility
of each molecule, or one value per graph. The accuracy is determined by the mean average error of
the L1 loss between the graphs of the test set. Node features are categorical and correspond to the
type of atom each node represent. Similarly, the edge features represent the type of bond between
two atoms. The edge features are not used in any experimentation. The number of graphs in the
training- validation- and test- set are respectively 10000, 1000 and 1000 graphs.

The architecture of the model can be seen in Table.11 in appendix A.4. The chosen order of Cheby-
shev polynomials is k = 2, because the graphs are small (9 to 37 nodes/atoms). A graph embedding
layer is added at the end of the convolutional layers taking the mean of the node features. An em-
bedding layer is added at the beginning of the model in order to be able to create an embedding from
the categorical labels of the nodes.

Dataset Model # parameters Accuracy Accuracy λmax = 2 epoch/total

ZINC

L=4 101230 0.3304 ± 0.0210 0.3408± 0.041 135 s/ 3.5 hrs
L=4 w rsd 101230 0.4099± 0.0048 171 s/ 3.2 hrs
L=16 374710 0.2680 ± 0.0184 39 s/ 1.24 hrs
L=16 w rsd 374710 0.2834 ± 0.0066 38 s/ 1.10 hrs

ZINC
GatedGCN 105735 0.4350± 0.011
GatedGCN-E-PE 505011 0.2140± 0.006

Table 2: Summary of the performance of different ChebNets on the ZINC Dataset of the benchmark
[13]. The accuracy is the mean accuracy and standard deviation of four models trained with four
random initialisation. L is the number of convolutional layers and models that use layer-wise resid-
ual connections are noted ‘w rsd’. Two of the best models from [13] have been added as elements
of comparison.

Results Molecular regression task are known to be difficult because the datasets are often severely
imbalanced and that the number of pieces of data is limited. This benchmark [13] choses to take an
initial random split for the train/val/test set while [19] splits by scaffolding pointing out that random
splits yields lower performances.

On this task the ChebNet outperforms the other models. The accuracy for the ChebNet on this
dataset can be seen in Table.2. The MAE is 0.330375±0.02106 which places it as the top contender
of the benchmark, taking the first place from the Gated GCN [4] models which additionally use edge
features.

Fig.5 show the prediction of a trained ChebNet on the train/val/test sets of the dataset. It shows
that the distribution of labels is unbalanced, with few molecules with very low solubility. This
might explain why the predictions of the trained model are better in the region where there are
more examples for a given solubility, a plateau in 5. Moreover the Fig.5 shows fringes between the
predicted values. This can be an effect of the L1 loss, the disparate distribution of molecules or the
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Figure 5: Distribution of labels and predictions on the ZINC Dataset sorted by labels. In orange
the labels, and in blue the predictions for each molecule. One can see that the labels of the dataset
is imbalanced which lead to the variance of the predictions being greater for molecules with low
solubility, as they are underrepresented in the training set.

inherent geometry of the problem. In order to distinguish between those, the code to produce these
visuals will be pushed to the original repository9 to compare the predictions distributions across
models.

5.3 Node classification with Stochastic block model - SBM
The stochastic bloc model (SBM) graphs have several clusters of communities. There is an intra-
probability p of being connected to another node in the same communities and a extra-probability q
of being connected to a node in another communities. SBM have been shown to be a good repre-
sentation of social networks [29].

With this dataset, two tasks are proposed in [13]. Firstly the CLUSTER task which is a classification
task of the label of each node correspondingly to different communities. Secondly the PATTERN task
which is a pattern recognition and semi-supervised graph clustering. Unfortunately, experimentation
showed that the loss used in [13] was incorrect. After correction, the PATTERN task became too easy
and will not be presented in this work.

In the CLUSTER dataset, each graph has 6 communities of 5 to 35 nodes connected together. The
weighted cross-entropy loss and accuracy metric are averaged across communities in both CLUSTER
so that the model is penalised equally for miss-labelling communities of different sizes.

