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Abstract 

The nonlinear behavior of a rigid rotor supported by herringbone grooved journal 
gas bearings (HGJBs) was investigated in this study. The two-dimensional narrow 
groove theory (2D-NGT) was adopted to model the HGJBs. A set of integrated rotor-
bearing state equations were built by coupling the rotor motion equations and the 
bearing Reynolds equation. An implicit integrator with adaptive time step method 
was used to solve those state equations continuously. Two low-stability HGJBs were 
implemented to experimentally demonstrate and analyze the appearance of self-
excitation motions. The theoretical model was successfully validated by the 
experimental data on predicting the onset speed of the sub-synchronous vibration of 
the HGJB-rotor system and the whirl frequency ratio. The predicted limit cycle 
amplitude increases as the speed increases until the rotor contacts with the bearing 
surface, which leads to a bearing failure. Forward conical mode dominates the self-
excited motion during the whole speed range of self-excited motion. The prediction 
shows that the HGJB-rotor system can still operate in a stable, even though the rotor 
is installed vertically, i.e., without static load on the bearings. This is a distinct 
advantage in comparison to plain bearings. As the static load applies on the bearings 
increases, the onset speed of sub-synchronous vibration increases as well. For the 
investigated rotor-bearing system, an increase of the onset speed of sub-synchronous 
vibration from 36 krpm to 75 krpm is predicted as the static load increases from 0 to 
4 times of the rotor weight. This indicates an increased HGJB stability with increased 
static load. The rotor orbits show complex shapes when the imbalance excitation is 
considered in the simulation. Both synchronous frequency and whirl frequency are 
shown in the spectral analysis. Moreover, the speed range of self-excited motion 
reduces from [38, 48] krpm to [40, 42] krpm as the imbalance increases from 0 to 
40 mgmm. 

 

mailto:wanhui.liu@epfl.ch
mailto:philipp.battig@epfl.ch
mailto:patrick.wagner@epfl.ch
mailto:jurg.schiffmann@epfl.ch


Keywords: 

Gas bearing; Herringbone; rotordynamics 

 

Nomenclature 
 
b1         Ridge width, [m] 
b2         Groove width, [m] 
D          Bearing diameter, [m] 
E          Rotor material elastic modulus, [Pa] 
FX         Bearing force in x direction, [N] 
FY         Bearing force in y direction, [N] 
FX_im     Imbalance force along x direction, [N] 
FY_im     Imbalance force along y direction, [N] 
g          Gravitational acceleration, [m/s2] 
h          Gas film thickness, [m] 
hg         Gas film thickness in groove region, [m] 
hg0        Groove depth, [m] 
hr         Gas film thickness in non-groove region, [m] 
hr0        Bearing initial clearance, [m] 
Ip          Polar rotor inertia, [kg·m2] 
IT          Transversal rotor inertia, [kg·m2] 
l           Bearing span, [m] 
l1          Distance between bearing 1 mid-plane and mass center, [m] 
l2          Distance between bearing 2 mid-plane and mass center, [m] 
L          Bearing length, [m] 
Lland      Land region length, [m] 
mr         Rotor mass, [kg] 
pa         Ambient pressure, [Pa] 
P          Bearing pressure, [Pa] 
rg          Rotor radial growth caused by centrifugal force, [m] 
R          Bearing radius, [m] 
Ri         Rotor inner diameter, [m] 
Ro         Rotor outer diameter, [m] 
t           Time, [s] 
X          Displacement along x, [m] 
Y          Displacement along y, [m] 
z          Axial coordinate 
 



Greek letters 
α         Groove width ratio 
β         Groove angle, [°] 
θ         Circumferential coordinate, [rad] 
Λ         Bearing number 
µ         Gas viscosity, [Pa·s] 
ν         Rotor material Poisson’s ratio 
ξ         Rotating angle along x axis, [°] 
ρ         Rotor material density, [kg/m3] 
σ         Squeeze number 
ψ         Rotating angle along y axis, [°] 
Ψ         State variable 
ω         Relative angular speed of the smooth and groove parts, [rad/s] 
ωh        Absolute angular speed for the smooth part, [rad/s] 
ωo        Absolute angular speed for the groove part, [rad/s] 
 
Superscripts 
−         Normalized 
 
Subscripts 
a          Ambient condition 
g          Groove region 
i           Inner diameter 
o          Outer diameter 
r          Ridge region 
x          x-axis 
y          y-axis 
 
Abbreviations 
CAD    Computer aided design 
FDM    Finite difference method 
FEM     Finite element method 
FVM    Finite volume method 
HGJB   Herringbone grooved journal bearing 
NGT     Narrow groove theory 

 

1. Introduction 



Gas lubricated bearings are widely used in high-speed rotating machinery, e.g.,  
gyroscopes [1],  turbo compressors[2], turbo blowers[3], micro gas turbines [4,5], 
turbochargers [6], and air cycle machines for aircrafts [7] due to their distinct 
advantages such as oil-free, low friction, compact structure, and extreme 
temperature resilience [8,9]. The herringbone grooved journal bearing (HGJB) is a 
promising self-acting rigid surface gas bearing design. Besides the advantages listed 
above, this type of bearing can operate with radial clearance of several micrometers, 
which is beneficial for small-scale turbomachinery, since it allows to run them with 
small tip clearance as suggested by Diehl et al. [10]. The HGJB has been extensively 
studied both in theory and experiment [11–14]. Malanoski [15] pointed out the 
excellent stability characteristics of HGJB in comparison to traditional plain gas 
bearings. In comparison with tilting pad gas bearings, HGJBs feature a much simpler 
bearing structure, which significantly reduces the difficulty of manufacturing and 
assembly. So far, HGJBs have been successfully used in gyroscopes [1], 
turbocompressors [2], and micro gas turbines [5].  
 
