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Abstract
We present a strikingly simple proof that two
rules are sufficient to automate gradient descent:
1) don’t increase the stepsize too fast and 2) don’t
overstep the local curvature. No need for func-
tional values, no line search, no information about
the function except for the gradients. By follow-
ing these rules, you get a method adaptive to the
local geometry, with convergence guarantees de-
pending only on the smoothness in a neighbor-
hood of a solution. Given that the problem is
convex, our method converges even if the global
smoothness constant is infinity. As an illustra-
tion, it can minimize arbitrary continuously twice-
differentiable convex function. We examine its
performance on a range of convex and nonconvex
problems, including logistic regression and matrix
factorization.

1. Introduction
Since the early days of optimization it was evident that there
is a need for algorithms that are as independent from the
user as possible. First-order methods have proven to be
versatile and efficient in a wide range of applications, but
one drawback has been present all that time: the stepsize.
Despite certain success stories, line search procedures and
adaptive online methods have not removed the need to man-
ually tune the optimization parameters. Even in smooth
convex optimization, which is often believed to be much
simpler than the nonconvex counterpart, robust rules for
stepsize selection have been elusive. The purpose of this
work is to remedy this deficiency.

The problem formulation that we consider is the basic un-
constrained optimization problem

min
x∈Rd

f(x), (1)
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where f : Rd → R is a differentiable function. Throughout
the paper we assume that (1) has a solution and we denote
its optimal value by f∗.

The simplest and most known approach to this problem
is the gradient descent method (GD), whose origin can be
traced back to Cauchy (Cauchy, 1847; Lemaréchal, 2012).
Although it is probably the oldest optimization method, it
continues to play a central role in modern algorithmic theory
and applications. Its definition can be written in a mere one
line,

xk+1 = xk − λ∇f(xk), k ≥ 0, (2)

where x0 ∈ Rd is arbitrary and λ > 0. Under assumptions
that f is convex and L–smooth1, that is

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y, (3)

one can show that GD with λ ∈ (0, 2
L ) converges to an

optimal solution (Polyak, 1963). Moreover, with λ = 1
L the

convergence rate (Drori & Teboulle, 2014) is

f(xk)− f∗ ≤
L‖x0 − x∗‖2

2(2k + 1)
, (4)

where x∗ is any solution of (1). Note that this bound is not
improvable (Drori & Teboulle, 2014).

We identify four important challenges that limit the applica-
tions of gradient descent even in the convex case:

1. GD is not general: many functions do not satisfy (3)
globally.

2. GD is not a free lunch: one needs to guess λ, poten-
tially trying many values before a success.

3. GD is not robust: failing to provide λ < 2
L may lead

to divergence.

4. GD is slow: even if L is finite, it might be arbitrarily
larger than local smoothness.

1.1. Related work

Certain ways to address some of the issues above already
exist in the literature. They include line search, adaptive
Polyak’s stepsize, mirror descent, dual preconditioning, and

1Alternatively, we will say that∇f is L-Lipschitz.
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stepsize estimation for subgradient methods. We discuss
them one by one below, in a process reminiscent of cutting
off Hydra’s limbs: if one issue is fixed, two others take its
place.

The most practical and generic solution to the aforemen-
tioned issues is known as line search (or backtracking). This
direction of research started from the seminal works (Gold-
stein, 1962) and (Armijo) and continues to attract attention,
see (Bello Cruz & Nghia, 2016; Salzo, 2017) and references
therein. In general, at each iteration the line search executes
another subroutine with additional evaluations of∇f and/or
f until some condition is met. Obviously, this makes each
iteration more expensive.

At the same time, the famous Polyak’s stepsize (Polyak,
1969) stands out as a very fast alternative to gradient de-
scent. Furthermore, it does not depend on the global smooth-
ness constant and uses the current gradient to estimate
the geometry. The formula might look deceitfully simple,
λk = f(xk)−f∗

‖∇f(xk)‖2 , but there is a catch: it is rarely possible
to know f∗. This method, again, requires the user to guess
f∗. What is more, with λ it was fine to underestimate it by
a factor of 10, but the guess for f∗ must be tight, otherwise
it has to be reestimated later (Hazan & Kakade, 2019).

Seemingly no issue is present in the Barzilai-Borwein step-
size. Motivated by the quasi-Newton schemes, (Barzilai &
Borwein, 1988) suggested using steps

λk =
〈xk − xk−1,∇f(xk)−∇f(xk−1)〉

‖∇f(xk)−∇f(xk−1)‖2
.

Alas, the convergence results regarding this choice of λk
are very limited and the only known case where it provably
works is quadratic problems (Raydan, 1993; Dai & Liao,
2002). In general it may not work even for smooth strongly
convex functions, see the counterexample in (Burdakov
et al., 2019).

Other more interesting ways to deal with non-Lipschitzness
of ∇f use the problem structure. One such method, pro-
posed in (Birnbaum et al., 2011) and further developed
in (Bauschke et al., 2016), shows that the mirror descent
method (Nemirovsky & Yudin, 1983), which is another
extension of GD, can be used with a fixed stepsize, when-
ever f satisfies a certain generalization of (3). In addition,
(Maddison et al., 2019) proposed the dual preconditioning
method—another refined version of GD. Similarly to the for-
mer technique, it also goes beyond the standard smoothness
assumption of f , but in a different way. Unfortunately, these
two simple and elegant approaches cannot resolve all issues
yet. First, not many functions fulfill respective generalized
conditions. And secondly, both methods still get us back to
the problem of not knowing the allowed range of stepsizes.

A whole branch of optimization considers adaptive exten-

sions of GD that deal with functions whose (sub)gradients
are bounded. Probably the earliest work in that direction
was written by (Shor, 1962). He showed that the method

xk+1 = xk − λk
gk

‖gk‖
,

where gk ∈ ∂f(xk) is a subgradient, converges for properly
chosen sequences (λk), see, e.g., Section 3.2.3 in (Nesterov,
2013a). Moreover, λk requires no knowledge about the
function whatsoever.

Similar methods that work in online setting such as Ada-
grad (Duchi et al., 2011; McMahan & Streeter, 2010) re-
ceived a lot of attention in recent years and remain an active
topic of research (Ward et al., 2019). Methods similar to
Adagrad—Adam (Kingma & Ba, 2014; Reddi et al., 2018),
RMSprop (Tieleman & Hinton, 2012) and Adadelta (Zeiler,
2012)—remain state-of-the-art for training neural networks.
The corresponding objective is usually neither smooth nor
convex, and the theory often assumes Lipschitzness of the
function rather than of the gradients. Therefore, this di-
rection of research is mostly orthogonal to ours, although
we do compare with some of these methods in our neural
networks experiment.

We also note that without momentum Adam and RMSprop
reduce to signSGD (Bernstein et al., 2018), which is known
to be non-convergent for arbitrary stepsizes on a simple
quadratic problem (Karimireddy et al., 2019).

In a close relation to ours is the recent work (Malitsky,
2019), where there was proposed an adaptive golden ratio
algorithm for monotone variational inequalities. As it solves
a more general problem, it does not exploit the structure
of (1) and, as most variational inequality methods, has a
more conservative update. Although the method estimates
the smoothness, it still requires an upper bound on the step-
size as input.

Contribution. We propose a new version of GD that at no
cost resolves all aforementioned issues. The idea is simple,
and it is surprising that it has not been yet discovered. In
each iteration we choose λk as a certain approximation of
the inverse local Lipschitz constant. With such a choice, we
prove that convexity and local smoothness of f are sufficient
for convergence of iterates with the complexity O(1/k) for
f(xk)− f∗ in the worst case.