Although the graphs are different in sizes, the output of the neural network is proportional to the
number of nodes. Thus there is no graph embedding layer for this model. The parameter k = 5 has
been chosen because the graph varies to sometimes be large with 40-190 nodes for CLUSTER. The
communities themselves are smaller and the diffusion proprieties should correspond to the size of
the communities rather than the full graph. The model can be seen in Table.12 in appendix A.4.

Dataset # parameters Accuracy Accuracy λmax = 2 epoch/total

CLUSTER
L=4 102745 72.8968 ± 0.197 72.4338 ± 0.213 103 s/ 2.1 hrs
L=4 w rsd 102745 72.7414± 0.211 73.0887 ± 0.295 103 s/ 2.1 hrs
L=16 w rsd 399055 74.5450 ± 0.306 115 s/ 1.7 hrs

Gated-GCN L = 4 104355 60.404± 0.419
L= 16 502615 73.840± 0.326

Table 3: Summary of the performance of different ChebNets on the ZINC Dataset of the benchmark
[13]. The accuracy is the mean accuracy and standard deviation of four models trained with four
random initialisation. L is the number of convolutional layers and models that use layer-wise resid-
ual connections are noted ‘w rsd’. Two versions of the Gated-GCN from [13] are added as elements
of comparison on the same dataset.

9github.com/Axeln78/benchmarking-gnns/tree/ZINC visualization
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Results The results for this task is shown in Table.3. The ChebNet outperforms all other models
in the benchmark with its highest accuracy of 72.8968 ± 0.197. It outperform the best model of
[13], the Gated-GCN, by 12 percentage points. These are outstanding performance with four layers
of convolution L = 4, and the corresponding number of parameters. However, the accuracy does
not significantly improve when using a deeper model (L = 16). This is possibly not because of a
shortcoming of the model but rather that the task is difficult as no model show significantly better
performance in the benchmark.

5.4 Open Graph Benchmark graph regression tasks
Additionally to the benchmark in [13], graph regression tasks on the Open Graph Benchmark (OGB)
[19] has been studied. The OGB benchmark proposes a range of datasets that are derived from nature.
In the graph regression tasks, the datasets are all chemistry related with graph representations of
molecules [39]. The task that we will consider is the prediction of whether a molecule prevents HIV
virus replication. The graphs are of the same nature as those used in ZINC, and could be illustrated
with something comparable to Fig.4.

All of the experimentation is replicable by using the code in the following repository10. For a given
task, the files that were added or changed are as follows:

ogb/examples/graphporppred/mol/

conv.py

gnn dgl.py

main dgl.py

The OGB project maintains a leaderboard11, where the performance of different models can be com-
pared. The performance of the ChebNet for some of the tasks can be seen in Table.4 and we will
compare them to the other models currently on the leaderboard in the following sections.

To be able to compare any results to the OGB benchmark, mostly the same learning parameters are
used as in [19]. The training is done with batches of sizes of 128 graphs with batch normalisation.
There is fixed number of 100 epochs for training. Models have residual connections at each layers
and has no dropout in input or output of the model.

The largest eigenvalue parameter λmax = 2 is fixed for all graphs because of the non convergence
of some of the matrix decomposition of graphs in the datasets. Moreover, the width of each GCN
layers are limited to a maximum of 300 in the OGB benchmark, but because the ChebNet does not
work like the other models and makes its own basis, a comparable number of parameters can be
obtained by using a width of 150 with k = 3 that makes every layer a 450 to 150 wide layers.
The learning rate has been lowered to 0.0001 from 0.001 as it showed a significant increase in
performance. Even though it is different from the standards of the benchmark, this change seem
justified and comparable because they do not take away the most constraining training parameters.

