
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

New Results in Integer and Lattice Programming

Christoph HUNKENSCHRÖDER

Thèse n° 7727

2020

Présentée le 19 juin 2020

Prof. K. Hess Bellwald, présidente du jury
Prof. F. Eisenbrand, directeur de thèse
Prof. S. Weltge, rapporteur
Prof. R. Zenklusen, rapporteur
Prof. M. Kapralov, rapporteur

à la Faculté des sciences de base
Chaire d’optimisation discrète
Programme doctoral en mathématiques

Acknowledgements
Looking back on 13 years of school, 6 years of studies in Bonn, and 4 years of doing
my PhD in Lausanne, too many awesome people accompanied me during these times
to name them all. In particular in the last four years I met a lot of people who left
dear memories and contributed in many different ways to this thesis and my work in
academia.
Let me start with my advisor Friedrich Eisenbrand. Thank you for these four years, for
your support, stimulating ideas and asking the right questions, trusting me and giving
me the freedom to follow my interests and visit conferences and workshops all over the
world. For providing the necessary financial support, I want to thank the Swiss National
Science Foundation. I also want to thank Kim-Manuel Klein, Martin Koutecký, Asaf
Levin, Shmuel Onn, Gina Reuland and Matthias Schymura for fruitful discussions and
inspiring collaboration that led to this thesis.
It was quite an experience to finish this thesis and defend it in front of a friendly
and genuinely interested jury, comprising my advisor, Kathryn Hess Bellwald, Michael
Kapralov, Stefan Weltge and Rico Zenklusen. Thank you for the time you spent on
reviewing this work and the encouraging feedback after my defense. I am indebted to
Adrian Vetta, Martin Koutecký, Asaf Levin, Shmuel Onn and José Verschae for their
hospitality and good discussions.
A big thank you! to the whole Disopt group and my fellow PhD students and postdocs I
met here. First I’d like to thank Alfonso, Manuel, Igor, Yuri, Linda and Natalie who
welcomed me into the Disopt group. Moreover, thanks to Jana, Jonas, Martina and
Moritz for reviewing parts of this thesis, good (also non-mathematical) discussions, and
so many other things. Special thanks go to Georg and Matthias. I learned a lot from
you and value the time and effort you spent on answering my questions and sharing your
experience in academia. I also do not want to miss out on the chance to thank Jocelyne
for her good nature, her help in finding an apartment, organizing skiing trips, and her
expertise in how things work at EPFL. A lot more people made these four years a good
time with hikes, board games, and pancake parties, to name a few things.
I’d like to thank my bachelor’s thesis supervisor Jens Vygen. Building up on my bachelor’s
thesis with him, I was able to visit Adrian Vetta, and I consider these two people to
be the ones establishing my first contact with research. In my master studies, Nicolai
Hähnle introduced me to lattices and the whole area I’m still working in and enjoy. He
has my gratitude for this and his supervision of my master’s thesis.

i

Acknowledgements

There are the friends I made in Bonn, sharing memories of countless rounds of Doppelkopf
or Skat, sneak previews, DSA, trips to Innsbruck and many other fun activities. I had a
great time in Bonn, and I’d like to thank everyone who contributed to this.
My oldest friends still provide me with a great time whenever I’m back in the German
Münsterland and help me restoring my batteries when work piled up. Be it playing cards,
having New Year’s breakfast, baking Christmas cookies, enjoying a glass of wine on St.
Lambert’s church atop the roofs of Münster, or simply cooking and enjoying an evening
on the couch. Thanks for pulling my mind out of math every once in a while.
When I tell strangers that I study mathematics, most people are awed, and seem to have
the opinion that math is nothing for regular folks, and only the smartest people can do
it. My former teacher Josef Muth has a talent in showing people that this prevailing
image of mathematics is wrong, and showed a lot of students that basically everyone is
capable of math (admittedly, to a certain extent). I had a lot of fun in his classes, and
remember various class mates who agree. Thank you for all the encouragement with
which you met so many students, and for making math approachable for everyone.
Everything is math, but math isn’t everything. I want to thank Chuck Ragan, Isaac
Childres and Jim Butcher, representing their respective profession, for giving me a lot to
do on my days off.
Most important, I want to thank my family. I grew up in a loving environment, with
parents that always had my back and believed in me. Thanks to my brothers, who
don’t always share my opinion, but on whom I can rely without any doubt. Also my
grandparents, godparents, aunts, uncles and cousins showed me how nice it is to be part
of a family in a broader sense, and my gratitude extends to them. A big chunk of who I
am today is due to you.

Sassenberg, April 14, 2020 Christoph Hunkenschröder

ii

Abstract
An integer program (IP) is a problem of the form min{f(x) : Ax = b, l ≤ x ≤ u, x ∈ Zn},
where A ∈ Zm×n, b ∈ Zm, l, u ∈ Zn, and f : Zn → Z is a separable convex objective
function. The problem of finding an optimal solution for an integer program is known
as integer programming. Integer programming is NP-hard in general, though several
algorithms exist: Lenstra provided an algorithm that is polynomial if the dimension n
is fixed. For variable dimension, the best known algorithm depends linearly on n, and
exponentially on the number of equalities as well as the largest absolute value of an entry
in the matrix A.
The first part of this thesis considers integer programming for variable dimensions and
sparse matrices. We measure the sparsity of a matrix by the tree-depth of the dual graph
of A. A typical example for these integer programs are N -fold IPs, used for scheduling
and social choice problems. We obtain the currently fastest fixed-parameter tractable
algorithm with parameters tree-depth and the largest absolute value of the entries in
A. The running time we achieve is near-linear in the dimension. With a slightly worse
running time, we are able to show that N -fold integer programs of constant block size
can be solved in strongly polynomial time. Assuming the exponential time hypothesis,
we complement these results with a lower bound on the parameter dependency that
almost matches the parameter dependency of the running time. As a consequence, we
provide the currently strongest lower bound for N -fold integer programs.
Another problem closely related to integer programming is the closest vector problem. A
lattice is a discrete additive subgroup of Rn. The closest vector problem (CVP) asks for
a lattice point closest to a given target vector. An important tool for solving the closest
vector problem is the Voronoi cell V of a lattice Λ ⊆ Rn, which is the set of all points for
which 0 is a closest lattice point. It is a polytope whose facets are induced by a set of
lattice vectors, the Voronoi relevant vectors. A generic lattice has exponentially many
Voronoi relevant vectors, leading to exponential space for certain CVP algorithms.
In the second part of this thesis, we introduce the notion of a c-compact lattice basis
B ∈ Rn×n that facilitates to represent the Voronoi relevant vectors with coefficients
bounded by c. Such a basis allows to reduce the space requirement of Micciancio’s &
Voulgaris’ algorithm for the closest vector problem from exponential to polynomial, while
the running time becomes exponential in c. We show that for every lattice an n2-compact
basis exists, but there are lattices for which we cannot choose c ∈ o(n). If the Voronoi cell
is a zonotope, we can choose c = 1, providing a single-exponential time and polynomial

iii

Abstract

space algorithm for CVP, assuming a 1-compact basis is known.
Deciding whether a given lattice has a certain structure that helps to solve the closest
vector problem more efficiently is a reappearing and non-trivial problem. The third part
of this thesis is concerned with the specific structure of having an orthonormal basis. We
show that this problem belongs to NP ∩ co-NP. Moreover, it can be reduced to solving a
single closest vector problem. We also show that if a separation oracle for the Voronoi
cell is provided, CVP is solvable in polynomial time.

keywords: integer programming, n-fold IP, tree-depth, Graver basis, fixed-parameter
tractable, exponential time hypothesis, lattice, Voronoi cell, closest vector problem,
co-NP, characteristic vector

iv

Zusammenfassung
Ein ganzzahliges Programm (IP) ist ein Problem der Form min{f(x) : Ax = b, l ≤ x ≤
u, x ∈ Zn}, wobei A ∈ Zm×n, B ∈ Zm, l, u in Zn und f : Zn → Z eine separabel-konvexe
Zielfunktion ist. Ganzzahlige Programmierung, also das Finden einer optimalen Lösung
für ein IP, ist im Allgemeinen NP-schwer, obwohl verschiedene Algorithmen existieren:
Lenstra stellte einen polynomiellen Algorithmus zur Verfügung, wenn die Dimension n
festgelegt ist. Bei variabler Dimension hängt der derweil schnellste Algorithmus linear
von der Dimension und exponentiell von der Anzahl der Gleichungen sowie dem größten
Absolutbetrag eines Eintrags in der Matrix A ab.
Im ersten Teil dieser Arbeit betrachten wir ganzzahlige Programmierung für variable
Dimension und spärliche Matrizen. Wir messen diese Spärlichkeit an der Baumtiefe des
dualen Graphen von A. Ein typisches Beispiel für derartige ganzzahlige Programme sind
N -fache IPs, die unter Anderem für Planungsprobleme und in der Sozialwahltheorie
Anwendung finden. Wir erhalten den derzeit schnellsten parametrisierten Algorithmus,
der durch die Baumtiefe und den größten absoluten Wert der Einträge in A parametrisiert
ist. Die erreichte Laufzeit ist nahezu linear in der Dimension. Mit einer etwas schlech-
teren Laufzeit können wir zeigen, dass N -fache ganzzahlige Programme mit konstanter
Blockgröße in stark polynomieller Zeit gelöst werden können. Unter der Annahme der
Exponentialzeithypothese ergänzen wir diese Ergebnisse mit einer Untergrenze für die
Parameterabhängigkeit, die nahezu mit der Parameterabhängigkeit unserer Laufzeit
übereinstimmt. Als direkte Konsequenz liefern wir die derzeit stärkste Untergrenze für
N -fache ganzzahlige Programme.
Ein weiteres Problem das eng mit der ganzzahligen Programmierung zusammenhängt,
ist das Problem des nächsten Vektors. Ein Gitter ist eine diskrete additive Untergruppe
von Rn. Das Problem des nächsten Vektors (CVP) fragt nach dem Gitterpunkt, der
einem bestimmten Zielvektor am nächsten liegt. Ein wichtiges Werkzeug zur Lösung
des nächsten Vektorproblems ist die Voronoizelle. Die Voronoizelle V eines Gitters
Λ ⊆ Rn ist die Menge aller Punkte, für die 0 ein am nächsten liegender Gitterpunkt
ist. Es ist ein Polytop, dessen Facetten durch Gittervektoren induziert werden, welche
wir fortan Voronoi-relevante Vektoren nennen. Ein generisches Gitter hat exponentiell
viele Voronoi-relevante Vektoren, was zu exponentiellem Speicherbedarf für bestimmte
CVP-Algorithmen führt.
Wir führen im zweiten Teil dieser Arbeit den Begriff einer c-kompakten Gitterbasis
B ∈ Rn×n ein, die es ermöglicht, die Voronoi-relevanten Vektoren mit durch c begrenzten

v

Zusammenfassung

Koeffizienten darzustellen. Mithilfe einer solchen Basis kann der Speicherbedarf des
Algorithmus von Micciancio & Voulgaris für das nächste Vektorproblem von exponentiell
auf polynomiell reduziert werden, während die Laufzeit exponentiell in c wird. Wir
zeigen, dass für jedes Gitter eine n2-kompakte Basis existiert, aber es gibt Gitter, für
die keine c-kompakte Basis mit c ∈ o(n) existiert. Wenn die Voronoi-Zelle ein Zonotop
ist, existiert eine 1-kompakte basis B und wir erhalten einen Algorithmus für CVP mit
einfach-exponentieller Laufzeit und polynomiellem Speicherbedarf, vorausgesetzt wir
kennen eine 1-kompakte Basis.
Die Entscheidung ob ein gegebenes Gitter eine bestimmte Struktur aufweist, die dazu
beiträgt, das Problem des nächsten Vektors effizienter zu lösen, ist ein Problem das
fortwährend auftritt und zumeist keine einfache Lösung kennt. Der dritte Teil dieser
Arbeit beschäftigt sich mit der spezifischen Struktur einer orthonormalen Basis. Obwohl
der schnellste bekannte Algorithmus für dieses Problem exponentiell ist zeigen wir, dass
dieses Problem zu NP ∩ co-NP gehört. Darüber hinaus kann es gelöst werden, indem
wir ein einziges Problem des nächsten Vektors lösen. Wir zeigen auch, dass CVP in
Polynomzeit lösbar ist wenn ein Separationsorakel für die Voronoizelle bereitgestellt wird.

Schlüsselwörter: ganzzahlige Programmierung, n-faches IP, Baumtiefe, Graverbasis,
parametrisierter Algorithmus, Exponentialzeithypothese, Gitter, Voronoizelle, Problem
des nächsten Vektors, co-NP, charakteristischer Vektor

vi

Contents
Acknowledgements i

Abstract (English/Deutsch) iii

Introduction 1

1 Basics 9
1.1 Notation for sets, vector spaces, and functions 9
1.2 Polyhedra and linear programming . 12
1.3 Integer programming . 13
1.4 Lattices and convex bodies . 15
1.5 Complexity . 20
1.6 The Graver basis . 22
1.7 Graphs associated with constraint matrices 24

2 Integer programming in variable dimension 29
2.1 An upper bound for the Graver basis elements 33
2.2 Iterative improvement . 35

2.2.1 Solving the augmentation IP . 38
2.2.2 Optimizing via the augmentation IP. 40
2.2.3 Convolutions and the convolution tree 43

2.3 Reducing the objective function . 49
2.3.1 The upper bound . 49
2.3.2 The lower bound . 53

2.4 Reducing the box constraints . 55
2.4.1 The proximity result . 56
2.4.2 Reducing the bounds by iterative scaling 58

2.5 Feasibility and finiteness . 61
2.5.1 Deciding feasibility and finding an initial feasible solution 62
2.5.2 Deciding boundedness . 63
2.5.3 Handling infinite bounds . 65

2.6 The overall running time . 68
2.7 Other parameters for integer programming 76
2.8 An ETH-based lower bound . 79

vii

Contents

3 Compact representations of Voronoi cells of lattices 93
3.1 The notion of a c-compact basis . 95
3.2 A polynomial upper bound . 97
3.3 Lattices without sublinearly-compact bases 99
3.4 Compact bases and zonotopal lattices 103
3.5 Compact bases in small dimensions . 105
3.6 Relaxing the basis condition . 110
3.7 Algorithmic point of view . 113

4 The closest vector problem with additional information 115
4.1 The closest vector problem in polynomial time 116

4.1.1 Solving the facet piercing problem 118
4.1.2 Finding a starting vertex close to the target 123
4.1.3 Sampling a vector in the Voronoi cell 124
4.1.4 The main result and CVP on zonotopal lattices 124

4.2 The rotated standard lattice problem is in NP ∩ co-NP 126
4.2.1 The RSLP and the UDP . 127
4.2.2 Self-dual lattices and characteristic vectors 131
4.2.3 Applying the result of Elkies . 133

Bibliography 139

List of Symbols 147

Curriculum Vitae 149

viii

Introduction

Integer programming in variable dimension.

Many problems arising in discrete optimization, such as the traveling salesman problem
or the constraint satisfaction problem, can naturally be formulated in the setting of
integer linear programming. An area that is concerned with the following problem.

Integer Linear Programming Problem

Instance: A system of linear equations Ax = b, A ∈ Zm×n, b ∈ Zm, bounds
l ≤ x ≤ u with l, u ∈ Zn, an objective f(x) = cᵀx with c ∈ Zn.

Task: Find a solution x? ∈ Zn to Ax = b, l ≤ x ≤ u, minimizing f(x),
or assert that no solution exists.

An instance of the integer linear programming problem is called an integer linear program
(ILP). Integer programming is a versatile tool not only for theoretical problems, it also
has numerous applications in science, engineering or decision making. As famous NP-hard
problems can be modeled as an integer program, it is no surprise that it belongs to
Karp’s classic 21 NP-hard problems [Kar72].

Though this indicates that solving a general ILP is a hard problem, several approaches
have led to a variety of algorithms. Lenstra showed that if the number n of variables
is fixed, the problem can be solved in polynomial time [Len83]. Shortly after, Kannan
improved on this result by achieving a running time of 2O(n log2(n)) · poly(ϕ), where ϕ
is the size of the input [Kan87]. Since then, all improvements on the running time
have been restricted to the constant in the exponent; at the time of writing, the best
constant was shown by Dadush [Dad12]. The question whether there is an algorithm
with single-exponential running time is a famous open problem.

Another approach was chosen by Papadimitriou [Pap81]. He assumed the entries of A
to be bounded and the number m of constraints to be small, whereas n is allowed to
vary. Later, the running time of his approach was improved to n · (2m ||A||∞)O(m2) by
Eisenbrand & Weismantel [EW18].

1

Introduction

These two approaches share the same idea. They specify certain parameters k of the
problem (for Kannan, this is k = n, for Papadimitriou, this is k = (m, ||A||∞)) which they
assume to be not too large. Then, they develop an algorithm for which the running time
is f(k) · poly(ϕ), where f is any computable function only depending on the parameter
and ϕ is the size of the instance. If the parameter is a constant, this gives a polynomial
algorithm. This idea is the cornerstone in the field of parameterized complexity, and an
algorithm whose running time can be written as f(k) · poly(ϕ) is called fixed-parameter
tractable (FPT), parameterized by k.

Yet another approach for solving integer linear programs employs the structure of the
matrix A. Several combinatorial problems have their own specific structure. When
modeled as an ILP, the matrix A inherits this structure. The most prominent example
are certain flow problems, for which A is a totally unimodular matrix and thus lends
itself to polynomial methods from linear programming. Another example comes from
scheduling problems, for which the ILP models are N -fold integer programs. In an N -fold
ILP, the constraint matrix A ∈ Z(r+Ns)×Nt is of block-shape,

A =



B B . . . B

C

C
. . .

C


,

where B ∈ Zr×t and C ∈ Zs×t have small dimensions, and are repeated N times.
Additionally, ||A||∞ is bounded by some constant ∆ ≥ 2. It was a large success in the
field of parameterized complexity when Hemmecke, Onn & Romanchuk [HOR13] showed
that for these structured integer programs, there is also a parameterized algorithm. They
showed that an N -fold ILP can be solved in time L(r, s, t) ·N3, where L is a function
independent of both the number of variables n and the number of constraints m.

In the following years, N -fold ILPs gained new momentum. On the side of applications,
they were used to obtain fixed-parameter tractable algorithms for scheduling prob-
lems [Jan+19; KK18], social choice problems [KKM17b], or other problems [KKM17a].
On the theoretical side, it was shown that we can actually allow different matrices
B1, . . . , BN and C1, . . . , CN and the problem is still fixed-parameter tractable, even with
an improved running time [EHK18]. Jansen, Lassota & Rohwedder showed further im-
provements, presenting an algorithm with running time n(log(n))6·ϕ2·(rs ||A||∞)O(r2s+s2),
presenting the first algorithm with a near-linear dependency on n [JLR19]. At the same
time, it was shown in [KLO18] that an N -fold ILP is the most prominent example for an
integer program where the parameter tree-depth of a certain associated graph is small.

The first part of this thesis is concerned with these theoretical results, building an
extensive theoretic framework for integer programs with small tree-depth, culminating

2

Introduction

in the currently fastest algorithms for these problems. In particular, we show that the
dependency on the dimension n can be brought down to n(log2(n))2. This has direct
consequences for N -fold ILPs, where n = Nt. We emphasize these results:

1. The integer linear programming problem belongs to the complexity class FPT
parameterized by the tree-depth of the dual graph GD(A) and ||A||∞.

2. N -fold integer linear programs can be solved in time

n(log2(n))2 · ϕ2 · (2rs ||A||∞)O(r2s+rs2),

where ϕ denotes the encoding size of ||l||∞ , ||u||∞, and ||c||∞.

In addition, we will revisit several classic results in the area of integer programming,
strengthening these results further. Tardos showed that the dependency on ||c||∞ is
unnecessary in the case of linear programming [Tar86], and can be replaced with a term
depending on the variable bounds l, u and the dimension n only. We develop a similar
result, and show a generalization for separable convex objective functions.

If we further want to avoid dependency on l and u, we need to restrict the space in which
we search for an optimal solution. Typically, one uses proximity results, stating that if
x? is an optimal solution to the LP relaxation, then an optimal solution to the integer
program has to be close by. We prove a proximity result that is specifically tailored to
our needs, and linear in n. Combining both techniques with the algorithm of Frank &
Tardos [FT87], we obtain a running time independent of l, u, b and c.

3. N -fold ILPs and their generalization tree-fold ILPs are strongly fixed-parameter
tractable. In particular, N -fold ILPs with constant block-sizes and ||A||∞ are
solvable in strongly polynomial time.

Most of the techniques we use are already known to work for separable convex ob-
jective functions as well, immediately giving similar results for separable convex func-
tions. However, it was usually assumed that the encoding size of the quantity fmax :=
max{|f(x)−f(y)| : x, y feasible} is part of the input. But if f is given to us as an oracle,
this assumption can be misleading. We are able to avoid this dependency.

As a complement to our derived algorithms, we provide lower bounds for the integer
programming problem parameterized by ||A||∞ and the tree-depth d, assuming the
exponential time hypothesis (ETH). This is the widely accepted assumption that the 3-
satisfiability problem cannot be solved in subexponential time. Though an asymptotically
equal lower bound on the running time was already shown by [KP], we provide a more
structured construction, yielding also lower bounds for specific subclasses of ILPs. To
this end, we introduce a new parameter topological height of a tree. A direct consequence

3

Introduction

is the currently best known lower bound for N -fold ILPs, which turn out to be the ILPs
with topological height 2. Setting ∆ := max{||A||∞ , 2}, we have.

4. Unless the exponential time hypothesis fails, there is no algorithm for the integer
programming problem with running time

∆
o

((
d
`
+ 1

12

)`)

in the worst case, where d = td(F) is the tree-depth, and ` = th(F) is the
topological height for any dual td-decomposition F of A.

5. Specifically, assuming ETH, no algorithm solves every generalized N -fold IP in
time

∆o((r+s)2).

Compact representations of Voronoi cells of lattices.

If we only want to know whether a given IP is feasible, we can rephrase the question in
the following way. Given a polytope P , is P ∩ Zn non-empty? The set of integers Zn is
the easiest example of a (Euclidean) lattice Λ, i.e. a discrete additive subgroup of Rn. In
general, a lattice Λ is defined as the integer linear span of linearly independent vectors
b1, . . . , bd ∈ Rn,

Λ = {α1b1 + · · ·+ αdbd : α1, . . . , αd ∈ Z}.

From this point of view, integer programming is a sub-area in the geometry of numbers.
This field of research was initiated by Minkowski and focuses on the interplay between
lattices and geometric structures, asking, for example, whether a polytope contains a
lattice point. Perhaps not surprisingly, the mentioned approach of Tardos for reducing
the dependency on the objective c relies on Diophantine approximation, an area closely
related to the geometry of numbers. The famous algorithm of Kannan [Kan87] also relies
on an important result in this area, the well-known flatness theorem.

One of the most prominent algorithmic problems in the geometry of numbers is the
closest vector problem: Given a lattice Λ ⊆ Rn and a target t ∈ Rn, which point
v? ∈ Λ attains the minimum distance minv∈Λ dist(t, v)? This NP-hard problem has
applications for integer programming, cryptography, and other areas, and has been
intriguing mathematicians and computer scientists for several decades. As shown by
Kannan [Kan87], this problem can be solved in time nO(n). It was considered a huge break-
through when Micciancio & Voulgaris [MV13] gave a deterministic single-exponential
time algorithm for the problem, which we call the MV-algorithm.

Though theoretically this algorithm has a better running time, Kannan’s algorithm is
still faster in practice. One of several reasons is that Kannan’s algorithm only needs

4

Introduction

polynomial space, whereas the MV-algorithm needs exponential space, and accessing
space is expensive when measured in realtime.

The second part of this thesis is concerned with the question whether a single-exponential
time algorithm with polynomial space exists. Before we can provide more details, we
introduce the Voronoi cell V of a lattice Λ. The Voronoi cell is the set of all points x ∈ Rn

for which 0 is a closest lattice point. Since all points at least as close to 0 as to another
lattice vector v can be described by a linear inequality, it should be no surprise that V is
a polytope that can be described by a finite set F ⊆ Λ of lattice vectors. Maybe more
surprisingly, the set F contains at most 2(2n − 1) vectors, and for a generic lattice, this
number is tight. The MV-algorithm essentially consists of two steps. First, it computes
the set F . In the second step, it uses the Voronoi cell to iteratively move from a lattice
point v to a lattice point v′ closer to the target t.

We introduce the concept of a c-compact basis for a lattice. This is a lattice basis
{b1, . . . , bn} such that

F ⊆
{

n∑
i=1

αibi : αi ∈ Z,−c ≤ αi ≤ c
}
.

Instead of storing the set F explicitly, we only need to store n vectors and can iterate
over a superset of F roughly in time (2c + 1)n. If c is a constant independent of n,
this yields a single-exponential time algorithm with polynomial space. We obtain the
following results.

6. Given a c-compact basis, we can solve the closest vector problem in time
(2c+ 1)O(n) poly(n) and polynomial space.

7. Every lattice Λ ⊆ Rn possesses an n2-compact basis.

These results imply that we can already recover Kannan’s running time asymptotically
in the worst case, provided we know an n2-compact basis. We are also able to show that
with the chosen approach, we cannot hope to do better in general. However, there are
certain lattices for which we obtain the best possible constant c = 1. This is captured by
the following results, where a zonotope is the Minkowski sum of line segments.

8. There is a class of lattices that do not have a c-compact basis for c ∈ o(n).

9. If the Voronoi cell V is a zonotope, then Λ has a 1-compact basis B. Moreover,
we can choose B within F .

The question how to find a c-compact basis arises naturally. More generally, if there
is a class of lattices for which we can solve CVP more efficiently than with a general

5

Introduction

algorithm (maybe if some additional information is given), how hard is it to recognize
this class?

The closest vector problem with additional information.

Though CVP is NP-hard in general, there are several lattice classes for which better
algorithms are known, provided some additional information is given.

For instance, CVP becomes trivial when we are given an orthogonal basis. Another
example are the c-compact bases discussed in the previous paragraph. If we know such a
basis, we can reduce the space requirements from exponential to polynomial. McKilliam,
Grant & Clarkson showed that CVP can be solved in polynomial time on lattices that
have an obtuse superbasis [MGC14]. In some sense, they show that if such a basis is
known, the MV-algorithm can be implemented quite efficiently. Another improvement
on the MV-algorithm was given by Dadush & Bonifas [DB15]. While Micciancio &
Voulgaris require an exponential number of improving steps, Dadush & Bonifas show
that a polynomial number suffices.

We generalize these results in some sense, showing that we can solve CVP in polynomial
time as soon as we can separate over the Voronoi cell. As a consequence, the class of
lattices in which the Voronoi cell is a zonotope allows for a polynomial-time algorithm,
provided the generators of the Voronoi cell are known.

10. If we have a separation oracle for the Voronoi cell, we can solve the closest vector
problem in polynomial time.

11. If the Voronoi cell is a zonotope and its generators are given, we can solve the
closest vector problem in polynomial time.

In all examples mentioned before, it is not the lattice per se but the additional information
that grants more efficient algorithms. For this reason, recognizing these lattice classes
(and finding this extra information) is an important and reappearing problem. As it
turns out, already for an easily describable lattice class this problem is quite involved.

Given a lattice basis B, can we decide whether the lattice generated by B has an
orthonormal basis? If a lattice Λ has an orthonormal basis, it can be seen that it has
to be a rotation of the standard Euclidean lattice Zn. Therefore, we call this problem
the rotated standard lattice problem (RSLP). This problem was considered by Lenstra
& Silverberg [LS17], who gave a polynomial algorithm if additional information on the
symmetry group of the lattice is provided. In general, only algorithms for the more
general lattice isomorphism problem (LIP) are known. While the algorithm of Haviv &
Regev for LIP has a running time of nO(n) [HR14], we can show that the more specific
RSLP can be reduced to solving the closest vector problem once, yielding a running

6

Introduction

time of 2O(n). We also provide reason to hope for a polynomial algorithm by showing
that the problem is in NP ∩ co-NP. Moreover, we show a connection to the unimodular
decomposition problem: Given a positive definite unimodular matrix G, decide whether
there exists a unimodular matrix U such that UᵀU = G. We believe that this problem is
interesting in its own right.

12. The rotated standard lattice problem is in NP ∩ co-NP.

13. RSLP is equivalent to the unimodular decomposition problem.

Summarizing overview and sources.

The thesis starts with fixing notation and giving a brief background to some essential
topics in Chapter 1. This is not meant to be an introduction to the area, and a certain
background on the topics is assumed.

In Chapter 2, we derive new results for integer programming parameterized by the
tree-depth and the largest absolute value of the entries in the constraint matrix. Several
classic techniques are adapted and tailored to our setting. The chapter is based on the
results in the articles [EHK18] and [Eis+19].

In Chapter 3, we investigate the question whether the Voronoi cell can be stored in
polynomial space, using the novel concept of c-compact bases. The chapter is based on
the results in the article [HRS20]. Parts have been published in the Master’s Thesis of
Reuland [Reu18].

In Chapter 4, we focus on subclasses of lattices on which CVP is easy to solve. Specifically,
we show that a separation oracle for the Voronoi cell suffices for a polynomial-time
algorithm. We also show that deciding whether an orthonormal basis exists is in NP ∩
co-NP. Parts of this chapter can be found in the arXiv preprint [Hun19].

7

1 Basics

In this section, we aim to fix the notation used in this thesis, and recall all necessary
definitions and results established in the literature. Should the reader be unfamiliar with
any of the mentioned concepts, every section provides references to text-books where
more details on the subjects can be found. Especially the Sections 1.6 and 1.7 provide
concepts that are assumed to be known for Chapter 2.

1.1 Notation for sets, vector spaces, and functions

This Section mostly fixes standard notation from linear algebra. We refer to [Lan87] for
the theory. The computational results can for instance be found in [KV18].

The symbols Z,Q,R denote the sets of integral, rational, and real numbers, respectively.
Together with addition and multiplication, Z is a ring, whereas Q and R are fields. For
a ∈ Z, we will also often use the abbreviations Z≥a := {z ∈ Z : z ≥ a} and Z>a := Z≥a+1.
For n ∈ Z≥1 and a set X, the set of n-tuples of elements in X is denoted by Xn. If
X ∈ {Z,Q,R}, the tuple is always understood as a column vector, and Rn,Qn are
considered as vector spaces over R, Q respectively, whereas Zn is a free module over Z.
The spaces Rn,Qn,Zn are equipped with a scalar product, denoted by 〈x, y〉 := xᵀy. The
support of a vector x ∈ Rn is defined as supp(x) := {i ∈ {1, . . . , n} : xi 6= 0}.

We write [n] := {1, 2, . . . , n} ⊆ Z, and [n : m] := {n, n + 1, . . . ,m} ⊆ Z. In contrast,
[x, y] := {α ∈ R : x ≤ α ≤ y} ⊆ Rn denotes the closed interval between x ∈ R and y ∈ R.
This notation generalizes for x, y ∈ Rn to a line segment [x, y] := {x + α(y − x) : α ∈
R, 0 ≤ α ≤ 1} in higher dimension. A set S ⊆ Rn is called convex, if for any two points
x, y ∈ S, we have [x, y] ⊆ S.

For two sets U, V ⊆ Rn, we define the Minkowski sum U + V := {u+ v : u ∈ U, v ∈ V }.
If u ∈ U , we write u+ V := {u}+ V for short. Similarly, we denote U − V := {u− v :
u ∈ U, v ∈ V }, U − v := U − {v}. In contrast to this, the set {u ∈ U : u /∈ V } will be

9

Chapter 1. Basics

denoted with U \ V . For a finite set S, we denote by RS the set of all maps ϕ : S → R.

We will often consider restrictions of vectors, i.e. for a vector x ∈ Rn, and an index set
S ⊆ [n], we are interested in the |S|-dimensional vector obtained from x by forgetting all
entries xi with i /∈ S. In this case, we will consider elements in RS as vectors indexed
by S. Formally, if S = {i1, . . . , im} ⊆ [n] with ij < ij+1 for j = 1, . . . ,m− 1, there is a
canonic embedding ϕ : R|S| → Rn given by

(ϕ(x))` :=

xj ` = ij ∈ S,
0 ` /∈ S.

We identify RS with the subspace ϕ(R|S|). The same holds for the sets QS and ZS , the
vector space Q|S|, and the module Z|S|.

For α ∈ R, we will denote dαe := min{z ∈ Z : z ≥ α}, and bαc := max{z ∈ Z : z ≤ α}.
We define

bαe :=

dαe dαe − α ≤
1
2 ,

bαc dαe − α > 1
2 .

This notation extends to vectors component-wise.

For S ⊆ Rn, we denote the linear, affine, convex, and conic hull by

lin(S) :=
{

m∑
i=1

λiai

∣∣∣∣∣ m ∈ Z≥1, ∀i ∈ [m] : ai ∈ S, λi ∈ R
}
,

aff(S) := s0 + lin(S − s0), s0 ∈ S,

conv(S) :=
{

m∑
i=1

λiai

∣∣∣∣∣ m ∈ Z≥1, ∀i ∈ [m] : ai ∈ S, λi ∈ R≥0,
m∑
i=1

λi = 1
}
,

cone(S) := {λa | λ ∈ R≥0, a ∈ conv(S)} ,

respectively, where the choice of s0 ∈ S does not matter for the definition of aff(S). The
(affine) dimension of a non-empty set S ⊆ Rn, denoted by dim(S), is the dimension of
the linear subspace lin(S − s0) for some s0 ∈ S, equivalently dim(S) := dim(aff(S)− s0)
for any s0 ∈ S. We extend this notion by dim(∅) := −1.

For x ∈ Rn and p ∈ R≥1, we denote the p-norm by ||x||p := (
∑n
i=1 |xi|p)

1/p. If p = 2, we
also call it the Euclidean norm. The infinity-norm is given by

||x||∞ := lim
p→∞

||x||p = max{|xi| : i ∈ [n]}.

If K ⊆ Rn is a convex compact, full-dimensional set with x ∈ K ⇔ −x ∈ K, we define

||x||K := min{r ≥ 0 : x ∈ rK}.

10

1.1. Notation for sets, vector spaces, and functions

The function ||·||K is also a norm. We extend the infinity-norm to matrices A ∈ Rm×n as

||A||∞ := max {|ai,j | : i ∈ [m], j ∈ [n]} .

We denote a ball of radius r > 0 around x ∈ Rn by

B(x, r) := {y ∈ Rn : ||x− y||2 ≤ r}.

The relative interior of a set S ⊆ Rn is the set

rel. int(S) := {x ∈ S : ∃ε > 0 : B(x, ε) ∩ S = B(x, ε) ∩ aff(S)}.

For a subspace L ⊆ Rn and a vector x ∈ Rn, the (orthogonal) projection onto L,
denoted by projL : Rn → L, is the unique linear map x 7→ arg .miny∈L dist(x, y),
where dist(x, y) =

√
(x− y)ᵀ(x− y) is the Euclidean distance. We can compute

the vector projL(x) as follows. If b1, . . . , br is an orthonormal basis of L, we set
projL(x) =

∑r
i=1(bibᵀi)x. If b1, . . . , br is any basis of L, we can compute the Gram-Schmidt

orthogonalization b†1, . . . , b†r, x† of b1, . . . , br, x; it holds that projL(x) = x − x† [Lan87].
The Gram-Schmidt orthogonalization can be computed in polynomial time.

A matrix U ∈ Zn×n is unimodular, if det(U) ∈ {±1}. By Cramer’s rule equivalently, a
matrix U ∈ Zn×n is unimodular if and only if U−1 ∈ Zn×n. It follows that the unimodular
matrices are in one-to-one correspondence to the group automorphisms of Zn. A matrix
of full row rank is said to be in Hermite normal form if it has the form (H, 0), where H
is a non-singular, lower triangular, non-negative matrix in which each row has a unique
maximum entry, located on the main diagonal of H. It can be shown that for each
rational matrix B, there exists a unimodular matrix U such that BU is in Hermite normal
form. Moreover, we call BU the Hermite normal form of B, and it is unique [Sch86,
Chap. 4].

For a map f : A → B and a subset S ⊆ A, we denote the restriction of f onto S by
f |S , i.e. f |S : S → B, x 7→ f(x). A continuous function f : R → R is called convex if
f(γa+ (1− γ)b) ≤ γf(a) + (1− γ)f(b) for a, b ∈ R, γ ∈ [0, 1]. A function f : Z→ Z is
called convex, if its piecewise linear extension f : R→ R,

f(x) :=

f(x) for x ∈ Z
(x− bxc)f(dxe) + (dxe − x)f(bxc) for x /∈ Z

is convex. A function f : Rn → R is called separable convex, if f(x) =
∑n
i=1 fi(xi) for

convex functions fi : R→ R.

11

Chapter 1. Basics

1.2 Polyhedra and linear programming

We assume that the reader is familiar with linear programming and polyhedra, and
will only recall the basics briefly. For more details, we recommend the books [KV18]
and [GLS93].

A polyhedron P ⊆ Rn is the intersection of finitely many half-spaces H = {x ∈ Rn :
aᵀx ≤ β}, where a ∈ Rn and β ∈ R. The set

rec(P) := {y ∈ Rn | ∀x ∈ P, λ ∈ R>0 : x+ λy ∈ P}

is called the recession cone of P . If there exists a radius R ∈ R such that P is contained
in a ball with radius R, we call P a polytope. A polyhedron is usually described by a
system of linear inequalities, P = {x ∈ Rn : Ax ≤ b} ⊆ Rn, where A ∈ Rm×n is called
the constraint matrix, and b ∈ Rm is the right hand side. An inequality aᵀx ≤ β is called
valid for P if it is satisfied by all x ∈ P . A hyperplane H = {x ∈ Rn : aᵀx = β} (for
a 6= 0) is called a supporting hyperplane for P , if the inequality aᵀx ≤ β is valid for
P and P ∩H 6= ∅. A set F ⊆ P is called a face of P if there exists a valid inequality
aᵀx ≤ β for P such that we have F = {x ∈ P : aᵀx = β}. If F /∈ {P, ∅}, we call it a
proper face. If F is a face with dim(F) = dim(P)− 1, then F is called a facet of P , and
the inequality aᵀx ≤ β is called a facet-defining inequality. If dim(F) = 0, i.e. F = {v}
is a single point, then v is called a vertex, and H is said to define the vertex v.

The importance of polyhedra is most exemplaric in linear programming, an area that is
concerned with minimizing a linear objective cᵀx, where x ranges over a polyhedron P .
The linear programming problem can be stated as follows.

Linear Programming Problem

Instance: A system Ax ≤ b with A ∈ Qm×n, b ∈ Qm,
describing a polyhedron P ⊆ Rn, a linear objective f(x) = cᵀx.

Task: i) Either assert that P is empty, or
ii) find a vector y ∈ P minimizing cᵀx over P , or
iii) find a vector z ∈ rec(P) such that cᵀz ≥ 1.

An instance of this problem is called a linear program (LP). If the minimum exists, we
call the LP bounded. By changing from cᵀx to −cᵀx, it can be seen that it does not
matter whether we maximize or minimize for linear objectives.

The function f(x) = cᵀx is called the objective function, or just objective. Considering
c to live in the dual space of Rn, this term might also refer to the vector c. The set
of feasible points, or solutions to the LP is the polyhedron P . A solution x? is called
optimal if for all x ∈ P , we have cᵀx? ≤ cᵀx.

12

1.3. Integer programming

While we assume here that P = {x ∈ Rn : Ax ≤ b} is given by a system of linear
inequalities, i.e. A ∈ Qm×n and b ∈ Qm, we can always introduce slack variables s such
that we obtain an equivalent system (A,1)

(x
s

)
= b, s ≥ 0. This form will be preferable

for Chapter 2. In the last Chapter, we will find ourselves in the situation that P is given
to us implicitly, i.e. we do not know the system Ax ≤ b. To distinguish this setting from
linear programming, we introduce the following problem, where we do not make any
assumptions on the representation of P .

Strong Optimization Problem

Instance: A polyhedron P ⊆ Rn and a vector c ∈ Qn.
Task: i) Either assert that P is empty, or

ii) find a vector y ∈ P maximizing cᵀx over P , or
iii) find a vector z ∈ rec(P) such that cᵀz ≥ 1.

In the late 70’s, Khachiyan applied the ellipsoid method to linear programming [Kha80].
Based upon this, it was shown that i) linear programming can be solved in polynomial
time, and ii) the strong optimization problem is equivalent to the following separation
problem.

Strong Separation Problem

Instance: A polyhedron P ⊆ Rn and a vector y ∈ Qn.
Task: Decide whether y ∈ P , and if not, find a hyperplane

separating y from P ; more exactly, find a vector c ∈ Rn

such that cᵀy > max{cᵀx : x ∈ P}.

As we need to discuss this relation in more detail in Section 4.1, we keep this statement
rather informal at this point, and refer to [GLS81] or [GLS93, Thm. 6.4.9] for details.

The result for linear programming was improved by Frank & Tardos, who showed that if
A is integral, we can find an optimal solution in time polynomial in n and the encoding
size of A alone, see [Tar86] and [FT87].

Whether the dependency on ||A||∞ in the running time can be avoided as well is an
interesting open problem.

1.3 Integer programming

We saw before that linear programming is concerned with finding an optimal point inside
a polyhedron P . However, if we want to find an optimal integral point in P , the problem
becomes much more difficult. As mentioned in the introduction, it belongs to Karp’s
classic 21 NP-hard problems. A good reference for the material presented in this section

13

Chapter 1. Basics

is the text book of Schrijver [Sch86].

The problem of our concern is as follows.

Integer Linear Programming Problem

Instance: A system of linear equations Ax = b with A ∈ Zm×n, b ∈ Zm,
lower and upper bounds l, u ∈ (Z ∪ {±∞})n on the variables,
a linear objective f(x) = cᵀx.

Task: Find a solution x? ∈ Zn to Ax = b, l ≤ x ≤ u minimizing f(x),
or assert that either no solution or no finite minimum exists.

An instance of this problem is called an integer linear program (ILP). If the minimum
exists, we call the ILP bounded. We will usually assume that l, u ∈ Zn, and discuss
infinite bounds in a specific subsection. Given an ILP I, the problem arising by omitting
the integrality constraints x ∈ Zn is called the LP relaxation of I.

Though classically, integer programming is restricted to linear objectives f(x) = cᵀx, the
results in this thesis also hold for separable convex objectives (cf. Section 1.1).

To distinct the cases of having a linear objective or a more permissive separable convex
objective, we introduce the following generalization of ILP.

Integer Programming Problem

Instance: A system of linear equations Ax = b with A ∈ Zm×n, b ∈ Zm,
lower and upper bounds l, u ∈ (Z ∪ {∞})n on the variables,
a separable convex objective f(x).

Task: Find a solution x? ∈ Zn to Ax = b, l ≤ x ≤ u minimizing f(x),
or assert that either no solution or no finite minimum exists.

We call an instance of this problem an integer program (IP). Again, if the minimum
exists, we call the IP bounded. We will usually assume that l, u ∈ Zn, and discuss infinite
bounds in a specific subsection. Given an IP I, the problem arising by omitting the
integrality constraints x ∈ Zn is called the continuous relaxation of I.

A specific IP will usually be presented in the following shape.

min f(x) (1.1)
s.t. Ax = b

l ≤ x ≤ u
x ∈ Zn

The first planks between integer linear programming and the geometry of numbers were

14

1.4. Lattices and convex bodies

laid by Lenstra. He showed that an integer linear program with a fixed number of
variables can be solved in polynomial time [Len83], which was soon after improved by
Kannan [Kan87]. Subsequently, a lot of research has been done to improve on this
running time, though the asymptotic running time of roughly nO(n) times a polynomial
in the input size remains the state of the art. Whether the dependency on n can be
reduced to 2n without an exponential increase in other parameters is one of the most
challenging questions in the area of integer programming.

As we are interested in solving integer programs w.r.t. a specific parameter, we also want
to introduce a specific class of integer programs for which the chosen parameter turns
out to be small. In particular, these are N -fold integer programs and their recursive
generalization tree-fold integer programs.

Definition 1.1. An integer program is called a (generalized) N -fold IP with parameters
r and s, if the constraint matrix has the specific shape

A =



A1 A2 · · · AN
A1

A2
. . .

AN


∈ Z(r+Ns)×Nt,

where Ai ∈ Zr×t, Ai ∈ Zs×t.

The notion “generalized” refers to the fact that initially, there were only two submatrices
Ai ≡ A and Ai ≡ A involved, which were repeated N times. If the diagonal matrices Ai
are themselves in n′-fold shape, we obtain the following recursive definition of tree-fold
IPs, introduced by Chen & Marx [CM18].

Definition 1.2. A (generalized) tree-fold integer program of depth 2 with parameters
τ1, τ2 is an N-fold integer program with parameters r = τ1 and s = τ2. For d ≥ 3, a
(generalized) tree-fold integer program of depth d with parameters τ1, . . . , τd is an N -fold
integer program with parameters τ1 and

∑d
i=2 τi, for which the matrices Ai are tree-fold

integer programs of depth d− 1 with parameters τ2, . . . , τd.

Especially n-fold IPs gained much attention in the last years, as they are quite well suited
to model scheduling problems, and led to new tractability-results in this and other areas.