Discussion. Let us now briefly discuss why we believe
that proofs based on monotonicity and global smoothness
lead to slower methods.

Gradient descent is by far not a recent method, so there have
been obtained optimal rates of convergence. However, we
argue that adaptive methods require rethinking optimality
of the stepsizes. Take as an example a simple quadratic
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problem, f(x, y) = 1
2x

2 + δ
2y

2, where δ � 1. Clearly,
the smoothness constant of this problem is equal to L = 1
and the strong convexity one is µ = δ. If we run GD
from an arbitrary point (x0, y0) with the “optimal” stepsize
λ = 1

L = 1, then one iteration of GD gives us (x1, y1) =
(0, (1 − δ)y0), and similarly (xk, yk) = (0, (1 − δ)ky0).
Evidently for δ small enough it will take a long time to
converge to the solution (0, 0). Instead GD would converge
in two iterations if it adjusts its step after the first iteration
to λ = 1

δ .

Nevertheless, all existing analyses of the gradient descent
with L-smooth f use stepsizes bounded by 2/L. Besides,
functional analysis gives

f(xk+1) ≤ f(xk)− λ
(

1− λL

2

)
‖∇f(xk)‖2,

from which 1/L can be seen as the “optimal” stepsize. Al-
ternatively, we can assume that f is µ-strongly convex, and
the analysis in norms gives

‖xk+1 − x∗‖2 ≤
(

1− 2
λLµ

L+ µ

)
‖xk − x∗‖2

− λ
( 2

L+ µ
− λ
)
‖∇f(xk)‖2,

whence the “optimal” step is 2
L+µ .

Finally, line search procedures use some certain type
of monotonicity, for instance ensuring that f(xk+1) ≤
f(xk) − c‖∇f(xk)‖2 for some c > 0. We break with
this tradition and merely ask for convergence in the end.

2. Main part
2.1. Local smoothness of f

Recall that a mapping is locally Lipschitz if it is Lipschitz
over any compact set of its domain. A function f with
(locally) Lipschitz gradient ∇f is called (locally) smooth.
It is natural to ask whether some interesting functions are
smooth locally, but not globally.

It turns out there is no shortage of examples, most promi-
nently among highly nonlinear functions. In R, they include
x 7→ exp(x), log(x), tan(x), xp, for p > 2, etc. More
generally, they include any twice differentiable f , since
∇2f(x), as a continuous mapping, is bounded over any
bounded set C. In this case, we have that ∇f is Lipschitz
on C, due to the mean value inequality

‖∇f(x)−∇f(y)‖ ≤ max
z∈C
‖∇2f(z)‖‖x−y‖, ∀x, y ∈ C.

Algorithm 1 that we propose is just a slight modification of
GD. The quick explanation why local Lipschitzness of∇f
does not cause us any problems, unlike most other methods,

Algorithm 1 Adaptive gradient descent

1: Input: x0 ∈ Rd, λ0 > 0, θ0 = +∞
2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: λk = min

{√
1 + θk−1λk−1,

‖xk−xk−1‖
2‖∇f(xk)−∇f(xk−1)‖

}
5: xk+1 = xk − λk∇f(xk)
6: θk = λk

λk−1

7: end for

lies in the way we prove its convergence. Whenever the
stepsize λk satisfies two inequalities2{

λ2
k ≤ (1 + θk−1)λ2

k−1,

λk ≤ ‖xk−xk−1‖
2‖∇f(xk)−∇f(xk−1)‖ ,

independently of the properties of f (apart from convexity),
we can show that the iterates (xk) remain bounded. Here
and everywhere else we use the convention 1/0 = +∞,
so if∇f(xk)−∇f(xk−1) = 0, the second inequality can
be ignored. In the first iteration it might happen that λ1 =
min{+∞}, in this case we suppose that any choice of λ1 >
0 is possible.

Although Algorithm 1 needs x0 and λ0 as input, this is not
an issue as one can simply fix x0 = 0 and λ0 = 10−10.
Equipped with a tiny λ0, we ensure that x1 will be close
enough to x0 and likely will give a good estimate for λ1.
Otherwise, this has no influence on further steps.

2.2. Analysis without descent

It is now time to show our main contribution, the new anal-
ysis technique. The tools that we are going to use are the
well-known Cauchy-Schwarz and convexity inequalities. In
addition, our methods are related to potential functions (Tay-
lor & Bach, 2019), which is a powerful tool for producing
tight bounds for GD.

Another divergence from the common practice is that our
main lemma includes not only xk+1 and xk, but also xk−1.
This can be seen as a two-step analysis, while the majority
of optimization methods have one-step bounds. However,
as we want to adapt to the local geometry of our objective,
it is rather natural to have two terms to capture the change
in the gradients.

Now, it is time to derive a characteristic inequality for a
specific Lyapunov energy.

Lemma 1. Let f : Rd → R be convex and differential and
2It can be shown that instead of the second condition it is

enough to ask for λ2
k ≤

‖xk−xk−1‖2

[3‖∇f(xk)‖2−4〈∇f(xk),∇f(xk−1)〉]+ ,

where [a]+
def
= max{0, a}, but we prefer the option written in

the main text for its simplicity.



Adaptive Gradient without Descent

let x∗ be any solution of (1). Then for (xk) generated by
Algorithm 1 it holds

‖xk+1−x∗‖2+
1

2
‖xk+1−xk‖2+2λk(1+θk)(f(xk)−f∗)

≤ ‖xk−x∗‖2+
1

2
‖xk−xk−1‖2+2λkθk(f(xk−1)−f∗).

(5)

Proof. Let k ≥ 1. We start from the standard way of ana-
lyzing GD:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 + 2
〈
xk+1 − xk, xk − x∗

〉
+ ‖xk+1 − xk‖2

= ‖xk − x∗‖2 + 2λk
〈
∇f(xk), x∗ − xk

〉
+ ‖xk+1 − xk‖2.

As usually, we bound the scalar product by convexity of f :

2λk
〈
∇f(xk), x∗ − xk

〉
≤ 2λk(f∗ − f(xk)), (6)

which gives us

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2λk(f(xk)− f∗)
+ ‖xk+1 − xk‖2. (7)

These two steps have been repeated thousands of times, but
now we continue in a completely different manner. We have
precisely one “bad” term in (7), which is ‖xk+1−xk‖2. We
will bound it using the difference of gradients:

‖xk+1 − xk‖2 = 2‖xk+1 − xk‖2 − ‖xk+1 − xk‖2

= −2λk〈∇f(xk), xk+1 − xk〉 − ‖xk+1 − xk‖2

= 2λk〈∇f(xk)−∇f(xk−1), xk − xk+1〉
+ 2λk〈∇f(xk−1), xk − xk+1〉 − ‖xk+1 − xk‖2.

(8)
Let us estimate the first two terms in the right-hand side
above. First, definition of λk, followed by Cauchy-Schwarz
and Young’s inequalities, yields

2λk〈∇f(xk)−∇f(xk−1), xk − xk+1〉
≤ 2λk‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖
≤ ‖xk − xk−1‖‖xk − xk+1‖

≤ 1

2
‖xk − xk−1‖2 +

1

2
‖xk+1 − xk‖2.

(9)

Secondly, by convexity of f ,

2λk〈∇f(xk−1), xk − xk+1〉 =
2λk
λk−1

〈xk−1 − xk, xk − xk+1〉

=2λkθk〈xk−1 − xk,∇f(xk)〉
≤ 2λkθk(f(xk−1)− f(xk)).

