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Abstract 9 

Over the last decades, yeast has become a key model organism for the study of lipid 10 
biochemistry. Because the regulation of lipids has been closely linked to various 11 
physiopathologies, the study of these biomolecules could lead to new diagnostics and 12 
treatments. Before the field can reach this point, however, sufficient tools for 13 
integrating and analyzing the ever-growing availability of lipidomics data will need to 14 
be developed. To this end, genome-scale models (GEMs) of metabolic networks are 15 
useful tools, though their large size and complexity introduces too much uncertainty in 16 
the accuracy of predicted outcomes. Ideally, therefore, a model for studying lipids 17 
would contain only the pathways required for the proper analysis of these 18 
biomolecules, but would not be an ad hoc reduction. We hereby present a metabolic 19 
model that focuses on lipid metabolism constructed through the integration of detailed 20 
lipid pathways into an already existing GEM of Saccharomyces cerevisiae. Our model 21 
was then systematically reduced around the subsystems defined by these pathways 22 
to provide a more manageable model size for complex studies. We show that this 23 
model is as consistent and inclusive as other yeast GEMs regarding the focus and 24 
detail on the lipid metabolism, and can be used as a scaffold for integrating lipidomics 25 
data to improve predictions in studies of lipid-related biological functions. 26 

 27 

Introduction 28 

Even the slightest changes in cellular membrane composition, which all serve a 29 
specific biological purpose, can affect many cellular functions from signaling cascades 30 
to the modulation of membrane fluidity (Guan, et al. 2009). Because they are the main 31 
structural component of cellular membranes, lipid imbalances have been shown to be 32 
involved in various physiopathologies concerning membrane lipid homeostasis 33 
(Holthuis and Menon 2014). Yeast is a very prominent model organism for the study 34 
of numerous parts of cell metabolism including, but not limited to, lipid-related cellular 35 
processes (de Kroon 2017, Klose, et al. 2012) because it is easy and inexpensive to 36 
cultivate and modify its genome for experiments, and it has a well-documented 37 
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genome sequence (Santos and Riezman 2012). Consequently, an increasing 38 
spectrum of yeast mutants has been made available, providing great opportunities for 39 
studies on the effects of lipid metabolism perturbations at molecular and cellular levels.  40 
One additional feature of yeast is its high homology to the human genome. Most 41 
importantly, the majority of regulatory mechanisms are preserved between the species 42 
(Petranovic, et al. 2010). This means that yeast could potentially be used as a platform 43 
to study lipid dysregulation in humans, making the study of potential causalities and 44 
treatments critically easier. The similarities and differences of the two organisms, 45 
along with the potentials for comparative analysis have been reviewed in detail by 46 
(Nielsen 2009). Unfortunately, the intricacies of how lipids tie to many biological 47 
functions, including those leading to disease, remain unknown. This means that 48 
comprehensive lipid identification and characterization and detailed studies of 49 
lipidomics are needed for a fundamental understanding of cellular metabolism (da 50 
Silveira Dos Santos, et al. 2014, Han 2016, Ivanova, et al. 2009, Kontush and 51 
Chapman 2010, Wenk 2005), and as such, recent interdisciplinary approaches are 52 
beginning to reveal novel lipid functions and interactions (Harayama and Riezman 53 
2018). Eventually, lipidome profiling could be used as a predictive tool to further 54 
enhance our knowledge of the underlying molecular mechanisms typifying lipid 55 
dysregulation. 56 

While traditionally established work on cellular lipid metabolism has been limited to 57 
the analysis of individual classes of lipids or specific lipid species, progress in mass 58 
spectrometry (MS)-based methodologies has allowed the analysis of the entirety of 59 
the lipids in a cell. Computational metabolic models of various pathways have 60 
emerged in an effort to evaluate the vast omics data available, and many different 61 
approaches for their construction and curation with incorporated omics data have been 62 
developed (Joyce and Palsson 2006). This mostly involves genome-scale models 63 
(GEMs) of metabolism, which are reconstructions of an organism’s metabolism from 64 
genomic, biochemical, and physiological data, and in principle, contain the majority of 65 
known information for the modeled organism. With the increasing availability of omics 66 
data, however, comes increasing mathematical complexity, and it can be very 67 
complicated to handle the incorporation of experimental data in such large-scale 68 
models. The potential of dynamic modeling through the generation of appropriate sets 69 
of ordinary differential equations that describe the network topology is also hindered 70 
by the model’s size. Mathematically, a larger model also leads to an increased solution 71 
space, which ultimately contributes to increased uncertainty in the model’s predictions. 72 
Therefore, it is essential that a network is manageable with respect to size without a 73 
loss of information, so the redGEM framework was proposed as a way to 74 
systematically reduce GEMs around a biological context of interest with minimal loss 75 
of information and connectivity (Ataman, et al. 2017). On the other hand, due to the 76 
rapid discovery of novel species through innovative technologies, a gap is emerging 77 
between the existing pathway representations of lipids and lipid structure databases. 78 
An approach aiming to bridge this gap has been proposed, termed Network Integrated 79 
Computational Explorer for Lipidomics (NICELips) (Hadadi, et al. 2014), and this 80 
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framework can postulate novel lipid biosynthesis pathways using generalized 81 
enzymatic reaction rules. Specific to yeast metabolism, the first GEM of S. cerevisiae 82 
was published in 2003 (Forster, et al. 2003), and over the years, multiple yeast GEMs 83 
have been updated and published by several research groups (Lopes and Rocha 84 
2017). Due to inconsistencies in annotation, a community consensus reconstruction 85 
has been developed, with its latest versions being Yeast 7 and Yeast 8 (Aung, et al. 86 
2013, Lu, et al. 2019). Very recently, a novel method for the representation of lipid 87 
requirements in GEMs was proposed (Sanchez, et al. 2019). 88 

We thus sought to develop a metabolic model that could act as detailed repository of 89 
lipid metabolism for S. cerevisiae. Starting from the network provided by (Savoglidis, 90 
et al. 2016), we gathered all relevant reaction and pathway information available in the 91 
literature and databases. To ensure consistency with the well annotated GEMs, we 92 
incorporated these data into a GEM of the yeast S. cerevisiae, expanding its 93 
preexisting lipid description. We then performed a systematic reduction of the 94 
integrated model around the lipid subsystems to preserve the focus of the model on 95 
the lipid metabolic pathways and to simultaneously retain the connections to the rest 96 
of the cell metabolism. To ensure consistency of the cell biomass composition, we 97 
computed lumped reactions to establish the production of all biomass building blocks 98 
(BBBs). These steps made sure that our final model, termed “reduced lipids-centric 99 
model” (redLips), is inclusive yet concise and as consistent as the other available yeast 100 
GEMs. We have created a detailed thermodynamic database for all the metabolites of 101 
the network and performed a complete thermodynamic curation of redLips, a 102 
procedure that decreases the mathematical uncertainty and imposes physiological 103 
constraints. We also demonstrate how it can be used as a scaffold for lipidomic 104 
measurement implementation. In the future, redLips can be modified to accommodate 105 
simulations and predictions for human (or other) metabolism, thus creating a platform 106 
to study lipid regulation for applications across organisms. 107 