1.4 Lattices and convex bodies

In this section, we give an overview on Euclidean lattices, convex bodies, and their
interplay, commonly known as the geometry of numbers, which was already studied

15

Chapter 1. Basics

by Minkowski. We refer to [Gru07] for a more detailed introduction. Though we
provide general definitions, we usually assume full-dimensional lattices throughout this
dissertation.

Lattices

A lattice Λ is a discrete additive subgroup of Rn, n ∈ Z>0. Equivalently, a lattice is the
set

Λ = Λ(B) := {Bz : z ∈ Zd} ⊆ Rn

for some matrix B ∈ Rn×d of full column rank. We say that Λ is the lattice generated by
B, and B is a basis for Λ.

Depending on the context, we might also understand a basis of Λ as simply the (ordered)
set of vectors {b1, . . . , bd}, where bi denotes the i-th column of B. If S ⊆ Qn is a finite set
of possibly linearly dependent vectors, then the set Λ(S) := {

∑
v∈S αvv : αv ∈ Z∀v ∈ S}

is a lattice, and also called the lattice generated by S. In general, this is not true if
S ⊆ Rn.

A lattice vector v ∈ Λ \ {0} is called primitive if αv /∈ Λ for all α ∈ (0, 1).

We define the rank or dimension of a lattice Λ as dim(Λ) := dim(lin(Λ)). If dim(Λ) = n,
we call Λ a full-dimensional lattice, or a lattice of full rank.

Two matrices B1, B2 generate the same lattice if and only if there exists a unimodular
matrix U such that B1 = B2U . Thus, the determinant of Λ,

det(Λ) :=
√

det(BTB)

is well-defined.

To keep the notation simple, we will always assume Λ to be full-dimensional from now
on, i.e. d = n.

The following geometric interpretations will be of use in Chapter 3. The fundamental
parallelepiped of a basis B = {b1, . . . , bn} is the parallelepiped

P(B) :=
{

n∑
i=1

αibi : 0 ≤ αi < 1
}
.

The volume of P(B) is det(Λ). It is easy to see that the lattice translates of P(B) tile
the space, i.e. Rn = ∪v∈Λ(v + P(B)).

16

1.4. Lattices and convex bodies

The dual lattice Λ? of a lattice Λ is defined as

Λ? := {y ∈ lin(Λ) : xᵀy ∈ Z ∀x ∈ Λ}.

This definition is independent of the basis of Λ we chose, but simple calculations reveal the
relation (Λ(B))? = Λ(B−ᵀ). The matrix D = B−ᵀ is called the dual basis corresponding
to B. The relation between the primal and the dual basis also reveals a geometric
trade-off between the primal and dual lattice. For every vector v 6= 0 in the primal
lattice, the dual lattice can be covered by equidistant hyperplanes orthogonal to v, where
the distance is 1

||v||2
. Moreover, if v is primitive, then each of these hyperplanes contains

lattice points. To phrase it differently, if Λ is dense in some direction, then Λ? has to
be sparse in that direction, and vice versa. Later in this section, we will quantify this
property also globally.

Two of the most prominent computational problems on lattices are the shortest vector
problem (SVP) and its inhomogeneous version, the closest vector problem (CVP).

Shortest Vector Problem (SVP)

Instance: A lattice basis B ∈ Qn×n.
Task: Find a vector v ∈ Λ \ {0} minimizing ||v||2.

Closest Vector Problem (CVP)

Instance: A lattice basis B ∈ Qn×n, a target vector t ∈ Qn.
Task: Find a vector v ∈ Λ minimizing ||t− v||2.

Though the problems were also considered for other norms, we will exclusively consider
the 2-norm in this dissertation. Both problems are known to be NP-hard if we consider
the ∞-norm. For the 2-norm, CVP is still NP-hard while we only know randomized
reductions from NP-hard problems to SVP [MG02]. The common – slightly imprecise –
phrasing is that SVP is NP-hard under randomized reductions. CVP is at least as hard
as SVP, meaning that there is a polynomial reduction from SVP to CVP. A reduction in
the other direction is not known.

Convex bodies

A convex body is a compact, convex set K ⊂ Rn of full dimension, dim(K) = n. Moreover,
K is called centrally symmetric if K = −K. The norm induced by a centrally symmetric
convex body K is defined as

||x||K := min{r ≥ 0 : x ∈ rK}.

17

Chapter 1. Basics

This generalizes the well-known p-norms, for instance if K is a hypercube of side length
2, then ||·||K = ||·||∞, and ||·||1 is induced by the standard cross-polytope. The polar of
a convex set K is defined as K? := {y ∈ Rn : yᵀx ≤ 1∀x ∈ K}. If K was a convex body
with 0 in its interior, then K? is again a convex body with 0 in its interior; if K is a
polyhedral cone, then K? is a polyhedral cone. In both cases, (K?)? = K.

For a full-dimensional lattice Λ ⊆ Rn, a convex body K ⊆ Rn, and k = 1, . . . , n, we
define the k-th successive minimum as

λk(K,Λ) := min{r > 0 : dim(rK ∩ Λ) ≥ k}.

Hence, λ1(K,Λ) is the length of a shortest non-zero vector of Λ w.r.t. ||·||K . If K is the
Euclidean ball, we might omit K as an argument and simply write λ1(Λ).

The covering radius of a lattice Λ for a convex body K is the smallest scaling of K so
that its translates cover the whole space. This is,

µ(K,Λ) := inf

r > 0 : Rn ⊆
⋃
v∈Λ

(v + rK)

 .

Geometry of numbers

Minkowski’s geometry of numbers was centered around the study of these parameters,
and in general, the interplay of lattices and their dual with convex bodies and their polar.
One of the most important results is Minkowski’s fundamental theorem, or Minkowski’s
fist theorem.

Theorem 1.3 (Minkowski’s first theorem, cf. [Gru07, Ch. 22]). Let Λ ⊆ Rn a full-
dimensional lattice, and K ⊆ Rn a convex body that is centrally symmetric. If vol(K) ≥
2n det(Λ), then K ∩ (Λ \ {0}) 6= ∅.

Another important result was shown by Hinčin [Hin48], and states that there is a trade-off
between the shortest vector of a lattice Λ and the covering radius of its dual. While
Hinčin was the first providing an upper bound on the product of these two quantities,
the best known upper bound is due to Banaszczyk [Ban96]:

Theorem 1.4. Let Λ ⊆ Rn be a full-dimensional lattice, and K ⊆ Rn a centrally
symmetric convex body. Then we have

λ1(K,Λ) · µ(K?,Λ?) ≤ O(n ln(n)).

A special convex body associated with a full-dimensional lattice Λ ⊆ Rn is the Voronoi

18

1.4. Lattices and convex bodies

cell. This is the set of all points at least as close to 0 as to any other lattice point:

V = VΛ := {x ∈ Rn : dist(x, 0) = dist(x,Λ)},

where the distance is measured in the 2-norm. The Voronoi cell has a lot of nice
properties. First, by reformulating (dist(x, y))2 = ||x− y||22, we obtain the equivalent but
more utilizable definition

V = {x ∈ lin(Λ) : 2vᵀx ≤ vᵀv ∀v ∈ Λ}.

It can be shown that V is a polytope whose facets are induced by lattice vectors. These
vectors are called the (strictly) Voronoi relevant vectors, or simply facet vectors. The
set of facet vectors will be denoted by FΛ. If 2vᵀx ≤ vᵀv defines any proper face, then
v ∈ Λ is called a weakly Voronoi relevant vector. Hence, we consider the set of Voronoi
relevant vectors to be contained in the set of weakly Voronoi relevant vectors. We can
characterize the (strictly/weakly) Voronoi relevant vectors in the following way.

Lemma 1.5 ([CS92, Thm. 2]). Let Λ ⊆ Rn be a full-dimensional lattice. A vector
v ∈ Λ \ {0} is weakly Voronoi relevant if and only if it is a shortest vector in the co-set
v + 2Λ. A vector v ∈ Λ \ {0} is strictly Voronoi relevant if and only if v and −v are the
only shortest vectors in the co-set v + 2Λ.

This lemma immediately implies that every Voronoi cell has at most 2(2n − 1) facet
vectors.

We can also define the Voronoi cell for any lattice point v. Due to the lattice structure
the Voronoi cell around v is just a translate, v + V. Furthermore, the Voronoi cell tiles
the space, i.e. Rn ⊆ ∪v∈Λ(v + V), where the intersection (v + V) ∩ (w + V) is always a
face. For two dimensions, this is depicted in Figure 1.1.

0
VΛ

Figure 1.1 – A lattice Λ with its Voronoi cell VΛ (shaded in gray), its Voronoi tiling, and
its Voronoi relevant vectors (boxed lattice points).

19

Chapter 1. Basics

In the light of the closest vector problem, the Voronoi cell turns out to be very useful.
By definition, a vector v ∈ Λ is a point closest to a target t ∈ Rn if and only if t ∈ v + V .
Hence, we only have to know in which Voronoi cell t is contained. The iterative slicer of
Sommer et al. [SFS09] makes use of this fact. Later, Micciancio & Voulgaris [MV13] and
also Dadush & Bonifas [DB15] refined these ideas. On a high level, we can follow the line
segment [0, t] and keep track of the Voronoi cell we are moving through. Whenever we
leave a Voronoi cell x+ V , we enter a new Voronoi cell y + V due to their tiling property.
The vector v = y−x is Voronoi relevant, and we can update x← x+ v. This is discussed
in more detail in Section 4.1.

1.5 Complexity

This section follows the presentation of [GLS93] and [KV18]. Assuming some background,
we remain rather informal. The part on parameterized complexity is oriented on [Cyg+15].
Another thorough source is [DF13].

For z, p ∈ Z, q ∈ Z>1 coprime to p, r := p
q , x ∈ Qn, and A ∈ Qm×n, we define the bit

complexity, or encoding size, as the number of bits needed to store the respective term,

size(z) := dlog(|z|+ 1)e+ 1, size(r) := size(p) + size(q),

size(x) := n+
n∑
i=1

size(xi), size(A) := nm+
m∑
i=1

n∑
j=1

size(ai,j).

For brevity, the size-function is also allowed to have several arguments, size(x1, . . . , x`) :=∑`
i=1 size(xi), where each xi is any of the aforementioned arguments. We give some

standard estimates for calculating with encoding sizes, see [KV18, Chap. 4] for proofs.
For rational numbers r1, . . . , rk, we have size(r1 · · · rk) ≤ size(r1) + · · · + size(rk) and
size(r1 + . . . rk) ≤ 2(size(r1) + · · · + size(rk)). For rational vectors y1, . . . , yk, we have
size(y1 + · · · + yk) ≤ 2(size(y1) + · · · + size(yk)) and size(yᵀ1y2) ≤ 2(size(y1 + size(y2)).
For any rational square matrix A we have size(det(A)) ≤ 2 size(A).

Theorem 1.6 ([KV18, Thm. 4.4]). Suppose the rational LP max{cᵀx | Ax ≤ b} has
an optimum solution. Then it also has an optimum solution x ∈ Qn with size(x) ≤
4n(size(A) + size(b), with components of size at most 4(size(A) + size(b)).

Throughout the whole thesis, we assume that the input for an algorithm consists of rational
numbers. We say that an algorithm consisting of elementary arithmetic operations only1

is polynomial, or runs in polynomial time, if there exist polynomials p1, p2 such that for
each instance of size x, the number of performed operations is at most p1(x), and the
and the size of all occurring numbers during the algorithm is bounded by p2(x). We say
that the algorithm is strongly polynomial if, for an input comprising n rational numbers,

1This is, addition, subtraction, multiplication, division, and comparison of two numbers.

20

1.5. Complexity

the algorithm is polynomial and the number of elementary arithmetic operations can be
bounded by a polynomial in n alone. An oracle for a problem P takes as an input an
instance of P , and outputs a correct answer. An oracle algorithm is an algorithm that
is allowed to queue an oracle for a subproblem. An algorithm is said to run in oracle-
polynomial time, if it is an oracle algorithm, and its number of arithmetic operations as
well as the number of oracle calls is bounded by a polynomial.

The complexity class P contains all problems for which a polynomial time algorithm
exists. The class NP is the class containing all decision problems which have the property
that every yes-instance I has a certificate of size polynomial in size(I) that can be
checked in polynomial time. The class co-NP is its complement; it contains all problems
for which the no-instances have a certificate that can be checked in polynomial time.
Clearly, P ⊆ NP. Whether the containment is strict is a famous open question (that is
widely believed to be true).

A decision problem P ∈ NP is NP-complete if for any other problem in NP there exists
a Turing reduction to P . A problem P (not necessarily in NP) is called NP-hard if
there is an NP-complete problem that can be Turing reduced to P . It follows that an
optimization problem is NP-hard if its associated decision problem is NP-complete. To
quote [GLS93] it is “quite customary convention” to also call every optimization problem
NP-complete for which the associated decision problem is NP-complete.

As we generally do not hope for a polynomial algorithm if the problem at hand is NP-hard,
the area of parameterized complexity is concerned with identifying how difficult NP-hard
problems really are, and which parameters make them hard.

An algorithm is said to be fixed-parameter tractable (FPT) parameterized by k, if there
is an integer α such that it runs in time f(k) · (size(x))α, where x is the input with
parameter k, and all numbers in the intermediate computations can be stored with
f ′(k)(size(x))α′ bits, where f ′ is again a computable function, and α′ ∈ Z≥1 is a constant.
An algorithm is said to be strongly FPT parameterized by k if, for an input comprising
n rational numbers, the algorithm is FPT and the number of elementary arithmetic
operations can be bounded by a function f(k) · (n)α, independent of the encoding size of
the instance (again, f is a computable function, and α ∈ Z≥1 a constant).

The complexity class FPT comprises all problems for which an FPT algorithm exists.
The problems therein are also called fixed-parameter tractable (FPT).

It follows that for every problem for which we have a strongly FPT algorithm, we also
have a strongly polynomial algorithm whenever the parameter k is fixed. Note that the
converse is not true: If the strongly polynomial algorithm has running time nk with
parameter k, we cannot separate the parameter from the size of the given instance.

In Chapter 2, we will be considering the integer programming problem parameterized by

21

Chapter 1. Basics

||A||∞ and the treedepth of the dual graph of A, tdD(A), as will be defined in Section 1.7.
This is, for an IP (1.1), we want to find an algorithm with running time

g(||A||∞ , tdD(A)) · poly(n, size(b, fmax, l, u)),

where g is any computable function, and fmax is the absolute value over all values the
objective f can assume.

1.6 The Graver basis

Graver bases were introduced by Jack E. Graver in 1975 [Gra75]. We follow the pre-
sentation in the book of De Loera, Hemmecke and Köppe [DHK13, Sec. 3], which also
provides several historical notes and references.

Let A ∈ Zm×n be a matrix, and kerZ(A) := ker(A) ∩ Zn = {x ∈ Zn : Ax = 0}. Two
vectors x, y ∈ Rn are conformal to each other if they are in the same orthant, i.e. if
xiyi ≥ 0 for i = 1, . . . , n. We write x v y if x and y are conformal and |xi| ≤ |yi| for all i.
If x, y ∈ kerZ(A), x v y and x /∈ {0, y}, observe that y − x v y, and we can decompose
y = x + (y − x) into the sum of two conformal vectors. If such a decomposition does
not exists, we call y ∈ kerZ(A) indecomposable. The set of indecomposable vectors in
kerZ(A) is called the Graver basis of A, denoted by G(A). Originally, Graver defined this
basis as the union of the Hilbert bases of the cones ker(A) ∩Q, where Q runs through
all 2n orthants. These two definitions are equivalent, and as a Hilbert basis of a rational
cone is finite, it follows that also |G(A)| is finite.

The Graver basis has some special properties that turn out to be very useful for our
approach. In particular, when combined with separable convex functions, we obtain a
certain superadditivity:

Lemma 1.7 (cf. [DHK13, Lem. 3.3.1]). Let f : D → R be a separable convex function
where D ⊆ Rn, and x, y ∈ Zn. The function f is superadditive, i.e. for a decomposition
y =

∑m
i=1 yi of y into conformal vectors yi v y, i = 1, . . . ,m, we have

f

(
x+

m∑
i=1

yi

)
− f (x) ≥

m∑
i=1

(f (x+ yi)− f (x)) . (1.2)

Before we state further practical properties of the Graver basis, we give an idea of
the proof. Due to separability, it suffices to show the inequality for one-dimensional
convex functions. There, it follows from convexity for the decomposition into two vectors,
y = y1 + y2. It extends to an arbitrary conformal decomposition of y ∈ Z by recursion.

Lemma 1.8 (cf. [DHK13, Sec. 3]). Let x0 be a feasible but not optimal solution to an
IP (1.1), and y ∈ kerZ(A) such that f(x0 +y) < f(x0). Then, we can write y =

∑
g∈S αgg

22

1.6. The Graver basis

as the conic combination of a set S ⊆ G(A) with coefficients αg ∈ Z≥1 subject to the
following conditions.

i) We have g v y for all g ∈ S.

ii) We have |S| ≤ 2n− 2.

iii) For any integers 0 ≤ βg ≤ αg, the point x0 +
∑
g∈S βgg is a feasible solution to

the IP.

iv) There exists a vector g ∈ S such that f(x0 + g) < f(x0).

v) There exists a pair (g, αg) ∈ S × Z such that

f(x0 + αgg)− f(x0 + y) ≤ 2n−3
2n−2(f(x0)− f(x0 + y)).

Let x be a feasible solution to an integer program.

Points iii) and iv) imply the test set property of the Graver basis: If we do not find
an improving direction y for a feasible solution x within the Graver basis, then x is
already optimal. Some sources also say that the Graver basis is an optimality certificate
for integer programming. This makes the Graver basis well suited for an augmenting
approach.

A feasible Graver step for x is a vector g ∈ G(A) such that x+ g is again feasible for the
IP. In the following, we will omit the reference “for x” for brevity. A feasible Graver
step g ∈ G(A) such that f(x+ g) < f(x) is called a Graver augmenting step. A graver
augmenting step g, together with an integer λ ∈ Z≥1 such that x+ λg is feasible with
f(x + λg) < f(x) is called a Graver augmenting step pair, where λ is called the step
length. A Graver augmenting step pair (g, λ) ∈ G(A)× Z≥1 is called a Graver-best step
pair if f(x+λg) ≤ f(x+µh) for every Graver augmenting step pair (µ, h) ∈ G(A)×Z≥1.

The Graver augmenting procedure for a feasible solution x of an IP (1.1) can be described
in one sentence: As long as it exists, find a Graver-best step pair (g, λ), and update
x← x+ λg. By Lemma 1.8, the Graver-best step pair (g, λ) for a feasible solution x0
satisfies

f(x0 + λg)− f(x?) ≤ 2n−3
2n−2 (f(x0)− f(x?)) (1.3)

for any optimal solution x?. By iteratively finding a Graver-best step pair, one eventu-
ally reaches an optimal solution. Resolving the recursive estimate (1.3), this leads to
O(n) log2(f(x0)− f(x?)) many iterations.

23

Chapter 1. Basics

1.7 Graphs associated with constraint matrices

Before we will consider graphs that are induced by constraint matrices, we will fix some
notation as used in [KV18]. A graph G = (V,E) will be understood as a pair of sets,
where V is the set of vertices and E ⊆ V × V \ {(v, v) : v ∈ V } is the set of edges. If the
sets V and E are not mentioned explicitly, we will use V (G) and E(G) to refer to them.
A tree is a connected graph without cycles, and a rooted tree F is a tree together with a
designated element r ∈ V (F), called the root of F . A rooted forest is a graph comprising
a collection of rooted trees. Again, if the root is not explicitly mentioned, we refer to it
with r(F). The degree-1 vertices v 6= r are called the leaves of F . Let (u, v) be an edge
in a tree with u being closer to the root than v. We say that u is a parent of v, and v
is a child of u. The height of a rooted tree F is the maximum number of vertices on a
root-leaf path, and denoted by height(F). If u, v ∈ V (F) are two vertices in a tree, then
there is a unique path between them, denoted by P (u, v) and understood as a subgraph,
i.e. it has an edge set and a vertex set.

A rooted tree F is called a binary tree if every vertex has at most two children. A binary
tree is called full if r(F) is the only vertex of even degree. A binary tree F is called
balanced if there is an integer d such that every leaf has either depth d or d− 1.

Let A ∈ Zm×n be a matrix from an IP (2.1). The primal graph of A is the graph
GP (A) = (V,E) with vertex set V = {1, . . . , n} corresponding to the variables of the
IP, and an edge for any two variables appearing together in a constraint. This is,
E = {(i, j) : ∃ k ∈ {1, . . . ,m} : Ak,i, Ak,j 6= 0}. The dual graph of A is the primal graph
of Aᵀ; i.e. the graph GD(A) = (V,E) with vertex set V = {1, . . . ,m} corresponding to
the rows of A, and edge set E = {(i, j) : ∃ k ∈ {1, . . . ,m} : Ai,kAj,k 6= 0}. An example
for a matrix with its dual graph is given in the first two pictures of Figure 1.2.

The tree-depth of a graph

According to [Rei+14], the graph parameter tree-depth was considered under different
names. As a textbook reference, we mention [NO12]. Given a graph G and a rooted forest
F with V (F) = V (G), consider the closure of F , which is defined by V (cl(F)) := V (F),
and

E(cl(F)) := {(u, v) ∈ E(F) : ∃ root-leaf path P : u, v ∈ E(P)}.

We say that u and v have an ancestral relationship in F if and only if (u, v) ∈ E(cl(F)).

Definition 1.9. The tree-depth of a graph G, denoted by td(G), is the minimum height
of a rooted forest F such that G ⊆ cl(F). A forest F for which G ⊆ cl(F) is called
a tree-depth decomposition of G, or td-decomposition of G for short. If additionally
height(F) = td(G), we call F an optimal td-decomposition.

24

1.7. Graphs associated with constraint matrices

As in our applications G stems from a matrix A, we will always assume that G is connected.
Otherwise, the matrix A decomposes into blocks where the rows (and columns) in each
block have disjoint support, and the integer program decomposes into integer programs
of smaller dimension. A good example for a td-decomposition is a DFS-tree (Depth-First
Search) on G. This example is special in the sense that it has the additional property
E(F) ⊆ E(G), which is in general not required. An example of the dual graph of a
matrix together with a td-decomposition is depicted in Figure 1.2.

While G ⊆ cl(F) is a rather global description, we can describe a td-decomposition with
a more local property. For every edge (u, v) ∈ E(G), the vertices u and v have to be in
an ancestral relationship in F meaning that either v is on a path from the root to u or
the other way around.

1
2
3
4
5
6



?a ?c
?a ?b ?d
?a
?a ?b

?c
?c ?d



1

2

3

4 5 6

1

2

3

4

5

6

Figure 1.2 – A matrix with its dual graph GD(A) and a td-decomposition of GD(A).

The entries ?x in column x ∈ {a, b, c, d} represent the non-zero elements. Column a

induces a clique on vertices {1, 2, 3, 4}, column c induces a clique on {1, 5, 6}, and column
d induces the edge (2, 6). Column b does not contribute any edges, as supp(b) ⊆ supp(a).
To the right, a possible td-decomposition is shown. Note that the dashed edge does
not exist in GD(A). It is easy to see that this small example is optimal. The td-
decomposition has tree-depth 4, and the first column induces a clique of size 4, providing
a lower bound on the tree-depth. For brevity, we will denote tdP (A) := td(GP (A))
and tdD(A) := td(GD(A)) for a given matrix A, and call these quantities the primal
tree-depth of A, dual tree-depth of A respectively.

While structured IPs such asN -folds and tree-folds (Definitions 1.1 and 1.2) are essentially
already encoded with a td-decomposition, we can compute a td-decomposition for a
general graph in time 2(td(G))2 ·|V (G)|, using an algorithm of Reidl et al. [Rei+14]. As this
running time will be dominated by other terms, we will usually assume a td-decomposition
to be given, and remember this step only when proving the main theorems.

25

Chapter 1. Basics

The topological height of a tree

We continue with some notions specific to our work. As mentioned before, we always
assume that the graph G is connected. In our applications, we are usually interested in
how often the tree branches out on a root-leaf path, i.e. the maximal number of vertices
with more than one child on any root-leaf path. To get a better grasp on this, we will
introduce the notion of topological height next.

In the following let F be a rooted tree. A vertex v ∈ V (F) is degenerate if it has exactly
one child. Otherwise, v is called non-degenerate (including the leaves). The topological
height of F is the height of the tree F ′ we obtain by contracting all degenerate vertices
into their children. Alternatively, the topological height is the maximum number of
non-degenerate vertices on any root-leaf path, denoted by th(F).

Let P = (r = v1, v2, . . . , vN) be a root-leaf path in F , and vj1 , . . . , vj` the ordered
sequence of non-degenerate vertices on this path, i.e. ji < ji+1. Then the first level height
of P in F , denoted by k1(P), is simply j1, and for 2 ≤ i ≤ `, the i-th level height is
ki(P) := ji − ji−1. To simplify notation later, we define ki(P) := 0 for i > `. As k1(P) is
actually independent of the root-leaf path P we choose, we also define k1(F) = k1(P).
For i = 2, . . . , th(F), we define

ki(F) = max
P : root-leaf path

ki(P).

An example is given in Figure 1.3. The depicted tree F on vertices {1, . . . , 7} has
topological height 3, the paths from the root vertex 1 to vertices 5 and 6 have level
heights 2, 1, 1, whereas P (1, 7) has level heights 2, 2.

1

2

3 4

5 6 7

Figure 1.3 – The levels of a rooted tree F with topological height 3. We have
(k1(F), k2(F), k3(F)) = (2, 2, 1), whereas height(F) = 4.

Our techniques will heavily depend on the recursive structure on a td-decomposition F .
If v is the unique non-degenerate vertex closest to the root, then we can decompose F
into a path P (r, v) together with rooted trees Fi, where the roots r(Fi) are the children
of v in F . If the graph stems from a matrix A, we can retract the decomposition onto
A. More specifically, since the subtrees Fi are different branches, there are no edges

26

1.7. Graphs associated with constraint matrices

between them. As vertices correspond to rows, and edges indicate two rows sharing a
variable, this means that the rows corresponding to V (Fi) are orthogonal to the rows
corresponding to V (Fj) for i 6= j.

Lemma 1.10. Let the dual graph of A ∈ Zm×n have a td-decomposition F with th(F) ≥ 2.
Interpreting V (F) = {1, . . . ,m} as the index-set for the rows of A, there exists a partition
of F into a path P and rooted trees F1, . . . , Fd, together with a partition of the index set
of the columns {1, . . . , n} = T1 t · · · t Td, such that the following conditions hold.

i) Each Fi is a td-decomposition of the submatrix Ai := AV (Fi)×Ti.

ii) We have th(Fi) ≤ th(F)− 1.

iii) Every non-zero entry of A appears either as an entry in one of the matrices Ai,
or in one of the matrices Ai := AV (P)×Ti.

Given A and F as an incidence matrix, these partitionings can be computed in time
O(m+ n).

By permuting rows and columns, we can use this lemma to assume that a given constraint
matrix is in the following block-shape:

A =



A1 A2 . . . Ad
A1

A2
. . .

Ad


. (1.4)

This shape will simplify the notation in later proofs. Note that if the matrices Ai have
all the same dimension, we are left with a generalized d-fold IP.

Proof of Lemma 1.10. Let v ∈ V (F) be the unique non-degenerate vertex closest to the
root r(F), and denote its children by r1, . . . , rd. For i = 1, . . . , d, define Fi to be the
subtree of F rooted in ri. More specifically, if we orient all edges in F away from r, then
V (Fi) is the set of all vertices that are reachable from ri (including ri itself), and Fi
is the induced subgraph on these vertices. Since v is a non-degenerate vertex on every
root-leaf path in F and not contained in any Fi, we have th(Fi) ≤ th(F)− 1.

Moreover, there is no edge in GD(A) between V (Fi) and V (Fj) for i 6= j. Thus, for
every column c there is at most one subtree Fi such that all row-indices corresponding
to non-zero entries are contained in V (P)∪ V (Fi). Hence, defining Ti to be the index set
of all columns that have non-zero entries within the rows of V (Fi) provides disjoint sets.

27

Chapter 1. Basics

However, as a column might have non-zero entries only in the rows with index in V (P),
we define

Ti := {j ∈ {1, . . . , n} : ∃` ∈ V (Fi) : A`,j 6= 0}, i = 2, . . . , d,
T1 := {j ∈ {1, . . . , n} : j /∈ ∪di=2Ti}.

Now, Points i) and ii) follow from the definition.

The running time is trivial, as we simply have to perform a BFS (Breadth-First Search),
starting in the root, and ending as soon as we find a vertex of degree at least 3. Its
children are the roots of the subtrees Fi.

The tree-width of a graph

Though we will be mainly concerned with the tree-depth of the dual graph of A, the
parameter tree-width of a graph will also be discussed. The tree-width of a graph plays
an important role in fixed-parameter tractable algorithms. Informally, it measures how
close to a tree a given graph is. Formally, we first define a tree-decomposition of a graph
G (not to be confused with a td-decomposition).

Definition 1.11. A tree F is a tree-decomposition of a graph G, if there exists a
mapping φ : V (F) → 2V (G) such that the following hold for vertices u, v ∈ V (G) and
nodes s, t ∈ V (F).

1. V (G) = ∪r∈V (F)φ(r).

2. If v ∈ φ(s)∩φ(t), then there exists an s-t-path in F , and v ∈ φ(w) for every vertex
w on this path.

3. If (u, v) ∈ E(G), then there exists a vertex w ∈ V (F) such that u, v ∈ φ(w).

The sets φ(r) ⊆ V (G), w ∈ V (F) are usually called the bags of F . The tree-width tw(G)
is the minimum over all tree decompositions F of maxv∈V (F) |φ(v)| − 1.

We can rephrase the conditions, saying that each edge of G has to be contained in at least
one bag of F , and all bags containing a certain vertex v ∈ V (G) have to be connected.
If G arises from a constraint matrix A, we will again write twP (A) := tw(GP (A)) and
twD(A) := tw(GD(A)) for short.

A path-decomposition of a graph G is a tree-decomposition in which the forest F is a
path. The path-width of G is the minimum width over all path-decompositions of G.

28

2 Integer programming
in variable dimension

Introduction

In this Chapter, we are concerned with solving an integer program (IP) of the form

min f(x) (2.1)
s.t. Ax = b

l ≤ x ≤ u
x ∈ Zn,

where f : Rn → R is a separable convex function with f |Zn : Zn → Z given by
a comparison oracle, A ∈ Zm×n, b ∈ Zm, and l, u ∈ Zn. We explicitly focus on finite
bounds, though our results can be extended to possibly infinite bounds l, u ∈ (Z∪{±∞})n,
as discussed in Section 2.5.3. The constraints l ≤ x ≤ u are sometimes called the box
constraints. Additionally, we will assume that A has a certain, sparse block structure.
To be more precise, we will assume that the dual graph GD(A) of A (formed by taking a
vertex for each row and connecting two vertices if the rows share a variable) is connected
and has small tree-depth, see Section 1.7 for the precise definitions. An example for IPs
with small dual tree-depth are N -fold integer programs, in which the constraint matrix
has the shape

A =



B B . . . B

D

D
. . .

D


.

The dimensions of the matrices B ∈ Zr×t, D ∈ Zs×t should be imagined as small, whereas
they have a large number N ∈ Z≥1 of copies. These instances occur when modeling
scheduling or social choice problems, to name two examples.

29

Chapter 2. Integer programming in variable dimension

Instead of solving the whole problem at once, we choose an augmenting approach, and
split it into two steps.

(1) Decide whether (2.1) is feasible, and find an initial feasible solution x.

(2) Run an augmenting procedure:

a) If it exists, find an augmenting vector y ∈ kerZ(A), i.e. find y such that x+ y

is feasible, and f(x+ y) < f(x).

b) As long as such a vector y exists, update x← x+ y and iterate.

Let us develop some general thoughts and outline the structure of this chapter. Assuming
for now that we have an initial solution x0, we can easily see that Step (2) terminates
eventually, by observing that the number of points with l ≤ x ≤ u is finite. However, if
we could choose y optimally, a single iteration would suffice. Therefore, we do not expect
that finding a globally optimal y is easier than the original problem. We will perform a
local search instead, i.e. we will only look for short vectors y ∈ kerZ(A). A crucial notion
for this local search will be the Graver basis G(A), as introduced in Section 1.6. Recall
that if the solution x0 is not optimal, then an augmenting step y (i.e. f(x0 + y) < f(x0))
can be found within the Graver basis.

Thus, if we know a bound on the length of all Graver basis elements g ∈ G(A), we only
need to consider vectors that are at most as long. This bound will be derived in Section 2.1,
and denoted by g1(A), depending only on ||A||∞ and the structure of A. This structure
is more involved than simply the tree-depth of GD(A), but to give a feeling for the order
of magnitude, the rather crude estimate g1(A) ≤ (2td(GD(A))+1 ||A||∞ + 1)2td(GD(A)) is
always satisfied.

Having this bound at our disposal, we turn our attention to the augmenting procedure
in Step (2). We will specify each iteration of the procedure and derive an auxiliary
IP that will help us finding a short augmenting vector y. This IP will be called the
augmentation IP, introduced in Section 2.2. In Subsection 2.2.1 we show how to solve
this IP. In Subsection 2.2.2 we show that we can find a sufficiently good augmenting
vector y by solving a small number of augmentation IPs, and analyze the convergence
of the procedure. Lastly, in Subsection 2.2.3, we will introduce a data structure called
convolution tree, allowing us to speed up the the procedure of repeatedly solving the
augmentation IPs. The main theorem of this first part can be stated as follows.

Theorem 2.1. Let an IP (2.1), together with a td-decomposition F of GD(A) and an
initial feasible solution x0 be given. Define ζl,u := ||u− l||∞. We can find an optimum
x? in time

n log2(n) · log2(f(x0)− f(x?)) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)) .

30

Moreover, the encoding size of all occurring numbers is bounded by h(size(A), height(F)) ·
poly(n, size(l, u)), where h is any computable function.

In order to obtain a full algorithm for integer programming, there are several things left
to discuss, split into distinct sections.

Consider first the term f(x0)−f(x?) in the running time. For separable convex functions,
this is classically estimated by fmax := max{|f(x)| : x feasible for (2.1)}, a number
that is assumed to be part of the input (for instance, cf. [DHK13, Thm. 3.4.1], [HOR13,
Lem. 4.2]). But if f is given to us as some reasonable function evaluable on Zn (say
f(x) =

∑n
i=1 2xi), or even by an oracle, this assumption might not be valid. If f(x) = cᵀx

is a linear function however, we can immediately limit fmax ≤ ||c||1 ||u− l||∞. Moreover,
by Frank & Tardos, we can replace c by an equivalent objective c′, for which we can
limit ||c′||∞ in terms of ||l||∞, ||u||∞, and n alone [FT87]. In their spirit, we will derive a
similar bound for separable convex objectives and improve upon their bound for linear
objectives in Section 2.3. An important observation for achieving this goal is that our
algorithm only needs a comparison oracle, hence we only need existence of an alternative
objective. It is also shown that the bounds we get are essentially tight.

But what if the box constraints themselves are already rather large (Section 2.4)? The
most prominent approach is to deploy a proximity result. Informally, these are results
showing that to any optimal solution x? ∈ Rn of the LP relaxation (or continuous
relaxation, if f is separable convex), there is an optimal integral solution z? ∈ Zn near by,
i.e. we can limit the quantity ||x? − z?||1. We show a novel proximity result for the case
of small tree-depth, and deploy algorithms in the literature to find the fractional solutions
in Subsection 2.4.1. Since it is sometimes desirable to avoid solving the continuous
relaxation, we will also present another approach. Let us rephrase the problem for a
moment. Given a polytope P and the lattice Zn, find a point in P ∩ Zn minimizing the
objective function. For some large enough k ∈ Z≥0, it is possible to first find a solution
x̂ that is optimal within the sparser lattice 2kZn, and then refine this solution, obtaining
a point x? that is optimal within the lattice 2k−1Zn. As it turns out, for the solutions x̂
and x? another version of our proximity result holds, allowing us to limit the search space.
After running k ∈ O(log2(||u− l||∞)) iterations we end up with an optimal solution in
the initial lattice Zn, i.e. for the initial IP (Subsection 2.4.2).

In Section 2.5, we will discuss the initial assumptions. This is, in Subsection 2.5.1, we will
see that finding an initial feasible solution is not really harder than optimizing. This is
done via the common approach of introducing slack variables, and it is left to show that
we do not change the parameters involved. We will also discuss the case of infinite bounds
l, u ∈ (Z ∪ {±∞})n. In this case, we first have to know whether our IP is bounded. This
problem is not decided automatically in our augmenting procedure, and the situation
differs quite drastically for linear or separable convex objectives. See Subsection 2.5.2 for
the discussion. If the IP at hand is bounded, we can guess the distance ||x0 − x?||∞ of x0

31

Chapter 2. Integer programming in variable dimension

to a closest optimal solution x?, and replace the dependency on ||u− l||∞ by ||x0 − x?||∞.
For the guessing, we have to accept an additional factor of log2(||x0 − x?||∞), giving a
somewhat output-sensitive running time. For linear objectives, however, we can derive
artificial bounds on an optimal solution x in terms of the entries in b and the finite entries
in l, u. See Subsection 2.5.3 for details.

The developed tools are used in Section 2.6 for obtaining algorithms for the entire problem.
We discuss distinct cases of given IPs, e.g. whether the objective is linear or separable
convex, or whether we have finite or infinite bounds, and prove the running times for
these cases. Using all of our results from before, i.e. the proximity bound of Section 2.4.1
and the reduced objective function shown in Section 2.3.1, we are even able to provide a
strongly polynomial parameterized algorithm for a wide class of integer programs, namely
tree-fold ILPs as introduced in Section 1.7.

To give an idea of the efficiency of the algorithms one can achieve with this toolbox, we
state two of them in the following theorem.

Theorem 2.2 (cf. Theorem 2.38). Let an IP (2.1) be given,

g1(A) ≤ (2td(GD(A))+1 ||A||∞ + 1)2td(GD(A))

an upper bound for the `1-norm of the Graver-basis elements, and define

ζl,u := ||u− l||∞ and fmax := max
x,y feasible

(|f(x)− f(y)|).

We can decide feasibility, and find an optimum solution if it exists, in time

O(n(log2(n))2) · log2(fmax) · (log2(ζl,u))2 · (g1(A) ||A||∞)O(tdD(A)).

In particular, integer programming with a separable convex objective is fixed-parameter
tractable with respect to the parameters tdD(A) and ||A||∞.

If the objective is linear, we can decide feasibility and find an optimal solution if it exists,
in time

O(n2(log2(n))3) · (g1(A) ||A||∞)O(tdD(A)) + LP,

where LP denotes the time needed to solve the continuous relaxation. In particular,
tree-fold integer linear programs can be solved in strongly fixed-parameter tractable time.

Before we close this chapter, there are two more Sections. In Section 2.7, we discuss our
choice of the objective function and other parameters for integer programming. This
section is rather giving an overview on the literature than presenting new results. In
Section 2.8, we provide lower bounds on the running time for integer programming,
assuming the exponential time hypothesis.

32

2.1. An upper bound for the Graver basis elements

2.1 An upper bound for the Graver basis elements

In this section, we show that the l1-norm of the Graver basis elements of a constraint
matrix A can be limited in terms of the tree-depth of GD(A), which is a crucial ingredient
to our running time analysis.

The result will heavily rely on the following Proposition. In its first, weaker variant it
was shown by Steinitz [Ste16], the bounds in the Lemma below were shown by Grinberg
& Sevast’yanov [GS80].

Lemma 2.3 (Steinitz’ Lemma, [Ste16], [GS80]). Let ||·|| be any norm on Rm, and
x1, . . . , xn ∈ Zm such that ||xi|| ≤ 1 for i = 1, . . . , n, and

∑n
i=1 xi = 0.

Then there exists a permutation π ∈ Sn such that

∀k ∈ {1, . . . , n} :
∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

xπ(i)

∣∣∣∣∣
∣∣∣∣∣ ≤ m.

We will first show the bound on the Graver basis elements for a generic matrix. In order
to obtain a bound on the Graver basis elements for a matrix with small tree-depth, we
will use recursion on th(F) for a td-decomposition F of GD(A). Observe that th(F) = 1
implies that height(F) = m. Therefore, the following lemma is the induction basis.

Lemma 2.4. Let A ∈ Zm×n, n,m ≥ 1. Then, for any x ∈ G(A), we have

||x||1 ≤ (2m ||A||∞ + 1)m.

Proof. Let g ∈ G(A), and denote the i-th column of A by Ai. We will define a sequence
of vectors xi ∈ Zm, i = 1, . . . , ||g||1 in the following manner. If gi ≥ 0, we add gi copies
of Ai to the sequence. If gi < 0, we add −gi copies of −Ai to the sequence. Hence,

Ag =
m∑
i=1

gi
|gi|

(Ai + · · ·+Ai︸ ︷︷ ︸
|gi| times

) =
||g||1∑
i=1

xi = 0 with ||xi||∞ ≤ ||A||∞ ,

and by the Steinitz Lemma there is a permutation π with
∣∣∣∣∣∣∑k

i=1 xπ(i)

∣∣∣∣∣∣
∞
≤ m ||A||∞ for

all k = 1, . . . , ||g||1.

For the sake of contradiction, assume that ||g||1 > (2m ||A||∞ + 1)m. Since we have

|{x ∈ Zn : ||x||∞ ≤ ||A||∞}| ≤ (2m ||A||∞ + 1)m,

33

Chapter 2. Integer programming in variable dimension

there are two indices k1 < k2 such that

k1∑
i=1

xπ(i) =
k2∑
i=1

xπ(i) ⇔
k2∑

i=k1+1
xπ(i) = 0.

Define a vector y ∈ Zn such that Ay =
∑k2
i=k1+1 xπ(i) = 0 by setting

yi = |{j ∈ {k1 + 1, . . . , k2} : xπ(j) = Ai}| − |{j ∈ {k1 + 1, . . . , k2} : xπ(j) = −Ai}|.

Observe that due to the construction of the xi, the vector y satisfies y v g. Hence,
we can decompose g = y + (g − y) into the sum of two conformal vectors, which is a
contradiction to g ∈ G(A), proving the claim.

We are now ready to prove the main result of this section.

Proposition 2.5. Let A ∈ Zm×n, A 6= 0, F a td-decomposition of its dual graph, and
define

K := max
P :root-leaf path

th(F)∏
i=1

(ki(P) + 1) , g1(A) := (3K ||A||∞)K−1. (2.2)

Then ||x||1 ≤ g1(A) for all x ∈ G(A).

Remark 2.6. Though the definition of g1(A) depends on the td-decomposition F we
choose, we will not list F as an argument for brevity. The reason for this is that unless
we explicitly assume a td-decomposition F to be given, the proofs work for any bound
g1(A) on the Graver basis elements.

Proof of Proposition 2.5. We will induct on the topological height of F . In the base case,
th(F) = 1, we have K = k1(F) + 1 = m+ 1, and can simply use Lemma 2.4:

||x||1 ≤ (2m ||A||∞ + 1)m ≤ (3K ||A||∞)K−1.

For the induction step, recall that by Lemma 1.10, we can assume that A is in block-
shape (1.4) with matrices Ai ∈ Zk1×ti and Ai ∈ Zsi×ti for i = 1, . . . , d, and a correspond-
ing decomposition of F into a path P and td-decompositions F1, . . . , Fd corresponding
to the matrices A1, . . . , Ad.

Accordingly, we can decompose a vector g ∈ G(A) into bricks gi ∈ Zti , i.e. gᵀ =

34

2.2. Iterative improvement

(gᵀ1 , g
ᵀ
2 , . . . , g

ᵀ
d). With this notation, we have

Ag =



A1 A2 . . . Ad
A1

A2
. . .

Ad




g1
g2
...
gd

 =



∑d
i=1Aigi
A1g1
A2g2
...

Adgd


=


0
0
...
0

 .

Since gi ∈ kerZ(Ai) for every i, we further decompose every gi = ui,1 + ui,2 + · · ·+ ui,ri
into a sequence of ri conformal vectors ui,j ∈ G(Ai). Consider the subsystem

d∑
i=1

Aigi =
d∑
i=1

Ai

 ri∑
j=1

ui,j

 = 0 ∈ Zk1 .

Using the induction hypothesis (observe that th(Fi) ≤ th(F)−1, we have ||ui,j || ≤ LK′ :=
(3 ||A||∞K ′)K

′−1 for all i, j in range. For i = 1, . . . , d, and for j = 1, . . . , ri, define vectors
vi,j := Aiui,j ∈ Zk1 , and observe that ||vi,j ||∞ ≤ ||A||∞ ||ui,j ||1 ≤ ||A||∞ LK′ . This yields
a sequence

d∑
i=1

r(i)∑
j=1

vi,j = 0.

Arguing as in the proof of Lemma 2.4, we see that we can have at most (2 ||A||∞ k1LK′ +
1)k1 vectors vi,j , therefore at most that many vectors ui,j . More formal, by Steinitz there
is an ordering π : {1, . . . ,

∑d
i=1 r(i)} →bij {(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ r(i)} such that for

every 1 ≤ ` ≤
∑d
i=1 ri we have∣∣∣∣∣

∣∣∣∣∣∑̀
i=1

vπ(i)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ k1 ||A||∞ LK′ .

As there are only (2k1 ||A||∞ LK′ + 1)k1 integer vectors in this range, having more
would imply that we can decompose g into the sum of conformal elements, which is a
contradiction to g ∈ G(A).