(10)

Plugging (9) and (10) in (8), we obtain

‖xk+1 − xk‖2 ≤1

2
‖xk − xk−1‖2 − 1

2
‖xk+1 − xk‖2

+ 2λkθk(f(xk−1)− f(xk)).

Finally, using the produced estimate for ‖xk+1 − xk‖2 in
(7), we deduce the desired inequality (5).

The above lemma already might give a good hint why our
method works. From inequality (5) together with condi-
tion λ2

k ≤ (1 + θk−1)λ2
k−1, we obtain that the Lyapunov

energy—the left-hand side of (5)—is decreasing. This gives
us boundedness of (xk), which is often the key ingredient
for proving convergence. In the next theorem we formally
state our result.

Theorem 1. Suppose that f : Rd → R is convex with lo-
cally Lipschitz gradient∇f . Then (xk) generated by Algo-
rithm 1 converges to a solution of (1) and we have that

f(x̂k)− f∗ ≤
D

2Sk
= O

(1

k

)
,

where

x̂k =
λk(1 + θk)xk +

∑k−1
i=1 wix

i

Sk
,

wi = λi(1 + θi)− λi+1θi+1,

Sk = λk(1 + θk) +

k−1∑
i=1

wi =

k∑
i=1

λi + λ1θ1,

and D is a constant that explicitly depends on the initial
data and the solution set, see (11).

Our proof will consist of two parts. The first one is a straight-
forward application of Lemma 1, from which we derive
boundedness of (xk) and complexity result. Due to its con-
ciseness, we provide it directly after this remark. In the
second part, we prove that the whole sequence (xk) con-
verges to a solution. Surprisingly, this part is a bit more
technical than expected, and thus we postpone it to the ap-
pendix.

Proof. (Boundedness and complexity result.)

Fix any x∗ from the solution set of eq. (1). Telescoping
inequality (5), we deduce

‖xk+1−x∗‖2+
1

2
‖xk+1−xk‖2+2λk(1+θk)(f(xk)−f∗)

+ 2

k−1∑
i=1

[λi(1 + θi)− λi+1θi+1](f(xi)− f∗)

≤ ‖x1−x∗‖2+
1

2
‖x1−x0‖2+2λ1θ1[f(x0)−f∗]

def
= D.

(11)



Adaptive Gradient without Descent

Note that by definition of λk, the second line above is always
nonnegative. Thus, the sequence (xk) is bounded. Since∇f
is locally Lipschitz, it is Lipschitz continuous on bounded
sets. It means that for the set C = conv{x∗, x0, x1, . . . },
which is bounded as the convex hull of bounded points,
there exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ C.

Clearly, λ1 = ‖x1−x0‖
2‖∇f(x1)−∇f(x0)‖ ≥

1
2L , thus, by induction

one can prove that λk ≥ 1
2L , in other words, the sequence

(λk) is separated from zero.

Now we want to apply the Jensen’s inequality for the sum
of all terms f(xi)− f∗ in the left-hand side of (11). Notice,
that the total sum of coefficients at these terms is

λk(1+θk)+

k−1∑
i=1

[λi(1+θi)−λi+1θi+1] =

k∑
i=1

λi+λ1θ1 = Sk

Thus, by Jensen’s inequality,

D

2
≥ LHS of (11)

2
≥ Sk(f(x̂k)− f∗),

where x̂k is given in the statement of the theorem. By this,
the first part of the proof is complete. Convergence of (xk)
to a solution is provided in the appendix.

As we have shown that λi ≥ 1
2L for all i, we have a theoret-

ical upper bound f(x̂k)− f∗ ≤ DL
k . Note that in practice,

however, (λk) might be much larger than the pessimistic
lower bound 1

2L , which we observe in our experiments to-
gether with a faster convergence.

2.3. f is locally strongly convex

Since one of our goals is to make optimization easy to
use, we believe that a good method should have state-of-
the-art guarantees in various scenarios. For strongly convex
functions, this means that we want to see linear convergence,
which is not covered by normalized GD or online methods.
In section 2.1 we have shown that Algorithm 1 matches
the O(1/ε) complexity of GD on convex problems. Now
we show that it also matches O(Lµ log 1

ε ) complexity of
GD when f is locally strongly convex. Similarly to local
smoothness, we call f locally strongly convex if it is strongly
convex over any compact set of its domain.

For proof simplicity, instead of using bound λk ≤√
1 + θk−1λk−1 as in step 4 of Algorithm 1 we will use a

more conservative bound λk ≤
√

1 + θk−1

2 λk−1 (otherwise
the derivation would be too technical). It is clear that with
such a change Theorem 1 still holds true, so the sequence
is bounded and we can rely on local smoothness and local
strong convexity.

Algorithm 2 Adaptive accelerated gradient descent

1: Input: x0 ∈ Rd, λ0 > 0, Λ0 > 0, θ0 = Θ0 = +∞
2: y1 = x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: λk = min

{√
1 + θk−1

2 λk−1,
‖xk−xk−1‖

2‖∇f(xk)−∇f(xk−1)‖

}
5: Λk = min

{√
1 + Θk−1

2 Λk−1,
‖∇f(xk)−∇f(xk−1)‖

2‖xk−xk−1‖

}
6: βk =

√
1/λk−

√
Λk√

1/λk+
√

Λk

7: yk+1 = xk − λk∇f(xk)
8: xk+1 = yk+1 + βk(yk+1 − yk)
9: θk = λk

λk−1
, Θk = Λk

Λk−1

10: end for

Theorem 2. Suppose that f : Rd → R is locally strongly
convex and ∇f is locally Lipschitz. Then (xk) generated
by Algorithm 1 (with the modification mentioned above)
converges to the solution x∗ of (1). The complexity to get
‖xk − x∗‖2 ≤ ε is O(κ log 1

ε ), where κ = L
µ and L, µ are

the smoothness and strong convexity constants of f on the
set C = conv{x∗, x0, x1, . . . }.

We want to highlight that in our rate κ depends on the local
Lipschitz and strong convexity constants L and µ, which
is meaningful even when these properties are not satisfied
globally. Similarly, if f is globally smooth and strongly
convex, our rate is still faster as it depends on the smaller
local constants.

3. Heuristics
In this section, we describe several extensions of our method.
We do not have a full theory for them, but believe that they
are of interest in applications.

3.1. Acceleration

Suppose that f is µ-strongly convex. One version of the ac-
celerated gradient method proposed by Nesterov (Nesterov,
2013a) is

yk+1 = xk − 1

L
∇f(xk),

xk+1 = yk+1 + β(yk+1 − yk),

where β =
√
L−√µ√
L+
√
µ

. Adaptive gradient descent for strongly

convex f efficiently estimated 1
2L by

λk = min

{√
1 +

θk−1

2
λk−1,

‖xk − xk−1‖
2‖∇f(xk)−∇f(xk−1)‖

}
.

What about the strong convexity constant µ? We know that
it equals to the inverse smoothness constant of the conjugate
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f∗(y)
def
= supx{〈x, y〉 − f(x)}. Thus, it is tempting to

estimate this inverse constant just as we estimated inverse
smoothness of f , i.e., by formula

Λk = min

{√
1 +

Θk−1

2
Λk−1,

‖pk − pk−1‖
2‖∇f∗(pk)−∇f∗(pk−1)‖

}
where pk and pk−1 are some elements of the dual space and
Θk = Λk

Λk−1
. A natural choice then is pk = ∇f(xk) since

it is an element of the dual space that we use. What is its
value? It is well known that∇f∗(∇f(x)) = x, so we come
up with the update rule

Λk = min

{√
1 +

Θk−1

2
Λk−1,

‖∇f(xk)−∇f(xk−1)‖
2‖xk − xk−1‖

}
,

and hence we can estimate β by βk =

√
1/λk−

√
Λk√

1/λk+
√

Λk
.