 

Whipple [16] proposed the narrow groove theory (NGT) to predict the static 
performance of liquid or gas lubricated spiral grooved thrust bearings. The grooves 
and ridges were assumed to be sufficiently narrow, which leads to a close-to-smooth 
pressure change across a groove-ridge pair. This approximation significantly reduces 
the numerical difficulty and computational cost for the modeling of grooved 
bearings. Muijderman [17,18] modified Whipple’s NGT method through 
considering grooves along a spiral, which applied a conformal mapping method to 
map a spiral groove pattern into a parallel one. Vohr and Pan [19] proposed an NGT 
based model for the spiral-grooved, self-acting bearing of arbitrary geometry 
(parameterized groove shapes), while Vohr and Chow [11] applied this analysis to 
HGJBs. The governing differential equation was derived under the assumption of 
isothermal and compressible flow. Since it was difficult to solve the nonlinear 
differential equation at that time, the differential equation was linearized by applying 
an infinitesimal perturbation around a static eccentricity to predict the linearized 
bearing impedance. In addition to the linearization, they applied a separation of 
variable approach, which limits the model to small eccentricities (1D-NGT). 
However, there are many cases that violate this assumption e.g., heavy rotors, large 
imbalances and self-excited motions. Adopting numerical methods such as the finite 
difference method (FDM) allows to discretize the NGT equation in the 
circumferential and axial direction and therefore enables to extend the prediction of 
the HGJB performance to large eccentricities (2D-NGT) [20–22].  
 



In order to assess the validity of the NGT and to capture the effect of a limited 
number of grooves, methods of direct discretization of the Reynolds equation were 
investigated. Van der Stegen [23] introduced the FDM to discretize the Reynolds 
equation directly in order to predict the load capacity of gas-lubricated HGJBs. 
However, the film discontinuity of the local film thickness due to the grooves cause 
numerical challenges associated with numerical oscillations [24]. Reddi and Chu [25] 
introduced the finite element method (FEM) for solving the steady compressible 
lubrication problem and Bonneau and Absi [26] used the FEM to analyze HGJBs 
with small number of grooves. Arghir et al. [27] introduced the finite volume method 
(FVM) to tackle the fluid film thickness discontinuity. Compared to the FDM, both 
the FEM and the FVM were suggested to avoid the numerical oscillations and to be 
more efficient [28]. However, for the direct discretization method, the mesh needs 
to be consistent with the groove distribution [24,29]. Moreover, this method was 
suggested to be inefficient and inaccurate for the rotating groove case [26,30]. 
Considering modern groove manufacturing methods, e.g., laser grooving, which 
allows to manufacture narrow grooves, the NGT has still been widely used in recent 
works [21,22,31,32]. 
 

Jang and Yoon [33] built a nonlinear theoretical model on fluid lubricated 
herringbone grooved bearings to investigate the difference between the rotating and 
the stationary groove design. The FEM was adopted to solve the Reynolds equation 
and the Runge-Kutta method was used to solve the rotor motion equations. However, 
only the predicted load capacity, i.e., the static performance was validated with 
experimental data by Hirs [34]. Wang [35,36] investigated the nonlinear and 
bifurcation characteristics of the HGJBs (stationary grooves) coupled with a flexible 
rotor. FDM with the successive over relation method was employed to solve the 
Reynolds equation. Miyanaga and Tomioka [21] built a nonlinear theoretical model 
of a HGJB rotor system mounted on viscoelastic supports. The study revealed that 
the viscoelastic support can improve the threshold speed of whirl instability. 
However, the nonlinear predictions above adopted the traditional time domain 
integration method, which discretizes the time dependent terms /p t∂ ∂  and /h t∂ ∂  by 
a backward difference approximation. Larsen and Santos [37] pointed out that the 
time dependent terms are lagging behind in time for this method because they are 
based on the previous time step in the integration of the rotor motion equations. 
Therefore, this method does not reflect the true simultaneously coupled nature of the 
state variables of the bearing-rotor system [38]. 
 



1.1  Nature of issue 

Most of the studies mentioned above focus on a linear analysis, which is based on 
the small perturbation approach. A linear gas bearing model, indifferent from its 
complexity, can only predict the linear concept threshold speed of instability and 
cannot forecast the evolution of the orbits when sub-synchronous vibration start to 
appear [39–41]. Considering gas foil bearing supported rigid rotor systems, both 
predictions by Bonello et al. [38] and Larsen et al. [42] suggest the presence of a 
speed range, where the orbits continuously evolve towards limit cycles after the 
stable state (orbit converge to equilibrium position). Moreover, Larsen et al. [37] 
demonstrated that the sub-synchronous vibrations do not only depend on the 
operating speed, but also depend on the imbalance level. Only a nonlinear theoretical 
model that couples the fluid film behavior and the equations of motion of the rotor 
can capture these characteristics. However, the previous nonlinear predictions on 
rigid rotors supported on HGJBs [21,33,35,36] neither offer an experimental 
validation of the predicted onset speed of sub-synchronous vibration, nor provide an 
insight of the orbit evolution until bearing failure when sub-synchronous vibration 
occurs. This study is the first to introduce the state space methodology to build the 
nonlinear prediction model of HGJB and the numerical model was successfully 
validated in detail through experiment. This study is the first to shed light into the 
orbit evolution from stable to sub-synchronous vibration and ultimately to bearing 
failure for the HGJB, and offers therefore unprecedented insights into the operation 
of HGJB supported rotors. 

