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Abstract

Many-body open quantum systems are exposed to an essentially uncontrollable environ-
ment that acts as a source of decoherence and dissipation. As the exact treatment of such
models is generally unfeasible, it is favourable to formulate an approximate description by
means of the dynamics of the reduced density operator of the system. When studying mod-
els with a weak coupling to a memoryless environment, the existence of such solution is
granted and the reduced dynamics is governed by the Lindblad quantum master equation.
In recent years, open quantum systems have evolved into a major field of studies. Focus
of these studies are the characterization of emergent phenomena and dissipative phase
transitions, as well as the ongoing debate about whether quantum computing schemes
are still hard to simulate classically — and thus achieve quantum supremacy — when in
presence of some degree of noise-induced decoherence. However, the challenge posed by
this task lies in the complexity of the density matrix that increases exponentially with the
system size, and the quest for efficient numerical methods is a research field that is still
in its infancy. Here, we first develop a real-time full configuration interaction quantum
Monte Carlo technique that stems from a class of methods generally known as projec-
tor Monte Carlo. The approach enables the stochastic sampling of the Lindblad time
evolution of the density matrix thanks to a massively parallel algorithm, thus providing
estimates of observables on the non-equilibrium steady state. We present the underlying
theory and introduce an initiator technique and importance sampling to reduce statistical
error. We demonstrate the efficiency of the approach by applying it to the dissipative
two-dimensional XYZ spin-1/2 model on a lattice. As the importance sampling of pro-
jector approaches is often combined with variational results, we then introduce a novel
method that is based on the variational Monte Carlo methods and on a neural network
representation of the density matrix. Thanks to the stochastic reconfiguration scheme,
the application of the variational principle is translated into the actual integration of the
Lindblad quantum master equation. We test the effectiveness of the method by modeling
the steady state of the dissipative two-dimensional XYZ spin-1/2 model through a dissi-
pative phase transition, and also the real-time dynamics of the dissipative Ising model. In
addition, we discuss the application of the developed methods and the open questions of
the field.

Keywords: Lindblad master equation, Projector Monte Carlo, Variational Monte Carlo,
Machine learning in physics, Neural network quantum states, Parallel optimization
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Résumé

Les systèmes quantiques ouverts à N corps sont exposés à un environnement incontrô-
lable qui agit comme une source de décohérence et de dissipation. Le traitement exact de
tels modèles étant généralement irréalisable, il est préférable de reformuler le problème à
l’aide de l’approximation de l’opérateur de densité réduit. Pour les systèmes couplés fai-
blement à un environnement Markovien, l’existence de telles solutions est garantie et la
dynamique de l’opérateur réduit est gouvernée par l’équation maîtresse de Linbald. Au
cours des dernières années, les systèmes quantiques ouverts ont fait l’objet d’un nombre
croissant de travaux de recherche. La majorité de ces études se concentrent sur la carac-
térisation des phénomènes émergents et des transitions de phases dissipatives ainsi que
sur le débat récurrent consistant à savoir si la simulation classique des systèmes de calculs
quantique reste difficile en présence de décohérence liée au bruit - et donc s’il est possible
d’atteindre la suprématie quantique. Néanmoins, la complexité de la matrice densité, qui
croît exponentiellement avec la taille du système, représente un défi majeur pour la ré-
solution de ces problèmes et le développement de méthodes numériques efficaces est un
domaine de recherche relativement jeune. Dans ce manuscrit, nous présentons d’abord une
technique temps réel basée sur les méthodes d’interaction de configurations complète et de
Monte-Carlo quantique qui trouve ses origines dans la classe de méthodes connues sous le
nom de ”projector Monte-Carlo”. Cette approche permet l’échantillonnage stochastique
de l’évolution en temps de Linbald de la matrice densité grâce à un algorithme massive-
ment parallèle, rendant ainsi accessible l’estimation d’observables dans l’état stationnaire
hors équilibre du système. Nous présentons la théorie sous-jacente et introduisons une
procédure d’initialisation et une technique d’échantillonnage par importance pour réduire
l’erreur statistique. Nous démontrons l’efficacité de notre approche en l’appliquant à la
simulation d’un réseau bidimensionnel de spin 1/2 implémentant le modèle XYZ dissi-
patif. La méthode d’échantillonnage par importance des projecteurs étant généralement
combinée à des résultats variationnels, nous introduisons ensuite une nouvelle technique
basée sur les méthodes de Monte-Carlo variationnelles et une représentation de la matrice
densité sous forme d’un réseau de neurones. Grâce à la procédure de reconfiguration sto-
chastique, l’application du principe variationnel se traduit de facto par l’intégration de
l’équation maîtresse de Linbald. Nous testons l’efficacité de cette méthode en modélisant
l’état stationnaire du réseau bidimensionnel de spin 1/2 implémentant le modèle XYZ à
travers une transition de phase dissipative et en simulant la dynamique en temps réel du
modèle d’Ising disspatif. Finalement, nous discutons les possibilités d’application des mé-
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Résumé

thodes développées et les questions ouvertes de ce domaine de recherche.

Mots-clés : Equation maîtresse de Lindblad, Projector Monte-Carlo, Monte-Carlo varia-
tionnel, apprentissage automatique en physique, réseau de neurones, optimisation paral-
lèle
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Abstract

I sistemi aperti quantistici a N corpi sono esposti ad un ambiente incontrollabile che
agisce come fonte di decoerenza e dissipazione. La trattazione esatta di tali modelli è
però generalmente impraticabile, di conseguenza è preferibile riformularne una descrizio-
ne approssimata attraverso la dinamica della matrice densità ridotta del sistema. Per i
sistemi accoppiati debolmente ad un ambiente Markoviano, l’esistenza di una soluzione
è garantita e la dinamica dell’operatore ridotto è dettata dall’equazione maestra di Lind-
blad. Negli ultimi anni, la ricerca nei sistemi aperti quantistici è maturata in un fertile
campo di studi. I temi di interesse dalla materia sono la caratterizzazione di fenomeni
emergenti, lo studio transizioni di fase dissipative così come il dibattito in corso sul fat-
to che gli schemi di calcolo quantistico sono ancora difficili da simulare classicamente -
e quindi raggiungere la supremazia quantistica - in presenza di un determinato grado di
decoerenza indotta dal rumore. Tuttavia, la sfida insita in questo problema risiede nella
crescita esponenziale della complessità della matrice di densità con la dimensione del si-
stema, laddove la ricerca di metodi numerici efficienti è un campo di ricerca che è ancora
nella sua infanzia. In questa tesi, come primo risultato, descriviamo lo sviluppo di una tec-
nica di interazione di configurazione completa in tempo reale con quantum Monte Carlo
fondata su una classe di metodi comunemente noti come metodi del proiettore. Questo
approccio consente il campionamento stocastico dell’evoluzione temporale di Lindblad
della matrice densità utilizzando un algoritmo parallelizzato, fornendo così stime di osser-
vabili sullo stato stazionario fuori equilibrio. Successivamente descriviamo le fondamenta
teoriche del metodo e introduciamo una tecnica di inizializzazione e campionamento ad
importanza per ridurre l’errore statistico. Dimostriamo l’efficienza di questo approccio
applicandolo al modello dissipativo bidimensionale XYZ per un reticolo di spin 1/2. Da-
to che il campionamento ad importanza su metodi di proiezione è tipicamente combinato
con risultati variazionali, introduciamo un nuovo schema che si fonda su metodi di Monte
Carlo variazionali e sulla rappresentazione della matrice densità come rete neurale. At-
traverso l’utilizzo dello schema di riconfigurazione stocastica, l’applicazione del principio
variazionale si può tradurre direttamente nell’effettiva integrazione dell’equazione mae-
stra di Lindblad. Nell’ultima parte della tesi verifichiamo l’efficacia del nuovo metodo,
modellando lo stato stazionario del modello bidimensionale XYZ di spin 1/2 attraverso
una transizione di fase dissipativa, e la dinamica in tempo reale di un modello di Ising
dissipativo. Inoltre, descriviamo in dettaglio l’implementazione dei metodi sviluppati e le
questioni rimaste aperte nel campo.
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Parole chiave: Equazione maestra di Lindblad, Metodo del proiettore in Quantum Monte
Carlo, Variational Monte Carlo, Apprendimento automatico in fisica, reti neurali quanti-
stiche, ottimizzazione parallelizzata
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Introduction

The dawn of quantum mechanics, a fundamental part of modern physics, essentially
stems from the declaration that the electromagnetic field is made of elementary units,
photons [1, 2]. The foundation of quantum mechanics has been built on the revolution-
ary idea that the energy exchange between light and matter is discrete. In the early days,
many of the theoretical and experimental schemes have focused on single particle quantum
systems such as the Stern-Gerlach experiment, understanding the spectra of the hydrogen
atom or explaining the photo-electric effect [3, 4]. This novel field of physics featured
remarkable, and sometimes counter-intuitive properties which were illustrated in various
thought experiments from Schrödinger’s cat to Wigner’s friend. Nowadays, these mod-
els are experimentally realized and consider several interacting particles, harnessing state
superposition and entanglement in order to introduce a novel quantum logic that could
ultimately achieve quantum supremacy.

However, while the evolution of any isolated system is generated by the Hamiltonian
[3,4], the treatment of real systems must necessarily involve the description of an unavoid-
able environmental interaction. A particular class of this phenomenon, namely when the
system is in a thermal equilibrium with its environment, has been possible to treat with
the development of thermodynamics [5]. Nevertheless, there exist systems where the con-
dition of thermal equilibrium is not satisfied, and a proper theoretical description must
account for the relaxation and decoherence processes. We designate these systems as
open. The study of the non-equilibrium dynamics of many body open quantum systems
have evolved into a major research field due to the progress in several experimental areas
including ultracold atomic gases, trapped ions, and superconducting circuits [6–9]. Focus
of these studies include the characterization of emergent phenomena and dissipative phase
transitions [6,7,9–18], as well as the ongoing debate about whether quantum computing
schemes are still hard to simulate classically when in presence of some degree of noise-
induced decoherence [19–22].

Let us note, the former definition of open quantum systems has been based on an im-
plicit assumption, i.e. in any particular situation we can choose a partitioning of the
collective degrees of freedom as a system and an environment. Typically, one thinks of
the environment as a large number of degrees of freedom, e.g. a heath bath, that couple
only to a small portion of other degrees of freedom. In practice, however, this division
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Introduction

is not always clear, and the most direct way of making the partition might not be ad-
equate to accurately compute the influence of the environment. Instead, we provide a
conceptual reasoning how to make this division by defining the system as the collection
of those degrees of freedom that are “interesting” for us, and that we want to systemati-
cally understand. Although this partitioning does not always allow for the approximate
treatment of the “uninteresting” environmental degrees of freedom, in this thesis we focus
on systems which has a weak coupling to the environment. Assuming a memoryless, i.e.
Markovian, interaction with the environment, the dynamics of these systems is governed
by the quantum master equation in Lindblad form [23]. Since only a few model within
this description admits an analytical solution [24, 25], the quest for efficient numerical
methods is a research field that is still in its infancy.

In 1777, Compte de Buffon estimated the value of π by randomly dropping needles
onto the floor, and thus introduced the first numerical approach to a complex mathemat-
ical problem [26]. Although this early example did not require a computer to solve the
problem, it contains the main idea of what later becomes the foundation of computational
physics: mapping a set of complex problems into an ensemble of easier actions using ran-
dom numbers. Such type of algorithms are referred under the general name of Monte
Carlo methods, and here we will focus on their application to quantum mechanical sys-
tems.

This is really the purpose of this thesis: to develop novel computational tools to simu-
late the dynamics and the asymptotic steady state of many body open quantum systems.
Many recent tools have been developed following in the footsteps of well-established nu-
merical methods for closed, Hamiltonian systems. In particular, matrix product state and
tensor network schemes [27–29], a real-space renormalization approach [14,30], cluster
mean-field [18], and other ad hoc approximation schemes [16]. For Hamiltonian systems,
various quantum Monte Carlo approaches have been the election tool to stochastically
sample system properties, and two of its most commonly used classes are the versatile
projector Monte Carlo techniques [31] and the variational Monte Carlo method [31].
While the projector approaches are stochastic implementation of the power method for
determining expectation values of observables for the dominant eigenstate of the projector,
variational Monte Carlo is based on the variational minimization of some system property.
Using both of these approaches as a stepping stone in the development of novel numer-
ical methods is the central topic of this thesis, which is organized in the following manner.

Chapter 1 covers the theoretical foundation of many body open quantum systems in the
limit of weak environmental coupling. Thought experiments are introduced to interpret
the resulting formulas from a physical point of view, and the general solutions of the
Lindblad form are reviewed. Finally, we introduce a number of paradigmatic models that
are often used as a first example to benchmark a novel numerical approach.

Chapter 2 reviews a number of existing numerical approaches for the simulation of open
quantum systems with their advantages and drawbacks.

2
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Chapter 3 covers the theory of the different projector Monte Carlo techniques in the
context of closed systems, and introduces the general notion of the fermionic sign problem.

Chapter 4 reviews a particular projector approach, the full configuration interaction quan-
tum Monte Carlo method which is later used as a stepping stone in the development of a
numerical approach for open systems. We also present a study on the emergence of the
fermionic sign problem in the context of this particular method.

Chapter 5 introduces a real-time full configuration interaction quantum Monte Carlo
approach to model open quantum systems with Markovian system-environment coupling.
We present the underlying theory and demonstrate the effectiveness of the method by
applying it to a physical model.

Chapter 6 covers the theoretical foundation of variational Monte Carlo approach, and
introduces both a particular optimization technique and the theory of Markov-chain sam-
pling.

Chapter 7 provides a general overview of machine learning techniques and introduces
some fundamental notions that will later be used to develop a numerical method for open
systems.

Chapter 8 introduces a variational method to efficiently simulate the real-time dynamics
and steady state of Markovian open systems based on a neural network representation
of the density matrix. Similar approaches are also reviews, and the effectiveness of the
method is once again tested on the simulation of some physical models.

A final remark is due. This thesis presents two novel numerical methods that have been
developed during the last four years, and have already been published in various scientific
journals [32, 33]. Thus, in some cases, a considerable amount of the description here is
adapted from the corresponding publications. When this is the case, it is clearly stated in
the introduction of the Chapter. To help the reader recognize Sections with only minor
adjustments from already published manuscripts, we place an asterisk (*) at the end of
their title.

The two novel numerical method presented in this thesis has been implemented in C++
and Python languages and can be found in the GitHub repositories:
https://github.com/EPFLLTPN/DDQMC [34]
https://github.com/EPFLLTPN/NNDM [35].

3
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CHAPTERCHAPTER1
Theory of open quantum systems

The theory of open quantum systems involves the description of models which are not
isolated, so that their dynamics is eventually influenced by other quantum degrees of free-
dom (d.o.f). In general, the exact treatment of such systems is unfeasible, instead, it is
favourable to formulate an approximate description by means of the dynamics of the re-
duced density operator of the system. When studying models with a weak coupling to
a memoryless environment, the existence of such solution is granted and the reduced dy-
namics is governed by the Lindblad quantum master equation. While following such an
approximation describes the average dynamics of the system, it is also possible to for-
mulate a representation that is based on averaging over a large number of stochastically
evolved quantum state trajectories. The dynamics of the individual realizations can be
then associated to a stochastic Schrödinger equation.

To begin with, in this Chapter we first introduce the fundamental description of closed
and open quantum systems with our emphasis on the limit of weak environmental cou-
pling. After, we comment on the physical interpretation of the average dynamics of the
reduced system and we review the possible solutions to the quantum master equation. Fi-
nally, we introduce a number of paradigmatic models that are often used as a first example
to benchmark a novel numerical approach.

1.1 The definition of open quantum systems

While closed quantum systems are ideal quantum mechanical models which are per-
fectly isolated from the environment, open quantum systems are composed of a quantum
mechanical set-up of two subsystems: a small system of interest (S) coupled to a large
external environment (E) (see Fig. 1.1) where the combined total system S+E is assumed
to be isolated. The interaction between the subsystems leads to such correlations that
the resulting change in S can no longer be described by unitary dynamics, and only the
combined evolution of S+E follows the dynamics of closed systems. The theory of open
quantum systems presented in this chapter is introductory and has been largely inspired
by the detailed descriptions of [23,36–40].

7



Chapter 1. Theory of open quantum systems

Figure 1.1 – Schematic figure of a closed versus an open quantum system.

1.1.1 The evolution of closed quantum systems

Closed quantum systems are ideal quantum mechanical models which are perfectly iso-
lated from the environment. The postulates of quantum mechanics states that the time evo-
lution of a state vector |ψ〉 in a Hilbert-space H is governed by the Schrödinger-equation

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (1.1)

where Ĥ is the Hamiltonian of the system. Here and in what follows the reduced Planck’s
ℏ constant has been set to 1. The dynamics of the state vector can also be expressed by
means of the unitary time-evolution operator Û(t, t0) which transforms the initial state
|ψ(t0)〉 at time t0 into |ψ(t)〉 at time t

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 (1.2)

with

Û(t, t0) = T exp
(

−i
∫ t

t0
dsĤ(s)

)
. (1.3)

where T is the time ordering. For a time-independent Hamiltonian eq. (1.3) becomes the
well known expression

Û(t, t0) = exp
(
−iĤ(t− t0)

)
. (1.4)
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1.1. The definition of open quantum systems

The statistical nature of quantum states can be considered using the positive semi-
definite density operator ρ̂(t) whose time evolution derives from the Schrödinger-equation (1.1).
Let us assume that at an initial time t0 the density matrix is composed as a statistical mix-
ture of some normalized, but not necessarily orthogonal states {|ψα(t0)〉}

ρ̂(t0) =
∑
α

pα|ψα(t0)〉〈ψα(t0)| , (1.5)

where pα ∈ [0, 1] and |ψα(t0)〉 evolve under eq. (1.1). The state of the system at some time
t therefore is

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) , (1.6)

and after differentiation we get the equation of motion for ρ̂, the von-Neumann equation

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
. (1.7)

1.1.2 The combined evolution of system and environment

The initial state of the total system at time t = 0 is described by the density matrix
ρ̂SE . Let us assume that we are able to prepare ρ̂SE as an uncorrelated product state
ρ̂SE = ρ̂S ⊗ ρ̂E . The total Hilbert-space is H = HS ⊗ HE . The system and environment
then evolve according to the unitary time evolution as

ρ̂SE(t) = Û (ρ̂S ⊗ ρ̂E) Û † . (1.8)

Since we are only interested in the evolution of system S, we need to average over the d.o.f
of the environment, thus to perform a partial trace over E

ρ̂S(t) = TrE [ρ̂SE(t)] = TrE
[
Û (ρ̂S ⊗ ρ̂E) Û †

]
. (1.9)

Using the spectral decomposition of the density matrix ρ̂E of the environment

ρ̂E =
∑
α

ηα|α〉〈α| , (1.10)
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Chapter 1. Theory of open quantum systems

eq. (1.9) immediately yields

ρ̂S(t) =
∑
α

∑
β

〈α|Û (ρ̂S ⊗ ηβ|β〉〈β|) Û †|α〉

=
∑
α

∑
β

√
ηβ〈α|Û |β〉ρ̂S

√
ηβ〈β|Û †|α〉

(1.11)

where ρ̂S(t) is the reduced state of system S. As a result we obtain the operators

M̂αβ = √
ηβ〈α|Û |β〉 (1.12)

acting on HS such that the matrix elements of M̂αβ are simply M i,j
αβ = 〈i|M̂αβ|j〉 =

〈i, α|Û |j, β〉 (|i〉, |j〉 are defined on HS). Thus the time evolution of the reduced density
matrix can be represented by means of an operator sum

ρ̂S(t) = TrE [ρ̂SE(t)] = M(ρ̂S) =
∑
α,β

M̂αβ ρ̂SM̂
†
αβ . (1.13)

Since the time propagator Û is unitary, we have

∑
α,β

M̂ †
αβM̂αβ = IS . (1.14)

The operators M̂αβ are not unique, since the partial trace eq. (1.9) can be performed in
any basis of HE .

1.2 The Lindblad quantum master equation

The time evolution of the reduced density matrix given in eq. (1.13) is exact, however,
in practice it is not always applicable, since the complexity of the environment makes it
unfeasible to follow the detailed evolution of both system and environment. A possible
approach to simplify the description of the reduced dynamics is formulated by neglecting
the details of the interaction between the system and the environment and only modeling
the average effect of the environment on the system. Under the assumption that the system
is weakly coupled to a Markovian (memoryless) environment, we obtain the evolution of
the reduced density matrix in the form of the Lindblad quantum master equation. This
description contains not only the unitary dynamics induced by the system Hamiltonian,
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1.2. The Lindblad quantum master equation

but also models dissipation processes.

1.2.1 Dynamical maps

If we assume the initial state ρ̂SE and the time t to be fixed, then we can define a map
from the Hilbert-space of system HS to the space of the reduced system itself as

Φ̂t : HS 7→ HS

ρ̂S 7→ ρ̂S(t) = Φ̂t [ρ̂S ] ≡ TrE
[
Û ρ̂SEÛ

†
]
.

(1.15)

Therefore, the map Φ̂t connects the initial density matrix to the evolved one. This action
is referred to as a dynamical map, and can be represented by the following scheme:

ρ̂SE
unitary evolution−−−−−−−−−−→

Û
ρ̂SE(t) = Û ρ̂SEÛ

†

TrE

y
yTrE

ρ̂S
dynamical map−−−−−−−−→

Φ̂t

ρ̂S(t) = TrE
[
Û ρ̂SEÛ

†
]

(1.16)

The dynamical map Φ̂t is then a super-operator, because it transforms an operator into
another one. In order to preserve the properties of the density matrix, a dynamical map
must have the following properties.

• Linearity: The linearity of the map is essential in order to retain the ensemble inter-
pretation of the density matrix

Φ̂t [ρ̂1] + Φ̂t [ρ̂2] = Φ̂t [ρ̂1 + ρ̂2] . (1.17)

• Continuity: Since the propagator Û is continuous, the continuity of the map is au-
tomatically preserved

lim
τ→0

Φ̂τ+t [ρ̂S ] − Φ̂t [ρ̂S ] = 0 . (1.18)

• Trace and hermiticity: Since the diagonal terms of the density matrix describe the
probabilities of finding the system in a particular state, it is fundamental that the
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Chapter 1. Theory of open quantum systems

trace and the hermiticity is preserved

TrS(Φ̂t [ρ̂S ]) = 1(
Φ̂t [ρ̂S ]

)∗
= Φ̂t [ρ̂S ] .

(1.19)

• Positivity and complete positivity: the property of positivity is such that if ρ̂S is
non-negative then also Φ̂t [ρ̂S ] is

Φ̂t [ρ̂S ] ≥ 0 . (1.20)

Although positivity is sufficient to obtain a valid density matrix, it leads to contra-
diction when we consider a composite system. Let us construct a proper dynamical
map Φ̂A

t acting on system A. Then, considering a bipartite system, after applying
the map Φ̂A

t ⊗ IB, we still want to obtain a valid density matrix on the total sys-
tem. However, with a simply positive map, this is not always the case. We need a
stronger condition on the dynamical map: Φ̂t must be completely positive such that
Φ̂A
t ⊗ IB is positive for any extension HB of the Hilbert space HA.

A small technicality worth noting is that if the initial state ρ̂S is factorized such that
ρ̂SE = ρ̂S ⊗ ρ̂E , then one obtains a linear map that is not only positive, but completely
positive [41]. This feature then naturally arises in such a setting, and is indeed related to
the tensor product structure of the composite system. If we allow an initial entanglement
between system and environment, then the operation in eq. (1.15) in general is not a
dynamical map, as it is, in general, impossible to define a linear map that can determine the
subsequent evolution of S alone. The choice of separable initial state is highly compatible
with the weak coupling approach, but is generally not a feasible assumption for models
with strong interaction between system and environment. Despite the efforts to extend
this formalism to reach beyond initially factorized states [42–44], a generally satisfactory
treatment is still called for.