We summarize our arguments in Algorithm 2. Unfortunately,
we do not have any theoretical guarantees for it.

Estimating strong convexity parameter µ is important in
practice. Most common approaches rely on restarting tech-
nique proposed by (Nesterov, 2013b), see also (Fercoq &
Qu, 2019) and references therein. Unlike Algorithm 2, these
works have theoretical guarantees, however, the methods
themselves are more complicated and still require tuning of
other unknown parameters.

3.2. Uniting our steps with stochastic gradients

Here we would like to discuss applications of our method
to the problem

min
x

E [fξ(x)] ,

where fξ is almost surely L-smooth and µ-strongly convex.
Assume that at each iteration we get sample ξk to make a
stochastic gradient step,

xk+1 = xk − λk∇fξk(xk).

Then, we have two ways of incorporating our stepsize into
SGD. The first is to reuse ∇fξk(xk) to estimate Lk =
‖∇f

ξk
(xk)−∇f

ξk
(xk−1)‖

‖xk−xk−1‖ , but this would make λk∇fξk(xk)

biased. Alternatively, one can use an extra sample to esti-
mate Lk, but this is less intuitive since our goal is to estimate
the curvature of the function used in the update.

We give a full description in Algorithm 3. We remark that
the option with a biased estimate performed much better in
our experiments with neural networks. The theorem below
provides convergence guarantees for both cases, but with
different assumptions.

Theorem 3. Let fξ be L-smooth and µ-strongly convex
almost surely. Assuming α ≤ 1

2κ and estimating Lk

Algorithm 3 Adaptive SGD

1: Input: x0 ∈ Rd, λ0 > 0, θ0 = +∞, ξ0, α > 0
2: x1 = x0 − λ0∇fξ0(x0)
3: for k = 1, 2, . . . do
4: Sample ξk and optionally ζk

5: Option I (biased): Lk =
‖∇f

ξk
(xk)−∇f

ξk
(xk−1)‖

‖xk−xk−1‖

6: Option II (unbiased): Lk =
‖∇f

ζk
(xk)−∇f

ζk
(xk−1)‖

‖xk−xk−1‖

7: λk = min
{√

1 + θk−1λk−1,
α
Lk

}
8: xk+1 = xk − λk∇fξk(xk)

9: θk = λk
λk−1

10: end for

with ∇fζk , the complexity to get E
[
‖xk − x∗‖2

]
≤ ε is

not worse than O
(
κ2

ε log κ
ε

)
. Furthermore, if the model

is overparameterized, i.e., ∇fξ(x∗) = 0 almost surely,
then one can estimate Lk with ξk and the complexity is
O
(
κ2 log 1

ε

)
.

Note that in both cases we match the known dependency on
ε up to logarithmic terms, but we get an extra κ as the price
for adaptive estimation of the stepsize.

Another potential application of our techniques is estimation
of decreasing stepsizes in SGD. The best known rates for
SGD (Stich, 2019), are obtained using λk that evolves as
O
(

1
L+µk

)
. This requires estimates of both smoothness and

strong convexity, which can be borrowed from the previous
discussion. We leave rigorous proof of such schemes for
future work.

4. Experiments
In the experiments3, we compare our approach with the
two most related methods: GD and Nesterov’s accelerated
method for convex functions (Nesterov, 1983). Additionally,
we consider line search, Polyak step, and Barzilai-Borwein
method. For neural networks we also include a comparison
with SGD, SGDm and Adam.

Logistic regression. The logistic loss with `2-
regularization is given by 1

n

∑n
i=1 log(1+exp(−bia>i x))+

γ
2 ‖x‖

2, where n is the number of observations, γ > 0
is a regularization parameter, and (ai, bi) ∈ Rd × R,
i = 1, . . . , n, are the observations. We use ‘mushrooms’
and ‘covtype’ datasets to run the experiments. We choose
γ proportionally to 1

n as often done in practice. Since we
have closed-form expressions to estimate L = 1

4n‖A‖
2 + γ,

where A = (a>1 , . . . , a
>
n )>, we used stepsize 1

L in GD and
its acceleration. The results are provided in Figure 1.

3See https://github.com/ymalitsky/adaptive_gd

https://github.com/ymalitsky/adaptive_GD
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Figure 1: Results for the logistic regression problem.

0 1000 2000 3000 4000 5000 6000
Iteration

10-10

10-7

10-4

10-1

102

105

kr
f(
x
k
)k

GD
Nesterov
AdGD
AdGD-accel

(a) r = 10

0 5000 10000 15000 20000 25000 30000
Iteration

10-10

10-7

10-4

10-1

102

105

kr
f(
x
k
)k

GD
Nesterov
AdGD
AdGD-accel

(b) r = 20

0 20000 40000 60000 80000 100000
Iteration

10-7
10-5
10-3
10-1
101
103
105

kr
f(
x
k
)k

GD
Nesterov
AdGD
AdGD-accel

(c) r = 30

Figure 2: Results for matrix factorization. The objective is neither convex nor smooth.

Matrix factorization. Given a matrix A ∈ Rm×n and
r < min{m,n}, we want to solve minX=[U,V ] f(X) =

f(U, V ) = 1
2‖UV

>−A‖2F for U ∈ Rm×r and V ∈ Rn×r.
It is a nonconvex problem, and the gradient ∇f is not glob-
ally Lipschitz. With some tuning, one still can apply GD
and Nesterov’s accelerated method, but—and we want to
emphasize it—it was not a trivial thing to find the steps in
practice. The steps we have chosen were almost optimal,
namely, the methods did not converge if we doubled the
steps. In contrast, our methods do not require any tuning,
so even in this regard they are much more practical. For
the experiments we used Movilens 100K dataset (Harper &
Konstan, 2016) with more than million entries and several
values of r = 10, 20, 30. All algorithms were initialized at
the same point, chosen randomly. The results are presented
in Figure 2.

Cubic regularization. In cubic regularization of Newton
method (Nesterov & Polyak, 2006), at each iteration we
need to minimize f(x) = g>x+ 1

2x
>Hx+ M

6 ‖x‖
3, where

g ∈ Rd, H ∈ Rd×d and M > 0 are given. This objective
is smooth only locally due to the cubic term, which is our
motivation to consider it. g and H were the gradient and the
Hessian of the logistic loss with the ‘covtype’ dataset, eval-
uated at x = 0 ∈ Rd. Although the values of M = 10, 20,

100 led to similar results, they also required different num-
bers of iterations, so we present the corresponding results in
Figure 3.

Barzilai-Borwein, Polyak and line searches. We have
started this paper with an overview of different approaches
to tackle the issue of a stepsize for GD. Now, we demon-
strate some of those solutions. We again consider the `2-
regularized logistic regression (same setting as before) with
‘mushrooms’, ‘covtype’, and ‘w8a’ datasets.

In Figure 4 (left) we see that the Barzilai-Borwein method
can indeed be very fast. However, as we said before, it lacks
a theoretical basis and Figure 4 (middle) illustrates this
quite well. Just changing one dataset to another makes both
versions of this method to diverge on a strongly convex and
smooth problem. Polyak’s method consistently performs
well (see Figure 4 (left and middle)), however, only after it
was fed with f∗ that we found by running another method.
Unfortunately, for logistic regression there is no way to
guess this value beforehand.