 

1.2 Goals and objective 

The goal is a nonlinear prediction tool, which captures the features of the HGJB 
supported rotor system. The objectives are to (1) build a parametric nonlinear 
prediction model of the HGJB-rotor system, (2) validate the proposed theoretical 
model by comparing it with experimental results, (3) investigate the evolution of the 
self-excited motion with operating speed for the HGJB-rotor system, and (4) study 
the effect of static load and imbalance load on the response of HGJBs supported 
rotor. 

 

1.3 Scope of the paper 



A nonlinear theoretical model of a rigid rotor supported on two HGJBs was 
implemented using the 2D-NGT. The rigid rotor motion equations were coupled 
with the bearing model and then transformed into a set of state equations by 
introducing a state variable PhΨ = . The terms on the right-hand side of the state 
equations, which are independent in time, were discretized by using the FDM in the 
spatial domain. An implicit integrator with adaptive time step was used to solve the 
state equations simultaneously. For the experimental validation of the proposed 
model, a rotor supported on two low stability HGJBs was built and tested. The 
predicted onset speed of sub-synchronous vibration based on the nonlinear 
theoretical model are compared with the experimental results. The evolution of the 
self-excited motions with operating speed were predicted and analyzed. Based on 
the experimentally validated nonlinear model, both the effects of static load and 
imbalance load on the rotor responses were investigated.  

 

2. Theory 
2.1 Bearing theoretical model 

The NGT, which assumes an infinite number of grooves, was applied to calculate 
the fluid film pressure distribution within a HGJB. The non-dimensional modified 
Reynolds equation for the ideal gas can be expressed as follows: 

 
( ) ( )

( ) ( ) ( ) ( )sin cos

c z z c z z
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   ∂ ∂ + ∂ + ∂ ∂ + ∂   
 + ∂ − ∂ = Λ∂ + ∂ 

  (1) 

The details of the variables in the modified Reynolds equation are shown in 
Appendix A. Insights into the derivation of this equation can be found in the review 
article by Gu et al. [43]. 

 

Figure 1 shows the coordinate system for the HGJB model. Since the NGT was 
adopted, the pressure does not fluctuate as the rotor rotates. Thus, a coordinate 
system fixed to the bushing was used. The FDM method was adopted to discretize 
the modified Reynolds equation in the spatial domain. Figure 2 shows the grid and 
the boundary conditions of the implemented model. The model assumes a perfectly-
aligned shaft and ambient pressure at both bearing axial ends. Therefore, the bearing 
gas pressure distribution is assumed to be symmetrical about the bearing mid-plane. 



Thus, only half of the bearing is modeled, which significantly reduces the 
computational cost. Four boundary conditions are applied to constrain the 
differential equation, which are shown in Fig. 2 and summarized as follows: 

1. The pressure at the bearing axial end (j=1) is equal to the ambient pressure: 

 ( ), 0 1P zθ = =   (2) 

2. Periodic boundary conditions are adopted along the circumferential direction: 

 ( ) ( ), 2 ,P z P zθ θ π= +   (3) 

3.  The pressure at the border between the grooved and the land region is the 
same and the mass flow continuity needs to be satisfied: 

 
( )( ) ( )( )

3

, / , /
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land landgroove land

s s c z z zgroove land

P z L L D P z L L D

c f f P f P h Pθ

θ θ

β

= − = = −

  − ∂ − ∂ = − ∂   
  (4) 

4. The mass flow normal to the mid-plane is 0: 

 0z P∂ =   (5) 

 
Figure 1 Coordinate system used for the herringbone grooved journal gas bearing 

model. 

 



 
Figure 2 Mesh and boundary condition of the studied HGJB 

 

HGJBs are typically operated at high rotor speeds and the radial bearing clearance 
is only a few micrometers to ensure stable operation. The performance of HGJBs is 
very sensitive to the bearing clearance, therefore the rotor expansion caused by the 
centrifugal force needs to be taken into consideration. The radial growth of the rotor 
caused by the centrifugal force can be predicted via the plain stress model of a thin 
circular disk [44], which can be expressed as follows: 

 ( ) ( ) ( )2
2 3

0 1

11 11 1
8g o o

o

r R C C R
E R

ν
ν ν ρω

 −
 = − − + −
  

  (6) 

with ( )( ) ( )2 2 2
0 3 / 8 i oC R Rν ρω= + + , and ( )( ) 2 2 2

1 3 / 8 i oC R Rν ρω= − + . The variable ρ  
represents the rotor material density, E  and ν  are the elastic modulus and Poisson’s 
ratio of the rotor material, respectively, iR  and oR  are the rotor inner and outer radius, 
respectively. 