Since we have ||ui,j ||1 ≤ LK′ , we obtain

||g||1 ≤ LK′(2 ||A||∞ k1LK′ + 1)k1 ≤ (3 ||A||∞K)K−1.

This finishes the proof.

2.2 Iterative improvement

This section is dedicated to Step (2) of the algorithm, which we briefly recall.

35

Chapter 2. Integer programming in variable dimension

(2) Run an augmenting procedure:

a) If it exists, find an augmenting vector y ∈ kerZ(A), i.e. find y such that x+ y

is feasible, and f(x+ y) < f(x).
b) As long as such a vector y exists, update x← x+ y and iterate.

By Lemma 1.8, there always exists a Graver augmenting step pair (α, g) such that

f(x0 + αg)− f(x?) ≤ 2n−1
2n (f(x0)− f(x?)).

If we augment with the vector y := αg in every iteration, this would lead toO(n log2(f(x0)−
f(x?))) iterations, where x? is any optimal solution. Usually, such an augmenting step
pair was found by solving the following system for each fixed λ = 1, 2, 3, . . . , ||u− l||∞,
where f, x,A, l and u are taken from the initially given IP:

min f(x+ λg) (2.3)
s.t. Ag = 0

l ≤ x+ λg ≤ u
g ∈ G(A)

However, this is not an IP according to our definition. In particular, the set of feasible
integer points might not be representable as the intersection of a polyhedron with the
lattice Zn. Luckily, for all practical purposes, we do not need to find an optimal Graver-
best step pair; in order to show convergence, any feasible step pair (y, λ) ∈ kerZ(A)×Z≥1
with f(x+ λy) ≤ f(x+ µg) for all (g, µ) ∈ G(A)×Z≥1 suffices, as the improvement is at
least as good as with Graver-best step pairs.

Recall that ||g||1 ≤ g1(A) for all g ∈ G(A), and consider the following augmentation IP
derived from (2.1) for x and λ:

min f(x+ λy) (2.4)
s.t. Ay = 0⌈

l − x
λ

⌉
≤ y ≤

⌊
u− x
λ

⌋
||y||1 ≤ g1(A)

y ∈ Zn

By setting l′ =
⌈
l−x
λ

⌉
, u′ =

⌊
u−x
λ

⌋
and f ′(y) = f(x+λy), this is an integer program in our

sense. If we are given a comparison oracle for f , a comparison oracle for f ′(y) := f(x+λy)
for some fixed x can be implemented easily and an optimal solution y provides an
augmenting step pair (λ, y).

This IP will be quite important to our discussion on its own, i.e. independent of the

36

2.2. Iterative improvement

precise values of λ and x. Therefore, we will often omit the reference to x and λ, and
call an IP of the following, general shape an augmentation IP:

min f(y) (2.5)
s.t. Ay = 0

l ≤ y ≤ u
||y||1 ≤ g1(A)

y ∈ Zn

Not that we will only consider this IP on its own, i.e. the vectors l and u do not refer
any more to some underlying IP.

In Subsection 2.2.1, we are concerned with solving an augmentation IP (2.4) derived for
some x and λ. To be precise, we will not compute an optimal solution y?, but a vector
ŷ such that the box constraints are satisfied, we have f(x0 + ŷ) ≤ f(x0 + y?), but we
might have ||ŷ||1 > g1(A). However, as this constraint was only introduced to reduce the
search space, we can only benefit from this relaxation.

In Subsection 2.2.2, we limit the total number of augmentation IPs we have to solve. First,
we limit the number of augmentation IPs we have to solve for finding one augmenting
step pair. In contrast to solving one augmentation IP for every possible value of λ ∈ Z≥1,
we will only guess λ ∈ {2k : k ∈ Z≥0}. This will reduce the quality of the augmenting
pair we find roughly by a factor of 2, whereas the number of augmentation IPs we have to
solve decreases logarithmically. Together with limiting the convergence of our approach,
we can informally conclude that solving an (2.1) can be reduced to solving

O(n · log2(fmax) · log2(||u− l||∞))

augmentation IPs, where fmax := max{|f(x)− f(y)| : x, y feasible}.

Thereafter, we will see that we do not have to solve every augmentation IP from scratch,
but can set up a specific data structure that allows us to retrieve an augmenting vector
y easily. As ||y||1 is bounded by g1(A) independent of the dimension, after augmenting
x← x+y only a small number of constraints li ≤ yi ≤ ui in the augmentation IP changes
for the next iteration. A convolution tree will allow us to retrieve an optimal vector y
for given bounds l, u efficiently. After performing the augmentation x← x+ y we can
moreover update the convolution tree to the new bounds l− y, u− y in time log(n). This
allows us to decrease the cost for one augmentation from linear in n to log2(n).

37

Chapter 2. Integer programming in variable dimension

2.2.1 Solving the augmentation IP

This section is dedicated to solving an augmentation IP (2.5). The proof is quite similar
to the dynamic programming approach of Papadimitriou [Pap81], but taking advantage of
our bound g1(A) for Graver basis elements, as well as the structure of a td-decomposition
F .

Proposition 2.7. Given an augmentation IP (2.5), together with a td-decomposition F
of GD(A), we can find a vector y? ∈ kerZ(A) such that l ≤ y? ≤ u, and

f(y?) ≤ min{f(y) | y feasible for (2.5)}

in time
O(n)(2 ||A||∞ g1(A) + 1)2 height(F).

Proof. We will show a slightly stronger statement. Given two integer vectors s, t ∈ Zm,
we will construct a digraph G with source s and sink t with the following two properties.
First, any s-t path in G corresponds to an integer vector y ∈ Zn such that s+Ay = t,
and the cost of the path is f(y), where f is already the objective of the augmentation IP.
Second, for every vector g ∈ G(A) such that s+Ag = t, there exists a path corresponding
to g. Thus, if s = t = 0, a shortest path corresponds to a vector y ∈ kerZ(A) such that
f ≤ f(g) for all g ∈ G(A). As the proof works by induction on the topological height,
the generalization to arbitrary vectors s, t is necessary for the induction step. The time
complexity is then the time complexity for constructing the graph and finding a shortest
path.

The digraph G will be constructed recursively, starting with the case th(A) = 1 where
A is just considered as an arbitrary m × n-matrix. In this case, the vertex set of G
comprises n+ 1 layers V (G) = L0 ∪ · · · ∪ Ln, and all edges are between two consecutive
layers, i.e. E(G) ⊆ ∪ni=1(Li−1 × Li). For every coordinate 1 ≤ i < n, each Li is a copy of
the point set {x ∈ Zm : ||x||∞ ≤ ||A||∞ g1(A)}. The outer layers L0 and Ln will contain
a single point s ∈ Zm, t ∈ Zm respectively. For a pair (u, v) ∈ Li−1 × Li, we put an edge
e = (u, v) if there exists a value yi ∈ [li, ui] ∩ Z such that v = u+ yiai, where ai is the
i-th column of A. For every edge e, we will store the value yi and the cost fi(yi) with
respect to the separable convex function f =

∑n
i=1 fi we want to minimize. The graph is

depicted in Figure 2.1.

An s-t-path P with (ordered) edge set E(P) = {e1, . . . , en} in G corresponds to a vector
(y1, . . . , yn) such that Ay =

∑n
i=1 yiai = t − s. If we set s = t = 0 and observe that

||Ay||∞ ≤ ||A||∞ ||y||1, it is easy to see that for every vector g ∈ G(A), the corresponding
path exists in G. Thus, a vector y corresponding to a shortest path satisfies f(y) ≤ f(g)
for all g ∈ G(A). The induction hypothesis is finished by estimating |V (G)| ≤ (n −
1)(2 ||A||∞ g1(A)+1)m+2 and |E(G)| ≤ (n−2)(2 ||A||∞ g1(A)+1)2m+2(2 ||A||∞ g1(A)+
1)m.

38

2.2. Iterative improvement

L0

s ∈ Zm

L1 L2

· · ·

Ln−1

⊆ Zm⊆ Zm ⊆ Zm

Ln

t ∈ Zm
u

vy1a1

= u− s
y2a2

= v − u

Figure 2.1 – The graph we construct to solve the augmentation IP if th(F) = 1.

For the induction step, let F be a td-decomposition of GD(A), and v0 the non-degenerate
vertex closest to the root. We denote with d the number of children of v, the children
themselves with v1, . . . , vd, and the corresponding subtrees rooted in them with F1, . . . , Fd.
Recall that k1 denotes the number of vertices of the root-v0 path in F . By Lemma 1.10
assume the matrix A to be in block-shape (1.4), with matrices Ai ∈ Zk1×ni in the upper
block row, and matrices Ai ∈ Z|V (Fi)|×ni on the block-diagonal below, where furthermore
th(Fi) ≤ th(F)− 1 and height(Fi) ≤ height(F)− k1 for all i in range.

Let y ∈ Zn be such that Ay = 0 and ||y||1 ≤ g1(A). We can decompose y into bricks
yi ∈ Zni according to the matrices Ai, and obtain

d∑
i=1

Aiyi = 0 ∈ Zk1 .

Instead of corresponding to the columns of the whole matrix A, the layers Li will now
correspond to the submatrices Ai, and instead of edges, we will recursively add subgraphs
between two layers later. Again, the first layer will contain a single point L0 = {s}, as
well as the last layer Ld = {t}. The layers L1, . . . , Ld−1 in between will be copies of the
set {x ∈ Zk1(F) : ||x||∞ ≤ ||A||∞ g1(A)}, thus in particular independent of the choice of
s and t.

Consider a pair of points (u, v) ∈ Li−1×Li. The connection between them shall represent
a vector yi ∈ Zni such that Aiyi = v − u, and Aiyi = 0. If we pick a path through
all layers using these connections, then we obtain a vector yᵀ = (yᵀ1 , . . . , y

ᵀ
d) such that

Ay = t− s. However, instead of connecting u and v by an edge, we will recursively glue a
graph Gi−1,i between the two layers Li−1 and Li such that any path from u to v through
Gi−1,i is a feasible vector yi.

Turning our attention to the matrix
(Ai
Ai

)
∈ Zhi×ni , where hi ≤ height(A), we see

that the td-decomposition Fi extended by a path P (r(F), r(Fi)) on k1(F) vertices is a
feasible td-decomposition F i with root r(F i) = r(F). Moreover, this td-decomposition
satisfies th(F i) =≤ th(F) − 1 as we only extended Fi by a path, and we can use

39

Chapter 2. Integer programming in variable dimension

induction. Construct a graph Gu,v whose first layer is the point
(u

0
)
∈ Zk1 × Zhi−k1 and(v

0
)
∈ Zk1 × Zhi−k1 such that any

(u
0
)
-
(v
0
)
path in Gu,v corresponds to a vector y such that(u

0
)

+
(Ai
Ai

)
y =

(v
0
)
. We glue this graph between layers Li−1 and Li by identifying u ∈ Li−1

with its zero-extension
(u

0
)
, as well as v ∈ Li with

(v
0
)
. As noted before, the inner layers

of Gu,v are independent of u and v, i.e. for a different pair (u′, v′) ∈ Li−1×Li, the graphs
Gu′,v′ and Gu,v will coincide except their start- and endpoint.

Hence we only have to insert a single graph Gi−1,i between two consecutive layers Li−1
and Li, and connect the vertices u ∈ Li−1 and v ∈ Li appropriately to the layers of
Gi−1,i.

It remains to analyze the size of the constructed graph. For i ∈ {1, . . . , d − 1}, every
layer Li contains (2 ||A||∞ g1(A) + 1)k1 vertices. Between two layers Li−1 and Li, we add
a graph Gi−1,i for the matrix

(Ai
Ai

)
∈ Zheight(F)×ni , which has

|V (Gi−1,i)| ≤ (ni − 1)
(

2
∣∣∣∣∣
∣∣∣∣∣
(
Ai
Ai

)∣∣∣∣∣
∣∣∣∣∣
∞
g1

((
Ai
Ai

))
+ 1

)hi+k1

≤ (ni − 1)(2 ||A||∞ g1(A) + 1)height(F)

by induction. In total, we obtain at most

|V (G) \ {s, t}| ≤ (n− d)(2 ||A||∞ g1(A) + 1)height(F) + (r − 1)(2 ||A||∞ g1(A) + 1)k1(F)

≤ (n− 1)(2 ||A||∞ g1(A) + 1)height(F)

vertices. As every layer (either a layer Li or a layer from the graphs Gi−1,i) has at most
(2 ||A||∞ g1(A) + 1)height(F) vertices and there are n− 1 inner layers, the number of edges
is limited by

|E(G)| ≤ (n− 2)(2 ||A||∞ g1(A) + 1)2 height(F) + 2(2 ||A||∞ g1(A) + 1)height(F).

Thus, a BFS on the graph takes time at most O(n)(2 ||A||∞ g1(A) + 1)2 height(F), finishing
the proof.

Remark 2.8. This proposition shows that we can find an augmenting step that is at
least as good as the optimal solution of the augmentation IP. If we are really interested in
finding an augmenting step y satisfying ||y||1 ≤ g1(A), we could achieve this by increasing
the dimension by one for keeping track of the 1-norm for each path in the graph.

2.2.2 Optimizing via the augmentation IP.

Let an IP (2.1) with initial feasible solution x0 be given. We saw in Lemma 1.8, Point
v) that the Graver-best step pair always yields a sufficient improvement. However, as
the Graver basis itself has a rather impractical structure (e.g., it is lacking a notion of

40

2.2. Iterative improvement

convexity), we will instead search for a vector y with ||y||1 ≤ g1(A), together with a
step length λ = 2k, k ∈ Z≥1 such that f(x+ λy) is as small as possible instead. Clearly,
||y||1 ≤ g1(A) is satisfied by all Graver basis elements. Moreover, it is crucial to observe
that we can restrict the search to a rather moderate amount of values for λ. If we restrict
λ to powers of 2, the convergence only loses a factor of 2, while the number of values for
λ decreases logarithmically.

We will first show that we can find one augmenting step pair of sufficient quality by
solving not too many augmentation IPs. Then, we will limit the number of iterations we
need. Together this yields a total number of augmentation IPs we have to solve.

Finding one augmenting step pair.

Lemma 2.9. Let an IP (2.1) be given, together with a feasible solution x0. Denote with
x? any optimal solution. There exists a pair (k, y) ∈ Z≥0 × Zn with ||y||1 ≤ g1(A) such
that x0 + 2ky is feasible for (2.1) and

f(x0 + 2ky)− f(x?) ≤ 4n−5
4n−4(f(x0)− f(x?)).

Moreover, we can find such a pair by either solving, or applying Proposition 2.7 to each
augmentation IP (2.4) derived for x0 and λ = 2k, k = 0, 1, . . . , blog2(||u− l||∞)c.

Proof. We first show the existence of a sufficient pair (2k, y). Consider a conformal
decomposition

x? − x0 =
∑
g∈S

αgg (2.6)

into at most 2n − 2 Graver basis elements S ⊆ G(A). By Lemma 1.8 Point v), there
exists an element g ∈ S with

f(x0 + αgg)− f(x?) ≤ 2n−3
2n−2 (f(x0)− f(x?)) .

There exists a unique integer k ∈ Z≥0 such that 2k ≤ αg < 2k+1. Hence, we can write
2k = γαg for some rational number 1

2 < γ ≤ 1. By convexity, we obtain

f(x0 + 2kg)− f(x?) ≤ (1− γ)f(x0) + γf(x0 + αgg)− γf(x?)
= γ (f(x0 + αgg)− f(x0)) + (f(x0)− f(x?))
≤ γ 1

2n−2 (f(x?)− f(x0)) + (f(x0)− f(x?))

≤ 1
4n−4 (f(x?)− f(x0)) + (f(x0)− f(x?))

≤ 4n−5
4n−4 (f(x0)− f(x?)) .

Choosing y = g shows the first part. Moreover, observe that y is a feasible solution to

41

Chapter 2. Integer programming in variable dimension

the augmentation IP (2.4) derived for x0 and λ = 2k. Hence, f(x0 + 2ky?) ≤ f(x0 + 2ky)
for y? being either an optimal solution to the augmentation IP or a vector obtained
by Proposition 2.7. This shows that we can find a desired pair (k, y) by considering a
sequence of augmentation IPs, and it remains to limit k.

But since every augmenting vector y has integral coefficients, and the bounds are finite,
the step-length can be at most ||u− l||∞, thus k ≤ log2(||u− l||∞).

Limiting the number of improving steps.

Knowing that we have to solve log2(||u− l||∞) augmentation IPs to find one improving
step, we can iterate this procedure and find a sequence of solutions with improving
objective value. We are now concerned with the question how fast this sequence converges.

Lemma 2.10. Let an IP (2.1) be given, together with a feasible solution x0. Let (xi)i∈Z≥1

be a sequence of solutions such that for each i ∈ Z≥1, we have

f(xi+1)− f(x?) ≤ 4n−5
4n−4 (f(xi)− f(x?)) .

Then, for k ≥ (4n− 5) log2 (f(x0)− f(x?)), we have f(xk) = f(x?).

Using another estimate in the following proof (cf. [Eis+19, Lem. 12]), the estimate can
be improved to k ≥ 3n log2(f(x0)− f(x?)).

Proof. Let k be maximal such that

1 ≤ f(xk)− f(x?) ≤
(

4n−5
4n−4

)k
(f(x0)− f(x?)) .

Taking the logarithm, we obtain(
4n−5
4n−4

)k
(f(x0)− f(x?)) ≥ 1

⇔ k log2

(
4n−5
4n−4

)
≥ − log2 (f(x0)− f(x?))

⇔ k ≤ log2 (f(x0)− f(x?))
log2

(
1 + 1

4n−5

)
⇒ k < (4n− 5) log2 (f(x0)− f(x?)) ,

where we used strict concavity for the logarithm between 1 and 2, i.e. log2(1 + ε) > ε for
0 < ε < 1. Since f |Zn : Zn → Z, the claim follows.

Proposition 2.11. Let an IP (2.1) together with a feasible solution x0 be given, and
define ζl,u := ||u− l||∞. We can find an optimum solution x? by solving at most

O(n) log2(f(x0)− f(x?)) log2(ζl,u)

42

2.2. Iterative improvement

augmentation IPs (or applications of Proposition 2.7).

Proof. For one augmenting step, it suffices to solve O (log2(ζl,u)) many augmentation IPs,
according to Lemma 2.9 (or, applying Proposition 2.7 that often). Among the solutions
of these IPs, we choose the pair (y?, λ?) minimizing f(x+ λy), and update x← x+ λ?y?.
By Lemma 2.10, O (n log2(f(x)− f(x?))) iterations suffice.

If we combine this proposition with Proposition 2.7, we obtain a running time that is
quadratic in n.

Corollary 2.12. Let an IP (2.1) together with a td-decomposition F of GD(A) and a
feasible solution x0 be given. We can find an optimum solution in time

O(n2) log2(f(x0)− f(x?)) log2(ζl,u) · (2 ||A||∞ g1(A) + 1)height(F).

As we will see in the next subsection, this can be improved to n log2(n).

2.2.3 Convolutions and the convolution tree

Previously, we set up and solved a set of dynamic programs for each augmenting step,
one for each λ = 2k, k = 0, 1, 2, Fix one value for λ. Since we are only interested in
augmenting steps x+ λy with ||y||1 ≤ g1(A), the lower and upper bounds⌈

l − x
λ

⌉
≤ y ≤

⌊
u− x
λ

⌋
,

as well as the separable convex objective f(x+ λy) change in at most g1(A) coordinates.
In this subsection, we will use this fact. Instead of starting from scratch in every iteration,
we will set up one data structure for each value λ = 2k in the beginning. This data
structure will be storing the optimal solution for the augmentation IP derived for λ, and
can be updated rather cheap in every iteration. More specific, only for the setup we will
have to invest time linear in n once; afterwards, each updating is only logarithmic in n.

To this end, we introduce {min,+}-convolution and the convolution tree. Convolutions in
combination with integer programming were already used by Jansen & Rohwedder [JR19].

Definition 2.13. Let R ⊆ Zd, and a, b ∈ (Z ∪ {∞})R. A map c ∈ (Z ∪ {∞})R is the

43

Chapter 2. Integer programming in variable dimension

{min,+}-convolution of a and b, denoted by c = convol(a, b), if

∀ r ∈ R ∩ (R+R) : c(r) = min
r′,r′′∈R
r′+r′′=r

a(r′) + b(r′′),

∀ r ∈ R \ (R+R) : c(r) =∞.

A map w ∈ ((R×R) ∪ {undef})R is called a witness of c w.r.t. a, b if

w(r) = (r′, r′′) ⇒ c(r) = a(r′) + b(r′′),
w(r) = undef ⇒ r ∈ R \ (R+R)

Computing the convolution of two functions efficiently is an interesting problem on its
own. However, for our purposes it will be sufficient to use the naive approach, i.e. for
every r ∈ R, we compute c(r) by computing all possibilities a(r′) + b(r − r′), r′ ∈ R and
choose the best one.

Of course, only convoluting two maps is not very beneficial, as we naturally want to split
our problem into d ≥ 2 subproblems, where d is the degree of the first non-degenerate
vertex in a td-decomposition of GD(A). To this end, we extend our previous definition.

Definition 2.14. Let A ∈ Zm×n, F be a td-decomposition of GD(A), ρ ∈ Z≥1 and
R := {x ∈ Zk1(F) : ||x||∞ ≤ g1(A) ||A||∞}. A convolution tree is a data structure
T which stores two vectors lT , uT ∈ (Z ∪ {±∞})n, and a separable convex function
fT : Rn → R, and supports the following operations.

Init(l, u, f) initializes T to be in state lT = l, uT = u, fT = f .

Update(i, li, ui, fi) is defined for i ∈ [n], li, ui ∈ Z and a convex function fi : R→ R. It
updates the vectors lT , uT in their i-th coordinate to the value li, ui respectively,
(i.e. (lT)i ← li and (uT)i ← ui), and the function fT in its i-th coordinate to fi,
i.e. (fT)i(x)← fi(x).

σ − Update(I, lI , uI , fI) is defined for I ⊆ [n], and performs Update(i, li, ui, fi) for all
i ∈ I in ascending order.

Queue(r, ρ) is defined for (r, ρ) ∈ R× [0 : g1(A)] and returns a vector y ∈ Zn minimizing
fT (y) subject to the conditions Ay =

(r
0
)
, lT ≤ y ≤ uT , ||y||1 = ρ.

Lemma 2.15. Given a matrix A together with a td-decomposition F , we can implement
a convolution tree with the following time constraints.

• Init(l, u, f) can be done in time 2n(2 ||A||∞ g1(A))2 height(F)+2

• Update(i, li, ui, fi) can be done in time (2 ||A||∞ g1(A))2 height(F)+2 · th(F) log(n)

44

2.2. Iterative improvement

• σ − Update(I, lI , uI , fI) can be done by calling σ times Update,
i.e. in time σ · (2 ||A||∞ g1(A))2 height(F)+2 · th(F) log(n)

• Queue(r, ρ) can be done in time g1(A).

The size of the data structure is bounded by h(g1(A))·poly(n, size(A)) for some computable
function h.

Proof. For the sake of presentation, we assume that f is given by an evaluation oracle.
In the end, we will argue that a comparison oracle suffices.

Let us first fix some notation and outline the recursive idea. By Lemma 1.10, we
can assume that A is of block-structure with blocks A1, . . . , Ad in the top block row,
and blocks A1, . . . , Ad in a block-diagonal below the top row, where Ai ∈ Zk1×ni and
Ai ∈ Zhi×ni with hi ≤ height(F) − k1(F). Let [n] = N1 ∪ · · · ∪ Nd be a partition of
the index set of the columns according to the matrices A1, . . . , Ad, i.e. ni = |Ni|. For
a vector y ∈ Zn, let yi ∈ ZNi denote its restriction to the coordinates in Ni. Observe
that for a subset U ⊆ [n], the two vector spaces Z|U | and {x ∈ Zn : xi = 0, i /∈ Ni} ⊆ Zn

have a natural isomorphism. To simplify notation, we will understand ZNi as either
one of the above vector spaces, depending on the context. This is, if we consider Aiyi,
then yi ∈ ZNi is a vector of dimension |Ni|, whereas we can glue two vectors yi ∈ ZNi ,
yj ∈ ZNj together by simply writing yi + yj for i 6= j.

Let T ′ be a full balanced binary tree for which the leaves are labeled N1, . . . , Nd, and
an internal vertex is labeled U = V ∪W , where V and W are the labels of the children
of U . Hence, the root has label [n]. Define R := {x ∈ Zk1 : ||x||∞ ≤ g1(A) ||A||∞}, and
assume that we have two functions for each node U = ∪i∈INi,

φU : R× [0 : g1(A)]→ Z and GU : R× [0 : g1(A)]→ ZU ,

with

φU (r, ρ) = min{f(y) : y ∈ ZU ,
d∑
i=1

Aiyi = r,Aiyi = 0, l ≤ y ≤ u, ||y||1 = ρ},

GU (r, ρ) = arg .min{f(y) : y ∈ ZU ,
d∑
i=1

Aiyi = r,Aiyi = 0, l ≤ y ≤ u, ||y||1 = ρ}.

Then φU = convol(φV , φW) andGU (r, ρ) = GV (r1, ρ1)+GW (r2, ρ2) where ((r1, ρ1), (r2, ρ2))
is the pair witnessing (r, ρ). Moreover, minρ φ[n](0, ρ) is the optimal value of the aug-
mentation IP, and the optimal solution can be retrieved from G[n]. Recursively replacing
the leaves Ni with similar trees T ′i provides the full convolution tree. We give a detailed
description.

45

Chapter 2. Integer programming in variable dimension

The case th(F) = 1. Set d = n and R := {x ∈ Zm : ||x||∞ ≤ g1(A) ||A||∞}. To unify
the notation, denote the columns of A by Ai, i.e. comparing with the block shape (1.4),
interpret each column of A as a block Ai of size m× 1, and the matrices Ai to be empty.
Consider a full balanced binary tree T on the columns Ai of A. Let li ≤ z ≤ ui denote
the i-th coordinate of the box constraints. For every i, define φ{i} ∈ (Z∪ {∞})R×[0:g1(A)]

by

φ{i}(r, ρ) :=

min{fi(z) : Aiz = r, |z| = ρ, li ≤ z ≤ ui}} if min exists,

∞ otherwise.

Accordingly, define

G{i}(r, ρ) :=

arg .min{fi(z) : Aiz = r, |z| = ρ, li ≤ z ≤ ui}} if min exists,

undef otherwise.

This is, the value φ{i}(r, ρ) is only finite if r = ±ρAi.

For every internal node U with children V,W , we will define φU ∈ (Z ∪ {∞})R×[0:g1(A)]

as φU := convol(φV , φW), and the function GU accordingly as follows. For all (r, ρ) ∈
R × [0 : g1(A)] and (r1, ρ1) ∈ R × [0 : ρ], we queue φV (r1, ρ1) + φW (r − r1, ρ − ρ1) if
r − r1 ∈ R, and memorize the pair (r′, ρ′) minimizing this sum.

Then, we set φU (r, ρ) := φV (r′, ρ′)+φW (r−r′, ρ−ρ′), and define GU (r, ρ) ∈ ZU∪{undef}
by

GU (r, ρ) :=

GV (r′, ρ′) +GW (r − r′, ρ− ρ′) if both functions are defined,
undef otherwise.

(Here, we understand ZV ,ZW as subspaces of Zn with disjoint support.) It is straightfor-
ward to observe that

AGU (r, ρ) =
∑
i∈U

Ai(GU (r, ρ))i = r, l ≤ (GU (r, ρ)) ≤ u, ||GU (r, ρ)||1 = ρ.

In the end, we obtain functions φ[n] and G[n] as wanted.

The case th(F) ≥ 2. Now for the recursive case, consider again the first recursion level
of tree T with leaves N1, . . . , Nd, where [n] = ∪iNi is a decomposition of the variables
according to according to the matrices Ai. A td-decomposition for a matrix

(Ai
Ai

)
can be

obtained by extending the tree Fi by a path on k1 vertices. This implies that the first
level height for this tree-decomposition is hi := k1 + k1(Fi), and its topological height
satisfies th(Fi) ≤ th(F)− 1, i.e. we can use induction.

As we changed to the matrices
(Ai
Ai

)
however, the functions φNi , GNi are defined on

Ri := {x ∈ Zk1+k1(Fi) : ||x||∞ ≤ −g1(A) ||A||∞} × [0 : g1(A)]. If we wanted to convolute

46

2.2. Iterative improvement

different functions φNi , φNj , the input has different dimensions. Instead of embedding
the sets Ri into Zm, observe that we are only interested in function values GNi(r, ρ) for
r ∈ Zk1 ×{0}k1(Fi), as otherwise

(Ai
Ai

)
yi = r implies Ay 6= 0 for a global solution y. Hence,

we can truncate these functions, and define

φ̃Ni : R× [0 : g1(A)], φ̃Ni(r, ρ) := φNi

((
r

0

)
, ρ

)
,

G̃Ni : R× [0 : g1(A)], G̃Ni(r, ρ) := GNi

((
r

0

)
, ρ

)
,

where 0 ∈ Zk1(Fi). With these truncated functions, we can proceed as before. The
construction above yields functions φ[n], G[n] as desired.

Before we continue, we remark that though we truncate the functions, there are interme-
diate functions defined on vectors of dimension (k1 + k1(Fi)) (omitting ρ). If we continue
with the recursion, this dimension grows further. However, in the next recursion step, we
decide on one branch of Fi, and in total, the dimension on which the functions φU , GU
are defined never exceeds height(F).

Since f is given to us by a comparison oracle, observe that we can avoid calling the
functions ϕU . When queuing ϕU (r1, ρ1) + ϕW (r2, ρ2) for computing the function GV
with V = U ∪W , we can instead queue∑

i∈U
fi((GU (r1, ρ1))i) +

∑
i∈W

fi((GW (r2, ρ2))i) +
∑
i/∈U

fi(0).

The last part is since we only have a comparison oracle for f , but not for partial sums.
But since f is separable convex, we can simply fix the part not concerning us. Thus, it is
sufficient to implement the functions GU .

The running time.
Every function GU (r, ρ) is defined on at most (2g1(A) ||A||∞ + 1)height(F)+1 inputs. To
define the function value for each input, we have to check the values of f on all values
of GV , GW , where U = V ∪ W . Any value of GU , GV , GW is a vector of at most
g1(A) non-zero entries, stored as a list of index-value pairs. Thus, we can set up every
GU in (g1(A) ||A||∞)O(height(F)) elementary arithmetic operations. As the functions are
organized in a binary tree with n leaves, we have no more than 2n such functions, yielding
a total time of

2n(g1(A) ||A||∞)O(height(F))

for the initialization. Clearly, the amount of numbers stored in all GU is bounded by the
same term, and every number is an integer bounded by max{g1(A) ||A||∞ , log2(n)} (the
log2(n) accounts for storing the index of the non-zero entries).

47

Chapter 2. Integer programming in variable dimension

As for the update step, note that we only have to propagate the update from the affected
leaf nodes G{i} to the root of T . Since T is assembled from trees according to the levels
of F , any leaf-root path is bounded by log2(n) th(F).

For the operation Queue, we have to queue G[n](0, ρ) for each possible value of ρ, and
evaluate the objective.

We are able to give the complete statement.

Theorem 2.1. Let an IP (2.1), together with a td-decomposition F of GD(A) and an
initial feasible solution x0 be given. Define ζl,u := ||u− l||∞. We can find an optimum
x? in time

n log2(n) · log2(f(x0)− f(x?)) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)) .

Moreover, the encoding size of all occurring numbers is bounded by h(size(A),height(F)) ·
poly(n, size(l, u)), where h is any computable function.

Proof. As observed in Lemma 2.9, we are only interested in step-lengths λ = 2k for
k ≤ O(log2(ζl,u)).

For every possible value of λ, we obtain the following running time contribution. We set
up a convolution-tree T (λ) once, taking time

2n(2 ||A||∞ g1(A))2 height(F)+2 = n (||A||∞ g1(A))O(height(F)) .

Now, for each augmenting step, we have to queue each convolution tree T (λ) for all
possible values of ρ, and pick the value ρ? minimizing φ(0, ρ). Then, we queue the values
G

(λ)
[n] (0, ρ?), and take the best value among all λ’s. This can be done in time g1(A) + 1

per λ, plus once g1(A) for writing the output of G(λ?)(0,ρ?)
[n] .

Finally, we have to update all trees, each taking time

g1(A)(2 ||A||∞ g1(A))2 height(F)+2 th(F) log2(n)
= log2(n) (||A||∞ g1(A))O(height(F)) .

By Lemma 2.10, we need at most O(n log2(f(x0)− f(x?)) augmenting steps to converge.
Since all occurring vectors are either bounded in terms of l, u or g1(A) ||A||∞, the space
constraints are satisfied as well.

48

2.3. Reducing the objective function

2.3 Reducing the objective function

Let l, u ∈ (Z ∪ {±∞})n, B := {x ∈ Rn : l ≤ x ≤ u}. For a function f : B → R, define
the value

fmax := max
x,y∈P

(f(x)− f(y))

as the range of f on the domain B. For us, f will be a linear or separable convex function,
and B will be domain given by the box constraints of an IP. As the upper bound on the
number of iterations we need depends on the quantity fmax, it is desirable to limit the
range of f , in dependency on the domain B.

The goal of this section is to show that for every objective f (linear or separable convex),
there is an objective f ′ such that a) the functions f and f ′ have the same comparison
oracle, and b) the range f ′max is bounded in terms of n and the domain B. If both
conditions are satisfied, we can estimate the running time against f ′max instead of fmax,
even without actually knowing f ′. We say that two functions f and f ′ are equivalent on
B, if for all x, y ∈ B, we have f(x) ≥ f(y)⇔ f ′(x) ≥ f ′(x). Note that every objective
function c ∈ Zn induces a partial order on the integer points B ∩ Zn by x ≺c y if
cᵀx < cᵀy.

In the first subsection, we will show that for every separable convex function f , there
exists an equivalent separable convex function f̂ for which f̂max only depends on B and
n. As the bounds we obtain are quite different, we treat the cases of a linear objective
and a separable convex objective separately.

The second subsection then complements these results by constructing functions for which
no equivalent objective with smaller value f̂max exists. Again, we will see a discrepancy
between the linear and the separable convex case, showing that our results are essentially
tight (up to a logarithmic factor).

2.3.1 The upper bound

In this subsection, we prove the upper bounds on linear objective functions, as well as
separable convex functions. We will start with proving the linear case, allowing us to
reduce the separable convex case to the linear case later. The two main propositions
read as follows.

Proposition 2.16. Let N ∈ N≥1, and B = [a1, b1]× · · · × [an, bn] ⊆ Rn with ai, bi ∈ Z,
bi−ai ≤ N . For every vector c ∈ Zn, there exists a vector ĉ ∈ Zn, such that the following
two conditions hold.

i) ||ĉ||1 ≤ (2nN)n.

ii) For y1, y2 ∈ B ∩ Zn, we have cᵀy1 < cᵀy2 if and only if ĉᵀy1 < ĉᵀy2.

49

Chapter 2. Integer programming in variable dimension

A result similar to the following Proposition was already proven by De Loera et al. [De
+10].

Proposition 2.17. Let N ∈ N≥1, and B = [a1, b1]× · · · × [an, bn] ⊆ Rn with ai, bi ∈ Z,
bi − ai ≤ N . For every separable convex function f : B → R, there exists a separable
convex function f̂ : B → R such that the following hold.

i) For x ∈ B ∩ Z, we have f̂(x) ∈ Z.

ii) For all x, y ∈ B ∩ Zn, we have f̂(x) ≤ f̂(y) if and only if f(x) ≤ f(y),

iii) We have maxx,y∈B∩Zn f̂(x)− f̂(y) ≤ n2N(2nN2)nN−1.

We will give the necessary results in geometric notion. An important tool will be the
following lemma of Minkowski, linking the inner and outer description of a polyhedral
cone.

Lemma 2.18 ([Min68]). Let C = {x ∈ Rn : Ax ≥ 0} be a polyhedral cone. Let S be the
set of all possible solutions to any of the systems My = b′, where M consists of n linearly
independent rows of the matrix

(A
I

)
and b′ = ±ej for the j-th canonic unit vector ej.

Then there is a subset S′ ⊆ S such that C = cone(S′).

Intuitively, the lemma states that an extreme ray of a pointed cone C is defined by n− 1
facets, and the vector generating this ray is orthogonal to all facet normals, i.e. a column
of the inverse matrix, extended to full rank. However, as C is not necessarily pointed,
we omit the more cumbersome general proof. One way to show the general lemma is to
intersect the cone C with axis-parallel hyperplanes, decomposing it into pointed cones.

We are now able to prove the main tool.

Lemma 2.19. Let C = {x : Ax ≥ 0} ⊆ Rn be a polyhedral cone with constraint matrix
A ∈ Zm×n. Then there exists a set S′ of integral vectors subject to C = cone(S′) and
||v||1 ≤ (2n ||A||∞)n−1 for all v ∈ S′.

Proof. By Lemma 2.18, there is a set S such that C = cone(S). For v ∈ S, let M be the
submatrix of

(A
I

)
and k ∈ {1, . . . , n} an index s.t. v is the unique solution to Mx = b′

with b′ = ±ek. Let aT be the k-th row of M and let M ′ ∈ Z(n−1)×n be the matrix M
without this row. As lin(v) = ker(M ′), we can replace v by a Graver basis element v′ of
M ′ with (aT v′)(aT v) > 0 and the set S \ {v} ∪ {v′} still generates C. As Graver basis
elements come in pairs (v′,−v′), there exists such a v′, and by Lemma 2.4, the length
of such a v′ is bounded by (2(n− 1) ||A||∞ + 1)n−1 ≤ (2n ||A||∞)n−1. Replacing every
element in S yields a generating system S′ as desired.

50

2.3. Reducing the objective function

Proof of Proposition 2.16. Let N ∈ N≥1, c ∈ Rn, and B be given as in the Proposition,
and consider the partial order on B ∩ Zn induced by c, i.e. x1 �c x2 if cᵀx1 > cᵀx2. We
want to define a set of all vectors y that induce the same partial order. To this end,
define the set

T := {(x1, x2) ∈ (B ∩ Zn)× (B ∩ Zn) : cᵀx1 ≥ cᵀx2, x1 6= x2},

and the cone
C := {y ∈ Rn : ∀ (x1, x2) ∈ T : yᵀ(x1 − x2) ≥ 0}.

We will see that all points in rel. int(C) ∩ Zn imply the same partial order.

Since there are finitely many pairs (x1, x2) ∈ T , the cone C is indeed polyhedral. Moreover,
c ∈ rel. int(C), as cᵀ(x1 − x2) = 0 implies that both pairs (x1, x2) and (x2, x1) are in T .
But whereas the constraints of C ensure that for any y ∈ C, the inequality yᵀx1 > yᵀx2
implies cᵀx1 > cᵀx2, the reverse is not true in general. However, if y is in the relative
interior, there cannot be an inequality with (x1 − x2)ᵀy = 0 and (x1 − x2)ᵀc > 0.

Thus, all points in rel. int(C) ∩ Zn induce the same partial order.

The coefficients of the constraints (x1 − x2)ᵀy ≥ 0 are bounded by N in absolute value.
By Lemma 2.19, the cone C is generated by a set S of vectors v with ||v||1 ≤ (2nN)n−1.
Choosing a maximum number of linearly independent generators v1, . . . , vm, we obtain
a vector ĉ =

∑m
i=1 vi in the relative interior of C with ||ĉ||1 ≤ m(2nN)n−1 ≤ (2nN)n,

finishing the proof.

Proof of Proposition 2.17. As f is separable convex, we can write f(x) =
∑n
i=1 fi(xi) for

some one-dimensional convex functions fi. Since we are interested in evaluating f on the
integer points only, we assume f itself is a function only defined on the integers. We will
reduce this case to the linear case by establishing a bijection between the two sets

{f : B ∩ Zn → Z | f is separable} bij←→ ZnN ,

and then defining a cone in RnN such that all integral points in the relative interior map
to separable convex functions that imply the same partial ordering on the set B ∩ Zn

as f . We will index a vector y ∈ ZnN by a pair (i, k), where i ∈ [n] and k ∈ [ai : bi]. A
function g =

∑n
i=1 gi then maps to a vector y given by the relation yi,k = gi(k). Note

that g(u) =
∑
i yi,ui for u ∈ B ∩ Zn.

With this notation, we define C ⊆ RnN with the following two types of constraints. First

51

Chapter 2. Integer programming in variable dimension

take for each pair u, v ∈ B ∩ Zn, x 6= y, the constraint

n∑
i=1

yi,vi −
n∑
i=1

yi,ui ≥ 0 if f(u) < f(v), (2.7a)

n∑
i=1

yi,ui −
n∑
i=1

yi,vi ≥ 0 if f(u) > f(v), (2.7b)

n∑
i=1

yi,ui −
n∑
i=1

yi,vi = 0 if f(u) = f(v). (2.7c)

These constraints will ensure that all points in the interior induce the same partial order
as the vector yf obtained from f .

But we also have to ensure that the function corresponding to a vector y ∈ C is actually
convex. To this end, we introduce for every i = 1, . . . , n the constraints

yi,k−1 + yi,k+1 − 2yi,k ≥ 0, ∀k ∈ [ai + 1 : bi − 1].

Translating to the function g according to y, this is gi(k) ≤ 1/2(gi(k−1)+gi(k+1)) for all
i, k in range. These “local” convexity constraints imply already general convexity. To see
this, let a, b ∈ [ai : bi], with a < b−1. By repeatedly applying either yi,a ≥ 2yi,a+1−yi,a+2,
or yi,b ≥ 2yi,b−1 − yi,b−2, we obtain, for any k, k′ in range,

yi,a ≥ (k + 1)yi,a+k − kyi,a+k+1, (2.8)
yi,b ≥ (k′ + 1)yi,b−k′ − k′yi,b−k′−1. (2.9)

Choosing the relation k′ = b− a− k − 1, adding b− a− k times the first inequality and
k times the second inequality culminates in

(b− a− k)yi,a + kyi,b ≥ (b− a)yi,a+k.

Now that we have established all inequalities, let A be the matrix comprising all listed
inequalities. We define C := {y ∈ RnN : Ay ≥ 0} as a polyhedral cone with ||A||∞ ≤ 2.
By Lemma 2.19, we have C = cone(S) for some set S of integral vectors v with
||v||1 ≤ (4nN)nN−1. We pick again a vector y in the relative interior, and pick the
corresponding separable convex function. The claim follows.

Remark 2.20. Observe that in the separable convex case, the vector yf obtained from f

is not necessarily in the interior of the cone C. For instance, if f is chosen to be just a
linear function, the convexity constraints are not fulfilled with strict inequality, and we
might be able to find a smaller separable convex function than provided by the theorem.
If we want to avoid discarding linear functions, we can strengthen the Inequalities (2.7)
by replacing the right-hand side by 1. This shifts the cone away from 0, but all contained
points yield feasible functions.

52

2.3. Reducing the objective function

Moreover, observe that we did not require f(z) ∈ Z for z ∈ Z. This allows us to analyze
the convergence for any separable convex function in our algorithms in terms of ||u− l||∞
and n.

2.3.2 The lower bound

In this subsection, we show that the bounds derived in Propositions 2.16 and 2.17 are
essentially tight.

Linear objective functions.

Let us start with the linear objective function. Recall that an objective function cᵀx
induces a partial order on the set [0, N]n ∩ Zn by x ≺ y if cᵀx < cᵀy. The idea is to
construct a sequence of points x1, . . . , xm ∈ [0, N]n ∩ Zn, equipped with a partial order
x1 ≺ · · · ≺ xm. We then show that every linear objective whose induced partial order
agrees with the chosen sequence must have large infinity norm. Showing that an agreeing
linear function exists completes the argument.

Lemma 2.21. Let n,N ∈ N≥1. There exists a linear function c ∈ Zn such that for every
c′ ∈ Zn subject to

cᵀx ≥ cᵀy ⇔ c′ᵀx ≥ c′ᵀy ∀x, y ∈ [0, N]n ∩ Zn,

we have ||c′||∞ ≥ Nn−1.

Proof. The sequence is defined as follows. We start with 0 ∈ [0, N]n ∩ Zn, and then
take all the vectors ei, 2ei, . . . , Nei dimension-wise, i.e. take first e1, . . . , Ne1, and end
with the vectors en, 2en, . . . , Nen. Formally, we have x0 = 0, and x(i−1)N+k = kei for
(i, k) ∈ {1, . . . , n} × {1, . . . , N}.

Now let c ∈ Zn be any linear function whose induced partial order coincides with
x1 ≺ · · · ≺ xnN . As cᵀxj+1 ≥ cᵀxj + 1, this leads to the inequalities

c1 = cᵀx1 ≥ 1
c2 = cᵀxN+1 ≥ cᵀxN + 1 = Nc1 + 1

...
cn = cᵀx(n−1)N+1 ≥ cᵀx(n−1)N + 1 = Ncn−1 + 1,

culminating to

cn ≥ Ncn−1 + 1 ≥ · · · ≥ Nn−1c1 +
n−2∑
i=0

N i ≥ Nn−1.