Finally, line search for GD (Armijo version) and Nesterov
GD (implemented as in (Nesterov, 2013b)) eliminates the
need to know the stepsize, but this comes with a higher price
per iteration as Figure 4 (right) shows. Actually in all our ex-
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Figure 3: Results for the non-smooth subproblem from cubic regularization.
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Figure 4: Additional results for the logistic regression problem.

periments for logistic regression with different datasets one
iteration of Armijo line search was approximately 2 times
more expensive than AdGD, while line search for Nesterov
GD was 4 times more expensive. We note that these ob-
servations are consistent with the theoretical derivations in
(Nesterov, 2013b).

Neural networks. We use standard ResNet-18
and DenseNet-121 architectures implemented in Py-
Torch (Paszke et al., 2017) and train them to classify images
from the Cifar10 dataset (Krizhevsky et al., 2009) with
cross-entropy loss.

We use batch size 128 for all methods. For our method,
we observed that 1

Lk
works better than 1

2Lk
. We ran it

with
√

1 + γθk in the other factor with values of γ from
{1, 0.1, 0.05, 0.02, 0.01} and γ = 0.02 performed the best.
For reference, we provide the result for the theoretical esti-
mate as well and value γ = 0.1 in the plot with estimated
stepsizes. The results are depicted in Figures 5 and 6 and
other details are provided in appendix D.

We can see that, surprisingly, our method achieves better test
accuracy than SGD despite having the same train loss. At
the same time, our method is significantly slower at the early
stage and the results are quite noisy for the first 75 epochs.

Another observation is that the smoothness estimates are
very non-uniform and λk plummets once train loss becomes
small.

5. Perspectives
We briefly provide a few directions which we personally
consider to be important and challenging.

1. Nonconvex case. A great challenge for us is to ob-
tain theoretical guarantees of the proposed method
in the nonconvex settings. We are not aware of any
generic first-order method for nonconvex optimization
that does not rely on the descent lemma (or its general-
ization), see, e.g., (Attouch et al., 2013).

2. Performance estimation. In our experiments we of-
ten observed much better performance of Algorithm 1,
than GD or AGD. However, the theoretical rate we can
show coincides with that of GD. The challenge here
is to bridge this gap and we hope that the approach
pioneered by (Drori & Teboulle, 2014) and further de-
veloped in (Taylor et al., 2017; Kim & Fessler, 2016;
Taylor & Bach, 2019) has a potential to do that.

3. Composite minimization. In classical first-order
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Figure 5: Results for training ResNet-18 on Cifar10. Labels for AdGD correspond to how λk was estimated.
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Figure 6: Results for training DenseNet-121 on Cifar10.

methods, the transition from smooth to composite min-
imization (Nesterov, 2013b) is rather straightforward.
Unfortunately, the proposed proof of Algorithm 1 does
not seem to provide any route for generalization and
we hope there is some way of resolving this issue.

4. Stochastic optimization. The derived bounds for the
stochastic case are not satisfactory and have a subop-
timal dependency on κ. However, it is not clear to
us whether one can extend the techniques from the
deterministic analysis to improve the rate.

5. Heuristics. Finally, we want to have some solid
ground in understanding the performance of the pro-
posed heuristics.
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Appendix:
A. Missing proofs
Recall that in the proof of Theorem 1 we only showed boundedness of the iterates and complexity for minimizing f(x). It
remains to show that sequence (xk) converges to a solution. For this, we need some variation of the Opial lemma.

Lemma 2. Let (xk) and (ak) be two sequences in Rd and R+ respectively. Suppose that (xk) is bounded, its cluster points
belong to X ⊂ Rd and it also holds that

‖xk+1 − x‖2 + ak+1 ≤ ‖xk − x‖2 + ak, ∀x ∈ X . (12)

Then (xk) converges to some element in X .

Proof. Let x̄1, x̄2 be any cluster points of (xk). Thus, there exist two subsequences (xki) and (xkj ) such that xki → x̄1

and xkj → x̄2. Since ‖xk − x‖2 + ak is nonnegative and bounded, limk→∞(‖xk − x‖2 + ak) exists for any x ∈ X . Let
x = x̄1. This yields

lim
k→∞

(‖xk − x̄1‖2 + ak) = lim
i→∞

(‖xki − x̄1‖2 + aki) = lim
i→∞

aki

= lim
j→∞

(‖xkj − x̄1‖2 + akj ) = ‖x̄2 − x̄1‖2 + lim
j→∞

akj .

Hence, limi→∞ aki = limj→∞ akj + ‖x̄1 − x̄2‖2. Doing the same with x = x̄2 instead of x = x̄1, yields limj→∞ akj =
limi→∞ aki + ‖x̄1 − x̄2‖2. Thus, we obtain that x̄1 = x̄2, which finishes the proof.

Another statement that we need here is the following tightening of the convexity property.

Lemma 3 (Theorem 2.1.5, (Nesterov, 2013a)). Let C be a closed convex set in Rd. If f : C → R is convex and L-smooth,
then ∀x, y ∈ C it holds

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2L
‖∇f(x)−∇f(y)‖2. (13)

Proof of Theorem 1. (Convergence of (xk))

Note that in the first part we have already proved that (xk) is bounded and that ∇f is L-Lipschitz on C =
conv{x∗, x0, x1, . . . }. Invoking Lemma 3, we deduce that

λk(f(x∗)− f(xk)) ≥ λk〈∇f(xk), x∗ − xk〉+
λk
2L
‖∇f(xk)‖2. (14)

This indicates that instead of using inequality (6) in the proof of Lemma 3, we could use a better estimate (14). However,
we want to emphasize that we did not assume that ∇f is globally Lipschitz, but rather obtained Lipschitzness on C as an
artifact of our analysis. Clearly, in the end this improvement gives us an additional term λk

L ‖∇f(xk)‖2 in the left-hand side
of (5), that is

‖xk+1 − x∗‖2 +
1

2
‖xk+1 − xk‖2 + 2λk(1 + θk)(f(xk)− f∗) +

λk
L
‖∇f(xk)‖2

≤ ‖xk − x∗‖2 +
1

2
‖xk − xk−1‖2 + 2λkθk(f(xk−1)− f∗). (15)

Thus, telescoping (15), one obtains that
∑k
i=1

λk
L ‖∇f(xk)‖2 ≤ D. As λk ≥ 1

2L , one has that∇f(xk)→ 0. Now we might
conclude that all cluster points of (xk) are solutions of (1).

Let X be the solution set of (1) and ak = 1
2‖x

k − xk−1‖2 + 2λkθk(f(xk−1)− f∗). We want to finish the proof applying
Lemma 2. To this end, notice that inequality (5) yields (12), since λk+1θk+1 ≤ (1 + θk)λk. This completes the proof.
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Proof of Theorem 2.

First of all, we note that using the stricter inequality λk ≤
√

1 + θk−1

2 λk−1 does not change the statement of The-
orem 1. Hence, xk → x∗ and there exist µ,L > 0 such that f is µ-strongly convex and ∇f is L-Lipschitz on
C = conv{x∗, x0, x1, . . . }. Secondly, due to local strong convexity, ‖∇f(xk) − ∇f(xk−1)‖ ≥ µ‖xk − xk−1‖, and
hence λk ≤ 1

2µ for k ≥ 1.

Now we tighten some steps in the analysis to improve bound (6). By strong convexity,

λk〈∇f(xk), x∗ − xk〉 ≤ λk(f(x∗)− f(xk))− λk
µ

2
‖x∗ − xk‖2.