In [19] the models are tested with and without a virtual node. Adding a virtual node a technique for
improving performance of the graph neural network consisting in connecting a ‘virtual’ node to all
nodes of the graph. This gives a node to which all the information of the whole graph is connected
and helps making a meaningful representation of the graph in the graph embedding layer. Though
it is possible that an additional virtual node would improve the performance of the ChebNet, like it
does for the other models, it is beyond the point of assessing the quality of the model in the scope of
this work. Therefore no results with a virtual node are given.

The model used to get these performances can be seen in Table.9 in appendix A.3 and the results
are the average and standard deviation for the losses of 10 models trained with the aforementioned
parameters with randomly initialised weights.

5.4.1 Molhiv
MOLHIV is the smallest of the two OGB datasets with a set of 41’127 graphs. The metric for
comparing models is a ROC AUC.

Comparing to the leaderboard, the ChebNet would rank second, after the GatedGCN, which was
added to the OGB posterior to publication. Also the ChebNet would rank better than GCN and GIN,

10github.com/Axeln78/ogb
11ogb.stanford.edu/docs/leader graphprop/
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Dataset # graphs Metric Accuracy (%)
Best Train Val Test

MOL-HIV 41’127 ROC-AUC 0.9992 0.8490 0.7631± 0.0127
MOL-PCBA 437’929 PRC-AUC 0.5417 0.2387 0.2317 ± 0.0036

Table 4: Accuracy of the ChebNet, with corresponding metrics for two tasks of graph regressions
on molecule graphs of the OGB datasets. The shown results are the mean and standard deviation for
10 models initialised with random weights.

which are the reference GCNs of the paper. It is interesting to see that the best accuracy during the
training phase on the Train set is close to 100% which shows that the model has the capacity to learn
with high accuracy on such a setting with batches of graphs.

5.4.2 Molpcba
MOLPCBA is a more complete task thank MOLHIV as it has a larger set of graphs (437’929) and the
performances are evaluated with PRC AUC.

For this task, the ChebNet performs better than any other model if we do not consider those using
without virtual nodes. Actually, a closer look at the results in [19] reveal that the models exhibits a
large improvement in performance by adding a virtual node.

Interestingly, the ChebNet outperforms the Gated-GCN on this task but not the MOLHIV. This is
possibly because the sets of data is larger in this task than in MOLPCBA, which could favour the
ChebNet over the Gated-GCN.

5.5 Discussion
Putting the ChebNet model up against public benchmarks gives experimental proofs that the model
has similar, if not better, performance on four tasks of [13] and two of [19] than the most common
GCNs currently used. Most notably the ChebNet shows state of the art performance on molecule
graph regression with the tasks of ZINC & MOLPCBA, and semi-supervised node classification with
SBM-CLUSTER.

This builds up to strong experimental proof that models considered ‘spectral’ can outperform models
considered ‘spacial’ on tasks such as graph regression, graph classification and node classification in
a semi-supervised manner when the datasets are collections of graphs. Moreover, these experiments
made on batches of graphs provides a body of experimental proof for the claim that spectral GCNs
have inherent transferability capacities [26].

One can note that both benchmarks used in this work were published in 2020, yet none of them
include spectral GCNs as a default comparison. This shows a general misunderstanding of the
capabilities of spectral GCNs though some work [22] [26] corroborate the results of this report.

Let us now discuss in further details the results of several tasks with regards to the considerations
of [26] in the attempt to better understand the workings of the ChebNet and spectral GCNs. These
considerations are that spectral GCNs should have good performance on datasets made out of dis-
cretisation of an underlying continuous manifold.

SuperPixels Datasets The performance of the ChebNet on these dataset are average compared to
other GCNs, and worse compared to CNNs on the original datasets. This supports the observation
of [13] stating that GCNs that learn isotropic filters could not exceed the accuracy of other models
learning anisotropic filters.