53

Chapter 2. Integer programming in variable dimension

It is also easy to see that if we choose equality in every case, i.e. c1 = 1 and ci+1 = Nci+1
for i = 1, . . . , n − 1, we indeed obtain a linear objective inducing the chosen partial
order; the relations kei ≺ (k + 1)ei are fulfilled for any linear objective c ∈ Zn>0, and the
remaining n− 1 relations Nei ≺ ei+1 are fulfilled by choice of the values ci.

Separable convex functions.

Similar to the case of a linear objective, we will define a sequence (xj)j ⊆ [0, N]n ∩ Zn,
and force a partial ordering on the sequence that should be satisfied by a separable
convex function.

Lemma 2.22. Let n,N ∈ N≥1. There exists a separable convex function f : Zn → Z
such that for every separable function f ′ : Zn → Z subject to

f(x) ≥ f(y) ⇔ f ′(x) ≥ f ′(y) ∀x, y ∈ [0, N]n ∩ Zn,

we have
max

z∈[0,N]n∩Zn
f ′(z)− min

z∈[0,N]n∩Zn
f ′(z) ≥ nN−12n−1.

Proof. We will initialize the sequence with xi = 0 ∈ Zn for i ≤ 0. The negative indices
will allow for a simpler recursive definition later. Then we define

x(k−1)n+i = kei ∀ (i, k) ∈ {1, . . . , n} × {1, . . . , N},

i.e. we cycle through the canonic unit vectors e1, . . . , en, then cycle through 2e1, . . . , 2en,
and so forth. For the auxiliary sequence, we define

yj = xj + xj−1, where j = 1, . . . , nN.

It is crucial that for any separable convex function f , the function value on any yj is
solely determined by the function values on xj and xj−1. Moreover, we do not have
yj ∈ {x`}` (apart from x1 = y1). Hence, we can enforce the ordering f(xj+1) = f(yj) =
f(xj) + f(xj−1).

We now want to construct a separable convex function f =
∑n
i=1 fi with the relations

f(xj+1) = f(yj) = f(xj) + f(xj−1) for j ≥ 1. Without loss of generality, we may set
fi(0) = 0 for i = 1, . . . , n, as adding a constant to the functions fi does not change
fmax. For j = (k − 1)n + i, this implies f(xj) = f(kei) = fi(k), i.e. when fixing
a function value f(xj), we actually only fix the value for the corresponding fi. As
every kei ∈ {xj}j , this means that fixing f(x1) completely determines any separable
function f which induces the chosen relations between the two sequences {xj}j and
{yj}j . Choosing f(x1) = 1, the smallest possible value enforcing f(x0) < f(x1), implies
that f(xj) = f(yj−1) = f(xj−1) + f(xj−2) = Fj is the j-th Fibonacci number. Hence,

54

2.4. Reducing the box constraints

f(xnN) ≈ ϕnN , where ϕ = 1+
√

5
2 is the golden ratio.

It remains to show that our function is separable convex. The separability follows by
construction, as we only define values on multiples of the canonic unit vectors. Convexity
follows from considering f as a piecewise linear function with break points {1, . . . , N − 1}
and growing slope, i.e. verifying Fj+n − Fj > Fj − Fj−n.

2.4 Reducing the box constraints

We saw that the number of iterations we need depends on f(x0)− f(x?), where x0 and
x? are initial and optimal feasible solutions. For separable convex functions, this was
usually estimated by fmax, where fmax := maxx,y feasible(|f(x)− f(y)|) was supposed to
be part of the input. If f(x) = cᵀx is a linear objective, this value can be limited by
||c||1 and ||x? − x0||∞. Also in the case of a separable convex objective, Proposition 2.17
involves the term ||u− l||∞, even appearing in the exponent! It is therefore desirable to
obtain a better grasp on this value, and replace the bounds l, u with artificial, smaller
bounds in certain scenarios.

In this section, we will give an approach to restrict the dependency on ||u− l||∞. Sur-
prisingly, this can be done in terms of the already developed bound on the elements in
G(A), and the number of non-integral entries of x?.

The general idea is that if we find an optimum solution x? of the continuous relaxation,
then there is an optimum solution z? of the IP near by. Hence, we can replace the
given bounds l, u that might be rather large with smaller box constraints, centered
around x?. Results of this kind are usually called proximity results, cf. [Sch86, Sec. 17.2].
We provide a proximity result specific to our setting, obtaining a bound linear in n in
Subsection 2.4.1.

When it comes to IPs without a linear objective, the optimal point x? might be irra-
tional. It is straightforward to see that we can also apply the proximity results to an
approximation x̃ of the optimum x?. Here, it is important that x̃ is an approximation
to x? in terms of metric distance, not in terms of the objective function value. Under
reasonable assumptions to the objective, Hochbaum & Shanthikumar [HS90] also show
that being close in terms of metric distance implies that the objective value cannot be
too far from optimal as well.

Definition 2.23 ([HS90]). Let an IP (2.1) be given, and let ε > 0. A fractional point x̃
is an ε-accurate solution to the continuous relaxation of (2.1), if there exists an optimum
solution x? of the relaxation with ||x̃− x?||∞ ≤ ε.

Using Chubanov’s algorithm [Chu16, Theorem 12], we also have an algorithm that
gives us an ε-accurate solution for non-linear objectives. The running time is weakly

55

Chapter 2. Integer programming in variable dimension

polynomial, and its dependency on n is roughly n4 log2(n) + Tn log2(n), where T is the
time needed to solve an auxiliary LP.

However, we can also avoid solving the continuous relaxation altogether, as will be shown
in Subsection 2.4.2.

2.4.1 The proximity result

We start by showing a proximity result for an IP and its continuous relaxation. For
the infinity-norm and n-folds, this result was already shown by Hemmecke, Köppe and
Weismantel [HKW14]. Our result can be seen as a strengthened generalization of theirs,
while the proofs follow the same essential insights.

Proposition 2.24. Let an IP (2.1) be given, and let x? be an optimum solution of the
continuous relaxation, and z? be an optimum solution to the IP.

i) There exists an optimum solution z̃ to the IP such that

||x? − z̃||1 ≤ |S|g1(A), where S := {i ∈ [n] : x?i /∈ Z}.

ii) There exists an optimum solution x̃ to the continuous relaxation such that

||x̃− z?||1 ≤ |S|g1(A), where S := {i ∈ [n] : x̃i /∈ Z}.

Moreover, these results hold even if the box-constraints l ≤ x ≤ u are not integral.

In order to streamline the proof of this proposition, we outsource the following claim
beforehand. Intuitively, it states that if a set of fractional numbers sum up to an integer,
we can round all numbers suitably so that their sum does not change. We will later
consider the sum of fractional vectors, and apply the lemma component-wise.

Lemma 2.25. Let a1, . . . , ar ∈ R such that
∑r
i=1 ai ∈ Z. There is a map ϕ(·) on

{a1, . . . , ar} such that, for every k ∈ [r], we have ϕ(ak) ∈ {bakc , dake}, and
∑r
i=1 ai =∑r

i=1 ϕ(ai).

The map ϕ can be found using O(r) arithmetic operations, plus O(r) rounding operations.

Proof. We will define ϕ(·) iteratively, starting with ϕ(ai) = daie. Now assume we assigned
values to ϕ(a1), . . . , ϕ(ak). We define

ϕ(ak+1) =

daie if
∑k
i=1 ϕ(ai) <

∑k
i=1 ai,

baic if
∑k
i=1 ϕ(ai) ≥

∑k
i=1 ai.

56

2.4. Reducing the box constraints

Since max{daie−ai, ai−baic} < 1, the constraint |
∑k
i=1 ϕai−

∑k
i=1 ai| < 1 is maintained

for every k. The claim follows from
∑m
i=1 ai ∈ Z.

Storing the partial sums
∑i−1
j=1 aj and

∑i−1
j=1 ϕ(aj), we can decide the value of each ϕ(ai)

with two arithmetic operations and one comparison only. For rational values, each
rounding can be implemented with O(1) arithmetic operations as well.

Proof of Proposition 2.24. For the last remark of the Proposition, it suffices to observe
that we will not use l, u ∈ Zn throughout the proof.

For x?, z? as in the Proposition, let z̃ be an optimum solution to the IP closest to x?,
and x̃ be an optimum solution to the LP closest to z?. As both cases work similar, let
(x, z) ∈ {(x?, z̃), (x̃, z?)} be one of the pairs we want to relate.

Let bxez ∈ Zn denote the vector x rounded towards z, i.e. (bxez)i := bxic if zi ≤ xi, and
(bxez)i := dxie otherwise. With {x} := x− bxez we denote the fractional rest of x. Let
S := {i ∈ [n] : xi /∈ Z}, and observe that

A{x} =
∑
i∈S
{x}iAi ∈ Zm,

where Ai denotes the i-th column of A. We can now apply Lemma 2.25 component-wise to
this sequence of vectors ({x})iAi, and obtain vectors Âi ∈ Zm such that A{x} =

∑
i∈S Âi.

Let Â denote the matrix with columns Âi, i ∈ S.

We claim that g1(A, Â) = g1(A). Indeed, the dual graphs have the same set of vertices,
and the columns Âi do not introduce new edges. Moreover, as |({x})i| < 1, we have that
|Âi| ≤ |Ai|, where the absolute value is taken component-wise. Now we can write

0 = A(x− z) = A(bxez + {x} − z) = (A, Â)y, y :=
(
bxez − z

1

)
∈ Zn+|S|.

This allows us to decompose the vector y =
∑K
i=1 gi into K Graver basis elements

gi ∈ G(A, Â).

If K ≤ |S|, we have ||x− z||1 ≤ ||y||1 ≤ Kg1(A, Â) = |S|g1(A).

If not, there is an index k such that gk ∈ G(A)×{0}|S|. Since x and z are both feasible to
the continuous relaxation, so are z+ gk and x− gk. Setting y1 = gk and y2 = x− (z+ gk),
we have x = z + y1 + y2, and supperadditivity of separable convex functions yields

f(z + y1 + y2)− f(z) ≥ f(z + y1)− f(z) + f(z + y2)− f(z)
⇔ f(z + y1 + y2)− f(z + y2) ≥ f(z + y1)− f(z)
⇔ f(x)− f(x− gk) ≥ f(z + gk)− f(z).

57

Chapter 2. Integer programming in variable dimension

Since f(x) and f(z) are optimal (w.r.t. the continuous relaxation, the IP respectively),
we must have

0 ≥ f(x)− f(x− gk) ≥ f(z + gk)− f(z) ≥ 0,

implying f(x− gk) = f(x) and f(z) = f(z + gk). But this is a contradiction, since either
x was chosen closest to z and x− gk is closer to z, or the other way around.

2.4.2 Reducing the bounds by iterative scaling

If we want to avoid solving the continuous relaxation of an IP (2.1), but still have large
box constraints ||u− l||∞, it can already be helpful to reduce the dependency on l, u of
the algorithm. For instance, we might expect that fmax ≥ f(x0)− f(x?) is at least linear
in ||u− l||)∞ for a separable convex function.

The idea is to first optimize with rather large step lengths λ only i.e. updating x← x+λy
with λ ≥ 2k. This practically replaces l, u by smaller bounds l

λ ,
u
λ , and we can apply the

results of Section 2.3 for limiting the objective function values. Iteratively refining the
solution leads to an optimal solution eventually. The motivation for these results was
taken from the techniques in [HS90].

We lay out the approach more specifically. Assume for now that 0 is a feasible solution,
i.e. we are concerned with the following IP.

min f(x) (2.10)
s.t. Ax = 0

l ≤ x ≤ u
x ∈ Zn.

Instead of looking for a solution in the lattice x ∈ Zn, we first look for a solution in the
scaled lattice z ∈ sZn, for some s ∈ Z≥1.

min f(x) (2.11)
s.t. Ax = 0

l ≤ x ≤ u
x ∈ sZn.

Observe that both systems have the same continuous relaxation. Hence, an optimal
solution x? to the continuous relaxation of (2.10) is also an optimal solution to the
continuous relaxation of (2.11). With this, we can relate an optimal solutions z? of (2.10)
with an optimal solution ẑ of (2.11).

Lemma 2.26. Let an IP (2.10) be given, and s ∈ Z≥1. For every optimal solution z?

58

2.4. Reducing the box constraints

of (2.10), there exists an optimum solution ẑ of the scaled IP (2.11) such that

||z? − ẑ||1 ≤ (s+ 1)ng1(A).

Vice versa, to every ẑ, there exists a z? within the same distance.

Proof. Let z? be an optimum solution of (2.10). By proximity, there exists an optimum
solution x? to the continuous relaxation with

||z? − x?||1 ≤ ng1(A). (2.12)

As the continuous relaxations coincide, x? is also an optimum to the continuous relaxation
of (2.11). Substituting x′ := 1

sx, we obtain an objective-value preserving bijection between
the solutions of (2.11) and the solutions of the s-scaled IP

min f(sx′) (2.13)
s.t. Ax′ = 0

l
s ≤ x

′ ≤ u
s

x′ ∈ Zn.

In particular, x′ := 1
sx

? is an optimum solution to the continuous relaxation of (2.13).
We remark that the box constraints of (2.13) might not be integral. However, this is
irrelevant for the proximity result, and if we want to work with the IP (2.13), we can
round the new variable bounds towards zero for any practical purposes.

Again by proximity, the instance (2.13) has an optimal solution z′ with∣∣∣∣x′ − z′∣∣∣∣1 ≤ ng1(A) ⇔
∣∣∣∣sx′ − sz′∣∣∣∣1 ≤ sng1(A) (2.14)

Substituting back, ẑ := sz′ is an optimal solution to (2.11). Plugging this into (2.14)
and combining with (2.12), we obtain

||z? − ẑ||1 ≤ ||z
? − x?||1 + ||x? − ẑ||1 ≤ (s+ 1)ng1(A).

The other direction, starting with ẑ, works similar.

As a 2k-scaled instance is also a 2-scaled instance of a 2k−1-scaled instance, this gives
the following idea for an algorithm to solve a general IP (2.1).

(1) Find an initial feasible solution xinit, and recenter the instance to (2.10). Let
k = log2(max(||u||∞ , ||l||∞)) + 1, and set xk := 0 (i.e. the shift of xinit). As it is
the only feasible solution, xk is an optimal solution of the 2k-scaled instance.

59

Chapter 2. Integer programming in variable dimension

(2) If k > 0, replace the box constraints of the 2k−1-scaled instance with the proximity
bounds ||xk − x||∞ ≤ 3ng1(A). Solve this instance with initial solution xk to
optimality, and let xk−1 denote the found optimum. Update k ← k − 1 and
repeat.

(3) Output x0.

Analyzing the running time, we obtain the following proposition.

Proposition 2.27 (cf. [Eis+19]). Given an IP (2.1) with feasible solution x0 and finite
bounds l, u, let ζl,u := ||u− l||∞.

i) If f(x) = cᵀx is a linear objective, we can find an optimum solution in time

O(n2(log2(n))3) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)).

ii) If f(x) is a separable convex objective, we can find an optimum solution in time

O(n3(log2(n))3) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)).

Proof. W.l.o.g. assume that l ≤ x0 = 0 ≤ u is a feasible solution. This can be achieved
with a substitution x′ = x− x0, leaving ζl,u unaffected. For k = log2(ζl,u) + 1, the only
feasible (and therefore optimal) solution in the 2k-scaled instance is xk := 0. Observe
that this 2k-scaled instance is also a 2-scaled instance of the 2k−1-scaled instance (of the
original).

Repeat the following while k > 0. Apply the proximity result, Proposition 2.26, to obtain
new box constraints lk−1 ≤ x ≤ uk−1 for the 2k−1-scaled instance, centered around xk.
Using xk as a feasible solution for this modified instance, find an optimal solution xk−1
in time

O(n log2(n)) · log2(f(xk)− f(xk−1)) · log2(||uk−1 − lk−1||∞) · (g1(A) ||A||∞)O(height(F))

by Theorem 2.1, where ||uk−1 − lk−1||∞ ≤ 6ng1(A) by the proximity result. Using the ob-
jective reductions of Proposition 2.16 for linear objectives (Case i)), and Proposition 2.17
for separable convex objectives (Case ii)), we can also estimate

i) log2(cᵀ(xk − xk−1)) ≤ O(n log2(ng1(A))),
ii) log2(f(xk)− f(xk−1) ≤ O(n2 log2(n)g1(A)).

We finish each iteration by updating k ← k − 1.

With the initial choice of k, the claimed running times follows. If necessary, we resubstitute
x? = x̂+ x0 the found solution x̂.

60

2.5. Feasibility and finiteness

We close this subsection with two remarks. First, applying Proposition 2.17 in order to
reduce the objective in each step is optional. This is, if we already have a good grasp on
fmax, we might analyze the running time with the initial term, reducing the dependency
on n.

Second, once we reached an optimal solution in the initial IP (2.1), we could continue
scaling, and look for a solution in the superlattice 1

2Z
n. Continuing further, this can be

used to find a 2−k-accurate solution for the continuous relaxation of (2.1). Before we
cite this result from [Eis+19], we introduce the necessary notation. For a function g, we
denote

g[pl,pu]
max := max

pl≤x,y≤pu
|g(x)− g(y)|

as the largest discrepancy g can have in the box pl ≤ x ≤ pu. Moreover, g∞(A) :=
maxg∈G(A) ||g||∞.

Proposition 2.28 ([Eis+19, Cor. 65]). Let an IP (2.1) be given, define p := 1
εng∞(A),

g(z) := f(zp), and assume that f satisfies ∀z ∈ Zn : g(z) ∈ Z. If we can solve (2.1) in time
T (A, ||u− l||∞ , ||b||∞ , fmax), then an ε-accurate solution of the continuous relaxation
of (2.1) can be found in time T (A, p ||u− l||∞ , p ||b||∞ , g

[pl,pu]
max).

Remark 2.29. We can circumvent the integrality constraint of f by applying Proposi-
tion 2.17 for finding an integer-valued equivalent function for g(x) := f(1

2kx). While this
is circumventing dependency on f at all, this approach is increasing the dependency on n.

2.5 Feasibility and finiteness

So far, we always assumed that we are given an initial feasible solution to a bounded
IP (2.1). This section is devoted to justifying these assumptions, starting with feasibility
in Subsection 2.5.1. We will see that finding an initial feasible solution is basically as
easy as optimizing an existing feasible solution.

If we do not have finite bounds, the first problem we have to solve is deciding boundedness.
As we are working with iterative augmenting, it is crucial to check this before we start
optimizing, and is not discovered during the algorithm. In the case of a linear objective,
this can easily be done by solving one augmentation IP, whereas the problem is undecidable
for separable convex functions in general, see Subsection 2.5.2.

These results justify the assumption that we are only given bounded instances. Sub-
section 2.5.3 is devoted to discussing possibly infinite bounds l, u ∈ (Z ∪ {±∞})n. We
will see that we can still find an optimum solution. For linear objectives, we can show
artificial bounds on an optimum solution x? in terms of b and the finite entries of l, u.
For separable convex functions, we guess a bound on the distance between our starting
solution x0, and an optimum solution x closest. This replaces every factor ||u− l||∞ in
the running time by ||x0 − x||∞, plus an additional factor of ||x0 − x||∞ for guessing.

61

Chapter 2. Integer programming in variable dimension

2.5.1 Deciding feasibility and finding an initial feasible solution

So far, we were always assuming that an initial feasible solution is given to us. This
might be the case if the IP at hand is modeling a problem for which an initial solution
can easily be observed, e.g. if the IP is a model of a scheduling problem. Alternatively, we
might have an approximation algorithm that provides us with an initial feasible solution
for the modeled problem at hand. If none of these cases apply, we need a more general
approach to find an initial feasible solution, which is done in this section.

Generally, there are two ways of obtaining an initial feasible solution. One way is to
start with a vector x such that l ≤ x ≤ u is satisfied, but Ax = b might be violated. By
introducing slack variables, we can deploy the augmenting procedure to obtain x̂ out of
x such that Ax̂ = b holds, while l ≤ x̂ ≤ u remains satisfied. We choose this approach.
Alternatively, we can compute the Hermite normal form of A in order to obtain a vector
x̃ with Ax̃ = b, but possibly violating the box constraints. We then introduce a new
separable convex objective f̃(x) :=

∑
i dist(xi, [li, ui]) that we want to minimize first,

using x̃ as initial feasible solution.

The following proposition will also discuss infinite bounds already, as we will need the
results for the following chapters. Jansen, Lassota and Rohwedder [JLR19] came up with
an approach to limit the size of an initial feasible solution x0 for N -fold IPs, and the
technique here can be considered a generalization.

Proposition 2.30. Let an IP (2.1) be given, together with a td-decomposition F of
GD(A). Define ζl,u := ||u− l||∞. We can either decide that the IP is infeasible, or find
an initial feasible solution x0 in time

O(n log2(n)) · log2(nζl,u) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)).

Proof. We proceed as follows. Let x be a vector with l ≤ x ≤ u. We recenter the initial
instance by substituting x′ = x− x, obtaining

max f ′(x′) := f(x+ x′), (2.15)
Ax′ = b′ := b−Ax,
x′ ≥ l′ := l − x,
x′ ≤ u′ := u− x,

and assume b′ ≥ 0, which can be achieved by multiplying single rows with −1. Observe
that ||b′||1 ≤ nζl,u ||A||∞. Moreover, x′ = 0 ∈ Zn satisfies the new box constraints.

62

2.5. Feasibility and finiteness

Therefore, the vector
(0
b′
)
is a feasible solution to the following auxiliary IP:

min 1ᵀy (2.16)

s.t. (A,1)
(
z

y

)
= b′

l′ ≤ z ≤ u′

0 ≤ y ≤ b′

y, z ∈ Zn

As we only attached the identity to A, we have GD(A) = GD(A,1), and all parameters
remain unchanged. Clearly, the initial solution

(0
b′
)
has objective value ||b′||1 and the

optimal value is at least 0, with equality if and only if the initial IP (2.1) has a feasible
solution. By Theorem 2.1 and assuming m ≤ n, we can find an optimum solution

(z?
y?
)
to

this auxiliary instance in time

O(n log2(n)) · log2(
∣∣∣∣b′∣∣∣∣1) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F)).

Plugging in the estimate log2(||b′||1) ≤ log2(nζl,u) log2(||A||∞), and hiding the term
involving A in the Laundau notation in the exponent, we obtain the claimed running
time. If y? 6= 0, we declare the initial IP infeasible. Otherwise, we output x0 := z?+x.

2.5.2 Deciding boundedness

In this section, we will see that for the case where f(x) is a linear function, we can
decided whether there exists a finite optimum fairly efficient.

However, if f is an arbitrary separable convex function, we cannot decide whether there
exists a finite optimum in general.

The case of a linear objective.

We basically have two approaches at our disposal. If we want to solve the LP relaxation
of the given IP anyways, the following lemma reduces the question whether the IP is
bounded to deciding feasibility.

Lemma 2.31. Let a rational IP (2.1) with linear objective be given, and assume its LP
relaxation is feasible and unbounded. Then either the IP is feasible and unbounded, or it
is infeasible.

Proof. If the IP is infeasible, there is nothing to show, hence let x be a feasible integer
point. As all input data is rational, the recession cone of the LP relaxation contains a
rational vector v such that x+ λv is feasible and cᵀ(x+ λv) < cᵀx for any λ ∈ R≥0. But

63

Chapter 2. Integer programming in variable dimension

then there exists a positive scaling v′ of v such that x+ αv′ is integral, feasible, and has
a better objective value for any α ∈ N. Thus, the IP is unbounded as well.

If we want to avoid solving the LP relaxation, we can first decide feasibility, and then
make a single augmenting step.

Lemma 2.32. Let an IP instance (2.1) be given, where f(x) = cᵀx is a linear objective,
together with an initial feasible solution. Then we can decide whether the optimum is
finite by solving a single augmentation IP.

Proof. Let x be the initial feasible solution. If the optimum is infinite, the recession
cone of the LP relaxation has dimension at least 1. As all the input is rational, so is
the recession cone and by scaling, there exists an integral vector v such that x+ λv is
feasible for any λ ∈ R≥0. This implies that whenever vi 6= 0, we either have li = −∞ if
vi < 0, or ui = +∞ if vi > 0. Decomposing v into the sum of conformal Graver basis
elements, we see that the augmentation IP specified by the following box constraints has
a solution y with cᵀy < 0:

l′i =

0 li ∈ N
−∞ li = −∞

, and u′i =

0 ui ∈ N
∞ ui =∞

.

Vice versa, if the augmentation IP has a solution y with cᵀy < 0, it is easy to see that
x+ αy is feasible integral for any α ∈ N, therefore the initial IP is unbounded.

The case of a separable convex objective.

For the case of a separable convex objective, it cannot be decided whether a given IP is
bounded. The following lemma justifies that we assume to be given a bounded IP in the
case of a separable convex function.

Lemma 2.33 ([Eis+19], cf. also [Onn10], Section 1.3.3). The problem of deciding whether
a given IP (2.1) is bounded is undecidable, even in one dimension.

Proof. Let l = −∞, u = ∞, and 0 · x = 0, i.e. the set of feasible points is simply Z.
Assume there exists a finite algorithm for deciding whether a given IP is bounded. For
the objective, whenever queued, assume we get f(x) = x. If there is a finite algorithm, it
can only queue a finite number of points, hence let p be the minimum value for which
f was queued. If the algorithm outputs that the IP was unbounded, we claim that the
objective was actually f(x) = |x − p| + p. If the algorithm outputs that the IP was
bounded, we claim that the objective was chosen to be f(x) = x. In both cases, the
output is wrong.

64

2.5. Feasibility and finiteness

2.5.3 Handling infinite bounds

We first show that in the case of infinite bounds, we can still guarantee the existence of a
reasonably small feasible solution, as well as a bound on an optimal solution in the case
of linear objectives. Having these results, we can simply replace all infinite bounds and
run the algorithm for finite bounds.

Lemma 2.34. Let a feasible and bounded IP (2.1) with possibly infinite bounds l, u ∈
(Z ∪ {±∞})n be given. Define ζl,u := max{|li| : i ∈ [n], li ∈ Z} ∪ {|ui| : i ∈ [n], ui ∈ Z},
and ζl,u,b := max{ζl,u, ||b||∞}.

i) There exists a feasible solution x0 with ||x0||1 ≤ 3nζl,u,b ||A||∞ g1(A).

ii) If the objective f(x) = cᵀx is linear, there exists an optimal solution x? with
||x?||1 ≤ 4nζl,u,b ||A||∞ (g1(A))2.

Proof. We start with showing the existence of x0. The proof uses the same construction
as we used for showing Proposition 2.30, though we have to adapt the definition of ζl,u
according to the finite entries of l, u. Let x be the vector with l ≤ x ≤ u minimizing
||x||1. We recenter the initial instance by substituting x′ = x− x, obtain

max f ′(x′) := f(x+ x′), (2.15)
s.t. Ax′ = b′ := b−Ax,

x′ ≥ l′ := l − x,
x′ ≤ u′ := u− x,

and assume b′ ≥ 0, which can be achieved by multiplying single rows with −1. Observe
that ||b′||1 ≤ ||b||1 + nζl,u ||A||∞. Moreover, x′ = 0 ∈ Zn satisfies the new box constraints.
Therefore, the vector

(0
b′
)
is a feasible solution to the following auxiliary ILP:

min 1ᵀy (2.16)

s.t. (A,1)
(
z

y

)
= b′

l′ ≤ z ≤ u′

0 ≤ y ≤ b′

y, z ∈ Zn

As we only attached the identity to A, we have GD(A) = GD(A,1), and all parameters
remain unchanged. Clearly, the initial solution

(0
b′
)
has objective value ||b′||1 and the

optimal value is at least 0, with equality if and only if the initial ILP (2.1) has a feasible
solution.

65

Chapter 2. Integer programming in variable dimension

Let
(z?

0
)
be an optimum solution of minimum 1-norm to (2.16), and decompose the

vector
(z?

0
)
−
(0
b′
)

=
∑
g∈S αgg into a weighted sum of at most 4n − 2 Graver basis

elements g v
(z?
−b′
)
, S ⊆ G((A,1)). Moreover, we know that for each g, either αg = 0 or

(0,1ᵀ)g < 0. Otherwise considering
(z?

0
)
− g

(z?
0
)
yields a contradiction to the minimality

of
∣∣∣∣∣∣(z?0)∣∣∣∣∣∣1. But then ∑g∈S αg ≤ 1ᵀb′ = ||b′||1, and thus

||z?||1 ≤
∑
g∈S

αg ||g||1 ≤ g1(A)
∣∣∣∣b′∣∣∣∣1

≤ g1(A)(||b||1 + nζl,u ||A||∞)
≤ 2nζl,u,b ||A||∞ g1(A).

Changing from the solution z? of (2.6) back to our original IP (2.1), we obtain a feasible
solution x0 := x+ z? with

||x0||1 ≤ nζl,u,b + g1(A)2nζl,u,b ||A||∞ ≤ 3nζl,u,b ||A||∞ g1(A). (2.17)

Showing the existence of a short optimal solution for linear objectives works similar. Let
x0 be any feasible solution, and let x? be an optimum solution closest to x0 in terms of
1-norm. Similar as before, we can assume 0 ≤ x?−x0, and decompose x?−x0 =

∑
g∈S αgg

into the weighted sum of at most 2n− 2 Graver basis elements S ⊆ G(A). Since x? is
closest to x0, we can assume that either αg = 0 or cᵀg < 0 for all g ∈ S, by considering
x? − g. Fix some g. For every coordinate i, we must either have 0 < gi ≤ ui < ∞, or
−∞ < li ≤ gi < 0, as otherwise the IP was unbounded (we can add g to x?). Since all
g ∈ S are sign-compatible, this implies

∑
g∈S αi ≤ ||x0||1 + nζl,u. We obtain

||x?||1 ≤ ||x0||1 +
∑
g∈S

αg ||g||1

≤ ||x0||1 + g1(A)(||x0||+ nζl,u)
≤ 4nζl,u ||A||∞ (g1(A))2,

using the previously derived bound (2.17) on x0.

A direct consequence is that we can also find an initial solution to IPs with infinite
bounds.

Corollary 2.35. Let a bounded IP (2.1) with possibly infinte bounds l, u ∈ (Z∪{±∞})n

be given, together with a td-decomposition F of GD(A). Define ζl,u := max{|li| : i ∈
[n], li ∈ Z} ∪ {|ui| : i ∈ [n], ui ∈ Z}, and ζl,u,b := max{ζl,u, ||b||∞}.

i) We can find an initial feasible solution in time

O(n log2(n)) · (log2(nζl,u,b))2 · (g1(A) ||A||∞)O(height(F)).

66

2.5. Feasibility and finiteness

ii) We can find an initial feasible solution in time

O(n2(log2(n))3) · (log2(nζl,u,b)) · (g1(A) ||A||∞)O(height(F)).

iii) Assume the objective f(x) = cᵀx is linear. If we can find an optimal solution
for any finite bounds l′, u′ in time T (||u′ − l′||∞), then we can find an optimal
solution for the given instance in time

T (8nζl,u,b ||A||∞ (g1(A))2).

Proof. The first part follows from Proposition 2.30, by replacing l, u with l′, u′ defined as

l′i :=

li li ∈ Z
−3nζl,u,b ||A||∞ g1(A) li = −∞

,

u′i :=

ui ui ∈ Z
3nζl,u,b ||A||∞ g1(A) ui =∞

respectively. By Lemma 2.34, the new instance with finite bounds has a feasible solution
if and only if the original instance has a solution. We then apply Proposition 2.30 to
obtain Point i).

For the second point, we also start with replacing the bounds, and then construct the
auxiliary instance (2.16) as in the proof of Proposition 2.30. Recall that for this auxiliary
instance the vector

(0
b′
)
is an initial feasible solution, and all bounds are limited by nζl,u,b.

But instead of running the normal optimization procedure, we apply the scaling algorithm
of Proposition 2.27, obtaining a running time of

O(n2(log2(n))3) · log2(nζl,u,b) · (g1(A) ||A||∞)O(height(F)).

For the third point, we replace the bounds l, u in the same manner, but use the finite
bounds of Point ii) in Lemma 2.34.

Regarding separable convex objectives, we cannot limit the norm of any optimal solution.
If this was the case, we could decide unboundedness: Replace the infinite bounds, and
find an optimum solution x? for this modified IP with finite bounds. Then, change back
to the infinite bounds and solve a single augmentation IP 2.4, derived for x? and λ = 1.
If the problem is bounded, x? is optimal already and we do not find an augmenting step.
If the problem is unbounded, there exists an augmenting step and we find it with the
derived augmentation IP 2.4. This is a contradiction to Lemma 2.33.

But if we have a feasible solution x0 for a bounded IP, we can guess a bound ξ on

67

Chapter 2. Integer programming in variable dimension

||x0 − x?||∞, where x? is an optimal solution closest to x0. This leads to the following
algorithm for bounded IPs with possibly infinite bounds l, u, with a somewhat unavoidable
output-sensitive running time.

Proposition 2.36. Let a bounded IP (2.1) with possibly infinite bounds and initial
feasible solution x0 be given. If there is an algorithm finding an optimal solution with
running time T (||u′ − l′||∞) for any finite bounds l′, u′ for which x0 is feasible, then there
is an algorithm finding an optimal solution with running time

(log2(||x0 − x||∞) + 1) · T (4 ||x0 − x||∞),

for any infinte bounds l, u, where x is an optimal solution closest to x0.

Proof. The proof follows from the discussion beforehand. We guess ξ, and run the algo-
rithm for the instance with modified bounds l′i := max{li, (x0)i−ξ}, u′i := min{ui, (x0)i+
ξ} respectively. Note that if ξ ≥ ||x− x0||∞, the new instance with finite bounds contains
a solution that is optimal for the original instance.

We run the algorithm for finite bounds on this instance, and obtain an optimum x̂ for this
instance. Then, we solve one more augmentation IP derived from the original instance
for x̂ and λ = 1. If we do not find an augmenting step, we output x̂ as optimal. If we do,
we must have ξ < ||x− x0||∞. We update ξ ← 2ξ, and repeat the procedure from above
for x0 again. Clearly, log2(||x− x0||∞) + 1 iterations suffice.

One could formulate a similar result without demanding x0, by letting the running time
depend on ||x||∞. However, if we do not know whether the given IP is feasible, we have
to guess at least ξ ≥ 3nζl,u,bg1(A) ||A||∞.

2.6 The overall running time

In this section, we will assemble the pieces we discussed and derive several running times
in which we can solve the integer programming problem (2.1). Before we recall the
different parts of an algorithm, let us briefly address some necessary preprocessing steps,
whose running time will be dominated by the rest of the algorithm.

First, we used an explicit td-decomposition of GD(A) for several results. While finding a
(not necessarily optimal) td-decomposition is straight-forward for N -fold and tree-fold IPs,
in general we can use an algorithm of Reidl et al. [Rei+14], computing a td-decomposition
F roughly in time 2(td(G))2 · |V (G)|. As we have g1(A) ≥ 2height(F), this running time is
dominated by the term (g1(A) ||A||∞)O(height(F)) appearing for solving the augmentation
IP.

Furthermore, we assumed m ≤ n at certain points. Should the system Ax = b have

68

2.6. The overall running time

row-rank r < m, we might want to extract an irredundant subsystem A′x = b′ of rank
r. This is a reappearing problem in integer and linear programming, and can easily be
solved with Gaussian elimination. We mention [GLS93, Thm. 1.4.8] as a reference. In
the case of small tree-depth however, there is even a faster algorithm, computing an
irredundant subsystem in time roughly (height(F))2(n+m), see [Fom+18].

We recall the developed tools at our disposal.

The proximity result. Optionally, we can apply the proximity result of Section 2.4.1.
This gives us control on ||u− l||∞, but we need to solve the continuous relaxation
of the problem at hand. In particular, this allows us to assume that l, u are finite.
To find a fractional solution (or at least, ε-accurate solution), we can for instance
use Chubanov’s algorithm [Chu16].

An initial solution. Before we can optimize, we have to find an initial feasible solution,
which we achieve by setting up an auxiliary IP and solving it. The running time
for this is

O(n log2(n)) · log2(
∣∣∣∣b′∣∣∣∣1) · log2(ζl,u) · (g1(A) ||A||∞)td(F),

where the second factor stems from the objective of the auxiliary IP (2.16). In the
case of finite bounds, we are able to estimate ||b′||1 ≤ nζl,u. In the case of infinite
bounds the estimate has to depend on the right-hand side b as well.

Reducing the objective If the box constraints are finite, we can optionally apply the
results of Section 2.3 for estimating the dependency on the objective. However,
for the separable convex case, the linear factor ||u− l||∞ would enter the running
time, thus its benefit without a grasp on l, u (e.g. via the proximity results) is
questionable.

The scaling approach If we deal with rather large bounds, we can start by finding
an optimal solution in the sparser sublattice 2kZn, refine it to a solution in the
lattice 2k−1Zn, and iterate. This is very beneficial in combination with the reduced
objective results for separable convex functions, as we can deploy the proximity
result in each step and only have to reduce the objective on a small area.

Optimization via augmentation IPs As the core of the developed theory, we showed
that optimization can be reduced to solving a family of augmentation IPs. The
number of IPs we have to solve in total is O(n log2(n)) log2(fmax) log2(ζl,u) (cf.
Proposition 2.11).

Algorithm for augmentation IPs Finally we add in the running time for solving
these augmentation IPs. Either, by solving every augmentation IP individually
(Subection 2.2.1), or by using the strengthening via convolution in Subection 2.2.3.

69

Chapter 2. Integer programming in variable dimension

In the following, we will discuss several scenarios. The most interesting ones were already
stated in Theorem 2.2.

Several general running times for finite bounds.

In this subsection, we combine different results to obtain several running times. We will
phrase the running times in two propositions, the first for linear objectives, the second
for separable convex objectives. As the design of the algorithms will be the same for
the case of linear and separable convex objectives, the proofs will only differ in some
estimates. Therefore, we will give a combined proof for both propositions.

The intent of the following propositions is to highlight the dependency on n, therefore
dependencies on l, u, c are expressed in the infinity-norm. As a consequence, rather crude
estimates are made, such as log2(||c||1) ≤ log2(n) log2(||c||∞). We also remarks that the
assumption fmax ≥ ||u− l||∞ or even fmax ≥ ||u− l||1 is arguable, and would reduce the
log2-factors.

Theorem 2.37. Let an ILP (2.1) with finite bounds and linear objective be given, define
ζl,u := ||u− l||∞ and let LP denote the time required to solve the LP relaxation of (2.1).
We can decide feasibility, and find an optimum solution if it exists, in any of the following
running times.

i) If we directly compute a feasible solution and optimize, we obtain

O(n log2(n)2) · (log2(||c||∞ ζl,u))2 · (g1(A) ||A||∞)O(tdD(A))

ii) If we first solve the continuous relaxation and apply the proximity result, we
obtain

O(n(log2(n))3) · log2(||c||∞) · (g1(A) ||A||∞)O(tdD(A)) + LP.

iii) If we solve the continuous relaxation, apply the proximity result and analyse
with a reduced objective, we obtain

O(n2(log2(n))3) · (g1(A) ||A||∞)O(tdD(A)) + LP.

iv) If we use the scaling approach, together with the proximity result and the reduced
objective, we obtain

O(n2(log2(n))4) · log2(ζl,u) · (g1(A) ||A||∞)O(tdD(A)).

Theorem 2.38. Let an IP (2.1) be given, define

ζl,u := ||u− l||∞ and fmax := max
x,y feasible

(|f(x)− f(y)|),

70

2.6. The overall running time

and let CP denote the time to find a 1-accurate solution for the continuous relaxation
of (2.1). We can decide feasibility and boundedness, and find an optimum solution if it
exists, in any of the following running times.

i) If we directly compute a feasible solution and optimize, we obtain

O(n(log2(n))2) · log2(fmax) · (log2(ζl,u))2 · (g1(A) ||A||∞)O(tdD(A)).

ii) If we first solve the continuous relaxation and apply the proximity result, we
obtain

O(n(log2(n))3) · log2(fmax) · (g1(A) ||A||∞)O(tdD(A)) + CP.

iii) If we solve the continuous relaxation, apply the proximity result and analyse
with a reduced objective, we obtain

O(n3(log2(n))3) · (g1(A) ||A||∞)O(tdD(A)) + CP.

iv) If we use the scaling approach, together with the proximity result and the reduced
objective, we obtain

O(n3(log2(n))4) · log2(ζl,u) · (g1(A) ||A||∞)O(tdD(A)).

Proof of Theorems 2.37 and 2.38. In all cases, we can first find a td-decomposition F
of the graph GD(A) in time 2(tdD(A))2 |V (GD(A))|, see [Rei+14]. If necessary, we then
output a non-redundant subsystem A′x = b′ of full rank in time (height(F))2(n + m),
see [Fom+18]. Moreover, infeasibility can be detected while computing an initial feasible
solution (or already while solving the continuous relaxation). The time needed for these
steps is dominated by other terms (unless m� n), henceforth we will omit these steps.

i) In this case, we solve the IP in the most forward way. This is, we compute an initial
feasible solution and optimize then with the augmenting procedure.

Finding an initial feasible solution can be done via Proposition 2.30 in time

O(n log2(n)) · log2(nζl,u) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F))

where ζl,u := ||u− l||∞.

Then, we run the augmenting procedure of Theorem 2.1, and obtain a running time
of

O(n log2(n)) · log2(f(x0)− f(x?)) · log2(ζl,u) · (g1(A) ||A||∞)O(height(F))

71

Chapter 2. Integer programming in variable dimension

for this step. For a linear objective, we can estimate

log2(cᵀ(x0 − x?)) ≤ log2(n) log2(||c||∞ ζl,u),

and the second running time dominates. For separable convex objectives, aggregating
the running times yields the claimed result.

ii) In this case, we start by solving the continuous relaxation first, obtaining a fractional
optimum x?. As there are several possibilities to do this, we let the reader choose
their favorite algorithm, and abbreviate the running time by LP in the case of a
linear objective, and by CP in the case of a separable convex objective.

We can deploy the proximity result (Proposition 2.24) and replace the initial bounds
by l′ := dx? − ng1(A)e and u′ := bx? + ng1(A)c. Finding a feasible initial vector x0
in this new instance can be done in time

O(n log2(n)) · log2(nζl′,u′) · log2(ζl′,u′) · (g1(A) ||A||∞)O(height(F))

≤ O(n log2(n)3) · (g1(A) ||A||∞)O(height(F)),

using Proposition 2.30 and plugging in the right values.

Finally, finding an optimal solution x? can again be done with Theorem 2.1, in time

O(n log2(n)2) · log2(f(x0)− f(x?)) · (g1(A))O(tdD(A)). (2.18)

In the linear case, we can estimate log2(f(x0)− f(x?)) ≤ log2(||c||∞) · log2(n2g1(A))
using the proximity bounds. This gives us the desired running times.

iii) The third running time follows from the previous by applying the objective reduction
of Proposition 2.16 to c, or of Proposition 2.17 for f .

We continue the computation of the previous point at the Term (2.18), and estimate

log2(cᵀ(x0 − x?)) ≤ log2((5n2g1(A))n) ∈ O(n log2(n))g1(A)

for a linear objective, whereas for a separable convex function we get

log2(f(x0)− f(x?)) ≤ log2((5n2g1(A))n2g1(A)) ∈ O(n2 log2(n))g1(A).

This gives total running times of

O(n2(log2(n))3)(g1(A))O(tdD(A)) and O(n3(log2(n))3)(g1(A))O(tdD(A))

as desired.

iv) In this approach, we want to use the proximity result without solving the LP
relaxation first. This is done by deploying the scaling algorithm of Proposition 2.27.
For finding an initial feasible solution, we set up the auxiliary IP as usual, having

72

2.6. The overall running time

(0
b′
)
as a feasible solution. Instead of solving it, we recenter this instance again, so

that
(0
0
)
becomes a feasible solution, and the quantity ||u′ − l′||∞ remains the same.

We can now switch to a sparser lattice such that 0 is the only solution, and apply
the scaling approach, taking time

log2(nζl,u) · O(n2(log2(n))3) · (g1(A))O(height(F)).

After substituting everything back, we have feasible solution x0 for the original
instance. We then apply the scaling algorithm to optimize x0, taking time

log2(ζl,u) · O(n2(log2(n))3) · (g1(A))O(height(F)).

Adding both running times yields the stated running time. If we compute x0 without
the scaling approach, we trade a log2(n)-factor against an additional log2(ζl,u)-factor.

The case of infinite bounds.

For possibly infinite bounds, recall that for linear objectives, we can check whether the
IP is bounded in negligible running time, whereas the problem is undecidable for general
separable convex functions. Henceforth we limit the discussion to bounded IPs.

Since the running times ii) and iii) of Theorems 2.37 and 2.38 are using a continuous
solver in combination with the proximity result, they apply to infinite bounds as well
(possibly with variations in the continuous solver).

Theorem 2.39. Let an IP (2.1) with possibly infinite bounds l, u ∈ (Z ∪ {±∞})n be
given.

(a) Let the objective be linear.

i) If we use no particular techniques, we obtain a running time of

O(n log2(n)4) · (log2(||c||∞ ζl,u,b))
2 · (g1(A) ||A||∞)O(tdD(A)).

ii) If we use the scaling approach for finding an initial feasible solution and for opti-
mization, we obtain

O(n2(log2(n))6) · log2(ζl,u,b) · (g1(A) ||A||∞)O(tdD(A)).

(b) Let the objective be separable convex.