1.2.2 Choi-Kraus decomposition

For now we have introduced two different ways to describe the dynamics of open quan-
tum systems. First, we considered the combined evolution of system and environment,
then traced out the environment to obtain the operator-sum representation of eq. (1.13).
After, we defined the properties of a dynamical map such that it transforms the initial
density matrix into the evolved one. The Choi-Kraus decomposition theorem reconciles
these two descriptions by stating that they are equivalent.

Theorem 1.2.1 (Choi-Kraus decomposition) A map ρ̂S 7→ Φ̂t [ρ̂S ] from a finite dimen-
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1.2. The Lindblad quantum master equation

sional Hilbert space HS to a finite dimensional Hilbert space HS is linear, complete posi-
tive, and trace-preserving if and only if it has a Choi-Kraus decomposition as

Φ̂t [ρ̂S ] =
K∑
k=1

V̂kρ̂SV̂
†
k , with

K∑
k=1

V̂ †
k V̂k = IS , (1.21)

where K ≤ N2
S is the Kraus number (dim(HS) = NS).

Note the extreme representative power of the Kraus operator formalism; it is capable of
compressing the infinite complexity of the environment into a set of (at most)N2

S operators
V̂k. Let us remark, the form of the Kraus operators is not unique, applying any linear
and unitary transformation on them leaves the dynamical map unchanged. To verify the
equivalence of the two different descriptions

Φ̂t [ρ̂S ] =
K∑
k=1

V̂kρ̂SV̂
†
k ≡ M(ρ̂S) =

∑
α,β

M̂αβρSM̂
†
αβ , (1.22)

we start by choosing a complete basis of orthonormal operators Âi, i = 1, . . . , N2
S in the

Hilbert-Schmidt space of HS such that

(Âi, Âj) = Tr
[
Â†
i , Âj

]
= δij . (1.23)

Applying the completeness relation to each M̂αβ defined in eq. (1.12)

M̂αβ =
N2

S∑
i=1

Âi(Âi, M̂αβ) , (1.24)

eq. (1.13) transforms into

M(ρ̂S) =
N2

S∑
i,j=1

aijÂiρ̂SÂ
†
j (1.25)

with
aij ≡

∑
α,β

(
Âi, M̂αβ

) (
Âj , M̂αβ

)∗
. (1.26)
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Chapter 1. Theory of open quantum systems

Furthermore, for any v ∈ CN2
S we have

∑
i,j=1

aijv
∗
i vj =

∑
α,β

∣∣∣∣∣
(∑

i

viÂi, M̂αβ

)∣∣∣∣∣
2

≥ 0 , (1.27)

which proves that â is semi-positive, hence, diagonalizable with the help of an appropriate
uniform transformation û

ûâû† =



d1 0 · · · 0

0 d2 · · · 0

0 0 . . . 0

0 0 · · · dN2
S


, (1.28)

where di are non-negative. Introducing a new set of operators through

Âi =
N2

S∑
k=1

ukiD̂k , (1.29)

eq. (1.13) finally reads as

M(ρ̂S) =
N2

S∑
k=1

(√
dkD̂k

)
ρ̂S
(√

dkD̂k

)†
≡

N2
S∑

k=1
V̂kρ̂SV̂

†
k = Φ̂t [ρ̂S ] . (1.30)

1.2.3 The Lindblad form

In the case of closed systems, it is very convenient to characterize the dynamics with the
Hamiltonian, that describes the evolution over an infinitesimal time. Now, although the
Kraus representation summarizes the time evolution of the system, in practice this time-
integrated equation is not very handy. Instead, we want to find a differential equation
that governs the evolution of the reduced density matrix ρ̂S . In fact, the existence of such
differential equation is not at all obvious. Indeed, such a description is only possible if
the evolution of the quantum system is Markovian, i.e. local in time. If the dynamics
is governed by a first order differential equation in time, it means that ρ̂S(t + δt) must
be completely characterized by ρ̂S(t). Generally, this is not true for any open quantum
system. ρ̂S(t + δt) might depend not only on ρ̂S(t), but also on ρ̂S at prior times, since
the environment can retain a memory of past interactions, and therefore the past can
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1.2. The Lindblad quantum master equation

influence the subsequent evolution of the system. In order to neglect this effect, we have
to assume a clear separation between the typical correlation time of the fluctuations of
the environment τc and the time scale of the evolution that we want to follow Te. Solving
the differential equation for ρ̂S amounts to dividing Te into small slices with duration δt
and computing ρ̂S at successive time steps. Mathematically, the exact evolution is then
recovered in the limit when δt → 0, however, our time slicing needs to remain coarse-
grained, as the spacing of the consecutive steps must stay larger than the memory time of
the environment τc. This can be summarized in the double inequality

τc � δt � Te , (1.31)

and in what follows, by denoting δt → 0 we refer to choosing δt in the appropriate limit
of eq. (1.31).

Moreover, we need to make the hypothesis that the environment is a “large” system,
i.e. its properties are not appreciably affected by its interaction with S. These two approx-
imations together are called the Born-Markov approximation, and with assuming initial
separability lead to the differential equation of the dynamics of open quantum systems,
the Lindblad quantum master equation.

Let us construct the most general form of this equation starting from the evolution de-
scribed by the Choi-Kraus representation (here and in the followings the S denoting the
system of interest will be omitted in the expression of ρ̂S)

ρ̂(t+ δt) = Φ̂t [ρ̂] =
K∑
k=1

V̂kρ̂(t)V̂ †
k = ρ̂(t) + δtδρ̂ , (1.32)

where we only kept terms up to first order in δt. We now take the limit of infinitesimal
time step as δt → 0, and without loss of generality we can organize the Kraus operators
as V̂0 = I + δtĜ

V̂k>0 =
√
δt

√
γkL̂k ,

(1.33)

In order to ensure the hermiticity of ρ̂(t+ δt), let us split Ĝ into Ĝ = Ĵ − iĤ, where both
Ĵ = (Ĝ + Ĝ†)/2 and Ĥ = i(Ĝ − Ĝ†)/2 are also hermitic. Then retaining once again the
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terms up to linear order in δt we can write

ρ̂(t+ δt) = V̂0ρ̂(t)V̂ †
0 +

∑
k>0

V̂kρ̂(t)V̂ †
k

=
[
I + δt(Ĵ − iĤ)

]
ρ̂
[
I + δt(Ĵ + iĤ)

]
+ δt

∑
k

γkL̂kρ̂(t)L̂†
k

= ρ̂− iδt
[
Ĥ, ρ̂

]
+ δt(Ĵ ρ̂+ ρ̂Ĵ) + δt

∑
k

γkL̂kρ̂(t)L̂†
k .

(1.34)

Since the operators have to respect the Kraus normalization condition, we can relate Ĵ to
the other L̂k as

Ĵ = −1
2
∑
k

γkL̂kL̂
†
k . (1.35)

We can substitute Ĵ in the equation above and the take the limit δt → 0 as ρ̂(t + δt) =
ρ̂(t) + dt ˙̂ρ. Finally, we obtain the Lindblad quantum master equation [23] in the form of

dρ̂

dt
= L [ρ̂] = −i

[
Ĥ, ρ̂

]
+
∑
k

γk

(
L̂kρ̂L̂

†
k − 1

2
L̂†
kL̂kρ̂− 1

2
ρ̂L̂†

kL̂k

)
= −i

[
Ĥ, ρ̂

]
+ D(L̂k) [ρ̂] ,

(1.36)

where we have introduced the Lindblad super-operator L whose effect on the density
matrix we will denote as L [ρ̂] or simply Lρ̂. If the density matrix is expressed in the
vectorized form |ρ〉〉, the Lindblad operator can also be expressed in matrix form using
Kronecker products as [45]

L = −i
(
I ⊗ Ĥ + ĤT ⊗ I

)
−
∑
k

γk
2

(
I ⊗ L̂†

kL̂k + L̂Tk L̂
∗
k ⊗ I − 2L̂∗

k ⊗ L̂k
)
. (1.37)

Note, so far we have made no assumptions about the nature of Ĥ, γk and L̂k.

Coherent dynamics

In order to understand the meaning of the first term in eq. (1.36), we can use the anal-
ogy with the evolution of closed quantum systems. If we compare the Lindblad master
equation (1.36) to the von-Neumann equation (1.7), one can see that Ĥ truly plays the
role of the Hamiltonian of the system, and as it will be clarified in the followings L̂k are
called jump operators and they describe the coupling to the environment. Note, that in
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1.2. The Lindblad quantum master equation

general the operator Ĥ cannot be identified so easily with the Hamiltonian. Since the
super-operator L is invariant under inhomogeneous transformations and unitary trans-
formation of the jump operators, the form of Ĥ is not unique. To show that, in certain
cases, Ĥ corresponds to the Hamiltonian of the system, one must consider the microscopic
derivation of the Lindblad equation [23].

Generalized measurements and quantum jumps

After having connected the operator Ĥ to the Hamiltonian and the coherent part of
the evolution, we introduce the notion of generalized measurement and we recover an
analogy with the Kraus sum-representation in order to grasp the meaning of Lk.

Let us define a generalized measurement of positive-operator valued measures (POVM)
[36] M by a set of non-necessarily self-adjoint operators M̂i ∈ HS in any arbitrary number,
each of them associated to an outcome mi. When measuring the result mi, the density
matrix is projected onto the operator M̂i, and modified as

ρ̂i = M̂iρ̂M̂
†
i

Tr
[
M̂iρ̂M̂

†
i

] . (1.38)

Since each of the outcomes has a probability

pi = Tr
[
M̂iρ̂M̂

†
i

]
, (1.39)

in order to satisfy
∑
i pi = 1 we must also require

∑
i

M̂ †
i M̂i = I . (1.40)

Note, when M̂i are orthogonal projectors then in eq. (1.38)-(1.40) we recover the pos-
tulates of projective measurement. We want to remark, that the extension of projective
measurements to POVM is necessary on both a practical and theoretical level. First of, we
must realize that real life measurements are generally not projective. As a simple example,
let us consider the photo-detection of a cavity field that is in the statistical mixture of |0〉
and |1〉 Fock states. This field will always end up in the vacuum state |0〉 regardless if a
photon was detected or not. These measurements cannot be captured by the hermitian
projectors as the corresponding measures are M̂0 = |0〉〈0| and M̂1 = |0〉〈1|. Moreover,
on a more fundamental level, generalized measurements will provide an insight into the
non-unitary dynamics of open quantum systems.

In eq. (1.38), we have assumed to know the result of the measurement. However, if we
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only know that the measurement took place but we are not aware of the outcome, the
density matrix is in a statistical mixture of all possible outcomes as

˜̂ρ =
∑
i

piρ̂i =
∑
i

M̂iρ̂M̂
†
i , (1.41)

that is, an unread generalized measurement.
Now we can recover the analogy with the Kraus operator-sum representation by realiz-

ing that eq. (1.21) was already cast in this form. In fact, eq. (1.21) shows that the Lindblad
master equation can be interpreted as a continuous unread measurement performed on
the system by identifying ˜̂ρ with ρ̂(t+ δt).

All that is left now to understand the nature of L̂k. For this, we devise a simple process
where the coherent evolution of the system is dictated by Ĥ, and the environment can be
modeled with a set of L̂k. We continuously perform generalized measurements that are
spaced with distance δt, and we apply a set of operators that have outcomesmk associated
to M̂k. We recall

M̂0 = I + δt(−iĤ − 1
2
∑
k L̂

†
kL̂k)

M̂k 6=0 =
√
δtL̂k .

(1.42)

We also assume that at time t the system is in a pure state |ψα〉. This assumption is not
restrictive since all states composing an arbitrary ρ̂ can be treated separately. Then the
probability of the outcome m0 is

p0 = 〈ψα|M̂ †
0M̂0|ψα〉 = 1 − δt

∑
k

〈ψα|L̂†
kL̂k|ψα〉 , (1.43)

and the state after the measurement is projected onto

|ψ0
α〉 = M̂0√

p0
|ψα〉 =

I − iĤδt− 1
2
∑
k L̂

†
kL̂kδt√

p0
|ψα〉 . (1.44)

When this event occurs with probability p0 the system undergoes an infinitesimal change
that can be interpreted as a non-unitary evolution over a time step δt dictated by the
effective Hamiltonian Ĥeff = Ĥ − i

2
∑
k L̂

†
kL̂k. The probability of outcome k is

pk = 〈ψα|M̂ †
kM̂k|ψα〉 = δt〈ψα|L̂†

kL̂k|ψα〉 , (1.45)
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with the projected state being

|ψkα〉 = M̂k√
pk

|ψα〉 =
√
δtL̂k√
pk

|ψα〉 . (1.46)

If such an outcome occurs, the state undergoes a dramatic change “jumping” from state
|ψα〉 to an entirely different one L̂k|ψα〉. Thus, Lk are called the quantum jump opera-
tors, and the typical evolution of a quantum state can be described by a slow non-unitary
dissipative evolution, combined with sudden quantum jumps. In eq. (1.36), the terms
L̂kρ̂(t)L̂†

k and −1
2

{
L̂†
kL̂k, ρ̂(t)

}
are respectively the fluctuation and dissipation terms in-

duced by the environment on the system. Remarkably, the evolution of the system does
not follow a unitary dynamics even in the absence of a quantum jump. Rather, the dissipa-
tive evolution generated by the effective Hamiltonian is the effect of having continuously
measured the system, since knowing that no jump occurred already provides us informa-
tion about the state of the system.

It is important to clarify, that the choice of the jump operators Lk is not unique. The
Lindblad operator can be expressed with different sets of operators, and even the num-
ber of Lk can differ in the different representations of the same dissipation process. One
might try to provide a physical meaning to the simulation of a single quantum state |ψα〉
by interpreting it as the individual evolution of an experiment in which the environment is
constantly screened by generalized measurements. Nonetheless, the choice of Lk strongly
affects the obtained result.

Besides an insightful interpretation of the nature of individual trajectories, eq. (1.43)-
(1.46) also provide a novel tool to simulate the dynamics of open quantum systems.
Eq. (1.43)-(1.46) can be cast into the so-called counting stochastic Schrödinger equation
which describes the stochastic evolution of the system’s state vectors [23,36,40]. Stochas-
tically representing the dynamics of open systems is often referred to as unravelling the
master equation. While one can understand the Lindblad quantum master equation as
performing a continuous unread measurement on the system, by applying the stochastic
Schrödinger equation one keeps track of all the measurement results. Then instead of
following the time evolution dictated by the Lindbladian, the density matrix is recovered
by averaging over many individual quantum trajectories. This method is the Monte Carlo
Wave Function technique, and we will review it Section 2.2.

We wish to remark, that since the choice of the Kraus operators is not unique, one
can obtain more than one stochastic Schrödinger equations from the Lindblad equation.
These methods are not discussed in the present thesis, and for a detailed review we refer
to [46,47].
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1.2.4 Solutions to the master equation

To better understand the effect of dissipation, it is worthwhile to study the solutions of
the Lindblad master equation (1.36) [37–39, 48, 49]. For an initial density matrix ρ̂(0),
the formal solution of the Lindblad master equation (1.36) is of an exponential form

ρ̂(t) = eLtρ̂(0) . (1.47)

It has been shown [23], that the dynamical map Φ̂t fulfils the properties of contracting
semi-groups, thus eq. (1.47) describes an evolution under a one-parameter semi-group
generated by the Lindbladian L. The existence and uniqueness of a non-equilibrium steady
state (NESS) satisfying

L [ρ̂ss] = 0 (1.48)

has been demonstrated under quite general assumptions [38, 39], in particular for finite-
size spin and boson lattices [38]. This implies that the stationary solution of eq. (1.48)
corresponds to the eigenmatrix of the Lindbladian L with zero eigenvalue, nonetheless,
the knowledge of the steady state density matrix ρ̂ss is not sufficient to fully understand the
dynamics of the system. Therefore, one must study the spectral properties of the generator
L (Figure 1.2), whose eigenvalues and right eigenmatrices are defined as

Lρ̂i = λiρ̂i . (1.49)

Generally, L has a holomorphic dependence on the continuous parameters Ω of the phys-
ical model, and since the Lindbladian is not hermitian, it is not guaranteed that it is diag-
onalizable for any value of the parameters. However, function theory [50] ensures that
if there is a finite region of parameter space where L is diagonalizable, then it is diag-
onalizable for any Ω except for a countable number of exceptions. The eigenvalues λi
must lie on the complex half plane Re(λi) ≤ 0, and in order to preserve the hermiticity
of the eigenmatrices, the non-real eigenvalues exist in complex conjugate pairs [39]. We
can recognize another relevant quantity, the spectral gap ∆, which determines the slowest
non-zero rate of convergence towards the steady state. Then the real part of the eigen-
values generates the relaxation towards the steady state, and for a unique NESS, we have
that

ρ̂ss = lim
t→∞

ρ̂(t) = lim
t→∞

eLtρ̂(0) , (1.50)

that is, the Lindbladian transforms any arbitrary initial ρ̂(0) into the non-equilibrium
steady state.
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1.2. The Lindblad quantum master equation

.

Figure 1.2 – Schematic figure of the spectrum of the Linbladian L. The λi eigenvalues
lie on the non-positive complex plane, and the non-real eigenvalues exist in complex con-
jugate pairs. The solid circles depict eigenvalues that cause a loss of proportion of the
density matrix: the non-real ones as spirals, the real ones as decays. The empty circle
represents the steady state, the eigenvalue that survives in the infinite time limit. ∆ is the
spectral gap, it determines the slowest non-zero rate of convergence towards the steady
state.

Dissipative phase transitions

Understanding the emergence of criticality is a focal point in the research of open quan-
tum systems. Although studying the nature of this criticality is out of the scope of the
present thesis, the efficiency of each novel numerical approach is to be tested in the criti-
cal parameter region of the physical model. Therefore, we would like to give an insightful
analogy between the quantum phase transitions and the emerging dissipative phase transi-
tions of Markovian open systems, however, for a more detailed review readers are referred
to [11,37,39,40].

Quantum phase transitions are driven by quantum fluctuations, and they can be ad-
dressed through the competition between the non-commuting terms of the Hamiltonian.
Unlike classical, or thermal, phase transitions, they occur at zero temperature, and while
the thermal phase transitions induce a complete reorganization of the system itself, quan-
tum phase transitions are characterized by an sudden change in the ground state of the
system. This change is signalled by the closure of the first excitation gap at a critical value
of the system parameters.

Despite the fact that the Hamiltonian and the Lindbladian are very different mathe-
matical objects, one can draw a similarity between them in the scope of dissipative phase
transitions. Dissipative phase transitions emerge due to the constant intrinsic exchange be-
tween system and environment, and there are several factors that compete in determining
the NESS including non-commuting terms in the Hamiltonian and dissipation induced
fluctuations. Their presence is apparent by the non-analytic behaviour of the quantum
observables and the closing of the spectral gap ∆ for a critical parameter value in the
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Chapter 1. Theory of open quantum systems

thermodynamic limit of increasing system size. It has been shown [39], that while for a
first order phase transition the gap only closes at the critical point, for a second order
phase transition associated to a symmetry-breaking it remains closed in the whole region
of broken symmetry. When the spectral gap vanishes, the lifetime of the mode with the
first non-zero eigenvalue becomes infinite, and the relaxation towards the steady state is
slowed down. This phenomenon is called critical slowing down and has been studied for
dissipative spin [17] and bosonic [13] lattices.

1.3 Paradigmatic models

Previously we reviewed the fundamentals theory of Markovian open quantum systems,
and we have also introduced a differential equation describing the dynamics of the reduced
density matrix of the system, the Lindblad master equation. Within the analysis of driven-
dissipative systems there are a number of paradigmatic models that are often used as a
first example to benchmark a novel numerical approach. A significant amount of these
models are based on spin-1/2 lattice system due to the emergence of exotic phenomena,
including non-equilibrium quantum phase transitions [11,51]. In this chapter we review
three of the most prominent models that will be used throughout the thesis to compare
the newly developed methods to the existing ones.

1.3.1 The dissipative XYZ model

Let us consider a spin-1/2 model on a lattice with periodic boundary condition whose
Hamiltonian takes the form of a conventional Heisenberg model

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂

x
j + Jyσ̂

y
i σ̂

y
j + Jzσ̂

z
i σ̂

z
j

)
, (1.51)

where σ̂xj , σ̂yj , σ̂zj are the Pauli matrices, σ̂±
j = (σ̂xj ± iσ̂yj )/2 and Jα are the coupling con-

stants between nearest neighbour spins. This Hamiltonian is coupled to an environment
that subjects each spin to a dissipation process into the state |σz = −1〉. The quantum
master equation reads

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{
σ̂+
k σ̂

−
k , ρ̂

}
− 2σ̂−

k ρ̂σ̂
+
k

]
, (1.52)

where γ is the dissipation rate. In case of an isotropic spin-spin interaction along the
xy-plane, namely the XXZ model, the steady state is easily understood. For this, the
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Hamiltonian can be rewritten as

Ĥ =
∑
〈i,j〉

(
2Jx(σ̂+

i σ̂
−
j + σ̂−

i σ̂
+
j ) + Jzσ̂

z
i σ̂

z
j

)
. (1.53)

This conserves the global magnetization along the z axis , thus it does nothing to counter-
act the spontaneous decay. The steady state of this model is the trivial dark state, all spin
polarized as |σz = −1〉.

However, for an anisotropic spin-spin coupling, the total spin is no longer conserved, a
competition arises between the coherent Hamiltonian dynamics and the incoherent spin
flips. The single-site Gutzwiller mean-field theory for the density matrix, which will be
introduced in Section 2.1, predicts a rich phase diagram with a dissipative phase transition
from a paramagnetic phase, where all the spins point along the z-axis, to a ferromagnetic
one, with a finite magnetization in the xy-plane [15] (Figure 1.3). Yet, more refined calcu-
lations [14,16–18,28,52], based on numerical methods including many-body correlations
showed that the phase transition does not occur for one-dimensional geometries, and the
critical behaviour only emerges in two-dimension.

A viable experimental scheme were proposed in [15], and experiments were carried out
using Rydberg-dressed atoms [53], Rydberg atoms [54–56], or dipolar atoms or molecules
[57].

Figure 1.3 – Mean-field phase diagrams for the dissipative XYZ model with (a) Jz/γ = 1
and (b) Jz = 0. The different phases are paramagnetic (PM), ferromagnetic (FM), antifer-
romagnetic (AFM), spin-density-wave (SDW), and staggered-XY (sXY). This illustration
has been presented in [15].
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1.3.2 The dissipative quantum transverse Ising model

We present another theoretical model, in which we consider an array of spin-1/2 parti-
cles whose Hamiltonian is governed by

Ĥ = h
∑
i

σ̂xi + Jz
∑
〈i,j〉

σ̂zi σ̂
z
j , (1.54)

with σ̂αi being the Pauli matrices {α ∈ x, y, z〉}, h is the uniform field in transverse di-
rection, and Jz the coupling strength between nearest neighbour spins. Once again, we
consider local dissipative spin flip processes D(σ̂−

i ), which fully determines the Lindblad
master equation in eq. (1.36). In case there is no coupling with the environment (γ = 0),
the transverse field Ising model becomes analytically solvable in one-dimension, and it fea-
tures a second order phase transition from a paramagnetic phase to an antiferromagnetic
one at the critical point (h/Jz)C = 1/2 [58]. The phase diagram on a square lattice is quali-
tatively similar to the one-dimensional case, with again a paramagnetic-antiferromagnetic
phase transition. The position of the critical point is known with high precision from
Monte Carlo simulations (h/Jz)C = 1.52219(1) [59].