  108 
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Materials & Methods 109 

 110 

Starting reaction network 111 

We used the model of (Savoglidis, et al. 2016) as a base to gather and reassemble 112 
the available knowledge on lipid metabolism to date. The LIPID MAPS classification 113 
system distinguishes eight major lipid categories: fatty acyls, glycerolipids, 114 
glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and 115 
polyketides (Fahy, et al. 2005, Fahy, et al. 2009), and the above cited model focused 116 
on the sphingolipid biosynthesis pathway and included some of the 117 
glycerophospholipid biosynthetic route. The model was curated using thermodynamic 118 
and lipidomics data, and an extensive study on the control asserted by the highly 119 
multifunctional enzymes of the system was conducted.  120 

The resulting gathered lipid reactions network (GLRN) was constructed by combining 121 
information found in the literature, GEMs, and databases. Primary sources of data 122 
include the online repositories Saccharomyces Genome Database (SGD, 123 
https://www.yeastgenome.org, (Cherry, et al. 1998)), KEGG 124 
(https://www.genome.jp/kegg/), and Lipid Maps (https://www.lipidmaps.org) as well as 125 
relevant journal publications and books (Dickinson and Schweizer 2004). 126 

 127 

Consistent Reduction of Models 128 

An issue that arises when modeling only a part of cell metabolism is the connection to 129 
the rest of the network. For example, if the lipid network was to be studied without 130 
including the TCA cycle, ATP would need to be obtained through an artificial transport 131 
reaction from the extra-model domain to the intra-model domain, though there is no 132 
such compartmental transport in reality. This can lead to uncertainty on the 133 
concentration levels as well as to a major question of the relevant flux constraints. To 134 
create a consistent and reliable model, we would need to constrain the flux values of 135 
all these transport reactions (which would include mostly cofactors) to realistic values. 136 

To overcome this issue, we decided to effectively couple our model with a GEM that 137 
will account for any non-realistic assumptions that would have to be made. We did this 138 
by first incorporating our detailed lipid network into a GEM of choice, thus expanding 139 
the lipid metabolism pathways already present, then we utilized the redGEM 140 
framework to obtain a reduced model using our original subsystems as the starting 141 
network. 142 

redGEM is a framework developed by (Ataman, et al. 2017) to systematically and 143 
consistently reduce genome-scale models. It focuses on chosen parts (subsystems) 144 
of the metabolic networks that are then connected to each other up to a user-defined 145 
degree of connection. This measure describes the distance in terms of reaction steps 146 
between a subsystem pair and can be either imposed by the user for all subsystem 147 
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pairs or can be equal to the intrinsic minimum distance between each pair. 148 
Subsequently, the resulting core network is connected to the biomass building blocks 149 
(BBBs) using lumpGEM (Ataman and Hatzimanikatis 2017). 150 

In redGEM, a graph search algorithm is employed to identify all possible connections 151 
between metabolites belonging either to the same subsystem or different ones 152 
(excluding cofactors). The first step is the intra-expansion of the starting network, 153 
connecting metabolites within each subsystem of interest. Then these subsystems are 154 
step-wise connected to each other, first adding the one-step connections, then the 155 
two-step connections (which will involve an intermediate), etc., thus creating the core 156 
network. The degree of connection is symbolized as D#, where # is the number 157 
corresponding to the desired connection length. 158 

After the network expansion, lumpGEM is used to identify sets of biosynthetic 159 
subnetworks that will synthesize each BBB that cannot already be produced by the 160 
core network. In other words, lumpGEM’s objective is the minimization of the number 161 
of reactions that need to be added to the core to allow the production of each BBB. 162 
These sets are then collapsed into elementally balanced lumped reactions. lumpGEM 163 
first identifies the minimal subnetwork of reactions needed to connect the expanded 164 
network to each BBB. Subsequently, all alternative subnetworks of this minimal size 165 
can also be computed and are then translated into a single lumped reaction that is 166 
tested for feasibility in terms of stoichiometry and thermodynamics. Various 167 
consistency checks are performed to ensure the minimal loss of information during the 168 
reduction process. These checks include flux variability and essentiality studies in both 169 
stoichiometric and thermodynamic levels of curation between the GEM and the 170 
reduced model. 171 

 172 

Genome Scale Model (before integration) 173 

We integrated the GLRN into the well-known and well-studied iMM904 GEM (Mo, et 174 
al. 2009), which is annotated, ensuring that it was straightforward to match each 175 
reaction and its metabolites between the two networks. iMM904 also includes a large 176 
number of cellular compartments compared to most yeast GEMs. The interested 177 
reader may refer to (Lopes and Rocha 2017), (Sanchez and Nielsen 2015) and 178 
(Osterlund, et al. 2012) for a more detailed review of the development and evolution 179 
of various S. cerevisiae GEMs. 180 

 181 

Gathered Lipid Reactions Network (before integration) 182 

The GLRN encompasses more than 500 enzymatic reactions and 300 metabolites. 183 
We considered 7 cellular compartments where all the reactions take place, which are 184 
the cytosol, mitochondria, endoplasmic reticulum (ER), peroxisomes, Golgi apparatus, 185 
vacuole, and nucleus (as well as extracellular space). The model can be organized 186 
into 15 subsystems: glycolysis, pyruvate metabolism, fatty acid biosynthesis, fatty acid 187 
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mitochondrial biosynthesis, fatty acid elongation, fatty acid degradation, phospholipid 188 
biosynthesis, sphingolipid biosynthesis, sterol biosynthesis and esterification, sterol 189 
metabolism, mevalonate pathway, dolichol biosynthesis, cardiolipin biosynthesis, 190 
carnitine shuttle, and triacylglyceride decomposition. We did not consider any 191 
membrane compartments or lipid bodies in our study since our thermodynamic 192 
calculations do not hold for non-aqueous solutions, as will be explained shortly, and 193 
we instead opted for consistency over extensive detail. 194 

The localization assignment for each reaction was made according to the Yeast7 and 195 
Yeast8 consensus GEMs (Aung, et al. 2013, Lu, et al. 2019). For the reactions that 196 
are not included in this model, the N-terminal amino acid sequence of the associated 197 
gene was used to predict localization (Emanuelsson, et al. 2007). 198 

 199 

Genome Scale Model (after integration) 200 

After we integrated the GLRN into the GEM, the integrated model had 2181 reactions 201 
and 1551 metabolites. The lipid-related reaction subsystems of iMM904 that were 202 
mostly expanded were the fatty acid biosynthesis and degradation, as well as the 203 
sterol biosynthesis and esterification, all of which existed mostly as lumped reactions 204 
or were missing parts of the pathways. The phospholipid and sphingolipid biosynthetic 205 
pathways originally included mostly mass-imbalanced and pooled reactions and were 206 
also greatly enhanced, with parts like phospholipid remodeling being added. Similarly, 207 
the lipid species that were added to the model mostly included fatty acids of different 208 
carbon chain lengths, complex sphingolipids, monolyso-glycerophospholipids, and 209 
fatty acid biosynthesis and degradation as well as sterol intermediates, over all of the 210 
cellular compartments. 211 