73

Chapter 2. Integer programming in variable dimension

i) If we use no particular techniques, we obtain a running time of

n(log2(n))3
(
log2(fmax) · (log2(ξ)2) + (log2(ζl,u,b))2

)
(g1(A) ||A||∞)O(tdD(A)),

where ξ := ||x0 − x||∞ + 1 denotes the distance from the feasible solution x0 we find
to a closest optimal solution x.

ii) If we use the scaling approach for finding an initial feasible solution and for opti-
mization, we obtain

n3(log2(n))4
(
log2(ξ)2 + log2(ζl,u,b)

)
(g1(A) ||A||∞)O(tdD(A)),

where ξ := ||x0 − x||∞ + 1 denotes the distance from the feasible solution x0 we find
to a closest optimal solution x.

Proof. Again, the time needed for preprocessing is negligible (as long as m ∈ O(n)).

(a) For a linear objective, we immediately apply the second point of Corollary 2.35, and
obtain the following running times.

i) By Theorem 2.37 Point i), we have

O(n log2(n)4) · (log2(||c||∞ ζl,u,b))
2 · (g1(A) ||A||∞)O(tdD(A)).

ii) By Theorem 2.37 Point iv), we have

O(n2(log2(n))6) · log2(ζl,u,b) · (g1(A) ||A||∞)O(tdD(A)).

(b) For separable convex objectives, we apply either the first or the second point of
Corollary 2.35 to find an initial solution x0 (and decide feasibility) in one of the times

i) O(n log2(n)) · (log2(nζl,u,b))2 · (g1(A) ||A||∞)O(height(F)),

ii) O(n2(log2(n))3) · (log2(nζl,u,b)) · (g1(A) ||A||∞)O(height(F)).

Then, we apply Proposition 2.36, letting us reduce this case to finite bounds in time
(log2(||x0 − x||∞) + 1) · T (4 ||x0 − x||∞), where T is any running time in dependency on
finite bounds.

i) By Theorem 2.38 Point i), we have

O(n(log2(n))2) · log2(fmax) · (log2(||x0 − x||∞) + 1))3 · (g1(A) ||A||∞)O(height(F)).

ii) By Theorem 2.38 Point iv), we have

O(n3(log2(n))4) · log2(||x0 − x||∞ + 1)2 · (g1(A) ||A||∞)O(height(F)).

74

2.6. The overall running time

Combining the running times listed in Points i) gives the first claim, combining the
running times in Points ii) the second.

A strongly polynomial time algorithm for linear objectives.

As an immediate consequence of Theorem 2.37 Point iii), we obtain a strongly polynomial
algorithm for integer linear programming, provided we have access to a td-decomposition
of the constraint matrix.

Two important classes of IPs for which we have easy access are N -fold IPs and their
generalization tree-fold IPs (Definitions 1.1 and 1.2).

Corollary 2.40. A generalized n-fold ILP with parameters r and s is solvable in strongly
FPT time

n2(log2(n))3 · (g1(A) ||A||∞)O(r+s) + LP.

A generalized tree-fold ILP with parameters τ1, . . . , τd is solvable in strongly FPT time

n2(log2(n))3 · (g1(A) ||A||∞)O(
∑

i
τi) + LP.

Here, LP denotes the time complexity of any algorithm for the LP relaxation that runs
in time polynomial in n and size(A) only, and in space polynomial in the input size.

Proof. As the parameters r, s or τ1, . . . , τd are given to us, we can easily derive a td-
decomposition F of the constraint matrix.

We first apply the algorithm of Frank & Tardos [FT87] (or any other algorithm for the
LP relaxation meeting the requirements) in order to obtain an optimum solution of the
LP relaxation.

Afterwards, we apply Theorem 2.37, Point iii), and obtain the claimed running time.

As we are only using Theorem 2.1, all occurring numbers are bounded as well, and the
claim follows.

Remark 2.41. Even if only stated for finite bounds, this result also holds for infinite
bounds. The augmenting steps are still bounded in terms of the parameters, and by
Lemma 2.34, we know that the bit complexity of an optimal solution (and thus all points
we have to consider) is bounded as well.

The reason why we restrict ourselves to ILPs is the fact that we do not know how to find
an ε-accurate solution for the continuous relaxation of an IP in strongly FPT time.

If the algorithm of [Rei+14] runs in strongly polynomial time, the same result holds for
any ILP with bounded tree-depth.

75

Chapter 2. Integer programming in variable dimension

2.7 Other parameters for integer programming

This section is concerned with justifying our choice of parameters. We first remark that
we cannot parameterize by the (primal or dual) tree-depth alone (i.e. not considering
||A||∞ as a parameter). It is shown in [GO18, Thm. 12] that even for a linear objective,
the problem is NP-hard even for fixed primal tree-depth. For the dual tree-depth, we
refer to [KKM17b, Thm. 5]. The authors show that the problem parameterized by the
dual tree-depth alone is W[1]-hard, which is strong evidence that the problem is not in
FPT.

Moreover, we can neither extend our results to non-separable convex functions ([Lee+12,
Prop. 1], [Eis+19, Prop. 101]), nor to separable concave functions ([Eis+19, Prop. 101]).

The primal tree-depth as a parameter

In [Eis+19], also the primal graph GP (A) and its tree-depth is considered as a parameter.
On a high level, this case is rather similar to the dual graph. It is also possible to show a
bound on the Graver basis elements in terms of td(GP (A)). However, instead of a bound
for g1(A), we obtain a bound g∞(A) on the infinity-norm for all g ∈ G(A). What is more
important, instead of being doubly-exponential in the tree-depth, its bound is a tower
whose height corresponds to the topological height of the chosen td-decomposition F of
GP (A). As we can also solve the augmentation IP in this case, we still obtain an FPT
algorithm, admittedly with a much worse running time.

We cite the main results for the primal graph.

Lemma 2.42 ([Eis+19, Lemma 22]). The augmentation IP (2.5) can be solved in time
tdP (A)2(2g∞(A) + 1)tdP (A)n.

The constant g∞(A) actually depends on the chosen td-decomposition. Its magnitude
becomes clearer in the following lemma.

Lemma 2.43 ([Eis+19, Lemma 26]). Let A ∈ Zm×n, F be a td-decomposition of GP (A).
Then there exists a constant α ∈ N such that

g∞(A) ≤ τ
(
(2 ||A||∞)2th(F)·α·tdP (A)2)

,

where τ(x) is a tower of height th(F)− 1, i.e. for ϕ(x) = 2x, we have τ(x) = ϕth(F)−1(x).

The function τ will be used in the following proposition again, where we give a selection
of running times. For the full table, see [Eis+19, Corollary 88].

Lemma 2.44 (cf. [Eis+19, Corollary 88]). Let an IP (2.1) be given, let F be an optimal

76

2.7. Other parameters for integer programming

td-decomposition of GP (A), and define ζu−l := ||u− l||∞. Moreover, define

g := τ
(
O
(
(2 ||A||∞)2th(F)·α·tdP (A)2))

.

If f(x) = cᵀx and LP denotes the time needed to solve the linear relaxation of (2.1), we
can find an optimal solution of (2.1) in any of the following running times.

i) n2 log2(n) · g · (log2(ζl,u,c))2

ii) n3(log2(n))2 · g · log2(ζl,u)

iii) n3(log2(n))2 · g + LP

If f(x) is a separable convex objective and CP denotes the time needed to find an ε-
accurate solution of the continuous relaxation of (2.1), we can find an optimal solution
of (2.1) in any of the following running times.

i) n2 · g · log2(ζl,u) · log2(fmax)

ii) n4(log2(n))2 · g · log2(ζl,u)

iii) n4(log2(n))2 · g + CP

As a direct consequence, also the tree-depth of the primal graph (together with ||A||∞)
is a valid parameter for integer programming.

Corollary 2.45. Integer programming is in FPT parameterized by ||A||∞ and td(GP (A)).

The tree-width as a parameter

This section is concerned with the tree-width of a graph, tw(G), as defined in Section 1.7.
The tree-width is a weaker parameter than the tree-depth, since we always have tw(G) +
1 ≤ td(G). To see this informally, let F be a td-decomposition of G, drawn down in a
reasonable way (i.e. all leaves in the bottom row and non-crossing edges). We numerate
the leaves v1, . . . , vm, and for for every root-leaf path P (r, vi), we pack one bag Bi. Then,
we take the path on the ordered bags, B1, . . . , Bm.

In the next Section, we will see that integer programming remains NP-hard even if
||A||∞ = 2 and twD(A) = 2 (Corollary 2.47) or twP (A) = 2 (Corollary 2.49).

In the context of the Graver augmenting technique, the main difference is that the

77

Chapter 2. Integer programming in variable dimension

tree-width is not sufficient to limit the norm of Graver basis elements g ∈ G(A), i.e. g1(A)
(and g∞(A) for the primal tree-depth) any more.

However, if we add another parameter, there are still parameterized algorithms for integer
programming for the primal tree-width, as well as for the dual tree-width.

The primal tree-width and the domain

It follows from Freuder’s algorithm [Fre90] and was reproven by Jansen & Kratsch [JK15]
that integer programming is solvable in time

n · ||u− l||O(twP (A))
∞ .

If we know in addition a bound g̃∞(A) on the infinity-norm of the graver basis elements,
the box constraints in the augmentation IP (2.5) can be replaced by min{g̃∞(A), ui},
max{g̃∞(A), li} respectively. Using one of the aforementioned algorithms to solve the
augmentation IP, we obtain an algorithm parameterized by g∞(A), twP (A) and ||A||∞.
See [Eis+19, Lem. 83] for details.

The dual tree-width and the domain

Similarly to the primal tree-depth, it was shown that twD(A) together with another
parameter suffices to obtain an FPT algorithm for integer programming. Ganian,
Ordyniak & Ramanujan [GOR17] showed that integer programming can be solved in
time n · ΓO(twI(A)), where

Γ := max
{∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Aixi

∣∣∣∣∣
∣∣∣∣∣
∞

: i ∈ [n], x a feasible solution
}
.

Here, Ai denotes the i-th column of A and twI(A) denotes the tree-width of the incidence
graph, where we have a vertex i for each row, a vertex j for each column, and an edge
(i, j) if ai,j 6= 0. We always have twI(A)− 1 ≤ twP (A), twD(A) [KV00]. With a little bit
more work the same argumentation as in the primal case applies: We can limit Γ in terms
of g1(A) and ||A||∞, provided we know a bound g1(A) on the 1-norm of the Graver basis
elements of A. This yields an FPT algorithm for integer programming parameterized by
||A||∞ , g1(A) and twD(A), the details can be found in [Eis+19].

The incidence graph

Yet another graph associated with a constraint matrix is the incidence graph GI(A). As
mentioned in the previous paragraph GI(A) is formed by taking a vertex i for each row,
a vertex j for each column, and an edge (i, j) if ai,j 6= 0.

78

2.8. An ETH-based lower bound

Ganian, Ordyniak & Ramanujan [GOR17, Thm. 12] showed that integer programming is
NP-hard, already when twI(A) = 3 and ||A||∞ = 2. In the previous paragraph we saw
already that if we additionally take the parameter Γ related to the prefix-sum of Ax for
any feasible solution x, we obtain a fixed-parameter tractable algorithm.

The hardness result of Ganian et al. was extended by Eiben et al. [Eib+19], who showed
that integer programmings is NP-hard already for tdI(A) = 5 and ||A||∞ = 2. This
shows that we cannot replace the dual tree-depth by this more permissive parameter.

The underlying matroid and its branch-depth

The parameter tree-depth is in some sense quite unsatisfying. If we apply unimodular
row operations on the matrix A, the whole geometric structure of the problem does not
change, only its description. However, as long as we do not have any zero-columns (i.e.
trivial variables) we can perform row operations on A and obtain a matrix A′ without
any zero entries. The dual tree-depth of A′ is m, though we might have started with
tdD(A) being constant. And while both matrices describe the very same problem, our
algorithms are quite inefficient for A′.

The branch-depth of A is a parameter coming from to the vector matroid described by
the columns of A. As row operations do not change the vector matroid, the matrices A
and A′ still have the same branch depth. Chan et al. [Cha+19] showed that the branch
depth of A equals minA′ (tdD(A′)), where the minimum is taken over all matrices A′ that
are row-equivalent to A. Since they provide an algorithm approximating the best row-
equivalent matrix (admittedly only to an exponential factor), integer programming is also
fixed-parameter tractable with respect to the parameters ||A||∞ and the branch-depth.
However, when computing the row-equivalent matrix, the parameter ||A||∞ might grow
significantly. More precisely, they denote with ec(A) the entry complexity of A, i.e. the
maximum bit complexity over all entries of A. The upper bound on the entry complexity
of the row-equivalent matrix A′ they obtain is bounded by ec(A′) ∈ O(d4d ec(A)).

2.8 An ETH-based lower bound

In this section, we will derive lower bounds on the running time for the problem at hand,
assuming the exponential time hypothesis (ETH), stating that the 3-satisfiability problem
(3-Sat) cannot be solved in subexponential time in the worst case. To the best of our
knowledge, we are the first ones providing a lower bound for the primal tree-depth as
a parameter. For the dual tree-depth, we obtain a lower bound that asymptotically
matches the one of Knop, Pilipczuk & Wrochna [KP]. But while they are exclusively
interested in the tree-depth, we will also take the topological height into consideration.
Hence, we also obtain lower bounds for every fixed topological height. Applied to the

79

Chapter 2. Integer programming in variable dimension

case when the topological height is 2, this yields the currently best lower bound for
N -fold IPs.

Prerequisites and NP-hardness for tree-width

Crucial to our reductions will be the famous NP-hard subset sum problem:

Subset Sum
Instance: Positive integers a1, . . . , an, and a target b ∈ Z≥1.

Task: Decide whether there is a subset I ⊆ [n] such that
∑
i∈I ai = b.

Our goal is to encode an instance of the subset sum problem as an IP with suitable
(primal or dual) tree-depth, and then take advantage of existing hardness results for the
subset sum problem. On the way, we will also encounter the hardness results for the
parameter tree-width, mentioned in Section 2.7.

The encoding of subset sum works in several steps. We start by taking a subset sum
instance with large items ai, and encode it in the natural way as an IP. Of course, this
gives us large coefficients in the matrix A, which is undesirable for our parameter ||A||∞.
The next step is thus to encode the items into variables with large values, introducing
new variables. Then, we show that the dual graph of the obtained constraint matrix has
a tree-decomposition of width 2. Moreover, the tree we get will actually be a path P , i.e.
we have a path-decomposition of width 2. In order to obtain this decomposition for the
primal graph as well, we have to add another step in the encoding. At this point, we can
conclude NP-hardness for the parameters twP (A) and twD(A).

For the primal case, we construct a td-decomposition for the primal graph, dual graph
respectively. On a high level, we embed the path P from the path-decomposition into a
special tree, and then show that we can “unfold” every bag and delete duplicate vertices
in a way that does not increase the height of the tree too much, and keeps the structure
of a td-decomposition.

The dual case is more tedious, and will construct a td-decomposition from scratch.

We begin with the natural encoding of subset sum with n boolean variables x1, . . . , xn:

n∑
i=1

aixi = b (2.19)

0 ≤ xi ≤ 1

Let ∆ ∈ N≥2, and assuming ai ≤ b for all i ∈ [n], let L∆ := dlog∆(b+ 1)e. Denote
by [ai]∆ = (α(0)

i , . . . , α
(L∆−1)
i) the base-∆ encoding of ai, i.e., ai =

∑L∆−1
j=0 α

(j)
i ∆j . For

80

2.8. An ETH-based lower bound

each i, we introduce new variables y(j)
i , playing the role of the powers ∆j . Thus,

aixi =
∑L∆−1
j=0 α

(j)
i y

(j)
i . Now, let

y
(0)
i = xi ∀i ∈ [n] (Xi)

y
(j)
i = ∆ · y(j−1)

i ∀i ∈ [n], ∀j ∈ [L∆ − 1] (Y (j)
i)

n∑
i=1

L∆−1∑
j=0

α
(j)
i y

(j)
i = b. (S)

Due to constraint (Xi), we will disregard the variables xi from now on and work with
the variables y(0)

i .

Lemma 2.46. Let A be the matrix of constraints (Y (j)
i)–(S). GD(A) has a path decom-

position of width 2 and length n(L∆ − 1)− 1.

Proof. Let A be the matrix of constraints (Y (j)
i) and the constraint (S). The graph

GD(A) contains the following edges:

• Between S and each Y (j)
i .

• Between Y (j−1)
i and Y (j)

i for each i ∈ [n] and j ∈ [L∆ − 1].

We construct a tree decomposition (in fact, a path decomposition), by consecutively
taking the following segment of bags for each i ∈ [n]:

{S, Y (0)
i , Y

(1)
i }, {S, Y

(1)
i , Y

(2)
i }, . . . , {S, Y

(L∆−2)
i , Y

(L∆−1)
i } .

Since each bag is of size 3, the treewidth is 2. Moreover, since each segment comprises
L∆−1 bags, and there are n segments, the length of the path decomposition is n(L∆−1)−1.
Note that there are nL∆ variables and n(L∆ − 1) + 1 constraints.

This already provides us with the first hardness result.

Corollary 2.47 (twD hardness). Integer programming is NP-hard already when twD(A) =
2 and ‖A‖∞ = 2.

Proof. Let ∆ = 2 and apply Lemma 2.46.

When it comes to the primal tree-width, the variables are the vertices of GP (A), and

81

Chapter 2. Integer programming in variable dimension

constraint (S) corresponds to a large clique. Therefore, we split up (S) into partial sums:

z
(j)
i =


y

(0)
1 if i = 1, j = 0
z

(L∆−1)
i−1 + α

(0)
i y

(0)
i if i > 1, j = 0

z
(j−1)
i + α

(j)
i y

(j)
i if j > 0

(Z(j)
i)

z(L∆−1)
n = b (S′)

The intuitive meaning of z(j)
i is that it is a prefix sum of the constraint (S), i.e.,

z
(j)
i =

 i−1∑
k=1

L∆−1∑
`=0

α
(`)
k y

(`)
k

+

 j∑
`=0

α
(`)
i y

(`)
i

 .

Lemma 2.48. Let A be the matrix of constraints (Y (j)
i), (Z(j)

i), and (S′). GP (A) has a
path decomposition of width 2 and length at most 2nL∆.

Proof. Let us analyze the primal treewidth of constraints (Y (j)
i), (Z(j)

i), and (S′). We
shall again disregard the variables xi and simply identify them with y(0)

i . Denoting the
constraint matrix as A, the graph GP (A) has the following edges:

i) {y(j−1)
i , y

(j)
i }, {z

(j)
i , z

(j−1)
i }, and {y(j)

i , z
(j−1)
i } for each i ∈ [n] and j ∈ [L∆ − 1],

ii) {z(j)
i , y

(j)
i } for each i ∈ [n] and j ∈ [0 : L∆ − 1],

iii) {z(L∆−1)
i−1 , y

(0)
i } and {z

(0)
i , z

(L∆−1)
i−1 } for each i ∈ [n].

We construct a path decomposition of GP (A) of width 2 and length 2nL∆ − n − 1 as
follows.

• For each i, form a path segment by alternatingly taking the bags {y(j−1)
i , z

(j−1)
i , y

(j)
i }

and {z(j−1)
i , y

(j)
i , z

(j)
i } for j = 1, . . . , L∆ − 1. These bags contain the edges of the

first two types.

• For connecting these segments, take a bag {z(L∆−1)
i−1 , y

(0)
i , z

(0)
i }. These bags contain

the edges of the third type.

Moreover, ‖A‖∞ = ∆, the number of variables is 2nL∆, and the number of constraints
is 2nL∆ − n+ 1.

Corollary 2.49 (twP hardness). Integer programming is NP-hard already when twP (A) =
2 and ‖A‖∞ = 2.

82

2.8. An ETH-based lower bound

Proof. Again, let ∆ = 2 and apply Lemma 2.48.

Let us turn our attention to tree-depth. Say that an instance (a1, . . . , an, b) of subset
sum is balanced if the encoding length of b is roughly n, i.e., if n ∈ Θ(log2(b)). We will
use the following ETH-based lower bound for subset sum:

Proposition 2.50 ([KP]). Unless the ETH fails, there is no algorithm for the subset
sum problem which solves every balanced instance in time 2o(n+log2(b)).

We remark that this proposition is obtained via the standard NP-hardness reduction
from 3-Sat to subset sum, which starts from a 3-Sat formula with n variables and m
clauses and produces a subset sum instance with ñ = 2(n+m) and 3(n+m) ≤ log2(b) ≤
4(n+m) [Cor+09, Thm. 34.15], hence 3

2 ñ ≤ log2(b) ≤ 2ñ. This is the reason why the
lower bound holds for balanced instances.

In the next definition, we want to define a tree which is in some sense maximal among
all trees with the same level heights and an additional constraint on the degrees of
non-degenerate vertices.

Definition 2.51. Let κ = (k1, . . . , k`) ∈ N` and denote by Fκ the maximal (w.r.t. the
number of vertices) rooted tree such that each root-leaf path P of F satisfies the following:

i) it contains ` non-degenerate vertices, i.e., th(Fκ) = `,

ii) ki(P) = ki for each i ∈ [`], thus P has length ‖κ‖1,

iii) the i-th non-degenerate vertex on P has (in F) out-degree ki + 1, for each i ∈ [`− 1].

It is easy to verify that the conditions i) to iii) already define Fκ uniquely. Conditions i)
and ii) define the depths of all non-degenerate vertices (in particular the leaves), and
Condition iii) defines the number of children at each non-degenerate vertex. Hence, we
can easily determine the number of vertices in Fκ.

Lemma 2.52. Let κ ∈ N`. Then Fκ has Kκ :=
(∏`

i=1(ki + 1)
)
− 1 vertices.

Proof. The proof goes by induction on `. In the base case when ` = 1, Fk1 is a path on
k1 vertices and clearly (k1 + 1)− 1 = k1. In the induction step, let κ′ := (k2, . . . , k`), so
by the induction hypothesis Kκ′ =

(∏`
i=2(ki + 1)

)
− 1. Observe the structure of Fκ: the

segment between its root and its first non-degenerate vertex v is a path on k1 vertices,
and the subtree of each child of v is isomorphic to Fκ′ and hence has Kκ′ vertices. Thus,

83

Chapter 2. Integer programming in variable dimension

the number of vertices of Fκ is

Kκ = k1︸︷︷︸
path

+ (k1 + 1)Kκ′︸ ︷︷ ︸
subtrees

= k1 + (k1 + 1)
(∏̀
i=2

(ki + 1)− 1
)

=
(∏̀
i=1

(ki + 1)
)
− 1

Lemma 2.53. Let k ∈ N`, Kκ as in Lemma 2.52, PKκ be a path on Kκ vertices. Then
Fκ is isomorphic to a td-decomposition of PKκ.

For the proof, we recall that the closure of a tree is obtained by adding all edges between
any two vertices in an ancestral relationship. Hence, a graph F is a td-decomposition of
a graph G if and only if |V (F)| = |V (G)| and there is a monomorphism sending G to
cl(F).

Proof. We induct on `. In the base case ` = 1, F(k1) is a path on k1 vertices, so clearly
Fk1 is a td-decomposition of Pk1 . Assume that the claim holds for all `′ < ` and let
κ′ := (k2, . . . , k`). Note that in PKκ there exist k1 vertices whose deletion partitions PKκ
into k1 + 1 paths on Kκ′ vertices. Denote these vertices by v1, . . . , vk1 and let P ′ be
the path (v1, v2, . . . , vk1). By the inductive hypothesis Fκ′ is a td-decomposition of PKκ′ .
Take k1 + 1 copies of Fκ′ and connect each of its roots to vk1 by an edge. Then PKκ is
contained in the closure of this tree, and it is easy to see that this tree is isomorphic to
Fκ.

Lower bound for primal tree-depth

The lower bound for the primal tree-depth can be derived fairly simple. We pick a
balanced subset sum instance, encode it as discussed, and obtain a path-decomposition.
With Lemma 2.53, we obtain a td-decomposition F̂ for this path. Then, we unfold every
bag in a way that keeps the td structure, does not increase the topological height of the
tree, and increases the height by at most a factor of 3. To finish the proof, we only have
to compare the parameters of the constructed tree F with the parameters of the initial
subset sum instance.

The unfolding is done with the following lemma.

Lemma 2.54. Let a graph G be given, together with a path-decomposition P of width
β. Let F be a td-decomposition for P . Then we can obtain a td-decomposition of G s.t.
th(F) ≤ th(F ′), and height(F ′) ≤ (β + 1) · height(F).

84

2.8. An ETH-based lower bound

Proof. We obtain F ′ as follows. We will replace every bag B = {w1, . . . , wβ} by a path
PB = (w1, . . . , wβ), connect one end to the parent of B and all children of B to the other
end of PB. Having possibly several copies of each vertex v ∈ V (G), we only keep the
copy closest to the root, and contract all others into their respective parent. It remains
to show that this is a td-decomposition.

Let v be a vertex of G, and τ(v) that bag in P that is closest (in F) to the root. Since
τ(v) has to be connected to all other bags containing v, we know that the subtree Fv
rooted at τ(v) contains all bags containing v. Now let u be a vertex connected to v in G.
If the bag τ(u) is either contained in the subtree Fv or in the path from τ(v) to the root,
we are done. If the bag τ(u) is in a different branch than Fv, observe that there has to
be a bag B in Fv containing both u and v. But since B and τ(u) have to be connected
in P , and all edges of P have to be in the closure of F , there has to be a bag containing
u and being closer to the root than τ(u). This is a contradiction.

We are now able to show the lower bound.

Theorem 2.55. Unless the ETH fails, there is no algorithm that solves every IP with
2 ≤ ||A||∞ ≤ ∆ and for which a primal td-decomposition F with th(F) ≤ ` exists in time

2
o

(√
log2(∆)

(
tdP (A)

3`

)`/2)
.

Proof. Let ` and ∆ be given, and pick a balanced subset sum instance with n large
enough. In particular, we will assume ∆� b. We have

3/2n
log2(∆) ≤ log∆(b) ≤ 2n

log2(∆) .

In accordance with Lemma 2.48, we encode this instance into an IP with constraint
matrix A, and obtain a path decomposition P of GP (A). More precisely, P has width 2
and length at most 2nL∆, where

3n
2 log2(∆) ≤ L∆ = dlog∆(b+ 1)e ≤ 2n

log2(∆) + 2 ≤ 3n
log2(∆) .

We choose k ∈ Z≥1 subject to

k` − 1 < 2nL∆ ≤ (k + 1)` − 1, (2.20)

and by Lemma 2.53, Fκ with κ = {k}` is a td-decomposition for P , possibly after adding
dummy nodes in P . By Lemma 2.54, this gives us a td-decomposition F for GP (A) with
topological height at most `, level heights at most 3k, and total height at most 3k`. Now

85

Chapter 2. Integer programming in variable dimension

we estimate

n+ log2(b) ≥ 5n
2 ≥

√
25 log2(∆)

24

(
6n2

log2(∆)

)1/2

≥

√
25 log2(∆)

24 (2nL∆)1/2

≥

√
25 log2(∆)

24
(
k` − 1

)1/2

≥ o
(√

log2(∆)
(height(F)

3 th(F)

)`/2)
.

When d > 3`, this is a double-exponential lower bound in terms of the topological height.
Vice versa, we can derive a double-exponential lower bound in terms of the primal
tree-depth.

Corollary 2.56. Unless the ETH fails, there is no algorithm that solves every IP with
2 ≤ ||A||∞ ≤ ∆ and for which a primal td-decomposition F with th(F) ≤ ` exists in time

2
√

log2(∆)2o(tdP (A))
.

Proof. This actually follows from the previous proof. Instead of choosing k according
to ` in Equation (2.20), we fix k = 2, and choose ` such that 2` − 1 ≤ 2nL∆ ≤ 3` − 1.
Since 2`+1 ≤ 3`, this is always possible for large enough n. The tree F we obtain this
way satisfies height(F) ≤ 6`, and we obtain the claimed bound.

Lower bound for dual tree-depth

For the dual case, the construction becomes more involved. An important point is the fact
that the constraint (S) is the only constraint using all variables, and the other constraints
naturally decompose into blocks. This means, if we constructed a td-decomposition right
away, the first level height would be 1, and the resulting lower bound would essentially
depend on th(F)− 1. Since th(F) = 2 for N -fold IPs, this bound would not be strong
enough for our purposes.

In order to prevent this from happening, we blow up the constraint S into k constraints,
by considering a multidimensional version of the subset sum problem.

86

2.8. An ETH-based lower bound

Multidimensional Subset Sum
Instance: Integral vectors a1, . . . , an, b ∈ Zk, multiplicities u ∈ (Z>0 ∪ {∞})n.

Task: Decide whether there exists x ∈ Z, 0 ≤ x ≤ u such that
∑n
i=1 aixi = b.

For short, we say that an instance of the multidimensional subset sum problem of
dimension k is a k-dimensional subset sum instance. This problem generalizes the subset
sum problem in two ways. First, the vectors ai may also contain non-positive entries.
Moreover, every item ai has a multiplicity ui, hence we can choose it up to ui times. The
following lemma easily follows by choosing k = 1.

Lemma 2.57. The multidimensional subset sum problem is NP-hard even in fixed
dimension.

Lemma 2.58. Let a1, . . . , an, b ∈ Z≥1 be an instance of the subset sum problem, M :=
max{ai : i = 1, . . . , n} ∪ {b}, and ∆ ∈ Z≥2. There is an equivalent instance1 of the
multidimensional subset sum problem with dimension dlog∆(M+1)e, n+dlog∆(M+1)e−1
items, and all numbers bounded by ∆ in absolute value.

Proof. Let k := dlog∆(M + 1)e. Recall that [ai]∆ = (α(0)
i , . . . , α

(k−1)
i) is the base-∆

encoding of ai, and similarly for [b]∆ = (β(0), . . . , β(r−1)). Consider the following system
of equations.

α
(0)
1 α

(0)
2 . . . α

(0)
n −∆

α
(1)
1 α

(1)
2 . . . α

(1)
n 1 . . .

...
...

... . . . −∆
α

(k−1)
1 α

(k−1)
2 . . . a

(k−1)
n 1


(
x

s

)
=


β(0)

β(1)

...
β(k−1)

 ,

with constraints 0 ≤ x ≤ 1. If we multiply the vector (1,∆,∆2, . . . ,∆k−1) from the left
on both sides, we retrieve the original subset sum instance where only the x variables
occur. Hence, the projection π : (x, s) 7→ x maps solutions to solutions. To see that every
solution x has a preimage, consider the following reformulation of the initial instance,
where we set s0 := sk := 0.

n∑
i=1

aixi =
n∑
i=1

k−1∑
j=0

α
(j)
i ∆jxi =

k−1∑
j=0

(
n∑
i=1

α
(j)
i xi

)
∆j

=
k−1∑
j=0

sj +
n∑
i=1

α
(j)
i xi −∆sj+1︸ ︷︷ ︸

=:σ(j)

∆j (2.21)

= β(0) + β(1)∆ + · · ·+ β(k−1)∆k−1. (2.22)
1i.e., there is a bijection between the sets of solutions

87

Chapter 2. Integer programming in variable dimension

We show that we can iteratively choose the si ∈ Z≥0 such that for each summand
σ(j) = β(j) holds, which are precisely the equalities of the k-dimensional subset sum
instance.

First, observe that σ(1) ≡ β(1) mod ∆. Since the α(0)
i are nonnegative, β(0) < ∆, and

s0 = 0, there exists a nonnegative integer s1 such that σ(0) = β(0). Since s1 is fixed, we
can apply the same arguments for s2, continuing up to sk−1, and obtain that σ(j) = β(j)

for j ≤ k − 2. To see that this implies already σ(k−1) = β(k−1), observe that both
Sums (2.21) and (2.22) evaluate to b, as we assumed x feasible. As all other summands
coincide, the last two summands have to coincide as well.

As the si are uniquely determined, we have a bijection between solutions.

Theorem 2.59. Assuming the ETH, there is no algorithm solving every k-dimensional
subset sum instance with absolute values of the entries bounded by ∆ in time 2o(n−k)∆o(k).

Proof. Choose a balanced subset sum instance with n′ items, and for ∆ ∈ Z≥2, let k ∈ Z
be the unique integer such that ∆k−1 ≤ b + 1 < ∆k. By Lemma 2.58, there exists an
equivalent k-dimensional subset sum instance with n = n′ + k − 1 items and entries
bounded by ∆. As we cannot solve the initial instance faster than 2o(n′+log2(b)), where
3/2n ≤ log2(b) ≤ 2n, we cannot solve the equivalent instance faster than

2o(n′+log2 b) ≥ 2o(n−k)2o((k−1) log2(∆))

≥ 2o(n−k)∆o((k−1).

Before we proceed, let us recall the encoding of the subset sum instance we chose. We had
Constraints (Y (j)

i) to encode the large item sizes into variables, and one Constraint (S)
summing over all items, corresponding to the equation

a1x1 + · · ·+ anxn = b.

As the Constraints (Y (j)
i) correspond to the variables, they will not change. However,

for a k-dimensional subset sum instance we obtain k summing constraints. Let Ax = b

be a k-dimensional subset sum instance, with entries ai,j and base-∆ encodings [ai,j]∆ =
(α(0)

i,j , . . . , α
(L∆−1)
i,j), where L∆ is the maximal ∆-encoding length of all appearing numbers.

We obtain the same encoding for each row j ∈ [k], yielding constraints

n∑
i=1

L∆−1∑
`=0

α
(`)
j,i y

(`)
j = bj ∀j ∈ [k]. (Sj)

88

2.8. An ETH-based lower bound

We can now turn to the lower bound. It might be tempting to start with a k-dimensional
subset sum instance and reduce it to integer programming. However, we need the
dimension k to fulfill a certain relation with the topological height ` and the largest entry
∆. For this reason, we think it is cleaner to start with a subset sum instance, allowing us
to choose the k appropriately.

Theorem 2.60. Unless the ETH fails, there is no algorithm for IPs with 2 ≤ ||A||∞ ≤ ∆
and a td-decomposition F s.t. th(F) = ` and td(F) = d in time

∆
o

((
d
`
+ 1

12

)`)

in the worst case. Specifically, assuming ETH, no algorithm solves every generalized
N -fold IP in time

∆o((r+s)2).

As the computations in the proof are rather tedious, we outline the strategy first, omitting
constants.

Starting with a balanced subset sum instance with large enough n and given ` and ∆,
we choose k such that b ≈ ∆k` . We encode it into a k-dimensional subset sum instance,
where all entries are bounded by ∆k`−1 . Then, we encode this instance further into
Constraints (Sj) and (Y (j)

i), so that all entries are bounded by ∆. For each variable, the
Constraints (Y (j)

i) form a path on k`−1 vertices in GD(A). Hence, for κ ≈ {k}`−1, the
tree Fκ constitutes a td-decomposition of level heights k and topological height ` − 1.
We take a path on the k Constraints (Sj), and attach one copy of Fκ for each variable at
its end. This gives us a tree F of topological height `, and height k`. Since the initial
instance is not solvable in time 2o(n+log2(b)) with n ≈ log2(b), we estimate

log2(b) ≈ log2

(
∆k`

)
≈ k` log2(∆) ≈ log2(∆) ·

(
height(F)

`

)`
.

Let us perform the exact computations.

Proof of Theorem 2.60. Fix ∆ ∈ Z≥2 and ` ≥ 2. Let n0 be large enough (implying that
the choice of k will be large enough), and take a balanced subset sum instance with
n ≥ n0 items. Define

k :=
⌊√̀

log∆(b)
⌋
,

and let 1 ≤ r ≤ ` be the unique integer such that

(k + 1)r−1k`−r+1 ≤ log∆(b) < (k + 1)rk`−r.

89

Chapter 2. Integer programming in variable dimension

We will assume r ≤ `− 1, and discuss the degenerate case in the end. Setting

∆̃ := ∆(k+1)r−1k`−r ,

this implies that b < ∆̃k+1, and due to integrality, all occurring numbers are at most
∆̃k+1 − 1. By Lemma 2.58, we can encode this instance as a (k + 1)-dimensional subset
sum instance with n′ = n+ k items and with the largest absolute value of any number
bounded by ∆̃.

We further encode this (k + 1)-dimensional subset sum instance as an IP (2.1) with
constraints (Y (j)

i) and (Sj). Let A denote the constraint matrix we obtain this way, and

L∆ :=
⌈
log∆

(
∆̃ + 1

)⌉
≤ ∆(k+1)r−1k`−r + 1.

For each i, the constraints (Y (j)
i) induce a path Γi on L∆ vertices as a subgraph in

GD(A). We obtain n′ paths in total, and there are no edges between distinct paths in
GD(A). It remains to construct a td-decomposition containing these paths, and the
Constraints (Sj).

Set κ := {k}r ×{k− 1}`−r−1, and note that Fκ has (k+ 1)rk`−r−1− 1 ≥ L∆ vertices, for
k large enough. By Lemma 2.53 Fκ is a td-decomposition for each subgraph Γi (possibly
after adding dummy constraints). Take one copy Fi of Fκ for each i.

For the subgraph Σ induced by the Constraints (Sj), take a path on k + 1 vertices to
be a td-decomposition. Declare one of its endpoints to be the root and append the
copies Fi to the other end. As all edges of GD(A) are either within the subgraph Σ, a
subgraph Γi, or between Σ and one of the graphs Gi, the tree F we obtain this way is a
td-decomposition for GD(A). We have th(F) = `, its first level height is k + 1, and the
other level heights either k or k − 1. In particular, its height is

d := (k + 1) + rk + (`− r − 1)(k − 1) = `k − (`− r − 2) ≤ `k + 1, (2.23)

where we used the fact that r ≤ `− 1.

By Lemma 2.50, we cannot solve this instance faster than 2o(n+log2(b)), and we can
estimate the exponent to

n+ log2(b) ≥ 3
2 log2(b) ≥ 3

2 log2(∆) log∆(b)

≥ 3
2 log2(∆)(k + 1)r−1k`−r+1. (2.24)

We now distinguish two cases. First, assume r ≥ 2
3`− 2, and let 1

4 > ε > 0. Choosing n0

90

2.8. An ETH-based lower bound

large enough so that k is large enough, we obtain the two estimates

(k
k+1)3 ≥ 4

5 , (2.25)

(k + 1)2k = k3 + 2k2 + k ≥ k3 + (2− ε)k2 + 4
3k + 8

27

≥ (k + 2−ε
3)3, (2.26)

and can compute

(k + 1)r−1k`−r+1 =
(

k

k + 1

)3
(k + 1)r+2k`−r−2

≥ 4
5
(
(k + 1)2k

)`/3
(with (2.25)),

≥ 4
5
(
k + 2−ε

3

)`
(with (2.26)),

≥ 4
5
(
d
` −

1
` + 2−ε

3

)`
(with (2.23)),

>
4
5

(
d

`
+ 1

12

)`
. (with ` ≥ 2, ε < 1/4).

The second case, r < `/3− 2, can only occur if ` ≥ 9, as r ≥ 1 by definition. Then

(k + 1)r−1k`−r+1 ≥
(
`k

`

)`
=
(
`k − (`− r − 2)

`
+ (`− r − 2)

`

)`
>

(
d

`
+ 1

3

)`
,

where we used the definition of d for the first term, and the estimate on r and ` for the
second. In the end, we obtain that there is no algorithm solving every IP instance (2.1)
that has a tdD-decomposition with height d and topological height at most ` in time

2o(n+log2 b) = 2o(log2(∆)(k+1)r−1k`−r+1)

= ∆
o

((
d
`
+ 1

12

)`)
.

A generalized N -fold IP with coefficients r, s has a tdD-decomposition with topological
height 2 and level heights r, s. Thus, the class of generalized n-fold IPs cannot be solved
faster than ‖A‖o((r+s)

2)
∞ .

It is left to discuss the case

(k + 1)`−1k ≤ log∆(b) < (k + 1)`.

91

Chapter 2. Integer programming in variable dimension

The idea is to multiply the initial subset sum instance by some integer, changing our
initial choice from k to k + 1. We have ∆(k+1)`−1k ≤ b, and since

(k + 1)`−1k + k`−1 = (k + 1)`,
(k + 1)` + k`−1 ≤ (k + 1)((k + 1) + 1)`−1 = (k + 1)(k + 2)`−1,

we can scale b′ := b ·∆k`−1 , and the new instance implies 1 ≤ r ≤ `− 1. We multiplied
each number in the instance by at most b, which is assumed to be the largest integer.
The rest of the proof holds for the modified instance, up to the Estimate (2.24), where
we use that the initial instance was balanced. However, this changes to

n+ log2(b) ≥ 3
2 log2(b) ≥ 3

4 log2(b′) ≥ 3
4 log2(∆)(k + 1)r−1k`−r+1,

and as the constant 3/4 vanishes in the Landau notation, the claim still holds.

Let us compare the lower bound with the running time we obtain. To this end, consider
an IP instance with td-decomposition F s.t. all level heights of F are k for some integer k,
as was the case in the proof for the lower bound. Define ` := th(F) and d := height(F).
We obtain the estimate

∆
(
d
`

)`
≤ true complexity ≤

(
∆
(
d
l

)`)d(dl)`
.

If we plug in d = m, i.e. we assume ` = 1, this recovers an interesting open problem for
general integer linear programs: Given an ILP Ax = b, l ≤ x ≤ u, is the an algorithm with
running time (‖A‖∞m)O(m)n? The best lower bound is (‖A‖∞m)o(m)n [KP], whereas
the best known running time is (‖A‖∞m)O(m2)n [EW18]. However, if upper bounds
are not present, the authors achieved a linear exponent, i.e. (‖A‖∞m)o(m)n. This is
remarkable, as we handle infinite bounds by introducing artificial bounds.

For n-fold ILPs, the discrepancy looks as follows. There is an algorithm with parameter
dependency (∆rs)r2s+s2 [JLR19], and we show that under the ETH, the dependency
cannot be ∆o((r+s)2).

92

3 Compact representations of
Voronoi cells of lattices

Introduction

Two widely investigated and important problems in the algorithmic geometry of numbers,
cryptography, and integer programming are the shortest vector problem and the closest
vector problem. Given a lattice Λ, the shortest vector problem (SVP) asks for a shortest
non-zero vector in Λ. For a target vector t ∈ Rn, the closest vector problem (CVP) asks
for a lattice vector z? minimizing the Euclidean distance ‖t− z‖ from t to a lattice point
z ∈ Λ.

Let us recall the milestones of the algorithmic development regarding both SVP and
CVP. For a more detailed overview we refer to Hanrot, Pujol & Stehlé [HPS11], as well
as to the more recent Gaussian Sampling approaches, for example, the one by Aggarwal
& Stephens-Davidowitz [AS18].

In the 1980’s, Kannan presented algorithms solving SVP and CVP in running time nO(n)

and polynomial space [Kan87]. Although the constants involved in the running time had
been improved, it took roughly fifteen years until a significantly better algorithm was
discovered. In 2001, Ajtai, Kumar & Sivakumar [AKS01] gave a randomized algorithm
for the shortest vector problem, only taking 2O(n) time. However, in addition to the
randomness, they also had to accept exponential space dependency for their improved
running time. Though their algorithm is not applicable to the closest vector problem in
its full generality, they show in a follow-up work that for any fixed ε, it can be used to
approximate CVP up to a factor of (1 + ε) with running time depending on 1/ε [AKS02].
These authors posed the question whether randomness or exponential space is necessary
for a running time better than nO(n).

It took again around a decade until this question was partially answered by Micciancio
& Voulgaris [MV13], who obtained a deterministic 2O(n) algorithm for both problems.
Their algorithm is based on computing the Voronoi cell VΛ of the lattice, the region of

93

Chapter 3. Compact representations of Voronoi cells of lattices

all points at least as close to the origin as to any other lattice point. But as the Voronoi
cell is a polytope with up to 2(2n − 1) facets, the Micciancio-Voulgaris algorithm needs
exponential space for storing the Voronoi cell in the worst (and generic) case. Since
storing the Voronoi cell in a different, “more compact,” way than by facet-description
would lead to a decreased space requirement, they raise the question whether such a
representation exists in general.

The main objective of this chapter is to propose such a compact representation of the
Voronoi cell and to investigate its merits towards a single-exponential time and polynomial
space algorithm for the CVP. As being closer to the origin than to a certain lattice
vector v expresses in the inequality 2xᵀv ≤ ‖v‖2, the facets of VΛ can be stored as a
set FΛ ⊆ Λ of lattice vectors, which are called the Voronoi relevant vectors. We say
that a basis B of a lattice Λ is c-compact, if each Voronoi relevant vector of Λ can be
represented in B with coefficients bounded by c in absolute value. Hence, by iterating
over (2c+ 1)n vectors, we include the set FΛ. With c(Λ), we denote the smallest c such
that there exists a c-compact basis of Λ. As a consequence of the ideas in [MV13] and
our notion of compactness we obtain (cf. Corollary 3.21):

(i) Given a c-compact basis of a lattice Λ ⊆ Rn, we can solve the closest vector
problem in (2c+ 1)O(n) poly(n) time and polynomial space.

Thus, the crucial question is: How small can we expect c(Λ) to be for an arbitrary lattice?
If c(Λ) is constant, then (i) yields asymptotically the same running time as the initial
Micciancio-Voulgaris algorithm, but uses only polynomial space. Of course, this only
holds under the assumption that we know a c-compact basis of Λ. This observation has
consequences for the variant of CVP with preprocessing, which we discuss in Section 3.7.