By L-smoothness and bound λk ≤ 1
2µ ,

λk〈∇f(xk), x∗ − xk〉 ≤ λk(f(x∗)− f(xk))− λk
1

2L
‖∇f(xk)‖2

= λk(f∗ − f(xk))− 1

2Lλk
‖xk+1 − xk‖2

≤ λk(f∗ − f(xk))− µ

L
‖xk+1 − xk‖2.

Together, these two bounds give us

λk〈∇f(xk), x∗ − xk〉 ≤ λk(f∗ − f(xk))− λk
µ

4
‖xk − x∗‖2 − µ

2L
‖xk+1 − xk‖2.

We keep inequality (10) and the rest of the proof as is. Then the strengthen analog of (5) will be

‖xk+1 − x∗‖2 +
1

2

(
1 +

2µ

L

)
‖xk+1 − xk‖2 + 2λk(1 + θk)(f(xk)− f∗)

≤
(

1− λkµ

2

)
‖xk − x∗‖2 +

1

2
‖xk − xk−1‖2 + 2λkθk(f(xk−1)− f∗)

≤
(

1− λkµ

2

)
‖xk − x∗‖2 +

1

2
‖xk − xk−1‖2 + 2λk−1

(
1 +

θk−1

2

)
(f(xk−1)− f∗), (16)

where in the last inequality we used our new condition on λk. Under the new update we have contraction in every term:
1− λkµ

2 in the first, 1
1+2µ/L = 1− 2µ

L+2µ in the second and 1+θk−1/2
1+θk−1

= 1− θk−1

2(1+θk−1) in the last one.

To further bound the last contraction, recall that λk ∈
[

1
2L ,

1
2µ

]
for k ≥ 1. Therefore, θk = λk

λk−1
≥ 1

κ for any k > 1, where

κ
def
= L

µ . Since the function θ 7→ θ
1+θ monotonically increases with θ > 0, this implies θk−1

2(1+θk−1) ≥
1

2(κ+1) when k > 2.
Thus, for the full energy Ψk+1 (the left-hand side of (16)) we have

Ψk+1 ≤
(

1−min

{
λkµ

2
,

1

2(κ+ 1)
,

2µ

L+ 2µ

})
Ψk.

Using simple bounds λkµ
2 ≥ 1

4κ , 2µ
L+2µ = 2

κ+2 ≥
1

4κ , and 1
2(κ+1) ≥

1
4κ , we obtain Ψk+1 ≤ (1− 1

4κ )Ψk for k > 2. This
gives O

(
κ log 1

ε

)
convergence rate.

B. Extensions
B.1. More general update

One may wonder how flexible the update for λk in Algorithm 1 is. For example, is it necessary to upper bound the stepsize
with
√

1 + θkλk−1 and put 2 in the denominator of ‖xk−xk−1‖
2‖∇f(xk)−∇f(xk−1)‖? Algorithm 4 that we present here partially answers

this question. Obviously, Algorithm 1 is a particular case of Algorithm 4 with α = 1
2 , β = 1.
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Algorithm 4 Adaptive gradient descent (general update)

1: Input: x0 ∈ Rd, λ0 > 0, θ0 = +∞, α ∈ (0, 1), β = 1
2(1−α)

2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: λk = min

{√
1
β + θk−1λk−1,

α‖xk−xk−1‖
‖∇f(xk)−∇f(xk−1)‖

}
5: xk+1 = xk − λk∇f(xk)
6: θk = λk

λk−1

7: end for

Theorem 4. Suppose that f : Rd → R is convex with locally Lipschitz gradient ∇f . Then (xk) generated by Algorithm 4
converges to a solution of (1) and we have that

f(x̂k)− f∗ ≤
D

2Sk
= O

(1

k

)
,

where

x̂k =
λk(1 + θkβ)xk +

∑k−1
i=1 wix

i

Sk
,

wi = λi(1 + θiβ)− λi+1θi+1β,

Sk = λk(1 + θkβ) +

k−1∑
i=1

wi =

k∑
i=1

λi + λ1θ1β,

and D is a constant that explicitly depends on the initial data and the solution set.

Proof. Let x∗ be arbitrary solution of (1). We note that equations (7) and (8) hold for any variant of GD, independently of
λk, α, β. With the new rule for λk, from (8) it follows

‖xk+1 − xk‖2 ≤ 2λkθk(f(xk−1)− f(xk))− ‖xk+1 − xk‖2 + 2λk‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖
≤ 2λkθk(f(xk−1)− f(xk))− (1− α)‖xk+1 − xk‖2 + α‖xk − xk−1‖2,

which, after multiplication by β and reshuffling the terms, becomes

β(2− α)‖xk+1 − xk‖2 + 2βλkθk(f(xk)− f∗) ≤ αβ‖xk − xk−1‖2 + 2βλkθk(f(xk−1)− f∗).

Adding (7) and the latter inequality gives us

‖xk+1 − x∗‖2 + 2λk(1 + θkβ)(f(xk)− f∗) + (2β − αβ − 1)‖xk+1 − xk‖2

≤ ‖xk − x∗‖2 + 2λkθkβ(f(xk−1)− f∗) + αβ‖xk+1 − xk‖2.

Notice that by β = 1
2(1−α) , we have 2β − αβ − 1 = αβ and hence,

‖xk+1 − x∗‖2 + 2λk(1 + θkβ)(f(xk)− f∗) + αβ‖xk+1 − xk‖2

≤ ‖xk − x∗‖2 + 2λkθkβ(f(xk−1)− f∗) + αβ‖xk+1 − xk‖2.

As a sanity check, we can see that with α = 1
2 and β = 1, the above inequality coincides with (5).

Telescoping this inequality, we deduce

‖xk+1 − x∗‖2 + αβ‖xk+1 − xk‖2 + 2λk(1 + θkβ)(f(xk)− f∗) + 2

k−1∑
i=1

[λi(1 + θiβ)− λi+1θi+1β](f(xi)− f∗)

≤ ‖x1 − x∗‖2 + αβ‖x1 − x0‖2 + 2λ1θ1β[f(x0)− f∗]
def
= D. (17)
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Note that because of the way we defined stepsize, λi(1 + θiβ) − λi+1θi+1β ≥ 0. Thus, the sequence (xk) is bounded.
Since∇f is locally Lipschitz, it is Lipschitz continuous on bounded sets. Let L be a Lipschitz constant of∇f on a bounded
set C = conv{x∗, x1, x2, . . . }.

If α ≤ 1
2 , then 1

β > 1 and similarly to Theorem 1 we might conclude that λk ≥ α
L for all k. However, for the case α > 1

2

we cannot do this. Instead, we prove that λk ≥ 2α(1−α)
L , which suffices for our purposes.

Let m,n ∈ N be the smallest numbers such that β−
1

2m ≥ 1 − 1
2β and (1 + 1

β )
n
2 ≥ β. We want to prove that for any k

it holds λk ≥ 2α(1−α)
L and among every m + n + 1 consecutive elements λk, λk+1, . . . , λk+m+n at least one is no less

than α
L . We shall prove this by induction. First, note that the second bound always satisfies α‖xk−xk−1‖

‖∇f(xk)−∇f(xk−1)‖ ≥
α
L for

all k, which also implies that λ1 ≥ α
L . If for all k we have λk ≥ α

L , then we are done. Now assume that λk−1 ≥ α
L and

λk <
α
L for some k. Choose the largest j (possibly infinite) such that the second bound is not active for λk, . . . , λk+j−1,

i.e., λk+i =
√

1
β + θk+i−iλk+i−1 for i < j.