 

The Reynolds equation was solved by using the Newton-Raphson method with 
successive over-iterations. The calculated gas film pressure distribution allows to 
determine the non-dimensional bearing forces in the x and y direction: 
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0 0
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Y
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F
π θ

θ
θ
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2.2 Rotor motion equations 

Figure 3 represents the coordinate system for the investigated rotor system, which is 
supported on two HGJBs. Since the stiffness of the rotor is much higher than the gas 
bearing stiffness, the rotor is modeled as a rigid body. The non-dimensional 
equations of motion of the rotor are as follows: 
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  (8) 

where rm  is the non-dimensional rotor mass, TI  and pI  are the non-dimensional 
transversal rotor inertia and the non-dimensional polar rotor inertia, X  and Y  
represent the dimensionless displacement along x and y direction, ξ  and ψ  
represent the dimensionless rotating angle along ξ  and ψ  direction, XF  and YF  
represent the non-dimensional bearing forces in the x and y direction, _X imF  and 

_Y imF  represent the non-dimensional imbalance forces along the x and y direction, l  
represents the non-dimensional distance between the bearing mid-plane and the mass 
center, the superscript or subscript (1 or 2) represents the bearing name.  _ imMξ   and 

_ imMψ  represent the non-dimensional moment caused by the imbalances along the 
ξ  and ψ  direction, respectively. All the dimensionless variables in Eq. (8) are 
summarized in Appendix B. 



 
Figure 3 Coordinate system for the studied bearing rotor system 

 

2.3 State equations for the coupled bearing rotor system 

The traditional nonlinear modeling approach is based on a discretization of the time 
terms ( t P∂  , t h∂ ) directly by using the backward difference approximation [45]. As 
mentioned by Larsen and Santos [37], a time lagging is introduced by this method, 
which requires a small time step to obtain sufficiently-accurate solutions. Bonello 
and Pham [38,46] introduced an alternative state variable PhΨ =  , which avoids the 
discretization of the time terms. The advantage is that the coupled Reynolds equation 
and rotor motion equations can be transformed into a set of state equations, which 
allows to solve the state variables simultaneously. Larsen and Santos [37,42] also 
adopted this method and validated the rotor response of a foil bearing supported rotor 
system with experimental data. By introducing the state variable vPfΨ = , the 
modified Reynolds equation Eq. (1) is transformed into the format of a state equation: 
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Using 1X X= , 2X X=  , 1Y Y= , 2Y Y=  , 1ξ ξ= , 2ξ ξ=  , 1ψ ψ= , 2ψ ψ=   , the equations 
of motion of the rotor (Eq. (8)) can be transformed into the format of state equations 
as follows: 
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  (10) 

The state variables, which include the product of gas film pressure and gas film 
thickness ( PfυΨ = ), the rotor motion velocities ( X , Y , ξ , ψ ) and the rotor motion 
displacements ( X , Y , ξ , ψ ), are solved simultaneously by coupling Eq. (9) and Eq. 
(10). An implicit integrator with adaptive time step was adopted to integrate all the 
state equations [47].  

 

3. Model Validation 

Wagner et al. optimized [48] and tested [49] an oil-free steam-driven recirculation 
fan for the application in solid oxide fuel cell systems. In preliminary tests, the rotor 
was operated in hot air at 220 °C, up to 168 krpm. Wagner et al. [50] coupled the 
recirculation fan to an actual fuel cell system, where the turbine was propelled by 
steam, the bearings were steam-lubricated and rotational speeds of up to 220 krpm 
were reached. Figure 4(a) shows the rotor of that fan: on the left the steam turbine, 
in the middle the rotor with two HGJBs, and on the right the radial fan with the 
single-sided spiral-grooved thrust bearing. These three parts were connected by a 
tie-bolt and then locked by a nut. Note that for the test with fuel cell in the relevant 
environment, the rotor was installed vertically (axial load of 0.27 N). In this study, 
the experimental setup is shown in Fig. 4(b), where the rotor is mounted at 45°, 
instead of the nominal value of 90°. A rotor with two low stability HGJBs was used 



for this investigation, which allows to observe self-excited motions (sub-
synchronous vibration) at relatively low speeds. The shaft was propelled by the fan 
with pressurized air injected by two nozzles, rather than by the turbine. Table 1 lists 
the details of the bearing and the rotor nominal parameters. The exact parameter 
definition is given in Appendix A and in Figure A1. Since the radial bearing 
clearance has a significant impact on the stability, it was verified with dimensional 
measurements (measurement uncertainty of ± 0.4 µm). The groove profile was 
measured through the roughness meter TESA Rugosurf 90G to confirm the 
manufacturing accuracy. The measurement results suggest insignificant errors on the 
groove width ratio and a ±1 µm uncertainty on the groove depth.  The groove angle 
was measured with a microscope HiROX KH-8700, suggesting insignificant 
deviation compared to the design value. More details on those measurements are 
summarized in Appendix C. Two pairs of perpendicularly installed capacitive 
displacement sensors (Lion Precision C3S) were used to measure the displacement 
at the left side of the front bearing and the right side of the rear bearing, respectively 
(see Fig4.(a)).  