In contrast to the non-dissipative case, the phase diagram of the dissipative Ising model
is still a matter of debate in the literature. Nonetheless, recent studies [60, 61] has fo-
cused on numerical models that are capable of including non-local correlations in order
to determine the phase diagram in one- and two-dimensions, and successfully analysed
the quantitative and qualitative changes emerging from the competition between the co-
herent dynamics and the dissipation. Due to the fast development of quantum simulators
in recent years, this model can now be experimentally realized using Rydberg-atoms [62].

1.3.3 The dissipative synthetic Ising model

We now introduce a model that has been the focus of recent experimental studies due
to an accurate mapping of multilevel Rydberg atoms on interacting spin-1/2 particles [62–
66]. In the experimental setting the system is governed by the Hamiltonian

Ĥ =
∑
i

(Ω
2
σ̂xi − δn̂i

)
+ 1

2
∑
〈i,j〉

Un̂in̂j , (1.55)

where the atoms are coherently coupled to the Rydberg state with a two-photon transition
of Rabi frequency Ω and a detuning δ, the interaction term U arises from the interactions
between the atoms, and n̂i = (I + σ̂zi )/2 is the projector on the Rydberg state for atom
i. For (δ/U)TFI = 1 this Hamiltonian corresponds to the previously discussed transverse
Ising model.

The ground state phase diagram of the model is well understood and demonstrated in
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Figure 1.4 – Sketched ground state phase diagram for the synthetic Ising model in
eq. (1.55) for a one-dimensional chain and a square lattice. This illustration has been
presented in [62].

Figure 1.4 for both one- and two-dimensional lattices. The one dimensional array features
a second order phase transition from an antiferromagnetic region to a paramagnetic one,
delimited by a transition line of the (1 + 1)d universality class [58]. The phase diagram
for a square lattice is qualitatively similar to the lower dimensional case with the phase
boundary being in the (2 + 1)d Ising universality class [58].

Since the experimental setup has several sources of imperfection [67], describing the
time evolution of the system as purely Hamiltonian is not exact. In particular, the phase
noise of the excitation lasers leads to dephasing already for a single atom. This decoher-
ence can be taken into account with a local dephasing in the scope of Markovian open
quantum systems as

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{n̂k, ρ̂} − 2n̂kρ̂n̂k] . (1.56)

This phenomenological dephasing term has been tested and found to be in great agreement
with the experimental results in [62]. Note, the steady state of this model is analytically
known and can be deduced as follows. The purely dephasing decoherence of eq. (1.56)
yields a hermitic Lindbladian. Since the left eigenmatrix of L is always the identity, and the
left and right eigenmatrices of hermitic super-operators must coincide, therefore eq. (1.56)
describes a dynamics that converges to a fully mixed steady state. As the stationary solu-
tion is well-known, in this thesis we only study the real-time evolution of the model.
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CHAPTERCHAPTER2
Numerical approaches to open quantum
systems

In Chapter 1 we have discussed the fundamentals of the theory of open quantum systems
and, assuming Markovian coupling to the environment, we have introduced the Lindblad
master equation. Only a few models within this description admit an analytical solution
[24,25], and the quest for efficient numerical methods is a research field that is still in its
infancy. Although the simulation of open quantum systems is computationally much more
demanding than for closed systems, many recent tools have been developed following in
the footsteps of well-established numerical methods for Hamiltonian quantum systems.
In general, one has two possibilities to introduce an approximate description; one can
either solve the problem on a smartly truncated Hilbert space, or find an effective and
efficient representation of the wave function or the density matrix. Generally, there are
two different areas that are of interest when studying open quantum systems: to simulate
the dynamical evolution of the system or to find the asymptotic steady state. In some
cases, even when the main focus is on the properties of the non-equilibrium steady state,
it is more efficient to calculate the full time evolution of the system. In this chapter we
will address this distinction when discussing the most common numerical approaches.

First, we will look at mean-field methods where the master equation is decoupled into
a set of effective single site equations. We then review a stochastic method called the
Monte Carlo Wave Function (MCWF) in which the system-environment interaction is
unravelled onto a stochastic process that adds to the unitary Hamiltonian evolution and
the effective damping terms. Finally, we cover tensor network based methods and a real-
space renormalization approach.

2.1 Mean-field approximations

Within the mean-field approximation to open quantum systems [68], it is possible to
develop a generalized Gutzwiller approach by introducing a product ansatz for the density

27



Chapter 2. Numerical approaches to open quantum systems

matrix

ρ̂ =
⊗
i

ρ̂i (2.1)

with the reduced local density operators ρ̂i = Tr6=iρ̂. By tracing out all sites except one,
eq. (1.36) yields a set of single-site master equations

dρ̂i
dt

= Tr6=i

[
dρ̂

dt

]
= −i

[
ĤMF
i , ρ̂i

]
+ Di [ρ̂] , (2.2)

where ĤMF
i are the mean-field Hamiltonian and Di are the mean-field dissipators. For

systems with translation invariance, it is sufficient to solve a lone single-site problem,
otherwise eq. (2.2) is solved self-consistently.

There is a wide range of models where mean-field approximations predict the presence
of bistability, including the dissipative Ising model [66,69,70], as well as the one-photon
driven dissipative Bose-Hubbard model [71,72]

Ĥ =
∑
i

(
−∆â†

i âi + U

2
â†
i â

†
i âiâi + F â†

i + F ∗âi

)
+ J

∑
〈i,j〉

â†
i âj

L [ρ̂] = −i
[
Ĥ, ρ̂

]
+ D(â) [ρ̂] ,

(2.3)

where âi are the bosonic annihilation operators, J is the hopping strength, U is the strength
of the non-linearity and F is the amplitude of the one-photon driving. This bistability is
a product of the approximation, and is replaced by a first-order phase transition for both
models. For the dissipative Ising model, tensor network based simulations (Sec. 2.3) has
showed that while low bond dimension predicts a bistable region, it is quickly replaced
with a first-order phase transition as the bond dimension is systematically increased [28].
As for the driven dissipative Bose-Hubbard model, a theoretical analysis based on Keldysh
formalism confirmed the presence of a first order transition [73].

Mean-field approximation has been used to predict second-order phase transitions for
the dissipative XYZ model [15], and for the dissipative Bose-Hubbard model with two-
photon pumping [12]. For the dissipative XYZ model studies have showed that the phase
transition only survives in two-dimensional models, and disappears for a one-dimensional
lattice [14, 16–18, 28, 52]. In case of the dissipative Bose-Hubbard model, it has been
shown that two-photon driving preserves a Z2 symmetry of the Hamiltonian which can
be then spontaneously broken [39]. This gives rise to an Ising-like second order phase
transition [74,75].

As the correlations between the different lattice sites are neglected, the single-site Gutz-
willer approach can only be a crude approximation of open system dynamics. The cluster
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2.2. The Monte Carlo Wave Function method

mean-field approach tries to overcome this limitation by isolating a given subset of C
contiguous lattice sites, instead of decoupling the sites one-by-one [14]

ρ̂ =
⊗
i

ρ̂i −→ ρ̂ =
⊗

C
ρ̂C . (2.4)

Once again, the resulting cluster mean-field equations are solved self-consistently, but
within a subset C the short term correlations are taken into account exactly. Therefore,
the accuracy of the method can systematically improved by considering clusters of increas-
ing size. While for smaller subsets it is feasible to directly integrate the quantum master
equation, for larger sizes one needs to resort to approximate solutions. The cluster mean-
field method was successfully used to calculate the phase diagram of the dissipative XYZ
model [14], as well as the dissipative Ising model [60].

2.2 The Monte Carlo Wave Function method

While following the Lindblad master equation describes the average dynamics of the
system, it is also possible to formulate a representation that is based on averaging over a
large number of stochastically evolved quantum state trajectories. At any initial time t0 the
density matrix can be decomposed as a statistical mixture ρ̂(t0) =

∑
α ηα|ψα(t0)〉〈ψα(t0)|,

and after propagating the individual pure states |ψα(t0)〉 to time t one can compute the
observables as

〈Ô〉 = Tr(ρ̂Ô) =
∑
α

ηα〈ψα(t)|Ô|ψα(t)〉 . (2.5)

One can either sample the probability distribution ηα with standard Monte Carlo tech-
niques, or start from an initial pure state |ψα(t0)〉 and average over a large number of
trajectories. Since the individual realizations are independent, this task is performed on a
parallel manner resulting in reduced computational complexity. However, one needs to
make sure that the individual states are propagated on such a way that the ensemble of
trajectories still satisfies ρ̂t =

∑
α ηα|ψα(t)〉〈ψα(t)|.

As we have discussed in Chapter 1, the Monte Carlo Wave Function technique provides
a possible unravelling of the Lindblad master equation, where the individual trajectories
can be seen as a photon counting process where we continuously measure the state of the
system [76–79]. A recent study [80] has extensively covered the details of the approach,
here we only review the fundamental principles. Recall, we can rewrite the Lindblad equa-
tion (1.36) in a more convenient form by defining the effective Hamiltonian Ĥeff and the
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jump super-operator Lj

Ĥeff = Ĥ − i

2
∑
k

γkL̂
†
kL̂k

Lj [ρ̂] =
∑
k

L̂kρ̂L̂
†
k

˙̂ρ(t) = −i
[
Ĥeff, ρ̂

]
+ Lj [ρ̂] .

(2.6)

The typical evolution of a quantum state then can be described by a slow non-unitary
dissipative evolution, combined with sudden quantum jumps. Remarkably, the evolution
of the system does not follow a unitary dynamics even in the absence of a quantum jump,
since the knowledge that a jump did not occur already provides us information about the
system. This split in the dynamics is then reflected in the quantum jump method such that
at each time step δt we perform the following algorithm to simulate the evolution of a
quantum state |ψα(t)〉:

1. From the initial state |ψα(t)〉 compute the probability of no-jump p0 (eq. (1.43)),
and the probabilities pk associated to the jump operators L̂k (eq. (1.45)).

2. Determine whether a jump will occur or not. If it does occur, choose randomly
a jump operator Lk. In practice, both of these events are determined by drawing
a random number r ∈ [0, 1]. If r < p0 then the system follows the non-unitary
evolution dictated by Ĥeff , otherwise a jump takes place and its index κ is smallest
integer such that

∑κ
k=0 pk > r.

3. If no jump occurred, compute the infinitesimal evolution generated by Ĥeff , and
renormalize the new state with p0 to obtain the state |ψα(t+ δt)〉 (eq. (1.45)).

4. If a jump did occur, calculate the new state |ψα(t+ δt)〉 and renormalize it with pκ
(eq. (1.46)).

This procedure is repeated until the desired time tmax has been reached. The algorithm is
schematically illustrated in Figure 2.1. An alternative and computationally more efficient
approach is based on the so called waiting time distribution. In this case, instead of
making a decision at each δt time step, the state |ψα〉 is propagated continuously under
the effective Hamiltonian, until its norm drops below a previously drawn random number
r ∈ [0, 1], when a jump event is performed.

Then, a large number of individual trajectories is constructed this way, all starting from
the same initial state |ψα(0)〉. The density matrix is then recovered as the average of the
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Figure 2.1 – The figure illustrates the stochastic time evolution of a single trajectory in a
Monte Carlo Wave function simulation [81].

projectors

ρ̂(tmax) ≡ Π̄(tmax) = 1
Ntraj

∑
α

|ψα(tmax)〉〈ψα(tmax)| , (2.7)

where Ntraj is the number of individual trajectories. If the initial density matrix is a statis-
tical mixture of quantum states, then an additional average should be performed. We can
verify the consistency of eq. (2.7) by first writing Π̄(t+δt) after a time step δt as a mixture
of the no-jump and jump evolution with weights pk. Then by replacing the wave functions
with their explicit expression (eq. (1.43)-(1.46)) and setting dΠ̄/dt = (Π̄(t)+δt)−Π̄(t))/δt
we get

dΠ̄
dt

= −i
[
Ĥ, Π̄

]
+
∑
k

γk

(
L̂kΠ̄L̂†

k − 1
2
L̂†
kL̂kΠ̄ − 1

2
Π̄L̂†

kL̂k

)
, (2.8)

which is the Lindblad master equation [36, 80]. An alternative and computationally
more efficient approach is based on the so called waiting time distribution. In this case,
instead of making a decision at each δt time step, the state |ψα〉 is propagated continuously
under the effective Hamiltonian, until its norm drops below a previously drawn random
number r ∈ [0, 1]. While for most system (and Hilbert space H) sizes quantum trajecto-
ries can be numerically computed for the whole Hilbert space, for larger sizes it has to be
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combined with various approaches to reduce H to a physically relevant region, e.g. matrix
product states (Sec. 2.3). Another possibility that allows further dimensionality reduction
is provided by the Gutzwiller Monte Carlo approach [10,18,82] which employs a special
ansatz for |ψα〉 in the form of a product state over different lattice sites

|ψGα 〉 =
⊗
i

|ϕi〉 , (2.9)

where i denotes the different modes or lattice sites and |ϕi〉 is a single-mode wave function
on site i. Hence, while the degrees of freedom of the total wave function grow exponen-
tially with the system size N as dN with d being the dimension of the local Hilbert space,
the dimensionality of |ψGα 〉 grows only linearly with Nd. This method has similar compu-
tational cost as the previously introduced mean-field approximation (Sec. 2.1), however,
sampling a set of trajectories in the form |ψGα 〉 can contain more information than eq. (2.1).
While neither ansatz is capable of capturing quantum entanglement between different lat-
tice sites, an ensemble of trajectories can sustain non-trivial classical correlations whereas
a product state of local density operators can not [80].

In this thesis, the MCWF calculations have been performed with the help of the QuTiP
library [83,84].

2.3 Matrix product operator approach

The notion of the “physical corner of Hilbert space”, namely that the physically rele-
vant states constitute only an exceedingly small fraction of the exponentially large Hilbert
space, was first introduced in the context of many-body quantum systems. For many of
these models, the entanglement entropy of the ground state grows like the boundary of a
system and not like its volume [85–87]. Therefore, the pure states exhibiting low entan-
glement in the sense of satisfying this area law constitute a very small subset of all pure
states, the “corner of Hilbert space”.

The motivation behind the introduction of tensor network states was to design such a
variational representation |ψMPS〉 for the wave function |ψ〉 that satisfies the area law, and
also capable of representing the quantum correlations of the physically relevant states effi-
ciently and in a controllable manner. This method can be seen as the minimization of the
variational energy 〈ψMPS|Ĥ|ψMPS〉, and turned out to be a generalization of the previously
well-known and widely used density matrix renormalization group (DMRG) [88, 89] al-
gorithm.

These are the so called Matrix Product States (MPS) [90–92]

|ψMPS〉 =
d−1∑

s1,...,sN =1
cs1,s2,...,sN |s1s2 . . . sN 〉 , (2.10)
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where d is the dimension of the Hilbert space and the coefficients cs1,s2,...,sN can be written
as products of tensors

cs1,s2,...,sN = A[s1]A[s2] · · ·A[sN ] , (2.11)

with A[si] being rectangular matrices that are computed with singular value decomposi-
tion (SVD). The dimensionality reduction is done by truncating the result of the SVD, and
keeping only the D most significant values, with D referred to as the bond dimension. It
can be shown [91], that this quantity directly controls the amount of entanglement present
in the representation. The properties of the MPS ansatz are well understood, and the con-
traction of tensors can be done exactly and efficiently [93]. MPS based methods produced
extremely accurate results for ground state calculations of closed quantum systems [94].

It is possible to extend the MPS formalism to operators, giving rise to the MPO methods,
however, there are several intrinsic bottlenecks limiting their application such as positiv-
ity, hermiticity and dimensionality. An MPO representation of the density matrix for a
system with N sites were formulated in [91] as

ρ̂MPO =
d∑

s1,s′
1...,sN ,s

′
N =1

(
B[s1,s′

1] · · ·B[sN ,s
′
N ]) |s1s2 . . . sN 〉〈s′

1s
′
2 . . . s

′
N | , (2.12)

where B[sk,s
′
k] are Dk ×Dk+1 dimensional matrices that can be decomposed as

B[sk,s
′
k] =

∑
a=1

A[sk,a] ⊗
(
A[s′

k,a]
)∗

. (2.13)

Such a construction ensures the positivity of the density matrix, however, the required
bond dimension makes it inefficient to calculate [95]. An alternative representation has
been proposed in [96], where the density matrix is recast into a vector form and can be
represented with an MPS as

|ρ̂MPS〉〉 =
d2−1∑

s1,...,sN =1
cs1,s2,...,sN |s1〉〉 ⊗ |s2〉〉 ⊗ · · · ⊗ |sN 〉〉 , (2.14)

where |si〉〉 are operators recast in vector representation forming a local basis of dimen-
sion d2. The vectorized density matrix |ρ̂MPS〉〉 is then evolved using Time Evolving Block
Decimation (TEBD) [96], assuming that the Lindblad superoperator can be decomposed
as a sum of terms involving at most nearest neighbours. Although this method has proven
to be efficient and simple, positivity was not guaranteed.
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Figure 2.2 – Illustration of matrix product states. a) Writing the wave function in an MPS
form. b) Diagram of the density matrix as an MPO. c) Diagram of the vectorized density
matrix.

These dynamical MPO/MPS techniques employ the long-time dynamics to obtain the
NESS in several different settings [97–102], however, simulating the real-time dynamics
has its disadvantages. While it captures the transient behaviour of the system, it may re-
quire large bond dimensions for the intermediate states even though the final steady state
is well-represented with a small bond MPO [97, 99]. Lately, this method has been im-
proved by two independent works [27,29], where instead of the real time evolution they
introduce a variational minimization for ‖L|ρ̂MPS〉〉‖ and

∥∥∥L†L|ρ̂MPS〉〉
∥∥∥ respectively.

The generalization of MPS states for higher dimensions, also known as Projected En-
tangled Pair states (PEPS) [103] has unfortunately many limitations, including the high
programming effort and the non-trivial PEPS contractions. Nonetheless, in recent years
a significant amount of studies have been focusing on developing it into a state-of-the-art
tool [104–106], even though their success is mostly limited for ground state calculation
of closed systems.

2.4 Corner-space renormalization

Another approach that is based on trying to find the most relevant subspace in an expo-
nentially growing Hilbert space is the Corner-Space Renormalization (CSR) method [30].
For this, let us consider two lattices, A and B, whose density matrices are ρ̂A and ρ̂B. We
are interested in the properties of the total system that results from spatially merging A
and B. The assumption of CSR is, that one can construct the “relevant” corner of the
Hilbert space ĤA ⊗ HB by using the most probable eigenvectors of the sub-lattices. To
find this corner one first diagonalizes A and B as

ρ̂A =
∑
a

ηa|ϕAa 〉〈ϕAa |

ρ̂B =
∑
b

ηb|ϕBb 〉〈ϕBb | ,
(2.15)
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where |ϕAa 〉 and |ϕBb 〉 form an orthonormal basis for latticeA andB respectively, and ηa, ηb
are the probabilities. The two lattices then spatially merged such that H = ĤA⊗HB, and
the basis for this space is then constructed from the P most probable product state in the
form |ϕAa 〉|ϕBa 〉, ranked by the joint probability ηaηb. This effectively means considering
the subspace spanned by

C(P ) = {|ϕAa1〉|ϕAb1〉, |ϕAa2〉|ϕAb2〉, . . . , |ϕAaP
〉|ϕAbP

〉} (2.16)

where ηaiηbi
≥ ηai+1ηbi+1 . Finally, the steady state of ρ̂ ∈ H is computed on the truncated

basis. The value of the cut-off P is successively increased until convergence of the observ-
ables is achieved. Note, this algorithm becomes exact in the limit of P = dim(H). The
CSR method is graphically illustrated in Figure 2.3.

The CSR was first introduced for the driven dissipative Bose-Hubbard model reaching
lattice sizes up to 4 × 4 and 6 × 3 [30], then successfully confirmed the existence of critical
behaviour in the two-photon driven dissipative Bose-Hubbard model [74]. It has also been
used to study the critical properties of two-dimensional spin lattices interacting via the
dissipative XYZ model [16]. The method provides a reasonably fast numerical algorithm,
nonetheless, its limitations present themselves for spatially inhomogeneous systems and
for highly mixed systems, where it has convergence issues even for large truncation values.

Figure 2.3 – The figure illustrates the corner-space renormalization algorithm.
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CHAPTERCHAPTER3
Projector Monte Carlo methods

In this Part, we introduce a real-time quantum Monte Carlo approach for open quan-
tum systems which has been developed in the footsteps of a well-established Hamiltonian
method, the Full Configuration Interaction Quantum Monte Carlo (FCIQMC). FCIQMC
belongs to a wider class of methods, called Projector Monte Carlo (PMC), and we start
by familiarizing ourselves with the formalism and taxonomy of these approaches in the
scope of closed systems.

3.1 Formalism

PMC methods are tailored to calculate the ground state properties of Hamiltonian sys-
tems, both at zero and finite temperature [31, 107, 108], and they are based on the same
theoretical foundation, a stochastic implementation of the imaginary time Schrödinger
equation. We start by considering the time-dependent Schrödinger equation of the Hamil-
tonian Ĥ

i
∂|ψ〉
∂t

= Ĥ|ψ〉 , (3.1)

whose formal solution reads as

|ψt〉 = e−iĤt|ψ0〉 . (3.2)

By transforming from real-time to imaginary-time with the Wick rotation τ = it, we get
the imaginary-time Schrödinger equation and its solution as

∂|ψ〉
∂τ

= −
(
Ĥ − SI

)
|ψ〉 (3.3)
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Chapter 3. Projector Monte Carlo methods

|ψτ 〉 = e−(Ĥ−SI)τ |ψ0〉 , (3.4)

where we also introduced the methodologically crucial energy shift S. Using the spectral
decomposition of the evolution operator, the infinite propagation time limit reads as

lim
τ→∞

|ψτ 〉 = lim
τ→∞

∑
i

e−(Ei−S)τ |Φi〉〈Φi|ψ0〉 , (3.5)

with eigenvalues Ei and the eigenstates |Φi〉 of the Hamiltonian Ĥ. Eq. (3.5) then lets us
infer the asymptotic behaviour depending on the relation between the ground state energy
E0 and the value of the energy shift S,

i if S < E0, lim
τ→∞

|ψτ 〉 = 0, the wave function decays at an exponential rate,

ii if S > E0, lim
τ→∞

|ψτ 〉 = ∞, the wave function grows exponentially fast,

iii if S = E0, lim
τ→∞

|ψτ 〉 ∝ |Φ0〉, the wave function converges to the ground state assuming

there is a non-zero overlap between |ψ0〉 and |Φ0〉.

Identifying e−(Ĥ−SI)τ = P̂ (τ) as the projector, this behaviour lays the foundation for
the projector techniques. We note here, that the word “projector” is used rather loosely
in the context of PMC, a projector is any function of the Hamiltonian whose dominant
eigenstate is the ground state. To obtain |ψτ→∞〉, PMC methods numerically iterate the
equation

|ψτ+∆τ 〉 = P̂ (∆τ)|ψτ 〉 , (3.6)

which, for S = E0, converges to the ground state, regardless of the initial state. Note,
that reaching convergence by the repeated application of the projector is equivalent to
the power method [109], which is used to find the largest eigenvector of a matrix. To get
around the memory limitation imposed by the exponentially growing Hilbert space, PMC
methods store at any instant in time only a random sample of vector or matrix elements,
i.e. they perform a random walk in the space spanned by the basis elements.
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3.2 Taxonomy

While all members of the PMC family rely on the same theoretical foundation, they
differ in many practical aspects, that can be categorized according to the following char-
acteristics.