ZINC That the ChebNet outperform other models is a significant and unexpected result. Even
though [22] show that spectral graph convolutional layers could learn on graphs of arbitrary size and
structures in similar settings with graphs representing molecules.

Firstly, because as molecules are made of relatively small graphs and that not all atom combination
make molecules makes significant differences between each graph. The large variation in structure
of the graphs is considered to be a drawback for spectral GCNs because any space describing the
molecules would not be densely mapped.
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Secondly, the question of whether all the graphs lie in the same underlying continuous space is rel-
evant, as [26] argues it could explain the remarkable performance of the model.
On the one hand, if we consider that all of the graphs live in the continuous three dimentional space
that we live in, then it might not be a surprise that the ChebNet is able to generalise proprieties across
graphs. If that is the prevalent consideration then this implies that the ChebNet should generalise
well for all graphs representing structures that live in the real world. However, unlike in the Super-
Pixel experiments, the model does not get any information on the position of the nodes relative to
each other. Thus, the model would need to infer a three dimensional positioning of the molecules,
which seems improbable.
On the other hand, if we consider that each molecule represent a domain of itself, then each of these
continuous domains would be vastly different. Though one could always argue that molecules could
be samplings or points on a non-euclidian manifold, it is highly improbable that a representation
of this manifold could be mapped by the observation of (10’000) graph molecules. In this case it
possible that the sensitivity to specific domains have been overestimated for the ChebNet.

To sum up, none of the aforementioned considerations on the underlying manifold from which the
data originates are convincing to the point of explaining the good performances of the ChebNet.

SBM - Cluster The fact that the ChebNet performs significantly better, of about 10 percentage
points, than the other models of the benchmark is astonishing as the ChebNet has not been used in
the literature for semi-supervised node classification unlike GCN in [21].

If we consider the underlying manifold that could generate the discretisation of CLUSTER, one can
find that this is a continuous non-euclidian manifold. The theory of [26] predicts that the a spectral
GCN should transfer with minimum error which is supported experimentally in this case by the
strong performance of the ChebNet on CLUSTER.

Model depth One observation that arose from this project is that the Chebyshev convolutional
layer can be stacked. This is not a generality for GCNs as some well known models like GIN
do not improve performance when the convolutional layers are stacked. The experimental data of
Table.1,2&3 shows that for different tasks, the deeper ChebNet with 16 convolutional layers out-
perform the comparative 4 layer model.

The impact of fixing λmax on the ChebNet The effect of fixing or not the largest eigenvalue has
been studied throughout this project. Experimentally we see that when λmax = 2 improves the
performances for SBM CLUSTER but deteriorates it for ZINC. This work provides a body of exper-
imental results that, without confirming, supports the hypothesis proposed in [22] which states that
for every order of Chebyshev polynome k the learned filters become less sensitive to the eigenvalues
of a graph. In practice this means that the ChebNet could be able to learn filters that are less sensitive
to each graph for each order of polynome k.
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6 Improving transferability with data augmentation
While data augmentation is used extensively in computer vision and other fields related to deep
learning as a way to help neural networks with generalisation, it is not common practice in the graph
deep learning community. Augmentation is a type of alteration of the data, which does not influence
the label of a piece of data, or called task invariant.
In computer vision, augmentations are usually relatively small deformations or tweaks on an image
that does not change significantly the content, or the information encoded in an image. In natural
language processing (NLP) augmentation can be done under some constraints [7], usually linked to
not changing the meaning of sentences.

However, on graph domain, there is no straightforward way of doing augmentation.
Though it is true that some augmentation techniques can be borrowed from other fields and used on
specific datasets, the task invariants remain task dependent. In the case of the MNIST on a lattice
dataset, similar augmentation to computer vision can be done changing only node features, but these
require a strong understanding of the task. Furthermore, these augmentation would strictly be a
replication of the computer vision type, and would not take advantage of the medium that is graphs.

