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What is medium-range weather
prediction and why do it?

01_	Introduction

What	is	it?
2	days	- 2	weeks	forecasting

Usefulness
Economic	resource	
management	
➝ preparation	for extreme	
weather	events

From	https://america.cgtn.com/2018/08/17/the-heat-extreme-weather	
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Challenges
01_	Introduction

o Extended	area	of	influence	

o Dependent	on	quality	of	initial	
atmospheric	state

o Influence	of	land	and	ocean
From	
https://www.dwd.de/EN/research/weatherforecasting/
num_modelling/06_nwp_emergency_response_system
/num_weather_prediction_emergency_system.html
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Why use Data-driven Methods?
01_	Introduction

o Current	operational	NWP:	successful	but	needs	a	lot	of	computing	
power

o Data-driven	methods	provide:	
o Flexiblemodels	that	can	automatically	learn	representations
from	the	data

o Empirically	good	performance when	enough	data

o Computationally	cheaper forecasts
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Previous works
01_	Introduction

Adapted	from	Weyn,	J	.	A.,	Durran,	D.	R	,	and	
Caruana,	R.	(2020).	Improving	data-driven	global	
weather	prediction	using	deep	convolutional	neural	
networks	on	a	cubed	sphere.	JAMES.

Adapted	from	Rasp,	S.,	Dueben,	P.	D.,	Scher S.,	
Weyn,	J.	A.,	Mouatadid,	S.,	and	Thuerey,	N.	
(2020).	WeatherBench:	A	benchmark	dataset	
for	data-driven	weather	forecasting.	arXiv.

Rasp	et	al.,	2020 Weyn et	al.,	2020

Düben and	Bauer,	2018 Scher,	2018

Planar	
projections

Spherical	
approximations

Weyn et	al.,	2019
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Our work
Objectives

o Use	spherical	domain	with	adapted	spherical	grid

o Implement	computations	on	the	sphere

o Include	temporal	dimension

o Informed	feature	selection

o Benchmark	using	a	wide	range	of	metrics

o Spatial	evaluation	using	new	metrics

01_	Introduction

Adapted	from	J.	A.	Weyn,	D.	R.	Durran,	and	R.	
Caruana,	2020.	Improving	data-driven	global	
weather	prediction	using	deep	convolutional	
neural	networks	on	a	cubed	sphere.	JAMES.
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Weatherbench : Dataset (Rasp et	al.,	2020)

02_	WeatherBench

The	ERA5	data

• Time	span:	 1979	to present

• Temporal	resolution:	 1	hour

• Spherical	resolution	(lat/lon grid): 0.25°

• Vertical	resolution:	 37 pressure	levels

• Atmospheric	fields:	 344

WeatherBench

1979	to 2018

1 hour

5.625°, 2.8125° and	1.40525°

10	pressure	levels

19	
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Weatherbench : Features
02_	WeatherBench

Static
• Constants

• Soil	type
• Orography
• Latitudes	/	longitudes
• Land-sea	mask

• Radiation

Dynamic
• Temperature
• Geopotential	height
• Wind
• Humidity
• Vorticity

Input Prediction

𝐹"# 𝐹$%&
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Weatherbench: BencHmarking
02_	WeatherBench

Features: Z500 and	T850
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Metrics (𝑝#, 𝑜#	are	prediction	and	observation	respectively):	
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Methodology - outline
03_	Methods

o Sphere	discretization

o Spherical	convolutions

o Temporal	dimension

o Network	architecture

o Training
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o Avoids	oversampling	at	the	poles

o Not region	dependent

HEALPix (Górski et	al.,	2005)	Equiangular	(Driscoll	&	Healy,	1994)

Sphere discretization
03_	Methods
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Equivariant convolutions
03_	Methods

On	images

➡ 2D	shift	makes	
convolutions	translation	
equivariant:

• Fewer	parameters
• Not	dependent	on	location

• More	robustness
• No	data	augmentation

Translation

Translation

Convolution Convolution
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Equivariant convolutions
03_	Methods

On	images On	the	sphere

3D	rotation

➡ Goal:	replace 2D translation	convolutions	by	SO(3)	rotation	convolutions

Convolution Convolution

Translation

Translation From	Defferrard,	M	(2020).	DeepSphere:	a	graph-based	spherical	CNN.	
ICLR'20	spotlight.	https://zenodo.org/record/3777976#.XvtpzS2Q3ys
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Graph spherical convolutions
03_	Methods

