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Abstract—Albeit very appealing, FPGA multitenancy in the
cloud computing environment is currently on hold due to a
number of recently discovered vulnerabilities to side-channel
attacks and covert communication. In this work, we successfully
demonstrate a new attack scenario on shared FPGAs: we
show that an FPGA tenant can activate a dormant hardware
Trojan without any physical or logical connection to the private
Trojan-infected FPGA circuit. Our victim contains a so-called
satisfiability don’t-care Trojan, activated by a pair of don’t-care
signals, which never reach the combined trigger condition under
normal operation. However, once a malicious FPGA user starts
to induce considerable fluctuations in the on-chip signal delays—
and, consequently, the timing faults—these harmless don’t-care
signals take unexpected values which trigger the Trojan. Our
attack model eliminates the assumption on physical access to
or manipulation of the victim design. Contrary to existing fault
and side-channel attacks that target unprotected cryptographic
circuits, our new attack is shown effective even against provably
well-protected cryptographic circuits. Besides demonstrating the
attack by successfully leaking the entire cryptographic key from
one unprotected and one masked AES S-box implementation, we
present an efficient and lightweight countermeasure.

Index Terms—SDC hardware Trojans, FPGA, multitenancy,
timing faults, remote attack

I. INTRODUCTION

Today, heterogeneous cloud computing platforms allow
cloud users to gain almost full access over the low-level logical
and electrical features of large FPGA instances remotely [1],
[2]. At the same time, partial reconfiguration enables tem-
poral and spatial multiplexing of the FPGA die, rendering a
multi-tenant use mode compatible with the rest of the cloud
ecosystem. These appealing computing features, however,
have raised new security concerns supported by recent denial-
of-service, fault-injection, power side-channel and crosstalk
side-channel attacks, as well as covert communication on
shared FPGAs [3]–[10].

In this paper, we present a new attack vector on shared
FPGAs, which combines remotely-induced timing faults and
hardware Trojans. The Trojans studied here are triggered
using a pair of carefully chosen don’t-care signals, commonly
represented as X; hence the name of X-attack. They can be
inserted into a multitude of third-party IP cores. Such hardware
Trojans can be both hard to detect and eliminate, because
they hide behind don’t-care states. Moreover, by construction,
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these Trojans can leak the secret directly through publicly
observable core outputs, bypassing the common protections
against side-channel attacks. We demonstrate that a malicious
FPGA tenant (the attacker) can trigger a don’t-care Trojan
without any physical or logical connection to the Trojan-
infected design (the victim). Using two designs as targets—one
pipelined AES core and one masked AES S-box—we show
how an attacker can extract the entire encryption key by merely
observing the statistical distribution of faulty ciphertexts under
a remotely-controlled X-attack. Additionally, we design a
countermeasure and demonstrate its effectiveness in protecting
against this attack.

The remainder of this paper is organized as follows.
Section II reviews related work, while some background is
covered in Section III. We describe our threat model in
Section IV and the system design in Section V. Experimental
evaluation is presented in detail in Section VI. We discuss
countermeasures and provide our solution in Section VII.
Section VIII concludes the paper.

II. RELATED WORK

A. Attacks in Multi-tenant FPGAs

Many researchers have looked at the possibility of carrying
out attacks in multi-tenant FPGAs. Gnad et al. were the first
to utilize the FPGA programmable fabric to create malicious
voltage drops [4] and demonstrate a denial-of-service attack.
Multi-tenant power side-channel attacks have been investigated
by Schellenberg et al. [11] and Zhao et al. [9]. A power analy-
sis attack on an Amazon EC2 F1 instance [1] was successfully
carried out by Glamočanin et al. [7]. Furthermore, Ramesh et
al. [10] and Giechaskiel et al. [8] demonstrated a crosstalk-
coupling side-channel attack between the neighboring long
wires of an FPGA. Mahmoud et al. used ring oscillators
(ROs) to bias the output of a colocated true random number
generator [6]. Krautter et al. configured the FPGA logic to
induce faults in a cotenant cryptographic circuit to be able
to carry out a differential fault analysis (DFA) attack and
extract the encryption key [5]. In this work, we too configure
the FPGA logic to induce faults in a cryptographic circuit
colocated on the same FPGA in an isolated region. However,
our work assumes the existence of a hardware Trojan in the
victim. Additionally, unlike DFA, we do not require fault
injection at a specific encryption round nor a replay attack;



our attack leads to the leakage of the secret directly to the
circuit output.