• Projector: the choice of the projector is not unique, it can be any function of the
Hamiltonian, whose dominant eigenstate is the ground state. The most common
choices include the exponential projector P̂ (∆τ) = e−(Ĥ−SI)∆τ and its first order
linear approximation P̂ (∆τ) = I − (Ĥ − SI)∆τ .

• Temperature: the different approaches can be tailored either for finite or zero tem-
perature calculations.

• Basis: the methods are distinguished by the choice of the basis states, i.e. the space
where the Monte Carlo walk is performed.

Table 3.1 classifies some of the most commonly used projector techniques, such as Diffu-
sion Monte Carlo (DMC) [110, 111] and Green’s Function Monte Carlo (GFMC) [112,
113]. It also includes the recently developed FCIQMC for quantum chemistry calcula-
tions [114–117], that has been introduced for modeling both ground state [118,119] and
real-time dynamics [120]. We also present the Density Matrix Quantum Monte Carlo
(DMQMC) [121–123], a finite temperature variant of FCIQMC, that has been designed
to sample the space of density matrices, instead of the space of wave functions. The practi-
cal steps of the implementation, such as how to adjust the energy shift to achieve S = E0,
will only be introduced for the FCIQMC method in Chapter 4.

Table 3.1 – Classification of the most commonly used PMC techniques. The comment
“(smp. τ )” denotes that τ is not a fixed value but sampled from a probability distribution.

Method Projector Temperature Basis

DMC e−(Ĥ−SI)∆τ zero 1st quantized

GFMC e−(Ĥ−SI)∆τ (smp. τ ) zero 1st quantized

FCIQMC I − (Ĥ − SI)∆τ zero 2nd quantized

DMQMC I − (Ĥ − SI)∆τ finite 2nd quantized
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Chapter 3. Projector Monte Carlo methods

3.3 The fermionic sign problem

While PMC methods are computationally effective tools to address many-body bosonic
quantum systems, their success is greatly limited by the sign problem for the majority of
fermionic models. The features of how the problem manifests itself differs for the vari-
ous numerical approaches, and discussing these details is out of the scope of the present
thesis. In general, however, it arises when the dominant eigenstate of the projector does
not correspond to the fermionic ground state of the Hamiltonian. Then the repeated ap-
plication of the projector induces the growth of a state relative to the ground state, which
generally leads to an exponential error growth in the quantum mechanical estimators.
Therefore, the severity of the sign problem can be qualified by the gap between the domi-
nant eigenstate of the projector and the fermionic ground state. In a first quantized basis,
the projector has solely non-negative off-diagonal elements and the dominant eigenstate
is entirely of one sign. This state corresponds to the bosonic ground state, thus making
it impossible for it to represent the fermionic ground state which is well-known to have
a nodal structure. Hence, the sign problem is connected to the gap between the bosonic
and fermionic ground states [110, 111]. In a second quantized basis however, the domi-
nant eigenstate does not necessarily correspond to a physical bosonic state [31]. In this
thesis, we discuss the details of the emergence of the sign problem only in the scope of
FCIQMC simulations for a detailed review on other numerical approaches readers are
referred to [31,124,125].
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In Chapter 3, we covered the theoretical foundation of projector Monte Carlo tech-
niques, and we introduced the concept of the fermionic sign problem. Recently, a par-
ticular class of PMC techniques has been developed for quantum chemistry simulations,
namely the Full Configuration Interaction Quantum Monte Carlo [114–117, 126]. The
method has been extended to sample both ground state [118, 119] and real-time dynam-
ics [120] of closed many-body systems, and due to a particular sampling strategy, it has
proven to significantly alleviate the sign problem [115,127].

As we expect the sign problem to be highly relevant in open many-body calculations,
using FCIQMC as a stepping stone in the development of a novel open system approach
holds the promise of a computationally effective tool. In this chapter, we overview the
practicalities of the FCIQMC algorithm, as well as its effect in challenging the sign prob-
lem.

4.1 Overview

FCIQMC, as all other PMC techniques, relies on the formal solution of the imaginary-
time Schrödinger equation by exploiting the fact, that its long-time limit evolution projects
out the ground state from any arbitrary initial wave function (assuming to have non-zero
overlap with it). Having introduced an additional energy shift S and a linear projector
(see in Chapter 3), this solution reads as

|ψτ+∆τ 〉 = P̂ (∆τ)|ψτ 〉 = I −
(
Ĥ − SI

)
|ψτ 〉 . (4.1)

For S = E0 with E0 being the ground state energy, in the asymptotic limit of τ → ∞ the
wave function converges to the ground state. Since the value of E0 is a priori unknown,
the simulation starts from an arbitrary S shift which is then slowly adjusted throughout
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the simulation. FCIQMC stochastically samples the first order Euler approximation of
eq. (4.1) on a discrete basis set {|Φi〉} where the wave function reads as

|ψτ 〉 =
∑
i

cτi |Φi〉 . (4.2)

From eq. (4.1), the evolution of the expansion coefficients cτi then yields

cτ+∆τ
i = [1 − ∆τ (Hii − S)] cτi − ∆τ

∑
j 6=i

Hijc
τ
j , (4.3)

where Hij = 〈Φi|Ĥ|Φj〉. To stochastically represent the evolution in eq. (4.3), we intro-
duce the notion of a fundamental unit, called walker. Each walker has a sign (q = ±1),
and can reside on one of the basis states |Φi〉, i.e. they contribute to the sampling of one
of the coefficients cτi . If n+

i is the number of positive and n−
i is the number of negative

walkers residing on |Φi〉, then the amplitude of that state is proportional to the net pop-
ulation as cτi ∝ nτi = n+

i − n−
i . For complex coefficients, this method can be generalized

by using two sets of walkers for the real and imaginary parts respectively [118]. Then
starting from an initial distribution, the walkers evolve by a set of rules that represent a
stochastically exact mapping of the discrete time evolution in eq. (4.3). This dynamics is
repeated until convergence is reached.

Note, that the last two terms of eq. (4.3) describe the rate at which cτi changes. Thus,
they are sufficient to define the dynamical rules of the walker evolution. At each time step,
on the entire walker population the following operations are performed:

i Spawning: the last term of eq. (4.3) describes at which rate the other coefficients cτj 6=i
contribute to cτi . The coefficients cτj 6=i linked with a non-zero Hij contribution are
called “connected” to cτi . While looping through walkers residing on |Φi〉, this step
of the algorithm is, in fact, equivalent to computing the contributions of cτi to its
connected basis elements cτj 6=i as

pspawn =
∑
j 6=i

pspawn(j|i) =
∑
j 6=i

−qi∆τHji . (4.4)

pspawn(j|i) represents the probability that a walker residing on cτi (parent) spawns
another signed walker on cτj (child). In case of a full Hamiltonian, summing over
all pspawn(j|i) involves O(dimH × Nw) operations, where Nw is the total number of
walkers Nw =

∑
i |n+

i − n−
i |. Instead, it is computationally more efficient to sample

only one of the connected states as

pspawn(j|i) = −qi∆τ
Hji

pgen(j|i)
, (4.5)
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reducing the number of iterations to O(Nw) at each iteration step. The probability pgen

of suggesting state j from state i is arbitrarily chosen as long as
∑
j pgen(j|i) = 1. While

this sampling increases the necessary number of iteration steps until convergence is
reached, the cost of each step becomes so much cheaper that the overall computational
efficiency if improved [114]. If |pspawn(j|i)| > 1 then the largest integer part, denoted
as
⌊
|pspawn(j|i)|

⌋
, is realized deterministically, and the fractional part stochastically. In

practice, this means that a random number r ∈ [0, 1] is drawn, and if r < (|pspawn(j|i)−⌊
pspawn(j|i)

⌋
|), then another walker is spawned.

ii Clone/Death: the second term in eq. (4.3) corresponds to the rate at which cτi is pro-
jected onto itself as

pclone(i) = ∆τ (Hii − S) . (4.6)

Numerically, this represents the probability that a walker is being copied (clone) if
pclone(i) < 0, or removed from the simulation (death) if pclone(i) > 0. Just as before, if
|pclone(i)| > 1, the integer part bpclone(i)c is realized deterministically, and the fractional
part stochastically.

iii Annihilation: if two walkers with opposite sign populate the same basis element, their
contribution to the amplitude is zero, and they can be removed from the simulation.
Therefore, at the end of the iteration step each |Φi〉 basis state has walkers of the same
sign only.

4.2 Population control and convergence criteria

As we have seen in Chapter 3, the relation between the shift S and the ground state
energyE0 determines whether the wave function converges to the ground state or infinitely
diverges. In the scope of FCIQMC, keeping S constant at a value above E0 then yields
to an exponentially growing walker population, while S < E0 results in a decrease. Since
the value of E0 is a priori unknown, the value of S is first kept above the ground state
energy until the population reaches a desired Nw total number, then periodically adjusted
to balance the population growth [111,114] as

S(τ) = S(τ − ∆τ) + δ

∆τ
log

(
Nw(τ)

Nw(τ − ∆τ)

)
. (4.7)

The damping term δ prevents large fluctuations in S, and its value is to be decided em-
pirically. Once convergence is reached, the value of the shift provides an estimate of the
ground state energy S ≈ E0.

We note here, that while the exponential projector will always project onto the ground
state regardless of the size of the time step, this is not the case for its linear approximation.
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Recall, that after n FCIQMC iterations

P̂n|ψ0〉 =
[
1 − ∆τ(Ĥ − SI)

]n
|ψ0〉 =

∑
i

[1 − ∆τ(Ei − S)]n vi|ϕi〉

with Ĥ|ϕi〉 = Ei|ϕi〉, |ψ0〉 =
∑
i

vi|ϕi〉 ,
(4.8)

which converges to the ground state only if |1 − ∆τ(Ei − S)| < 1 for all Ei eigenvalues.
Using that S ≈ E0, this corresponds to

∆τ < τm = 2
Emax − E0

= 2
∆E

, (4.9)

where ∆E is the spectral width of the Hamiltonian. However, as long as the time step is
below τm, the simulation has no time step error and converges to the exact ground state.

4.3 Stochastic estimators

The FCIQMC method provides two alternative ways to compute the value of the ground
state energy. One estimate is obtained from the energy shift S, which, as explained earlier,
is periodically adjusted over the course of the simulation to keep the population number
more or less constant. Once this has been established, the ground state normalization is
conserved, and the estimated ground state energy is equal to the energy shift.

An alternative approach is given by the projected estimator

〈E〉τ = 〈ΨT |Ĥ|ψτ 〉
〈ΨT |ψτ 〉

=
∑
i c
τ
i

∑
j∈T Hijtj∑

i∈T c
τ
i ti

=
∑
i c
τ
i Hi∑

i∈T c
τ
i ti

, (4.10)

where |ΨT 〉 is the trial wave function expressed as

|ΨT 〉 =
∑
i∈T

ti|Φi〉 , (4.11)

and T is the set of basis states that contribute to the trial function. Since 〈E〉τ is a zero-
bias, zero-variance estimator when the trial wave function is equal to the ground state,
improving the quality of |ΨT 〉 reduces the stochastic fluctuations. Typical trial wave func-
tions are constructed from a single basis state, or as a snapshot of the coefficients cτi at a
given time step. This second implementation can be achieved with a negligible computa-
tional overhead by storing the Hi terms for each occupied basis state [126]. Accordingly,
the expectation value of an arbitrary observable Ô at a given instant in time is computed
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similarly

〈Ô〉τ =
∑
i c
τ
i

∑
j∈T Oijtj∑

i∈T c
τ
i ti

=
∑
i c
τ
i Oi∑

i∈T c
τ
i ti

. (4.12)

Once the simulation has asymptotically approached the ground state, i.e. the shift S con-
verged to a constant value, 〈Ô〉τ is averaged over a sufficiently large number of iteration
steps to obtain its ground state expectation value.

4.4 Algorithm

Let us now summarize the course of a typical FCIQMC simulation. We start by dispens-
ing an initial walker distribution, and setting a constant energy shift such that S > E0 to
obtain a rapid population growth. Once the total number of walkers has reached a prede-
terminedNw value, we begin to vary the shift according to eq. (4.7). When the observables
has reached a more or less constant value, the simulation continues until sufficient number
of samples has been collected for the stochastic estimators.

In each time step the following steps are performed:

1. Spawn: for a walker residing on site i a connected site j is chosen randomly
and a spawning event is made possible with a rate

pspawn(j|i) = −qi∆τ
Hji

pgen(j|i)
= −qi∆τHjiNconn , (4.13)

with Nconn being the total number of connected states [32].

2. Clone / death: for each walker on a given basis state i a cloning event is
sampled with the stochastically realized probability

pclone(i) = ∆τ (Hii − S) . (4.14)

3. Annihilate: those pair of walkers that reside on the same state with opposite
sign are removed from the simulation.

4. Update the energy shift: either, in constant shift mode, we do nothing or, in
constant Nw mode, S is adjusted as to eq. (4.7).

5. Sample observables: compute the observables at time τ following eq. (4.12).
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4.5 Sign problem in FCIQMC and population dynamics

In Chapter 3, we have made some general comments about the nature of the fermionic
sign problem, here, we discuss how it manifests itself during the course of an FCIQMC
simulation. We will follow the analysis of Spencer et. al. [115] by first considering two
population of non-interacting walkers, i.e. positive and negative ones. Removing the
annihilation then lets us understand its crucial role in the long-time convergence, and
explains the typical “plateau”-like behaviour present in FCIQMC dynamics [114].

Let us denote with n+
i the positive and n−

i the negative walkers residing on state |Φi〉,
and define the transition matrix as

dcτi
dτ

=
∑
j

Tijc
τ
j

T̂ = −(Ĥ − SI) = T̂+ − T̂− ,

(4.15)

where T̂+ contains the positive, and T̂− the absolute value of the negative elements of T̂ .
Then the dynamics of positive and negative walkers is governed by

dn+
i

dτ
=
∑
j

(
T+
ij n

+
j + T−

ij n
−
j

)
dn−

i

dτ
=
∑
j

(
T+
ij n

−
j + T−

ij n
+
j

)
.

(4.16)

These equations can be decoupled into the the evolution of two independent quantities

d(n+
i + n−

i )
dτ

=
∑
j

(
T+
ij + T−

ij

) (
n+
i + n−

i

)
d(n+

i − n−
i )

dτ
=
∑
j

(
T+
ij − T−

ij

) (
n+
i − n−

i

)
,

(4.17)

where we recognize the evolution of the wave function coefficients cτi ∝ n+
i − n−

i . As
τ → ∞, this dynamics tends to the dominant eigenvector of T̂ , just like we expect it from
eq. (3.3), the imaginary time Schrödinger equation. However, there is an addition signal
n+
i + n−

i present in the simulation that converges to the dominant eigenstate of T̂+ + T̂−

instead. It has been shown [115], that the dominant eigenvalue of T̂+ + T̂− will always
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be greater than or equal to the ground state energy. Thus, while it is in principle still
possible to obtain the ground state as n+

i − n−
i , it will be lost due to statistical noise as

n+
i + n−

i grows exponentially large. To study the effect of annihilation, we introduce
a simple process into eq. (4.16) which cancels walkers of opposite sign at a constant κ
rate [115]

dn+
i

dτ
=
∑
j

(
T+
ij n

+
j + T−

ij n
−
j

)
− κn+

i n
−
i

dn−
i

dτ
=
∑
j

(
T+
ij n

−
j + T−

ij n
+
j

)
− κn+

i n
−
i ,

(4.18)

where κ is a small, positive constant. Then the decoupled differential equations become

d(n+
i + n−

i )
dτ

=
∑
j

(
T+
ij + T−

ij

) (
n+
i + n−

i

)
− 2κn+

i n
−
i

d(n+
i − n−

i )
dτ

=
∑
j

(
T+
ij − T−

ij

) (
n+
i − n−

i

)
.

(4.19)

It is clear now how annihilation helps the emergence of the physical ground state. As the
population n+

i + n−
i grows, the annihilation events increase with them, until the rate of

spawning is balanced by the opposite walker cancellation. The physical signal n+
i − n−

i

however, is not affected by this process. Figure 5.11 shows the crucial role of annihilation
in the ground state convergence. Finally, we can conclude that the severity of the sign
problem in FCIQMC is characterized by the gap between the dominant eigenstate of the
physical projector T̂+ − T̂−, and the dominant eigenstate of T̂+ + T̂−, the projector with
all off-diagonal elements replaced by their absolute value.

Separating the walker population into two signals n+
i − n−

i and n+
i + n−

i in eq. (4.19)
also explains the typical “plateau”-like evolution ofNw in constant shift mode (Figure 4.2)
[114,115]. When S is kept constant at value that is slightly larger than the ground state,
in the first phase of the simulation the annihilation cannot counteract the exponential
growth of n+

i + n−
i . The evolution then enters a plateau phase where the dynamics is

driven by a balance between the walker cancellation and spawning events. The population
remains roughly constant, until the steadily growing ground state signal n+

i −n−
i starts to

dominate. From then we experience a second population growth, although now at a rate
determined by n+

i − n−
i . Allowing the walker population to grow further only serves to

reduce the statistical error, thus it is this stage when the adjustment in the energy shift is
introduced. The final phase of the simulation then proceeds with a more or less constant
walker population and the sampling of ground state properties might begin. Here we have
only given an empirical description however, extensive studies has shown [115,127] that
the intrinsic features of the physical model are reflected in the properties of the plateau,
namely, that the walker population required to reach it (the height) is directly related to
the severity of the sign problem.
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Figure 4.1 – The effect of removing the annihilation step from the FCIQMC algorithm.
The method is applied to a 100 × 100 randomly generated, real and hermitian matrix Ĥ.
E0 is the exact ground state, while E(τ) is its stochastic estimation. λ0 and λ(τ) are the
analogous quantities for the matrix Ĥ+ + Ĥ− with Ĥ = Ĥ+ − Ĥ−. While the traditional
algorithm lets the ground state emerge, in the absence of annihilation the simulation con-
verges to the ground state of Ĥ+ + Ĥ− instead.

Figure 4.2 – A typical evolution of the walker population where the value of the energy
shift S is kept at a constant value that is slightly larger than the ground state.
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In this chapter, we introduce a real-time quantum Monte Carlo approach for open
systems, which we call Driven-dissipative quantum Monte Carlo (DDQMC). DDQMC
has been developed in the footsteps of the Full Configuration Interaction Quantum Monte
Carlo (Chapter 4), using it to significantly alleviate the fermionic sign problem [115,127].

The development of this method was directed by Vincenzo Savona, and it was published
in Physical Review A [32]. A considerable amount of the description presented in this the-
sis has been extracted from [32]. The author’s contribution to the project was part of the
theoretical development, the numerical implementation and the physical model simula-
tions.

The method was implemented in C++ and the software can be accessed in the repository
https://github.com/EPFLLTPN/DDQMC [34].

5.1 Overview*

A mutual feature of the Lindbladian dynamics and the imaginary-time Schrödinger
equation is the fact that, in the long-time limit, the eigenstate with the smallest-real-part-
eigenvalue will survive. In the Lindbladian case, where the eigenvalues of the Lindblad
superoperator are complex valued with non-positive real part [37], this corresponds to
the zero eigenvalue solution — to the NESS (Table 5.1). It is therefore natural to apply
the foundation of projector Monte Carlo techniques to the simulation of the steady state.

5.1.1 Theory

DDQMC shares many of the features of FCIQMC, but while FCIQMC samples the imag-
inary time evolution of the wave function, DDQMC is focused on the real time dynamics
of the complex-valued density matrix. The general problem we aim to solve is in the form
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of eq. (1.36), the Lindblad quantum master equation. We introduce an additional shift
into eq. (1.36) with

dρ̂(t)
dt

= L [ρ̂(t)] − SIρ̂ ≡ L̃ [ρ̂(t)] , (5.1)

which then can be sampled stochastically in a similar manner as eq. (4.3). Like for
FCIQMC, we take the first order Euler approximation

ρ̂(t+ ∆t) = ρ̂(t) + L̃ [ρ̂] ∆t , (5.2)

and we introduce a set of walkers which now sample the amplitudes of basis operators
|Φi〉〈Φi|, from now on referred to as “configurations”. The expectation value of an ob-
servable Ô at a given instant in time can be computed as

〈Ô〉t = Tr[Ôρ̂(t)]
Tr[ρ̂(t)]

=
∑
i,j ρij(t)Oji∑

i ρii(t)
. (5.3)

Once the simulation has asymptotically approached the steady state – i.e. the shift S
has reached the steady state eigenvalue of the Lindbladian, S = 0 – the numerator and
the denominator can be averaged separately over a sufficiently large number of iteration
steps. Not setting Tr(ρ̂) = 1 in the simulation is analogous to not setting 〈ψ|ψ〉 = 1 in the
standard FCIQMC scheme. Eq. (5.3) ensures that the norm is correctly accounted for in
the calculation of expectation values.

Table 5.1 – A parallel is drawn between the imaginary time evolution of closed systems
and the real time evolution of the quantum master equation for open quantum systems. In
the case of open systems we assume, here and throughout this work, that a unique steady
state exists.

Closed system Open system

Operator Hamiltonian

Ĥ

Lindbladian

L

Dynamics Imaginary time
˙|ψτ 〉 = −(Ĥ − SI)|ψ〉

Real time
˙̂ρt = L [ρ̂]

Long time limit Ground state

e−(Ĥ−SI)τ : |ψ〉 τ→∞−−−→ |Φ0〉
Steady state

eLt : ρ̂ t→∞−−−→ ρ̂ss
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5.1.2 Multinomial formalism

The FCIQMC algorithm was originally performed by looping through all the walkers in
the simulation [114]. Here, we introduce a computationally more efficient strategy which
scales with the number of simultaneously occupied configurations, rather than the total
walker number. We refer to this variant as “multinomial formalism”. Let p(j|i) be the
probability of choosing the j-th connected state from i

p(j|i) = |Hji|∆τ∑
k |Hki|∆τ

= |Hji|∆τ
Ptot

. (5.4)

The number of actual spawning events N i
sp that take place for Ni walkers residing on site

i is determined by a stochastic process following a binomial distribution

f(N i
sp;Ni, Ptot) = Ni!

N i
sp!(Ni −N i

sp)!
P
N i

sp

tot (1 − Ptot)Ni−N i
sp . (5.5)

Then the N i
sp walkers are divided into groups {M1 . . .Ml}, where l is the number of states

connected to the starting one by a non-zero Hamiltonian element. For each group, Mj

walkers are spawned to state j-th with a sign qj = −sign(Hji)qi. The set of integers {Mj}
is drawn randomly following the multinomial distribution

fM (M1 . . .Ml;N i
sp, p(1|i) . . . p(l|i)) =

= N i
sp!

M1!···Ml! p(1|i)M1 × · · · × p(l|i)Ml .
(5.6)

For systems with local interaction, the Hamiltonian can be represented as a sparse matrix,
and a computationally efficient state representation makes the extra memory allocation
negligible (for an occupied state i it is necessary to store all the possible connected states
with the corresponding probabilities). Efficient algorithms for binomial and multinomial
random number generation are also present in the literature [128–130].

Similarly, rather than looping through the individual walkers, the number of clones for
a given state i can be determined at once as

f(N i
cl;Ni, pclone(i)) = Ni!