Graphs are the only domain on which structural data augmentation is possible. This is, to modify
the connections of graphs, in practice the adjacency matrix A, during the training phase to improve
the learning capabilities. However, changing the structure of graphs by modifying the adjacency
matrix is equivalent to changing domain as each graph is its own space. Thus it poses the problem
of knowing if this change of domain is beneficial or not to a GCN and in which tasks structural
augmentation can be done.

6.1 Naive transferability of the ChebNet on the MNIST Dataset
In this section we will use the MNIST dataset to study the ‘built-in’ transferability of the ChebNet.
This is, the ability of the model to predict on unseen domains. This can be seen as an extension
of the work in [11], who presented the ChebNet model and showed its performances on the MNIST
Dataset.

The MNIST dataset is composed of 28x28 pixels images with one greyscale channel. These images
can be transposed to graphs by using lattice graphs, or 2D grids. Fig.6 (a) and (b) shows different
configurations of these lattice graphs by choosing to connect to the 4 or 8 nearest neighbours (NN)
respectively.

When a ChebNet with an architecture described in Table.8 is trained on MNIST on a 4 NN lattice
and achieves 96.97% testing accuracy, the performance of the same model, trained on a 4 NN lattice
but tested on a 8NN, the accuracy drops significantly to 20.95%. This gives some form of baseline
for the naive transferability of the ChebNet. This naive transferability is poor enough that we should
ask ourselves why, and eventually how to improve it.

(a) 4 nearest neighbours (b) 8 nearest neighbours (c) 4 NN with randomly removed
edges

Figure 6: Different types of planar lattices. These lattices can all be considered samplings of the
planar continuous space. In (c), the node colours are related to their degree.

6.2 Structural edge Removal
In this experiment a Chebnet is trained while doing structural edge dropout. During the training,
a random proportion between 0% and 25% of all the edges are randomly removed for each graph,
yielding lattices such as illustrated in Fig.6(c).
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Lattice of evaluation ChebNet - 4 NN ChebNet - 4NN rand. edge rm.

4 NN - Fig.6.a 96.97% 96.04%
8 NN - Fig.6.b 20.95% 95.56%
8 NN, λmax = 2 73.49% 95.85%

Table 5: Accuracy of two ChebNet models, one trained on a 4NN lattice and the other on a 4NN
lattice with randomly removed edges, on three different settings for testing. λmax references the
re-scaling parameter of Eq.5

The result of the experiment is that the learned filters have a better performance even outside the
region of training and on different lattices. When the model trained on randomly removed edges
is used on a testing set built on a 8 NN lattice, the accuracy drops from 96.04% to 95.56%. These
result are summarised in Table.5.

Two things can be noted from this result. Firstly that by doing the random edge removal during the
training, we dramatically improve the transferability of the network between the 4 to 8 NN lattices.
Secondly, the testing accuracy on the 4NN lattice is lower, this leads to believe that the learned filters
are of a different nature.
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Figure 7: Classification accuracy over the test set of MNIST for two ChebNet models over different
proportions of removed edges on the test set, with confidence intervals. One model (blue) is trained
on the MNIST dataset on a 4 NN lattice while the other (red) was trained on a 4 NN lattice with
structural edge dropout of up to 25% of removed edges during the training phase. The model trained
with structural edge dropout (in red) exhibits better transferability capacity than without (in blue),
even outside of its region of training.

By studying the accuracy of the two models for an increasing number of removed edges, as displayed
in Fig.7 we can get information on the consistency of the GCN. The network trained on a set of
graphs has an accuracy that stays consistently over 85% of accuracy outside of the region of training
(up to 25% of removed edges). It becomes apparent that the transferability capacity of the ChebNet
trained on randomly removed edges improves beyond the training region.