As an example of a large family of lattices, we prove in Section 3.4, that lattices whose
Voronoi cell is a zonotope are as compact as possible:

(ii) If the Voronoi cell of Λ is a zonotope, then c(Λ) = 1. Moreover, a 1-compact
basis can be found among the Voronoi relevant vectors.

Furthermore, every lattice of rank at most four has a 1-compact basis (cf. Corollary 3.16).
However, starting with dimension five there are examples of lattices with c(Λ) > 1, and
thus we want to understand how large this compactness constant can be in the worst
case. Motivated by applications in crystallography, the desire for good upper bounds on
c(Λ) was already implicitly formulated in [Eng88; EMS01], and results of Seysen [Sey99]
imply that c(Λ) ∈ nO(logn). We improve this to a polynomial bound and, on the negative
side, we show that c(Λ) may grow linearly with the dimension (Sections 3.2 & 3.3):

(iii) Every lattice possesses a basis that is n2-compact.

94

3.1. The notion of a c-compact basis

(iv) There exists a family of lattices (Λn)n≥5 without an o(n)-compact basis.

In Section 3.6, we relax the notion of a c-compact basis as follows. Denote by c(Λ) the
smallest constant c such that there is any square matrix W with

FΛ ⊆ {Wz : z ∈ Zn, ‖z‖∞ ≤ c}.

Hence, in general, the matrix W generates a superlattice of Λ. This relaxation is
motivated by the fact that, given a basis, membership to a lattice can be checked in
polynomial time. Thus if c(Λ) is much smaller than c(Λ), this additional check is faster
than iterating over a larger set. Our results regarding the relaxed compactness constant
include the following:

(v) For every lattice Λ, we have c(Λ) ∈ O(n logn).

(vi) There are lattices Λ ⊆ Rn with c(Λ) / c(Λ) ∈ Ω(n).

In summary, the contributions of this chapter can be described as follows: If we are given
a c(Λ)-compact basis of a lattice, then we can modify the algorithm of Micciancio &
Voulgaris to obtain a polynomial space algorithm for CVP. In whole generality, the time
complexity of this algorithm cannot be better than nO(n), as in Kannan’s work. However,
we provide evidence that there are large and interesting classes of lattices, for which this
improves to single-exponential time.

3.1 The notion of a c-compact basis

Given a lattice Λ ⊆ Rn, recall its Voronoi cell

VΛ = {x ∈ Rn : ‖x‖ ≤ ‖x− z‖ for all z ∈ Λ} ,

where ‖·‖ denotes the Euclidean norm. It consists of all points that are at least as close to
the origin as to any other lattice point of Λ. The Voronoi cell turns out to be a centrally
symmetric polytope having outer description VΛ =

{
x ∈ Rn : 2xᵀz ≤ ‖z‖2 for all z ∈ Λ

}
.

A vector v ∈ Λ is called weakly Voronoi relevant if the corresponding inequality 2xᵀv ≤
‖v‖2 defines a supporting hyperplane of VΛ, and it is called strictly Voronoi relevant, or
simply Voronoi relevant, if it is moreover facet-defining. Let FΛ and CΛ be the set of
strictly and weakly Voronoi relevant vectors of Λ, respectively. The central definition of
this chapter is the following.

Definition 3.1. Let Λ ⊆ Rn be a lattice and let c ∈ N. A basis B of Λ is called
c-compact, if

FΛ ⊆ {Bz : z ∈ Zn, ‖z‖∞ ≤ c} .

95

Chapter 3. Compact representations of Voronoi cells of lattices

That is, each Voronoi relevant vector is a linear combination of the basis vectors with
coefficients bounded by c in absolute value. Moreover, we define

c(Λ) = min{c ≥ 0 : Λ possesses a c-compact basis}

as the compactness constant of Λ.

As discussed in the introduction, the notion of a c-compact basis provides a compact
representation of the Voronoi cell VΛ, the complexity of which depends on the value of
the constant c. Before we set out to study the compactness constant in detail, we offer
various equivalent definitions that serve as auxiliary tools and that also provide a better
understanding of the underlying concept.

To this end, recall the dual lattice Λ? = {y ∈ Rn : yᵀz ∈ Z for all z ∈ Λ} of a lattice
Λ, and the polar K? = {x ∈ Rn : xᵀy ≤ 1 for all y ∈ K} of a convex body K ⊆ Rn

containing the origin in its interior (cf. Section 1.4). The basic properties we need are
the following: If B is a basis of Λ, then B−ᵀ := (B−1)ᵀ is a basis of Λ?, usually called
the dual basis of B. For a matrix A ∈ GLn(R) and a compact convex set K as above,
we have (AK)? = A−ᵀK?. We refer to Gruber’s textbook [Gru07] for details and more
information on these concepts.

Lemma 3.2. Let B = {b1, . . . , bn} be a basis of a lattice Λ ⊆ Rn. The following are
equivalent:

i) B is c-compact,

ii) c · conv(FΛ)? contains the dual basis B−ᵀ of Λ?,

iii) writing B−ᵀ = {b?1, . . . , b?n}, we have

FΛ ⊆ {x ∈ Λ : |xᵀb?i | ≤ c for all 1 ≤ i ≤ n} ,

iv) FΛ ⊆ c PB, where PB =
∑n
i=1[−bi, bi].

Proof. i)⇐⇒ ii): By definition, B is c-compact if and only if FΛ ⊆ {Bz : z ∈ Zn, ‖z‖∞ ≤
c}. This means that Q = conv(FΛ) ⊆ B[−c, c]n. Taking polars, we see that this is equiv-
alent to B−ᵀ 1

cC
?
n ⊆ Q?, where C?n = conv{±e1, . . . ,±en} is the standard crosspolytope.

Since the columns of B−ᵀ constitute a basis of the dual lattice Λ?, the proof is finished.

i)⇐⇒ iii): B = {b1, . . . , bn} is c-compact if and only if the representation v =
∑n
i=1 αibi

of any Voronoi relevant vector v ∈ FΛ satisfies |αi| ≤ c, for all 1 ≤ i ≤ n. By the
definition of the dual basis, we have αi = vᵀb?i , which proves the claim.

i)⇐⇒ iv): By definition, FΛ ⊆ c PB if and only if for every v ∈ FΛ, there are coefficients
α1, . . . , αn ∈ R such that v =

∑n
i=1 αibi and |αi| ≤ c. These coefficients are unique, and

96

3.2. A polynomial upper bound

since B is a basis of Λ, they are integral, that is αi ∈ Z. Thus, the inclusion we started
with is equivalent to saying that B is c-compact.

Part iv) of the above lemma shows that the compactness constant c(Λ) is the minimum
c such that FΛ ⊆ c PB, for some basis B of Λ. In this definition, the concept has been
introduced already by Engel, Michel & Senechal [EMS01] together with the variant
χ(Λ), where one replaces FΛ by the larger set CΛ of weakly Voronoi relevant vectors.
Motivated by applications in crystallography, a reoccurring question posed in [Eng88;
EMS01] is to give good upper bounds on these lattice invariants c(Λ) and χ(Λ). Results
of Seysen [Sey99] on simultaneous lattice reduction of the primal and dual lattice imply
that

c(Λ) ≤ χ(Λ) ∈ nO(logn). (3.1)

This is however the only bound that we are aware of.

3.2 A polynomial upper bound

In the sequel, we occasionally need Minkowski’s successive minima of a convex body K
and a lattice Λ in Rn. For 1 ≤ i ≤ n, the ith successive minimum is defined as

λi(K,Λ) = min {λ ≥ 0 : λK contains i linearly independent points of Λ} .

Minkowski’s development of his geometry of numbers was centered around the study of
these lattice parameters (we refer to Gruber’s handbook [Gru07] for background). With
this notion, Lemma 3.2 ii) provides a lower bound on the compactness constant of a
given lattice. Indeed, we have

c(Λ) ≥ λn(Q?,Λ?),

where Q = conv(FΛ).

Our first result aims for an explicit upper bound on c(Λ) only depending on the dimension
of the lattice. To this end, we first need an auxiliary result.

Lemma 3.3. For a lattice Λ ⊆ Rn with Voronoi cell VΛ holds λ1(V?Λ,Λ?) ≤
2
πn. Hence,

there exists a dual lattice vector y? ∈ Λ? such that

VΛ ⊆
{
x ∈ Rn : |xᵀy?| ≤ 2

πn
}
.

97

Chapter 3. Compact representations of Voronoi cells of lattices

Proof. By Minkowski’s fundamental theorem (cf. Theorem 1.3), we have

λ1(VΛ,Λ) ≤ 2
(det(Λ)

vol(VΛ)

) 1
n

and λ1(V?Λ,Λ?) ≤ 2
(

det(Λ?)
vol(V?Λ)

) 1
n

.

Moreover, by a result of Kuperberg [Kup08, Cor. 1.6], vol(K) vol(K?) ≥ πn/n!, for every
centrally symmetric convex body K ⊆ Rn. Therefore,

λ1(VΛ,Λ)λ1(V?Λ,Λ?) ≤ 4
(

det(Λ) det(Λ?)
vol(VΛ) vol(V?Λ)

) 1
n

≤ 4
(
n!
πn

) 1
n

≤ 4
π
n,

since det(Λ) det(Λ?) = 1 (cf. [Mar03, Ch. 1]). The claimed bound now follows as
λi(VΛ,Λ) = 2, for all 1 ≤ i ≤ n.

Theorem 3.4. For every lattice Λ ⊆ Rn, there exists an n2-compact basis.

Proof. We prove by induction on the dimension that there is a basis D = {y1, . . . , yn} of
Λ? such that

VΛ ⊆
{
x ∈ Rn : |xᵀyi| ≤ 1

2n
2, 1 ≤ i ≤ n

}
. (3.2)

Since every Voronoi relevant vector lies in the boundary of 2VΛ, its inner product with
each yi is then bounded by n2. Hence, the basis of Λ that is dual to D is an n2-compact
basis by Lemma 3.2 iii).

If n = 1, the containment (3.2) is trivially true, hence let n ≥ 2. Let y1 be a
shortest vector of Λ? with respect to the norm ‖ · ‖V?Λ . By Lemma 3.3, we have
VΛ ⊆

{
x ∈ Rn : |xᵀy1| ≤ 2n

π

}
. Let Λ′ = Λ ∩ {x ∈ Rn : xᵀy1 = 0}, and observe that

the orthogonal projection π : Rn → {x ∈ Rn : xᵀy1 = 0} fulfills π(Λ?) = (Λ′)?, where we
dualize with respect to the linear span of Λ′ (cf. [Mar03, Ch. 1]). By induction hypothesis,
there is a basis D′ = {y′2, . . . , y′n} of (Λ′)?, such that

VΛ′ ⊆
{
x ∈ Rn : xᵀy1 = 0 and |xᵀy′i| ≤ 1

2(n− 1)2, 2 ≤ i ≤ n
}
.

As Λ′ ⊆ Λ, we have VΛ ⊆ VΛ′ + lin{y1}. Moreover, as (Λ′)? is the projection of Λ?

along y1, there exist αi ∈ [−1/2, 1/2) such that yi = y′i + αiy1 ∈ Λ? for 2 ≤ i ≤ n, and
D = {y1, . . . , yn} is a basis of Λ?. Hence,

VΛ ⊆
{
x ∈ Rn : |xᵀy1| ≤ 2n

π , |x
ᵀy′i| ≤ 1

2(n− 1)2, 2 ≤ i ≤ n
}

⊆
{
x ∈ Rn : |xᵀy1| ≤ 2n

π , |x
ᵀyi| ≤ 1

2(n− 1)2 + n
π , 2 ≤ i ≤ n

}
.

⊆
{
x ∈ Rn : |xᵀyi| ≤ 1

2n
2, 1 ≤ i ≤ n

}
,

finishing the proof.

98

3.3. Lattices without sublinearly-compact bases

Remark 3.5. Since also the weakly Voronoi relevant vectors CΛ lie in the boundary of
2VΛ, the basis from the previous proof also shows χ(Λ) ≤ n2, for every lattice Λ ⊆ Rn

(compare with Inequality (3.1)).

Let us look at the constant c(Λ) from a different angle. A basis of a lattice is particularly
nice if each Voronoi relevant vector is a {−1, 0, 1}-combination of the basis vectors. As
not every lattice possesses such a basis (see Proposition 3.10 below), we relaxed the
condition on the coefficients and introduced the lattice parameter c(Λ), defined for all
lattices. Another way to relax the setting above is not to insist on a basis of Λ, but rather
to look for a generating set S such that each Voronoi relevant vector can be written as a
{−1, 0, 1}-combination of the vectors in S. In this setting, we are interested in finding a
small set S. Such an S of order n logn can be retrieved from an n2-compact basis.

Corollary 3.6. For every lattice Λ ⊆ Rn there exists a subset S ⊆ Λ of cardinality
O(n logn) such that

FΛ ⊆
{∑
s∈S

σs s : σs ∈ {−1, 0, 1}, for s ∈ S
}
.

Proof. By Theorem 3.4, there exists a c-compact basis B of Λ with c ≤ n2. Let
M := blog2 cc. Each 0 ≤ α ≤ c can be written as α =

∑M
j=0 2jσj , for some unique

σj ∈ {0, 1}. For each vector bi ∈ B and 0 ≤ j ≤M , we define the vector

si,j := 2jbi.

This gives O(n log2(n2)) = O(n logn) vectors in total, and clearly every vector v =∑n
i=1 αibi with |αi| ≤ c can be written as a linear combination of the si,j using only

coefficients in {−1, 0, 1}.

Remark 3.7. With a different method Daniel Dadush (personal communication) proves
that the subset S can be chosen to consist of Voronoi relevant vectors itself.

3.3 Lattices without sublinearly-compact bases

In this part, we identify an explicit family of lattices whose compactness constant grows
at least linearly with the dimension. This requires some technical work; the pure existence
of such a family also follows from Proposition 3.19 iii) below. However, based on the
understanding of the lattice discussed in this section, we are able to discriminate between
the compactness constant and a relaxed variant, which will be introduced in the next
section.

99

Chapter 3. Compact representations of Voronoi cells of lattices

For any a ∈ N and n ∈ N, we define the lattice

Λn(a) = {z ∈ Zn : z1 ≡ · · · ≡ zn mod a} , (3.3)

whose dual lattice is given by

Λn(a)? =
{
z ∈ 1

aZ
n : 1ᵀz ∈ Z

}
, (3.4)

where 1 = (1, . . . , 1)ᵀ denotes the all-one vector. The special structure of these lattices
allows us to write down the Voronoi relevant vectors explicitly.

Lemma 3.8. Let n ∈ N≥4, a = dn/2e, and write Λn = Λn(a). Then, a vector v ∈ Λn

is strictly Voronoi relevant if and only if either v = ±1, or there exists an index set
∅ 6= S ({1, . . . , n} such that

vi =

a− ` i ∈ S
−` i /∈ S

, and ` ∈
{⌊

a|S|
n

⌋
,

⌈
a|S|
n

⌉}
. (3.5)

Proof. Let us first discuss the vectors ±1. They have squared norm n, and if there is a
shorter vector v, it must contain zero coordinates. But due to the definition of Λn, all its
coordinates are then multiples of a, so it has squared norm at least a2 ≥ n2/4 ≥ n for
n ≥ 4. Hence, ±1 are shortest vectors of the lattice and therefore always strictly Voronoi
relevant. As we are only interested in the strictly Voronoi relevant vectors in this proof,
we will omit the word “strictly” henceforth.

Voronoi characterized a Voronoi relevant vector v in a lattice Λ by the property that ±v
are the only shortest vectors in the co-set v+2Λ (cf. [CS99, p. 477]). We use this crucially
to show that Voronoi relevant vectors different from ±1 are characterized by (3.5).

v Voronoi relevant ⇒ v of Shape (3.5): Let v 6= ±1 be Voronoi relevant. We have v ∈
[−a, a]n, as 2a ei ∈ 2Λn otherwise implies that v is not a shortest vector in its co-set
v+ 2Λn. Let us first assume that there is an index i such that vi ∈ {0,±a}. By definition
of Λn, we have vi ≡ vj mod a, for all j, hence v ∈ {0,±a}n. If v has at least two non-zero
coordinates, let ṽ arise from v by changing the sign of exactly one of them. Observe that
ṽ is linearly independent from v, has the same length, and is contained in v + 2Λn. This
contradicts the assumption that v was Voronoi relevant. If v has only one non-zero entry,
say vj 6= 0, then it is of Shape (3.5). Indeed, we can either take S = {j} and ` = 0, or
S = {1, . . . , n} \ {j} and ` = da(n− 1)/ne = a.

This leaves us with the case v ∈ [−(a− 1), a− 1]n. Again, by the definition of Λn, there
is an integer 1 ≤ r ≤ a− 1 such that v ∈ {a− r,−r}n. Let k be the number of entries of
v that are equal to a− r. Note that 1 ≤ k ≤ n− 1 as otherwise v = ±1. For the norm of
v, we obtain

||v||2 = nr2 − 2akr + ka2.

100

3.3. Lattices without sublinearly-compact bases

Seen as a rational quadratic function in r, it is minimized for r′ = ak/n. As increasing
or decreasing r by 2 corresponds to adding or subtracting 2 · 1 ∈ 2Λn to v, we must have
r ∈ [r′ − 1, r′ + 1]. If r′ is not integral, this corresponds to r ∈ {dak/ne, bak/nc}. If r′ is
integral, observe that r = r′ ± 1 corresponds to two linearly independent vectors in the
same co-set and of the same length, hence again r = r′ ∈ {dak/ne, bak/nc}, so that v is
indeed of Shape (3.5).

v of Shape (3.5) ⇒ v Voronoi relevant: For the other direction, let v be a vector of
Shape (3.5) with index set S and parameter `. Let u ∈ v + 2Λn be a shortest vector
within the co-set v + 2Λn. We claim that u = ±v, which will prove that v is Voronoi
relevant. To this end, recall from above that necessarily u ∈ [−a, a]n. Moreover, as
u − v ∈ 2Λn, we have vi − vj ≡ ui − uj mod 2a. Therefore, if there are indices i 6= j

such that vi = vj , then we have ui ≡ uj mod 2a. Unless we are in the extreme case
u ∈ {0,±a}n (see Case (a)), this even implies ui = uj (see Case (b)).

Case (a): We make a second case distinction depending on the number of non-zero entries
of u. This number is always either equal to |S| or n− |S|.

Note that the case of u having exactly 1 non-zero entry (i.e. |S| ∈ {1, n − 1}) will be
covered by Case (b) below.

If u has at least 3 non-zero entries (|S| ∈ {3, 4, . . . , n − 3}), observe that the vector
u′ = (u′1, . . . , u′n)ᵀ defined by u′i = |ui| − 2 is in the same co-set, but also shorter than u,
a contradiction.

For the last case, u having two non-zero entries, the vector u′ as above is only strictly
shorter if n is odd. If n is even however, u and u′ will have the same norm. In this
particular case, observe that a|S|/n ∈ {1, a− 1}, hence ` = a|S|/n, as we do not round.
But this is a contradiction, as u and v differ by 1 /∈ 2Λn, that is, they are not in the
same co-set.

Case (b): Henceforth, whenever vi = vj , we have ui = uj . By possibly switching to
u′ = −u, we can assume that for some 0 ≤ r ≤ a, ui = a− r for i ∈ S and uj = −r for
j /∈ S. This is, ui = a− r whenever vi = a− ` and uj = −r whenever vj = −`. For the
norm of u, we obtain

‖u‖2 = |S|(a− r)2 + (n− |S|)r2 = nr2 − 2ar|S|+ |S|a2.

Seen as a rational quadratic function in r, this term is uniquely minimized for r̂ = a|S|/n.
Observe that there may be two choices for `, br̂c, dr̂e. It is clear that r also has to be one
of these values, as otherwise u is not a shortest vector in its co-set. But observe that the
two choices lead to two vectors whose difference is 1 /∈ 2Λn. As u and v have to be in the
same co-set, we have u = ±v, since we may have switched to −u in the beginning.

101

Chapter 3. Compact representations of Voronoi cells of lattices

Theorem 3.9. Let n ∈ N≥4, a = dn/2e. Then, the lattice Λn = Λn(a) has compactness
constant c(Λn) ≥

⌈
n
4
⌉
.

Proof. For brevity, we write c = c(Λn), Q = conv(FΛn). As 1 ∈ Λn, there exists a w ∈ Λ?n
with 1ᵀw = 1, for instance, take w = e1. This implies that each basis of Λ?

n contains
a vector y such that 1ᵀy is an odd integer. In particular, using the characterization of
Lemma 3.2, we know that cQ? has to contain such a y. As Q? is centrally symmetric,
assume 1ᵀy ≥ 1. Further, since Λ?

n is invariant under permutation of the coordinates,
assume the entries of y are ordered non-increasingly,

y1 ≥ y2 ≥ · · · ≥ yn. (3.6)

Let us outline our arguments first: We split 1ᵀy into two parts, by setting A :=
∑k
i=1 yi,

and B :=
∑n
i>k yi, where k = dn/2e. We show that A ≥ B + 1, and construct a Voronoi

relevant vector v ∈ Λn whose first k entries are roughly n/4, and its last n− k entries are
roughly −n/4 by using Lemma 3.8 and choosing S = {1, . . . , k}, ` = bak/nc = ba2/nc.
We then obtain vᵀy ≈ n

4A −
n
4B ≥ n/4 by carefully distinguishing the four cases n

mod 4.

For showing A ≥ B + 1, consider yk. As y ∈ Λ?
n, there is an integer z such that we

can write yk = z
a . We can assume z > 0, since otherwise B ≤ 0 and we are done since

A+B = 1ᵀy ≥ 1. Note that we have A ≥ kyk = z and B ≤ (n− k) za ≤ z by (3.6). Let
α, γ ≥ 0 such that A = z + α and B = z − γ. As A + B = 2z + α − γ has to be an
odd integer, we have |α− γ| ≥ 1, implying α ≥ 1 or γ ≥ 1. Therefore, in fact we have
A ≥ max{B + 1, 1}.

Using this inequality and carefully evaluating vᵀy = (a− `)A− `B for the four cases n
mod 4, the claim follows.

Recall that we construct the Voronoi relevant vector v by choosing k = a = dn/2e,
S = {1, . . . , k}, ` = bak/nc = ba2/nc, and applying Lemma 3.8.

We obtain vᵀy = (a− `)A− `B, and are ready to distinguish the four cases n mod 4.

1. n = 4m. Hence, we have a = k = 2m, and ` = m. Thus,

vᵀy = (a− `)A− `B = m(A−B) ≥ m = n/4.

2. n = 4m+ 1. Hence, we have a = k = 2m+ 1, and ` = m. Thus,

vᵀy = (a− `)A− `B = m(A−B) +A ≥ m+ 1 ≥ n/4.

102

3.4. Compact bases and zonotopal lattices

3. n = 4m+ 2. Hence, we have a = k = 2m+ 1, and ` = m. Thus,

vᵀy = (a− `)A− `B = m(A−B) +A ≥ m+ 1 ≥ n/4.

4. n = 4m+ 3. Hence, we have a = k = 2m+ 2, and ` = m+ 1. Thus,

vᵀy = (a− `)A− `B = (m+ 1)(A−B) ≥ m+ 1 ≥ n/4.

As the constant c is integral, the claim follows.

3.4 Compact bases and zonotopal lattices

For the sake of brevity, we call a 1-compact basis of a lattice just a compact basis. A
class of lattices that allow for a compact representation of their Voronoi cells are the
lattices of Voronoi’s first kind. They correspond to those lattices Λ that constitute the
first reduction domain in Voronoi’s reduction theory (see [Val03; Vor08]). These lattices
have been characterized in [CS92] by possessing an obtuse superbasis, which is a set
of vectors {b0, . . . , bn} ⊆ Λ that generates Λ, and that fulfills the superbasis condition
b0 + . . .+ bn = 0 and the obtuseness condition bᵀi bj ≤ 0, for all i 6= j. Given an obtuse
superbasis, for each Voronoi relevant vector v ∈ Λ there is a strict non-empty subset
S ⊆ {0, 1, . . . , n} such that v =

∑
i∈S bi.

Let us compare lattices of Voronoi’s first kind with lattices possessing a compact basis.

Proposition 3.10.

i) Every lattice of Voronoi’s first kind has a compact basis.

ii) Every lattice of rank at most three has a compact basis.

iii) For n ≥ 4, the checkerboard lattice Dn = {x ∈ Zn : 1ᵀx ∈ 2Z} is not of
Voronoi’s first kind, but has a compact basis.

iv) There exists a lattice Λ ⊆ R5 with c(Λ) ≥ 2.

Proof. i): Every obtuse superbasis contains in fact a compact basis. Indeed, using the
representation of a Voronoi relevant vector above and writing b0 = −

∑n
i=1 bi, we get

v =
∑
i∈S bi = −

∑
i/∈S bi. One of the terms does not use b0.

ii): Every lattice of dimension at most three is of Voronoi’s first kind (cf. [CS92]), so
part i) applies.

iii): Bost & Künnemann [BK10, Prop. B.2.6] showed that for n ≥ 4, the lattice Dn

is not of Voronoi’s first kind. One can easily verify that the set B = {b1, . . . , bn} with

103

Chapter 3. Compact representations of Voronoi cells of lattices

b1 = e1 + en, and bi = ei − ei−1 for 2 ≤ i ≤ n, is a basis of Dn. Observing that the
vectors 2ei± 2ej are in 2Dn for all i, j, a vector v that is the unique (up to sign) shortest
vector in the co-set v + 2Λ, must be of the form {±(ei ± ej) : 1 ≤ i < j ≤ n}. A routine
calculation shows that all these vectors are a {−1, 0, 1}-combination of the basis B.

iv): This follows from Theorem 3.9 with the lattice Λ5(3).

We now explore to which extent these initial observations on lattices with compact bases
can be generalized.

A zonotope Z in Rn is a Minkowski sum of finitely many line segments, that is, Z =∑r
i=1[ai, bi], for some ai, bi ∈ Rn. The vectors b1 − a1, . . . , br − ar are usually called the

generators of Z. We call a lattice zonotopal if its Voronoi cell is a zonotope. A generic
zonotopal lattice has typically high combinatorial complexity. An explicit example is
the root lattice A?n; its zonotopal Voronoi cell is generated by

(n+1
2
)
vectors and it has

exactly the maximum possible 2(2n − 1) facets (cf. [CS99, Ch. 4 & Ch. 21]). However,
not every generic lattice is zonotopal. For instance, a perturbation of the E8 root lattice
gives a generic non-zonotopal lattice (cf. [ER94, Sect. 4]).

It turns out that every lattice of Voronoi’s first kind is zonotopal, but starting from
dimension four, the class of zonotopal lattices is much richer (cf. Vallentin’s thesis [Val03,
Ch. 2] and [ER94]). In the following, we prove that every zonotopal lattice possesses a
compact basis, thus extending Proposition 3.10 i) significantly.

Our proof relies on the beautiful work of Erdahl [Erd99] who unraveled an intimate
relationship between zonotopal lattices and so-called dicings. A dicing D in Rn is an
arrangement of hyperplanes consisting of at least n families of infinitely many equally-
spaced hyperplanes with the following properties:

i) There are n families with linearly independent normal vectors.

ii) Every vertex of D is contained in a hyperplane of each family.

The interesting cases are those with more than n families of hyperplanes.

It turns out that the vertex set of a dicing forms a lattice, denoted by Λ(D). Indeed, the
vertex set induced by the n linearly independent families forms a lattice, and because of
property (ii) no additional vertices are introduced by the remaining families. A basis of
the lattice Λ(D) may be obtained from taking the inverse of the matrix whose rows are
n linearly independent normal vectors appropriately scaled (they exist by property (i)).

Erdahl [Erd99, Thm. 3.1] shows that a dicing D can be represented by a set D =
{±d1, . . . ,±dr} of hyperplane normals and a set E = {±e1, . . . ,±es} ⊆ Λ(D) of edge
vectors of the arrangement D satisfying:

104

3.5. Compact bases in small dimensions

E1) Each pair of edges ±ej ∈ E is contained in a line d⊥i1 ∩ . . . ∩ d
⊥
in−1 , for some

linearly independent di1 , . . . , din−1 ∈ D, and conversely each such line contains
a pair of edges.

E2) For each 1 ≤ i ≤ r and 1 ≤ j ≤ s, we have dᵀi ej ∈ {0,±1}.

For clarity we denote the dicing by D = D(D,E).

Theorem 3.11. Every zonotopal lattice has a compact basis. It can be found among its
Voronoi relevant vectors.

Proof. We start by reviewing the Delaunay tiling of a lattice Λ. A sphere Bc(R) = {x ∈
Rn : ‖x − c‖2 ≤ R2} is called an empty sphere of Λ (with center c ∈ Rn and radius
R ≥ 0), if every point in Bc(R) ∩ Λ lies on the boundary of Bc(R). A Delaunay polytope
of Λ is defined as the convex hull of Bc(R) ∩ Λ, where Bc(R) is an empty sphere. The
family of all Delaunay polytopes induces a tiling DΛ of Rn which is the Delaunay tiling
of Λ. This tiling is in fact dual to the Voronoi tiling.

Erdahl [Erd99, Thm. 2] shows that the Voronoi cell of a lattice is a zonotope if and only
if its Delaunay tiling is a dicing. More precisely, the tiling DΛ induced by the Delaunay
polytopes of Λ is equal to the tiling induced by the hyperplane arrangement of a dicing
D = D(D,E) with normals D = {±d1, . . . ,±dr} and edge vectors E = {±e1, . . . ,±es}.
By the duality of the Delaunay and the Voronoi tiling, an edge of DΛ containing the
origin corresponds to a facet normal of the Voronoi cell VΛ. Therefore, the edge vectors
E are precisely the Voronoi relevant vectors of Λ.

Now, choosing n linearly independent normal vectors, say d1, . . . , dn ∈ D, the properties
E1) and E2) imply the existence of edge vectors, say e1, . . . , en ∈ E, such that dᵀi ej = δij ,
with δij being the Kronecker delta. Moreover, the set B = {e1, . . . , en} is a basis of
{x ∈ Rn : dᵀi x ∈ Z, 1 ≤ i ≤ n}, which by property E2) equals the whole lattice Λ. Hence,
{d1, . . . , dn} is the dual basis of B and every Voronoi relevant vector v ∈ FΛ = E fulfills
dᵀi v ∈ {0,±1}. In view of Lemma 3.2 iii), this means that B is a compact basis of Λ
consisting of Voronoi relevant vectors, as desired.

3.5 Compact bases in small dimensions

We have seen in Proposition 3.10 that every lattice of rank at most three has a compact
basis, and that there are five-dimensional lattices without compact bases. In the sequel
we complete the picture and show that every four-dimensional lattice admits a compact
basis as well.

Our argument uses tools from the theory of parallelotopes which requires to set up the
compactness constant in this more general framework. For details and background on

105

Chapter 3. Compact representations of Voronoi cells of lattices

the following definitions and statements on parallelotopes we refer to [Gru07, §32]. A
parallelotope (also called parallelohedron) is a convex polytope P ⊆ Rn that admits a
facet-to-facet tiling of Rn by translations. Voronoi cells of lattices are prime examples of
parallelotopes. Every parallelotope is centrally symmetric, and we may assume that its
center of symmetry is at the origin. The set of translation vectors that constitute the
facet-to-facet tiling by copies of P is in fact a lattice, and we denote it by Λ(P). Every
facet F of P corresponds to a lattice vector x ∈ Λ(P) such that P ∩ (P + x) = F . Such
a lattice vector is called a facet vector. More generally, a lattice vector x ∈ Λ(P) such
that P ∩ (P + x) is a face of both P and P + x is called a standard vector of P .

For Voronoi cells the facet vectors and the standard vectors are exactly the strictly and
weakly Voronoi relevant vectors, respectively. Therefore, we can extend our notation
from the previous sections from Voronoi cells and lattices, to general parallelotopes: We
write FP and CP for the set of facet vectors and standard vectors of P , respectively, and
c(P) and χ(P) for the corresponding compactness constants. For example, χ(P) is the
minimal χ > 0 such that there is a basis B = {b1, . . . , bn} of Λ(P) with the property
that every standard vector x ∈ CP can be written as x =

∑n
i=1 γibi, for some |γi| ≤ χ.

With this notation we prove the crucial fact, that if a parallelotope Q decomposes into the
Minkowski sum of another parallelotope P and a (possibly lower-dimensional) zonotope Z,
then χ(Q) ≤ χ(P). We write Z(U) =

∑r
i=1[−ui, ui] for the zonotope spanned by the set

of vectors U = {u1, . . . , ur}.

Proposition 3.12. Let Q ⊆ Rn be a parallelotope that admits a decomposition Q =
P +Z(U), for some parallelotope P , and a finite set of vectors U ⊆ Rn. Then, there is a
linear map ϕ : Rn → Rn with ϕ(Λ(P)) = Λ(Q) satisfying

i) For x ∈ CQ, we have ϕ−1(x) ∈ CP .

ii) For x ∈ FP , we have ϕ(x) ∈ FQ.

In particular, χ(Q) ≤ χ(P).

Proof. First note that if P + Z(U) is a parallelotope, then every vector u ∈ U is a free
vector for P , that is, P + [−u, u] is a parallelotope as well (cf. [DGM14]). We thus get a
chain of parallelotopes P = P0 ⊆ P1 ⊆ . . . ⊆ Pr = Q, where Pi = Pi−1 + [−ui, ui], for
1 ≤ i ≤ r, and U = {u1, . . . , ur}. By induction on r it thus suffices to consider the case
r = 1.

Hence, letQ = P+[−u, u], for some non-zero vector u ∈ Rn. Dutour Sikirić et al. [DGM14,
Lem. 1 & Lem. 3] give a characterization of the standard vectors of Q in terms of those
of P : First, there is a dual lattice vector eu ∈ Λ(P)? such that Λ(Q) = AuΛ(P), where

106

3.5. Compact bases in small dimensions

Aux = x+ 2(eᵀux)u, for x ∈ Rn. Then, z = Auw ∈ Λ(Q) is a standard vector of Q if and
only if w is a standard vector of P , and eᵀuw ∈ {0,±1}.

This implies that ϕ(x) = Aux is a bijection between the lattices Λ(P) and Λ(Q) satisfy-
ing i). Moreover, the proof of [DGM14, Lem. 1] reveals that Au, and thus ϕ, sends facet
vectors to facet vectors, hence ii) holds as well. For r ≥ 2, we define ϕ inductively by
setting ϕ(x) = Aur · . . . ·Au1x.

Finally we show that χ(Q) ≤ χ(P). As just observed, any basis B of Λ(P) is sent to a
basis ϕ(B) of Λ(Q). Moreover, a standard vector y =

∑n
i=1 αiϕ(bi) ∈ CQ represented

in the basis ϕ(B) corresponds to a standard vector ϕ−1(y) =
∑n
i=1 αibi ∈ CP using the

same coefficients when represented in the basis B. Thus, if every vector in CP can be
represented in B with coefficients bounded by χ(P), the same holds for all vectors in CQ
with respect to ϕ(B).

As a consequence, we get that zonotopal parallelotopes Z allow for a compact rep-
resentation even of the set CZ which strengthens Theorem 3.11. In particular, every
three-dimensional parallelotope has this property (cf. [Gru07, §32.2]).

Corollary 3.13. Let Z be a parallelotope that is a zonotope. Then χ(Z) = 1.

Proof. There is a set of vectors U ′ = {u1, . . . , um} such that Z = Z(U ′). We may assume
that u1, . . . , un are linearly independent, and we write P = [−u1, u1] + . . .+ [−un, un].
Then, Z = P + Z(U), for U = U ′ \ {u1, . . . , un}, and since P is a parallelepiped, it is
actually a parallelotope.

Thus, Proposition 3.12 implies that χ(Z) ≤ χ(P) and it suffices to show that χ(P) = 1
for every parallelepiped P . The standard vectors of P are exactly those x ∈ Λ(P) \ {0}
such that P ∩ (x+ P) 6= ∅. Writing ±f1, . . . ,±fn for the n pairs of facet vectors of P ,
we find that {f1, . . . , fn} is a basis of Λ(P) in which every standard vector admits a
{0,±1}-representation.

We now focus again on parallelotopes that are Voronoi cells but work in the more
convenient language of quadratic forms. A famous conjecture of Voronoi states that
every parallelotope is an affine image of a Voronoi cell of a lattice (cf. [Gru07, §32]). As
long as this is not settled we need to make the distinction.

Let q : Rn → R be a positive definite quadratic form defined by q(x) = xᵀAᵀAx, for
some invertible matrix A ∈ Rn×n. We associate the lattice Λ = AZn to q. Analogously
to the lattice case, the Voronoi cell of q is defined as

Vq = {x ∈ Rn : q(x) ≤ q(x− z) for all z ∈ Zn} .

107

Chapter 3. Compact representations of Voronoi cells of lattices

This is a linear image of the Voronoi cell of Λ and thus a parallelotope. For the sake of
brevity we use the shorter notations Fq = FVq , Cq = CVq , c(q) = c(Vq), and χ(q) = χ(Vq).
The exact correspondences between the various notions in the languages of lattices and
quadratic forms are as follows.

Lemma 3.14. Let q : Rn → R be a positive definite quadratic form defined by q(x) =
xᵀAᵀAx, for some invertible matrix A ∈ Rn×n. Moreover, write Λ = AZn for the lattice
generated by A. Then,

i) VΛ = AVq and FΛ = AFq,

ii) c(q) = c(Λ) and χ(q) = χ(Λ).

Proof. For i), observe that

Vq =
{
x ∈ Rn : ‖Ax‖2 ≤ ‖A(x− z)‖2 for all z ∈ Zn

}
=
{
A−1y ∈ Rn : ‖y‖2 ≤ ‖y −Az‖2 for all z ∈ Zn

}
= A−1VΛ.

For the second identity, notice that x ∈ Fq if and only if Vq ∩ (Vq + x) is a facet of Vq,
which holds if and only if AVq ∩ (AVq +Ax) is a facet of AVq = VΛ. Part ii) is a direct
consequence of these observations.

The lattice D4 = {z ∈ Z4 : z1 + . . . + z4 ∈ 2Z} plays a crucial role in representing
4-dimensional lattices whose Voronoi cell is not a zonotope, and thus deserves a detailed
study.

Lemma 3.15. Let y ∈ CD4 \ FD4. Then there is a basis B of D4 such that

CD4 \ {±y} ⊆ {Bz : ||z||∞ ≤ 1} .

Proof. We start by characterizing the sets FD4 and CD4 . Since ±2ei ± 2ej ∈ 2D4 ⊆ 2Z4

for 1 ≤ i < j ≤ 4, it follows that S = {z ∈ {0,±1}4 : ||z||2 ∈ {2, 4}} contains all
vectors v 6= 0 that are shortest in their respective co-set v + 2D4. In fact, due to parity
of the coefficients, we have S = CD4 . In the proof of Proposition 3.10, we saw that
FD4 ⊆ {z ∈ D4 : ||z||2 = 2}. For parity reasons of z ∈ FD4 , the vectors z and −z are the
unique shortest vectors in z + 2D4, hence we actually have FD4 = {z ∈ D4 : ||z||2 = 2}.

Now, let y ∈ CD4 \ FD4 and observe that D?
4 = Z4 ∪ (1

21 + Z4). Then{
x ∈ R4 : |eᵀi x| ≤ 1, 1 ≤ i ≤ 4

}
∩
{
x ∈ R4 : |yᵀx| ≤ 2

}
is a facet-description of Q := conv{CD4 \ {±y}}. The inequality |yᵀx| ≤ 2 arises since
the vectors yiei + yjej , 1 ≤ i < j ≤ 4 are contained in CD4 \ {±y}. Taking polars, we

108

3.5. Compact bases in small dimensions

obtain that
Q? = conv

(
{±ei : i = 1, . . . , 4} ∪ {±1

2y}
)
,

and we see that Q? contains the dual lattice basis B−ᵀ = {1
2y, e1, e2, e3}. Hence, in the

spirit of Lemma 3.2, every vector in CD4 \ {±y} is represented with coefficients in {±1, 0}
in the corresponding primal basis B.

Observe that Lemma 3.15 is best possible in the sense that χ(D4) = 2.1 In order to see
this, conv(CD4)? is the standard crosspolytope, which does not contain a basis of D?

4 as
any such basis has to contain a vector in 1

21 + Z4. However, after dilating by 2, we find
the basis {1

21, e2, e3, e4} of D?
4 (cf. Lemma 3.2.)

We now arrive at the desired compactness of four-dimensional lattices.

Corollary 3.16. Every lattice of rank at most four has a compact basis.

Proof. We have seen in Proposition 3.10 ii), that every lattice of rank at most three has a
compact basis. Thus, let Λ = AZ4 be a full-dimensional lattice, and let q(x) = xᵀAᵀAx be
the corresponding quadratic form. In the case that Vq is a zonotope, we use Lemma 3.14
to get that VΛ = AVq is a zonotope as well, and thus Theorem 3.11 implies that c(Λ) = 1.

If Vq is not a zonotope, then Voronoi’s reduction theory as applied in Vallentin’s the-
sis [Val03, Ch. 3] shows the following: We can write Vq = Vp + Z(U), for some positive
definite quadratic form p and a set of vectors U ⊆ R4. Moreover, p is such that Vp is
combinatorially equivalent to the 24-cell. Up to isometries and scalings, the only lattice
whose Voronoi cell is combinatorially equivalent to the 24-cell is the root lattice D4,
defined in Proposition 3.10. This is due to the fact that D4 is what is called a rigid
lattice. Therefore, any lattice corresponding to p agrees with D4 up to isometries and
scalings.

By Lemmas 3.14 and 3.15, this means that for every vector y ∈ Cp \ Fp, we can find
a basis B of Λp := Λ(Vp) such that every standard vector of Vp apart from ±y can be
represented with coefficients in {±1, 0}. By the first part of Proposition 3.12, there
is a linear map ϕ such that ϕ(Λp) = Λq := Λ(Vq), and ϕ−1(Fq) =: C′ ⊆ Cp. By the
second part of Proposition 3.12, we have Fp ⊆ C′. Since AVq is a Voronoi cell, we have
|C′| = |Fq| ≤ 2(24 − 1) = 30, whereas |Cp| = |CD4 | = 40 (see the proof of Lemma 3.15).
Hence we can choose y ∈ Cp \ C′, and find a basis B of Vp so that all vectors in C′

are represented with coefficients in {0,±1}. This implies that all vectors in Fq have
coefficients in {0,±1} when represented in the basis ϕ(B) of Vq. Thus, the lattice Λ has
a compact basis as c(q) = c(Λ).

We summarize the results of this section in Table 3.1.
1Engel et al. [EMS01] claim that they computed χ(D4) = 1, which turns out to be wrong.

109

Chapter 3. Compact representations of Voronoi cells of lattices

dimension of Λ compactness result reference
n ≤ 3 c(Λ) = χ(Λ) = 1 Proposition 3.10 & Corollary 3.13
n = 4 c(Λ) = 1, but χ(D4) = 2 Corollary 3.16
n ≥ 5 c(Λn) ≥ dn4 e Theorem 3.9

Table 3.1 – Compactness of lattices in small dimensions.

3.6 Relaxing the basis condition

The compact representation problem for the set of Voronoi relevant vectors does not
need B to be a basis of the lattice Λ. In fact, it suffices that we find linearly independent
vectors W = {w1, . . . , wn} that allow to decompose each Voronoi relevant vector as an
integer linear combination with small coefficients. This is due to the fact that, given a
basis, membership to a lattice can be checked in polynomial time. Thus, in case that the
relaxation improves the compactness of the presentation, this additional check is faster
than iterating over the larger set corresponding to a c(Λ)-compact basis.

Definition 3.17. Let Λ ⊆ Rn be a lattice. A set of linearly independent vectors W =
{w1, . . . , wn} ⊆ Rn is called c-compact for Λ, if

FΛ ⊆ {w1z1 + . . .+ wnzn : z ∈ Zn, ‖z‖∞ ≤ c} .

Moreover, we define

c(Λ) = min{c ≥ 0 : there is a c-compact set W for Λ}

as the relaxed compactness constant of Λ.

If every Voronoi relevant vector is an integral combination of W , then so is every lattice
vector. That is, a c-compact set W for Λ gives rise to a superlattice Γ = WZn ⊇ Λ. The
relaxed compactness constant and c(Λ) are related as follows.

Proposition 3.18. For every lattice Λ in Rn, n ≥ 2, we have

c(Λ) = λn(Q?,Λ?) and c(Λ) ≤ c(Λ) ≤ n

2 c(Λ),

where Q = conv(FΛ) as before.

Proof. The identity c(Λ) = λn(Q?,Λ?) follows by arguments analogous to those estab-
lishing the equivalence of i) and ii) in Lemma 3.2. The inequality c(Λ) ≤ c(Λ) is a direct
consequence of the definition of these parameters.

In order to prove that c(Λ) ≤ n
2 c(Λ), we let v1, . . . , vn ∈ (c(Λ) · Q?) ∩ Λ? be linearly

independent, and for 1 ≤ k ≤ n, we consider the crosspolytope Ck = conv{±v1, . . . ,±vk}.

110

3.6. Relaxing the basis condition

We show by induction that there are vectors u1, . . . , un ∈ Λ? such that (a) {u1, . . . , uk} is
a basis of the lattice Λ?∩ lin{v1, . . . , vk}, and (b) uk ∈ max{k2 , 1}·Ck, for every 1 ≤ k ≤ n.
This then implies that {u1, . . . , un} is a basis of Λ? contained in n

2 Cn ⊆
n
2 c(Λ)Q?. Hence,

c(Λ) ≤ n
2 c(Λ), as desired.