Subsequently, we curated this model on both stoichiometric and thermodynamic 212 
levels. First, we removed all the reactions that were lumped reactions that we explicitly 213 
included in the GLRN, that were mis-assigned to other compartments, or that were in 214 
any other way rendered redundant by the integration. The curated integrated model 215 
includes 1531 reactions and 1078 metabolites. 216 

 217 

Lipidomics – biosynthetic fluxes 218 

Lipids are an essential component of the cell’s various membranes and are critical for 219 
cell survival. Thus, being essential to biomass formation, they should be present in the 220 
modeled assumption of the biomass composition. However, few GEMs even consider 221 
these lipids as part of the growth requirements, let alone encompass the lipid network 222 
in detail. We have identified 37 metabolites that should be considered, which are 4 223 
phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine 224 
and phosphatidylinositol), 4 lyso-phospholipids (lyso-phosphatidylethanolamine, lyso-225 
phosphatidylcholine, lyso-phosphatidylserine and lyso-phosphatidylinositol), 20 226 
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complex sphingolipids, ergosterol, 4 sterol esters (ergosterol, episterol, lanosterol and 227 
zymosterol esters), dolichol, as well as long and very long chain fatty acids.  228 

We did not wish to alter the biomass reaction already defined in iMM904, so we 229 
defined 35 additional biosynthetic reactions. These reactions are all single (or double) 230 
species exchange reactions, all of which are essential to cell growth. This artificial 231 
representation corresponds to elementary fluxes of the aforementioned lipid species 232 
towards biomass formation. These fluxes can be constrained based on experimental 233 
concentration measurements (when available) as: 234 

𝜇𝜇(𝑌𝑌𝚤𝚤� − 𝑠𝑠𝑠𝑠) ≤ 𝑣𝑣𝑖𝑖 ≤ 𝜇𝜇(𝑌𝑌𝚤𝚤� + 𝑠𝑠𝑠𝑠), 235 

where 𝑣𝑣𝑖𝑖 are the biosynthetic reaction fluxes, 𝑌𝑌𝚤𝚤� the mean of the lipidomic content 236 
measurements, 𝑠𝑠𝑠𝑠 the experimental measurements’ standard deviation of 𝑌𝑌𝚤𝚤�, and 𝜇𝜇 237 
the specific growth rate of the cell as calculated from the flux through the biomass 238 
objective function. 239 

It is important to note that when a species is already considered in the biomass 240 
composition of the GEM, the experimental constraint is altered accordingly to consider 241 
the corresponding amount required for each contribution. 242 

 243 

Thermodynamics 244 

Next, we performed a complete thermodynamic curation of the integrated model using 245 
TFA (Salvy, et al. 2019) to further reduce the solution space of the problem and help 246 
identify reaction directionalities. For a reaction to be feasible in the assumed 247 
directionality, the net change in Gibbs free energy of a reaction (Δ𝑟𝑟𝐺𝐺′𝑜𝑜) must be 248 
negative in this direction.  249 

Lipids are very complex molecules, and thermodynamic information about them, such 250 
as the Gibbs free energies of formation and dissolution constants, is scarce. Where 251 
available, experimental observations indicating a pathway direction were used, which 252 
in turn provided insight for the whole reaction network. Otherwise, group contribution 253 
methods were used, which predict properties of complex molecules by using group or 254 
atom properties (Mavrovouniotis 1990, Mavrovouniotis 1991). Thus, very complicated 255 
molecules can be decomposed into a number of simple groups, and their individual 256 
contributions to the total properties can be estimated.  257 

Since thermodynamic properties depend on the pH of the environment, we needed to 258 
assign a pH value to each considered compartment (Orij, et al. 2009, Paroutis, et al. 259 
2004, Preston, et al. 1989). For cross-membrane transport reactions, we also needed 260 
to take the membrane potential difference, if any (Cohen and Venkatachalam 2014), 261 
into account. Finally, all of the calculated changes in Gibbs free energy needed to be 262 
adjusted with the associated compartmental ionic strength (Ataman 2016). All of these 263 
values can be found in Table 1. 264 

 265 
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Table 1. Values for pH and ionic strength (in M) for each model compartment, and cross-membrane 266 
potentials (in mV) for each set of these compartments (where applicable) – opposite arrow direction 267 
will correspond to the same value with opposite sign. 268 

# Compartment pH Ionic Strength (M) Cross-membrane 
potential (mV) 

I Cytosol 7 0.25 n/a 
II Endoplasmic Reticulum 7.2 0 n/a 
III Golgi Apparatus 6.35 0 n/a 
IV Mitochondria 7.5 0.25 IV → I: 180 
V Nucleus 7 0 V → I: 15 
VI Peroxisome 8.2 0 n/a 
VII Vacuole 6.17 0 n/a 
VIII Extracellular  5 0 VIII → I: -60 

 269 

To estimate the properties of a lipid containing a fatty acyl carbon chain, we needed 270 
to assume a chain length for each of the attached R groups. We chose C16:0 (where 271 
the first number denotes the carbon chain length and second denotes the number of 272 
unsaturations on this chain) for all species, since this chain length represents the vast 273 
majority of lipids in eukaryotes. Regardless, this assumption does not carry much 274 
weight in our model, since the group contribution method used to estimate the Gibbs 275 
free energy of a reaction considers only the groups that undergo a molecular change. 276 
Consequently, if the R group is not the reactive part of the molecule participating in 277 
the reaction, its length will not affect the calculated Δ𝑟𝑟𝐺𝐺′𝑜𝑜 value. One more assumption 278 
that needed to be made was that no reactions occurred inside membranes. It is known 279 
that this is not the case for numerous lipid biotransformations, but since all 280 
thermodynamic properties have been measured with the assumption of an aqueous 281 
solution and are computed accordingly, it was a necessary assumption. 282 

With these in mind, we curated a thermodynamic database containing all the 283 
thermodynamic properties of the model’s metabolites, such as pKa, standard Gibbs 284 
free energy of formation, formula, charge, etc. These properties were calculated 285 
through Chemaxon (https://www.chemaxon.com). This database covers 90.4% of the 286 
integrated network’s metabolites, which allowed us to calculate 87.4% of the Δ𝑟𝑟𝐺𝐺′𝑜𝑜 of 287 
the network reactions. 288 