This evidence shows that this type of graph augmentation changes the problem where the built-in
transferability of the ChebNet is needed but rather its capacity to learn common features accross
batches of graphs. We there see that the ChebNet performs better because the nature of the problem
becomes different.
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Benchmark experiments To strengthen these claims, additional experimentation has been done
on other datasets of the benchmark [13], namely MNIST SUPERPIXEL, CIFAR10 SUPERPIXEL and
SBM CLUSTER. In these experiments, a random proportion between 0% to respectively 15% and
30% of edges are removed during the training phase for each dataset. All of the code needed for
reproduction of these experiments can be found in the following repository12. The files needed for
this are structured as follows for the Superpixel task:

benchmarking gnns/

main superpixels graph classification aug.py

train/

augmentation.py

train superpixels graph classification aug.py

Table.6 show that the testing accuracy systematically improve the performance of the ChebNet im-
proves when doing random edge removal.

Dataset \ Edge rm. rate 0% (reference) 15% 30%

MNIST SUPERPIXEL 96.2625 ± 0.1056 96.6050 ± 0.1933 96.6475 ± 0.1466
CIFAR10 SUPERPIXEL 62.2125 ± 0.4526 65.9650 ± 0.6810 66.3875 ± 0.8126
SBM CLUSTER 72.7414 ± 0.2110 73.1050 ± 0.1369 72.5186 ± 0.3642

Table 6: Testing accuracy (in %) of a ChebNet model on different tasks. The GCNs are trained
with randomly removed edges (15% and 30%) but the test set is original. In bold are the best
performances. One can see that structural edge dropout improves the performances for each of the
respective task of graph classification MNIST,CIFAR and graph regression SBM CLUSTER.

For the graph classification tasks of MNIST & CIFAR SuperPixel dataset, the testing accuracy gains
on average 0.4 and 4 percentage points, respectively. For CIFAR, the gain in performance of the
model is large as it outperforms the deeper version of the ChebNet with 16 layers (Tab.1 or 7).
Meaning that the structural edge dropout made a more significant improvement than adding learning
capacity to the model.

For SBM CLUSTER the improvement on the accuracy is of about .5 percentage points. Although
this is does not seem very impressive, one should note that this is shoulder to shoulder with the best
performance of any model with any depth of architecture in the benchmark.

Unfortunately, there is a limit to the possibilities of the structural edge dropout technique as we
cannot use it on graph regression tasks such as all those related to the molecular datasets like ZINC,
MOLHIV or MOLPCBA. This is because molecules are small, very sparse graphs, and thus removing
edges destroys what makes a molecule a molecule. This shows that this data augmentation technique
too need some understanding on the underlying data for a given task.

7 Conclusion
This experimental work examine the transferability capacity of spectral GCNs on two graph bench-
marks. Numerical experiments show that ChebNet provide state of the art performance on ZINC and
CLUSTER and close to the best results on MOLHIV and MOLPCBA.
This supports experimentally recent demonstrations [26] that spectral GCNs have good performance
when graphs are discretisation of a continuous manifold in view of the performance of the Chebnet
on the SBM CLUSTER dataset.
We show that structural edge dropout, a proposed data augmentation technique, can not only increase
the performance but also the transferability of GCNs. Experimentally this is shown by significant
performance improvements on MNIST, CIFAR and CLUSTER.

In this work, only one type of spectral GCN is evaluated, complementary work could be to compare
the performance of other, more advanced, spectral GCNs [28] [3] [2] on the same tasks to strengthen
the claims made in this report. Moreover the proposed structural edge dropout method need to be
tested further and compared to feature dropout. The same extends to node structural and feature
dropout. Finally all of the observations of this report should be studied for very large graphs, that
need to be split during the training phase, providing with erroneous Laplacians.