 

Table 1 Nominal parameters of the bearing and rotor for the tested rotor system (bold values 
were validated with measurements, non-formatted values were extracted from the CAD model) 

Bearing diameter 8 mm 
Bearing length 8 mm 
Groove width ratio 0.65 
Groove angle 146.2° 
Groove depth 13.6 µm (± 1 µm) 
Number of grooves 16 
Radial bearing clearance 8.4 µm (± 0.4 µm) 
Rotor mass 0.0271 kg 
Polar rotor inertia 6.073e-7 kgm2 

Transversal rotor inertia 7.782e-6 kgm2 

Distance between rear bearing mid-plane and rotor mass center 16.13 mm 
Distance between front bearing mid-plane and rotor mass center 8.65 mm 

 

 



  
Figure 4 (a) Rotor of the anode off-gas recirculation fan for the application in solid 

oxide fuel cell system and; (b) installation of the test rig with two capacitive 
displacement probes (Lion Precision C3S), one trigger (Philtec D20), and two air 

nozzles to drive the shaft 

 

In order to protect the test rig during the experimentations, the rotor speed was 
increased smoothly and slowly until the sub-synchronous vibrations start to occur. 
The pressurized air supply was interrupted as soon as the sub-synchronous vibrations 
occurred, leading to a free rotor coast down. Figure 5 shows a typical evolution for 
the whole test process. Below 30 krpm, the speed was increased quickly to ensure a 
rapid bearing lift-off to avoid too much dry friction between the bushings and the 
shaft. In the following, the speed was increased up to ~56 krpm, the speed at which 
clear sub-synchronous vibration was detected. The rotor coast down period only lasts 
for ~10 s due to the large windage loss of the turbine and the fan. Since the coast 
down period is very short, only the data during the speed up period was used for the 
analysis. 



 
Figure 5 Speed map during the whole speed up and coast down period 

 

Figure 6 shows the waterfall plots for all four displacement sensors. It suggests the 
onset speed of sub-synchronous vibrations is at ~53 krpm. Above this speed, the sub-
synchronous amplitudes of the four probes increases rapidly up to ~0.3 µm (front 
probes) as the rotor speed is increased. For all four probes the whirl speed ratio (ratio 
between sub-synchronous and rotational frequencies) is ~0.4. Before the sub-
synchronous vibrations occur, the main vibrations are synchronous, showing 
constant amplitude of ~0.4 µm and ~0.2 µm for the front bearing and rear bearing, 
respectively. Clear multi-synchronous components were also shown during the 
whole process. The synchronous amplitude is relatively small compared to the 
bearing clearance (<10%) because the residual imbalance was reduced to a minimum 
(estimated to be 5.4 mgmm at the front and 2.7 mgmm at the rear). 

 



 
Figure 6 Waterfall plots of the radial displacement measured by four capacitive 

probes: (a) front X; (b) front Y; (c) rear X; and (d) rear Y 

 

 
Figure 7 Predicted rotor response at the front bearing mid-plane in x direction near 

the onset speed of sub-synchronous vibrations 

 



Figure 7(a) shows the predicted dimensionless rotor response at the front bearing 
mid-plane in x direction ( xe ) with no imbalance obtained by incrementally 
increasing the speed by 1 krpm, starting from 10 krpm and by applying the nominal 
rotor and bearing parameters. Up to 37 krpm, the response decays to one static 
eccentricity, which corresponds to the equilibrium position. As the speed increases 
to 38 krpm, the response remains stable, but does not decay to one point anymore, 
which indicates a limit cycle with a sub-synchronous component [42]. The spectral 
analysis in Fig. 7(b) suggests a whirl frequency ratio of ~0.4, which agrees well with 
the experimental result (~0.4, Fig.6). The temperature rise and the thermal 
deformation are assumed to be negligible for the test rig under the operating 
conditions in this study because of (1) the extremely small heat generation from the 
bearings (on the order of 2 Watt) and (2) the very good heat dissipation around the 
bearings. Thus, the isothermal assumption was adopted in the simulation. The 
prediction in Fig. 7, however, does not account for possible deviations of the bearing 
dimensions with respect to the nominal parameters. According to the bearing 
geometry dimensional measurements (Table 1), the bearing clearance and groove 
depth vary within the uncertainty (± 0.4 µm and ± 1 µm, respectively). Guenat and 
Schiffmann [51] suggested that these two parameters yield the most significant 
influence on the HGJB performance. Figure 8 shows the predicted onset speed of 
sub-synchronous vibration for four cases of deviations: (a) hr0 + 0.4 µm and hg0 + 1 
µm, (b) hr0 + 0.4 µm and hg0 - 1 µm, (c) hr0 - 0.4 µm and hg0 + 1 µm, and (d) hr0 - 0.4 
µm and hg0 - 1 µm, where hr0 and hg0 are the nominal bearing radial clearance and 
groove depth, respectively. The onset speed of sub-synchronous vibration varies 
between 32 krpm and 48 krpm, confirming a high impact of the studied parameters 
(bearing clearance and groove depth). The upper limit of the error band (48 krpm) 
correlates within 10% to the experimental results (~53 krpm). Considering the high 
sensitivity of the bearing dynamic performance to the bearing geometry [14,52], the 
difference in onset speed of sub-synchronous vibration between the nonlinear model 
and the experiment data is considered small. It should be noted that the deviation of 
other parameters, such as the rotor and bushing cylindricity (in the order of 1 µm), 
the rotor imbalance, and the rotor misalignment are not considered in the predictions, 
which certainly increase the uncertainty. Besides the manufacturing deviation, the 
NGT assumption adopted in this manuscript may be another reason for the deviation 
between the numerical and experimental data, although recent work by Iseli et al. 
[53] suggested that the NGT is very accurate for the bearings investigated in this 
work when compared to more complex modeling approaches, e.g., an FEM method. 



Thus, it is assumed that a 10% (upper limit) to 30% (nominal) error on the prediction 
of the onset speed of sub-synchronous vibration and the good agreement on whirl 
speed ratio are sufficient to validate the nonlinear model proposed in this work. 