First, at least one of the vectors v1, . . . , vn must be primitive, say v1. Then, setting
u1 = v1 gets the induction started. Now, let us assume that we found u1, . . . , uk−1
satisfying (a) and (b). Let y ∈ (Λ? ∩ lin{v1, . . . , vk})? be a primitive vector orthogonal to
lin{u1, . . . , uk−1} and such that yᵀvk 6= 0. If |yᵀvk| = 1, then uk = vk ∈ Ck complements
{u1, . . . , uk−1} to a basis of Λ?∩lin{v1, . . . , vk}. So, we may assume that |yᵀvk| ≥ 2. Every
translate of k−1

2 Ck−1 within lin{v1, . . . , vk−1} contains a point of Λ?. In particular, there
is a vector uk ∈ Λ? contained in 1

yᵀvk
vk + k−1

2 Ck−1. By construction, uk complements
{u1, . . . , uk−1} to a basis of Λ? ∩ lin{v1, . . . , vk}, and since | 1

yᵀvk
| ≤ 1

2 , we get that
uk ∈ 1

2 Ck + k−1
2 Ck−1 ⊆ k

2 Ck.

The relaxation to representing FΛ by generating sets rather than by lattice bases may
reduce the respective compactness constant drastically. In fact, the quadratic upper
bound in Theorem 3.4 improves to O(n logn). However, there is still a class of lattices
that shows that in the worst case the relaxed compactness constant can be linear in the
dimension as well. In combination with Theorem 3.9, the second part of the following
result moreover shows that the factor n/2 in Proposition 3.18 is tight up to a constant.

Proposition 3.19.

i) For every lattice Λ ⊆ Rn, we have c(Λ) ∈ O(n logn).

ii) For a = dn2 e, let Λn = Λn(a) be the lattice defined in (3.3). For every n ∈ N, we
have c(Λn) ≤ 3, whereas c(Λn) ≥ dn4 e, for n ≥ 4.

iii) There are self-dual lattices Λ ⊆ Rn with relaxed compactness constant c(Λ) ∈ Ω(n).

Proof. i): The polytope Q = conv(FΛ) is centrally symmetric, all its vertices are points
of Λ, and int(Q) ∩ Λ = {0}. Therefore, we have λ1(Q,Λ) = 1. Proposition 3.18 and
the transference theorem of Banaszczyk [Ban96] thus imply that there is an absolute
constant γ > 0 such that

c(Λ) = λn(Q?,Λ?) = λ1(Q,Λ) · λn(Q?,Λ?) ≤ γ n logn. (3.7)

ii): In view of Proposition 3.18, we have to find n linearly independent points of Λ?n in
3Q?. To this end, we define yi := 1

a(ei− en), for 1 ≤ i ≤ n−1. Furthermore, let yn = 1
a1,

if n is even, and yn =
(
{ 1
a}

n−1, 2
a

)
, if n is odd. We claim that the vectors y1, . . . , yn do

the job.

111

Chapter 3. Compact representations of Voronoi cells of lattices

First of all, they are clearly linearly independent, and the description (3.4) shows that
all these vectors belong to Λ?n. Now, recall that Q? = {y ∈ Rn : yᵀv ≤ 1 for all v ∈ FΛn}.
By Lemma 3.8, a Voronoi relevant vector v of Λn either equals ±1 or is contained in
v ∈ {a− `,−`}n, for some suitable ` ∈ N. Consider first the vectors yi, for 1 ≤ i ≤ n− 1.
We have 1ᵀyi = 0, and for any v ∈ {a− `,−`}n holds vᵀyi = 1

a(vi − vn) which equals 0,
if vi = vn, and it equals ±1, if vi 6= vn. Thus, in fact y1, . . . , yn−1 ∈ Q?.

Regarding the remaining vector yn, we observe that 1ᵀyn = 2, independently of the
parity of the dimension n. Thus, let v ∈ {a − `,−`}n, and note that ` ∈ {bakn c, d

ak
n e},

where k = |{i : vi = a− `}|. Since −` ≤ a and a− ` ≤ a, we have

yᵀnv ≤ 1
a (k(a− `)− (n− k)`+ a) = 1

a (ka− n`+ a)

≤ 1
a

(
ka− n(akn − 1) + a

)
= n+ a

a
≤ 3,

and similarly yᵀnv ≥ −3. Hence, yn ∈ 3Q?, finishing the proof.

iii): Let Λ be a self-dual lattice and let VΛ be its Voronoi cell. Each Voronoi relevant
vector v ∈ FΛ provides a facet of VΛ via the inequality vᵀx ≤ 1

2 ||v||
2, as well as a facet of

Q? via the inequality vᵀx ≤ 1 (this indeed defines a facet, as a vertex v of Q always induces
a corresponding facet of the polar Q?). As ||v|| ≥ λ1(Bn,Λ), for every c < λ1(Bn,Λ)2,
we have that c ·Q? is contained in the interior of twice the Voronoi cell of Λ? = Λ, and
hence contains no non-trivial dual lattice point. Therefore, c(Λ) ≥ λ1(Bn,Λ)2.

Conway & Thompson (see [MH73, Ch. 2, §9]) proved that there are self-dual lattices Λ
in Rn with minimal norm

λ1(Bn,Λ) ≥
⌊

1√
π

(5
3Γ
(
n

2 + 1
)) 1

n

⌋
.

Stirling’s approximation then gives that c(Λ) ∈ Ω(n).

Based on the common belief that the best possible upper bound in (3.7) is linear in n,
we conjecture the following:

Conjecture 3.20. The compactness constants are linearly bounded, that is

c(Λ) ∈ O(n) and also c(Λ) ∈ O(n),

for every lattice Λ ⊆ Rn.

112

3.7. Algorithmic point of view

3.7 Algorithmic point of view

When it comes to computing a c(Λ)-compact basis for Λ, not much is known. Lemma 3.2
suggests to take the polar of conv(FΛ), and then to look for a dual basis in a suitable
dilate thereof. However, in order to do this, we need a description of the Voronoi relevant
vectors in the first place. Even if we are only interested in an (n · c(Λ))-compact basis, it
is not clear how to benefit from the allowed slack.

In the following, we rather discuss how to incorporate an already known c-compact basis
into the algorithm of Micciancio & Voulgaris [MV13].

The Micciancio-Voulgaris algorithm

The algorithm consists of two main parts. In a preprocessing step, it computes the
Voronoi cell VΛ, which can be done in time 2O(n) in a recursive manner. As a c-compact
basis already grants a superset of FΛ, we do not recall the details of this first part.

Once the Voronoi cell VΛ is computed, a vector p ∈ Λ is closest to t if and only if
t− p ∈ VΛ. Bearing this in mind, the idea is to iteratively subtract lattice vectors from t

until the condition holds.

But why do we only need 2O(n) iterations? Let us assume for now that t is already rather
close to 0, say t ∈ 2VΛ. Let p be a Voronoi relevant vector whose induced facet-defining
inequality is violated by t, this means pᵀt > 1

2 ||p||
2. Micciancio & Voulgaris show that

t − p is still contained in 2VΛ, and is strictly shorter than t. Hence, for going from
t ∈ 2VΛ to some t′ = t−w ∈ VΛ, for w ∈ Λ, the number of iterations we need is bounded
by the number of level sets of the norm function that have a point in 2VΛ ∩ (t+ Λ). This
number turns out to be at most 2n.

If t is further away, that is t /∈ 2VΛ, let k be the smallest integer such that t ∈ 2kVΛ.
Then, we can apply the above method to the lattice Λ′ = 2k−1Λ, and find w ∈ Λ′ ⊆ Λ
such that t− w ∈ VΛ′ = 2k−1VΛ. Doing this recursively yields that after 2nk iterations,
we moved t into VΛ. Note that k is polynomial in the input size. More sophisticated
arguments allow to limit k in terms of n only, or to decrease the number of iterations to
weakly polynomial, as presented in [DB15].

Corollary 3.21. Assume we are given a c-compact basis B of a lattice Λ ⊆ Rn. For any
target point t ∈ Rn, a closest lattice vector to t can be found in time O((2c+1)n 2n poly(n))
and space polynomial in the input size.

Proof. Theorem 4.2 and Remark 4.4 in [MV13] state that a closest vector can be found
in time O(|V | · 2n poly(n)), where V is a superset of the Voronoi relevant vectors FΛ.
We set V = {Bz : z ∈ Zn, ‖z‖∞ ≤ c} ⊇ FΛ.

113

Chapter 3. Compact representations of Voronoi cells of lattices

The reduction to polynomial space follows from [MV13, Rem. 4.3]: Their algorithm may
need exponential space because they store FΛ. As a subset of V it is however described
just by the polynomial-size data (B, c).

The Micciancio-Voulgaris algorithm naturally can be presented as an algorithm for
the Closest Vector Problem with Preprocessing (CVPP). In this variant of CVP, we
may precompute the lattice for an arbitrary amount of time and store some additional
information. Only then the target vector is revealed to us, and we are allowed to use
the information we gathered before to speed up the process of finding a closest vector.
This is motivated by the fact that in practice, we might have to compute the closest
vector for several target vectors, but always on the same lattice. Hence, we happily spend
more time for preprocessing, when we are able to vastly benefit from the additional
information.

Considered in this setting, our results compress the information after the preprocessing
step into polynomial space. However, it is unclear how to compute a c(Λ)-compact basis
without computing the Voronoi cell first.

Open Question:
Can we compute a basis B of Λ that attains c(Λ) in single-exponential time and polynomial
space?

The fact that every zonotopal lattice has a compact basis is especially interesting.
McCormick, Peis, Scheidweiler & Vallentin can solve the Closest Vector Problem in
polynomial time on a zonotopal lattice, provided it is given in a certain format.2 Another
related result is due to McKilliam, Grant & Clarkson [MGC14], who provide a polynomial
time algorithm for lattices of Voronoi’s first kind, provided an obtuse superbasis is
known. One could wonder whether our representation also allows for solving CVPP
faster (measuring only the time after the preprocessing). However, McKilliam et al. use
additional combinatorial properties of an obtuse superbasis that are in general not even
fulfilled for a 1-compact basis. In fact, Micciancio [Mic01] showed that if CVPP can be
solved in polynomial time for arbitrary lattices, then NP ⊆ P/poly and the polynomial
hierarchy collapses.

2At the time of writing there is no preprint available (personal communication with Frank Vallentin).

114

4 The closest vector problem with
additional information

Introduction

In this chapter we are concerned with requirements on a lattice that allow us to solve the
closest vector problem more efficiently. The easiest example is an orthogonal basis B. We
can represent t = By with rational coefficients, and a simple application of Pythagoras’
theorem allows to conclude that Bbye is a closest point to t.

A more interesting example are lattices of Voronoi’s first kind, lattices that have an obtuse
superbasis. Essentially, this basis allows us to implement a variant of the algorithm of
Micciancio & Voulgaris in polynomial time [MGC14]. We refer to the previous discussion
on these lattices in Section 3.4 for more details.

In the first section, we will present two results. For one, we will show that a result
of Dadush & Bonifas [DB15] implies that whenever we have a separation oracle for
the Voronoi cell, we can solve the closest vector problem in polynomial time. As an
application, we will revisit the class of lattices for which the Voronoi cell is a zonotope
(cf. Section 3.4). We saw already that the rich structure of these lattices allow for a
1-compact basis. Here we will see that if we are given a set of generators of the Voronoi
cell, this implies a separation oracle for the Voronoi cell, and we can solve CVP in
polynomial time.

However, in all the cases above, it is not the lattice per se that allows for a more efficient
algorithm, but some additional information on the lattice. In the listed examples, this is
an orthogonal basis, an obtuse superbasis, or the generators of the zonotopal Voronoi cell.
The second part of this chapter is concerned with the question whether we can recognize
these special classes of lattices even if the additional information is hidden from us.

We focus on the specific class of lattices that have an orthonormal basis. In particular,
we show that deciding whether a given lattice Λ has an orthonormal basis is in the
complexity class NP ∩ co-NP. While containment in NP is not difficult to show, we

115

Chapter 4. The closest vector problem with additional information

will deploy a strong result from analytic number theory for showing containment in
co-NP [Elk95]. On the way, we show that the problem is equivalent to the unimodular
decomposition problem. Given a positive definite unimodular matrix G ∈ Zn×n, decide
whether there exists a unimodular matrix U such that UᵀU = G. We think that this is
an interesting problem on its own. Maybe surprisingly, the equivalence (together with
known structural results on lattices) implies that such a matrix always exists if n ≤ 7,
and for n = 8, there are matrices for which a decomposition G = UᵀU does not exist.

4.1 The closest vector problem in polynomial time

For this section, we assume a full-dimensional rational lattice Λ ⊆ Qn, given by a basis
B ∈ Qn×n, and either a separation oracle or an optimization oracle for the Voronoi cell
V := VΛ. The main result is that such an oracle already suffices for solving the closest
vector problem for Λ in polynomial time.

Though we discussed the algorithm of Micciancio & Voulgaris already briefly, we will
present another point of view that will be more helpful for this section. We ignore the
scaling technique they use for now, but assume that t is rather close to 0, i.e. ||t||V ≤ n,
where ||·||V denotes the norm induced by V.

Geometrically, the algorithm of Micciancio & Voulgaris follows a line segment [0, t] for
some target t, until it leaves the Voronoi cell V through a facet. It keeps track of the
Voronoi relevant vector v1 inducing this facet, updates t′ ← t − v1, and iterates, now
following the updated line segment [0, t′]. If t′ ∈ V after some k iterations, it outputs∑k
i=1 vk.

Instead of reducing t′ in each iteration and resetting the line segment, we could also con-
tinue following the line segment [0, t] through the entered Voronoi cell v1 +V . Eventually,
we will leave v1 + V , entering the next Voronoi cell v′2 + V and so forth, finally ending up
at a lattice point closest to t. This straight line approach is chosen by Dadush & Bonifas,
and depicted in Figure 4.1.

With this approach, it becomes more clear that the Voronoi relevant vectors equip the
lattice with a graph structure, and we navigate in this graph towards a vertex closest to
t. Two points u, v ∈ Λ are connected by an edge if the vector u− v is Voronoi relevant
or, equivalently, the Voronoi cells u + V and v + V share a facet. Every time the line
segment [0, t] leaves a Voronoi cell, we make one step in the graph. We call this graph
the Voronoi graph GV of Λ. The total length of the traversed path in the Voronoi graph
is equal to the number of Voronoi cells the line segment [0, t] intersects (at least if [0, t]
does not intersect lower-dimensional faces).

While the approach of Micciancio & Voulgaris induces a path on this graph whose length is
only bounded exponentially, Dadush & Bonifas showed that with a slight modification of

116

4.1. The closest vector problem in polynomial time

0

×t

v

Figure 4.1 – The path on the Voronoi graph induced by following a straight line.

the approach outlined above we can expect to traverse a path of polynomial length [DB15].
This modification is a perturbation of the start and endpoint, allowing for a probabilistic
analysis.

More specifically, they sample a point Z ∈ V, and follow the three line segments [0, Z],
[Z, t+ Z], and [t+ Z, t] one after another. Clearly, as Z ∈ V, the first line segment does
not leave the initial Voronoi cell. The second line segment will cross a number of Voronoi
cells that is linear in n ||t||V in expectation.

The last line segment is more difficult to handle. On a high level, the problem is that the
closer we come to t on the line segment [t+Z, t], the smaller the effect of the randomness
of the sampled point Z becomes. They overcome this problem by showing that either t is
on the boundary of a Voronoi cell, or has a minimum distance δ to the boundary, where
δ depends on the encoding size. Therefore, they can stop following [Z + t, t] already
at distance δ away from t, and must already be in the same Voronoi cell as t. For this
truncated line segment, they are again able to limit the expected number of crossings.

Before we give the expected amortized number of crossings for the whole procedure, we
formalize it in several steps for a given lattice Λ ⊆ Qn and target t ∈ Qn. We call this
procedure the perturbed straight line procedure.

1. Find a vector y ∈ Λ such that t ∈ y + nV. Update t← t− y so that ||t||V ≤ n.

2. Sample Z ∈ V.

3. Follow the line segments [0, Z], [Z, t + Z], [t + Z, t + δ] for δ small enough, and
navigate on the Voronoi graph accordingly.

117

Chapter 4. The closest vector problem with additional information

We will now provide the expected length of the path we follow in the Voronoi graph.
This reformulation is gained by combining the estimates of the Lemmas 3.2 and 3.3 with
Theorem 3.2 in [DB15].

Theorem 4.1 (Cf. [DB15, Thm. 3.1 & 3.2]). Given a lattice Λ ⊆ Rn and a target t ∈ Rn

such that ||t||V ≤ n. Then the length of the path on the Voronoi graph induced by the
perturbed straight line procedure has expected length O(n2(2 + size(B, t))).

With this estimate at hand, it remains to show (a) how to find an initial point y ∈ Λ with
||y − t||V ≤ n, (b) how to sample a point Z ∈ V , and (c) how to perform a single step on
the Voronoi graph. As performing a step corresponds to the line segment [Z,Z + t] (or
[Z + t, t]) crossing a facet, we consider the following, more general problem. Afterwards,
we dedicate one subsection to each of the points, assembling everything in the end.

Facet Piercing Problem

Instance: A (possibly implicitly given) polytope P ⊆ Rn, s ∈ P , t ∈ Rn \ P .
Task: Find a facet normal of a facet F of P s.t. F ∩ [s, t] 6= ∅.

Clearly, the difficulty of this problem drastically depends on the given representation
of P . If P is just given in its outer description {x ∈ Rn | Ax ≤ b}, then the problem is
solvable by computing λ such that aᵀ(s+ λ(t− s)) = β for every inequality, and choose
the one yielding the smallest positive λ. This representation is chosen by Dadush &
Bonifas, who assume to have a list of Voronoi relevant vectors explicitly given. And
while this is polynomial in the input size, in our setting P = V usually has already Θ(2n)
facets, and the approach is not polynomial in the dimension.

4.1.1 Solving the facet piercing problem

In this section, we will show that we can solve the facet piercing problem for a Voronoi
cell in polynomial time, provided we are given an optimization oracle for it and the
starting point s is in the interior. We will also quote the classical result that separation
implies optimization (under certain assumptions), leaving us with the result that we can
solve the facet piercing problem whenever we have an oracle for either the separation or
the optimization problem.

However, the precise statements and proofs might be a bit technical and tedious. Since
we are interested in Voronoi cells, we will assume that Λ ⊆ Qn is a full-dimensional
lattice, and restrict our attention to full-dimensional polytopes. If Λ ⊆ Qn was of lower
dimension d < n, we could first compute its Gram-Schmidt orthogonalization, and rotate
it onto the first d coordinates. Thus, our assumption is without loss of generality.

We start by establishing some bounds on the encoding size of involved quantities.

118

4.1. The closest vector problem in polynomial time

Lemma 4.2. For n ∈ Z≥2 let Λ ⊆ Qn be a full-dimensional lattice given by a basis
B ∈ Qn×n, f ∈ Λ a Voronoi relevant vector, and v ∈ Qn a vertex of VΛ. Let s, t ∈ Qn be
two points such that the intersection [s, t] ∩ {x ∈ Rn | fᵀx = ||f ||2

2 } is a unique point p.
Then the following estimates hold.

i) size(f) ≤ 6n3 size(B) and size(||f ||22) ≤ 6n2 size(B)

ii) size(v) ≤ 32n5 size(B)

iii) size(p) ≤ 44n4 size(B, s, t).

Proof. For now, assume B ∈ Zn×n, and hence Λ ⊆ Zn. We will deduct the rational
case from there later. Standard estimates for the covering radius of Λ yield µ(Λ) ≤
1
2

√∑n
i=1 ||bi||

2
2 (cf. [DB15, Lem. A.1]).

Let f be a Voronoi relevant vector. Since the Voronoi cell of Λ is contained in a ball of
radius µ(Λ), we have that ||f ||2 ≤ 2µ(Λ) ≤

√∑n
i=1 ||bi||

2
2, implying

size(||f ||22) ≤ size(
n∑
i=1

bᵀi bi) (4.1)

≤ 2
n∑

i,j=1
size(b2i,j)

≤ 4
n∑

i,j=1
size(bi,j)

≤ 4 size(B)− 4n2

and since |fi| ≤ ||f ||22,

size(f) ≤ n+ 4n size(B)− 4n3 ≤ 4n size(B),

using integrality and the size estimates of Section 1.5.

Let v ∈ Qn be a vertex of VΛ, f1, . . . , fn ∈ Λ the Voronoi relevant vectors whose induced
facets define v, F be the matrix with rows fᵀ1 , . . . , fᵀn , and w ∈ Qn defined by wi = ||fi||2

2
so that v is the unique solution to Fx = w. Observe that the Estimate (4.1), together with
n ≥ 2 implies size(w) ≤ n+n(size(1/2) + 4 size(B)− 4n2) ≤ 4n size(B). By Theorem 1.6,
and again using n ≥ 2, we have

size(v) ≤ 4n(size(F) + size(w))
≤ 4n(4n2 size(B) + 4n size(B))
≤ 24n3 size(B).

119

Chapter 4. The closest vector problem with additional information

For the third part, let f ∈ Λ be a Voronoi relevant vector inducing a facet F of VΛ, and
assume in addition to B ∈ Zn×n that s, t ∈ Zn, and that [s, t]∩ F contains a single point
p ∈ Qn. Let k be the index minimizing |(t− s)k| over all non-zero entries. Let A be a
full-rank matrix obtained by taking the canonic unit vectors {ei | i ∈ [n] \ {k}} as the
first n− 1 columns, and t− s as the last one. Let u1, . . . , un denote the rows of A−1 and
observe that t − s ⊥ u1, . . . , un−1. Moreover, any entry of each ui is the quotient of a
n−1×n−1 subdeterminant of A and the determinant of A by Cramer’s rule. Due to the
simple structure of A, the determinant of A is ±(t− s)k, and subdeterminant is either 1,
0 or a single entry of t− s. Due to our choice of k, we thus have size(ui) ≤ 2 size(t− s).
Now, p is the unique solution to the system fᵀx = ||f ||2

2 , uᵀ2(p− s) = 0, . . . , uᵀ2(p− s) = 0,
and again by Theorem 1.6, the size of p is bounded in terms of the size of this system,
culminating in the estimate

size(p) ≤ 4n (2(n− 1) size(t− s) + size(f) + (n− 1) size(s) + 2(n− 1) size(t− s))
≤ 34n2 size(B, s, t).

It remains to consider the case where B is not integral. For the first two cases, let q ∈ Z≥1
be the smallest integer such that B′ = qB ∈ Zn×n, and denote Λ′ := qΛ ⊆ Zn. Writing
bi,j = pBi,j

qBi,j
with pBi,j ∈ Z, qBi,j ∈ Z≥0, we have that q ≤

∏n
i=1

∏n
j=1 q

B
i,j and thus size(q) ≤

size(B)− n2. Moreover, size(B′) = n2 +
∑
i,j(size(q) + size bi,j)) ≤ (n2 + 1) size(B)− n4.

If f ∈ Λ is Voronoi relevant (for VΛ), then qf ∈ Λ′ is Voronoi relevant (for VΛ′), and
with the above we can estimate (again, using n ≥ 2)

size(f) ≤ n size(q−1) + size(qf)
≤ n size(B) + 4n size(B′)
≤ 6n3 size(B)

and size(||f ||22) ≤ 6n2 size(B). Similarly, for v ∈ Qn a vertex of VΛ we estimate

size(v) ≤ sizen(q−1) + size(qv)
≤ n size(B) + 24n3 size(B′)
≤ 32n5 size(B).

For the last point, we have to choose q̃ ∈ Z>0 large enough so that not only q̃B ∈ Zn×n,
but also q̃s, q̃t ∈ Zn, and thus obtain the estimates

size(q̃) ≤ size(B, s, t)− n2,

size(B′, s′, t′) ≤ (n2 + 1) size(B, s, t).

120

4.1. The closest vector problem in polynomial time

In the same manner as above we estimate

size(p) ≤ n size(q̃−1) + size(q̃p)
≤ n(size(q̃) + 2) + 34n2 size(B′, s′, t′)
≤ n size(B, s, t) + 34n2(n2 + 1) size(B, s, t)
≤ 44n4 size(B, s, t).

Next, we provide a theorem stating that separation implies optimization under certain
assumptions.

Theorem 4.3 (cf. [KV18, Thm. 4.21], [GLS81]). Let n ∈ Z≥1 and c ∈ Qn. Let P ⊆ Rn

be a rational polytope, and let x0 ∈ Qn be a point in the interior of P . Let T ∈ Z≥1 such
that size(x0) ≤ log2(T) and size(x) ≤ log2(T) for all vertices x of P .

Given n, c, x0, T and a polynomial-time oracle for the separation problem for P , a vertex
x? of P attaining max{cᵀx | x ∈ P} can be found in time polynomial in n, log2(T) and
size(c).

Though this theorem already provides us with a vertex solution, we briefly address the
question how an optimization oracle can be turned into an optimization oracle that
outputs an optimum vertex solution. Morally, we add a lexicographic order for vertices
with the same objective value into the objective. We will refer to this fact later.

Lemma 4.4 ([KV18, Lem. 4.20]). Let n ∈ Z≥1, let P ⊆ Rn be a rational polytope, and
let x0 ∈ Qn be a point in the interior of P . Let T ∈ Z≥1 such that size(x0) ≤ log2(T)
and size(x) ≤ log2(T) for all vertices x of P . Then B(x0, r) ⊆ P ⊆ B(x0, R), where
r := 1

nT
−379n2 and R := 2nT .

Moreover, let K := 4T 2n+1. Let c ∈ Zn, and define c′ := Knc+ (1,K, . . . ,Kn−1)ᵀ. Then
max{c′ᵀx : x ∈ P} is attained by a unique vector x?, for all other vertices y of P we
have c′ᵀ(x? − y) > T−2n, and x? is also an optimum solution of max{cᵀx : x ∈ P}.

We are now able to show how to solve the facet piercing problem if s is in the interior of
P . In Section 4.1.4 we will see how to achieve this requirement. We remark that the
statement and proof is essentially taken from [KV18, Thm. 4.23], though we extend the
proof by an observation crucial for us.

Theorem 4.5. Let n ∈ Z≥1 and t ∈ Qn. Let P ⊆ Rn be a rational polytope, and
let s ∈ Qn be a point in the interior of P . Let T ∈ Z≥1 such that size(t) ≤ log2(T),
size(s) ≤ log2(T) and size(x) ≤ log2(T) for all vertices x of P .

121

Chapter 4. The closest vector problem with additional information

Given n, t, s, T and an oracle which for any given c ∈ Qn returns a vertex x? of P
attaining max{cᵀx | x ∈ P}, we can solve the separation problem for P and y in time
polynomial in n, log2(T) and size(t). Indeed, in the case t /∈ P we can find an inequality
defining a facet F such that F ∩ [s, t] 6= ∅.

Proof. We can shift the setting by −s and replace T with T2size(s), henceforth we assume
s = 0. Let

F = {f ∈ Qn | fᵀx ≤ 1}

be the set of normalized facet-defining inequalities of P , and observe that P ? = conv(F).
Since each facet-defining inequality vᵀx ≤ 1 for P ? stems from a vertex v ∈ P , we have
that each vertex of P ? is the unique solution to a system

vᵀ1
...
vᵀn

x = 1,

where the vi are corresponding vertices of P . Therefore, by Theorem 1.6, each vertex z
of P ? satisfies size(z) ≤ 4n(n log2(T) + 3n) ≤ 12n2 log2(T).

Consider the problem max{tᵀx | x ∈ P ?}. If the optimum is at most 1, then yᵀt ≤ 1 for
all y ∈ P ?, and t ∈ (P ?)? = P . If the optimum is larger than 1, let y be a point with
yᵀt > 1. Since yᵀx ≤ 1 is a valid inequality for P , this gives a separating hyperplane.
Moreover, if y is a vertex, this hyperplane is facet-defining. Now, observe that whenever
λ ≤ 1

yᵀt the point λt satisfies the inequality y
ᵀx ≤ 1. Thus, the vertex y ∈ P ? maximizing

tᵀx yields a facet that gets pierced by [0, t]. This means that the facet piercing problem
over P is equivalent to the optimization problem over P ?.

Since the size of each vertex of P ? is bounded by 12n2 log2(T) and 0 is in the interior,
we can apply Theorem 4.3 and only need to show how to separate over P ?.

But this reduces to optimizing over P . Indeed, for a point z ∈ Qn, we have z /∈ P ? if and
only if max{zᵀy | y ∈ P} > 1. Therefore, optimizing over P implies that we can solve
the facet piercing problem, if we know a point in the interior.

We will see later that the requirement for s being in the interior does not harm us. To
this end, we establish that for any point s ∈ VΛ and any facet F , we either have s ∈ F or
there is a lower bound on the distance. Also Dadush & Bonifas derived a similar bound
in their work.

Lemma 4.6. Let n ∈ Z≥2 and Λ ⊆ Qn be a full-dimensional rational lattice given by
a basis B ∈ Qn×n. Let s ∈ VΛ and H ⊆ Qn a supporting hyperplane inducing a facet.
Let T ∈ Z≥1 such that size(s) ≤ log2(T) and size(B) ≤ log2(T). Then either s ∈ H or
dist(s,H) ≥ T−32n3.

122

4.1. The closest vector problem in polynomial time

Proof. Let 2fᵀx = ||f ||22 be the equality inducing H. If s ∈ H there is nothing to show,
henceforth assume s /∈ H.

By Lemma 4.2 we have size(f) ≤ 6n3 size(B) ≤ 6n3 log2(T), size(||f ||22) ≤ 6n2 log2(T),
and size(s) ≤ log2(T) by assumption. Thus, there is an integer M ≤ T 6n3+6n2+1 such
that Mf,Ms and M ||f ||22 are integral. The hyperplane MH is given by the integral
equality

2Mfᵀx = M2 ||f ||22 ,

and asMs ∈ Zn we have that 2Mfᵀ(Ms) ≤M2 ||f ||22−1, implying that dist(MH,Ms) ≥
1/(2M ||f ||2). Scaling back, we obtain

dist(H, s) ≥ 1/(2M2 ||f ||2).

Therefore, dist(H, s) ≥ T−32n3 .

By Theorem 4.3, we can replace the optimization oracle in the previous statement with
a separation oracle.

4.1.2 Finding a starting vertex close to the target

We adapt a technique that is commonly used. The general idea is to express t =
∑n
i=1 αivi

as a linear combination of n linearly independent Voronoi relevant vectors, and then take
y =

∑n
i=1bαievi. As (αi − bαie)vi ∈ VΛ for each i, we have y − t ∈ nVΛ by convexity. It

is left to show how to find n linearly independent facet vectors when we are only given a
separation oracle.

Lemma 4.7. Given a lattice Λ and a target vector t, we can find a lattice vector y such
that t − y ∈ nVΛ by solving the facet piercing problem n times for VΛ with a starting
point s in the interior of VΛ.

Proof. We first give an iterative approach to find n linearly independent Voronoi relevant
vectors. Start with S = ∅. As long as |S| < n, pick a vector x ∈ Rn \ {0} orthogonal
to lin(S) (where we assume that any vector is orthogonal to lin(∅)). Then, choose r
large enough (e.g. ||rx||2 ≥

∑n
i=1 ||bi|| for a given lattice basis B) and determine a facet

inequality fᵀx ≤ 1 for a facet that gets pierced by the line segment [0, rx] by Theorem 4.5,
where we set T such that log2(T) ≥ 35n5 size(B) + size(r). Set α = 2

||f ||22
, v = αf , and

observe that the inequality 2vᵀx ≤ ||v||22 induces the same facet as fᵀx ≤ 1. Therefore,
v ∈ Λ is the corresponding Voronoi relevant vector. Update S ← S ∪ {v} and repeat.
Since our choice of x is always parallel to the induced facets we obtained so far, we add
a linearly independent facet vector to the set S in every step.

Now, we express t =
∑
v∈S αvv for some rational values αv, and set y =

∑
v∈Sbαvev. We

123

Chapter 4. The closest vector problem with additional information

obtain that every summand in t− y =
∑
v∈S(bαve − αv)v is contained in VΛ, and due to

convexity, t− y ∈ nVΛ.

4.1.3 Sampling a vector in the Voronoi cell

Dadush & Bonifas sample a vector z ∈ VΛ almost uniform at random, using the results
of Dyer, Frieze & Kannan. The probability distribution Uniform(K) is induced by the
function µ(x) = 1/ vol(K) for x ∈ K and 0 otherwise.

Theorem 4.8 ([DB15, Thm. A.2], [DFK91]). Let K ⊆ Rn be a convex body, given by a
membership oracle, satisfying B(0, r) ⊆ K ⊆ B(0, R). Then for ε > 0, a realization of
a random variable X ∈ K, having total variation distance at most ε from Uniform(K),
can be computed using poly(n, log2(R/r), log(1/ε)) arithmetic operations and calls to the
membership oracle.

As a separation oracle immediately realizes a membership oracle, we can use this result
in our setting as well, though the access to the list of Voronoi relevant vectors allows
Dadush & Bonifas a better grasp on the quantity R

r .

Lemma 4.9. Given a basis B of a lattice Λ ⊆ Rn and a separation oracle for the Voronoi
cell, we can compute a (1/4)-uniform sample z ∈ VΛ in polynomial time.

Proof. The Voronoi cell satisfies B(0, λ1
2) ⊆ VΛ ⊆ B(0, µ), where λ1 is the length of

a shortest lattice vector and µ is the covering radius of Λ. We can compute a 2n-
approximation to λ1 by using the LLL-algorithm, and 1

2
∑n
i=1 ||bi||2 is an upper bound

on the covering radius. Therefore, we can compute r,R such that B(0, r) ⊆ VΛ ⊆ B(0, R)
and log2(Rr) ∈ poly(size(B)).

The membership oracle for VΛ can be realized by a single call to the separation oracle
for VΛ. Choosing ε = 1

4 and using the previous theorem, the claim follows.

4.1.4 The main result and CVP on zonotopal lattices

Theorem 4.10. Let Λ ⊆ Qn be a full-dimensional lattice given by a basis B, and t ∈ Qn.
If we have a separation oracle for the Voronoi cell of Λ, we can solve the closest vector
problem in expected polynomial time (polynomial in n and size(B, t)).

Proof. We follow the proof of [DB15, Thm. 3.4] and replace the step of switching to the
next Voronoi cell by checking the list of Voronoi relevant vectors with our oracle-base
approach.

We first assure t ∈ nVΛ with Lemma 4.7. Then we sample a vector Z ∈ VΛ by Lemma 4.9.

124

4.1. The closest vector problem in polynomial time

In the rest of the proof, we will make use of the following claim, shown by Dadush &
Bonifas.

[DB15, Claim C.1] With probability 1, the path [Z, t+ Z] ∪ [t+ Z, t) only intersects
Λ + ∂VΛ in the relative interior of its facets. Furthermore, with probability 1, the
intersection consists of isolated points, and Z, t+ Z /∈ Λ + ∂VΛ.

This allows us to choose T0 such that log2(T0) ≥ max{size(Z), size(t+ Z), 32n5 size(B)},
and use Theorem 4.5 to find an inequality fᵀx ≤ 1 that induces a facet pierced by
[Z, t+ Z], or assert that t+ Z ∈ VΛ, in which case 0 is optimal.

Set α = 2
||f ||22

, v1 = αf , and observe that the inequality 2vᵀ1x ≤ ||v1||22 induces the same
facet as fᵀx ≤ 1, hence v1 ∈ Λ is the corresponding Voronoi relevant vector. This also
allows us to compute the point s0 where [Z, t+ Z] pierces the facet.

Assume we made already k steps and have a point sk on the facet shared by vk + VΛ and
vk+1 + VΛ. With probability 1, sk is an isolated point in the relative interior of a facet of
vk +VΛ, and thus there exists ε > 0 such that sk + ε(t− s) is in the interior of vk+1 +VΛ.

By Lemmas 4.2 and 4.6, we have size(sk) ≤ 44n4 size(B,Z, t+ Z), and setting T̃ large
enough we set s′k = sk + T̃−60n3 t−s

||t−s||2
, i.e. s′k ∈ (sk, Z + t] ⊆ [Z,Z + t].

Choosing T such that log2(T) ≥ 10(60n3 log2(T̃) + size(t, s), we can apply Theorem 4.5
on s′k to find the facet and the point where [s′k, Z + t] exits the Voronoi cell vk+1 + VΛ.
Since T and T̃ are chosen independent of the iteration, we can iterate the process until
we reach Z + t. As with probability 1, Z + t is in the interior of a Voronoi cell, we can
continue with our procedure for the segment [Z + t, t) until we are close enough to t,
cf. [DB15, Lem. 3.2].

In expectation, after O(n2(2 + size(B, t)) iterations, we found a closest vector. Therefore,
we choose some large constant c, and if we did not find a closest vector after cn2(2 +
size(B, t), or if the path does cross a lower-dimensional face, we restart the algorithm by
sampling a new Z.

It is shown in [DB15, Thm. 3.4] that we only have to restart the algorithm a constant
number of times in expectation.

Remark 4.11. Even if a line segment [s, t] pierces the common facet of two neighbouring
Voronoi cells v1 +VΛ, v2 +VΛ in a point p in a lower dimensional face, we could continue
with the algorithm instead of restarting. To see this, recall that Theorem 4.4 adds a
lexicographic order on all optimal vertices - which in our case are the facets, as we switch
to the polar. We can follow the line segment [v2, p] in v2 + VΛ and optimize with respect
to different lexicographic orders, providing different facets containing p.

However, we did not pursue this approach, and recon that we have to take heed of other

125

Chapter 4. The closest vector problem with additional information

issues. For instance, if Λ = Zn and t = 1, the segment [0, t] pierces through the vertex
of 2n distinct Voronoi cells. We do not want to traverse through all of them with this
approach, as traversing n cells suffices.

If the Voronoi cell is a zonotope given by its generators, we can implement a separation
oracle in polynomial time.

Corollary 4.12. Let Λ ⊆ Qn be a full-dimensional lattice whose Voronoi cell VΛ is a
zonotope, and t ∈ Qn. Given a basis B of Λ, and the generators g1, . . . , gm of VΛ, we
can solve the closest vector problem in time polynomial in n and the input size.

Proof. Recall that any zonotope with m generators is a projection of an m-dimensional
cube. Phrased differently, a zonotope has extension complexity at most 2m with extended
formulation {

m∑
i=1

αigi : −1 ≤ αi ≤ 1
}
,

together with the projection αiei 7→ αigi, where ei is the i-th canonic unit vector. This
allows us to optimize over the zonotope, and thus apply Theorem 4.10.

4.2 The rotated standard lattice problem
is in NP ∩ co-NP

Let B ∈ Rn×n be a non-singular matrix generating a full-dimensional Euclidean lattice
Λ(B) = {Bz | z ∈ Zn}. Several problems in the algorithmic theory of lattices, such as
the shortest or closest vector problem, or the covering radius problem, become very easy
if the columns of B form an orthonormal basis. But surprisingly, if B is any basis and we
want to decide whether there exists an orthonormal basis of Λ(B), not much is known.

As this is equivalent to Λ(B) being a rotation of Zn, we call this decision problem the
rotated standard lattice problem (RSLP), which is the main concern of this section. A
related problem is the unimodular decomposition problem: For a given unimodular and
positive definite matrix G, decide whether there exists a unimodular matrix U such that
G = UᵀU . The goal of this section is twofold. For one, we show that RSLP and UDP are
equivalent, and that both problems belong to NP ∩ co-NP. We will use a result of Elkies
on characteristic vectors [Elk95], which appear in analytic number theory. It seems that
characteristic vectors are rather unknown in the algorithmic lattice theory. The second
attempt of this section is thus to introduce Elkies’ result and characteristic vectors as a
new possible tool for further algorithmic results in this area.

126

4.2. The rotated standard lattice problem is in NP ∩ co-NP

Related work

Lenstra & Silverberg show that RSLP can be decided in polynomial time, provided
that additional information on the automorphism group of the lattice is part of the
input [LS17]. However, they do not discuss the complexity of the general problem
without additional information. When the input lattice is a construction-A lattice,
Chandrasekaran, Gandikota & Grigorescu show that existence of an orthogonal basis
can be decided in polynomial time [CGG17]. If it exists, they also find one.

RSLP can be viewed as a special case of the lattice isomorphism problem (LIP), which,
given two lattices Λ1,Λ2, asks whether there is an isomorphism ϕ : Λ1 → Λ2 between
the two lattices that preserves the Euclidean structure (〈x, y〉 = 〈ϕ(x), ϕ(y)〉). Here,
〈x, y〉 =

∑n
i=1 xiyi for x, y ∈ Rn is the standard scalar product.

The lattice isomorphism problem was introduced by Plesken & Souvignier [PS97], solv-
ing it in small dimension for specific lattices of interest. In [DSV09], Dutour Sikirić,
Schürmann & Vallentin show that this problem is at least as hard as the more famous
graph isomorphism problem. The best algorithm for the lattice isomorphism problem
the author is aware of is due to Haviv & Regev, and has a running time of nO(n) [HR14].
They solve the problem by computing all orthogonal linear transformations (i.e. all
isomorphisms) between the two given lattices Λ1, Λ2. On the complexity side, they
show that the problem is in the complexity class SZK (statistical zero knowledge), which
already suggests that it is not NP-hard.

In the first subsection, we provide the background specific to this problem, including a
formal introduction of the problems in consideration and characteristic vectors. In the
second subsection, we show that both problems are in NP ∩ co-NP.

4.2.1 The rotated standard lattice problem and
the unimodular decomposition problem

Two lattices Λ1,Λ2 are isomorphic, in symbols Λ1 ∼= Λ2, if there exists an orthogonal
matrix Q ∈ Rn×n such that Λ1 = QΛ2. In this case, it follows that B2 is a basis of Λ2
if and only if B1 := QB2 is a basis of Λ1. We are interested in the following problem,
which is a special case of the lattice isomorphism problem.

Rotated Standard Lattice Problem (RSLP)
Instance: A d-dimensional lattice Λ ⊆ Rn, given by a basis B ∈ Qn×d.

Task: Decide whether Λ ∼= Zd.

While the problem is stated for a d-dimensional lattice in Rn, we will assume d = n for
now as we need the more general definition only later. The attentive reader might notice

127

Chapter 4. The closest vector problem with additional information

that an isomorphism refers to an orthogonal matrix Q, whereas a rotation usually refers
to an orthogonal matrix with positive determinant, det(Q) = 1. However, in our setting,
i.e. one of the lattices in consideration is fixed to Zn, the terms turn out to be equivalent
for the following reason. A matrix B generates Zn, if and only if B is unimodular. Given
an isomorphic basis QB, we can multiply the first column of Q and the first row of B
by −1 without changing the basis QB. This flips the sign of det(Q), while B remains
unimodular.

Though a lattice is usually specified by a basis matrix B, we will see that another
representation is preferable for this problem. The Gram matrix G of a basis B is defined
as G := BᵀB, i.e. Gi,j = 〈bi, bj〉. An advantage of the Gram matrix is that it “forgets”
the embedding of a lattice Λ into the Euclidean space, and only carries the information
of the isomorphism class of Λ:

Lemma 4.13. Two lattice bases B1, B2 ∈ Rn×n generate isomorphic lattices Λ(B1),
Λ(B2) ⊆ Rn, if and only if there exists a unimodular matrix U ∈ Zn×n such that for the
corresponding Gram matrices G1, G2 the relation G1 = UᵀG2U holds.

In particular, a lattice Λ(B1) is isomorphic to Zn, if and only if there exists a unimodular
matrix U ∈ Zn×n such that G1 = UᵀU .

Proof. If there is an isomorphism Λ(B1) = QΛ(B2), then QB2 is a basis of Λ1. This
implies that there is a unimodular matrix U ∈ Zn×n such that B1 = QB2U , and we
obtain G1 = UᵀG2U .

On the other hand, if G1 = UᵀG2U , define Q := B1U
−1B−1

2 , and verify

QᵀQ = B−ᵀ2 (U−ᵀBᵀ
1B1U

−1)B−1
2 = B−ᵀ2 G2B

−1
2 = 1.

Hence, we find QΛ(B2) = Λ(QB2) = Λ(B1U
−1) = Λ(B1), since U−1 is again unimodular.

The second part follows by observing that the identity matrix B2 := 1 is a basis of Zn,
and hence G2 = 1.

Clearly, a Gram matrix is always symmetric and positive definite. This grants a reduction
to the following problem.

Unimodular Decomposition Problem (UDP)
Instance: A symmetric, positive definite, unimodular matrix G ∈ Zn×n.

Task: Decide whether there exists a unimodular matrix U ∈ Zn×n

such that G = UᵀU .

As it turns out, if we allow for a lattice to be embedded in a higher dimension, the

128

4.2. The rotated standard lattice problem is in NP ∩ co-NP

problems are even equivalent. However, the reverse direction requires some more effort,
since we need to find a rational lattice basis B such that BᵀB = G for a given matrix
G. In particular, such a matrix might not exist in the same dimension. This is why we
defined the problem for general dimensions d ≤ n. The following lemma will provide us
with the technical statement, so that the equivalence of the two problems follows as a
corollary.