N i
cl!(Ni −N i

cl)!
pclone(i)N

i
sp(1 − pclone(i))Ni−N i

cl , (5.7)

where pclone(i) = ∆τ |(Hii−S)|, and if pclone(i) < 0 then the progenies have the same sign,
if pclone(i) > 0 then the opposite sign as the walkers residing on state i.
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5.1.3 Algorithm

The dynamics of the walker population is determined by a set of rules designed to
stochastically sample eq. (5.2). Since the density matrix is complex-valued, following
[118] we introduce two sets of walkers for the real and imaginary parts respectively. If
the density matrix is expressed in the vectorized form |ρ〉〉, the shifted Lindblad operator
can also be expressed in matrix form using Kronecker products as [45]

L = −i
(
I ⊗ Ĥ + ĤT ⊗ I

)
−SI⊗ I−

∑
k

γk
2

(
I ⊗ L†

kLk + LTkL
∗
k ⊗ I − 2L∗

k ⊗ Lk
)
. (5.8)

Then eq. (5.1) can be written in the form

dρij
dt

= L̃ijijρij +
∑

l,m 6=i,j
L̃lmij ρlm , (5.9)

where L̃lmij are the matrix elements of the superoperator, and ρijrepresents the now com-
plex valued population on a configuration |Φi〉〈Φj |. For the sampling protocol we ap-
ply the previously introduced multinomial formalism (Subsec. 5.1.2). Let us denote this
scheme as a function, introducing a shorthand notation

y = Multinomial(x) , (5.10)

where x takes values of the Lindbladian superoperator elements and y returns the num-
ber of spawned walkers on a given configuration as defined in Eq. (5.4)-(5.6). Figure 5.1
shows the real and imaginary walker representation of the complex-valued density ma-
trix elements, as well as the connection between the different sets of walkers during the
spawning process.

Figure 5.1 – Real and imaginary walker representation of the complex-valued density
matrix elements and the spawning procedure.
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At each time step, we loop over the list of simultaneously occupied configurations and
perform the following steps:

i Spawning: consider the complex walker population residing on ρij and perform spawn-
ing to all the connected configurations. The real (Re) and imaginary (Im) parts of L̃lmij
are considered in turn and two spawning attempts are realized for real and imaginary
parents, respectively. The number of walkers spawned to each ρlm are determined by
the multinomial formalism.

For real parents

 NRe
lm = Multinomial(Re(L̃lmij ))

sign = sign(Re(ρij)Re(L̃lmij ))
(5.11)

 N Im
lm = Multinomial(Im(L̃lmij ))

sign = sign(Re(ρij)Im(L̃lmij ))
(5.12)

and for imaginary parent walkers

 NRe
lm = Multinomial(Im(L̃lmij ))

sign = −sign(Im(ρij)Im(L̃lmij ))
(5.13)

 N Im
lm = Multinomial(Re(L̃lmij ))

sign = sign(Im(ρij)Re(L̃lmij ))
(5.14)

where NRe
lm and N Im

lm are the number of real and imaginary walkers being spawned to
configuration ρlm and ’sign’ indicates the sign of the progeny.

ii Clone / Death: This step is required as a real (imaginary) walker can produce an
imaginary (real) walker on the same configuration. The spawning occurs on-site with
a population determined by the binomial distribution. The real and imaginary parts
of L̃ijij are considered in turn and two spawning attempts are realized respectively for
the real and imaginary population.

iii Annihilation: on a given site the real and imaginary population are considered in turn,
and pairs of walkers with opposite sign are removed from the simulation.
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Figure 5.2 – Schematic diagram of the steps of the DDQMC algorithm.

Unlike in FCIQMC, here the exact value of the diagonal shift S is known. In the infinite
time limit the master equation is drives the density matrix into the steady state, which by
definition belongs to the zero eigenvalue of the Lindbladian. Therefore, the time evolution
of the shift S will indicate whether convergence has been reached, as well as the quality
of the simulation. As before, the shift is slowly adjusted in order to maintain a constant
walker population. Since estimators for most operators only receive contributions from
walkers on or near the diagonal elements, we chose to control the amount of population
distributed along the diagonal of the density matrix. The value of the shift is then ad-
justed according to the familiar shift-update algorithm implemented in FCIQMC [114]
calculations

S(t) = S(t− ∆t) + δ

∆t
log

(
Nw(t)

Nw(t− ∆t)

)
, (5.15)

where δ is a damping parameter, and Nw is the total number of real walkers residing on
diagonal density matrix elements. The method does not have a built-in constraint on the
diagonal elements being real. The value of the imaginary part fluctuates around zero and
its expectation value naturally vanishes during the simulation.
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5.2 Initiator approach and importance sampling

The DDQMC algorithm allows to stochastically sample the steady state density matrix
of open quantum systems whose dynamics follows the Lindblad master equation. How-
ever, with increasing system size the walker population tends to become dilute, resulting
in a situation where the simulation contains only a few walkers per configuration. This
leads to an increased statistical error and a dramatically reduced sampling accuracy. In
order to address this issue one needs to increase the walker number in the system which –
with large number of basis states – becomes computationally unfeasible.

In order to overcome this issue two different methods were introduced: initiator ap-
proach and importance sampling. Each of these techniques reduces the minimal required
walker population by decreasing the number of simultaneously occupied configurations,
however the strategy of selecting the configurations to be sampled is fundamentally dif-
ferent. The initiator approach allows the significant configurations to emerge naturally
during the simulation, whilst importance sampling gives the possibility to drive the walker
population to a selected subset of presumably relevant configurations. These methods can
improve the sampling quality with great success, however, they have to be applied care-
fully, as both introduce a bias on the result.

5.2.1 Initiator approach

Cleveland et. al [117] has demonstrated that by introducing an additional criteria for
the newly spawned walkers one can dramatically reduce the population required to reach
convergence. We introduce the notion of ’initiators’, which are configurations that have
the ability to spawn progeny onto unoccupied basis states. However, walkers from the
non-initiator states can only survive if they spawn to a diagonal configuration or to one
that is already populated. All the diagonal configurations are initiators by definition, and
during the simulation a configuration might become initiator, if its population exceeds a
preset value (Ilimit). This method results in a series of systematically improvable approxi-
mations which will tend to the original algorithm in three limits:

i with decreasing Ilimit every basis element will become initiator. All the progeny sur-
vives regardless of the parent state, which is equivalent to the original method;

ii with increasing total population all configuration will acquire walkers, therefore, all
spawned children will survive regardless of the flag of the parent state;

iii extending the initiator space by definition will result again in all the configurations
becoming initiators, consequently all progeny will survive.

By setting a non-zero initiator limit one introduces a dynamical truncation on the avail-
able configurations, leading to a biased result. In order to compute the unbiased expec-
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tation values, we progressively decrease the initiator limit in different simulations and fit
the estimated expectation values, thus extrapolating the limit Ilimit → 0 (Figure 5.3).

5.2.2 Importance sampling

We start by identifying the basis elements whose sampling needs to be improved. Then
a straightforward way to improve the accuracy is to reduce the probability of spawning
out of these configurations. Walkers that do reside on unessential elements are given a
correspondingly larger weight, hence the expectation values of the observables will be
unchanged. We define the following simple importance sampling procedure. The evolu-
tion of the density matrix in the DDQMC formalism follows eq. (5.9). We can assign
importance to the density matrix elements by multiplying them with a factor wij as

ρij −→ ρ̃ij = wijρij . (5.16)

The time evolution of the importance-sampled density matrix then becomes

dρ̃ij
dt

= L̃ijij ρ̃ij +
∑

l,m 6=i,j

(
wijL̃lmij

1
wlm

)
ρ̃lm , (5.17)

which is fully analogous to eq. (5.9) and can be simulated by the DDQMC method. The
expectation value of an observable Ô is thus

〈Ô〉 =
∑
ij

ρ̃ij

wij
Oji∑

i ρ̃ii
. (5.18)

In this work we parametrize the importance sampling with a single variable p > 0 by as-
signing all off-diagonal elements a weight wij = e−p. Meanwhile the diagonal coefficients
are not altered. This strategy focuses on sampling the diagonal density matrix elements
and provides easy access to tune the effect of the importance sampling.

Figure 5.4 shows the amount of simultaneously occupied density matrix elements be-
fore and after using the initiator approach and importance sampling for the dissipative
XYZ model that has been introduced in Section 1.3.1.
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Figure 5.3 – The initiator approach used to extrapolate the magnetization Mz (in units
of ℏ) in case of the 4 × 4 dissipative XYZ Heisenberg-model. Parameters of the model:
Jx/γ = 0.225, Jy/γ = 0.335, Jz/γ = 0.25. Parameters of the simulation: p = 2.5, with a
population of 106 walkers. The straight line is a linear extrapolation of the lowest initiator
values.

Figure 5.4 – The amount of simultaneously occupied density matrix elements, with and
without using the initiator approach and importance sampling in the case of the 4×4 XYZ
Heisenberg lattice. Parameters of the model: Jx/γ = 0.225, Jy/γ = 0.225, Jz/γ = 0.25.
Parameters of the simulation: p = 1.5, Ilimit = 25; 75 with a population of 108 walkers.
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5.3 Parallel implementation

In DDQMC simulations, the sign problem is manifested as the fast growth of an un-
physical state relative to the non-equilibrium steady state. The annihilation procedure
can suppress this growth and allow the simulation to converge to the physical solution,
but only if a minimal and system-dependent walker population is present. Therefore,
building on the massively parallel nature of the method, a computationally efficient im-
plementation can offer an insight into the study of systems with severe sign problem. In
this work, we designed the algorithm in C++, and it has been organized into separate in-
terchangeable modules, meaning that it is relatively easy to modify the model system or
the dimensionality.

Parallel computing provides a tool to carry out many execution processes simultane-
ously, and it allows simulations on multicore computers or computer clusters of intercon-
nected nodes. Its two main branches are based on different underlying memory archi-
tecture model, namely shared or distributed memory. The results presented in this the-
sis were calculated almost exclusively on computational clusters, thus we implemented
a distributed memory parallelization scheme using MVAPICH2 [131], a freely available
Message Passing Interface (MPI).

In principle, DDQMC is a highly parallelizable algorithm. Most of the computational
effort is spent on performing the spawn and clone/death steps for every simultaneously
occupied configuration. The different configurations are independent from each other,
therefore this stage can be implemented in parallel. The only step that requires com-
munication between the MPI processes is annihilation, which may induce a significant
computational overhead. Finding an efficient annihilation implementation is then crucial
to the scalability of the algorithm.

5.3.1 Dual hashing

Rather than keeping in memory the whole configuration space, at each iteration step we
only store a random sample of simultaneously occupied basis operators. Then these con-
figurations need to be distributed between the parallel processes, where they are organized
into a list consisting not only of the numerical representation of the configurations, but
also of their respective signs, flags (initiator) and properties (connected operators, spawn-
ing probabilities, observable matrix elements). Since only the instantaneously populated
configurations are kept, the annihilation has to be performed explicitly. Therefore, there
are two bottlenecks that need to be considered: fast access to the stored information, and
a uniform and traceable configuration distribution between the processes.

The core of our numerical design is based on a dual hashing procedure [126]. A hash
function is a many-to-one mapping that is used to map data of arbitrary size (numerical
representation of the configurations) to a fixed-size value. A hash function can be used
to index the elements of a fixed-size table, the hash table. Hashing is a computationally
efficient form of data access and storage, since it provides a small and nearly constant
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Figure 5.5 – Schematic representation of the walker distribution between the Slave pro-
cesses [133].

retrieval time. We use this hashing procedure in two steps:

i on each parallel process, the instantaneously occupied configurations are stored in a
hash table which provides — in average — O(1) complexity for search and insertion;

ii the populated configurations are distributed between the MPI processes (Figure 5.5)
using a simple Merkle-Damgard type hash that has proven to be useful in mapping
a bitset based basis representation (e.g. 01101... for a spin configuration) to a single
integer (the process number) [126,132].

5.3.2 Parallel program flow

Our parallel implementation is based on a “master-slave” paradigm, where the main
process (the master) supervises the general program flow and gathers the statistics (e.q.
total population, observables, shift, ...), while the sub-processes (the slaves) execute the
DDQMC steps. The parallel program flow of the sub-processes is illustrated in Figure 5.6,
and can be summarized in the following three steps:

I DDQMC: each process performs the spawn, clone/death steps on its list of configu-
rations by using a sequential code;

II Distribution: when new walkers are spawned to a basis operator, its hash value is
computed between the available sub-processes, giving its designated MPI task. Then
its bitset representation with the number of spawned walkers are stored in a non-
contiguous “spawned” array, separately from the main configuration list;
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III Communication: after step II, all the MPI tasks have two lists of configurations. The
first one contains the updated value of the old list after the clone/death step. These
configurations are situated on the right process, since this step takes place locally.
The second, “spawned” list consists of walkers that populates different configurations
than their parents. These elements need to be sent to their respective MPI task, where
they are sorted and merged with the main configuration table.

The sequential program flow of the master and slave processes is shown in Figure 5.7
and in Figure 5.8, and they consist of the previously introduced DDQMC steps including
the initiator approach.

Figure 5.6 – The parallel program flow for Slave processes [133].

Figure 5.7 – The sequential program flow for the Master process.
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Figure 5.8 – The sequential program flow for the Slave processes.
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5.3.3 Load balancing

The process of distributing the configurations such that the workload is equally bal-
anced between the MPI processes is referred to as load balancing. Although the sub-
processes only have to communicate with each other once during an iteration step, all of
them need to wait for the slowest one to finish in order to sort the spawned population.
This means that the computational efficiency will suffer if the configurations (and walkers)
are not evenly distributed.

An advantage of implementing a hash function to distribute the configurations is the
fact that as we increase the walker population, a larger part of the Hilbert space is simul-
taneously occupied. For a given number of parallel tasks this leads to an increased parallel
performance, as the load is more evenly balanced between the processes. If we increase
the system size, or tackle a model with severe sign problem, the increased parallelism of
the code will grant to run more efficiently on larger computational resources [126].

Figure 5.9 is a schematic representation of the movement of configurations between
the processes, and Figure 5.10 shows the parallel speed-up as the number of parallel pro-
cesses is increased. The computational speed-up is defined as a number that measures the
relative performance of two systems solving the same task. Here, we introduce it as the
ratio between the execution times of arbitrary number of processes and a basic processing
unit, 8 threads. As we expected, the scaling improves for a larger walker population, as
more configurations are occupied and the load is more evenly balanced. In this case the
computational effort is spent on the individual DDQMC steps and not on the parallel
communication.

Figure 5.9 – Schematic representation of the movement of configurations between the
processes.
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Figure 5.10 – The computational speed-up as the number of parallel processes is increased
from 8 to 128. The scaling improves as the walker population is increased. The model is
the 2 dimensional XYZ Heisenberg model with 16 sites.

5.4 Results*

In order to demonstrate the effectiveness of DDQMC, we simulated the two-dimensional
spin-1/2 XYZ Heisenberg lattice in the presence of a dissipating channel which tends to
relax each spin into the |sz = −1/2〉 state (Chapter 1.3).

The model follows the Lindblad equation and the Hamiltonian is governed by (ℏ = 1)

Ĥ =
∑

〈l,m〉

(
Jxσ̂

x
l σ̂

x
m + Jyσ̂

y
l σ̂

y
m + Jzσ̂

z
l σ̂

z
m

)
(5.19)

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{
σ̂+
k σ̂

−
k , ρ̂

}
− 2σ̂−

k ρ̂σ̂
+
k

]
(5.20)

where σ̂αl are the Pauli spin operators acting on the l-th spin, Jα are the coupling constants
between nearest neighbour spins, γ is the dissipation rate, and σ̂±

m = σ̂xm ± iσ̂ym.
In order to study the model we chose three different lattice sizes: 2 × 2, 3 × 3 and 4 × 4.

The first two sizes are small enough to derive an exact numerical solution of the master
equation in the steady state, thus allowing a direct check of the accuracy of our DDQMC
results. In case of the 4 × 4 lattice, the magnetization is compared to those obtained by
Monte Carlo wave function technique.
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5.4.1 Magnetization in the steady-state

The steady-state magnetization per site is defined as

Mz = 1
N

N∑
k=1

Tr(ρ̂σ̂zk), (5.21)

where N is the number of lattice sites. Figure 5.11(a) shows the magnetization of the
3 × 3 lattice as a function of the Monte Carlo iteration step with a diagonal population of
5 × 104 walkers. The exact solution obtained by directly solving the linear system is also
plotted. Increasing the diagonal population to 2 × 106 reduces the statistical error as seen
in the corresponding result in Fig. 5.11(b).

In Fig. 8.5, we present the magnetization per site Mz as a function of the normalized
coupling constant Jy/γ for square lattices of different size. In order to assess the validity
of the method we compare it with exact numerical solutions for the steady state in the
case of the two smallest lattice sizes. For a 4 × 4 lattice, the exact numerical solution of
the master equation is beyond computational reach, and we compare instead with results
obtained by Monte Carlo Wave-function method [76], for which we accurately verified
the convergence with respect to the number of quantum trajectories and to the time step
size. Both the exact and Monte Carlo Wave-function calculations are in agreement with
the one obtained by DDQMC.

Figure 5.11 – The exact and the DDQMC magnetization values (in units of ℏ) for the
3×3 dissipative XYZ Heisenberg lattice with periodic boundary condition. The coupling
parameters are Jx/γ = 0.225, Jy/γ = 0.335 and Jz/γ = 0.25. The diagonal population
was limited to (a) 5 × 104 and (b) 2 × 106 walker.
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Figure 5.12 – The magnetizationMz per site (in units of ℏ) as a function of the normalized
coupling parameter Jy/γ for different lattice sizes. The other coupling parameters are
Jx/γ = 0.225 and Jz/γ = 0.25. The exact (2 × 2 and 3 × 3) and MCWF (4 × 4) results are
plotted for comparison. Error bars, when not shown, are smaller than the symbol size.

5.4.2 Angularly-averaged susceptibility

Following the scheme presented in [16], we study the system in the presence of an ap-
plied magnetic field in the xy plane

Ĥext =
∑
i

h(cos(θ)σ̂xi + sin(θ)σ̂yi ) . (5.22)

The linear response is then summarized in the 2 × 2 susceptibility tensor

χαβ = ∂Mα

∂hβ

∣∣∣∣
h=0

, (5.23)

with α, β = x, y. It is convenient to calculate one single quantity, the angularly-averaged
susceptibility

χav = 1
2π

∫ 2π

0
dθ∂|M⃗(h, θ)|

∂h

∣∣∣∣
h=0

, (5.24)

where

∂|M⃗(h, θ)|
∂h

∣∣∣∣
h=0

=

∣∣∣∣∣∣∣
χxx cos(θ) + χxy sin(θ)

χyx cos(θ) + χyy sin(θ)


∣∣∣∣∣∣∣ . (5.25)
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For a more complete derivation readers are referred to [16]. In Fig. 5.13, we present the
angularly-averaged susceptibility χav as a function of the normalized coupling parameter
Jy/γ for different lattice sizes. The magnetic susceptibility for the different lattice sizes ex-
hibits a peak of increasing height which qualitatively corresponds to the results obtained
in [16].

Figure 5.13 – The angle-averaged susceptibility χav per site as a function of the normalized
coupling parameter Jy/γ for different lattice sizes. The other coupling parameters are
Jx/γ = 0.225 and Jz/γ = 0.25. Each point on the plot was determined by 21 simulations,
which corresponds to 525 calculations per lattice size. For each point, we considered
3 + 3 + 1 values of the applied field (3 for each in-plane direction and 1 with no external
field), and for each setting an extrapolation over three different initiator values was carried
out.
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5.5 Outlook*

The DDQMC method presented here, constitutes a basic PMC approach to the non-
equilibrium steady state of open quantum systems. As such, it contains only the basic
building blocks of the PMC method, and its effectiveness may be considerably improved
by introducing any of the several tools that are common in other PMC schemes. Here, we
describe as an outlook three such possible improvements.

The first possible improvement consists in the implementation of a mixed-estimator
scheme, in analogy with the one used in projector and diffusion Monte Carlo to find the
ground state of Hamiltonian systems [31, 107, 108]. Here, a possible mixed estimator
strategy may consist in formally carrying out an exact real-time evolution, starting from
a DDQMC sampled density matrix. More specifically, let us assume that at time t the
current DDQMC sample of the density matrix is ρ̂(t). We can formally apply the exact
time evolution for an additional time T and then evaluate the expectation value of an
observable Ô at time t+ T as

〈Ô〉 = Tr(ÔeLT ρ̂(t))
Tr(eLT ρ̂(t))

= Tr(ÔeLT ρ̂(t))
Tr(ρ̂(t))

, (5.26)

where the second equality results from the trace preserving character of the time evolu-
tion. In the limit T → ∞, Eq. (5.26) provides the steady-state expectation value inde-
pendently of the actual value of the density matrix ρ̂(t), when assuming that a unique
steady state exists. A mixed estimator strategy would then consist in building a “trial”
observable ÔT which can still be efficiently computed element-wise, and such that ÔT '
ÔH(T ) = ÔeLT . Here, ÔH(t) represents the Heisenberg picture of the observable Ô
and, for time-independent Liouvillian maps, it obeys the adjoint quantum master equa-

tion dÔH(t)
dt = L†ÔH(t) [23]. Hence, the mixed estimator approach in the present case

would require the knowledge of an approximate time dependence for ÔH(t), which may
be obtained, for instance, from a time-dependent variational principle [134] applied to a
separable or short-range-correlated ansatz for the observable.

A second improvement would consist in using a “guiding density matrix” for the im-
portance sampling. A natural choice for such a guiding density matrix would again be
a variational ansatz, as the variational principle for the NESS is now well established,
and some variational approaches have already been developed [27, 29, 135]. We wish to
remark, that recently also a neural network based variational ansatz has been simultane-
ously introduced in [13, 33, 136, 137]. This is the second numerical approach that has
been developed for the present thesis, and it will be reviewed in the following chapters.

A possible application of the method could be to sample the full time dynamics of the
model, in analogy to the way in which finite temperature states are sampled in the finite-
temperature density matrix formalism introduced in [121–123]. In fact, sampling the
real-time dynamics would require averaging over several Monte Carlo instances in or-
der to accumulate sufficient statistics for each given time. The steady state on the other
hand can be sampled from one single Monte Carlo realization, once stationarity has been
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reached in the simulation.
Finally, the present scheme is based on the Euler method (5.2) for the numerical solu-

tion of the time-dependent master equation. The Euler method is a first order method in
the time step, and is only stable if ∆t is chosen to be smaller than the inverse of the full
spectral width of the master equation. In PMC, several approaches have been proposed
to sample a higher-order discrete-timestep propagator [111], or even the exact one [138].
While a similar approach would be highly beneficial to FCIQMC and DDQMC, the ques-
tion is still open, whether higher-order propagators may be efficiently sampled within the
spawn-annihilation sampling protocol characterizing these Monte Carlo methods.

5.6 Conclusions*

In this chapter we have introduced a quantum Monte Carlo approach to open many-body
quantum systems with Markovian system-bath coupling, called DDQMC. The method
is based on the FCIQMC algorithm exploiting the analogy between the long-time dy-
namics of the Lindbladian master equation and the imaginary-time Schrödinger equation.
DDQMC allows direct sampling of the steady state density matrices in any discrete basis
set, and in all cases studied it has proven to be accurate.

DDQMC, as FCIQMC, uses an annihilation procedure which helps to alleviate the sign
problem. The introduction of the initiator approach and importance sampling can lead
to a significant improvement in the statistical accuracy and reduce the required walker
population. The validity of the method was proven by investigating a dissipative phase
transition on the two-dimensional Heisenberg-model. The defining feature of DDQMC is
that it samples the whole density matrix and it does not introduce a truncation in Hilbert-
space. Experience showed that the applicability of the code does not solely depend on the
system size, but also on the correlations characterizing the steady state. The application
presented in this work is a proof of principle, demonstrating the possibility to stochasti-
cally sample the Lindblad equation in a finite difference approximation. DDQMC holds
promise as a powerful tool in the study of open quantum systems.