Assumptions made about the thermodynamic constraints, such as temperature and 289 
pH, or even uncertainty in the calculation and the standard deviation of measurements, 290 
can render networks computationally infeasible. Additionally, especially concerning 291 
lipid metabolism, channeling phenomena can lead to apparently infeasible reactions 292 
in a certain directionality. Regardless, since we were confident in most of the reaction 293 
directionalities in our network, we could adjust some thermodynamic constraints to 294 
attain feasible solutions in what we consider physiological conditions. More 295 
specifically, in order to retain consistency with yeast physiology, we relaxed 62 296 
thermodynamic feasibility constraints in terms of the Δ𝑟𝑟𝐺𝐺′𝑜𝑜. These constraints 297 
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correspond in majority to lipid species transport reactions across intracellular 298 
compartments. This is actually a case for which our computations may not hold, 299 
though, since lipid species do not cross membranes in the same way as most others. 300 
The complete list of the Δ𝑟𝑟𝐺𝐺′𝑜𝑜 relaxations can be found in Supplementary Table S3. 301 

 302 

FA chain lengths 303 

Lipid species consist of R groups of acyl chains exchanged between themselves or 304 
provided by free fatty acids. These chains vary in size and usually contain an even 305 
number of carbon atoms from 4 to 28 as well as often one unsaturation. As mentioned 306 
previously, the most abundant fatty acids in yeast have a 16-carbon chain, and the 307 
second most abundant have an 18-carbon chain, which together comprise more than 308 
70% of the total fatty acid population (Daum, et al. 1999, Schneiter, et al. 1999). In this 309 
model, we consider acyl chains only of even chain lengths varying from C8 to C26. 310 
Because any chain length or combination thereof could react to form a lipid species, 311 
we treated the fatty acids (in both inactive and coenzyme A [CoA]-activated form) as 312 
metabolite pools, which comprised all of the fatty acyl providers. We also defined a 313 
metabolite pool for polyprenol diphosphates, which include species possessing 14 to 314 
22 prenyl units. 315 

 316 

Lipidomics – concentrations 317 

As mentioned above, experimental measurements can be used to constrain fluxes 318 
and effectively couple them to biomass formation. The metabolic concentrations of 319 
species can also be constrained through lipidomics as: 320 

𝑙𝑙𝑙𝑙(𝑋𝑋𝚤𝚤� − 𝑠𝑠𝑠𝑠) ≤ 𝐿𝐿𝐿𝐿𝑖𝑖 ≤ 𝑙𝑙𝑙𝑙(𝑋𝑋𝚤𝚤� + 𝑠𝑠𝑠𝑠), 321 

where 𝑋𝑋𝚤𝚤�  is the mean of the concentration measurements, 𝑠𝑠𝑠𝑠 the standard deviation 322 
of the experimental measurements of 𝑋𝑋𝚤𝚤� , and 𝐿𝐿𝐿𝐿𝑖𝑖 are the natural logarithms of the 323 
concentrations for each compound. 324 

 325 

Media 326 

To ensure that the maximum growth rate predicted by the model reflects a typical 327 
growth rate for yeast in aerobic conditions (about 0.32-0.48 h-1), we constrained the 328 
maximum uptake of glucose (which we considered to be the sole carbon source) to 4 329 
mmol⋅gDW-1⋅h-1 (Orij, et al. 2012). The other uptakes allowed were the following 330 
inorganics: hydrogen, water, ammonium, oxygen (limited to 20 mmol⋅gDW-1⋅h-1), 331 
phosphate, and sulfate. We also had the option to allow a basal uptake of exogenous 332 
ethanolamine (we chose a value of up to 0.02 mmol⋅gDW-1⋅h-1) to activate the reaction 333 
catalyzed by ethanolamine kinase (EKI1), the first step of phosphatidylethanolamine 334 
(PE) synthesis via the Kennedy pathway.  335 
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Results & Discussion 336 

 337 

redGEM output model 338 

To form our lipid-focused reduced metabolic model, we first applied the redGEM and 339 
lumpGEM algorithms to the previously defined subsystems of interest, GLRN, and the 340 
glycolysis pathway. We also included the electron transport chain (ETC) reactions to 341 
the starting subsystems to ensure consistent energy associations and that the growth 342 
rates were as equivalent to the GEM as possible. For this reduction, we set the degree 343 
of connection to 3, which means that pairwise subsystem connections of up to 3 steps 344 
each will be added during the subsequent network expansions. The resulting model 345 
encompassed 1130 reactions, of which 639 were enzymatic, 419 were transport or 346 
boundary, 35 were biosynthetic (as described in the Materials & Methods section), and 347 
37 were lumped reactions. Additionally, the reduced model included 800 metabolites, 348 
404 of which were unique across compartments. 349 

After formation of the reduced model, to ensure and evaluate its function and the 350 
minimal loss of information from the integrated model, we conducted consistency 351 
checks in terms of enzyme essentiality and thermodynamic flux variability. The results 352 
from these tests can be found in Supplementary Tables S1 and S2. These tests 353 
showed that, as expected, redLips exhibits equal or less variability in terms of flux 354 
ranges compared to the integrated GEM, since some information will unavoidably be 355 
lost through the reduction process. In any case, all of the flux values in the solution 356 
space of redLips are a subset of the integrated GEM’s solution space, as they would 357 
otherwise be inconsistent. Similarly, redLips has more essential enzymes than the 358 
integrated GEM, though the essential enzymes of the latter are all a subset of the 359 
former. This discrepancy can occur mainly because of two reasons: First, it is possible 360 
that some of the enzymes that are essential for redLips and non-essential for the GEM 361 
participate in lumped reactions, thus are indispensable for growth. Additionally, this 362 
means that these enzymes catalyze reactions that are present in all the computed 363 
alternatives for one (or more) BBB for the minimal subnetwork size. Second, some 364 
alternative pathways compensating for the loss of this enzymatic activity might be lost 365 
due to the reduction process, making it essential in the reduced model. 366 

 367 

Overview of the reactions and metabolites in each expansion step 368 

In order to get a clearer picture of redLips’ structure and the overall network 369 
connectivity, we took a closer look at the reactions added to the model in each 370 
expansion step with respect to reactions that can carry flux. In the following discussion, 371 
the number of reactions comprising the graph search output will be given in 372 
parentheses next to the number of feasible (flux carrying) reaction additions. The 373 
starting subsystems include 540 reactions and 609 metabolites (307 unique ones 374 
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across compartments) in total. The complete list of subsystems included in redLips 375 
and the respective numbers of reactions in each of them, along with the number of 376 
reactions added in each expansion of the starting network are given in detail in Table 377 
2. 378 

In the D1 expansion of the model (one-step connections between core subsystems), 379 
most of the added reactions were transport reaction across compartments. The 380 
starting subsystems did not include any transport reactions, and all of the existing ones 381 
that connect metabolites belonging to the starting network were added at this stage 382 
since they are one step connections. Concerning the central carbon pathways, one 383 
reaction from the TCA cycle was included, namely the oxidation of succinate to 384 
fumarate and the reaction catalyzed by transaldolase from the pentose phosphate 385 
pathway. At this stage, a total of 199 (243) reactions were added to the core model 386 
along with 12 (22) new metabolites, of which 9 (17) were unique across 387 
compartments. 388 