B. Don’t-Care Hardware Trojans

Several recent research works have leveraged don’t-care
conditions for hardware Trojans. Fern et al. used unspecified
functionality for Trojan insertion [12]. The observation was
that some designs are incompletely specified under certain
input conditions, which provides designers the flexibility to
decide the design behavior under external don’t-care condi-
tions. Such Trojans can be hard to detect due to the lack
of golden reference in the design specification to check
against the Trojan behavior. Nahiyan et al. added floating
states into incompletely specified finite state machines and
used fault attack to force the design into the Trojan state to
perform malicious activities [13]. Krieg et al. demonstrated
the possibility of creating a Trojan trigger using don’t-care
state which is logical 0 in behavioral simulation while logical
1 in hardware implementation [14]. This Trojan can survive
from design verification since the design with the Trojan is
equivalent to the specification before deployment on hardware.
Hu et al. used internal don’t-care conditions for malicious
design modifications [15]. Their idea was to use internal design
states that will never be satisfied (e.g., two signals cannot be
logical 1 at the same time) in normal operation as Trojan
trigger. Another recent work used the unspecified functionality
in an obfuscated design to implement hardware Trojans [16];
it leveraged the fact that the end user usually does not care
about the design behavior under incorrect obfuscation keys.
Existing don’t-care Trojan research usually relies on a strong
threat model, assuming physical or logical access to the Trojan
design in order to manipulate inputs, inject faults, and probe
the Trojan payload. This paper presents a new attack vector,
which eliminates such assumptions.

III. BACKGROUND

A. Satisfiability Don’t-Care Hardware Trojan

Satisfiability don’t-cares (SDCs) are particular internal de-
sign states in digital hardware that are never reached due to
correlations of variables. In other words, such internal design
states will never appear under any input sequence during
normal operation. For a better understanding, let us consider
the gate-level implementation of a 2-to-1 multiplexer (MUX)
shown in Fig. 1a, whose Boolean function is O = S ·A+S ·B.

Two MUX internal signals, n1 and n3, are correlated due
to the common select line S. As a result, they will never
be logical 1 simultaneously. n1 and n3 consist of an SDC
condition in that the internal design state (n1, n3) = (1,1)
will never be observed under normal operation.

The SDC condition shown in Fig. 1a considers signal pairs
connected to the same Boolean gate. Such local SDCs can be
easily identified through satisfiability analysis. A more gen-
eralized concept is global SDCs, which represent conflicting
design states of signal combinations spreading far apart in the
hardware design. As an example, when some primary input is
logical 0, some internal signal would never be logical 1 due
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Fig. 1: Example of an SDC condition and an SDC Trojan.
(a) An SDC condition in the gate-level implementation of
a 2-to-1 multiplexer is shown (signals n1 and n3 cannot be
logical 1 simultaneously). (b) An SDC Trojan that uses the
registered don’t-care signal pair to multiplex some function f
to the output.

to path correlation. Unlike external don’t-care conditions that
are caused by incomplete design specification and thus can be
fully eliminated, SDCs are widespread in hardware designs
even in completely specified functions.

Hu et al. introduced the idea of using an SDC signal pair to
create two discrete trigger signals [15]. In Fig. 1b, an example
SDC Trojan design is shown; as triggers, it uses the don’t-care
signals n1 and n3 from the MUX implementation. Such SDC
Trojan can be hard to detect because the trigger condition
can never be satisfied in normal operation: the designs with
and without the Trojan are functionally equivalent. In addition,
using two discrete trigger signals also protects the Trojan from
switching probability analysis because each trigger signal in
the Trojan design is able to switch state. Finally, adding flip-
flops for the Trojan trigger signals separates the combinational
block where the signals originate from that in which the Trojan
is implemented. This helps prevent the Trojan being optimized
away while not changing design functionality. However, the
attack model used by Hu et al. [15] requires physical access to
the Trojan implementation in order to overclock the design to
trigger the Trojan (by inducing timing failures in the two DFFs
and forcing them both to logical 1) and probe faulty outputs
to recover the key. In this work, we consider a more practical
attack scenario, which does not assume direct manipulation of
signals (e.g., design clock) in an isolated private FPGA region.