12github.com/Axeln78/benchmarking-gnns/tree/dev
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A Appendix
A.1 Result Summary for benchmarking gnns

Dataset # parameters Accuracy Acc. λmax = 2 epoch/total

MNIST
L=4 100001 96.2625± 0.106 % 46 s/ 0.81 hrs
L=16 387365 96.3125± 0.338 % 95 s/ 1.69 hrs

CIFAR10 L=4 100155 62.2125± 0.453 % 60 s/ 0.95 hrs
L=16 387519 64.4075± 0.548 % 100 s/ 1.7 hrs

ZINC

L=4 101230 0.3304 ± 0.0210 0.3408± 0.041 135 s/ 3.5 hrs
L=4 w rsd 101230 0.4099± 0.0048 171 s/ 3.2 hrs
L=16 374710 0.2680 ± 0.0184 39 s/ 1.24 hrs
L=16 w rsd 374710 0.2834 ± 0.0066 38 s/ 1.10 hrs

CLUSTER
L=4 102745 72.8968 ± 0.197 72.4338 ± 0.213 103 s/ 2.1 hrs
L=4 w rsd 102745 72.7414± 0.211 73.0887 ± 0.295 103 s/ 2.1 hrs
L=16 w rsd 399055 74.5450 ± 0.306 115 s/ 1.7 hrs

Table 7: Summary of the performance of the different ChebNets on the benchmark. The accuracy is
the mean accuracy and standard deviation of each metric defined for each task in [13] of four models
trained with four random initialisation. In bold, models performing state of the art performances
compared to the other models of the benchmark. L is the number of convolutional layers and ‘w rsd’
marks the addition of layer-wise residual connections.

A.2 ChebNet architecture for test of naive transferability

Layer type In features Out features k Activation Bias

ChebConv 1 32 10 Relu Yes
ChebConv 32 50 10 Relu Yes

Dense 39200 512 Relu Yes
Dropout p = 0.5
Dense 512 10 Yes

Table 8: LeNet5 architecture ChebNet. This is used on the 28×28 MNIST lattice and the number of
nodes (784) × the number of features (50) is the input size of the MLP (39200).

A.3 Model for benchmarking OGB

Layer type In features Out features k Activation Bias

OGB AtomEncoder 9 150
ChebConv 150 150 3 ReLu Yes
ChebConv 150 150 3 ReLu Yes
ChebConv 150 150 3 ReLu Yes
ChebConv 150 150 3 ReLu Yes
ChebConv 150 150 3 ReLu Yes

Graph pooling any 150 “mean”

Dense 150 1 Yes

Table 9: ChebNet for OGB - MOLHIV / MOLPCBA

A.4 Models for benchmarking GNNs
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Layer type In features Out features k Activation Bias

Embedding 3 (5) 77
ChebConv 77 77 4 ReLu Yes
ChebConv 77 77 4 ReLu Yes
ChebConv 77 77 4 ReLu Yes
ChebConv 77 77 4 ReLu Yes

Global pooling any 77 “mean”

Dense 77 38 ReLu Yes
Dense 38 19 ReLu Yes
Dense 19 10 Yes

Total number of parameters 100001 (100155)

Table 10: ChebNet for SuperPixel MNIST and CIFAR in ‘( )’

Layer type In features Out features k Activation Bias

Embedding 28 106
ChebConv 106 106 2 ReLu Yes
ChebConv 106 106 2 ReLu Yes
ChebConv 106 106 2 ReLu Yes
ChebConv 106 106 2 ReLu Yes

Global pooling any 106 “mean”

Dense 106 53 ReLu Yes
Dense 53 26 ReLu Yes
Dense 26 1 Yes

Total number of parameters 101230

Table 11: ChebNet for ZINC

Layer type In features Out features k Activation Bias

Embedding 7 70
ChebConv 70 70 5 ReLu Yes
ChebConv 70 70 5 ReLu Yes
ChebConv 70 70 5 ReLu Yes
ChebConv 70 70 5 ReLu Yes

Dense 70 35 ReLu Yes
Dense 35 17 ReLu Yes
Dense 17 6 Yes

Total number of parameters 102745

Table 12: ChebNet for SBM - CLUSTER
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