In the next chapters we review a second numerical approach that has been developed
for the present thesis. For this, we will first review the variational quantum Monte Carlo
method, and the foundations of machine learning. Finally, we introduce the concept of
a neural network ansatz for the density matrix, and present a variational approach to
simulate the real-time dynamics and the steady state of open quantum systems.
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CHAPTERCHAPTER6
Variational quantum Monte Carlo

Quantum Monte Carlo methods encompass a large family of numerical approaches
that are versatile and effective tools to handle quantum many-body systems. The two
most popular classes for ground state calculations are the Projector Monte Carlo tech-
niques (Chapter 3) and the Variational Monte Carlo (VMC) method. VMC relies on the
variational principle to approximate the ground state of quantum many-body systems by
optimizing the parameters of a variational wave function which is used to sample quantum
mechanical expectation values. The numerous flavours of VMC can differ in the optimiza-
tion technique and the form of the variational ansatz. Here we discuss the underlying ideas
of VMC and a particular optimization method called Stochastic Reconfiguration. After
establishing the principles of a variational algorithm, we introduce a specially successful
and versatile wave function ansatz in Chapter 8.

6.1 The foundation of Variational Monte Carlo

Let us start by assuming once again that the Hilbert space of a system is spanned by
the computational basis |σ〉, where σ = (σ1, σ2, . . . , σN ) labels the states of N d.o.f that
compose the system. Here and in what follows we will consider binary local degrees of
freedom, with σi = {−1, 1}, which applies to the broad class of interacting spin-1/2 or
qubit models. This is not mathematically necessary, and one can translate all equations
for a continuous basis by replacing the sums with integrals. Using the completeness of the
basis

∑
σ

|σ〉〈σ| = I , (6.1)

the wave function is expressed as

|ψ〉 =
∑
σ

|σ〉〈σ|ψ〉 =
∑
σ

ψ(σ)|σ〉 . (6.2)
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Chapter 6. Variational quantum Monte Carlo

Thus, we can recast the expectation value of any quantum mechanical observable into the
form of

〈Ô〉 = 〈ψ|Ô|ψ〉
〈ψ|ψ〉

=
∑

σ〈ψ|σ〉〈σ|Ô|ψ〉∑
σ〈ψ|σ〉〈σ|ψ〉

=
∑

σ|〈σ|ψ〉|2 〈σ|Ô|ψ〉
〈σ|ψ〉∑

σ|〈σ|ψ〉|2
=
∑

σ|〈σ|ψ〉|2Oloc(σ)∑
σ|〈σ|ψ〉|2

,

(6.3)

where p(σ) ∼ |〈σ|ψ〉|2 is the probability of finding the system in configuration σ for
a wave function |ψ〉, and Oloc(σ) is called the local value of the observable for state σ.
However, the number of basis elements increases exponentially with the system size, which
makes it computationally impractical to calculate the exact sum in eq. (6.3). Instead, one
can approximate the sum over all the basis elements with a sum over a randomly selected
S = {σ1,σ2, ...,σNMH

} set of them as

〈Ô〉 ≈
∑

σ∈S |〈σ|ψ〉|2Oloc(σ)∑
σ∈S |〈σ|ψ〉|2

, . (6.4)

In practice, this means to generate NMH number of σi configurations randomly, then
calculate the local value of the observable Oloc(σi) and weight it with the probability
|〈σi|ψ〉|2. However, this approach proves to be computationally ineffective, since there is
no guarantee to find the configurations which contribute with a large weight. Rather than
choosing the basis elements completely randomly, one needs to generate the configurations
according to their probability and weigh them equally. From a mathematical point of
view, this means to generate a set Sp = {σ1,σ2, ...,σNMH

} of NMH configurations that
are distributed according to p(σi) ∼ |〈σi|ψ〉|2 as

〈Ô〉 ≈ 1
N

∑
σ∈Sp

Oloc(σ) . (6.5)

This approach is called the Markov Chain Monte Carlo or Metropolis-Hastings algorithm
[139]. We will introduce this method in Section 6.2, but for now let us assume that we
know how to generate Sp.

For now, it was unclear how we can use eq. (6.3) to obtain the ground state, however,
let us note, that the form of 〈Ô〉 is accurate for any physical observable, including the
Hamiltonian Ĥ. If we replace the wave function |ψ〉 with a variational ansatz such that

|ψ〉 −→ |ψχ〉 , (6.6)

74



6.1. The foundation of Variational Monte Carlo

and χ = (χ1, χ2, ..., χNp) are a set of variational parameters, it is then straightforward to
apply the Rayleigh-Ritz principle [140] to find the ground state of the system. The theorem
states that the expectation value of the energy is bounded from below by the ground state
energy. For a Hamiltonian with eigenvectors |ϕi〉 and eigenvalues E0 ≤ E1 ≤ ... ≤ EN

Eχ = 〈ψχ|Ĥ|ψχ〉
〈ψχ|ψχ〉

=
∑N
i=0Ei〈ψχ|ϕi〉〈ϕi|ψχ〉

〈ψχ|ψχ〉
≥
∑N
i=0E0〈ψχ|ϕi〉〈ϕi|ψχ〉

〈ψχ|ψχ〉
= E0 , (6.7)

so by changing the parameters χ we will always obtain a variational energy that is larger
than equal to the ground state value, and there is an optimal set of parameters that mini-
mizes the expectation value of the energy.

Now we have all the ingredients to assemble a general algorithm for the variational
quantum Monte Carlo method by iterating the following steps

i Sampling: we apply an optimization method in order to minimize Eχ. Any quantity
that is needed for the algorithm can be sampled using eq. (6.3).

ii Feedback: obtain a feedback from Eχ. In practice, calculate the new parameters that
will provide a lower variational energy.

iii Adjust: adapt the value of the variational parameters to the new values.

Figure 6.1 – Schematic illustration of the general VMC algorithm.
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Chapter 6. Variational quantum Monte Carlo

From a mathematical point of view, there are several optimization algorithms that could
be used to adjust the variational parameters, however, a method called Stochastic Recon-
figuration has proven to be especially successful for quantum systems. The details of this
approach will be introduced in Section 6.3.

Clearly, the ground state energy estimation can only be as good as the variational ansatz,
hence the success of the variational approach will highly depend on the form we choose
for the wave function. This is possibly the greatest limitation of VMC, as it makes it
particularly easy to miss phenomena that we have not expected. We will review an excep-
tionally rewarding and system independent variational ansatz in Section 8.

An important feature of variational Monte Carlo is a property called “zero variance”
[141]. Let us assume that the variational wave function |ψχ〉 coincides with an eigenstate
|ψn〉 of the Hamiltonian, which is not necessarily the ground state. Then the local value
of the energy reads as

Eloc(σ) = 〈σ|Ĥ|ψn〉
〈σ|ψn〉

= En
〈σ|ψn〉
〈σ|ψn〉

= En . (6.8)

Thus, the random variable Eloc(σ) is independent of the configuration σ, which implies
that its mean value is equal to En and that its variance is zero. One can also show [141],
that the variance of Eloc(σ) is exactly equal to the variance of the Hamiltonian on a
variational ansatz |ψχ〉. Therefore, the smaller the variance of Eloc(σ) is, the closer the
variational wave function is to the exact ground state. This is a particularly useful prop-
erty, as in practice one never knows the value of the ground state energy a priori, hence
the accuracy of the simulation outcome is unclear. Monitoring the variance then provides
a way to measure the quality of the result.

6.2 Stochastic sampling using Markov-chains

In order to evaluate eq. (6.5), we need to generate a set of many body configurations
Sp = {x1, x2, ..., xNMH

} that are distributed according to p(x) ∼ |〈x|ρχ〉|2. For this we
adopt the Metropolis-Hastings (or Markov Chain Monte Carlo, MCMC) algorithm [139,
142].

The method can be used to sample any distribution function p(x) regardless of analytical
complexity or dimension as long as it is normalizable with

∫
x
p(x′)dx′ < ∞ . (6.9)

MCMC has been motivated by an analogy with the behaviour of systems in statistical
mechanics that approach an equilibrium whose state is independent of the kinetics of the
system. In the present context, by system we simply mean a point x in the configuration
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6.2. Stochastic sampling using Markov-chains

space that fully describes the state of a physical model, e.g. |x〉 = |σ〉. By kinetics, we
mean a stochastic process that governs the transition of the system such that

f(xn+1, xn) = K(xn+1|xn)p(xn) , (6.10)

where f(xn+1, xn) is the probability of moving from xn to xn+1 is expressed as the a priori
chance of finding the system in xn (i.e. p(xn)) multiplied by the conditional probability
K(xn+1|xn) that it will transit to xn+1 from xn. In general, the non-deterministic opera-
tion that takes the system from one state to the other is called a Markov process, and the
series of states the system passes through by the repeated application of the same Markov
process forms a Markov-chain. The Markov processes characterized by eq. (6.10) are
memoryless in the sense that the transition probabilities only depend on the current state
of the system rather than the previous moves.

Now suppose that we generate NMH steps in the random walk as x1 → x2 → · · · →
xNMH

. Each of the xn is a random variable and has an associated probability qn, where
qn can be any distribution of x. It can be shown [142], that if the kinetics K is such that
the resulting Markov-chain satisfies detailed balance and ergodicity, then qn converges to
p(x) as

lim
n→∞

qn(x) = p(x) , (6.11)

and we are able to sample the sum (6.3) with a set of Sp = {σ1,σ2, ...,σNMH
} configura-

tions that are distributed according to p(x) ∼ |ψχ(σ)|2.
As we shall discuss in detail, in order to converge to a stationary distribution, it is suffi-

cient, but not necessary that the random walk satisfies the so-called detailed balance. That
is, quite simply, that the system is to move with the same probability from a specific point
xn into xn+1 as to move exactly in the reverse direction. From eq. (6.10), this corresponds
to

K(xn|xn+1)p(xn+1) = K(xn+1|xn)p(xn) . (6.12)

While treating physical systems, one generally has the task to find p(x) while K is known,
in MCMC one needs to define a convenient kinetics that satisfies the detailed balance and
equilibrates the system to the stationary distribution p(x). In order to do so, Metropolis
et al. [139] have suggested a simple and elegant scheme, where transitions are proposed
from essentially any distribution T (xn+1|xn), as long as it ensures ergodicity, and in order
to define a Markov chain that yields to detailed balance they are accepted only with a
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Chapter 6. Variational quantum Monte Carlo

Figure 6.2 – Schematic illustration of the random walk generated by the MCMC algo-
rithm.

probability

A(xn+1|xn) = min
{

1, T (xn|xn+1)p(xn+1)
T (xn+1|xn)p(xn)

}
. (6.13)

Then the resulting conditional probability reads as

K(xn+1|xn) = T (xn+1|xn)A(xn+1|xn) . (6.14)

Although the proof will be omitted [142], we would like to mention that the Markov-
chain generated by eq. (6.13) and (6.14) is truly ergodic and satisfies detailed balance, as
well as that these two properties are sufficient conditions that yield to a unique limiting
distribution.

Finally, if xn is the configuration at step n, the MCMC algorithm can be summarized
as follows:

i A move is proposed by generating a new configuration x̃ with probability T (x̃|xn).

ii The transition is accepted with the probability A(x̃|xn). In practice, this means that a
random number r ∈ [0, 1] is drawn, and if r < A(x̃|xn), then the next xn+1 is taken
to be equal to x̃, otherwise it is kept unchanged as xn+1 = xn.

A significant advantage introduced by MCMC is the fact that one only needs to know the
desired probability distribution p(x) up to a normalization constant, since the computa-
tion of A(xn+1|xn) only requires the knowledge of the ratio p(xn+1)/p(xn) in eq. (6.13).
This allows us to avoid the computationally sometimes prohibitive calculation of the nor-
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6.2. Stochastic sampling using Markov-chains

malization factor, i.e. in eq. (6.3) one can omit 〈ψ|ψ〉.
A small technicality that is worth noting, is that in practice we initialize the Markov-

chain in a specific configuration y, which sets the initial distribution to q0(x) = δx,y. A
practical implication of this is that one should always discard a number of iterations at
the beginning of the MCMC algorithm, since the initial delta distribution needs time to
converge to the stationary p(x). This phase of the random walk is called equilibration
period. By choosing the transition probability T (xn+1|xn) such that the overlap between
p(xn+1) and p(xn) is large, one can increase the acceptance probability of consecutive
moves and find an optimal equilibration period.

We need to mention however, that a having a high acceptance probability is a double
edged sword. While a large A(xn+1|xn) can grant a shorter equilibration phase, having
similar configurations as adjacent steps also introduces a correlation between the local
observable measurements. The mean value of

〈Ô〉 ≈ 1
NMH

∑
x∈Sp

Oloc(x) (6.15)

is equal to the expectation value of the observable, since x are distributed according to
p(x), but the variance Var(〈Ô〉) may be underestimated [141]. This can be solved by either
taking a measurement only every few Monte Carlo steps, or by using the more sophisti-
cated technique called binning [141]. Then one divides the Markov-chain of length NMH

into B so called bins with NB configurations and reorders the sum in eq. (6.15) as

〈Ô〉 = 1
B

B∑
b=1

〈Ô〉b with 〈Ô〉b = 1
NB

NB∑
x∈Sp

Oloc(x) . (6.16)

This operation does not alter the expectation value, however, the bin means 〈Ô〉b will no
longer be correlated and one can use their variance to compute

Var(〈Ô〉) = 1
B(B − 1)

B∑
b=1

(
〈Ô〉b − 〈Ô〉

)2
. (6.17)

Since eq. (6.17) only holds for non-correlated variables, one needs to select the bin length
NB such that the averages are effectively independent random variables. This can be done
by introducing the concept of correlation time and correlation function, for which readers
are referred to [141].

79



Chapter 6. Variational quantum Monte Carlo

6.3 Minimization with Stochastic Reconfiguration

In Section 6.1 we have introduced the fundamental ideas behind the variational Monte
Carlo simulations of quantum many-body systems, and we have seen that the approach re-
lies on the Rayleigh-Ritz principle and the variational optimization of a trial wave function.
In principle, any numerical optimization method could be used to find the approximate
ground state, but here we review a particular approach called Stochastic Reconfiguration
(SR) that has proven to be exceptionally effective in the context of VMC [141,143,144].

Let |ψχ〉 be the variational wave function that depends on a set of Np parameters
χ = (χ1, χ2, ..., χNp). In order to determine the correct parameter change that converges
to the ground state, first we study the change in the wave function after a small perturba-
tion in the parameters. By setting the wave function with parameters χ̃ as the first order
Taylor expansion of |ψχ〉, it reads as

|ψχ̃〉 = |ψχ〉 +
Np∑
k=1

δχk
∂|ψχ〉
∂χk

. (6.18)

Eq. (6.18) can be rewritten using the completeness of the basis |σ〉 such that

|ψχ̃〉 = |ψχ〉 +
Np∑
k=1

δχk
∂

∂χk

∑
σ

|σ〉〈σ|ψχ〉

= |ψχ〉 +
Np∑
k=1

δχk
∑
σ

∂〈σ|ψχ〉
∂χk

|σ〉

= |ψχ〉 +
Np∑
k=1

δχk
∑
σ

∂ ln〈σ|ψχ〉
∂χk

|σ〉〈σ|ψχ〉 .

(6.19)

We can define the logarithmic derivatives ok of the wave function for any configuration
|σ〉 as the variational derivatives with respect to the k-th parameter

ok(σ) = 1
ψχ(σ)

∂ψχ(σ)
∂χk

, (6.20)

which form the diagonal operators

Ok =

I for k = 0∑
σ
ok(σ)|σ〉〈σ| for k 6= 0 .

(6.21)
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In linear approximation the new wave function can then be written in the compact form
of

|ψχ̃〉 =
Np∑
k=0

δχkOk|ψχ〉 , (6.22)

which can be considered as an expansion over the basis spanned by {Ok|ψχ〉}. Note, for
the equation above we used δχ0 = 1, which is not necessarily true, and in that case the
variation of the parameters must be rescaled as

δχk −→ δχk
δχ0

. (6.23)

Now our purpose is to exploit the linear approximation in eq. (6.22) by designing an
iterative scheme such that changing the parameters from χ to χ̃ yields to a lower energy
as Eχ̃ < Eχ and a wave function that approaches the true ground state.

One possibility to find a state |ψ′〉 with an energy lower than |ψχ〉 is to follow the
Hamiltonian dynamics by applying the projector (Λ − Ĥ) as

|ψ′〉 = (Λ − Ĥ)|ψχ〉 , (6.24)

where Λ is a large enough energy shift which ensures convergence. In the repeated applica-
tion of this projector one can recognize the power method [109]. While for a continuous
system, where the energy is unbounded from above, the value of Λ should be infinite, in a
lattice system with a finite basis also Λ will be limited, as the Hamiltonian is bounded from
above. Ensuring that |ψχ̃〉 has lower energy than |ψχ〉 corresponds to equating eq. (6.22)
and (6.24) as |ψ′〉 = |ψχ̃〉 in a space spanned by {Ok|ψχ〉}. Projecting onto the k′-th
element we get

〈ψχ|Ok′(Λ − Ĥ)|ψχ〉 =
Np∑
k=0

δχk〈ψχ|Ok′Ok|ψχ〉 . (6.25)

Following eq. (6.25), the quantities δχk correspond to the variation of the wave function
parameters that lower the energyEχ. In order to rewrite eq. (6.25) in terms of expectation
values, we divide both side by 〈ψχ|ψχ〉

Λ〈Ok′〉 − 〈Ok′Ĥ〉 =
Np∑
k=0

δχk〈Ok′Ok〉 . (6.26)

81



Chapter 6. Variational quantum Monte Carlo

This is a system of (Np + 1) linear equations that can be reduced to Np. Indeed, solving
eq. (6.26) for k′ = 0 and using that Oo = I we get

δχ0 = Λ − 〈Ĥ〉 −
Np∑
k=1

δχk〈Ok〉 . (6.27)

Substituting eq. (6.27) into (6.26) we obtain the final equations that determine the varia-
tions δχk that lower the energy of the wave function as

〈Ok′〉〈Ĥ〉 − 〈Ok′Ĥ〉 =
Np∑
k=0

δχk (〈Ok′Ok〉 − 〈Ok′〉〈Ok〉) . (6.28)

This can be written in a convenient matrix form as

F⃗ = Ŝδχ⃗ , (6.29)

where we introduced the generalized forces Fk and the covariance matrix Skk′ for a given
set of variational parameters such that

Fk = 〈Ok〉〈Ĥ〉 − 〈OkĤ〉
Skk′ = 〈OkOk′〉 − 〈Ok〉〈Ok′〉 .

(6.30)

After solving eq. (6.29), the variational parameters are updated following

χ̃k = χk + δχk
δχ0

= χk + νδχk , (6.31)

where ν is small enough to guarantee convergence. Note, that the variation of the param-
eters depends on Λ only indirectly, through the variable δχ0/ν. It has been shown [141],
that the choice of ν can be controlled during the simulation so that it ensures steady and
stable convergence.
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6.4 Steepest descent vs Stochastic Reconfiguration

In a standard steepest descent (SD) method the expectation value of the energy Eχ is
minimized by changing the parameters χ according to the variational derivatives of Eχ.
Notice, that the generalized forces Fk correspond to the same quantity such that

Fk = −∂Eχ
∂χk

= − ∂

∂χk

〈ψχ|Ĥ|ψχ〉
〈ψχ|ψχ〉

. (6.32)

Therefore, the steepest descent method is recovered from the stochastic reconfiguration,
whenever one replaces the covariance matrix with the identity. A basic requirement for
every stable iterative method is that the updated parameters χ̃ are close to the previous χ
ones according to some metric. SR has proven to be particularly successful in variational
Monte Carlo due to a fundamental difference that is related to the definition of this metric
[145]. While for SD the new parameters are close to the old ones corresponding to the
Cartesian distance

∆C =
∑
k

|χ̃k − χk|2 , (6.33)

SR works ideally in the Hilbert space metric of the wave function |ψχ〉 such that

∆H =
∑
k,k′

Sk,k′(χ̃k − χk)(χ̃k′ − χk′) = ||ψχ̃〉 − |ψχ〉|2

||ψχ〉|2
. (6.34)

Indeed, the diagonal elements of the covariance matrix Ŝ give direct information about
the fluctuations of the variational derivatives Ok. Multiplying the forces with the inverse
of the fluctuations allows the optimization to move along a line where the variance of
the corresponding operators Ok are small. Moreover, the presence of the off-diagonal
parameters take into account the correlations between the parameters χ. Therefore, the
advantage of SR compared to SD comes from the fact, that a small change in the varia-
tional parameters can correspond to a big change in the wave function.
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The rise of machine learning (ML) techniques in industrial applications has quickly
been followed by a significant interest in physics and in fundamental research in general.
A groundbreaking progress in the numerical simulation of both the ground state and the
dynamics of closed quantum systems has recently been made with the introduction of the
neural network variational ansatz [146–151], which efficiently represents highly corre-
lated quantum states and whose parameters are easily optimized by means of the varia-
tional Monte Carlo method. In Chapter 8 we use this technique as a stepping stone to
introduce a novel approach for the simulation of open quantum systems, and for the pur-
pose of this thesis we now briefly explain some fundamental concepts in machine learning.
However, a full account of the theoretical foundation and broad range of applicability falls
beyond the scope of this thesis, and for further reading we recommend [152–157].

Machine learning has been loosely defined by Samuel [158] as the field of study that
gives computers the ability to learn without being explicitly programmed. It can be classi-
fied into broad categories based on whether they learn with or without human supervision,
whether they can learn on the fly, or whether they are data or model based. In the follow-
ing sections we will review the first type of classification and introduce some fundamental
concepts of machine learning.

The machine learning algorithms fall roughly into three basic paradigms: supervised, un-
supervised and reinforcement learning. Supervised learning requires a feedback whether
a prediction is right or wrong, whereas an unsupervised algorithm does not need a user
input, it tries to categorize the data based on its underlying structure. Reinforcement learn-
ing lies somewhere in between, in the sense that it does involve a feedback but not for each
input or state. Figure 7.1 shows a schematic representation of the ML classification with
their respective application areas.
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Figure 7.1 – Schematic illustration of the three basic paradigms of machine learning with
their respective field of application.

7.1 Supervised machine learning

Supervised machine learning is the simplest paradigmatic model to understand, and
it entails making predictions on unseen data based on existing observations. There are
two levels of understanding of this model. First, we can consider it as fitting a function
y = f(X) for inter- or extrapolation, or second, from a probabilistic point of view, the
purpose of the model is to learn the conditional probability p(y|X). We call D = (X, y)
the dataset, with X being the data, and y the label. The dataset consists of N samples
such that X = {x1, ...,xN} and y = {y1, ..., yN}, where xµ ∈ Rd. For a continuous label
the task is called regression, while for binary labels it is classification. A sample xµ is for
instance the pixels of an image reshaped into a vector and yµ determines what is seen on
the picture. Typical applications of supervised learning algorithms include – among many
– image classification, weather forecasting and identity fraud detection.

The function f is expressed in terms of a set of parameters θ, leading to fθ, and the
accuracy of the model is quantified using a cost function Cθ. The probabilistic interpre-
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Figure 7.2 – Schematic illustration of a) an artificial neuron and b) a feed-forward neural
network.

tation of supervised learning provides a possibility to design the cost function, since fθ
parametrizes a conditional probability distribution for a predicted label. Our goal is then
to minimize the negative log-likelihood averaged over the dataset as

Cθ = − 1
N

∑
(xµ,yµ∈D)

ln [pθ(yµ|xµ)] , . (7.1)

During the training procedure one needs to perform an optimization over the cost function
in order to learn the conditional probability p(y|X). There are many optimization tech-
niques that can be used like evolution strategies, simulated annealing or random guessing.
Stochastic gradient descent, one of the most commonly used one, relies on the gradient
information of the loss function with respect to the parameters θ.