B. Remote Timing Fault Attacks

Researchers have shown that FPGA resources can be con-
figured to create internal power supply voltage fluctuations; for
example, large banks of fast ROs [4] or glitch-generators [17],
if well-controlled, can draw a considerable amount of current
and, consequently, cause voltage drops of large amplitude. If
excessive, the FPGA core voltage fluctuations created this
way can put the chip into reset. However, if the voltage
variations are carefully controlled, they can be exploited to
cause circuit timing faults: lowering the voltage results in an
increased FPGA logic delay, which can lead to a flip-flop
setup time violation, metastability, and possibly an incorrect
circuit output [18], [19]. These timing-fault attacks were
previously leveraged for biasing random number generators [6]
and faulting outputs to allow for DFA attacks [5].
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Fig. 2: Threat model overview: the victim and the attacker
are colocated on the same FPGA, but physically and logically
separated. The victim uses an IP core, which has been infected
by an SDC Trojan. Its output is sent over a public channel,
allowing the victim to monitor it.

IV. THREAT MODEL

Our threat model is illustrated in Fig. 2. Similarly to other
works exploiting hardware Trojans, we assume that the Trojan
is inserted into an IP used by the victim and that the attacker
has the means to trigger it. We target a shared FPGA scenario,
in which the victim and the attacker are colocated on the same
FPGA and yet physically and logically separated. They operate
independently in private partitions and can load arbitrary
designs in their own regions. The victim and the attacker are
powered by the same voltage source and share the power-
distribution network—a scenario common to both datacenter-
and SoC-FPGAs.

In our threat scenario, the victim is running a security-
sensitive service (e.g., a symmetric encryption using an AES
IP core and a secret key), whose implementation is com-
promised by an SDC Trojan [15] inserted during the design
phase. Even though in our experimental evaluation we assume
that the attacker can issue requests to an interface of the
victim to initiate encryption and obtain the ciphertexts—such
an interface could be accessible locally or remotely via the
network—the only true requirement is the ability to observe
the victim outputs. The latter would be possible for the outputs
sent over a public channel, which is often the case of encrypted
data. Finally, we work under the assumption that the victim
does not deploy any hardware or software redundancy to verify
the correctness of the ciphertexts.

V. SYSTEM DESIGN

We design and implement the attack on an Intel SoC
board [20]. Fig. 3 illustrates the system architecture. The
attacker is composed of two banks of ROs and a control circuit.
The victim contains a cryptographic module, which receives
the plaintext (PT) and sends the ciphertext (CT) to the hard
processing system (HPS). For the purpose of observing the
voltage variations caused by the attacker, we add to it a delay-
line voltage-drop sensor [21]. It is important to note that the
sensor is present and used during the initial observation phase
only; contrary to power side-channel attacks, we do not rely
on the sensor data to extract the secret key, nor do we use it
as an indicator of a successful attack after the initial analysis.
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Fig. 3: System block architecture. Hard processing system
(HPS) interacts with the victim and the attacker independently.

A. Attacker

Power-wasting circuits are commonly used to increase the
victim signal delays and inject timing faults [5], [6]. They can
be implemented using ring oscillators, glitch generators, long-
wire charging circuits, and even synchronous ROs [17], [22].
Our attacker uses two large equally-sized and independently-
controlled banks of ROs and three attack control modes [6]:

1) periodic: enable signals are periodic, in phase, having
≈75% duty ratio and the same frequency;

2) half : only one enable signal is active;
3) all: both enable signals are active.
Besides initiating the attack, the software running on the

hard processing system can select the next control mode
(MODE in Fig. 3). However, it is the hardware that generates
the RO enable signals and limits the duration of the attack.
This is to ensure that the attacker does not accidentally send
the board to reset, in case of excessively long RO activity.

B. Victim

In general, combining the Trojan with the timing fault
attack would target a victim with a secret which can be
leaked by the Trojan. This is the case for cryptographic cores
commonly used in cloud applications. They have two secrets:
the plaintext and the key. Given our threat model, the key
would be the desired information to leak; once the key is
known, the encryption is compromised.