Discrete	domain:	graph	𝓖 = (𝓥,	𝓔, 𝑨)
• 𝒱:	vertices
• ℰ:	edges	(weighted	according	to	distance)
• 𝐴:	adjacency		(edge	weights)	
• 𝐷:	degree	matrix	(neighbors)

Spherical convolutions	(Defferrard et	al.,	2016)
• Laplacian:	𝐿 = 𝐷	 − 𝐴
• 𝐿 is diagonalized by the Fourier	basis
• Convolutions	are	multiplications in	Fourier	space
• For a	signal 𝑥 and	a	kernel gQ: 	

𝑦 = gQ 𝐿 	𝑥

➡ 𝒪 n@ operations in	general
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Graph spherical convolutions
03_	Methods

Discrete	domain:	graph	𝓖 = (𝓥,	𝓔, 𝑨)
• 𝒱:	vertices
• ℰ:	edges	(weighted	according	to	distance)
• 𝐴:	adjacency		(edge	weights)	
• 𝐷:	degree	matrix	(neighbors)

Spherical convolutions (Defferrard et	al.,	2016)
• Laplacian:	𝐿 = 𝐷	 − 𝐴
• 𝐿 is diagonalized by the Fourier	basis
• Convolutions	are	multiplications in	Fourier	space
• For a	signal 𝑥 and	a	kernel gQ: 	

𝑦 = gQ 𝐿 	𝑥

➡ 𝒪 n@ operations in	general

Rotation	equivariance – Cost compromise:	𝐿 is sparse➝ less neighbors
➡𝒪 𝑛 operations
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Temporal dimension
03_	Methods

𝑡

𝐹$%&

𝑡	 − 𝐿Δ& …

𝐿

𝐹"#

𝑡	 − Δ&

𝐿 :	 sequence length
Δ& :	 temporal	discretization and	forecast lead	time
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Network architecture
03_	Methods

𝐿	𝐹"# 16 32 64

88 12864

128

128 128 64

64 64 64 32

OutIn

256 256

110

128

128

K=3	conv	+	BN	+	ReLU
4	max	pool
4 max	unpool +	BN	+	ReLU

Skip	connection

K=3	conv

𝐹$%&
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Iterative Predictions
03_	Methods

From	Stephan	Rasp,	Peter	D.	Dueben,	Sebastian	Scher,	Jonathan	A.	Weyn,	Soukayna Mouatadid,	and	Nils	Thuerey,	
2020.	WeatherBench:	A	benchmark	dataset	for	data-driven	weather	forecasting.	arXiv.
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Iterative training
03_	Methods

+

Static	features

prediction1input1 input2

Dynamic	+	
static	features

prediction2

𝐿𝑜𝑠𝑠 = 𝛼<	MSE 𝑝𝑟𝑒𝑑<, _𝑜𝑏𝑠< 		+		𝛼@	MSE(𝑝𝑟𝑒𝑑@, _𝑜𝑏𝑠@)
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Static feature Importance
04_	Results

➡ Static	features	help	with	first	direct	prediction	and	decrease	the	error	slope	for	subsequent	iterations
➡ Z500	and	T850	benefit	from	different	static	features
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Dynamic features
04_	Results

Z1000

Z850
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Sequence length and time resolution
04_	Results

➡ No	clear	benefit	from	using	a	large	𝐿
➡ Short	term	predictions	require	small	Δ&,	error	stabilizes	in	the	long	term	with	larger	Δ&.	

𝐿	:	sequence	length
Δ& :	temporal	resolution
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Benchmark - RMSE
04_	Results

Best	model:	all	static	features,	𝐿 = 2,	Δ& = 6h
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Skill Spatial Distribution
04_	Results

Lead	forecast	time:	6h Lead	forecast	time:	120h
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Future research lines
05_	Future research lines

→ Improve predictive skill

o Better usage of	the space
o Atmosphere depth:	systematic integration of	several pressure levels

o Multi-scale
o Temporal dimension
o Vertical dimension

o More	sofisticated architecture
o ResNets

→ Add a	notion of	confidence to	the predictions
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Dataset division
07_	Supplementals
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o Training:	1979	- 2012

o Validation:	2013	- 2016

o Testing:	2017	- 2018