 

 
Figure 8 Predicted onset speed of sub-synchronous vibration when considering the 
bearing clearance and groove depth deviations. (a) hr0 + 0.4 µm and hg0 + 1 µm; (b) 

hr0 + 0.4 µm and hg0 - 1 µm; (c) hr0 - 0.4 µm and hg0 + 1 µm; and (d) hr0 - 0.4 µm 
and hg0 - 1 µm. 

 

Since neither imbalance nor external loads were considered in the simulation above, 
the reason for the sub-synchronous vibration is suggested to be self-excitation. Due 
to risk mitigation, the evolution of the self-excited motion with rotor speed were 
studied with simulations based on the proposed nonlinear model, rather than with 
(expensive) experiments. This allows to investigate the process from the start of the 



self-excited motion to the bearing failure. Figure 9 shows the evolution of the rotor 
responses at the front bearing after the onset speed of the sub-synchronous vibration 
evaluated with nominal rotor and bearing parameters. The blue solid line represents 
the predicted rotor orbit and the red dashed line represents the bushing surface. As 
suggested in Fig. 7, the orbits decay to an equilibrium position, if the speed is lower 
than 38 krpm. If the speed increases to 38 krpm, a limit cycle with a small amplitude 
appears (Fig. 9(a)), which indicates the start of the self-excited motion. The limit 
cycle increases rapidly at the beginning and then progresses slowly, when the rotor 
approaches the bearing surface. At a speed of 48 krpm, the rotor orbit is close to the 
bearing surface, which indicates a high risk of bearing failure. At 49 krpm, the 
simulation fails because of contact between the rotor and the bushing. It is interesting 
to note that in this case, the reason for the failure is not due to an unstable rotor 
behavior, since the rotor orbit is still bound by a limit cycle at 48 krpm. The failure 
rather occurs because the amplitude of the limit cycle grows beyond the nominal 
bearing clearance due to a dropping of the overall effective damping of the present 
vibration mode. These observations suggest that it might be useful to distinguish 
among three distinct threshold speeds: 

1. Onset speed of sub-synchronous vibration: Rotor speed at which first signs of 
the sub-synchronous vibration start to occur due to a decreasing overall 
effective damping. 

2. Bearing failure speed: Rotor speed at which rotor touchdown occurs due to 
either a too large limit cycle amplitude or due to a bearing instability. 

3. Threshold speed of instability: Rotor speed at which the rotor orbit increases 
exponentially due to a negative overall effective damping. 

 



 
Figure 9 Predicted rotor responses (solid blue line) without imbalance at the front 

bearing for six different speeds after the onset speed of sub-synchronous 
vibrations. (a) 38 krpm; (b) 40 krpm; (c) 42 krpm; (d) 44 krpm; (e) 46 krpm; and 

(f) 48 krpm. The red dashed line represents the bearing surface. 

 

Figure 10 shows the spectral analysis of the limit cycles in Fig. 9. Only the results 
in x direction are shown, since the results in y direction are similar. The x-axis 
corresponds to the whirl speed ratio, which is the ratio of the self-excited frequency 
and the rotor rotating frequency. The y-axis represents the dimensionless 0-peak 
amplitude of the rotor responses in x direction ( xe  ). The amplitude increases rapidly 
after the first occurrence of sub-synchronous motion and then more slowly at higher 
speeds, which is consistent with the analysis on the limit cycles in Fig. 9. The 
dimensionless 0-peak amplitude is only 0.11 at 38 krpm, while it increases to 0.86 
at 48 krpm. The whirl speed ratio remains almost constant at ~0.4 as the rotor speed 
increases from 38krpm to 48 krpm (whole self-excited motion period). This agrees 
very well with the experimental results, which show a whirl speed ratio of 0.4 (Fig. 
6). 

 



 
Figure 10 Spectral analysis at the front bearing in x direction for six different 

speeds after the onset speed of sub-synchronous vibrations. (a) 38 krpm; (b) 40 
krpm; (c) 42 krpm; (d) 44 krpm; (e) 46 krpm; and (f) 48 krpm. 

 

Figure 11 shows the predicted mode shape of the self-excited motions for the six 
rotor speeds analyzed above. The three orbits represent the orbit of the rear bearing 
(left bearing), the mass center (middle), and the front bearing (right). At the onset 
speed of sub-synchronous vibration, the three orbits are all relatively small. With 
increasing speed, the three orbits increase simultaneously. The rear bearing orbit is 
smaller than the front one at all investigated speeds, which indicates a bearing failure 
may happen first at the front due to the increased self-excited motion. This 
phenomenon is consistent with the experimental results, which show larger sub-
synchronous amplitudes at the front bearing (Fig. 6). Figure 11 clearly suggests that 
the conical mode dominates the sub-synchronous rotor motion for all the speeds 
rather than the cylindrical one. This indicates that the self-excited motion originate 
from the conical mode natural frequency in this case. Moreover, the self-excited 
conical motions are all forward conical motions.  

 



 
Figure 11 Mode shape predicted for six different speeds after the onset speed of 

sub-synchronous vibrations using the non-linear model. (a) 38 krpm; (b) 40 krpm; 
(c) 42 krpm; (d) 44 krpm; (e) 46 krpm; and (f) 48 krpm. 

 

In summary, the onset speed of sub-synchronous vibration, the whirl frequency ratio, 
and the mode shapes of the self-excited motions predicted by the nonlinear model 
corroborate with the experimental results, which therefore validates the implemented 
nonlinear rotor-bearing model. 