For this work, we select an openly available 128-bit
pipelined AES core [23] and a masked S-box implementa-
tion [24]. Using Yosys [25], we look into the S-box of both
designs to find a pair of don’t-care signals that satisfy the
criteria of having only one impossible combination: 11 or
00. Once that pair is found, we embed the Trojan illustrated
in Fig. 1b [15] into the victim.

C. Data Collection

To observe the effects of the attack on the FPGA core
voltage, we equip the attacker with a delay-line voltage-drop
sensor [4], [6], [18]. The sensor is implemented as a 255-bit
ripple-carry adder and uses the carry-chain logic. All bits of
the first operand are tied to 0, while all bits of the second
operand are tied to 1. The carry-in is connected to a clock
(running at the same frequency as the attacker system clock,
but shifted in phase). When the carry-in is 0, all the bits of
the sum output are normally 1. Similarly, when the carry-in
is 1, the output bits are normally 0, and the carry-out is 1.



However, when the voltage drops significantly, the phase shift
between the carry-in and the clock at which the output sum
is sampled allows capturing the varying propagation depth of
the carry-in through the carry-chain and, consequently, sensing
the effect of the attack on the on-chip voltage and delay.

Given the difference in throughput between the software
and the hardware, we store all the on-chip data in the FIFO
buffers first and then offload them to the HPS for processing.
The FIFO operation is controlled from the software.

VI. EXPERIMENTAL EVALUATION

We perform the experiments on a Terasic DE1-SoC de-
velopment board (used in related research as well [5]), with
an Intel Cyclone V FPGA and an ARM dual-core Cortex-
A9 embedded processor [20]. Using the LogicLock feature in
Quartus Standard Edition 19.1, we divide the FPGA fabric
in two disjoint regions: one for the attacker and one for
the victim, respectively. The ARM processor runs Linux
operating system and the control software. In the remainder
of this section we describe our experiments on two distinct
victims: one unprotected AES core and one masked AES S-
box implementation.

A. Unprotected AES FPGA Core Experiments

Using an open-source pipelined AES-128 core [23] as the
first victim, we run several groups of experiments, starting
with the system validation and calibration. Then, we run the
attack and demonstrate that we are able to identify the secret
key using the recorded ciphertexts only. Finally, we vary the
attacker size and location, to observe their impact on the attack
success rate.

1) System Validation and Calibration: To validate the cryp-
tographic core with the SDC Trojan, we feed it with pseu-
dorandom plaintexts and verify that the recorded ciphertexts
are always correct, before launching the timing fault attack
to activate the Trojan. The AES clock frequency is set to
160 MHz, to satisfy the design critical path delay and the
HPS interface constraints.

To verify whether logic synthesis optimizations would result
in the Trojan being optimized away, we repeat the synthesis
using several optimization options under Quartus and three
Trojan variations:

• Trojan-1: without modifications (illustrated in Fig. 1b),
• Trojan-2: Trojan-1 with inverted polarity triggers, and
• Trojan-3: Trojan-2 with extra delay on the trigger path.

For inverted-polarity triggers, we swap the Trojan multiplexer
inputs, to guarantee unmodified circuit operation. The results
are listed in Table I. Interestingly, none of the optimizations
manages to detect and optimize away the Trojans. The reason
for three Trojan variations lies in the experimental observation
that inverting the don’t-care signal polarity has higher chances
of triggering the Trojan, possibly thanks to a small amount of
added delay. This delay is further increased in Trojan-3, which
is convenient during initial attack testing. Moreover, Trojan-3
achieves rather consistent trigger delays across synthesis runs.

TABLE I: Various Quartus optimization efforts. None resulted
in the don’t-care Trojan being optimized away.

Trojan-1 Trojan-2 Trojan-3
Command Option Remains? Remains? Remains?
Normal Flow Balanced 3 3 3

High Effort Performance 3 3 3

Aggressive Performance 3 3 3

Aggressive Area 3 3 3

High Effort Power 3 3 3

Fig. 4: Hamming distance (HD) between the key and the
ciphertext in two experiments. In the first experiment (in red),
no faults exist and the HD is approximately 30; in the second
(in blue), the key is leaked whenever the HD equals zero.