Let us prove that λk, . . . , λk+j−1 ≥ 2α(1−α)
L . The definition of j yields θk+i =

√
1
β + θk+i−1 for all i = 0, . . . , j − 1.

Recall that β > 1, and thus,

θk ≥ β−
1
2 , θk+1 ≥

√
1

β
+

√
1

β
≥ β− 1

4 , . . . , θk+i ≥
√

1

β
+ β−

1

2i ≥ β−
1

2i+1

for all i < j. Now it remains to notice that for any i < j

λk+i

λk−1
= θkθk+1 . . . θk+i ≥ β−

1
2−

1
4−···−

1

2i+1 ≥ 1

β
= 2(1− α)

and hence λk+i ≥ 2(1 − α)λk−1 ≥ 2α(1−α)
L . If j ≤ m + n, then at (k + j)-th iteration the second bound is active, i.e.,

λk+j ≥ α
L , and we are done with the other claim as well. Otherwise, note

θk+m−1 ≥ β−
1

2m ≥ 1− 1

2β
,

so θk+m =
√

1
β + θk+m−1 ≥

√
1
β + 1− 1

2β =
√

1 + 1
2β and for any i ∈ [m, j − 2] we have θk+i+1 =

√
1
β + θk+i ≥√

1
β + 1. Thus,

λk+m+n = λk−1

(k+m−1∏
l=k

θl

)(k+m+n∏
l=k+m

θl

)
≥ λk−1

1

β

√
1 +

1

2β

(
1 +

1

β

)n
2 ≥ λk−1 ≥

α

L
,

so we have shown the second claim too.

To conclude, in both cases α ≤ 1
2 and α > 1

2 , we have Sk = Ω(k).

Applying the Jensen inequality for the sum of all terms f(xi)− f∗ in the left-hand side of (17), we obtain

D

2
≥ LHS of (17)

2
≥ Sk(f(x̂k)− f∗),

where x̂k is defined in the statement of the theorem. Finally, convergence of (xk) can be proved in a similar way as
Theorem 1.

B.2. f is L-smooth

Often, it is known that f is smooth and even some estimate for the Lipschitz constant L of∇f is available. In this case, we
can use slightly larger steps, since instead of just convexity the stronger inequality in Lemma 3 holds. To take advantage of
it, we present a modified version of Algorithm 1 in Algorithm 5. Note that we have chosen to modify Algorithm 1 and not
its more general variant Algorithm 4 only for simplicity.
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Algorithm 5 Adaptive GD (L is known)

1: Input: x0 ∈ Rd, λ0 = 1
L , θ0 = +∞

2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do
4: Lk = ‖∇f(xk)−∇f(xk−1)‖

‖xk−xk−1‖

5: λk = min
{√

1 + θk−1λk−1,
1

λk−1L2 + 1
2Lk

}
6: xk+1 = xk − λk∇f(xk)
7: θk = λk

λk−1

8: end for

Theorem 5. Let f be convex and L-smooth. Then for (xk) generated by Algorithm 5 inequality (5) holds. As a corollary, it
holds for some ergodic vector x̂k that f(x̂k)− f∗ = O

(
1
k

)
.

Proof. Proceeding similarly as in Lemma 1, we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2λk
〈
∇f(xk), xk − x∗

〉
+ ‖xk+1 − xk‖2. (18)

By convexity of f and Lemma 3,

2λk〈∇f(xk), x∗ − xk〉
(13)
≤ 2λk(f(x∗)− f(xk)− 1

2L
‖∇f(xk)‖2) = 2λk(f∗ − f(xk))− 1

λkL
‖xk+1 − xk‖2. (19)

As in (8), we have

‖xk+1 − xk‖2 = 2λk〈∇f(xk)− f(xk−1), xk − xk+1〉+ 2λk〈f(xk−1), xk − xk+1〉 − ‖xk+1 − xk‖2. (20)

Again, instead of using merely convexity of f , we combine it with Lemma 3. This gives

2λk〈∇f(xk−1), xk − xk+1〉 =
2λk
λk−1

〈xk−1 − xk, xk − xk+1〉

= 2λkθk〈xk−1 − xk,∇f(xk)〉
(13)
≤ 2λkθk(f(xk−1)− f(xk))− λkθk

L
‖∇f(xk)−∇f(xk−1)‖2.

(21)

Since now we have two additional terms 1
λkL
‖xk+1 − xk‖2 and λkθk

L ‖∇f(xk)−∇f(xk−1)‖2, we can do better than (9).
But first we need a simple, yet a bit tedious fact. By our choice of λk, in every iteration λk ≤ 1

λk−1L2 + 1
2Lk

with

Lk = ‖∇f(xk)−∇f(xk−1)‖
‖xk−xk−1‖ . We want to show that it implies

2

(
λk −

√
θk
L

)
≤ 1

Lk
, (22)

which is equivalent to λk−
√
λk√

λk−1L
− 1

2Lk
≤ 0. Nonnegative solutions of the quadratic inequality t2− t√

λk−1L
− 1

2Lk
≤ 0

are

0 ≤ t ≤ 1

2
√
λk−1L

+
1

2

√
1

λk−1L2
+

2

Lk
=

1

2
√
λk−1L

1 +

√
1 +

2λk−1L2

Lk

 .

Let us prove that
√

1
λk−1L2 + 1

2Lk
falls into this segment and, hence,

√
λk does as well. Using a simple inequality

4 + a ≤ (1 +
√

1 + a)2, for a > 0, we obtain

1

λk−1L2
+

1

2Lk
=

1

4λk−1L2

(
4 +

2λk−1L
2

Lk

)
≤ 1

4λk−1L2

1 +

√
1 +

2λk−1L2

Lk

2

.
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This confirms that (22) is true. Thus, by Cauchy-Schwarz and Young’s inequalities, one has

2λk〈∇f(xk)−∇f(xk−1), xk − xk+1〉 ≤ 2λk‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖

= 2

(
λk −

√
θk
L

)
‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖+

2
√
θk
L
‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖

(22)
≤ 1

Lk
‖∇f(xk)−∇f(xk−1)‖‖xk − xk+1‖+

λkθk
L
‖∇f(xk)−∇f(xk−1)‖2 +

1

λkL
‖xk+1 − xk‖2

= ‖xk − xk−1‖‖xk − xk+1‖+
λkθk
L
‖∇f(xk)−∇f(xk−1)‖2 +

1

λkL
‖xk+1 − xk‖2

≤ 1

2
‖xk − xk−1‖2 +

1

2
‖xk+1 − xk‖2 +

λkθk
L
‖∇f(xk)−∇f(xk−1)‖2 +

1

λkL
‖xk+1 − xk‖2.

(23)

Combining everything together, we obtain the statement of the theorem.

C. Stochastic analysis
C.1. Different samples

Consider the following version of SGD, in which we have two samples at each iteration, ξk and ζk to compute

λk = min

{√
1 + θkλk−1,

α‖xk − xk−1‖
‖∇fζk(xk)−∇fζk(xk−1)‖

}
,

xk+1 = xk − λk∇fξk(xk).

As before, we assume that θ0 = +∞, so λ1 = α‖x1−x0‖
‖∇fζ1 (x1)−∇fζ1 (x0)‖ .

Lemma 4. Let fξ be L-smooth µ-strongly convex almost surely. It holds for λk produced by the rule above

α

L
≤ λk ≤

α

µ
a.s. (24)

Proof. Let us start with the upper bound. Strong convexity of fζk implies that ‖x− y‖ ≤ 1
µ‖∇fζk(x)−∇fζk(y)‖ for any

x, y. Therefore, λk ≤ min
{√

1 + θkλk−1, α/µ
}
≤ α/µ a.s.