Lemma 4.14. Let G ∈ Qn×n be a symmetric, positive definite matrix, and define
s := size(G). Then, there exists a matrix B ∈ Q4n×n such that G = BᵀB. Moreover, we
can compute such a matrix in expected polynomial (in n and s) time, and we can compute
a matrix B ∈ Qfn(s)×n such that BᵀB = G, where fn(s) ∈ O(n log(ns)), in deterministic
polynomial (in n and s) time.

Proof. Let us outline the proof first. We show that the Gaussian elimination method
can be used to find a rational decomposition G = T−1DT−ᵀ, where D ∈ Zn×n is an
integer diagonal matrix. We will denote a n-by-n diagonal matrix with diagonal entries
d1, . . . , dn by diag(d1, . . . , dn). Lagrange’s four-square theorem (see e.g. [HW08, Chap.
20.5]) states that every non-negative integer can be written as the sum of four squares.
Hence, we can write every diagonal entry dk of D as dk = vᵀkvk, where vk ∈ Z4×1 is a
matrix whose entries are integers n1(k), . . . , n4(k) such that dk =

∑4
i=1 ni(k)2. Setting

F to be a block-diagonal matrix containing the vectors vk, we obtain

G = T−1DT−ᵀ = T−1F ᵀFT−ᵀ,

and can set B := FT−ᵀ. For the algorithmic approach, we use the result [PT18] with
expected running time O(log(dk)2

log(log(dk))) to obtain the four squares for each diagonal entry.
If we want to define a sequence of squares deterministically, we have to increase the
number of squares from 4 to O(log(log(dk))).

Let us discuss the details, starting with the Gaussian algorithm, as outlined in [KV18,
Chap. 4.3]. After the k-th step of the Gaussian elimination, our matrix has the shape

TG =
(
R M

0 S

)
, R ∈ Qk×k,M ∈ Qk×n−k, S ∈ Qn−k×n−k,

where R is upper triangular. If we did not swap rows yet, T ∈ Qn×n is a lower triangular
matrix whose last n− k columns coincide with the identity. But then symmetry implies
that

TGT ᵀ =
(
D′ 0
0 S

)
,

where D′ ∈ Qk×k is a diagonal matrix, and S is the same matrix as for the matrix
product TG before. This is true because multiplying with T ᵀ does not change the last
n− k rows of TG. If s1,1 = 0, then eᵀk+1TGT

ᵀek+1 = 0, a contradiction to the positive

129

Chapter 4. The closest vector problem with additional information

definiteness of G. Thus, we also do not have to swap in iteration k + 1, and by induction
we obtain a lower triangular matrix T such that TGT ᵀ =: D′ ∈ Qn×n is a diagonal
matrix. If the entries of D′ are given as dk = pk

qk
, we set T ′ = T diag(1

q1
, . . . , 1

qn
) and

D = diag(p1q1, . . . , pnqn) ∈ Zn×n to obtain the desired decomposition G = T ′−1DT ′−ᵀ.

Edmonds [Edm67] observed that the Gaussian elimination can be implemented in
polynomial time. A more careful analysis, as in [KV18, Chap. 4.3], reveals that all
occurring numbers (i.e. the pi’s and qi’s in particular) are bounded by O(n2s), where s
is the encoding size of G. Therefore, the encoding size of the entries of D are bounded
by O(n4s2).

With the discussion in the beginning of the proof, this shows existence and the randomized
algorithm.

To show how to obtain the deterministic result, let a ∈ N be any number. We define two
sequences (ai)i∈N and (ni)i∈N as follows. Set a0 = a. Then recursively, set ni = b√ai−1c
and ai = ai−1−n2

i ≥ 0. It is clear that there is a finite r such that ni ≡ 0 for i ≥ r, and we
have

∑r
i=1 n

2
i = a0. To limit the number r from above, observe that n2

i ≤ ai−1 < (ni+1)2

implies ai = ai−1 − n2
i < 2ni + 1, thus ai ≤ 2√ai−1 due to integrality. Resolving the

recursion, we obtain ak ≤ 4a(1/2)k . Once ak ≤ 8, it is easy to see that we need at most
four additional steps. Resolving 4a(1/2)k ≥ 8 reveals that r ≤ dlog(log(a0))e+ 4 numbers
suffice such that

∑r
i=1 n

2
i = a. Clearly, the computations can be done in time polynomial

in the input, and the numbers ni can be found with binary search in log(ai−1) steps,
which is also polynomial in the input size.

Turning our attention back to the matrix D from before, we construct a sequence
n1(k), . . . , nr(k) for each diagonal entry dk, and define a vector consisting of this sequence,
vᵀi = (n1(k), . . . , nr(k)), with r(k) ∈ O(log(log(a0))), thus r(k) ∈ O(log(2 log(n) + s)).
This leads to a block diagonal matrix F = diag(v1, . . . , vn) such that F ᵀF = D′. In total,
we obtain G = T−1QᵀF ᵀFQT−ᵀ.

Thus, we can construct such a sequence for every entry dk of the matrix D, and write
the numbers in a vector vᵀk = (n1(k), . . . , nr(k)). Inserting our bound on the encoding
size, we obtain r ∈ O(log(ns)).

Defining B := FQT−ᵀ finishes the proof of the deterministic result.

Corollary 4.15. The problems UDP and RSLP are polynomial-time equivalent.

Proof. Let G ∈ Rd×d be an instance of UDP. Apply Lemma 4.14 to obtain a matrix
B ∈ Qn×d such that BᵀB = G, where n ∈ O(d log(ds)) for the encoding size s. Now,
Λ(B) ∼= Zd × {0}n−d if and only if there exists an orthogonal matrix Q ∈ Rn×n and
a unimodular matrix U ∈ Zd×d such that QBU =

(1
0
)
. This in turn is equivalent to

UᵀGU = 1, thus G = U−ᵀU is a unimodular decomposition.

130

4.2. The rotated standard lattice problem is in NP ∩ co-NP

For the other direction, let G = BᵀB. Now, Λ(B) ≡ Zn if and only if there exists an
orthogonal matrix Q and a unimodular matrix U such that QBU = 1, which is equivalent
to UᵀGU = 1.

4.2.2 Self-dual lattices and characteristic vectors

Clearly, UDP is in NP. A certificate is simply given by the matrix U , whose entries
are bounded by max{

√
Gii : 1 ≤ i ≤ n}. In the following, we will discuss a paper of

Elkies [Elk95] and apply his results to show that the problem is also in co-NP.

To this end, let us recall some facts for a full-dimensional lattice Λ ⊆ Rn. We call Λ
self-dual if Λ = Λ?. Self-dual lattices are also called unimodular lattices for the following
reason.

Lemma 4.16 (See e.g. [CS99]). A matrix B ∈ Rn×n generates a self-dual lattice Λ(B)
if and only if the corresponding Gram matrix G = BᵀB is unimodular.

Proof. Let B be the basis of a self-dual lattice. Then B−ᵀ is a basis as well, and there
exists a unimodular matrix G such that B−ᵀG = B, which is equivalent to G = BᵀB.

Let G = BᵀB be unimodular, and x = Bz1 and y = Bz2 be any two lattice vectors.
Since xᵀy = zᵀ1Gz2, we have Λ(B) ⊆ Λ(B)?. Since det(Λ(B))2 = det(B)2 = det(G) = 1,
they have to be the same already.

Definition 4.17. Let Λ = Λ? ⊆ Rn be a self-dual lattice. A vector w ∈ Λ is a
characteristic vector of the lattice Λ, if

∀ v ∈ Λ : 〈v, w〉 ≡2 〈v, v〉 ,

where x ≡k y is shorthand for x ≡ y mod k.

It is known that for dimensions n ≤ 7, the lattice Zn is the unique self-dual lattice (up
to isomorphism). In dimension 8, the lattice

E8 =
{
z ∈ R8

∣∣∣∣∣
8∑
i=1

zi ≡2 0, z ∈ Z8 ∪
(1

21 + Z8
)}

, with 1 := (1, . . . , 1)ᵀ,

is self-dual, but not isomorphic to Z8 (cf. [CS99]). The easiest way to see this is to verify
that E8 does not have any vector of length 1, whereas Z8 does.

Before we turn our attention to the main result, let us show some basic properties of
characteristic vectors. In terms of quadratic forms, the computations carried out in Point
ii) of the following lemma are already discussed in [Ger04]. Also in terms of quadratic
forms, Point iii) can be found in [Ser73, Chap. V].

131

Chapter 4. The closest vector problem with additional information

Lemma 4.18. The following are true for every self-dual lattice Λ = Λ? ⊆ Rn.

i) There exists a characteristic vector w ∈ Λ.

ii) The set of characteristic vectors is precisely a co-set w + 2Λ, where w ∈ Λ is
any characteristic vector.

iii) For any two characteristic vectors u,w ∈ Λ, we have ||u||2 − ||w||2 ≡8 0.

iv) If we are given a Gram matrix G of Λ, we can compute in polynomial time a
vector z ∈ Zn such that for all y ∈ Zn, we have yᵀGz ≡2 y

ᵀGy.

v) The shortest characteristic vectors of the lattice Zn are the vectors {−1, 1}n.

Proof. i) Let B = (b1, . . . , bn) be a basis of Λ, and D = (d1, . . . , dn) = B−ᵀ the
corresponding dual basis, also spanning Λ. Represented in the primal basis, define
a vector w =

∑n
i=1 ||di||

2 bi ∈ Λ, and let v =
∑n
i=1 αidi ∈ Λ be any lattice vector,

represented in the dual basis D. Using x2 ≡2 x for x ∈ Z, we obtain

〈v, v〉 =
n∑
i=1

n∑
j=1

αiαjd
ᵀ
i dj ≡2

n∑
i=1

α2
i ||di||

2

≡2

n∑
i=1

αi ||di||2 =
n∑
i=1

n∑
j=1

αi ||dj ||2 dᵀi bj = 〈v, w〉 .

Thus, w is a characteristic vector and i) is shown.

ii) Now let w be as in the first part, and w′ be any characteristic vector. Since for any
y ∈ Λ, we have 〈w′ + 2y, v〉 = 〈w′, v〉+ 2 〈y, v〉 ≡2 〈w′, v〉, the whole co-set w′ + 2Λ
consists of characteristic vectors. If w′ has the representation w′ =

∑n
i=1 γibi ∈ Λ,

computing
||dk||2 = 〈dk, dk〉 ≡2

〈
w′, dk

〉
= γk

for every coefficient γk shows that w′ ∈ w + 2Λ, finishing point ii).

iii) Let w = Bc be a characteristic vector. It suffices to show that we have ||w||2 −
||w + 2bk||2 ≡8 0 for k = 1, . . . , n. The claim then follows by repeatedly adding or
subtracting twice a basis vector. Let G = BᵀB, and compute

||w + 2bk||2 = cᵀGc+ 4 cᵀGek︸ ︷︷ ︸
≡2e

ᵀ
k
Gek

+4eᵀkGek ≡8 ||w||2 + 8Gkk,

where we used that w is characteristic. Since Gkk ∈ Z, we are done.

iv) Observe that G−1 = DᵀD; hence, by the definition of w′, we can compute G−1 and
set zk = (G−1)kk for k = 1, . . . , n.

132

4.2. The rotated standard lattice problem is in NP ∩ co-NP

v) Choosing the identity matrix as lattice basis, it follows that all characteristic vectors
of Zn must have odd entries only, hence point v) follows.

The vector z in Point iv) can also be seen in a different way. If B is any lattice basis
such that G = BᵀB, then Bz is a characteristic vector of Λ(B). Therefore, the vector z
can be seen as the coefficient vector of a characteristic vector. Such a “coefficient vector”
will be the co-NP certificate for UDP.

4.2.3 Applying the result of Elkies

We are now able to provide the main result of this article. The crucial argument we are
using will be Elkies’ theorem, which reads as follows.

Theorem 4.19 ([Elk95]). Let Λ be a self-dual lattice in Rn with no characteristic vector
such that ‖w‖2 < n. Then Λ ∼= Zn.

As a slight remark, we recall that the shortest characteristic vectors of Zn are {−1, 1}n

by Lemma 4.18, Point v). Hence in this case, ‖w‖2 = n.

With this theorem, we can prove that RSLP is in co-NP as follows. If Λ(B) 6∼= Zn, then
the certificate is a characteristic vector w ∈ Λ(B) with ||w||2 < n. By Theorem 4.19,
such a vector exists. Hence, we only have to show that we can check the certificate in
polynomial time, i.e. we have to ensure that ||w||2 < n, and wᵀv ≡2 v

ᵀv for all v ∈ Λ(B).

However, if we turn out attention to UDP, we are not given a lattice explicitly, but only
a Gram matrix G. If G = BᵀB, our certificate will therefore be the coefficient vector
z of a short characteristic vector w = Bz ∈ Λ(B). As it turns out, such a vector z is
independent of the particular choice of B for which BᵀB = G.

We focus on showing UDP ∈ co-NP rather than RSLP ∈ co-NP as the reduction from
UDP to RSLP increases the dimension by a factor of four.

Lemma 4.20. Let G ∈ Zn×n be a symmetric, positive definite, and unimodular matrix,
and z ∈ Zn. We have

eᵀkGek ≡2 e
ᵀ
kGz, ∀ k = 1, . . . , n,

if and only if for every matrix B with BᵀB = G, the vector w = Bz is a characteristic
vector in the lattice Λ(B).

Proof. Let x =
∑n
i=1 αibi ∈ Λ be any vector, and w = Bz ∈ Λ.

If w is a characteristic vector, we have eᵀkGek = 〈bk, bk〉 ≡2 〈bk, w〉 = eᵀkGz.

133

Chapter 4. The closest vector problem with additional information

For the other direction, we find

〈x,w − x〉 =
〈

n∑
i=1

αibi, w −
n∑
i=1

αibi

〉
=
〈

n∑
i=1

αibi, v

〉
−
∑
i

∑
j

αiαj 〈bi, bj〉

≡2
∑
i

αi(eᵀiGz))−
∑
i

α2
i (e

ᵀ
iGei) ≡2

∑
i

(αi − α2
i)e

ᵀ
iGei

≡2 0,

showing that w is indeed a characteristic vector.

This lemma also shows that we can check whether a vector w is characteristic by only
checking 〈w, bi〉 ≡2 〈bi, bi〉 on some basis {b1, . . . , bn}, instead of all lattice vectors. It is
straightforward that this can be checked in polynomial time, provided the encoding size
of z is bounded in the encoding size of the input.

Lemma 4.21. Let G ∈ Zn×n be a symmetric, positive definite, and unimodular matrix,
and z ∈ Zn such that zᵀGz ≤ n. Then the bit complexity of z is polynomially bounded by
the bit complexity of G.

Proof. Let M ∈ Z be a bound on the entries of G, i.e. |Gi,j | ≤ M for all i, j in
range, and let v1, . . . , vn be an orthonormal basis of eigenvectors with eigenvalues 0 <
λ1 ≤ · · · ≤ λn ≤ nM . The last inequality holds since ||Gx||∞ ≤ nM ||x||∞. As∏n
i=1 λi = det(G) = 1, this in turn implies λ1 ≥ 1/(nM)n−1. Writing z =

∑n
i=1 αivi, we

estimate n ≥ zᵀGz =
∑n
i=1 α

2
iλi, and hence α2

i ≤ n
λi
≤ (nM)n. Thus, ||z||2 ≤ (nM)n+1,

and since z ∈ Zn, its bit complexity is bounded by O(n2(log(n) + log(M))).

Theorem 4.22. The unimodular decomposition problem (and thus the rotated standard
lattice problem) is in NP ∩ co-NP.

Proof. For the sake of completeness, we start by showing containment in NP. If G
is a yes-instance, the certificate is the unimodular matrix U such that UᵀU = G.
Since Gi,i = Uᵀ

i Ui, where Ui is the i-th column of U , all entries in U are bounded
by max{

√
Gii | i = 1, . . . , n}, hence the encoding size is polynomial in the input, and

verifying the certificate clearly takes only polynomial time.

If G is a no-instance, the certificate is a vector z and we verify

1. zᵀGz < n, and

2. eᵀiGei ≡2 e
ᵀ
iGz, i = 1, . . . , n.

These checks can be done in time polynomial in the encoding size of z and G. If the
answer to both is yes, then we output that there is no unimodular matrix U with

134

4.2. The rotated standard lattice problem is in NP ∩ co-NP

G = UᵀU . To show that both tests can be performed in time polynomial in the input,
it suffices to observe that the bit complexity of z is polynomially bounded in the bit
complexity of G by Lemma 4.21.

It remains to show that such a vector z exists if and only if G is a no-instance (i.e. the
certificate exists and the conclusion is correct). By Lemma 4.20, both points together
are equivalent to the fact that in any lattice Λ(B) with BᵀB = G, the vector Bz is
a characteristic vector with ||Bz||2 ≤ n − 1. By Theorem 4.19, this is equivalent to
Λ(B) 6∼= Zn, which in turn is equivalent to the impossibility of a unimodular decomposition
G = UᵀU by Lemma 4.13.

To illustrate the certificates, we consider two examples. First, consider the Gram matrix

G =



4 −2 1 3
−2 2 −1 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 1
1 2 3
3 −1 1 3 7


∈ Z9

and the vector z = (−1,−1,−1,−1,−1,−1,−1,−1, 1)ᵀ ∈ Z9 as a certificate. First,
zᵀGz = 1 < 9. Moreover, we have

eᵀiGei ≡2

0 1 ≤ i ≤ 8
1 i = 9

, and eᵀiGz ≡2

0 1 ≤ i ≤ 8
1 i = 9

.

Thus, there is no unimodular matrix U such that G = UᵀU . (The matrix G is chosen to
correspond to the lattice E8 × Z.)

For the second example, let us consider the Gram matrix

G =
(

34 21
21 13

)
.

As discussed before, the first self-dual lattice not isomorphic to Zn appears in dimension
8, hence it is no surprise that we can find a decomposition:(

34 21
21 13

)
= UᵀU =

(
5 3
3 2

)(
5 3
3 2

)
.

The coefficient vector of a shortest characteristic vector is z = (−1, 2)ᵀ, yielding zᵀGz = 2.

135

Chapter 4. The closest vector problem with additional information

In the lattice Λ(U) = Z2, this corresponds to the characteristic vector (1, 1)ᵀ.

We have seen that characteristic vectors are well suited as a co-NP certificate for RSLP, and
their coefficient vectors for UDP. If Λ is given by its basis, it follows from the discussions
that the problem at hand can be solved by computing the co-set of characteristic vectors,
together with a single call to an oracle for the closest vector problem (CVP), computing
the shortest among all characteristic vectors. However, CVP is NP-hard, and the best
known running time using this reduction we are aware of is 2O(n) (see e.g. [AS18]).

Another easy approach to RSLP is the following. If a lattice admits an orthogonal basis
{b1, . . . , bn}, then any basis reduced in the sense of Hermite, Korkine & Zolotareff [KZ73;
Her50] is an orthogonal basis. Due to the recursive structure of those bases, n calls to an
oracle for the shortest vector problem (SVP) are sufficient to find this basis. Hence the
best known running time using this reduction is 2O(n) (see e.g. [AS18]), but allows to find
general orthogonal bases. But as UDP is – from a complexity point of view – supposedly
easier than SVP or CVP, it is of great interest to find a smarter algorithm. It seems to
be a reappearing phenomenon that if a certain class of lattices allows to solve lattice
problems such as SVP or CVP fast, a certain representation is needed. For instance, if Λ
is a lattice of Voronoi’s first kind, we still need to know an obtuse superbasis before using
the polynomial time algorithm in [MGC14].Therefore, being able to find orthonormal, or
even orthogonal bases remains an interesting open problem.

We can also ask whether characteristic vectors can help us to decide whether an orthogonal
basis of a given lattice exists. If we generalize characteristic vectors to integral positive
definite Gram matrices, it turns out that there may be several co-sets v + 2Λ comprising
characteristic vectors. Also the proof of Elkies heavily depends on self-duality, so finding
an analogous, more general result will presumably need new techniques.

One might hope that the presented result implies containment of the more general lattice
isomorphism problem in co-NP, using the following reduction: Given two lattice bases B1
and B2, apply a linear transformation A such that AΛ(B1) = Zn, for instance A = B−1

1 .
Then, decide whether Λ(AB2) ∼= Zn. For this to hold, we need that two lattices Λ1,Λ2
are isomorphic, if and only if the two lattices AΛ1 and AΛ2 are isomorphic. The following
example shows that this is false in general. Consider the hexagonal lattice and a rotation
thereof, i.e.

B1 =
(

1 1
2

0
√

3
2

)
, O =

(√
3

2
1
2

−1
2

√
3

2

)
B2 = OB1 =

(√
3

2

√
3

2
−1

2
1
2

)
.

Clearly, Λ(B1) ∼= Λ(B2). Now we consider the linear map A given by

A = B−1
1 =

1 − 1√
3

0 2√
3

 ,

136

4.2. The rotated standard lattice problem is in NP ∩ co-NP

and compare the two lattices AΛ(B1) = Z2 and AΛ(B2). We obtain bases

B′1 = AB1 = 1, B′2 = AB2 =

1 − 1√
3

0 2√
3

(√3
2

√
3

2
−1

2
1
2

)
=

 2√
3

1√
3

− 1√
3

1√
3

 .
An easy way to see that Λ(B′2) 6∼= Z2 = Λ(B′1) is to verify that Λ(B′2) contains a vector
of norm less than 1, namely the second basis vector ‖(1/

√
3, 1/
√

3)ᵀ‖2 = 2/3, whereas
Z2 does of course not.

137

Bibliography

[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. “Just take the average!
An embarrassingly simple 2n-time algorithm for SVP (and CVP)”. In: 1st
Symposium on Simplicity in Algorithms (SOSA 2018). Vol. 61. OpenAccess
Series in Informatics (OASIcs). Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2018, 12:1–12:19.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. “A sieve algorithm
for the shortest lattice vector problem”. In: Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing. ACM, New York, 2001,
pp. 601–610.

[AKS02] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. “Sampling short
lattice vectors and the closest lattice vector problem”. In: Proceedings of the
17th IEEE Annual Conference on Computational Complexity. IEEE, 2002,
pp. 53–57.

[Ban96] Wojciech Banaszczyk. “Inequalities for convex bodies and polar reciprocal
lattices in Rn. II. Application of K-convexity”. In: Discrete Comput. Geom.
16.3 (1996), pp. 305–311.

[BK10] Jean-Benoît Bost and Klaus Künnemann. “Hermitian vector bundles and
extension groups on arithmetic schemes. I. Geometry of numbers”. In: Adv.
Math. 223.3 (2010), pp. 987–1106.

[Cha+19] Timothy Chan, Jacob W. Cooper, Martin Koutecky, Daniel Král’, and
Kristýna Pekárková. Optimal matrix tree-depth and a row-invariant param-
eterized algorithm for integer programming. 2019. arXiv: 1907.06688v2.

[CGG17] Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu.
“Deciding orthogonality in construction-A lattices”. In: SIAM J. Discret.
Math. 31.2 (2017), pp. 1244–1262.

[CM18] Lin Chen and Dániel Marx. “Covering a tree with rooted subtrees—parameterized
and approximation algorithms”. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA,
2018, pp. 2801–2820.

139

http://arxiv.org/abs/1907.06688v2

Bibliography

[Chu16] Sergei Chubanov. “A polynomial-time descent method for separable convex
optimization problems with linear constraints”. In: SIAM J. Optim. 26.1
(2016), pp. 856–889.

[CS92] John H. Conway and Neil J. A. Sloane. “Low-dimensional lattices. VI.
Voronoi reduction of three-dimensional lattices”. In: Proc. Roy. Soc. London.
Ser. A. Vol. 436. 1896. 1992, pp. 55–68.

[CS99] John H. Conway and Neil J. A. Sloane. Sphere packings, lattices and groups.
3rd ed. Vol. 290. Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, New York,
1999.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. Third. MIT Press, Cambridge, MA, 2009.

[Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, and Saket Pilipczuk Michałand Saurabh. Parame-
terized algorithms. Springer, Cham, 2015.

[Dad12] Daniel N. Dadush. “Integer programming, lattice algorithms, and deter-
ministic volume estimation”. PhD thesis. Georgia Institute of Technology,
2012.

[DB15] Daniel Dadush and Nicolas Bonifas. “Short paths on the Voronoi graph
and closest vector problem with preprocessing”. In: Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
Philadelphia, PA, 2015, pp. 295–314.

[DHK13] Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and
geometric ideas in the theory of discrete optimization. Vol. 14. MOS-SIAM
Series on Optimization. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia,
PA, 2013.

[De +10] Jesús De Loera, Raymond Hemmecke, Matthias Köppe, Jon Lee, Shmuel
Onn, and Robert Weismantel. Report of focused research group: nonlinear
discrete optimization. Tech. rep. Banff International Research Station for
Mathematical Innovation and Discovery, July 2010.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized
complexity. Texts in Computer Science. Springer, London, 2013.

[DGM14] Mathieu Dutour Sikirić, Viacheslav Grishukhin, and Alexander Magazinov.
“On the sum of a parallelotope and a zonotope”. In: European J. Combin.
42 (2014), pp. 49–73.

[DSV09] Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin. “Complexity
and algorithms for computing Voronoi cells of lattices”. In: Math. Comp.
78.267 (2009), pp. 1713–1731.

140

Bibliography

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. “A random polynomial-time
algorithm for approximating the volume of convex bodies”. In: J. Assoc.
Comput. Mach. 38.1 (1991), pp. 1–17.

[Edm67] Jack Edmonds. “Systems of distinct representatives and linear algebra”. In:
J. Res. Nat. Bur. Standards Sect. B 71B (1967), pp. 241–245.

[Eib+19] Eduard Eiben, Robert Ganian, Dušan Knop, Sebastian Ordyniak, and
Marcin Pilipczuk Michałand Wrochna. “Integer programming and inci-
dence treedepth”. In: Integer programming and combinatorial optimization.
Vol. 11480. Lecture Notes in Comput. Sci. Springer, Cham, 2019, pp. 194–
204.

[EHK18] Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein.
“Faster algorithms for integer programs with block structure”. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming. Vol. 107.
Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2018, Art. No. 49, 13.

[Eis+19] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin
Koutecký, Asaf Levin, and Shmuel Onn. An algorithmic theory of integer
programming. 2019. arXiv: 1904.01361.

[EW18] Friedrich Eisenbrand and Robert Weismantel. “Proximity results and faster
algorithms for integer programming using the Steinitz lemma”. In: Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, Philadelphia, PA, 2018, pp. 808–816.

[Elk95] Noam D. Elkies. “A characterization of the Zn lattice”. In: Math. Res. Lett.
2.3 (1995), pp. 321–326.

[Eng88] Peter Engel. “Mathematical problems in modern crystallography”. In: Com-
put. Math. Appl. 16.5-8 (1988), pp. 425–436.

[EMS01] Peter Engel, Louis Michel, and Marjorie Senechal. “New geometric invariants
for Euclidean lattices”. In: Réseaux euclidiens, designs sphériques et formes
modulaires. Vol. 37. Monogr. Enseign. Math. Enseignement Math., Geneva,
2001, pp. 268–272.

[Erd99] Robert M. Erdahl. “Zonotopes, dicings, and Voronoi’s conjecture on paral-
lelohedra”. In: European J. Combin. 20.6 (1999), pp. 527–549.

[ER94] Robert M. Erdahl and Sergĕı S. Ryshkov. “On lattice dicing”. In: European
J. Combin. 15.5 (1994), pp. 459–481.

[Fom+18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Marcin Pilipczuk
Michałand Wrochna. “Fully polynomial-time parameterized computations
for graphs and matrices of low treewidth”. In: ACM Trans. Algorithms 14.3
(2018), Art. 34, 45.

141

http://arxiv.org/abs/1904.01361

Bibliography

[FT87] András Frank and Éva Tardos. “An application of simultaneous Diophantine
approximation in combinatorial optimization”. In: Combinatorica 7.1 (1987),
pp. 49–65.

[Fre90] Eugene C Freuder. “Complexity of K-tree structured constraint satisfaction
problems”. In: Proceedings of the eighth National conference on Artificial
intelligence-Volume 1. 1990, pp. 4–9.

[GO18] Robert Ganian and Sebastian Ordyniak. “The complexity landscape of
decompositional parameters for ILP”. In: Artif. Intell. 257 (2018), pp. 61–
71.

[GOR17] Robert Ganian, Sebastian Ordyniak, and Maadapuzhi S. Ramanujan. “Going
beyond primal treewidth for (M)ILP”. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence. AAAI Press, 2017, pp. 815–821.

[Ger04] Larry J. Gerstein. “Characteristic elements of unimodular Z-lattices”. In:
Linear Multilinear Algebra 52.5 (2004), pp. 381–383.

[Gra75] Jack E. Graver. “On the foundations of linear and integer linear programming.
I”. In: Math. Program. 9.2 (1975), pp. 207–226.

[GS80] Victor S. Grinberg and Sergey V. Sevast’yanov. “Value of the Steinitz
constant”. In: Funct. Anal. its Appl. 14.2 (1980), pp. 125–126.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. “The ellipsoid
method and its consequences in combinatorial optimization”. In: Combina-
torica 1.2 (1981). Corrigendum: DOI 10.1007/BF02579139, pp. 169–197.

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric al-
gorithms and combinatorial optimization. 2nd ed. Vol. 2. Algorithms and
Combinatorics. Springer-Verlag, Berlin, 1993.

[Gru07] Peter M. Gruber. Convex and discrete geometry. Vol. 336. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer, Berlin, 2007.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. “Algorithms for the
shortest and closest lattice vector problems”. In: Coding and cryptology.
Vol. 6639. Lecture Notes in Computer Science. corrected version at http:
//perso.ens- lyon.fr/damien.stehle/downloads/SVPCVP.pdf. Springer,
Heidelberg, 2011, pp. 159–190.

[HW08] G. Harold Hardy and Edward M. Wright. An introduction to the theory of
numbers. 6th ed. Oxford University Press, Oxford, 2008.

[HR14] Ishay Haviv and Oded Regev. “On the lattice isomorphism problem”. In:
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. ACM, New York, 2014, pp. 391–404.

142

http://perso.ens-lyon.fr/damien.stehle/downloads/SVPCVP.pdf
http://perso.ens-lyon.fr/damien.stehle/downloads/SVPCVP.pdf

Bibliography

[HKW14] Raymond Hemmecke, Matthias Köppe, and Robert Weismantel. “Graver
basis and proximity techniques for block-structured separable convex integer
minimization problems”. In: Math. Program. 145.1-2, Ser. A (2014), pp. 1–
18.

[HOR13] Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. “n-fold integer
programming in cubic time”. In: Math. Program. 137.1-2, Ser. A (2013),
pp. 325–341.

[Her50] Charles Hermite. “Extraits de lettres de M. Ch. Hermite à M. Jacobi sur
différents objects de la théorie des nombres. (Continuation)”. In: J. Reine
Angew. Math. 40 (1850), pp. 279–315.

[Hin48] Aleksandr Ya. Hinčin. “A quantitative formulation of the approximation
theory of Kronecker”. In: Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948),
pp. 113–122.

[HS90] Dorit S. Hochbaum and J. George Shanthikumar. “Convex separable opti-
mization is not much harder than linear optimization”. In: J. Assoc. Comput.
Mach. 37.4 (1990), pp. 843–862.

[Hun19] Christoph Hunkenschröder. Deciding whether a lattice has an orthonormal
basis is in co-NP. 2019. arXiv: 1910.03838.

[HRS20] Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura. “On
compact representations of Voronoi cells of lattices”. In: Math. Program.
(2020). (published online).

[JK15] Bart M. P. Jansen and Stefan Kratsch. “A structural approach to kernels
for ILPs: treewidth and total unimodularity”. In: Algorithms—ESA 2015.
Vol. 9294. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2015, pp. 779–
791.

[Jan+19] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. “Empow-
ering the configuration-IP—new PTAS results for scheduling with setups
times”. In: 10th Innovations in Theoretical Computer Science. Vol. 124.
Leibniz Int. Proc. Inform. 2019, Art. No. 44, 19.

[JLR19] Klaus Jansen, Alexandra Lassota, and Lars Rohwedder. “Near-linear time
algorithm for n-fold ILPs via color coding”. In: 46th International Colloquium
on Automata, Languages, and Programming. Vol. 132. Leibniz Int. Proc.
Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, Art. No. 75,
13.

[JR19] Klaus Jansen and Lars Rohwedder. “On integer programming and convo-
lution”. In: 10th Innovations in Theoretical Computer Science. Vol. 124.
Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2019, Art. No. 43, 17.

143

http://arxiv.org/abs/1910.03838

Bibliography

[Kan87] Ravi Kannan. “Minkowski’s convex body theorem and integer programming”.
In: Math. Oper. Res. 12.3 (1987), pp. 415–440.

[Kar72] Richard M. Karp. “Reducibility among combinatorial problems”. In: Com-
plexity of computer computations (Proc. Sympos., IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y., 1972). 1972, pp. 85–103.

[Kha80] Leonid G. Khachiyan. “Polynomial algorithms in linear programming”. In:
USSR Computational Mathematics and Mathematical Physics 20.1 (1980),
pp. 53–72.

[KK18] Dušan Knop and Martin Koutecký. “Scheduling meets n-fold integer pro-
gramming”. In: J. Sched. 21.5 (2018), pp. 493–503.

[KKM17a] Dušan Knop, Martin Koutecký, and Matthias Mnich. “Combinatorial n-fold
integer programming and applications”. In: 25th European Symposium on
Algorithms. Vol. 87. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2017, Art. No. 54, 14.

[KKM17b] Dušan Knop, Martin Koutecký, and Matthias Mnich. “Voting and bribing
in single-exponential time”. In: 34th Symposium on Theoretical Aspects of
Computer Science. Vol. 66. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2017, 46:1–46:14.

[KP] Dušan Knop and Marcin Pilipczuk Michałand Wrochna. “Tight complexity
lower bounds for integer linear programming with few constraints”. In:
36th International Symposium on Theoretical Aspects of Computer Science.
Vol. 126. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, Art. No. 44, 15.

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. “Conjunctive-query containment
and constraint satisfaction”. In: J. Comput. System Sci. 61.2 (2000), pp. 302–
332.

[KZ73] Alexander N. Korkine and Jegor I. Zolotareff. “Sur les formes quadratiques”.
In: Math. Ann. 6.3 (1873), pp. 366–389.

[KV18] Bernhard Korte and Jens Vygen. Combinatorial optimization. Vol. 21. Algo-
rithms and Combinatorics. Theory and algorithms, 5th ed. Springer, Berlin,
2018.

[KLO18] Martin Koutecký, Asaf Levin, and Shmuel Onn. “A parameterized strongly
polynomial algorithm for block structured integer programs”. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming. Vol. 107.
Leibniz Int. Proc. Inform. 2018, 85:1–85:14.

[Kup08] Greg Kuperberg. “From the Mahler conjecture to Gauss linking integrals”.
In: Geom. Funct. Anal. 18.3 (2008), pp. 870–892.

[Lan87] Serge Lang. Linear algebra. 3rd. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1987.

144

Bibliography

[Lee+12] Jon Lee, Shmuel Onn, Lyubov Romanchuk, and Robert Weismantel. “The
quadratic Graver cone, quadratic integer minimization, and extensions”. In:
Math. Program. 136.2, Ser. B (2012), pp. 301–323.

[Len83] Hendrik W. Lenstra Jr. “Integer programming with a fixed number of
variables”. In: Mathematics of Operations Research 8.4 (1983), pp. 538–548.

[LS17] Hendrik W. Lenstra and Alice Silverberg. “Lattices with symmetry”. In: J.
Cryptol. 30.3 (2017), pp. 760–804.

[Mar03] Jacques Martinet. Perfect lattices in Euclidean spaces. Vol. 327. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer-Verlag, Berlin, 2003.

[MGC14] Robby G. McKilliam, Alex Grant, and I. Vaughan L. Clarkson. “Finding a
closest point in a lattice of Voronoi’s first kind”. In: SIAM J. Discret. Math.
28.3 (2014), pp. 1405–1422.

[Mic01] Daniele Micciancio. “The hardness of the closest vector problem with pre-
processing”. In: IEEE Trans. Inform. Theory 47.3 (2001), pp. 1212–1215.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems.
Vol. 671. The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, MA, 2002.

[MV13] Daniele Micciancio and Panagiotis Voulgaris. “A deterministic single ex-
ponential time algorithm for most lattice problems based on Voronoi cell
computations”. In: SIAM J. Comput. 42.3 (2013), pp. 1364–1391.

[MH73] John Milnor and Dale H. Husemöller. Symmetric bilinear forms. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 73. Springer-Verlag, New
York-Heidelberg, 1973.

[Min68] Hermann Minkowski. Geometrie der Zahlen. Bibliotheca Mathematica Teub-
neriana, Band 40. Johnson Reprint Corp., New York-London, 1968.

[NO12] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity. Vol. 28. Algo-
rithms and Combinatorics. Springer, Heidelberg, 2012.

[Onn10] Shmuel Onn. Nonlinear discrete optimization. Zurich Lectures in Advanced
Mathematics. An algorithmic theory. European Mathematical Society (EMS),
Zürich, 2010.

[Pap81] Christos H. Papadimitriou. “On the complexity of integer programming”.
In: J. Assoc. Comput. Mach. 28.4 (1981), pp. 765–768.

[PS97] W. Plesken and B. Souvignier. “Computing isometries of lattices”. In: J.
Symb. Comput. 24.3-4 (1997), pp. 327–334.

[PT18] Paul Pollack and Enrique Treviño. “Finding the four squares in Lagrange’s
theorem”. In: Integers 18A (2018), Paper No. A15, 16.

145

Bibliography

[Rei+14] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath
Sikdar. “A faster parameterized algorithm for treedepth”. In: Automata,
languages, and programming. Part I. Vol. 8572. Lecture Notes in Comput.
Sci. Springer, Heidelberg, 2014, pp. 931–942.

[Reu18] Gina Reuland. A compact representation of the Voronoi cell. École Poly-
technique Fédérale de Lausanne. master thesis. January 2018.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd.,
Chichester, 1986.

[Ser73] Jean-Pierre Serre. A course in arithmetic. Translated from the French, Grad-
uate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg,
1973.

[Sey99] Martin Seysen. “A measure for the non-orthogonality of a lattice basis”. In:
Combin. Probab. Comput. 8.3 (1999), pp. 281–291.

[SFS09] Naftali Sommer, Meir Feder, and Ofir Shalvi. “Finding the closest lattice
point by iterative slicing”. In: SIAM J. Discret. Math. 23.2 (2009), pp. 715–
731.

[Ste16] E. Steinitz. “Bedingt konvergente Reihen und konvexe Systeme”. In: J.
Reine Angew. Math. 146 (1916), pp. 1–52.

[Tar86] Éva Tardos. “A strongly polynomial algorithm to solve combinatorial linear
programs”. In: Oper. Res. 34.2 (1986), pp. 250–256.

[Val03] Frank Vallentin. “Sphere coverings, lattices, and tilings (in low dimensions)”.
PhD thesis. Technical University Munich, Germany, 2003.

[Vor08] Georges Voronoi. “Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Deuxième mémoire. Recherches sur les
parallélloèdres primitifs”. In: J. Reine Angew. Math. 134 (1908), pp. 198–
287.

146

List of Symbols

1 ∈ Zn×n the identity matrix in suitable dimension, (1)i,j = δi,j , 1 ≤ i, j ≤ n
1 ∈ Zn the all-ones vector in suitable dimension, (1)i = 1, 1 ≤ i ≤ n
N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
X�a for X ∈ {N,Z,Q,R} and �∈ {>,≥}, the set {z ∈ X : z � a}
[a, b] the set {a+ λ(b− a) : t ∈ R, 0 ≤ t ≤ 1} for a, b ∈ Rn

[a : b] the set {z ∈ Z : a ≤ z ≤ b} for a, b ∈ Z
[n] the set {1, 2, . . . , n} for n ∈ Z≥1
dae for a ∈ R, the smallest z ∈ Z with z ≥ a
bac for a ∈ R, the largest z ∈ Z with z ≤ a
bae for a ∈ R, the integer z ∈ {bac , dae} closest to a (bae := dae if a ∈ 1

2Z)
BA the set of maps p : A→ B for sets A,B
δi,j Kronecker’s delta, δi,j = 1 if i = j, and δi,j = 0 if i 6= j

G(A) the Graver basis of a matrix A (Section 1.6)
height(F) for a rooted tree F , the number of vertices on a longest root-leaf path
ln the logarithmus naturalis
log the logarithm to the base 2
loga the logarithm to the base a ∈ R>0
supp(x) the support of x ∈ Rn, i.e. the set {i ∈ [n] : xi 6= 0}
td(F) the tree-depth of a rooted tree F (Section 1.7)
tdP (A) for A ∈ Zm×n, the tree-depth of the primal graph, td(GP (A))
tdD(A) for A ∈ Zm×n, the tree-depth of the dual graph, td(GD(A))
tw(F) the tree-width of a rooted tree F (Section 1.7)
twP (A) for A ∈ Zm×n, the tree-width of the primal graph, td(GP (A))
twD(A) for A ∈ Zm×n, the tree-width of the dual graph, td(GD(A))
V(Λ) the Voronoi cell of a lattice Λ (Section 1.4)

147

Christoph Hunkenschröder

christoph.hunkenschroder@epfl.ch Discrete Optimization Group
disopt.epfl.ch/hunkenschroeder EPFL MA C1 573

ORCID: 0000-0001-5580-3677 CH-1015 Lausanne

Research Interests

Integer Programming

Geometry of Numbers and Lattices

Combinatorial and Discrete Optimization

Education

since 2016 PhD student, École Polytechnique Fédérale de Lausanne,
Supervisor: Friedrich Eisenbrand

2015 Master of Science, final grade 1.3
Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany

Thesis title: Minimizing the Number of Lattice Points in a Polytope
Supervisor: Nicolai Hähnle

2012 Bachelor of Science, final grade 2.4
Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany

Thesis title: Approximationsalgorithmen für 2-kantenzusammenängende
aufspannende Subgraphen
Supervisor: Jens Vygen

Teaching

2016 – 2020 Algèbre Linéaire Avancée II, Prof. Friedrich Eisenbrand,
main assistant (multiple times)

2017 Algèbre Linéaire Avancée I, Prof. Daniel Kressner, teaching assistant

2016 Convexity, Prof. Friedrich Eisenbrand, main assistant

2009 – 2015 Algorithmical Mathematics I, teaching assistant (multiple times),

Linear and Integer Optimization, Prof. Stephan Held, teaching assistant

149

Languages

German native

English fluent

French basic

Publications

[1] Nicolas Bousquet, Yang Cai, Christoph Hunkenschröder, and Adrian Vetta. “On the eco-
nomic efficiency of the combinatorial clock auction”. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 2016, pp. 1407–
1423.

[2] Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. “Faster algo-
rithms for integer programs with block structure”. In: 45th International Colloquium on Au-
tomata, Languages, and Programming. Vol. 107. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2018, Art. No. 49, 13.

[3] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký,
Asaf Levin, and Shmuel Onn. An algorithmic theory of Integer Programming. 2019. arXiv:
1904.01361.

[4] Christoph Hunkenschröder. Deciding whether a lattice has an orthonormal basis is in co-NP.
2019. arXiv: 1910.03838.

[5] Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura. “On compact represen-
tations of Voronoi cells of lattices”. In: Integer programming and combinatorial optimization.
Vol. 11480. Lecture Notes in Comput. Sci. Springer, Cham, 2019, pp. 261–274.

[6] Christoph Hunkenschröder, Santosh Vempala, and Adrian Vetta. “A 4/3-approximation al-
gorithm for the minimum 2-edge connected subgraph problem”. In: ACM Trans. Algorithms
15.4 (2019), Art. 55, 28.

[7] Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura. “On compact repre-
sentations of Voronoi cells of lattices”. In: Math. Program. (2020).

150

	Acknowledgements
	Abstract (English/Deutsch)
	Contents
	Introduction
	Basics
	Notation for sets, vector spaces, and functions
	Polyhedra and linear programming
	Integer programming
	Lattices and convex bodies
	Complexity
	The Graver basis
	Graphs associated with constraint matrices

	Integer programming in variable dimension
	An upper bound for the Graver basis elements
	Iterative improvement
	Solving the augmentation IP
	Optimizing via the augmentation IP.
	Convolutions and the convolution tree

	Reducing the objective function
	The upper bound
	The lower bound

	Reducing the box constraints
	The proximity result
	Reducing the bounds by iterative scaling

	Feasibility and finiteness
	Deciding feasibility and finding an initial feasible solution
	Deciding boundedness
	Handling infinite bounds

	The overall running time
	Other parameters for integer programming
	An ETH-based lower bound

	Compact representations of Voronoi cells of lattices
	The notion of a c-compact basis
	A polynomial upper bound
	Lattices without sublinearly-compact bases
	Compact bases and zonotopal lattices
	Compact bases in small dimensions
	Relaxing the basis condition
	Algorithmic point of view

	The closest vector problem with additional information
	The closest vector problem in polynomial time
	Solving the facet piercing problem
	Finding a starting vertex close to the target
	Sampling a vector in the Voronoi cell
	The main result and CVP on zonotopal lattices

	The rotated standard lattice problem is in NP and co-NP
	The RSLP and the UDP
	Self-dual lattices and characteristic vectors
	Applying the result of Elkies

	Bibliography
	List of Symbols
	Curriculum Vitae