In the D2 expansion, a total of 44 (57) reactions were added to the D1 model. This 389 
seems like a significantly smaller number than in the previous step, though since the 390 
vast majority of the computed one-step reactions were transport reactions, this 391 
number is much larger than the enzymatic reactions that were added to the core during 392 
the D1 expansion. These reactions involve 35 (43) new metabolites, 30 (38) of which 393 
are unique, and include: the condensation of acetyl-CoA and oxaloacetate to form 394 
citrate in the cytosol and the peroxisomes (TCA cycle) and the reactions catalyzed by 395 
transketolase activity (pentose phosphate pathway). 396 

The D3 expansion of the model encompassed 51 (71) additional reactions, including 397 
two more reactions from the pentose phosphate pathway. In terms of compounds, 398 
57 (75) new metabolites were added, of which 56 (72) were unique across 399 
compartments. Lastly, a final graph search added the reactions in which only core 400 
metabolites participate and that had not already been added to the model in any 401 
expansion step, which were most commonly transport reactions for cofactors and 402 
boundary reactions. In our case, there were 250 (594) reactions that matched those 403 
criteria. 404 

It is interesting to note that as we increased the user-defined degree of connection 405 
between the core subsystems, more amino acid biosynthetic routes were added. Also, 406 
some parts of the metabolism were located many steps away from our core network 407 
as we defined it, so ultimately were not added. One example of this was the TCA cycle 408 
that started to form for the D1 and D2 model expansions, though no new reactions 409 
were added in the D3 model. It therefore remained incomplete, missing three reactions 410 
to convert α-ketoglutarate to succinate through succinyl-CoA and one reaction to 411 
balance the intermediate byproducts. To ensure a more comprehensive and 412 
consistent network, we included these four reactions in our model a posteriori. For the 413 
complete list of reactions of the model, the interested reader may refer to 414 
Supplementary Table S3. 415 
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Table 2. List of subsystems included in redLips, and the corresponding number of reactions that were 416 
added in each step of the reduction process. Total number of reactions per subsystem and the 417 
percentage coverage of the corresponding integrated GEM subsystem is also reported. Boldface 418 
denotes the lipid pathway subsystems. FGS: Final Graph Search, PP: Post-Processing. (*)The biomass 419 
reaction representing cell growth is not part of either the starting network or any expansion step. 420 
(**)The lumped reactions are not part of the expansion steps, and they are computed and added to 421 
the model after D3 and before FGS. 422 

Subsystem Starting 
Network D1 D2 D3 FGS 

P

P 

Total # of 
reactions (% 

coverage of the 
integrated GEM) 

Alanine and Aspartate 
Metabolism - - 4 - - - 4 (44.4%) 

Alternate Carbon Metabolism 1 - - 10 - - 11 (40.7%) 
Anapleurotic Reactions - 5 - -   7 (63.6%) 
Arginine and Proline 
Metabolism - - - 2 - - 2 (6.1%) 

Cardiolipin Biosynthesis 7 - - - - - 7 (100%) 
Carnitine Shuttle 4 - - - - - 4 (100%) 
Citric Acid Cycle - 1 2 - 5 3 11 (84.6%) 
Complex Alcohol Metabolism - - - 2 - - 2 (7.4%) 
Cysteine Metabolism - - - 1 2 - 3 (30%) 
Dolichol Biosynthesis 30 - - - - - 30 (100%) 
Fatty Acid Biosynthesis 67 - - - - - 67 (100%) 
Fatty Acid Biosynthesis 
Mitochondrial 39 - - - - - 39 (100%) 

Fatty Acid Degradation 99 - - - - - 99 (100%) 
Fatty Acid Elongation 28 - - - - - 28 (100%) 
Glutamate Metabolism - - - 1 4 - 5 (29.4%) 
Glutamine Metabolism - - - 3 1 - 4 (100%) 
Glycerolipid Metabolism - 1 3 - 1 - 5 (55.6%) 
Glycine and Serine 
Metabolism - - 1 5 1 1 8 (42.1%) 

Glycolysis/Gluconeogenesis 12 - 4 3 1 - 20 (100%) 
Glycoprotein Metabolism - - 2 1 - - 3 (42.9%) 
Histidine Metabolism - - - 1 - - 1 (7.1%) 
Methane Metabolism - - - - 1 - 1 (50%) 
Methionine Metabolism - - - 1 3 - 4 (20%) 
Mevalonate pathway 10 - - - - - 10 (100%) 
NAD Biosynthesis - - - - 4 - 4 (16.7%) 
Nucleotide Salvage Pathway - - - - 14 - 14 (16.9%) 
Oxidative Phosphorylation 17 - - - - - 17 (89.5%) 
Pentose Phosphate Pathway - 1 2 2 - - 5 (38.5%) 
Phospholipid Biosynthesis 60 - - - - - 60 (100%) 
Purine and Pyrimidine 
Biosynthesis - - 1 4 5 - 10 (19.2%) 

Pyruvate Metabolism 8 1 2 1 - - 12 (92.3%) 
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Riboflavin Metabolism - - - 1 - - 1 (7.1%) 
Sphingolipid Biosynthesis 58 - - - - - 58 (100%) 
Sterol Biosynthesis 31 - - - - - 31 (100%) 
Sterol Metabolism 10 3 1 - - - 14 (100%) 
TAG Decomposition 3 - - - - - 3 (100%) 
Threonine and Lysine 
Metabolism - - - 1 - - 1 (5.3%) 

Tyrosine, Tryptophan, and 
Phenylalanine Metabolism - - 1 4 1 - 6 (13.6%) 

Valine, Leucine, and 
Isoleucine Metabolism - - - 3 - - 3 (15.8%) 

Other - - - -   2 (20%) 
Biomass Synthesis 35 - - - - - 36(*) (100%) 
Lumped Reactions - - - - - - 37(**) (n/a) 
Pooling Reactions 21 - - - - - 21 (100%) 
Exchange Reactions - - - - 60 - 60 (36.4%) 
Transport Reactions - 187 21 4 148 - 360 (59.6%) 

 423 

 424 

Generated lumped reactions 425 

After the network expansion, we generated lumped reactions connecting the required 426 
BBBs to ensure their adequate production for the desired amount of growth. The 427 
biomass composition, as defined in iMM904, is comprised of 42 BBBs, and 14 of those 428 
could be sufficiently produced by our generated core network. Therefore, we needed 429 
to generate associated lumped reactions for 28 BBBs. As mentioned previously, 430 
lumpGEM computes the minimal set of reactions (called a subnetwork) that need to 431 
be added to the core network to produce a target BBB, which are then lumped into 432 
one reaction and added to the core network. For each of these subnetworks, all 433 
alternative subnetworks of the same size were also computed, to allow for flexibility of 434 
the network in terms of biosynthetic routes. In total, 38 lumped reactions were 435 
computed that corresponded to lumped subnetworks of various numbers of reactions. 436 
A detailed report on the number of generated lumped reactions per BBB and the size 437 
of the computed minimal subnetworks can be found in Table 3. 438 