 

4. Effect of static load on rotor response 

The rotor responses studied above correspond to the case where the rotor is inclined 
by 45°. In order to investigate the effect of static load on the system stability, the 
cases of a vertically (90°) and horizontally (0°) installed rotor were investigated. 
Figure 12 shows the predicted onset speed of sub-synchronous vibrations for the 
vertically installed rotor (Fig. 12(a)) and the horizontally installed rotor (Fig. 12(b)), 
respectively. The vertical rotor response decays to an equilibrium position at 35 
krpm, and starts to present self-excitation motions at 36 krpm. This indicates a 
reduced level of stability compared to the 45° inclined rotor. However, it should be 
noted that the HGJB-rotor system can operate in a stable manner even if the rotor is 



vertically installed. This was experimentally demonstrated in Ref. [49] and [50] for 
a similar setup. A vertically-mounted rotor was operated up to the design operating 
speed of 168 krpm without any sub-synchronous vibration. This is impossible for a 
circular plain bearing rotor system, because of its inherent instability when the 
bearing is unloaded [54]. The onset speed of sub-synchronous vibrations of the 
horizontal rotor increases to 40 krpm, which is higher than both the vertically and 
45° inclined rotor, suggesting, therefore, that static load delays the appearance of 
sub-synchronous vibrations. 

 
Figure 12 Onset speed of sub-synchronous vibrations for rotor (a) vertically and 

(b) horizontally inclined 

 

Figure 13 shows the predicted onset speed of sub-synchronous vibrations for 
different static loads applied to the rotor mass center. The static load is increased 
from 0 to four-times the rotor weight ( 4 rm g ). The results suggest an increase in the 
onset speed of sub-synchronous vibrations from 36 krpm to 75 krpm as the static 
load increases from 0 to 4 rm g . As the static load increases, the static rotor 
eccentricity becomes larger, which increases the dynamic stiffness of the bearing 

and decreases the cross-coupling behavior, which corroborates with analyses 
presented by Iseli et al. [53]. Thus, the natural frequency of the bearing-rotor system 
increases, which leads to higher onset speed of sub-synchronous vibration. The onset 
speed of sub-synchronous vibration increases slowly at low static loads, while it 
increases more rapidly at higher static loads. These results suggest that the HGJB 
stability can be improved by increasing the static load applied on the bearings. 
However, the lift-off speed will also increase with the static load, which will 



aggravate the dry friction and potential wear during start-stop periods. Moreover, 
the power loss will also increase due to the thinner film thickness. 

 
Figure 13 Effect of static load on the onset speed of sub-synchronous vibrations 

 

5. Effect of imbalance on the response 

The analysis above are based on a perfectly balanced rotor, while residual 
imbalances always exist in real applications. In order to assess the effect of 
imbalance, imbalances of 20 mgmm, 30 mgmm, and 40 mgmm were added at the 
rotor mass center position. Figure 14 shows the evolution of the rotor response with 
an imbalance of 20 mgmm for different speeds after the occurrence of the self-
excited motion, which was from 38 krpm to 46 krpm (rotor inclined by 45 °). Unlike 
the rotor responses in Fig. 9, which only shows circular limit cycles, the rotor 
responses with added imbalance shows complex orbits except at 38 krpm, where the 
rotor orbit is circular, which is similar to the orbit of the rotor with no imbalance 
excitation in Fig. 9(a). However, the frequency spectrum in Fig. 14(a) only shows 
amplitudes at the synchronous frequency whereas the no-imbalance excitation case 
only shows sub-synchronous frequency (Fig. 10(a)), therefore suggesting that 
imbalance can delay the onset of the sub-synchronous vibration. Increasing the 
imbalance leads to higher transient eccentricity ratio of the shaft center. Thus, the 
transient natural frequency of the bearing-rotor system increases, which in turn 
increases the onset speed of sub-synchronous vibration in a similar manner as an 
increased static load. As the rotor speed increases to 40 krpm, the orbit starts to show 
more complex shapes. Two frequency components appear in the frequency 
spectrums of all investigated operating speeds. One of the frequencies is equal to the 



operating speed, i.e., the synchronous frequency, which is excited by the imbalance 
forces. Another frequency at ~0.4 times of the operating speed corresponds to self-
excited motion.  Similar to the results in Fig. 10, the amplitudes of this frequency 
component increase rapidly as the speed increases, while the synchronous 
component amplitudes remain almost constant. The orbit is close to the bearing 
surface at a speed of 46 krpm. At 47 krpm, the simulation fails because of contact 
between the rotor and the bearing. The speed of bearing failure decreases from 49 
krpm to 47 krpm when the 20 mgmm imbalance is considered, since the total rotor 
response corresponds to the superposition of the self-excited motion and the 
imbalance-excited motion. 

 

Figure 15 shows the rotor responses when the imbalance increases to 30 mgmm. The 
dimensionless synchronous amplitude increases from ~0.12 to ~0.18 for all the rotor 
speeds compared to the 20 mgmm case, while the sub-synchronous amplitudes are 
not influenced much. Similar to the case with 20 mgmm imbalance, only the 
synchronous frequency component appears in the spectral analysis at 38 krpm. 
Increasing the speed to 45 krpm, the simulation fails because of contact between the 
rotor and the bearing surface. In comparison to the 20 mgmm case, the speed of 
bearing failure decreases from 47 krpm to 45 krpm, since the synchronous amplitude 
increases while the sub-synchronous amplitude does not change much. Figure 16 
shows the rotor responses with an imbalance of 40 mgmm. Compared to the 20 
mgmm and 30 mgmm cases, the synchronous amplitudes increase to ~0.23, while 
the speed of bearing failure decreases to 43 krpm. The nonlinear simulation results 
clearly suggest that the imbalance increases the onset speed of sub-synchronous 
vibrations, while it reduces the bearing failure speed continuously. Thus, the speed 
range between the onset speed of sub-synchronous vibrations and the bearing failure 
speed becomes narrower as the imbalance increases, which make experimental 
investigations more risky. 