On the other hand, L-smoothness gives λk ≥ min
{√

1 + θkλk−1, α/L
}
≥ min {λk−1, α/L} a.s. Iterating this inequality,

we obtain the stated lower bound.

Proposition 1. Denote σ2 def
= E

[
‖∇fξ(x∗)‖2

]
and assume f to be almost surely L-smooth and convex. Then it holds for

any x

E
[
‖∇fξ(x)‖2

]
≤ 4L(f(x)− f∗) + 2σ2. (25)

Another fact that we will use is a strong convexity bound, which states for any x, y

〈∇f(x), x− y〉 ≥ µ

2
‖x− y‖2 + f(x)− f(y). (26)

Theorem 6. Let fξ be L-smooth and µ-strongly convex almost surely. If we choose some α ≤ µ
2L , then

E
[
‖xk − x∗‖2

]
≤ exp

(
−kµα

L

)
C0 + α

σ2

µ2
,

where C0
def
= 2(1 + 2λ2

0L
2)‖x0 − x∗‖2 + 4λ2

0σ
2 and σ2 def

= E
[
‖∇fξ(x∗)‖2

]
.
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Proof. Under our assumptions on α ≤ µ
2L , we have λk ≤ α

µ ≤
1

2L . Since λk is independent of ξk, we have
E
[
λk∇fξk(xk)

]
= E [λk]E

[
∇f(xk)

]
and

E
[
‖xk+1 − x∗‖2

]
= E

[
‖xk − x∗‖2

]
− 2E

[
λk
〈
∇f(xk), xk − x∗

〉]
+ E

[
λ2
k

]
E
[
‖∇fξk(xk)‖2

]
(26)
≤ E

[
(1− λkµ)‖xk − x∗‖2

]
− 2E

[
λk(f(xk)− f∗)

]
+ E

[
λ2
k

]
E
[
‖∇fξk(xk)‖2

]
(25)
≤ E

[
(1− λkµ)‖xk − x∗‖2

]
− 2E

[
λk (1− 2λkL)︸ ︷︷ ︸

≥0

(f(xk)− f∗)
]

+ E
[
λ2
k

]
σ2

(24)
≤ E [1− λkµ]E

[
‖xk − x∗‖2

]
+ α

E [λk]σ2

µ
.

Therefore, if we subtract ασ
2

µ2 from both sides, we obtain

E
[
‖xk+1 − x∗‖2 − ασ

2

µ2

]
≤ E [1− λkµ]E

[
‖xk − x∗‖2 − ασ

2

µ2

]
.

If E
[
‖xk − x∗‖2

]
≤ ασ

2

µ2 for some k, it follows that E
[
‖xt − x∗‖2

]
≤ ασ

2

µ2 for any t ≥ k. Otherwise, we can reuse the
produced bound to obtain

E
[
‖xk+1 − x∗‖2

]
≤

k∏
t=1

E [1− λtµ] ‖x1 − x∗‖2 + α
σ2

µ2
.

By inequality 1 − x ≤ e−x, we have
∏k
t=1 E [1− λtµ] ≤ exp

(
−µ
∑k
t=0 λt

)
. In addition, recall that in accordance

with (24) we have λk ≥ α
L . Thus,

E
[
‖xk+1 − x∗‖2

]
≤ exp

(
−kαµ

L

)
E
[
‖x1 − x∗‖2

]
+ α

σ2

µ2
.

It remains to mention that

E
[
‖x1 − x∗‖2

]
≤ 2‖x0 − x∗‖+ 2λ2

0E
[
‖∇fξ0(x0)‖2

] (25)
≤ 2‖x0 − x∗‖+ 2λ2

0

(
2L2‖x0 − x∗‖2 + 2σ2

)
.

This gives the following corollary.

Corollary 1. Choose α = γ µ
2L with γ ≤ 1. Then, to achieve E

[
‖xk − x∗‖2

]
= O(ε + γσ2) we need only k =

O
(
L2

γµ2 log
1+λ2

0

ε

)
iterations. If we choose γ proportionally to ε, it implies O

(
1
ε log 1

ε

)
complexity.

C.2. Same sample: overparameterized models

Assume additionally that the model is overparameterized, i.e.,∇fξ(x∗) = 0 with probability one. In that case, we can prove
that one can use the same stochastic sample to compute the stepsize and to move the iterate. The update becomes

λk = min

{√
1 + θkλk−1,

α‖xk − xk−1‖
‖∇fξk(xk)−∇fξk(xk−1)‖

}
,

xk+1 = xk − λk∇fξk(xk).

Theorem 7. Let fξ be L-smooth, µ-strongly convex and satisfy ∇fξ(x∗) = 0 with probability one. If we choose α ≤ µ
L ,

then

E
[
‖xk − x∗‖2

]
≤ exp

(
−kαµ

L

)
C0,

where C0
def
= 2(1 + λ2

0L
2)‖x0 − x∗‖2.
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Proof. Now λk depends on ξk, so we do not have an unbiased update anymore. However, under the new assumption,
∇fξk(x∗) = 0, so we can write

〈
∇fξk(xk), xk − x∗

〉 (26)
≥ µ

2
‖xk − x∗‖2 + fξk(xk)− fξk(x∗).

In addition, L-smoothness and convexity of fξk give

‖∇fξk(xk)‖2 ≤ 2L(fξk(xk)− fξk(x∗)).

Since our choice of α implies λk ≤ 1
L , we conclude that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2λk
〈
∇fξk(xk), xk − x∗

〉
+ λ2

k‖∇fξk(xk)‖2

≤ (1− λkµ)‖xk − x∗‖2 − 2λk(1− λkL)(fξk(xk)− fξk(x∗))

≤ (1− λkµ)‖xk − x∗‖2.

Furthermore, as ‖∇fξ0(x0)‖ = ‖∇fξ0(x0)−∇fξ0(x∗)‖ ≤ L‖x0 − x∗‖, we also get a better bound on E
[
‖x1 − x∗‖2

]
,

namely

E
[
‖x1 − x∗‖2

]
≤ 2‖x0 − x∗‖+ 2λ2

0E
[
‖∇fξ0(x0)‖2

]
≤ 2(1 + λ2

0L
2)‖x0 − x∗‖.

D. Experiments details
Here we provide some omitted details of the experiments with neural networks. We took the implementation of neural
networks from a publicly available repository4. All methods were run with standard data augmentation and no weight decay.
The confidence intervals for ResNet-18 are obtained from 5 different random seeds and for DenseNet-121 from 3 seeds.

In our ResNet-18 experiments, we used the default parameters for Adam. SGD was used with a stepsize divided by 10 at
epochs 120 and 160 when the loss plateaus. Log grid search with a factor of 2 was used to tune the initial stepsize of SGD
and the best initial value was 0.2. Tuning was done by running SGD 3 times and comparing the average of test accuracies
over the runs at epoch 200. For the momentum version (SGDm) we used the standard values of momentum and initial
stepsize for training residual networks, 0.9 and 0.1 correspondingly. We used the same parameters for DenseNet-121 without
extra tuning.

For our method we used the variant of SGD xk+1 = xk − λk∇fξk(xk) with λk computed using ξk as well (biased option).
We did not test stepsizes that use values other than 1

Lk
and 1

2Lk
, so it is possible that other options will perform better.

Moreover, the coefficient before θk−1 might be suboptimal too.

4https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