At this point of the workflow, we made several interesting observations about the ability 439 
of the core network to produce several BBBs. Even though their biosynthetic routes 440 
were explicitly present in the model, two BBBs, namely PC and ergosterol, could not 441 
be produced by the core network. This production was hindered by the lack of 442 
adenosyl-methionine, which the core could synthesize from adenosine triphosphate 443 
(ATP) and methionine by methionine adenosyltransferase, though methionine was 444 
another BBB that could not be produced by the core network. Using lumpGEM, we 445 
estimated the minimal set of reactions that we would need to add to the model to 446 
enable the production of methionine. Two alternative subnetworks were computed, 447 
each consisting of 11 reactions. It is noteworthy that in both subnetworks, the algorithm 448 
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computes the most efficient methionine pathway to be the textbook biosynthetic route 449 
from aspartate. This additionally serves as an excellent validation point: the algorithm 450 
will always compute the most efficient biosynthetic pathways, which should be -and 451 
are- the physiologically observed ones. As seen in Figure 1, this pathway converts 452 
aspartate to homoserine, followed by homocysteine, which will finally be converted to 453 
methionine (Mountain, et al. 1991). The subnetworks also include methionine 454 
biosynthesis through sulfate assimilation (Thomas, et al. 1992), with a few extra 455 
reactions included for mass balancing. The only difference between the two alternative 456 
subnetworks lies in the dehydrogenation of L-aspartate semialdehyde to homoserine; 457 
this reaction can use NADH or NADPH as a cofactor (model reactions HSDxi and 458 
HSDyi, respectively). 459 

Interestingly, the lumped reaction computed for the synthesis of methionine was still 460 
insufficient for the production of ergosterol and PC because, in both of these pathways, 461 
adenosyl homocysteine was produced though not consumed by any other reaction of 462 
the core. Therefore, additional lumped reactions needed to be generated to remove 463 
this product and mass balance the two pathways. It just so happens that the minimal 464 
subnetworks required for both of these cases produced methionine and were identical 465 
and unique. This subnetwork consisted of 4 reactions, which is considerably smaller 466 
size than the 11-reaction methionine subnetworks. Furthermore, since ergosterol and 467 
PC share the same subnetwork, the computed lumped reaction only needed to be 468 
added to the model once, resulting in the addition of 37 lumped reactions. Finally, 469 
these pathways can be observed graphically in Figure 2 and Figure 3. Figs 1,2 and 3 470 
were created using the Escher web application (King, et al. 2015). 471 

 472 
 473 

 474 
Figure 1. The L-methionine minimal subnetwork (in blue). The purple box highlights the textbook 475 
methionine biosynthetic route starting from aspartate. The orange box highlights the sulfate 476 
assimilation pathway for methionine biosynthesis. Reactions in red are part of the core network and 477 
part of the biosynthetic routes. Reactions in green are part of the core network but not part of the 478 
biosynthetic routes and serve the mass balancing of the subnetwork. 479 

 480 
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 481 

Figure 2. The ergosterol minimal subnetwork (in blue). Reactions in red are part of the core network 482 
and part of the biosynthetic route. Reactions in green are part of the core network but not part of the 483 
biosynthetic route, serving instead as the mass balance for the subnetwork. 484 
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 485 

 486 
Figure 3. The phosphatidylcholine (PC) minimal subnetwork (in blue). Reactions in red are part of the 487 
core network and part of the biosynthetic route. Reactions in green are part of the core network but 488 
not part of the biosynthetic route, serving instead as the mass balance for the subnetwork. 489 

 490 

Thermodynamics 491 

The thermodynamic curation of redLips stemmed from the curation of the integrated 492 
GEM, as described in the Materials and Methods section.  We used the same data to 493 
ensure that all reactions in the network are thermodynamically feasible, by imposing 494 
the relevant physiological constraints,  The compounds whose properties could not be 495 
computed contain an acyl-carrier protein (ACP) molecule, which is a large and 496 
complicated molecule with a stereochemical structure that cannot be computed by 497 
GCM, as well as other related or bound species. The coverage of our database 498 
amounts to 89% of the metabolites of redLips, meaning 85.5% of the Δ𝑟𝑟𝐺𝐺′𝑜𝑜 values for 499 
the network reactions could be computed. These computations included the relaxation 500 
of 62 thermodynamic constraints, as described in the Materials and Methods section. 501 
The complete thermodynamic curation data can be found in Supplementary Table S3. 502 
 503 
 504 
 505 
 506 
 507 
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Table 3. Biomass building blocks for iMM904, the size of the subnetworks generated by lumpGEM, and 508 
the corresponding number of lumped reactions. (*)Produced by the core network. 509 

Biomass Building Block Size of Subnetwork # of generated lumped reactions 
1,3-beta-D-Glucan 3 1 
AMP 10 1 
L-Arginine 7 1 
L-Asparagine 1 1 
CMP 7 1 
L-Cysteine 5 1 
dAMP 13 1 
dCMP 10 1 
dGMP 15 2 
dTMP 12 2 
Ergosterol 4 1 
Glycogen 3 1 
GMP 12 1 
L-Histidine 12 1 
L-Isoleucine 9 4 
L-Leucine 8 1 
L-Lysine 8 2 
L-Methionine 11 2 
Phosphatidylcholine 4 1 
L-Phenylalanine 7 1 
L-Proline 4 2 
Riboflavin 18 1 
L-Threonine 5 2 
Trehalose 2 1 
L-Tryptophan 9 1 
L-Tyrosine 7 2 
UMP 6 1 
L-Valine 3 1 
Glycine (*) (*) 
L-Alanine (*) (*) 
L-Aspartate (*) (*) 
L-Glutamate (*) (*) 
L-Glutamine (*) (*) 
L-Serine (*) (*) 
Mannan (*) (*) 
Phosphatidate (*) (*) 
Sulfate (*) (*) 
Phosphatidyl-1D-myo-inositol (*) (*) 
Phosphatidylethanolamine (*) (*) 
Phosphatidylserine (*) (*) 
Triglyceride (*) (*) 
Zymosterol (*) (*) 

 510 
 511 

https://doi.org/10.1093/femsyr/foaa006


Accepted manuscript to FEMS Yeast Research, Volume 20, Issue 2, March 2020, foaa006, 
https://doi.org/10.1093/femsyr/foaa006 Published: 18 February 2020 