To choose the sequence of RO activation modes, we follow
the approach previously demonstrated successful in biasing a
true random number generator [6]: first periodic, then half, and
finally all mode. However, given the difference in the target
FPGA device, we limit the attack duration to a considerably
shorter time period and use a smaller number of ROs. Our ex-
periments show that an attacker of 10k–20k ROs—occupying
16%–32% of available adaptive logic modules (ALMs)—can
induce the faults in the victim without sending the board to
reset. The exact number of ROs to use depends on the target
delay increase required to activate the Trojan. This can vary
under different relative location configurations of the victim
and the attacker. A larger number of ROs can potentially
send the board into reset, while a smaller number may fail to
increase the signal delays to the point required to cause faults.
Finally, we found that an attack duration between 2,048 and
4,096 AES clock cycles (equivalent to 12.8–25.6 µs) is well
suited for the target device.

2) Attack Experiments: We combine the victim and the
attacker on the FPGA and start testing the attack. In all
experiments, we use Trojan-2 and run the attack 100×, each
time performing 4,096 encryptions and always pausing for a
couple of seconds between two consecutive runs.

When the attack is successful, the key usually leaks more
than once. This is illustrated in Fig. 4, by comparing the
Hamming distance (HD) between the ciphertext and the known
key in two experiments. In both, two fixed plaintexts alternate
at the input; the plaintexts are chosen so that, in the absence



(a) Least significant bytes

(b) Most significant bytes

Fig. 5: Probability distribution of a pair of ciphertext bytes,
for an attacker of 2k ROs on the left side of the FPGA. No
secret key leakage can be observed.

of faults, the expected ciphertexts are different and yet the HD
is ≈30. In the first experiment (in red), an attacker of 2k ROs
is placed on the left half of the FPGA; given its small size, no
faults are generated and the HD is as expected: oscillating
around 30. However, in the second experiment (in blue),
an attacker of 19k ROs is managing to cause faults, which
culminate with the key leakage in 0.222% of the encryptions,
indicated by the Hamming distance falling to zero.

For a pseudorandom sequence of plaintexts at the input,
no ciphertext should repeat often. This may allow for the
recovery of the key by observing the ciphertexts that repeat
at the output [15]. Yet, a relatively large number of samples
is required, to rule out all the faulty ciphertexts. Hence,
we analyze the data from 100 attack runs. The probability
distribution of the consecutive pairs of ciphertext bytes (where
byte 15 is the most significant byte), for the weak attacker of
2k ROs is plotted in Fig. 5. Most of the values appear with the
probability close to uniform (15 × 10−6, equivalent to 2−16),
with some reaching 60×10−6, approximately. In comparison,
Fig. 6 shows the probability distribution of the same pairs of
bytes, for the attacker of 19k ROs. In this case, the attack
is successful: the values corresponding to the highest eight
peaks (reaching above 120 × 10−6, an order of magnitude
higher value than that of the uniform probability distribution),
correspond precisely to the secret key. It is worth noting that

(a) Least significant bytes

(b) Most significant bytes

Fig. 6: Probability distribution of a pair of ciphertext bytes,
for an attacker of 19k ROs on the left side of the FPGA.
The highest peaks correspond to the secret key, confirming
the success of the attack.

it was not possible to visually identify the secret key from
the probability distribution of a single ciphertext byte because
the Trojan is activated less frequently under the X-attack than
under overclocking [15]. Unlike the variation in the clock
frequency, the voltage fluctuations can cause the FPGA to reset
and, therefore, need to be carefully controlled. This results in
the transient effects of the attack leading to fewer activations
of the Trojan.

3) Attacker Size and Placement Analysis: As a step towards
better understanding of the mechanism of the attack and the
protection against it, we vary the number of ROs for two
design floorplans shown in Fig. 7. In the first, the attacker is
constrained to the region left of the victim, while in the second,
it is constrained to the region above the victim. This time too,
Trojan-2 is used. We start the experiments with the smallest
possible attacker, to gradually increase its size to 22k ROs
(34.3% of the total number of the ALMs). The don’t-care
signal delays are 3.274 ns and 4.376 ns for the placement in
Fig 7a, and 2.639 ns and 4.17 ns for the placement in Fig. 7b.