Artificial neural networks

There are numerous variants of supervised learning, the most basic one being a simple
linear regression. Other classical learning tools include Gaussian process regression, ker-
nel regression and decision trees, however, the sole class of methods, that stands behind
the machine learning revolution of recent years, is based on the so called artificial neural
networks. The building block of a neural network is a biologically inspired artificial neu-
ron, which is illustrated in Figure 7.2. The neuron computes the weighted sum Σ(W⃗, b)
as

Σ(W⃗, b) = b+
d∑
i=1

wixi , (7.2)
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Figure 7.3 – Schematic illustration of the information flow through a feed-forward net-
work. Each layer is represented ny a function Fl(θl,xl).

where W⃗ = {w1, w2, . . . , wd} are the weights, and b is the bias. This quantity is then passed
through a non-linear transformation, the so called activation function A(W⃗, b). Popular
activation functions include the Sigmoid, the ReLU and the Softplus functions [155]. One
can think of a neuron as a switch that depending on the weighted sum of the input elements
activates or not. A neural network is built by arranging the neurons into layers, and
connecting them. Figure 7.2 represents a particular class of neural network, the so called
feed-forward network, since the connections have a direction and the information flows
from left to right until the final layer. For each layer, the collection of variables θl consist of
the weights (W⃗ l

n) and biases (bln) of the individual neurons as θl = ({W⃗ l
n}, {bln}), where l

denotes a specific layer and n represents a given neuron. Figure 7.3 shows the information
flow in a feed-forward neural network denoting each layer with a function Fl(θl,xl) such
that

xl+1 = Fl(θl,xl) =



Al
1(W⃗ l

1, b
l
1)

Al
2(W⃗ l

2, b
l
2)

...

Al
Nn

(W⃗ l
Nn
, blNn

)


, (7.3)

where Nn is the number of neurons in layer l, xl denotes a single sample xµ after the
transformation of layer l and An(W⃗ l

n, b
l
n) is the activation function. Neural networks

are universal function approximators in the sense, that using only a single layer they can
approximate any function with an arbitrary accuracy by increasing the number of neurons
[159,160]. Practice shows that it is more rewarding to increase the depth, i.e. the number
of layers, of the networks, rather than increasing the number of nodes in a single one,
hence the name “deep learning”.

7.2 Unsupervised learning

As for supervised learning, the input for unsupervised learning is the dataset D = (X),
however, there are no labels y available. The goal of these techniques is to recover and
understand the underlying data structure, without any a priori assumptions. Its typical
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Figure 7.4 – Schematic representation of a Restricted Boltzmann Machine.

applications are clustering algorithms, structure discovery and recommending systems,
and its basic methods include principal component analysis or k-means clustering. While
the previously introduced discriminative learning techniques model the conditional prob-
ability p(y|X), unsupervised learning often aims at learning about the joint probability
distribution of p(X, y). This is referred to as generative modeling [161]. With a genera-
tive model one can also support a discriminative task using the Bayes formula

p(y|X) = p(X, y)
p(X)

, (7.4)

where p(X) =
∑
y p(X, y), thus, it also supports reinforcement or semi-supervised learn-

ing tasks. Furthermore, one can produce new samples that are conditioned on the label
such that p(X|y) = p(X, y)/p(y), hence the name generative modeling. Summarizing, the
purpose of unsupervised learning is to learn and sample a high dimensional distribution
function.

Restricted Boltzmann machines

The key idea behind generative modeling lies in imposing certain structures on the form
of the probability distribution. Therefore, several successful models have been developed
for the various tasks including variational autoencoders [162], normalizing flow [163], au-
toregressive models [164] and generative adversarial networks [165]. However, in the con-
text of quantum many body system a rewarding example is the Restricted Boltzmann ma-
chine (RBM), which is a particular case of general Boltzmann machines (BM) [155,166].

Boltzmann machines are methods inspired by statistical physics that model the proba-
bility as a Boltzmann distribution

p(x) = e−E(x)

Z
, (7.5)
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where Z is the normalizing partition function, E(X) is an energy function and we consid-
ered a single sample x ∈ X. BM-s are practically inverse Ising models where the dataset
D contains samples of the Boltzmann distribution of an Ising model that is connected via
pair-wise interactions. The goal is then to learn the parameters of the energy function
E(x) such that the probability of the observed samples is high. In order to increase the
representative power of the model, we introduce hidden variables in E(x) which then
need to be marginalized in order to obtain the probability distribution

p(x) = 1
Z
∑

q
e−E(x,q) . (7.6)

Restricted Boltzmann machines are a particular class of BM-s that combine learn-ability
and expressibility [155]. A RBM is composed of two layers of binary valued nodes (see
Fig. 7.4): a visible layer for the input vector and a hidden layer for auxiliary variables.
Each neuron is associated with a bias (a and b parameters) and the nodes between different
layers are connected via a set of weighted edges (X parameters). The energy function reads

E(x,q) = −
∑
i

aixi −
∑
m

bmqm −
∑
m,i

qmxiXmi . (7.7)

While in theory a RBM can represent any probability distribution given a sufficiently large
number of hidden nodes, this number can grow exponentially. To further improve their
efficiency one can introduce the deep Boltzmann machines (DBM) that have more than one
layer of hidden neurons. It has been shown that although DBM is capable of representing
data that is computationally prohibitive using an RBM [167], it is computationally harder
to train and sample them due to the interactions between the hidden units [168].

7.3 Reinforcement learning

Situated between supervised and unsupervised learning, reinforcement learning is fo-
cused on sequential decision making problems where there is limited feedback available.
The basic paradigm is generally modeled as a Markov decision process [154, 169, 170]
with the introduction of an agent that needs to learn how to behave in an environment
where the only feedback is a scalar valued reward sign. The goal of the agent is to per-
form actions on the environment such that it maximizes the reward sign in the long run.
Formally one can model the paradigm of a Markov decision process with the following
elements.

• States: a state is a unique characterization of the environment. The set of environ-
mental states is defined as the finite set S = {s1, ..., sN}.
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• Actions: the actions of the agent are defined with another finite set A = {a1, ..., aM}.
Actions are used to control the state of the environment.

• Transition: by applying an action a ∈ A to a state s ∈ S the environment changes
state from s to some s′. If the environment is assumed to be Markovian then the
probability of transition from state s to s′ under action a reads as

T (s, a, s′) = P (s′|s, a) . (7.8)

• Reward: the reward function determines the reward for being in a state s or per-
forming an action a on state s. The state reward function

Rs : S −→ R (7.9)

specifies the reward for being in a state. Let us remark, that one can also define the
functions

Rsa : S × A −→ R
Rsas : S × A × S −→ R ,

(7.10)

which determine the reward for performing an action on a state (Ras) and a particu-
lar combination between states (Rsas). In this thesis, we will only consider the state
reward function Rs.

Figure 7.5 shows the schematic illustration of a general reinforcement learning algorithm.
One of the biggest success of reinforcement learning is the AlphaZero computer program
that can play the traditional board game Go on a “superhuman” level. Other typical
applications include robot navigation, real-time decision making and learning tasks.

Note, the link between the paradigm of reinforcement learning (Fig. 7.5) and the vari-
ational algorithm (Fig. 6.1) implies that VMC can also be interpreted as a reinforcement
learning scheme. This connection has been first established by Carleo et al. in [146], and
inspired the introduction of neural networks into VMC calculations. In the next chap-
ter, we combine the reinforcement scheme with the restricted Boltzmann machines into a
variational approach to obtain the non-equilibrium steady state of open quantum systems.
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Figure 7.5 – Schematic illustration of the paradigm of reinforcement learning.
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CHAPTERCHAPTER8
Variational quantum Monte Carlo
with neural network ansatz

In Chapter 6 we have introduced the fundamentals of the VMC method, which relies on
the variational principle to approximate the ground state of many-body quantum systems.
In recent years, groundbreaking progress has been made by combining VMC with machine
learning tools. Carleo et al. [146] have been the first to establish the link between the vari-
ational algorithm (Fig. 6.1) and the paradigm of reinforcement learning (Fig. 7.5), which
inspired the introduction of the restricted Boltzmann machine as a variational ansatz. The
neural network wave function has proven to efficiently represent highly correlated quan-
tum states, whose parameters can be optimized by means of the variational Monte Carlo
method.

In this chapter we introduce the concept of a neural network ansatz for the density ma-
trix, and present a VMC approach to simulate the non-equilibrium steady state of open
quantum systems. The development of this method was directed by Vincenzo Savona, and
it was published in Physical Review Letters [33]. A considerable amount of the descrip-
tion presented in this chapter has been extracted from [33]. The author’s contribution to
the project was part of the theoretical development, the numerical implementation and
the physical model simulations. While developing the present result, we became aware of
three related independent works that have been carried out in parallel [61,136,137].

The method was implemented in Python and the software can be accessed in the repos-
itory https://github.com/EPFLLTPN/NNDM [35].

8.1 Variational principle for open quantum systems

The dynamics of the density matrix ρ̂ of an open quantum system is governed by the
quantum master equation which – in case of Markovian coupling to the environment –
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takes the Lindblad form

dρ̂

dt
= −i[Ĥ, ρ̂] −

∑
k

γk
2

[{
L̂†
kL̂k, ρ̂

}
− 2L̂kρ̂L̂†

k

]
, (8.1)

where the curly brackets denote the anti-commutator. A promising route to the numerical
computation of the NESS is provided by the variational principle [27, 29, 135]. In cases
where a unique steady state exists [38], the NESS corresponds to the eigenmatrix of the
Lindblad super-operator L with zero eigenvalue [39] as

L [ρ̂ss] = 0 . (8.2)

As all other eigenvalues have strictly negative real part, the NESS can be formally derived
as the matrix that maximizes the real part of the expectation value (computed in matrix
space) of the Lindbladian.

8.2 Neural network density matrix*

As we have done in Chapter 6, we assume that the Hilbert space of the system is
spanned by the computational basis |σ〉, where σ = (σ1, σ2, . . . , σN ) labels the states
of N degrees of freedom that compose the system, and we consider binary local degrees
of freedom, with σi = {−1, 1}. The density matrix in this basis is formally expressed as
ρ(σ,η) = 〈σ|ρ̂|η〉 in terms of the density operator ρ̂. We denote a specific variational
ansatz for the density matrix as ρχ(σ,η), where χ = (χ1, χ2, . . . , χNp) is a set of varia-
tional parameters.

A neural network ansatz for a self-adjoint, positive semi-definite density matrix was
recently introduced [171] in the specific form of a restricted Boltzmann machine (RBM).
In a variational approach, RBMs present the significant advantage that the sum over the
hidden-spin configurations can be carried out analytically, and the logarithmic derivatives
with respect to the variational parameters admit simple expressions [146]. Here we de-
scribe how this ansatz can be derived from simple considerations on the density matrix.
A self-adjoint, positive semi-definite expression for the density matrix is

ρχ(σ,η) =
J∑
j=1

pj(χ) · ψj(σ, χ)ψ∗
j (η, χ) (8.3)

The states ψj(σ, χ) are not necessarily mutually orthogonal and the sum extends over J
states, with J ≤ d and d = 2N is the dimension of the Hilbert space under study.

We start by introducing a RBM ansatz for each state ψj(σ, χ) entering expression (8.3)
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8.2. Neural network density matrix*

Figure 8.1 – Graphical representation of the neural network ansatz for the density matrix.
The input states |σ〉, |η〉 are encoded in the visible layer, represented by circles. The hidden
spins in the triangles encode the correlation between the physical spins in each state of
the statistical mixture, while the hidden spins in the squares encode the mixture between
the states. This structure is easily seen to coincide with a RBM, where the hidden layer is
composed by the triangle and square nodes.
such that

ψ(σ, χ) =
∑
{q}

exp

∑
i

aiσi +
∑
m

bmqm +
∑
m,i

qmσiXmi

 (8.4)

where qm = ±1 are a set of M = α×N hidden spin variables and the leftmost sum runs
over all possible hidden spin configurations {q}. A RBM is composed of two layers of
binary valued nodes (see Fig. 8.1): a visible layer for encoding the physical state and a
hidden layer. Each node is associated with a bias (a- and b-parameters) and nodes within
the same layer are connected via a set of weighted edges (X-parameters).

In order to express the mixed structure in eq. (8.3) as a single RBM, we embed an
intermediate set of L hidden nodes that are used to express the probabilities pj(χ) in
RBM form as pj(χ) = exp(

∑
l clhl), with hl = ±1 and cl ∈ R. To index the different

states in the mixture accordingly, this new set of hidden nodes must also enter the (8.4)
RBM expression of the wave functions. The full RBM form of the density matrix that we
propose is

ρχ(σ,η) =
∑
{h}

∑
{q}

∑
{r}

exp
(∑

l

clhl

)

× exp

∑
i

aiσi +
∑
m

bmqm +
∑
m,i

qmσiXmi +
∑
l,i

hlσiWli


× exp

∑
i

a∗
i ηi +

∑
n

b∗
nrn +

∑
n,i

rnηiX
∗
ni +

∑
l,i

hlηiW
∗
li

 .

(8.5)
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Since no intra-layer connection is allowed, the hidden variables can be explicitly traced
out and the neural network density matrix reads as

ρχ(σ,η) = exp
(∑

i

aiσi

)
exp

(∑
i

a∗
i ηi

)

×
L∏
l=1

cosh
(
cl +

∑
i

Wliσi +
∑
i

W ∗
liηi

)

×
M∏
m=1

cosh
(
bm +

∑
i

Xmiσi

)

×
M∏
n=1

cosh
(
b∗
n +

∑
i

X∗
niηi

)
.

(8.6)

The RBM is sketched in Fig. 8.1, and χ = {ai, bm, Xmi, cl,Wli} is the final set of param-
eters, which are assumed as complex valued with the exception of cl that must take real
values. The representational power of the RBM is determined by the number of hidden
nodes [172]. Here we set the densities of hidden nodes through the parameters α = M/N ,
β = L/N , which measure the representational power of the RBM ansatz independently of
the size of the spin lattice. When separately accounting for the real and imaginary parts of
complex-valued parameters, the total number of computational parameters in the RBM
ansatz is Np = N [(α+β)(2N+1)+α+2]. In what follows, we will always assume α = β

for simplicity.

On the representative power of RBMs

A research field that received a lot of attention recent years is the application of neural
networks, and in particular, RBMs as variational ansatz. Although for a large number of
hidden nodes, RBMs are known to describe quantum correlations efficiently [147, 149],
a deep understanding of their efficiency and representative power is still a matter of de-
bate. Indeed, unlike tensor network states, we cannot identify a quantity that is in direct
and quantitative connection with the entanglement properties of the physical systems. Re-
cent studies [149, 150] demonstrated that there is a strong relation between some partic-
ular type of RBMs and subclasses of tensor network states, providing additional insight
into their efficiency. However, while the structure of tensor network states is intended
to model quantum states whose entanglement entropy follows area laws, finding which
physical states the geometry of the general RBMs describe is still an open question.

Let us remark, that RBM is not the only neural network model that has been success-
fully applied for many-body quantum systems [146,149,150,173]. As it has been shown
by Gao and Duan [151], there are ground states of Hamiltonians that cannot be efficiently
represented with an RBM without invoking an exponential growth in the number of pa-
rameters. Instead, one might resort to deep Boltzmann machines [147] and convolutional
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networks [148].

8.3 Stochastic reconfiguration for open quantum systems

It is convenient to rewrite eq. (8.2) in a vectorized form by reshaping ρ̂ into a column
vector |ρ〉. Following [45], L takes matrix form and the steady state density matrix fulfils
〈ρ|L|ρ〉 = 0. Therefore the expectation value over the variational density matrix 〈〈L〉〉 =
〈ρχ|L|ρχ〉/〈ρχ|ρχ〉 is a function of the variational parameters χ. Now and in what follows
we denote the normalized expectation value taken over the variational density matrix |ρχ〉
with 〈〈·〉〉. The parameter values that best approximate 〈〈L〉〉 = 0 can be found by means
of various optimization procedures [146,150,171]. In this thesis, we choose to adopt the
Stochastic Reconfiguration (SR) scheme by Sorella et al. [143] which we extend to open
quantum systems.

Similarly to eq. (6.22), after an infinitesimal time step δt the variational density matrix
reads

|ρχ̃〉 = |ρχ〉 + δt

Np∑
k=1

δχ̇kÔk|ρχ〉

= δt

Np∑
k=0

δχ̇kÔk|ρχ〉 .

(8.7)

We can define now the logarithmic derivatives ok of the density matrix for any configura-
tion |σ,η〉 as the variational derivatives with respect to the k-th parameter

ok(σ,η) = 1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂χk

. (8.8)

which form the diagonal operators

Ok =


I for k = 0∑
σ,η

ok(σ,η)|σ,η〉〈σ η| for k 6= 0 . (8.9)

Open quantum systems evolve under a one-parameters semigroup dictated by the Lind-
blad super-operator which for an infinitesimal time step reads as

|ρex
χ 〉 = eLδt|ρχ〉 ' (I + Lδt)|ρχ〉 . (8.10)

Under general assumptions, this dynamics asymptotically converges to the non-equilibrium
steady state. Once again, ensuring that |ρχ̃〉 follows the evolution of |ρex

χ 〉 corresponds to
equating eq. (8.7) and (8.10) in the subspace spanned by the vectors {Ok|ρχ〉}. Doing so
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we obtain
δχ̇k =

∑
k′

S−1
kk′Fk′ , (8.11)

where we introduced the generalized forces and the covariance matrix for a given set of
variational parameters as

Fk = 〈〈O∗
kL〉〉 − 〈〈L〉〉〈〈O∗

k〉〉
Skk′ = 〈〈O∗

kOk′〉〉 − 〈〈O∗
k〉〉〈〈Ok′〉〉 ,

(8.12)

with k, k′ = 1, 2, . . . , Np. After solving eq. (8.11), the variational parameters are updated
following

χ̃k = χk + δtδχ̇k , (8.13)

where δt is small enough to guarantee convergence. We point out that, while the ex-
pression for S in (8.12) results in the VMC iterations following the real time evolution,
minimization can be achieved by using any positive semi-definite covariance matrix. In
particular, setting S as the identity results in the steepest descent procedure. Since S can
be non-invertible, we apply an explicit regularization scheme, as introduced in [146]:

Sreg
kk′ = Skk′ + λ(n)δk,k′Skk′ . (8.14)

where λ(n) = max(λ0b
n, λmin) with n being the iteration number. For the present calcu-

lations, they were set to λ0 = 100, b = 0.998 and λmin = 10−2. Note that, to obtain the
correct real-time dynamics the diagonal regularization cannot be applied and S−1 denotes
the Moore-Penrose inverse [146].

8.4 Observables*

Once the optimal parameter values have been determined, the expectation value of any
quantum mechanical observable Ô over the steady state can be expressed as

〈Ô〉 = Tr(Ôρ̂χ) =
∑
σ,η

|ρχ(σ,η)|2 · O(η,σ)
ρχ(σ,η)∗ , (8.15)

which can also be evaluated using the Metropolis-Hastings algorithm (see Sec. 6.2). For
all the quantities considered here, the expectation values were additionally averaged over
100 sets of parameter values chosen in the asymptotic region of the SR iteration, in or-
der to improve the statistical accuracy. The overall error in the sampled observables has,
in addition to the contribution from the Metropolis-Hastings algorithms, a contribution
from the SR scheme and a systematic contribution related to the representational power
of the RBM ansatz, as measured by the α and β parameters.
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8.5 Comment on optimization techniques

We wish to remark, the previously introduced SR method that we have also adopted in
[33] is one among several optimization techniques. Here, we want to illustrate the various,
and conceptually different approaches that have been introduced for the variational study
of open quantum systems [13,136,137]. Some of these also provide insight into the real-
time dynamics of the density matrix, others can only approximate the steady state one. In
order to review these approaches, let us first introduce a shorthand notation for

i the approximate variational density matrix

|ρδχχ 〉 ≡ δt

Np∑
k=0

δχ̇kOk|ρχ〉 (8.16)

ii the real-time evolved density matrix

|ρδtχ 〉 ≡ eLδt|ρχ〉 ' (I + Lδt)|ρχ〉 (8.17)

iii the density matrix evolved by L†L

|ρδτχ 〉 ≡ e−L†Lδτ |ρχ〉 ' (I − L†Lδτ)|ρχ〉 . (8.18)

Finally, we introduce the five distinct approaches that has been presented in [33,61,136,
137].

Approach A:

For studying: Real-time dynamics / NESS
ODE given by:

〈ρχ|O∗
l |ρδχχ 〉 = 〈ρχ|O∗

l |ρδtχ 〉

This approach has been presented in [33]. The method relies on equating the ap-
proximate variational density matrix |ρδχχ 〉 with the exact infinitesimal time evolu-
tion |ρδtχ 〉. This leads to the system of linear equations in (8.11), where the gen-
eralized forces correspond to the variational derivatives of 〈〈L〉〉, in analogy to
eq. (6.32).
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Approach B:

For studying: Real-time dynamics / NESS
ODE given by:

δ =
∥∥∥|ρδχχ 〉 − |ρδtχ 〉

∥∥∥2

2

∂δ

∂χ̇k
= 0

This approach has been presented in [136], and it minimizes the 2-norm distance
between the variationally evolved state |ρδχχ 〉 and the the exactly evolved one |ρδtχ 〉.

Approach C:

For studying: Real-time dynamics / NESS
ODE given by:

D = distFS(|ρδχχ 〉, |ρδtχ 〉) = arccos

√√√√ |〈ρδχχ |ρδtχ 〉|2

〈ρδχχ |ρδχχ 〉〈ρδtχ |ρδtχ 〉

∂D
∂χ̇k

= 0

This approach has been presented in [136]. The method minimizes the Hilbert
space distance, which is given by the Fubini-Study norm, between the variationally
evolved state |ρδχχ 〉 and the the exactly evolved one |ρδtχ 〉.

Approach D:

For studying: NESS
ODE given by:

〈ρχ|O∗
l |ρδχχ 〉 = 〈ρχ|O∗

l |ρδτχ 〉

This approach has been presented in [137]. The technique relies on equating the
approximate variational density matrix |ρδχχ 〉 with |ρδτχ 〉, generated by L†L. δχ̇k are
given by a system of linear equations similar to eq. (8.11), where the generalized
forces will now correspond to the variational derivatives of 〈〈L†L〉〉. The method
yields a purely dissipative dynamics using the super-operator L†L as a generator.
In the case of a unique steady state, this super-operator is self-adjoint and positive
semi-defined, with the only null eigenvalue being associated to the steady-state so-
lution. We argue that this effective dynamics should be more robust to the choice
of the time step. The super-operator L†L is however less sparse than L on the
computational basis, calling for an efficient sampling scheme.
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Approach E:

For studying: NESS
ODE given by:

C =

∣∣∣dρ̂dt ∣∣∣22
|ρ̂|22

=
Tr
[
L†
[
ρ̂†
]

L [ρ̂]
]

Tr [ρ̂†ρ̂]

− ∂C
∂χ̇k

= 0

This approach has been presented in [61]. The method minimizes the 2-norm of the
time derivative of the density matrix, where the normalization factor is the purity.
Although it cannot describe real-time evolution, the steady state density matrix can
be obtained since ˙̂ρ = 0 if and only if ρ̂χ = ρ̂SS .