 
Figure 14 Rotor responses with 20 mgmm imbalance located at the rotor mass 

center from 38 krpm to 46 krpm 



 
Figure 15 Rotor responses with 30 mgmm imbalance located at the rotor mass 

center from 38 krpm to 44 krpm 

 



 
Figure 16 Rotor responses with 40 mgmm imbalance located at the rotor mass 

center from 38 krpm to 42 krpm 

 

6. Conclusion 

A nonlinear prediction model of a rigid rotor supported on herringbone grooved 
journal gas bearings (HGJBs) was proposed in this study. The theoretical model 
couples the bearing model based on the two dimensional narrow groove theory (2D-
NGT) with the rotor motion equations. The coupled Reynolds equation and rotor 
motion equations were transformed into a set of state equations and integrated by an 
implicit integrator with adaptive time step. A rigid rotor supported on two HGJBs 
was tested. The speed up and coast down test was conducted to find the onset speed 
of sub-synchronous vibrations. The proposed theoretical model successfully 
captured the onset speed of sub-synchronous vibrations in the experiment within     
10% to 30% error considering dimensional deviations due to the manufacturing and 



measurement uncertainty. The evolution of the self-excited motion was investigated 
as the rotor speed increased after the onset speed of sub-synchronous vibration. The 
limit cycle continuously increases with rotor speed until bearing failure. The spectral 
analysis on the limit cycle suggests a whirl speed ratio of ~0.4, which agrees well 
with the experimental results. The mode shape analysis shows self-excited forward 
conical mode shapes for all investigated rotor speeds. 

 

The simulation results suggest stable rotor operation even for a vertically inclined 
rotor, which demonstrates the inherent stability characteristic of the HGJB compared 
to plain bearing. The results further suggest that increasing the static load increases 
the onset speed of sub-synchronous vibrations. However, it should be noted that the 
increased static load also increases both the lift-off speed (higher bearing wear) and 
the bearing power loss. 

 

When considering rotor imbalances, the non-linear model suggests the appearance 
of both synchronous and sub-synchronous frequency components. The whirl 
frequency ratio is nearly independent on the imbalance level. The imbalance analysis 
shows that the onset speed of sub-synchronous vibrations increases, while the 
bearing failure speed decreases with imbalance. This means the speed range from 
the onset speed of sub-synchronous vibrations to the bearing failure becomes 
narrower, hence, the bearing failure occurs more rapidly. 

 

The non-linear model allows to analyze the rising limit cycles due to the reduction 
of the overall effective damping until bearing failure as a function of static and 
imbalance loads. The results suggest that it might be beneficial to distinguish among 
(1) onset speed of sub-synchronous vibration, (2) bearing failure speed and (3) 
threshold speed of instability, which represent three distinct phenomena. The non-
linear model of the rotor investigated in this work show that bearing failure occurs 
before the rotordynamic instability occurs, due to the rising orbit of the self-excited 
limit cycle. 
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Appendix A 

Figure A1 shows the physical meaning of the HGJB parameters. In the modified 
Reynolds equation for HGJBs, the expression of the variables are as follows: 
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Here, 0rh  is the bearing initial clearance, 0/r r rh h h=  and 0/g g rh h h=  are the non-
dimensional gas film thickness in the non-groove region and groove region, 
respectively. The variables ( )2 1 2/b b bα = +  and β  are the groove width ratio and 
the groove angle, respectively, 0ω  and hω  represent the angular speed for the groove 
part and smooth part, respective, ω  is the relative angular speed of the smooth part 
and the groove part, µ  is the gas viscosity, ap  is the ambient pressure, and R is the 
bearing radius.  

 
Figure A1 Schematic of the herringbone grooved gas bearing 

 

Appendix B 

The dimensionless mass is expressed as follows: 
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The dimensionless polar rotor inertia and dimensionless transversal rotor inertia can 
be expressed as: 
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The dimensionless force and moment can be expressed as: 
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Moreover, in Eq. (8), 0/ rX X h=  and 0/ rY Y h=  represent the dimensionless 
displacement along x and y direction, respectively, 0/ rl hξ ξ=  and 0/ rl hψ ψ=  
represent the dimensionless rotating angle along ξ  and ψ  direction, respectively, 
and l  represents the bearing span. The dimensionless time is t tω= .  

 

Appendix C 

Figure C1 shows the measurement of the groove profile with the roughness meter 
Rugosurf 90G. The results suggest that the roughness of the groove region is not as 
low as the one of the ridge region. Therefore, we assume, that the nominal groove 
depth has a deviation of ± 1 µm deviation. 

 
Figure C1 Groove profile measurement: (a) photo of the measurement procedures 

and (b) the measured groove profile 



 

Figure C2 shows the measurement of the groove angle with the microscope HiROX 
KH-8700. The measured groove angle (146°) correlates well with the nominal 
parameter (146.2°), which suggests an ignorable deviation. 

 
Figure C2 Groove angle measurement result 
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