Fig. 8 shows the Hamming distance between the obtained
and the expected victim output. A sequence of only two
alternating plaintexts is supplied to the AES; they are chosen
so that the don’t-care signals change value every clock cycle.
The attacker size at which the HD becomes higher then zero
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marks the beginning of appearance of timing faults. To find
the attacker size and position that result in the leakage of the
secret key, we repeat the attack experiments and the probability
distribution analyses described in Section VI-A2.

Consistently with the related work on don’t-care SDC
Trojans [15], we observe that faults start occurring before
the key leakage. This effect is similar to increasing the clock
frequency enough for the high-criticality paths to start failing
but not enough for the paths of the don’t-care signals to fail.
With further increase in the number of ROs, the Hamming dis-
tance grows. This result, again, corresponds to the effect that
even higher clock frequency would cause. And, at 18k ROs,
while some of the signal paths are still failing, the Trojan is
finally triggered. Augmenting the number of ROs beyond 20k
sends the board to reset before the end of the 100 runs of
the attack. Finally, we can observe that the main factor of
success is the attacker size, i.e., the number of ROs; while the
two placements produce slightly different Hamming distance
values, the key leakage and the reset occur for equal attacker
size.

B. Masked AES S-box Experiments

For an SDC Trojan to be inserted by a malicious user, all
that is required is to find a suitable pair of don’t-care signals
that satisfy the criteria of having only one impossible combi-
nation of values. Once this is achieved, the underlying circuit
becomes vulnerable to X-attack. Commonly, cryptographic cir-
cuits are protected against side-channel attacks [26], but those

countermeasures are, in fact, ineffective against fault attacks.
To highlight the importance of having a protection against X-
attack, we here demonstrate a successful key retrieval from a
masked cryptographic core.

As target, we choose an openly-available masked AES S-
box [24], [27]. The critical path of the design being 9.58 ns,
we set the clock frequency to 100 MHz. Using Yosys [25], we
identify the don’t-care signal pairs and choose one consisting
of a bit of the factor with bit sum and a bit inside the Galois
field multiplier. However, the delays of these signals are far
from the target clock period (3.8 ns and 3.5 ns, respectively).
To increase their propagation time and yet satisfy the trigger
criteria, we design the third Trojan variant (Trojan-3 in Sec-
tion VI-A1) by applying the following signal transformations:

t1 = s1 · s2 + x · y,
t2 = s1 · s2 + x · y.

(1)

Here, s1 and s2 correspond to the original don’t-care signal
pair, y is an arbitrarily chosen S-box signal, while x is a
logical function of several S-box signals. Expressions in (1)
guarantee that the resulting pair of signals (t1, t2) satisfies
the Trojan trigger constraints: if y = 1, t1 = x and t2 = x̄;
otherwise, t1 = t2 = 0. Applying these transformations results
in considerably slower trigger signals: approximately 8.2 ns.

We test the attack using the floorplan in Fig. 7a, while
supplying the victim with pseudorandom plaintexts and masks.
As expected, our attack proves to be successful. Experiments
with varying attacker size reveal that 17k ROs (27.2% of
available ALMs) are sufficient to successfully retrieve the
secret key from the masked S-box.

VII. COUNTERMEASURES

A. Background and Related Work

Countermeasures against X-attack fall into two categories:
Trojan detection and fault attack prevention. Unfortunately,
detecting don’t-care Trojans can be difficult [15], as Table I
suggests. However, detecting and preventing the timing-fault
attack should be feasible. For example, by implementing mul-
tiple instances of security critical functions and by comparing
their outputs, one could detect a fault whenever these redun-
dant results are inconsistent. Lowering the clock frequency
and increasing the circuit timing margin is another, albeit not
very reliable, alternative. Yet, both of these approaches incur
considerable area and performance overheads.