8.6 Stochastic sampling*

The various expectation values in eq. (8.12) must be evaluated at each iteration step.
Similarly to eq. (6.3), we cast the general forces and the covariance matrix into a suitable
form as

Fk(n) =
∑
x

|〈x|ρχ〉|2 ·
(
∂ ln〈x|ρχ〉
∂χk

)∗ 〈x|L|ρχ〉
〈x|ρχ〉

−
∑
x

|〈x|ρχ〉|2 · 〈x|L|ρχ〉
〈x|ρχ〉

∑
x′

|〈x′|ρχ〉|2 ·
(
∂ ln〈x′|ρχ〉

∂χk

)∗

Skk′(n) =
∑
x

|〈x|ρχ〉|2 ·
(
∂ ln〈x|ρχ〉
∂χk

)∗ (∂ ln〈x|ρχ〉
∂χk′

)

−
∑
x

|〈x|ρχ〉|2 ·
(
∂ ln〈x|ρχ〉
∂χk

)∗∑
x′

|〈x′|ρχ〉|2 ·
(
∂ ln〈x′|ρχ〉
∂χk′

)
,

(8.19)

where |x〉 = |σ,η〉 are the basis elements spanning the space of the vectorized density ma-
trix, and |〈x|ρχ〉|2 = |ρχ(σ,η)|2 plays the role of a probability distribution. We then com-
pute these quantities stochastically over a Markov-chain of NMH configurations (σ,η)
sampling the square modulus of the density matrix |ρχ(σ,η)|2. For this we adopt the
MCMC algorithm, which we have introduced in Section 6.2. In the limit of NMH → ∞,
the statistical error decays as 1/

√
NMH . Choosing an appropriate set of rules for the ran-

dom walk is key to an efficient Monte Carlo sampling, and here we introduce a particular
technique which is based on the transitions dictated by the Lindbladian. We will review
this move generation protocol in Section 8.7.
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8.7 Implementation

The neural network based VMC algorithm was implemented in Python3.6 and has been
designed to contain several interchangeable modules that provide extensive functionality:

• Physical models: both in one- and two-dimensions

– dissipative XYZ model

– transverse Ising model

– synthetic Ising model

• Real-time dynamics (Approach A)

– first order Euler

– second order Runge-Kutta

• Non-equilibrium steady state (Approach D)

– full sampling of 〈〈L†L〉〉

– partial sampling of 〈〈L†L〉〉 (see Sec. 8.7.3)

The number of floating point operations to evaluate eq. (8.11) scales as N3
p , if we as-

sume that the number of Metropolis-Hastings steps NMH is set to roughly the number
of parameters Np, as in Ref. [146]. The MCMC procedure also scales with the number
of connected states Ncav , i.e. with the average number of non-zero elements in a column
of the Lindbladian matrix. Therefore, the efficiency of the whole procedure scales as
O(N3

p + NpNcav ). In order to improve the computational efficiency, we have optimized
the stochastic sampling, installed a parallel scheme by splitting the MCMC chain into
several independent threads and introduced GPU-accelerated linear algebra calculations.

8.7.1 Optimal calculus

In each optimization step, one needs to compute the generalized forces F and the co-
variance matrix S in order to evaluate eq. (8.11). This task can be achieved using the
previously introduced MCMC technique, in which at each step of the Markov-chain we
need to be able to efficiently calculate

• the Metropolis-Hastings acceptance ratio

A(σ′,η′|σ,η) ∝
∣∣∣∣∣ρχ(σ′,η′)
ρχ(σ,η)

∣∣∣∣∣
2

(8.20)
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• the local value of the Lindbladian

〈σ,η|L|ρχ〉
〈σ,η|ρχ〉

=
Nc∑

|α,β〉
cα,β

〈α,β|ρχ〉
〈σ,η|ρχ〉

, (8.21)

where Nc is the number of states connected to 〈σ,η| through the Lindbladian L.

• and the variational derivatives

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂χk

. (8.22)

For this, we follow [146] by introducing the so-called effective angles

θ̃l(σ,η) = cl +
∑
i

Wliσi +
∑
i

W ∗
liηi

θm(σ) = bm +
∑
i

Xmiσi ,
(8.23)

that also allows us to write the density matrix ansatz in a condensed form as

ρχ(σ,η) = e(
∑

i
aiσi)e(

∑
i
a∗

i ηi)
L∏
l=1

M∏
m=1

M∏
n=1

cosh θ̃l(σ,η) cosh θm(σ) cosh θ∗
n(η) . (8.24)

In order to efficiently calculate the ratios in eq. (8.20) and (8.21) as well as the variational
derivatives, it is useful to keep in memory the effective angles and update them at each
step of the random walk according to

θ̃′
l(σ′,η′) = θ̃l(σ,η) +

∑
i

WliS
σ
i +

∑
i

W ∗
liS

η
i

θ′
m(σ′) = θm(σ) +

∑
i

XmiS
σ
i ,

(8.25)

where

Sσi =

0 if σ′
i = σi

−2σi if σ′
i 6= σi

and Sηi =

0 if η′
i = ηi

−2ηi if η′
i 6= ηi .

(8.26)

Moreover, given the expression (8.24), the variational derivatives can also be written in a
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rather compact form as

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Re(ak)

= σk + ηk

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Im(ak)

= i(σk − ηk)

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Re(bk)

= tanh (θk(σ)) + tanh (θ∗
k(η))

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Im(bk)

= i [tanh (θk(σ)) − tanh (θ∗
k(η))]

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Re(Xkl)

= tanh (θk(σ))σl + tanh (θ∗
k(η)) ηl

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Im(Xkl)

= i [tanh (θk(σ))σl − tanh (θ∗
k(η)) ηl]

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂ck

= tanh
(
θ̃l(σ,η)

)
1

ρχ(σ,η)
· ∂ρχ(σ,η)
∂Re(Wkl)

= tanh
(
θ̃l(σ,η)

)
(σl + ηl)

1
ρχ(σ,η)

· ∂ρχ(σ,η)
∂Im(Wkl)

= i tanh
(
θ̃l(σ,η)

)
(σl − ηl) .

(8.27)

8.7.2 Optimal stochastic sampling*

In order to perform the stochastic sampling proposed in Sec. 8.6, we apply a standard
MCMC protocol where the configurations are generated based on a proposition scheme,
and accepted according to

A(σ′,η′|σ,η) = min
(

1, T (σ,η|σ′,η′)|ρχ(σ′,η′)|2

T (σ′,η′|σ,η)|ρχ(σ,η)|2

)
. (8.28)

Our move generation is based on the transitions dictated by the Lindblad super-operator
which occur by applying L|σ,η〉. Doing so decreases the required number of thermal-
ization and sampling steps by promoting, in the random walk, the configurations with
the highest importance. However, in case of a close-to-pure steady-state, a handful of
density matrix elements have magnitude dominating the others. This causes the random
walk to perform poorly, as some regions in configuration space become scarcely accessible.
Hence, we introduced additional moves which occur with a low probability and reach a
configuration by randomly flipping one spin in both σ and η. The propositions always
need to obey detailed balance.
For sampling |ρχ(σ,η)|2 in the case of a two-dimensional spin lattice model, we introduce
the following possible moves on the configuration space spanned by |σ,η〉
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1. Column-hopping in σ: a site σj and its right neighbour are flipped. This move
accounts for single spin hopping as well as double excitation or loss.

2. Row-hopping in σ: a site σj and its down neighbour are flipped.

3. Column-hopping in η: a site ηj and its right neighbour are flipped.

4. Row-hopping in η: a site ηj and its down neighbour are flipped.

5. Field in σ: a site σj is flipped. This move corresponds to the effect of having an
external field in the direction perpendicular to the quantization axis.

6. Field in η: a site ηj is flipped.

7. Dissipator: sites σj = ηj are flipped with an asymmetrical transition ratio. The
dissipative moves are always proposed, while excitations are only proposed with
ten-percent probability.

8. Jumper: two randomly chosen spins σl, ηm are flipped.

For the move proposition we choose one of the actions with uniform probability. In
Figure 8.2 we present a comparison between the efficiency of using random move propo-
sition, where at each MCMC step a random spin is flipped in σ, η, and applying the
Lindbladian based proposition scheme. The graph shows the relative error of 〈〈L〉〉 for
an increasing number of sampling steps NMH . Indeed, using the Lindbladian proposition

Figure 8.2 – Comparing the efficiency of using random move proposition versus the Lind-
bladian scheme. The graph shows the relative error of 〈〈L〉〉 as function of the number of
accepted MCMC moves. This result has been obtained for a 3×3 lattice XYZ Heisenberg
model with parameters Jx/γ = 0.9, Jy/γ = 1.2, Jz/γ = 1 and α = β = 4.
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scheme provides in average 10% better accuracy than using random spin flips. We wish
to note here, that we set the number of accepted moves instead of the total number of
moves. This is necessary as, for some choices of the physical parameters, the density ma-
trix is highly concentrated on a few matrix elements and consequently MCMC moves are
seldom accepted.

8.7.3 Sampling L†L

As we have shown in Section 8.5, one does not necessarily have to follow the real-
time dynamics towards the steady state, it is also possible to study the purely dissipative
dynamics using the super-operator L†L as generator, whose zero eigenvalue solution is
associated to the NESS. Although this choice can be more robust against the choice of
the time step, the generator L†L is however less sparse, calling for an effective sampling
scheme of what now plays the role of the local variational energy

〈〈L†L〉〉loc = 〈σ,η|L†L|ρχ〉
〈σ,η|ρχ〉

=
Nσ,η

c∑
|α,β〉

cα,β
〈α,β|L|ρχ〉
〈σ,η|ρχ〉

=
Nσ,η

c∑
|α,β〉

cα,β

Nα,β
c∑

|γ,δ〉
dγ,δ

〈γ, δ|ρχ〉
〈σ,η|ρχ〉

,

(8.29)

whereNσ,η
c is the number of states connected to 〈σ,η| through L† andNα,β

c is the number
of states connected to 〈α,β| through L. Thus, the complexity of the sum (8.29) scales
with the square of the average connectivity of the Lindbladian. In our implementation one
has two choices to compute eq. (8.29): we can either perform the sum explicitly which
yields to a computationally slower MCMC step, or can perform a stochastic sampling of

Nα,β
c∑

|γ,δ〉
dγ,δ

〈γ, δ|ρχ〉
〈σ,η|ρχ〉

. (8.30)

In practice, this means that for every Markov-chain we need to store a running average of
〈〈L†L〉〉loc for each visited state 〈σ,η|. We have also introduced a parameter Ndraw that
is the number of states 〈γ, δ| that will be randomly chosen and taken into account every
time the random walk visits 〈σ,η|. This procedure reduces the number of operations to
O(NcNdraw) for every MCMC step. Even though the number of steps before the random
walk converges will increase, the cost of each move will become so much cheaper that
the overall numerical efficiency is improved. The parameter Ndraw can be used to strike a
balance between the convergence time of the Markov-chain and the computational cost
of each move. In Section 8.8.3 we show an example how this latter sampling techniques
allows us to tackle larger system sizes.
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8.7.4 Parallel computing

We implemented the MCMC algorithm in a parallel fashion by splitting the Markov-
chain into several independent threads that are run in parallel using MVAPICH2 [131].
Both a CPU and a GPU version of the code has been developed. GPU calculations allowed
to significantly speed up the update of theOk expectation values, as well as the iterative so-
lution of the linear system in the SR, using the MINRES-QLP algorithm [174,175], which
can correctly handle the case of a singular matrix. The GPU version brought considerable
advantage over CPU when the number of variational parameters was larger than 1000.
Figure 8.3 shows a schematic representation of the GPU accelerated parallel program flow.

Figure 8.3 – Schematic illustration of the parallel program flow.
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8.8 Results

To assess the accuracy and effectiveness of the neural network variational ansatz for
the density matrix we present three studies; the first one models the NESS of the XYZ
Heisenberg model through a dissipative phase transition, in the second we observe the
NESS of the dissipative Ising model, and finally we present a real-time dynamics study of
the synthetic Ising model.

8.8.1 The dissipative XYZ Heisenberg model*

We study a spin-1/2 XYZ model on a two-dimensional lattice with periodic boundary
condition. As we have discussed in Chapter 1.3, the Hamiltonian and the quantum master
equation read

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂

x
j + Jyσ̂

y
i σ̂

y
j + Jzσ̂

z
i σ̂

z
j

)
(8.31)

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{
σ̂+
k σ̂

−
k , ρ̂

}
− 2σ̂−

k ρ̂σ̂
+
k

]
(8.32)

where σ̂xj , σ̂yj , σ̂zj are the Pauli matrices, σ̂±
j = (σ̂xj ± iσ̂yj )/2, Jα are the coupling constants

between nearest neighbour spins and γ is the dissipation rate. The excitations in the system
– induced by the anisotropic spin coupling – compete with the isotropic dissipative process,
and this competition is at the origin of the dissipative phase transition [14,15,17,17,18].
The effectiveness of the neural network ansatz is demonstrated by studying the system
observables across a phase boundary, and we apply the SR presented for Approach A (see
Sec. 8.5)

In addition to the expectation value 〈〈L〉〉, we study the local magnetization

Mz = 1
N

N∑
i=1

Tr(ρ̂σ̂zi ) , (8.33)

and the steady-state structure factor

Sxxss (k) = 1
N(N − 1)

∑
j 6=l

e−ik(j−l)〈σ̂xj σ̂xl 〉 , (8.34)

computed for the asymptotic steady state. Fig. 8.4 shows the convergence of Sxxss (k = 0)
and Sxxss (k = (2π/3, 0)) to the exact result for a 3 × 3 lattice, as α = β are increased. The
parameters χ are initialized randomly and updated at each VMC step according to the SR
scheme. The parameters of the model are chosen to lie in the vicinity of the dissipative
phase transition, i.e. Jx/γ = 0.9, Jy/γ = 1.2, Jz/γ = 1.0. A clear convergence towards
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Figure 8.4 – The steady-state spin structure factor Sxxss (k) computed as a function of
α = β for a 3×3 lattice and k = 0 (upper panel) and k = (2π/3, 0) (lower panel). The red
dot-dashed line represents in both panels the exact result. The inset shows the evolution
of 〈〈L〉〉 over the VMC run. Parameters: Jx/γ = 0.9, Jy/γ = 1.2, Jz/γ = 1.0.

the exact value upon increasing α = β is found. The inset in Fig. 8.4 shows the SR
evolution of Re(〈〈Lχ〉〉) over a typical VMC run. The oscillations at early times are a
feature of the unitary part of the dynamics in the quantum master equation.

In Fig. 8.5 we display the magnetization as computed for different lattice sizes and
as a function of the coupling parameter Jy/γ. For this choice of parameters, a para-to-
ferromagnetic phase transition is expected to occur when increasing the coupling through
the value Jy ⪆ 1.04 [16, 17], while a second phase boundary between a ferromagnetic
and a paramagnetic region has been predicted by cluster mean-field calculations at around
Jy ⪆ 1.4. For 2×2 and 3×3 lattices the VMC result agrees well with the exact calculation
for a large enough number of variational parameters. In Fig. 8.6 we display the spin
structure factor Sxxss (k = 0) for the same parameters as in Fig. 8.5. The quantity Sxxss (k =
0) vanishes when in a paramagnetic phase, while it takes a finite value in the ferromagnetic
region of the phase diagram. This behaviour is displayed both by the exact calculation for
small lattices, and by the VMC data, in the vicinity of the phase boundary at Jy ⪆ 1.04.
For values Jy > 1.4 the system should become again paramagnetic in the thermodynamic
limit of large lattices, but this feature was not displayed by the present data up to the
largest lattice under study, in agreement also with recent stochastic Gutzwiller calculations
[18].
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Figure 8.5 – The magnetization Mz computed as a function of the coupling Jy/γ. VMC
and exact values are compared. Error bars, when not shown, are smaller than the symbol.
Other parameters: Jx/γ = 0.9, Jz/γ = 1.0, α = β = 3.

Figure 8.6 – The steady-state spin structure factor Sxxss (k = 0) computed as a function of
the coupling Jy/γ. VMC and exact values are compared. Other parameters: Jx/γ = 0.9,
Jz/γ = 1.0, α = β = 3.
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8.8.2 Time evolution of the dissipative synthetic Ising model

To benchmark the accuracy of the time evolution for ρ̂ as obtained from eq. (8.11),
we consider the dissipative synthetic Ising model that has been in the focus of extensive
experimental research [62, 64–66]. Using a mapping on multilevel Rydberg atoms [63],
the experimental setup can efficiently simulate the effective Ising model that is governed
by

Ĥ =
∑
i

(Ω
2
σ̂xi − δn̂i

)
+ 1

2
∑
〈i,j〉

Un̂in̂j (8.35)

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{n̂k, ρ̂} − 2n̂kρ̂n̂k] , (8.36)

where the atoms are coherently coupled to the Rydberg state with a two-photon transition
of Rabi frequency Ω and a detuning δ, and n̂i = (I+ σ̂zi )/2 is the projector on the Rydberg
state for atom i. As we have previously derived, the NESS is well-known to be fully mixed
when the dissipative channel is pure dephasing. However, the short time dynamics of the
system is subject to many experimental studies. Therefore, we chose to reproduce the
experimental parameters presented in [62] and study how the number of excited Rydberg
atoms n evolves in time with

n = 1
N

N∑
i=1

Tr(ρ̂n̂i) . (8.37)

Figure 8.7 shows the results for a chain of 6 spins with open boundary conditions. The
dynamics generated by the SR algorithm provides a quantitatively accurate approximation
of the dynamics already for a hidden node density α = β = 1.

Figure 8.7 – The real-time dynamics of the number of excited Rydberg atoms n with
Ω = 3.6π, U = 5.4π, δ = 0, α = β = 1.
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8.8.3 The steady state for the dissipative Ising model

Besides following the real-time evolution, we have also implemented a direct search for
the NESS as in Approach D of Section 8.5. Adjusting the variational parameters to follow
the dynamics dictated by L†L leads to the same system of equations as given in eq. (8.11),
but where the generalized forces and the covariance matrix reads

Fk = 〈〈L〉〉〈〈O∗
k〉〉 − 〈〈O∗

kL〉〉
Skk′ = 〈〈O∗

kOk′〉〉 − 〈〈O∗
k〉〉〈〈Ok′〉〉 .

(8.38)

In order to benchmark the method and test its scalability, we consider the one-dimensional
dissipative quantum transverse Ising model with periodic boundary conditions, whose
Hamiltonian and master equation follows

Ĥ = h
∑
i

σ̂xi + Jz
∑
〈i,j〉

σ̂zi σ̂
z
j (8.39)

dρ̂
dt

= −i[Ĥ, ρ̂] − γ

2
∑
k

[{
σ̂+
k σ̂

−
k , ρ̂

}
− 2σ̂−

k ρ̂σ̂
+
k

]
. (8.40)

As an example of convergence, in Figure 8.8 we report a typical evolution of 〈〈L†L〉〉 in the
SR minimization procedure for a fixed set of parameters, that shows a good convergence
towards the global minimum for 5 and 25 spins respectively. To obtain the results we have
applied the partial sampling strategy introduced in Sec. 8.7 and a hidden node density
α = β = 1.

Figure 8.8 – SR evolution of 〈〈L†Lχ〉〉 for the 1D dissipative Ising model for 5 (upper
panel) and 25 (lower panel) spins with Jz/γ = 0.5, h = 0.5, α = β = 1.
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8.9 Conclusion

Existing numerical approaches to the simulation of the steady state of a Markovian open
quantum system either require the full representation of the Hilbert space into memory,
or rely on a properly chosen truncation of the Hilbert space to a relevant subspace. The
present VMC approach is free of these two limitations, thanks to the stochastic evaluation
of expectation values by means of the MCMC algorithm. The neural network ansatz in
terms of a RBM is highly representative of quantum correlated statistical mixtures, while
being simple to handle numerically. In cases with very strong quantum correlations, this
ansatz could be extended to deep network representations, as was recently done in the case
of Hamiltonian problems [147,148,151,176]. For some of these networks [176], the hid-
den degrees of freedom can still be summed analytically, as for RBMs. Neural network
representations are not restricted to spin degrees of freedom and have been successfully
adopted to represent bosonic many-body states efficiently [177]. For these reasons, the
present VMC approach may emerge as the election tool to numerically model open quan-
tum systems, with considerable impact on the study of fundamental physics and on the
modeling of near-term, noisy quantum information platforms [22].
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CHAPTERPART IV





CHAPTERCHAPTER9
Conclusion and outlook

In this thesis we have developed two complementary numerical approaches to simulate
the dynamics and the asymptotic steady state resulting from the Lindblad quantum master
equation. The possibility to simulate the properties of many-body open quantum systems
with a large number of degrees of freedom is the premise to the solution of several out-
standing problems in quantum science and quantum information. However, as within the
Markovian description only few model admits analytical solution, the quest for finding
efficient numerical methods is still ongoing.

In Part I, we explored the fundamental principles of the theory of many-body open
quantum systems, we have presented several paradigmatic models that are often used as a
first example to benchmark a novel technique, and we reviewed the most commonly used
computational approaches with a particular focus on their advantages and disadvantages.

Then, in Part II, we have introduced a novel numerical method for quantum systems
with Markovian system-environment coupling, called DDQMC. The approach stems from
the FCIQMC algorithm and exploits the analogy between the long-time dynamics of the
Lindblad master equation and the imaginary-time Schrödinger equation. DDQMC allows
the direct sampling of the density matrix in any discrete basis set, and the introduction
of initiator approach and importance sampling has lead to a significant improvement in
the statistical accuracy. We have demonstrated the validity of the method by investigat-
ing a dissipative phase transition on the two-dimensional XYZ Heisenberg model. The
defining feature of DDQMC is that it samples the whole density matrix and it does not
introduce a truncation in Hilbert space. The biggest limitation of the algorithm emerged
with increasing system size, as the absence of a guiding wave function resulted in an ex-
ponentially increasing statistical error on the observables.

Finally, in Part III, we have presented in detail a variational approach to efficiently simu-
late both the dynamics and the non-equilibrium steady state of Markovian open quantum
systems. The density matrix is parametrized using a neural network ansatz, and the pa-
rameters are varied using an extension of the stochastic reconfiguration method, which
was shown to approximate the real-time dynamics of the system. As the derived SR is
one among several possible optimization techniques, we also illustrated the other concep-
tually different approaches that have been introduced for the variational study of open
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quantum systems. We have demonstrated a proof-of-principle of the theoretical scheme
by successfully benchmarking both dynamical and steady state results for a set of spins
described by dissipative quantum spin models.

The neural network ansatz in terms of a RBM is highly representative of quantum cor-
related mixtures, while being simple to handle numerically. However, it has been shown
that there are certain classes of states that cannot be accurately simulated without invok-
ing an exponential growth in the number of parameters. We wish to remark, that the
presented variational approach does not depend on the specific network topology, hence
in general, it can be applied to other neural networks. Nevertheless, while a RBM ansatz
can be extended to deep network representations for the wave function, for open systems
the problem does not only arise from an increased difficulty in their sampling, but also
from defining a model that preserves positivity for the density matrix.

However, since the problem of positivity does not emerge for wave function represen-
tations and the ansatz does not depend on the topology of the physical model, combining
the neural network ansatz with most existing methods could stand as a computationally
more efficient alternative to tensor network states. Nevertheless, if we consider the com-
bination with Monte Carlo Wave Function simulations, their application could be limited
to systems with slow dissipation rates, as is yet to be found a compact way to apply the
quantum jump operators to the neural network state, without having to train a new net-
work to represent the effect of a jump.

Instead, a promising approach, that could solve the scaling problem for both developed
methods, would consist of applying DDQMC and the variational approach as comple-
mentary techniques. This means, that one could first find an approximate representation
of the steady state density matrix with the variational RBM ansatz, then use it as a guid-
ing function for the importance sampling in DDQMC. Contrary to existing numerical
approaches which either require the full representation of the Hilbert space in memory,
or rely on a properly chosen truncation of it, this combination would stochastically sam-
ple the full space of the density matrix.

We believe that this thesis has introduced novel methods that hold promise as a power-
ful tool in the study of open quantum systems, since both of them can be straightforwardly
adopted to also represent bosonic lattice problems, and none of them depends on the spa-
tial arrangement of the physical models. Applying them independently, we experienced
a limitation with increasing system size and correlation, however, there are many future
developments on the horizon, and their complementary application might break free of
these problems.
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