 18 

Gene Essentiality Analysis and Comparison 512 
redLips was curated to include gene-reaction relationships in the form of logical rules. 513 
These rules were assigned through an exhaustive search in other yeast GEMs, 514 
majorly iIN800 (Nookaew, et al. 2008) and iMM904 (Mo, et al. 2009, Zomorrodi and 515 
Maranas 2010), and in literature through the Saccharomyces Genome Database 516 
(SGD, https://www.yeastgenome.org, (Cherry, et al. 1998)). Available experimental 517 
evidence for gene essentiality were gathered from literature through the Phenotype 518 
repository of SGD. All the genes whose deletions would result in inviability or 519 
auxotrophy beyond our defined media were classified as essential. 520 
In order to benchmark and evaluate the performance of our model, we performed gene 521 
essentiality analysis for redLips and iMM904, for single-gene knockouts, and 522 
compared the results. The detailed predictions for each of the models are available in 523 
Supplementary Table S4. redLips encompasses 459 genes opposed to 905 for 524 
iMM904. Out of these, 439 are common between the two models (Figure 4a). The 20 525 
genes that are part of redLips and not iMM904 are all encoding enzymes catalyzing 526 
lipid related reactions. 527 
 redLips predicted correctly 50 genes as essential (true positive) and 372 genes as 528 
non-essential (true negative). Nine genes were predicted falsely as essential (false 529 
positive) and 28 as non-essential (false negative) (Figure 4b). Out of the 28 false 530 
negative predictions, one gene, namely YJL097W (PHS1) is not part of the iMM904 531 
gene annotation. PHS1 encodes the enzyme that catalyzes the elongation of very long 532 
chain fatty acids, which are then used as building blocks for complex sphingolipids. 533 
The false negative prediction occurred because of the definition of biomass 534 
composition requirements in the model. Sphingolipids were not considered as BBBs, 535 
thus their formation, or lack thereof, does not affect the predicted growth. Moreover, 536 
among the rest of the false negative predictions we identified four genes, namely 537 
YBR265W (TSC10), YDL015C (TSC13), YKL004W (AUR1), and YMR296C (LCB1), 538 
which all are essential for sphingolipid production, either directly or through the 539 
metabolism of very long chain fatty acids. Similarly, the YMR013C (SEC59) gene was 540 
a false negative prediction because dolichol species were not considered in the 541 
biomass composition. 542 
Interestingly, by imposing a minimum flux value on at least three of the defined 543 
biosynthetic reactions for lipid species (namely Bipc_a, Bmipc_a, and Bdolp), it was 544 
possible to attain the correct prediction of true positive for four out of five of these 545 
genes, with the exception of LCB1 (Figure 4c). The imposed flux value was equal to 546 
10-6 mmol⋅gDW-1⋅h-1, which corresponds to the smallest BBB flux contributing to 547 
biomass in the network. This shows the significance and value of the addition of these 548 
reactions and highlights the importance of a consistently defined cell lipid composition. 549 
When comparing the results of the two models for their common genes (Figure 4d), 550 
redLips performed better in predicting experimentally essential genes; iMM904 551 
predicted 45 true positives which were a subset of the 50 predicted by redLips. The 552 
five additional genes encode enzymes which catalyze reactions belonging to lipid 553 
pathways, serine metabolism and glycolysis (Figure 4f). Correspondingly, the 27 false 554 
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negative genes for redLips were a subset of iMM904’s 32. Four of them could be 555 
turned into true positives if the sphingolipid requirements of the biomass were modified 556 
as mentioned previously. Other false negative genes included YDR208W (MSS4), 557 
YLR240W (VSP34), and YNL267W (PIK1), all related to PI synthesis. This part of the 558 
network is fairly complex and in possession of multiple alternative biosynthetic reaction 559 
routes. Furthermore, PI derivative species have been known to be especially active in 560 
signaling and membrane trafficking (Downes, et al. 2005, Krauss and Haucke 2007), 561 
the mechanisms of which are either unknown or not included in the model. 562 
redLips and iMM904 each predicted nine false positive genes, four of which were 563 
common. In redLips, these predictions occurred mostly due to alternative pathways 564 
missing from the network; while this was expected due to redLips being a reduced 565 
model, about half of these genes were false positives for iMM904 as well (Figure 4e). 566 
The rest of the false negatives stemmed from the inclusion of ergosterol in the biomass 567 
composition of the model. While ergosterol is essential to yeast cells, mutants 568 
incapable of synthesizing it are viable by accumulating ergosterol precursors in their 569 
membranes (Kato and Wickner 2001, Liu, et al. 2017), an effect that was not included 570 
in either of the models. 571 
In conclusion, the gene essentiality analysis and comparison of redLips opposite 572 
iMM904 showcases the ability of redLips to make accurate predictions, and in most 573 
cases performing better than the GEM. Genes that are not part of iMM904’s annotation 574 
were included in the gene-reaction relationships of redLips, and the vast majority of 575 
genes that encode enzymes which catalyze lipid related reactions were predicted 576 
correctly as essential or non-essential. 577 
 578 
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 579 
 580 

Figure 4. (a) Venn diagram of the genes included in redLips and iMM904. (b) Gene essentiality analysis 581 
in redLips and comparison with experimental evidence. (c) Improvements that can made to the 582 
predictions by enforcing lipid biosynthetic requirements. (d) Gene essentiality analysis in both redLips 583 
and iMM904 for the enzymes they have in common; and comparison with experimental evidence. (e) 584 
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The nine genes that correspond to false positive predictions of redLips and explanations of the 585 
occurrence. (e) The five true positive predicted genes of redLips that iMM904 predicts falsely negative. 586 
The Matthews Correlation Coefficient (MCC)(Matthews 1975) is also reported for each case. 587 

 588 

Comparison with yeast GEMs 589 

Comparing redLips with the available yeast GEMs provided insight into the network in 590 
terms of comprehensiveness and pathway connectivity. As mentioned previously, our 591 
model includes all the major lipid species and respective biosynthetic pathways.  592 

One common difference between models that can lead to very dissimilar numbers in 593 
reactions and species is the considered fatty acyl chains. As stated in the Materials & 594 
Methods section, glycerophospholipids possess two fatty acyl chains (four in the case 595 
of CL). In our model, we defined a fatty acid pool that participates in the formation of 596 
these species, thus considering only one metabolite of each class with an attached, 597 
generic fatty acyl (the assumed length is still C16:0 for thermodynamic calculations). 598 
Some other GEMs, namely Yeast7 and Yeast8, consider four individual fatty acid 599 
species as reactants in these biotransformations: C16:0, C18:0, C16:1, and C18:1. 600 
Naturally, this leads to a very large combinatory number of reactions and species. For 601 
example, if we consider a species with two fatty acyl tails, there are ten possible 602 
combinations leading to ten model metabolites. This number can grow exponentially 603 
if one considers the large number of fatty acyl derivatives and remodeling reactions. 604 
The same issue arises with fatty acyl-CoAs. Since the aim of redLips is to be used as 605 
a scaffold for omics integration and its nature is not context limited to specific species 606 
or pathways in order to enable versatility, this is a pitfall we aimed to avoid in order to 607 
preserve a concise representation. As mentioned earlier, a model including all the 608 
combinatoric occurrences will be difficult to curate and handle. It is important to note 609 
that, in the case of available experimental data or focused studies, separately 610 
considering these species can be beneficial for the accuracy of predictions (Sanchez, 611 
et al. 2019), and should be taken into account by expanding the associated parts of 612 
the network species and reactions accordingly. To this end, one can make use of the 613 
lipid pools we have defined and follow the same procedure as we did for the expansion 614 
of previously defined lumped/pooled reactions of iMM904, as described in the 615 
Materials and Methods section. 616 