A less resource-consuming alternative could consist in
adding a delay (i.e., voltage) sensor to the victim, allowing
it to monitor local delay and voltage variations, with the goal
of using them to tell that a timing fault might have happened.
However, the important issues here are that the victim may be
unable to reliably calibrate the sensor or to accurately evaluate
its steady state value in a shared-FPGA threat model, where
tenants not only may have very variable power profiles but
may join or leave the FPGA at any point in time. So obtained
inaccurate sensor baseline would result in a faulty protection.
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Other previously proposed countermeasures include glitch
detectors [28], aging sensors [29], [30], shadow registers [31],
and razor latches [32]. Assuming that all one knows about
the victim is its critical path delay, we design a lightweight
countermeasure illustrated in Fig. 9 and place it on the side
of the victim. Our design is different from previous in being
independent from the protected circuit and not requiring an
additional delayed clock in the system. Furthermore, once the
attack is detected, we do not attempt to correct the ciphertexts.
Instead, we disconnect the IP core from the system output and
send out an alarm signal, effectively preventing the leaked
secret from being observed.

B. Countermeasure Design and Test

The main component in the protection circuit is a delay
chain (a sequence of buffers) calibrated to match the longest
path delay of the victim. During normal operation, the two
registers in Fig. 9 generate opposite signals and the Valid
signal is set. Consequently, the victim output is routed to the
OUT port. However, under a strong attack, the signal passing
through the delay chain is the first to suffer from a timing
fault; as a result, the Valid signal is cleared and the OUT port
receives zeros (or any other dummy value one may choose).
The circuit in Fig. 9 is more likely to fault during the attack
than the data-dependent trigger paths of the hidden Trojan,
in particular when they do not lie on the design critical path.
With respect to the pipelined AES [23], the protection circuitry
occupies 76 ALMs, i.e., only 2.84% of the number of ALMs
used by the AES core. Moreover, the protection being placed
on the side of the victim, its effect on the maximum design
clock frequency is minimized; in our experiments, the design
clock frequency remains unchanged.

After confirming that in the absence of the attack and when
the attack is weak (configuration of Fig. 5) the protected victim
is working as expected, we run the attack setup of Fig. 6.
To simulate the worst-case scenario with the SDC signals
on the critical path of the AES, we insert a Trojan-3 into
the victim. Then, we test several protection circuits with the
corresponding delay chains in the range from 0.3 ns below to
1.5 ns above the AES critical path delay. In all the experiments,
no key leakage is observed, although the faulty ciphertexts

(a) Least significant bytes

(b) Most significant bytes

Fig. 10: Probability distribution of a pair of OUT bytes, for the
attack setting used in Fig. 6 and the protection logic in place.
The delay chain consists of 15 buffers, with an estimated total
delay of 0.137 ns above the critical path of the AES core,
which is still within the critical path of the entire victim design.
Being several orders of magnitude higher than all other values,
the probability of zero at the output is not shown. No secret
key leakage can be observed, confirming the effectiveness of
the proposed protection circuit.

occasionally manage to escape to the output. As expected, the
longer the delay chain, the earlier it is activated and the fewer
faulty ciphertexts propagate out.

The resulting probability distribution of the pairs of output
bytes is shown in Fig. 10. Compared to Fig. 6, the probability
of observing the secret at the victim output is now considerably
lower. In fact, it is no longer possible to extract the key even
by looking for repeated ciphertexts, because the key does not
appear at the output. Therefore, our countermeasure is both
resource-efficient as well as successful in protecting against
the X-attack.

VIII. CONCLUSION AND FUTURE WORK

In this work, we presented X-attack, a new attack scenario
on shared FPGAs. Our attack induces fluctuations in the on-
chip signal delays to remotely activate a dormant satisfiability
don’t-care hardware Trojan deployed in an isolated private
design region. This hard-to-detect Trojan can be inserted into



many designs, due to the common existence of satisfiabil-
ity don’t-cares, and is able to survive from logic synthesis
optimizations. We experimentally proved that our attack is
effective against both unprotected and well-protected crypto-
graphic circuits. We also investigated attacker configurations
that successfully leak the circuit’s secret. Finally, we pro-
posed and implemented a lightweight countermeasure, which
invalidates circuit outputs produced under the attack. Future
work will focus on porting our attack to a cloud environment,
using different implementations of power-wasting circuits, and
further developing effective defenses that will allow for a more
secure FPGA multitenancy.
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