Another difference between redLips and other models is that some other models, for 617 
example iIN800 (Nookaew, et al. 2008), include multiple identical reactions if their 618 
respective associated enzymes are encoded by multiple genes or in cases of multiple 619 
enzyme paralogs. This practice is acceptable according to genome annotation, but it 620 
leads to misleading computations; the mechanistic representation of the network 621 
calculates the net flux through each reaction irrespective of which enzyme is catalyzing 622 
it. This means that the resulting net flux value for this particular reaction will be the 623 
sum of all the discreet flux values for each reaction copy. To resolve this point, we 624 
considered only unique reaction occurrences in redLips that represent the net reaction 625 
rate for each biotransformation. The exception to this rule is the case where the same 626 
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biotransformation occurs in different cellular compartments. Since the metabolites in 627 
each compartment are modeled separately, this consideration does not result in 628 
duplicate reactions—in mathematical terms, the stoichiometric matrix will not have 629 
duplicate columns. In circumstances where enzymatic or kinetic properties are 630 
relevant for a study and require a separate consideration for these instances, the 631 
model can simply be modified to incorporate them.  632 

We also present a detailed comparison of our network to the other yeast networks in 633 
Table 4. Included in this table are the number of lipid-related reactions, species, and 634 
cellular compartments considered in each model. To ensure accurate comparability, 635 
we curated the number of reactions and species of interest for all considered models. 636 
The criteria we used were as follows: (i) We considered only one generic instance of 637 
metabolites possessing one or more fatty acyl chains. This applies both to species 638 
and reactions. As discussed previously, each model considers a different number of 639 
fatty acyl chain lengths, and in combination, this can lead to misleadingly different 640 
statistics. (ii) We didn’t consider metabolite pools or pooling reactions. Similarly, each 641 
model considers various diverse metabolite pools that can be heavily connected to the 642 
network by a large number of pooling reactions. (iii) We didn’t consider duplicate 643 
reactions unless they occurred in different compartments. (iv) We didn’t consider 644 
transport and boundary reactions. Since each model considers a different number of 645 
cellular compartments, the number of transport reactions varies accordingly. (v) We 646 
didn’t consider disconnected reactions; there were rare occurrences of reactions in 647 
which both reactants and products did not participate in any other reaction in the 648 
network. These reactions serve for annotation purposes and most probably will be 649 
gap-filled in the future, but they do not contribute to the functionality of the model.  650 

Using this comparison, we can see in Table 4 that redLips covers at least as many 651 
species as the other GEMs and more reactions than most of them. The major 652 
differences in the non-curated numbers of species and reactions can be attributed to 653 
the reasons listed above as well as the number of compartments of each model. If we 654 
go through the reactions per pathway, we can see that the majority of differences stem 655 
from the biosynthetic routes for PI derivatives, such as glycosyl-phosphatidylinositol 656 
(GPI) anchors for proteins and inositol and PI polyphosphates. These molecules play 657 
a major role in cell signaling, which was beyond the scope of redLips at this time. 658 
Signaling cascades in lipid metabolism is a vast area of study on its own, and we feel 659 
that it would be best served with a dedicated model. Another difference, especially 660 
concerning the Yeast7 and Yeast8 models, was in phospholipid biosynthesis. The 661 
larger numbers in these models are due to the consideration of five additional cellular 662 
compartments, including membranes, and the assignment of reactions occurring in 663 
more than one of them. 664 
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Table 4. Detailed comparison between redLips and other yeast GEMs in terms of reactions, species, and cellular compartments. The curated numbers of lipid reactions and 665 
species are given in parentheses next to the non-curated numbers if these numbers differ. 666 

Model : redLips iMM904 
(Mo, et al. 2009) 

iIN800 
(Heavner and Price 
2015, Nookaew, et 

al. 2008) 

iTO977 
(Heavner and Price 
2015, Osterlund, et 

al. 2013) 

Yeast7 
(Aung, et al. 2013) 

Yeast8 
(Lu, et al. 2019) 

# of lipid reactions 
(Curated # of lipid reactions) 

481 (451) 291 (264) 348 (281) 331 (324) 1758 (442) 1787 (460) 

Cardiolipin Biosynthesis 
Carnitine Shuttle 
Fatty Acid Biosynthesis 
Fatty Acid Biosynthesis Mitochondrial 
Fatty Acid Elongation 
Fatty Acid Degradation 
Glycerolipid Metabolism 
Glycoprotein Metabolism 
GPI Biosynthesis 
Isoprenoid Biosynthesis 
Mevalonate Pathway 
Phospholipid Biosynthesis 
PI Signaling System 
Sphingolipid Biosynthesis 
Sterol Metabolism 
TAG Decomposition 
Other 
Pooling Reactions 

 

7 
4 
67 
39 
28 
99 
7 
5 
0 
19 
14 
60 
0 
58 
41 
3 
0 
30 

 

4 
3 
33 
13 
6 
51 
9 
7 
0 
1 
14 
50 
0 

63 (36) 
36 
1 
0 
0 

  

2 
1 

71 (63) 
34 

33 (28) 
46 (43) 
15 (14) 
15 (4) 

0 
0 

13 (12) 
51 (35) 

0 
36 (25) 
22 (19) 

4 (1) 
0 
5 

 

3 
1 
64 
34 
28 
47 
7 
4 
8 
0 
11 
44 
8 
25 

25 (23) 
1 
15 
5 

 

270 (4) 
3 
25 
15 
30 
100 

29 (14) 
3 
9 
22 
14 

686 (78) 
15 

257 (63) 
43 (32) 
48 (4) 

11 
178 

 

270 (4) 
3 
25 
15 
30 
100 

31 (16) 
3 
19 
22 
14 

690 (82) 
15 

257 (63) 
43 (32) 
48 (4) 

13 
189 

# of lipid species 
(Curated # of lipid species) 

241 (237) 156 (143) 184 (178) 231 (220) 500 (233) 523 (237) 

# of involved compartments 7 + ex 7 + ex 2 + ex 3 + ex 12 + ex 12 + ex 
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Conclusions 668 

In conclusion, redLips is a metabolic model that captures the complexity of lipid 669 
metabolism by preserving and uniting the vast majority of known lipid reactions and 670 
pathways while avoiding the pitfall of excessive—and often times redundant—detail. 671 
It was created by gathering, merging, and upgrading existing lipid metabolic pathways, 672 
integrating them into the iMM904 GEM of S. cerevisiae and subsequently reducing 673 
this model around the major lipid-related subsystems using the redGEM and 674 
lumpGEM frameworks. Additionally, it is consistent with the organism biochemistry as 675 
well as thermodynamic principles and can be further constrained through lipidomics 676 
measurements, applied both as flux and concentration bounds. redLips could be used 677 
as a concise platform for studying lipid metabolism across different species, and is a 678 
valuable tool for health or industry related research. We believe that this model will 679 
continue to accommodate future discoveries through the incorporation of new 680 
reactions and species as well as providing a coherent base to link cell signaling routes 681 
and building kinetic models. 682 
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